WO2020218156A1 - Foam ejecting dispenser and foam ejecting container - Google Patents

Foam ejecting dispenser and foam ejecting container Download PDF

Info

Publication number
WO2020218156A1
WO2020218156A1 PCT/JP2020/016735 JP2020016735W WO2020218156A1 WO 2020218156 A1 WO2020218156 A1 WO 2020218156A1 JP 2020016735 W JP2020016735 W JP 2020016735W WO 2020218156 A1 WO2020218156 A1 WO 2020218156A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
mesh
foam discharge
liquid
liquid agent
Prior art date
Application number
PCT/JP2020/016735
Other languages
French (fr)
Japanese (ja)
Inventor
愛理 小山
佐々木 剛
征一 袴田
Original Assignee
株式会社資生堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社資生堂 filed Critical 株式会社資生堂
Publication of WO2020218156A1 publication Critical patent/WO2020218156A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents

Definitions

  • the present invention relates to a foam discharge dispenser having a foaming member for foaming a mixed liquid agent in which a liquid agent and a gas are mixed, and a foam discharge container having a foam discharge dispenser.
  • a liquid supplied from the inside of a liquid cylinder and an air supplied from the inside of an air cylinder are mixed, and the mixed fluid is foamed by passing through a foaming means.
  • the foaming means is formed of a mesh (for example, Patent Document 1).
  • Patent Document 2 in which the foamed member is composed of a single porous foam such as urethane foam and Patent Document 3 in which the foamed member is composed of a non-woven fabric are known.
  • Patent Documents 1 to 3 regardless of which of the mesh, urethane foam, non-woven fabric, etc. shown in Patent Documents 1 to 3 is used for the foam member, if the foam discharge container is left in a high temperature and high humidity environment for a long time, the liquid agent solidifies on the foam member. As a result, the foamed member was clogged, and the pump could not be pushed and the contents did not come out.
  • an object of the present invention is to provide a foam discharge dispenser capable of suppressing the occurrence of clogging in the foam member even if it is left for a long time.
  • a foam discharge dispenser having a foaming member that foams a mixed liquid agent in which a liquid agent and a gas are mixed.
  • the foam member provides a foam discharge dispenser, which is a mesh having a contact angle with water of 115 ° to 179 °.
  • the foam discharge dispenser can suppress the occurrence of clogging in the foam member even if it is left for a long time.
  • the figure which shows the state of the water droplet when the contact angle on the mesh on the downstream side of the water-repellent resin of this invention was measured.
  • FIG. 1 is an overall view of a foam discharge container 1 according to an embodiment of the present invention.
  • the foam discharge container 1 includes a container body 900 that stores the liquid agent L at normal pressure, and a foam discharge dispenser 100 that is a cap portion that is detachably attached to the container body 900. It is composed of.
  • the container body (bottle part) 900 stores the liquid liquid agent L.
  • the container body 900 has a body portion 91, a shoulder portion 92, a mouth portion 93, and a bottom portion 94.
  • the bottom portion 94 closes the lower end with the body portion 91, and the body portion 91 and the bottom portion 94 serve as a liquid storage portion.
  • the shoulder portion 92 is connected to the upper end of the body portion 91.
  • the mouth portion 93 is connected to the inner end of the shoulder portion 92 and has a cylindrical shape having a diameter smaller than that of the body portion 91, and the upper surface of the mouth portion 93 is open.
  • the body shape of the container body 900 shown in FIG. 1 shows an example in which the body 91 is cylindrical, but the shape of the body 91 is such that if the mouth 93 is substantially cylindrical, the body 91 is cylindrical. May have any shape such as a square cylinder, a cone, a gourd, and an egg.
  • the foam discharge dispenser 100 is used by being attached to a container body 900 for storing the liquid agent L.
  • the foam discharge dispenser 100 having a pump function is attached to the container body 900, the foam discharge container 1 functions as a push-type pump container.
  • the foam discharge dispenser 100 includes a delivery mechanism 10 having a pump function, a gas-liquid mixing unit 20, an injection member 30 which is a foam flow path, a foam member 40 having meshes 41 and 42, and a discharge port. It includes a head portion 50 including 51 and a screw cap portion 60.
  • the liquid agent L is sent out from the container body 900 toward the discharge port 51 by the delivery mechanism 10, and the liquid agent L and the gas are mixed in the gas-liquid mixing unit 20 to form a coarsely foamed mixed liquid agent. It becomes M. Then, due to the delivery force of the delivery mechanism 10, the mixed liquid agent M mixed with the gas in the gas-liquid mixing unit 20 is passed through the injection member 30 and flows toward the discharge port 51 of the head unit 50. At this time, the foaming member 40 foams the mixed liquid M finely and uniformly inside the injection member 30. Further, the foaming liquid agent F is made to flow inside the head portion 50 by the delivery force of the delivery mechanism 10, and the foamed liquid agent F is discharged from the discharge port 51.
  • the delivery mechanism 10 includes a pump function for a liquid agent and a gas, and when the head portion 50 is pressed, the liquid agent L is sucked from the container body 900 toward the discharge port 51 (flow passage). Send out. During this delivery period, the foam discharge dispenser 100 foams the liquid agent and discharges the foamed liquid agent.
  • the non-foam-like liquid liquid agent stored in the container body 900 is referred to as L
  • the liquid agent after gas-liquid mixing is referred to as M
  • the foam-like liquid agent F (foam) after the foam flow path is referred to.
  • the head portion 50 provided above the foam discharge dispenser 100 has a discharge nozzle 52 in which a discharge port 51 is formed, an operation receiving portion 53, a flow pipe 54, and an outer cylinder 55.
  • the operation receiving unit 53 is the upper surface of the head unit 50, and when the user discharges bubbles, the operation receiving unit 53 comes into contact with the operation receiving unit 53 to receive the pressing operation.
  • the flow pipe 54 and the outer cylinder 55 are cylindrical (circular tubular) members that hang down from the operation receiving portion 53 and extend in the vertical direction. In this configuration example, the flow pipe 54, which is an inner cylinder, extends downward longer than the outer cylinder 55.
  • an injection member 30 which is a tubular bubble flow path is provided on the inner peripheral surface of the flow pipe 54.
  • the injection member 30 has a tubular shape having different shapes in the vertical direction, with the axial direction extending in the vertical direction.
  • the injection member 30 is connected to a diameter-expanding ring 32 whose diameter gradually increases from the upstream side (lower side) to the outflow side (upper side) and the downstream end of the diameter-expanding ring 32, and has a diameter larger than that of the downstream end. It is composed of a large diameter ring 31 having a large diameter.
  • the outer circumference of the large-diameter ring 31 of the injection member 30 is fitted on the inner peripheral surface of the flow pipe 54 of the head portion 50.
  • a foam member 40 having an upstream mesh 41, a downstream mesh 42 and a flow cylinder 43 is fitted inside the injection member 30.
  • the meshes 41 and 42 are stretched so as to be orthogonal to the axial direction of the flow cylinder 43.
  • Meshes 41 and 42 are adhered to the flow cylinder 43.
  • the flow cylinder 43 is divided into two upper and lower bodies so as to be adhered to the mesh 41 and 42, respectively, and attached to the injection member 30. Good.
  • the screw cap portion 60 is attached to the mouth portion 93 of the container body 90 in the foam discharge dispenser 100.
  • the screw cap portion 60 includes a mounting portion 61, a cap shoulder portion 62, and an upright cylinder portion 63.
  • the mounting portion 61 has a cylindrical shape and is detachably mounted on the mouth portion 93 of the container body 900 by screwing or the like.
  • the head portion 50 has a screw cap portion so that the flow pipe 54 of the head portion 50 and the outer cylinder 55 sandwich the standing cylinder portion 63 of the screw cap portion 60 from the inside and the outside. Engage with respect to 60.
  • the foam discharge dispenser 100 when the foam discharge dispenser 100 is attached to the container body 900, the mounting portion 61 of the screw cap portion 60 is mounted on the mouth portion 93 of the container body 900, so that the entire foam discharge dispenser 100 is attached to the mouth portion 93. Once mounted, the foam discharge dispenser 100 closes the opening of the container body 900.
  • the foam discharge dispenser 100 has a liquid agent pump function by a delivery mechanism 10 that operates in conjunction with a pressing operation of the head portion 50, and a gas pump function by moving the position of the head portion 50 with respect to the screw cap portion 60.
  • the delivery mechanism 10 includes a cylinder portion 110, a piston guide 120, a liquid piston 130, a poppet 140, a gas piston 150, and a ball valve 160.
  • the cylinder portion 110 is fixed to the screw cap portion 60, and a lower part is immersed in the liquid to inject the liquid into the inside, and the gas is temporarily stored in the other upper part.
  • the cylinder portion 110 integrally comprises an air cylinder portion 111, an annular connecting portion 113, and a liquid cylinder portion 114.
  • the upper end of the air cylinder portion 111 is fixed to the lower surface side of the cap shoulder portion 62 of the screw cap portion 60, and extends in the vertical direction.
  • the internal space of the container body 900 is sealed except for the portion of the air valve 170 so that the foam discharge dispenser 100 keeps the container body 900 in a closed state.
  • a horizontal hole 112 is formed in the side wall-shaped air cylinder portion 111.
  • the liquid cylinder portion 114 is a tubular suction nozzle that sucks the liquid liquid agent L of the container body 900, and extends in the vertical direction.
  • the liquid cylinder portion 114 is composed of a small diameter portion at the tip, a large diameter portion on the upper side, and a diameter reduction portion 115 that connects the small diameter portion and the large diameter portion.
  • the inflow / stop of the liquid is controlled by contacting / separating the inner tapered surface of the diameter-reduced portion 115 and the valve 141 of the poppet 140.
  • the annular connecting portion 113 is an inner bottom portion (middle plate) of the cylinder portion 110, and is a portion that connects the lower end portion of the air cylinder portion 111 and the upper end portion of the liquid cylinder portion 114.
  • the liquid cylinder portion 114 hangs down from the inner peripheral edge of the annular connecting portion 113.
  • the piston guide 120 is a tubular member extending in the vertical direction at the center, and a tubular standing portion 121 and an annular standing portion 122 are integrally provided at the upper end thereof.
  • the annular upright portion 122 stands upward from the inner end of the inner peripheral annular projection protruding inward from the inner peripheral surface of the cylinder.
  • the lower end of the piston guide 120 is located on the inner circumference near the upper end of the liquid cylinder portion 114.
  • a guide protrusion 123 is provided on the outer periphery of the piston guide 120 so that the lower end and the upper surface of the inner peripheral wall 152 of the gas piston 150 come into contact with each other during standing.
  • an inner rib 124 having a step at which the lower end contacts the upper end of the poppet 140 is provided on the upper part of the inner circumference below the inner peripheral annular projection of the piston guide 120.
  • the vertical position of the tubular upright portion 121 at the upper end of the piston guide 120 is fixed with respect to the flow pipe 54 in a state of being internally fitted around the lower end of the flow pipe 54 of the head portion 50.
  • the liquid piston 130 is inserted into the inner peripheral side of the piston guide 120, and is fixedly provided at the lower end of the piston guide 120 so as to project downward from the piston guide 120. Therefore, the head portion 50, the piston guide 120, and the liquid piston 130 move up and down integrally with the liquid cylinder portion 114.
  • the lower end portion of the liquid piston 130 and the liquid cylinder portion 114 are in close contact with each other to ensure airtightness at all times.
  • the poppet 140 is a rod-shaped member that extends vertically, and is inserted from the inside of the piston guide 120 to the inside of the liquid cylinder portion 114 in a state of penetrating the liquid piston 130.
  • the poppet 140 can move up and down relatively with respect to the liquid piston 130 and the piston guide 120, and can also move up and down relatively with respect to the liquid cylinder portion 114.
  • One end (lower end) of the poppet 140 is a valve 141 whose diameter is larger than that of the central shaft portion, and the other end (upper end) is a enlarged diameter portion whose diameter is expanded toward the outer peripheral side of the cylinder or a protrusion protruding toward the outer peripheral side. Is provided.
  • a spring 180 which is a coryl spring that adjusts the force in the vertical direction, is provided so as to surround substantially the lower half of the shaft portion other than the valve 141 of the poppet 140.
  • the gas piston 150 is arranged between the outer circumference of the piston guide 120 and the inner wall around the upper end of the air cylinder portion 111.
  • the outer peripheral end of the gas piston 150 is a widened slide outer end wall 151, which is in close contact with the air cylinder portion 111, and the inner peripheral wall 152 on the inner peripheral side is relative to the piston guide 120. It is spread out and fitted in a loosely inserted state that can move up and down.
  • the slide outer end wall 151 closes the lateral hole 112 of the air cylinder portion 111 in the stationary state.
  • an upper hole 153 is formed in the vicinity of the inner peripheral wall 152 of the gas piston 150.
  • an air valve 170 is provided on the outside of the inner peripheral wall 152 of the gas piston 150.
  • gas is stored in the space surrounded by the lower surface of the air valve 170, the lower surface of the gas piston 150, the air cylinder portion 111, and the annular connecting portion 113.
  • a ball valve 160 is provided on the inner circumference of the tubular standing portion 121 at the upper end of the piston guide 120 and above the annular standing portion 122.
  • the ball valve 160 opens and closes the upper end of the annular standing portion 122.
  • the outer peripheral surface of the diameter expansion ring 32 on the lower side of the injection member 30 mounted on the head portion 50 is fitted inside the tubular upright portion 121 at the upper end of the piston guide 120.
  • the gas-liquid mixing portion 20 is, for example, an inner space around the ball valve 160 and surrounded by the tubular standing portion 121.
  • the liquid agent M mixed with the gas in the gas-liquid mixing unit 20 passes through the injection member 30 and the meshes 41 and 42 mounted on the head unit 50, and is further finely foamed.
  • the upstream mesh (first mesh) 41 foams the mixed liquid M
  • the downstream mesh (second mesh). ) 42 makes the bubbles finer and produces bubbles F to be discharged. Therefore, it is preferable that the opening of the downstream mesh 42 is finer than that of the upstream mesh 41.
  • the liquid agent F foamed by the meshes 41 and 42 housed in the injection member 30 is headed. After flowing upward in the inner circumference of the upper part of the flow pipe 54 of the part 50, it flows along the discharge nozzle 52 extending in the lateral direction and is discharged from the discharge port 51.
  • the upper hole 153 remains closed by the air valve 170, and the upper surface of the guide protrusion 123 is separated from the lower end of the inner peripheral wall 152 of the gas piston 150, so that the upper hole 153 is stored in the air cylinder portion 111.
  • the gas that has been generated is pushed out between the outer circumference of the piston guide 120 and the inner circumference of the inner peripheral wall 152.
  • the extruded air mixes with the liquid at the gas-liquid mixing section 20 near the ball valve 160 to form a mixed liquid M, which is foamed.
  • a mixture of liquid and air passes through the small diameter of the injection member 30 which is a bubble flow path, and by jet injection, it hits the meshes 41 and 42 to be conditioned and discharged as bubbles F.
  • the air valve 170 opens apart from the gas piston 150 as the pressure of the air cylinder portion 111 drops, so that air is supplied into the air cylinder portion 111 through the upper hole 153.
  • the slide outer end wall 151 opens the lateral hole 112 of the air cylinder portion 111. Air is supplied to the container body 900 from the side hole 112.
  • the foam discharge container of the present invention is not limited to this example, and the liquid agent L is not limited to this example. It may be an electric dispenser that pumps and gas, respectively, mixes them, foams them, and discharges them. Alternatively, the foam discharge container may be a squeeze bottle configured to discharge foam by squeezing the container body.
  • the downward direction is the upstream side and the upward direction is the downstream side, but these directions are the container body 900 and the foam discharge dispenser 100.
  • the foam discharge container 1 may be arranged downward or sideways for use without limiting the direction during production and use.
  • the contact angle ( ⁇ : Contact Angle) is a quantification of the degree of wetting, and is "the angle between the liquid surface and the solid surface at the place where the free surface of the static liquid contacts the solid wall ( ⁇ : Contact Angle). Take the corner inside the liquid) ".
  • FIGS. 3A and 3B show the state of water droplets measured at the contact angle of the mesh of the comparative example.
  • FIG. 3A shows the mesh on the upstream side
  • FIG. 3B shows the mesh on the downstream side and the state of water droplets on the upper side.
  • Table 1 shows the mesh configuration and contact angle measurement results used in the comparative example.
  • the contact angle values in Table 1 As a contact angle measurement test, 2 ⁇ l of water droplets were dropped, and 1 second after the droplets were deposited, an image was acquired using DropMaster 501 manufactured by Kyowa Interface Science Co., Ltd., and the analysis software of the company was used. "FAMAS (interFAce Measurement & Analysis System) is used to calculate the contact angle, which is the average value of the results of five shootings and calculations.
  • FAMAS interFAce Measurement & Analysis System
  • FIGS. 4A to 4D show the state of water droplets measured at the contact angle of the mesh of the present invention.
  • FIG. 4A is an upstream mesh made of water-repellent resin
  • FIG. 4B is a mesh downstream made of water-repellent resin
  • FIG. 4C is an upstream mesh made of metal
  • FIG. 4D is a downstream mesh made of metal. Shows the state of water droplets on the side mesh.
  • Table 2 shows a comparative example and the measurement results of the mesh configuration and contact angle used in the present invention.
  • the contact angle values in Table 2 As for the contact angle values in Table 2, as a contact angle measurement test, 2 ⁇ l of water droplets were dropped, and 1 second after the droplets were applied, an image was acquired using DropMaster 501 manufactured by Kyowa Interface Science Co., Ltd., and the analysis software of the company was used. It is the average value of the results of five shootings and calculations for which the contact angle was calculated using FAMAS.
  • a water-repellent mesh is used for the polyester mesh, and the dimensions of the upstream mesh 41 and the downstream mesh 42 are as shown in the table.
  • SUS stainless steel
  • the dimensions of the upstream mesh 41 and the downstream mesh 42 are as shown in the table.
  • the "water-repellent mesh” is a wet method in which a spray coating or dipping method is applied to a general material (for example, a resin such as nylon or polyester), or a vacuum film forming apparatus.
  • a general material for example, a resin such as nylon or polyester
  • a vacuum film forming apparatus By applying an organic material (silicone) or an inorganic material (fluorine) by a dry method using a method such as, or by applying a water-repellent treatment by using a shrinkable plastic with fine wrinkles on the surface of a fluorine-processed resin. It was realized.
  • a material having high water repellency as a single resin is, for example, a fluororesin such as Teflon (registered trademark).
  • fluororesin having high water repellency may be, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), ethylene tetrafluoride copolymer resin (ETFE), or the like. ..
  • FIG. 5A to 5C show photographs of bubbles discharged from the foam discharge container.
  • FIG. 5A shows the result of foam discharge from the foam discharge container using the nylon mesh of the comparative example
  • FIG. 5B shows the result of foam discharge discharged from the foam discharge container using the water-repellent resin mesh.
  • FIG. 5C shows the result of foam ejection discharged from the foam ejection container using the metal mesh.
  • the liquid agent L has a higher viscosity than water.
  • the viscosity of the liquid agent L before being mixed with air and foaming is not particularly limited, but can be, for example, 1 mPa ⁇ s or more and 200 mPa ⁇ s or less at 20 ° C. as measured by a B-type viscometer, and 2 mPa. -It is more preferable that it is s or more and 100 mPa ⁇ s or less.
  • the liquid agent 101 includes hand soap, washing pigment, cleansing agent, body soap, dishwashing liquid, hair styling product, shaving cream, skin cosmetics such as foundation and beauty essence, hair dye, and disinfectant.
  • hand soap washing pigment, cleansing agent, body soap, dishwashing liquid, hair styling product, shaving cream, skin cosmetics such as foundation and beauty essence, hair dye, and disinfectant.
  • the liquid agent used is a skin cleansing agent such as hand soap, face wash, cleansing agent, body soap, etc.
  • the composition of the skin cleanser is It is known to contain (A) water (B) surfactant and (C) foam quality improver.
  • the (B) surfactant comprises one or more selected from nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
  • the nonionic surfactant can be appropriately selected from compounds generally used as a nonionic surfactant, and for example, a polyoxyalkylene-added nonionic surfactant, a mono- or diethanolamide-based nonionic surfactant. Examples thereof include agents, sugar-based nonionic surfactants, and glycerin-based nonionic surfactants.
  • the anionic surfactant can be appropriately selected from compounds generally used as an anionic surfactant, and is a carboxylic acid salt type such as fatty acid soap, N-acylglutamate, alkyl ether acetic acid, ⁇ .
  • carboxylic acid salt type such as fatty acid soap, N-acylglutamate, alkyl ether acetic acid, ⁇ .
  • examples include sulfonic acid types such as olefin sulfonates, alkane sulfonates and alkylbenzene sulfonic acids, sulfate ester salt types such as higher alcohol sulfates, and phosphoric acid ester salt types.
  • the cationic surfactant can be appropriately selected from compounds generally used as a cationic surfactant, and is an aliphatic amine salt, an alkyl quaternary ammonium salt, an aromatic quaternary ammonium salt, and a pyridinium salt. , Imidazolinium salt and the like.
  • the amphoteric surfactant can be appropriately selected from compounds generally used as amphoteric surfactants, but carbobetaine-type amphoteric surfactants such as alkylbetaine and alkylamide betaine, alkylsulfobetaines and alkylhydroxys. Examples thereof include sulfobetaine-type amphoteric surfactants such as sulfobetaine, phosphobetaine-type amphoteric surfactants, imidazoline-type amphoteric surfactants, and amide amino acid salts.
  • alkyl betaine examples include betaine lauryldimethylaminoacetate.
  • alkylamide betaine examples include coconut oil fatty acid amide propyl betaine.
  • alkylsulfobetaine examples include coconut oil fatty acid dimethylsulfopropyl betaine.
  • alkylhydroxysulfobetaine examples include lauryldimethylaminohydroxysulfobetaine.
  • phosphobetaine-type amphoteric surfactant examples include lauryl hydroxyphosphobetaine.
  • imidazoline-type amphoteric surfactant examples include coconut oil alkyl-N-hydroxyethyl imidazolinium betaine and the like.
  • the foam quality improving agent (C) can be appropriately selected from compounds generally used for foaming having excellent durability or elasticity, and for example, dimethyldialylammonium chloride / acrylamide copolymer weight. Coalescence, polyoxyethylene methyl glucoside, polyethylene glycol, etc. can be mentioned.
  • Alkoxylated methyl glucosides are, for example, methylgluces-10, methylgluces-20, PPG-10 methylglucose ether, and PPG-20 methylglucose ether (from Lubrizol Advanced Materials, Inc., trade names Glucam® E10, Glucam, respectively.
  • E20, Glucam® P10, and Glucam® P20 including hydrophobically modified alkoxylated methyl glucosides such as PEG120 methyl glucose dioleate, PEG- 120 Methyl Glucose Trioleate and PEG-20 Methyl Glucose Sesquistearate (from Lubrizol Advanced Materials, Inc., trade names, Glucamate® DOE-120, Glucamate® LT, and Glucamate® SSE, respectively. (Available at -20), as well as mixtures thereof and the like.
  • polyethylene glycol examples include PEG-20000 (weight average molecular weight 20,000, manufactured by NOF CORPORATION).
  • foam quality improving agents strengthen the film viscosity of individual bubbles when the film of the liquid agent swells on the mesh, the head portion 50 is pushed and the mixed liquid agent in which the liquid agent and the gas are mixed is a mesh. If it remains on the mesh 41, 42 after passing through 41, 42, it causes solidification of the liquid agent. However, since it is for improving the foam quality at the time of foaming, it is necessary to mix a small amount.
  • the skin cleanser may also contain a moisturizer and other ingredients.
  • the moisturizing agent can be selected from those usually blended in cosmetics and the like, and is not particularly limited, but for example, a large amount of glycerin, propylene glycol, dipropylene glycol, 1,3-butylene glycol, ethylene glycol, sorbitol and the like. Propylene alcohol can be mentioned.
  • the other components are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected depending on the intended purpose. For example, viscosity regulators, solvents, pH regulators, vitamins, amino acids, etc.
  • Anti-inflammatory agents UV absorbers, cold sensation agents, antioxidants, colorants, fragrances, antiperspirants, bactericides, deodorants, preservatives, inclusion compounds, water-insoluble powders (inorganic powders, organics) Powder, etc.), etc.
  • the same skin cleaning solution was put into all the containers as a liquid agent, and a foam discharge container using the nylon mesh of the comparative example shown in Table 1, the water-repellent resin mesh shown in Table 2, and the metal mesh (metal mesh) was used.
  • FIG. 6 shows a comparative example and an experimental result of a pressing sensation when the foam discharge container of the present invention was left unattended.
  • indicates that it is within the allowable range, and ⁇ indicates that it is “abnormal”.
  • the "abnormality" in this experiment indicates that the pressure on the head portion 50 became heavy (hard). At this time, if the pressure of the head portion 50 becomes heavy, a phenomenon occurs in which the discharged bubbles become watery or a large amount of coarse bubbles are mixed.
  • the foam discharge container using the water-repellent resin mesh and the metal mesh of the present invention causes a change in the pressing sensation when left for a long time, as compared with the foam discharge container using the mesh of the comparative example. It turns out that it is difficult to do.
  • FIG. 7 shows each dimension and contact angle of the mesh suitable for application to the foam discharge container according to the present invention.
  • the contact angles of the mesh of the present invention were 129.27 ° for the upstream mesh and 131.45 ° for the downstream mesh, 119.43 ° for the upstream mesh and 119.795 ° for the downstream mesh for the metal mesh.
  • the mesh applied in the foam discharge container of the present invention preferably has a contact angle with water of 115 ° to 179 °. More preferably, the contact angle is larger than the contact angle of a general mesh by 5 ° or more, and is more preferably 118 ° to 175 °, which is highly feasible.
  • the mesh size of the upstream mesh may be 70 ⁇ m to 300 ⁇ m. ..
  • the mesh size of the downstream mesh may be 30 ⁇ m to 80 ⁇ m.
  • the wire diameter and opening area are as shown in the table shown in FIG. Then, as the foaming member, an example in which different types of meshes are applied to the upstream side and the downstream side in the flow direction of the mixed liquid as two meshes has been described, but the types of meshes are the same on the upstream side and the downstream side. It may be.
  • the number of meshes as the foaming member may be one, or may be three or more.
  • the mesh opening is preferably 30 ⁇ m to 300 ⁇ m.
  • FIG. 7 as an example of the water-repellent resin mesh, a mesh in which water-repellent treatment such as silicone processing or fluorine processing is performed to increase the water repellency to 115 ° or more is shown as an example, but the material itself is repellent. Any fluororesin having water-based properties can be included in the target of the mesh of the present invention without processing the surface.
  • water-repellent treatment such as silicone processing or fluorine processing
  • Foam discharge container 10 Delivery mechanism 20 Gas-liquid mixing part 30 Injection member 40 Foam member 41 Upstream mesh (first mesh) 42 Downstream mesh (second mesh) 50 Head part 51 Discharge port 52 Discharge nozzle 53 Operation receiving part 54 Flow pipe 55 Outer cylinder 60 Screw cap part 100 Foam discharge dispenser 110 Cylinder part 111 Air cylinder part 112 Opening 114 Liquid cylinder part 115 Reduced diameter part 120 Piston guide 130 Liquid Piston 140 Poppet 150 Gas piston 160 Ball valve 170 Air valve 900 Container body F Foamed liquid L Liquid liquid M Mixed liquid

Abstract

The present invention relates to a foam ejecting dispenser (100) having a foaming member (40) that foams a mixed liquid chemical in which a liquid chemical and air are mixed together, wherein the foaming member is a mesh having a contact angle of 115° to 179° with water. The foam ejecting dispenser of the present invention can suppress occurrence of clogging in the foaming member even if left for a long time.

Description

泡吐出ディスペンサー及び泡吐出容器Foam discharge dispenser and foam discharge container
 本発明は、液剤と気体とを混合した混合液剤を泡化させる発泡部材を有する泡吐出ディスペンサー及び泡吐出ディスペンサーを有する泡吐出容器に関する。 The present invention relates to a foam discharge dispenser having a foaming member for foaming a mixed liquid agent in which a liquid agent and a gas are mixed, and a foam discharge container having a foam discharge dispenser.
 泡吐出容器において、一般的に、液体用シリンダの内部から供給された液体と空気用シリンダの内部から供給された空気とを混合させ、この混合流体が発泡手段を通過することで発泡させるように、発泡手段をメッシュで形成することが知られている(例えば、特許文献1)。 In a foam discharge container, generally, a liquid supplied from the inside of a liquid cylinder and an air supplied from the inside of an air cylinder are mixed, and the mixed fluid is foamed by passing through a foaming means. , It is known that the foaming means is formed of a mesh (for example, Patent Document 1).
 また、発泡部材を、ウレタンフォームなどの単一の多孔体発泡体で構成する特許文献2や、不織布で構成する特許文献3が知られている。 Further, Patent Document 2 in which the foamed member is composed of a single porous foam such as urethane foam and Patent Document 3 in which the foamed member is composed of a non-woven fabric are known.
日本国特開2012-157822号公報Japanese Patent Application Laid-Open No. 2012-157822 日本国特許第4729569号公報Japanese Patent No. 4729569 日本国特開2015-227183号公報Japanese Patent Application Laid-Open No. 2015-227183
 しかし、特許文献1~3に示すメッシュ、ウレタンフォーム、不織布等のいずれを発泡部材に用いても、泡吐出容器を、高温多湿の環境下に長時間放置すると、発泡部材上で液剤が固化することで、発泡部材に目詰まりが発生して、ポンプが押せなくなり中身が出てこないことがあった。 However, regardless of which of the mesh, urethane foam, non-woven fabric, etc. shown in Patent Documents 1 to 3 is used for the foam member, if the foam discharge container is left in a high temperature and high humidity environment for a long time, the liquid agent solidifies on the foam member. As a result, the foamed member was clogged, and the pump could not be pushed and the contents did not come out.
 そこで、本発明は上記事情に鑑み、長時間放置しても、発泡部材における目詰まりの発生を抑制できる、泡吐出ディスペンサーの提供を目的とする。 Therefore, in view of the above circumstances, an object of the present invention is to provide a foam discharge dispenser capable of suppressing the occurrence of clogging in the foam member even if it is left for a long time.
 上記課題を解決するため、本発明の一態様では、
 液剤と気体とを混合した混合液剤を泡化させる発泡部材を有する泡吐出ディスペンサーであって、
 前記発泡部材は、水に対する接触角が115°~179°のメッシュである
 泡吐出ディスペンサー、を提供する。
In order to solve the above problems, in one aspect of the present invention,
A foam discharge dispenser having a foaming member that foams a mixed liquid agent in which a liquid agent and a gas are mixed.
The foam member provides a foam discharge dispenser, which is a mesh having a contact angle with water of 115 ° to 179 °.
 一態様によれば、泡吐出ディスペンサーにおいて、長時間放置しても、発泡部材における目詰まりの発生を抑制できる。 According to one aspect, the foam discharge dispenser can suppress the occurrence of clogging in the foam member even if it is left for a long time.
本発明の一実施形態に係る泡吐出容器の全体断面図。The whole sectional view of the foam discharge container which concerns on one Embodiment of this invention. ぬれにくい固体表面に対する液滴の接触角の説明図。Explanatory drawing of the contact angle of a droplet with respect to a solid surface which is hard to get wet. ぬれやすい固体表面に対する液滴の接触角の説明図。Explanatory drawing of the contact angle of a droplet with respect to a solid surface which is easily wet. 比較例の上流側のメッシュの接触角の測定した際の水滴の状態を示す図。The figure which shows the state of the water drop at the time of measuring the contact angle of the mesh on the upstream side of the comparative example. 比較例の下流側のメッシュの接触角の測定した際の水滴の状態を示す図。The figure which shows the state of the water droplet when the contact angle of the mesh on the downstream side of the comparative example was measured. 本発明の撥水加工された樹脂製の上流側のメッシュ上の接触角の測定した際の水滴の状態を示す図。The figure which shows the state of the water droplet when the contact angle on the mesh on the upstream side of the water-repellent resin of this invention was measured. 本発明の撥水加工された樹脂製の下流側のメッシュ上の接触角の測定した際の水滴の状態を示す図。The figure which shows the state of the water droplet when the contact angle on the mesh on the downstream side of the water-repellent resin of this invention was measured. 本発明の金属製の上流側のメッシュ上の接触角の測定した際の水滴の状態を示す図。The figure which shows the state of the water drop at the time of measuring the contact angle on the mesh on the upstream side of the metal of this invention. 本発明の金属製の下流側のメッシュ上の接触角の測定した際の水滴の状態を示す図。The figure which shows the state of the water drop at the time of measuring the contact angle on the mesh on the downstream side made of metal of this invention. 比較例のナイロンメッシュを用いた泡吐出容器から吐出された泡を示す図。The figure which shows the foam discharged from the foam discharge container using the nylon mesh of the comparative example. 本発明の撥水加工された樹脂のメッシュを用いた泡吐出容器から吐出された泡を示す図。The figure which shows the foam discharged from the foam discharge container using the mesh of the water-repellent resin of this invention. 本発明の金属メッシュを用いた泡吐出容器から吐出された泡を示す図。The figure which shows the foam discharged from the foam discharge container using the metal mesh of this invention. 比較例及び本発明の泡吐出容器を放置した際の、押圧感覚の実験結果。Experimental results of pressing sensation when the comparative example and the foam discharge container of the present invention were left unattended. 本発明に泡吐出容器への適用に適したメッシュの各寸法と接触角を示す表。A table showing each size and contact angle of a mesh suitable for application to a foam discharge container according to the present invention.
 以下、図面を参照して本発明を実施するための形態について説明する。なお、すべての図面において、同様の構成要素には同一の符号を付し、重複する説明は適宜に省略する。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. In all drawings, similar components are designated by the same reference numerals, and duplicate description will be omitted as appropriate.
 <泡吐出容器の構成>
 まず、本発明の泡吐出容器の全体構成について図1を用いて説明する。図1は、本発明の一実施形態に係る泡吐出容器1の全体図である。
<Structure of foam discharge container>
First, the overall configuration of the foam discharge container of the present invention will be described with reference to FIG. FIG. 1 is an overall view of a foam discharge container 1 according to an embodiment of the present invention.
 図1に示すように、泡吐出容器1は、液剤Lを常圧で貯留する容器本体900と、容器本体900に対して着脱可能に装着されるキャップ部である泡吐出ディスペンサー100と、を備えて構成されている。 As shown in FIG. 1, the foam discharge container 1 includes a container body 900 that stores the liquid agent L at normal pressure, and a foam discharge dispenser 100 that is a cap portion that is detachably attached to the container body 900. It is composed of.
 容器本体(ボトル部)900は、液体の液剤Lを貯留する。容器本体900は、胴部91と、肩部92と、口部93と、底部94と、を有している。底部94は、胴部91との下端を閉塞しており、胴部91と底部94とが液体の収容部となる。肩部92は、胴部91の上端に連接されている。口部93は、肩部92の内側端に連接され、胴部91よりも径が小さい円筒状形状であり、口部93の上面は開口している。 The container body (bottle part) 900 stores the liquid liquid agent L. The container body 900 has a body portion 91, a shoulder portion 92, a mouth portion 93, and a bottom portion 94. The bottom portion 94 closes the lower end with the body portion 91, and the body portion 91 and the bottom portion 94 serve as a liquid storage portion. The shoulder portion 92 is connected to the upper end of the body portion 91. The mouth portion 93 is connected to the inner end of the shoulder portion 92 and has a cylindrical shape having a diameter smaller than that of the body portion 91, and the upper surface of the mouth portion 93 is open.
 なお、図1に示す容器本体900の胴部形状は、胴部91が円筒状である例を示しているが、胴部91の形状は、口部93が略円筒状であれば、胴部は、角筒状や、円錐状、ひょうたん型、卵型等、どのような形状であってもよい。 The body shape of the container body 900 shown in FIG. 1 shows an example in which the body 91 is cylindrical, but the shape of the body 91 is such that if the mouth 93 is substantially cylindrical, the body 91 is cylindrical. May have any shape such as a square cylinder, a cone, a gourd, and an egg.
 泡吐出ディスペンサー100は、液剤Lを貯留する容器本体900に装着して用いられる。ポンプ機能を有する泡吐出ディスペンサー100が、容器本体900に装着されることで、泡吐出容器1は、プッシュ式のポンプ容器として機能する。 The foam discharge dispenser 100 is used by being attached to a container body 900 for storing the liquid agent L. When the foam discharge dispenser 100 having a pump function is attached to the container body 900, the foam discharge container 1 functions as a push-type pump container.
 詳しくは、泡吐出ディスペンサー100は、ポンプ機能を有する送出機構10と、気液混合部20と、泡流路である噴射部材30と、メッシュ41,42を備えている発泡部材40と、吐出口51を含むヘッド部50と、ネジキャップ部60とを備えている。 Specifically, the foam discharge dispenser 100 includes a delivery mechanism 10 having a pump function, a gas-liquid mixing unit 20, an injection member 30 which is a foam flow path, a foam member 40 having meshes 41 and 42, and a discharge port. It includes a head portion 50 including 51 and a screw cap portion 60.
 泡吐出ディスペンサー100では、送出機構10によって、容器本体900から吐出口51に向けて液体の液剤Lを送り出し、気液混合部20において液剤Lと気体とが混合して、粗く泡化した混合液剤Mとなる。そして、送出機構10の送り出し力により、気液混合部20にて気体と混合した混合液剤Mを、噴射部材30内を通過させて、ヘッド部50の吐出口51に向けて流動する。この際、発泡部材40は、噴射部材30内部で、混合液体Mをきめ細かく均一に泡化させる。さらに、送出機構10の送り出し力により、泡化した液剤Fを、ヘッド部50内部で流動させて、吐出口51から泡化した液剤Fを吐出する。 In the foam discharge dispenser 100, the liquid agent L is sent out from the container body 900 toward the discharge port 51 by the delivery mechanism 10, and the liquid agent L and the gas are mixed in the gas-liquid mixing unit 20 to form a coarsely foamed mixed liquid agent. It becomes M. Then, due to the delivery force of the delivery mechanism 10, the mixed liquid agent M mixed with the gas in the gas-liquid mixing unit 20 is passed through the injection member 30 and flows toward the discharge port 51 of the head unit 50. At this time, the foaming member 40 foams the mixed liquid M finely and uniformly inside the injection member 30. Further, the foaming liquid agent F is made to flow inside the head portion 50 by the delivery force of the delivery mechanism 10, and the foamed liquid agent F is discharged from the discharge port 51.
 送出機構10には、液剤及び気体のポンプ機能が含まれており、ヘッド部50が押下されることにより、容器本体900から吐出口51(流通路)に向けて液体の液剤Lを吸い込んで、送り出す。この送り出し期間中に、泡吐出ディスペンサー100において、液剤を泡化し、泡化した液剤を吐出する。 The delivery mechanism 10 includes a pump function for a liquid agent and a gas, and when the head portion 50 is pressed, the liquid agent L is sucked from the container body 900 toward the discharge port 51 (flow passage). Send out. During this delivery period, the foam discharge dispenser 100 foams the liquid agent and discharges the foamed liquid agent.
 なお、本明細書において、容器本体900に貯留されている非泡状の液体状の液剤をL、気液混合後の液剤をM、泡流路後の泡状の液剤F(泡)と呼称し、それぞれ区別して記載する。 In the present specification, the non-foam-like liquid liquid agent stored in the container body 900 is referred to as L, the liquid agent after gas-liquid mixing is referred to as M, and the foam-like liquid agent F (foam) after the foam flow path is referred to. However, each will be described separately.
 泡吐出ディスペンサー100の上方に設けられるヘッド部50は、吐出口51が形成されている吐出ノズル52と、操作受部53と、流動管54と、外筒55とを有する。操作受部53は、ヘッド部50の上面であって、使用者が泡を吐出させる際に、接触して押下操作を受け付ける。流動管54及び外筒55は、操作受部53から垂下して、上下方向に延伸している円筒状(円管状)の部材である。本構成例では、内筒である流動管54の方が、外筒55よりも下方向に長く延伸している。 The head portion 50 provided above the foam discharge dispenser 100 has a discharge nozzle 52 in which a discharge port 51 is formed, an operation receiving portion 53, a flow pipe 54, and an outer cylinder 55. The operation receiving unit 53 is the upper surface of the head unit 50, and when the user discharges bubbles, the operation receiving unit 53 comes into contact with the operation receiving unit 53 to receive the pressing operation. The flow pipe 54 and the outer cylinder 55 are cylindrical (circular tubular) members that hang down from the operation receiving portion 53 and extend in the vertical direction. In this configuration example, the flow pipe 54, which is an inner cylinder, extends downward longer than the outer cylinder 55.
 また、流動管54の内周面には、筒状の泡流路である噴射部材30が設けられている。噴射部材30は、軸方向が上下方向に延在している、上下で異なる形状を有する筒状形状である。噴射部材30は、上流側(下側)から外流側(上側)に向かって徐々に径が大きくなる拡径リング32と、その拡径リング32の下流端と連接され、該下流端よりも径の大きい大径リング31とで構成されている。噴射部材30の大径リング31の外周は、ヘッド部50の流動管54の内周面に嵌め込まれている。 Further, an injection member 30 which is a tubular bubble flow path is provided on the inner peripheral surface of the flow pipe 54. The injection member 30 has a tubular shape having different shapes in the vertical direction, with the axial direction extending in the vertical direction. The injection member 30 is connected to a diameter-expanding ring 32 whose diameter gradually increases from the upstream side (lower side) to the outflow side (upper side) and the downstream end of the diameter-expanding ring 32, and has a diameter larger than that of the downstream end. It is composed of a large diameter ring 31 having a large diameter. The outer circumference of the large-diameter ring 31 of the injection member 30 is fitted on the inner peripheral surface of the flow pipe 54 of the head portion 50.
 また、噴射部材30の内側には、上流側メッシュ41、下流側メッシュ42及び流動筒43を有する発泡部材40が嵌めこまれている。メッシュ41,42は、流動筒43の軸方向に対して直交するように、張られている。流動筒43には、メッシュ41,42が接着されており、例えば、メッシュ41,42とそれぞれ接着されるように流動筒43を上下2体に分割されたものを、噴射部材30に取り付けてもよい。 Further, inside the injection member 30, a foam member 40 having an upstream mesh 41, a downstream mesh 42 and a flow cylinder 43 is fitted. The meshes 41 and 42 are stretched so as to be orthogonal to the axial direction of the flow cylinder 43. Meshes 41 and 42 are adhered to the flow cylinder 43. For example, even if the flow cylinder 43 is divided into two upper and lower bodies so as to be adhered to the mesh 41 and 42, respectively, and attached to the injection member 30. Good.
 また、ネジキャップ部60は、泡吐出ディスペンサー100において、容器本体90の口部93に装着される。詳しくは、ネジキャップ部60は、装着部61と、キャップ肩部62と、起立筒部63とを備えている。装着部61は、円筒形状であって、螺合等によって容器本体900の口部93に対して着脱可能に装着される。 Further, the screw cap portion 60 is attached to the mouth portion 93 of the container body 90 in the foam discharge dispenser 100. Specifically, the screw cap portion 60 includes a mounting portion 61, a cap shoulder portion 62, and an upright cylinder portion 63. The mounting portion 61 has a cylindrical shape and is detachably mounted on the mouth portion 93 of the container body 900 by screwing or the like.
 また、泡吐出ディスペンサー100を組み立てる際に、ヘッド部50の流動管54と外筒55とが、ネジキャップ部60の起立筒部63を内側と外側から挟むように、ヘッド部50がネジキャップ部60に対して係合される。 Further, when assembling the foam discharge dispenser 100, the head portion 50 has a screw cap portion so that the flow pipe 54 of the head portion 50 and the outer cylinder 55 sandwich the standing cylinder portion 63 of the screw cap portion 60 from the inside and the outside. Engage with respect to 60.
 さらに、泡吐出ディスペンサー100を容器本体900に取り付ける際に、ネジキャップ部60の装着部61が、容器本体900の口部93に装着されることにより、泡吐出ディスペンサー100の全体が口部93に装着されて、泡吐出ディスペンサー100によって容器本体900の開口が閉鎖される。 Further, when the foam discharge dispenser 100 is attached to the container body 900, the mounting portion 61 of the screw cap portion 60 is mounted on the mouth portion 93 of the container body 900, so that the entire foam discharge dispenser 100 is attached to the mouth portion 93. Once mounted, the foam discharge dispenser 100 closes the opening of the container body 900.
 泡吐出ディスペンサー100は、ヘッド部50の押下操作に連動して作動する送出機構10による液剤ポンプ機能、及びヘッド部50のネジキャップ部60に対する位置移動による気体ポンプ機能を有している。 The foam discharge dispenser 100 has a liquid agent pump function by a delivery mechanism 10 that operates in conjunction with a pressing operation of the head portion 50, and a gas pump function by moving the position of the head portion 50 with respect to the screw cap portion 60.
 次に、送出機構10の詳細構成について説明する。泡吐出ディスペンサー100において、送出機構10は、シリンダ部110と、ピストンガイド120と、液ピストン130と、ポペット140と、気体ピストン150と、ボール弁160とを備えている。 Next, the detailed configuration of the transmission mechanism 10 will be described. In the foam discharge dispenser 100, the delivery mechanism 10 includes a cylinder portion 110, a piston guide 120, a liquid piston 130, a poppet 140, a gas piston 150, and a ball valve 160.
 シリンダ部110は、ネジキャップ部60に固定されており、下方一部が液体に浸かって液体が内部に注入され、上方の他の部分に気体を一時的に貯留する。詳しくは、シリンダ部110はエアーシリンダ部111と、環状連結部113と、液シリンダ部114とを一体的に構成している。 The cylinder portion 110 is fixed to the screw cap portion 60, and a lower part is immersed in the liquid to inject the liquid into the inside, and the gas is temporarily stored in the other upper part. Specifically, the cylinder portion 110 integrally comprises an air cylinder portion 111, an annular connecting portion 113, and a liquid cylinder portion 114.
 エアーシリンダ部111は、ネジキャップ部60のキャップ肩部62の下面側に対して上端部が固定されており、上下方向に延伸している。泡吐出ディスペンサー100が容器本体900に対して閉塞状態を保つように、空気弁170の部分を除き、容器本体900の内部空間が密閉される。また、側壁状のエアーシリンダ部111には横穴112が形成されている。 The upper end of the air cylinder portion 111 is fixed to the lower surface side of the cap shoulder portion 62 of the screw cap portion 60, and extends in the vertical direction. The internal space of the container body 900 is sealed except for the portion of the air valve 170 so that the foam discharge dispenser 100 keeps the container body 900 in a closed state. Further, a horizontal hole 112 is formed in the side wall-shaped air cylinder portion 111.
 液シリンダ部114は、容器本体900の液体の液剤Lを吸引する筒状の吸引ノズルであって、上下方向に延伸している。液シリンダ部114は、先端の小径部と、上側の大径部と、小径部と大径部とを連結する、径縮部115とで構成されている。径縮部115の内側テーパー面とポペット140のバルブ141とが接触・離間することで液の流入・停止を制御する。 The liquid cylinder portion 114 is a tubular suction nozzle that sucks the liquid liquid agent L of the container body 900, and extends in the vertical direction. The liquid cylinder portion 114 is composed of a small diameter portion at the tip, a large diameter portion on the upper side, and a diameter reduction portion 115 that connects the small diameter portion and the large diameter portion. The inflow / stop of the liquid is controlled by contacting / separating the inner tapered surface of the diameter-reduced portion 115 and the valve 141 of the poppet 140.
 環状連結部113は、シリンダ部110における内底部(中皿)であって、エアーシリンダ部111の下端部と液シリンダ部114の上端部とを連結する部分である。液シリンダ部114は環状連結部113の内周縁から垂下している。 The annular connecting portion 113 is an inner bottom portion (middle plate) of the cylinder portion 110, and is a portion that connects the lower end portion of the air cylinder portion 111 and the upper end portion of the liquid cylinder portion 114. The liquid cylinder portion 114 hangs down from the inner peripheral edge of the annular connecting portion 113.
 ピストンガイド120は、中央で上下方向に延伸している筒状部材であり、上端には、筒状起立部121及び環状起立部122が一体的に設けられている。環状起立部122は筒の内周面から内側に突出した内周環状突起の内側端から上方に起立している。また、ピストンガイド120の下端は、液シリンダ部114の上端付近の内周に位置している。さらに、ピストンガイド120の外周には、静置中に、気体ピストン150の内周壁152の下端と上面が接触するガイド突起123が設けられている。また、ピストンガイド120の内周環状突起の下側の内周の上部には、下端がポペット140の上端と接触する段差となる内側リブ124が設けられている。 The piston guide 120 is a tubular member extending in the vertical direction at the center, and a tubular standing portion 121 and an annular standing portion 122 are integrally provided at the upper end thereof. The annular upright portion 122 stands upward from the inner end of the inner peripheral annular projection protruding inward from the inner peripheral surface of the cylinder. Further, the lower end of the piston guide 120 is located on the inner circumference near the upper end of the liquid cylinder portion 114. Further, a guide protrusion 123 is provided on the outer periphery of the piston guide 120 so that the lower end and the upper surface of the inner peripheral wall 152 of the gas piston 150 come into contact with each other during standing. Further, an inner rib 124 having a step at which the lower end contacts the upper end of the poppet 140 is provided on the upper part of the inner circumference below the inner peripheral annular projection of the piston guide 120.
 ピストンガイド120の上端の筒状起立部121は、ヘッド部50の、流動管54の下端周辺に内嵌された状態で、流動管54に対して上下位置が固定される。 The vertical position of the tubular upright portion 121 at the upper end of the piston guide 120 is fixed with respect to the flow pipe 54 in a state of being internally fitted around the lower end of the flow pipe 54 of the head portion 50.
 液ピストン130は、ピストンガイド120の内周側に挿入され、ピストンガイド120から下方に突出するように、ピストンガイド120の下端に固定されて設けられている。したがって、ヘッド部50、ピストンガイド120及び液ピストン130は、液シリンダ部114に対して、一体的に上下動する。液ピストン130の下端部と液シリンダ部114とは、密着して接触し気密性を常に確保している。 The liquid piston 130 is inserted into the inner peripheral side of the piston guide 120, and is fixedly provided at the lower end of the piston guide 120 so as to project downward from the piston guide 120. Therefore, the head portion 50, the piston guide 120, and the liquid piston 130 move up and down integrally with the liquid cylinder portion 114. The lower end portion of the liquid piston 130 and the liquid cylinder portion 114 are in close contact with each other to ensure airtightness at all times.
 そして、ポペット140は、上下に延伸する棒状部材であって、液ピストン130を貫通した状態で、ピストンガイド120の内部から液シリンダ部114の内部に亘って挿通されている。ポペット140は、液ピストン130及びピストンガイド120に対して相対的に上下動可能であるとともに、液シリンダ部114に対しても相対的に上下動可能となっている。ポペット140の一端(下端)は、中心の軸部に比べ拡径したバルブ141であり、他端(上端)には、筒の外周側に径が広がった拡径部又は外周側へ突出する突起が設けられている。 The poppet 140 is a rod-shaped member that extends vertically, and is inserted from the inside of the piston guide 120 to the inside of the liquid cylinder portion 114 in a state of penetrating the liquid piston 130. The poppet 140 can move up and down relatively with respect to the liquid piston 130 and the piston guide 120, and can also move up and down relatively with respect to the liquid cylinder portion 114. One end (lower end) of the poppet 140 is a valve 141 whose diameter is larger than that of the central shaft portion, and the other end (upper end) is a enlarged diameter portion whose diameter is expanded toward the outer peripheral side of the cylinder or a protrusion protruding toward the outer peripheral side. Is provided.
 また、ポペット140のバルブ141以外の軸部の略下半分を取り囲むように、上下方向に力を調整するコリルバネであるスプリング180が設けられている。 Further, a spring 180, which is a coryl spring that adjusts the force in the vertical direction, is provided so as to surround substantially the lower half of the shaft portion other than the valve 141 of the poppet 140.
 ここで、気体ピストン150は、ピストンガイド120の外周とエアーシリンダ部111の上端周辺の内壁との間に配置されている。気体ピストン150の外周端は広がったスライド外端壁151であり、エアーシリンダ部111に対して密着して接触しており、内周側の内周壁152は、ピストンガイド120に対して、相対的に上下動可能な遊挿状態で広がって外嵌されている。静置状態では、スライド外端壁151は、静置状態では、エアーシリンダ部111の横穴112を塞いでいる。また、気体ピストン150の内周壁152の近傍には、上部孔153が形成されている。 Here, the gas piston 150 is arranged between the outer circumference of the piston guide 120 and the inner wall around the upper end of the air cylinder portion 111. The outer peripheral end of the gas piston 150 is a widened slide outer end wall 151, which is in close contact with the air cylinder portion 111, and the inner peripheral wall 152 on the inner peripheral side is relative to the piston guide 120. It is spread out and fitted in a loosely inserted state that can move up and down. In the stationary state, the slide outer end wall 151 closes the lateral hole 112 of the air cylinder portion 111 in the stationary state. Further, an upper hole 153 is formed in the vicinity of the inner peripheral wall 152 of the gas piston 150.
 また、気体ピストン150の内周壁152の外側に、空気弁170が設けられている。静置時は、空気弁170の下面と、気体ピストン150の下面と、エアーシリンダ部111と環状連結部113で囲まれた空間に、気体が貯留されている。 Further, an air valve 170 is provided on the outside of the inner peripheral wall 152 of the gas piston 150. When left standing, gas is stored in the space surrounded by the lower surface of the air valve 170, the lower surface of the gas piston 150, the air cylinder portion 111, and the annular connecting portion 113.
 そして、ピストンガイド120の上端の筒状起立部121の内周であって、環状起立部122の上側に、ボール弁160が設けられている。ボール弁160は、環状起立部122の上端を開閉する。泡吐出ディスペンサー100では、ヘッド部50に装着されている噴射部材30の下側の拡径リング32の外周面は、ピストンガイド120の上端の筒状起立部121の内側に嵌めこまれる。 A ball valve 160 is provided on the inner circumference of the tubular standing portion 121 at the upper end of the piston guide 120 and above the annular standing portion 122. The ball valve 160 opens and closes the upper end of the annular standing portion 122. In the foam discharge dispenser 100, the outer peripheral surface of the diameter expansion ring 32 on the lower side of the injection member 30 mounted on the head portion 50 is fitted inside the tubular upright portion 121 at the upper end of the piston guide 120.
 ここで、気液混合部20は、例えば、ボール弁160の周辺であって、筒状起立部121に囲まれる内側空間である。 Here, the gas-liquid mixing portion 20 is, for example, an inner space around the ball valve 160 and surrounded by the tubular standing portion 121.
 そして、気液混合部20にて気体と混合した液剤Mは、ヘッド部50に装着された噴射部材30及びメッシュ41,42を通過することで、さらにきめ細かく泡化される。 Then, the liquid agent M mixed with the gas in the gas-liquid mixing unit 20 passes through the injection member 30 and the meshes 41 and 42 mounted on the head unit 50, and is further finely foamed.
 詳しくは、2枚のメッシュ41,42が内側に設けられている発泡部材40において、上流側メッシュ(第1のメッシュ)41が、混合液体Mを泡化させ、下流側メッシュ(第2のメッシュ)42が、その泡をきめ細かくし、吐出される泡Fを生成する。そのため、下流側メッシュ42の目開きは、上流側メッシュ41の目開きよりも細かいと好適である。 Specifically, in the foaming member 40 in which the two meshes 41 and 42 are provided inside, the upstream mesh (first mesh) 41 foams the mixed liquid M, and the downstream mesh (second mesh). ) 42 makes the bubbles finer and produces bubbles F to be discharged. Therefore, it is preferable that the opening of the downstream mesh 42 is finer than that of the upstream mesh 41.
 このように、液剤Lがピストンガイド120を通って、ヘッド部50の流動管54の内側流動する際に、噴射部材30内に収容されたメッシュ41,42によって泡化された液剤Fは、ヘッド部50の流動管54の上部の内周内を上方に流動した後、横方向に延伸する吐出ノズル52に沿って流動して吐出口51から吐出される。 As described above, when the liquid agent L flows inside the flow pipe 54 of the head portion 50 through the piston guide 120, the liquid agent F foamed by the meshes 41 and 42 housed in the injection member 30 is headed. After flowing upward in the inner circumference of the upper part of the flow pipe 54 of the part 50, it flows along the discharge nozzle 52 extending in the lateral direction and is discharged from the discharge port 51.
 (液体・気体の流れ)
 ここで、液体、気体の流れの概略を説明する。
(Flow of liquid / gas)
Here, the outline of the flow of liquid and gas will be described.
 (静置状態)
ヘッド部50が押下されずに待機している静置状態では、吸い上げられた液体は、ピストンガイド120の環状起立部122の上端でボール弁160によってシールされ、保持されている。さらに空気弁170と気体ピストン150とは接触し、気密状態が保持されている。一方、ポペット140の下端のバルブ141の下端面は液シリンダ部114の径縮部115の内側テーパー面を開放している。
(Standing state)
In the stationary state in which the head portion 50 stands by without being pressed, the sucked liquid is sealed and held by the ball valve 160 at the upper end of the annular standing portion 122 of the piston guide 120. Further, the air valve 170 and the gas piston 150 are in contact with each other, and the airtight state is maintained. On the other hand, the lower end surface of the valve 141 at the lower end of the poppet 140 opens the inner tapered surface of the diameter-reduced portion 115 of the liquid cylinder portion 114.
 (押し下げ)
ヘッド部50が押し下げられている期間では、ヘッド部50の下方向への作動と連動して、ピストンガイド120が押し下がり、ピストンガイド120の上側の内周側に設けられる内側リブ124によって、ポペット140の上端周辺の突起が押し下げられることで、ポペット140の下端のバルブ141で液シリンダ部114の下端の径縮部115の内側テーパー面がシールされる。
(Push down)
During the period when the head portion 50 is pushed down, the piston guide 120 is pushed down in conjunction with the downward operation of the head portion 50, and the poppet is provided by the inner rib 124 provided on the upper inner peripheral side of the piston guide 120. By pushing down the protrusion around the upper end of the 140, the valve 141 at the lower end of the poppet 140 seals the inner tapered surface of the diameter-reduced portion 115 at the lower end of the liquid cylinder portion 114.
 また、ヘッド部50の押し下げにより、上部孔153は空気弁170に閉鎖されたまま、ガイド突起123の上面が、気体ピストン150の内周壁152の下端から離間することで、エアーシリンダ部111に貯留されていた気体が、ピストンガイド120の外周と内周壁152の内周との間へと押し出される。 Further, by pushing down the head portion 50, the upper hole 153 remains closed by the air valve 170, and the upper surface of the guide protrusion 123 is separated from the lower end of the inner peripheral wall 152 of the gas piston 150, so that the upper hole 153 is stored in the air cylinder portion 111. The gas that has been generated is pushed out between the outer circumference of the piston guide 120 and the inner circumference of the inner peripheral wall 152.
 押し出された空気はボール弁160付近の気液混合部20で液と混ざりあって混合液体Mとなり、製泡される。その直後、液と空気の混合物が泡流路である噴射部材30の小径を通過し、ジェット噴射することでメッシュ41,42に当たり整泡され、泡Fとして吐出される。 The extruded air mixes with the liquid at the gas-liquid mixing section 20 near the ball valve 160 to form a mixed liquid M, which is foamed. Immediately after that, a mixture of liquid and air passes through the small diameter of the injection member 30 which is a bubble flow path, and by jet injection, it hits the meshes 41 and 42 to be conditioned and discharged as bubbles F.
 (押し戻り)
そして、押し下げ後は、ポペット140を取り囲むスプリング180の復元力により、ヘッド部50が上方に自動的に復帰する。この際、上方のボール弁160によるボールシールが閉じ、下端のポペット140によるポペットシールが開放することで液が吸い上げられる。
(Push back)
Then, after pushing down, the head portion 50 is automatically returned upward by the restoring force of the spring 180 surrounding the poppet 140. At this time, the ball seal by the upper ball valve 160 is closed, and the poppet seal by the poppet 140 at the lower end is opened, so that the liquid is sucked up.
 この押し戻りの際、エアーシリンダ部111の圧力低下に伴い、空気弁170が気体ピストン150から離間して開くことで、上部孔153を通って空気がエアーシリンダ部111内に供給される。 At the time of this push-back, the air valve 170 opens apart from the gas piston 150 as the pressure of the air cylinder portion 111 drops, so that air is supplied into the air cylinder portion 111 through the upper hole 153.
 また、押し下げ及び押し戻りにおいて、ヘッド部50が静置状態から所定高さ(例えば、数mm)以上移動している期間は、スライド外端壁151がエアーシリンダ部111の横穴112を開放し、横穴112から容器本体900に空気が供給される。 Further, during the period in which the head portion 50 is moved by a predetermined height (for example, several mm) or more from the stationary state during pushing down and pushing back, the slide outer end wall 151 opens the lateral hole 112 of the air cylinder portion 111. Air is supplied to the container body 900 from the side hole 112.
 なお、上記では、手動ポンプ式の送出機構10により、液剤と気体とを吸い上げて混合して押し出す例を説明したが、本発明の泡吐出容器は、この例に限らず、電動ポンプによって液剤Lと気体とをそれぞれ圧送し、これらを混合させて泡化し吐出する電動ディスペンサーであってもよい。あるいは、泡吐出容器は、容器本体が圧搾されることにより泡を吐出するように構成されるスクイズボトルであってもよい。 In the above description, an example in which the liquid agent and the gas are sucked up, mixed and extruded by the manual pump type delivery mechanism 10 has been described, but the foam discharge container of the present invention is not limited to this example, and the liquid agent L is not limited to this example. It may be an electric dispenser that pumps and gas, respectively, mixes them, foams them, and discharges them. Alternatively, the foam discharge container may be a squeeze bottle configured to discharge foam by squeezing the container body.
 ここで、図1では、容器本体900及び泡吐出ディスペンサー100の構成の説明において、下方向を上流側、上方向を下流側として説明したが、これらの方向は、容器本体900及び泡吐出ディスペンサー100の製造時及び使用時における方向を制限するものではなく、泡吐出容器1は、下向きや横向きに配置して使用してもよい。 Here, in FIG. 1, in the description of the configuration of the container body 900 and the foam discharge dispenser 100, the downward direction is the upstream side and the upward direction is the downstream side, but these directions are the container body 900 and the foam discharge dispenser 100. The foam discharge container 1 may be arranged downward or sideways for use without limiting the direction during production and use.
 ここで、一般的な泡吐出容器を、高温多湿の環境下に長時間放置すると、中身が固化し、メッシュに目詰まりが発生し、ヘッド部をプッシュしても中身が出てこないという不具合が発生することがあった。 Here, if a general foam discharge container is left in a hot and humid environment for a long time, the contents will solidify, the mesh will be clogged, and the contents will not come out even if the head part is pushed. It could occur.
 <発泡手段の選定について>
 そこで、発泡手段を備える泡吐出容器として、発泡手段には種々の素材が提案されているが、その中で大幅な設計変更をせずに発泡部材に対して固化を防ぐ方法として、本願の発明者らは、発泡部材を構成するメッシュの表面の接触角に注目した。
<Selection of foaming means>
Therefore, various materials have been proposed for the foaming means as the foam discharging container provided with the foaming means, and the invention of the present application is described as a method for preventing solidification of the foamed member without making a significant design change. They focused on the contact angle on the surface of the mesh that makes up the foam member.
 ここで、接触角(θ:Contact Angle)は、ぬれの程度を定量化したものであって、「静止液体の自由表面が、固体壁に接する場所で、液面と固体面とのなす角(液の内部にある角をとる)」と定義されている。 Here, the contact angle (θ: Contact Angle) is a quantification of the degree of wetting, and is "the angle between the liquid surface and the solid surface at the place where the free surface of the static liquid contacts the solid wall (θ: Contact Angle). Take the corner inside the liquid) ".
 液体を固体表面に滴下すると、液体は自らの持つ表面張力で丸くなり、図2A,図2Bに示す液滴の接線と固体表面とのなす角度θが「接触角」となる。 When a liquid is dropped on a solid surface, the liquid is rounded by its own surface tension, and the angle θ between the tangent of the droplet and the solid surface shown in FIGS. 2A and 2B becomes the “contact angle”.
 図2Aに示すように、固体表面に接触した際の液体が球(丸)に近い程、接触角が大きく濡れにくく、図2Bに示すように、固体表面に接触した際の液体が球から潰れて平たい程、接触角が小さく濡れやすい。 As shown in FIG. 2A, the closer the liquid in contact with the solid surface is to a sphere (circle), the larger the contact angle is and the more difficult it is to get wet, and as shown in FIG. 2B, the liquid in contact with the solid surface is crushed from the sphere. The flatter it is, the smaller the contact angle and the easier it is to get wet.
 ここで、比較例として、長時間放置することにより、目詰まりが発生することが知られている、一般的なナイロンメッシュを用いた構成における接触角を測定した。 Here, as a comparative example, the contact angle in a configuration using a general nylon mesh, which is known to cause clogging when left for a long time, was measured.
 図3A,図3Bに、比較例のメッシュの接触角を測定した水滴の状態を示す。図3Aは上流側のメッシュ、図3Bは下流側のメッシュ、上の水滴の状態を示す。 FIGS. 3A and 3B show the state of water droplets measured at the contact angle of the mesh of the comparative example. FIG. 3A shows the mesh on the upstream side, and FIG. 3B shows the mesh on the downstream side and the state of water droplets on the upper side.
 そして、比較例で用いたメッシュの構成と接触角の測定結果を、表1に示す。なお、表1の接触角の数値は、接触角測定試験として、水滴2μlを滴下し、着滴後1秒後に、協和界面科学社製のDropMaster501を用いて画像を取得し、同社の解析ソフトウエア「FAMAS(interFAce Measurement & Analysis System)を用いて接触角を算出した、5回の撮影・算出結果の平均値である。 Table 1 shows the mesh configuration and contact angle measurement results used in the comparative example. As for the contact angle values in Table 1, as a contact angle measurement test, 2 μl of water droplets were dropped, and 1 second after the droplets were deposited, an image was acquired using DropMaster 501 manufactured by Kyowa Interface Science Co., Ltd., and the analysis software of the company was used. "FAMAS (interFAce Measurement & Analysis System) is used to calculate the contact angle, which is the average value of the results of five shootings and calculations.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、比較例として、上記表1に示す寸法のメッシュの一例として、上流側メッシュ41、下流側メッシュ42には、一般的な市販品に使用されるナイロンメッシュを用いた。 Here, as a comparative example, as an example of the mesh having the dimensions shown in Table 1 above, a nylon mesh used in a general commercial product was used for the upstream mesh 41 and the downstream mesh 42.
 そして、メッシュの接触角を大きくするため
(1)撥水加工された樹脂メッシュ(撥水樹脂メッシュ)を用いること、
(2)金属製のメッシュを使用すること、
を検討した。
Then, in order to increase the contact angle of the mesh, (1) use a water-repellent resin mesh (water-repellent resin mesh).
(2) Use a metal mesh,
It was investigated.
 泡の決め細かさ等が悪化しないように、目開き等は同じ又は近いものを使用した。そして、検討した(1)撥水加工された樹脂メッシュと、(2)金属製のメッシュ、について、接触角を測定した。 The same or similar openings were used so that the fineness of the foam would not deteriorate. Then, the contact angles of (1) the water-repellent resin mesh and (2) the metal mesh examined were measured.
 図4A~図4Dに、本発明のメッシュの接触角を測定した水滴の状態を示す。図4Aは撥水加工された樹脂製の上流側のメッシュ、図4Bは撥水加工された樹脂製の下流側のメッシュ、図4Cは金属製の上流側のメッシュ、図4Dは金属製の下流側のメッシュ上の水滴の状態を示す。 FIGS. 4A to 4D show the state of water droplets measured at the contact angle of the mesh of the present invention. FIG. 4A is an upstream mesh made of water-repellent resin, FIG. 4B is a mesh downstream made of water-repellent resin, FIG. 4C is an upstream mesh made of metal, and FIG. 4D is a downstream mesh made of metal. Shows the state of water droplets on the side mesh.
 比較例及び本発明で用いたメッシュの構成と接触角の測定結果を、表2に示す。なお、表2の接触角の数値も、接触角測定試験として、水滴2μlを滴下し、着滴後1秒後に、協和界面科学社製のDropMaster501を用いて画像を取得し、同社の解析ソフトウエアFAMASを用いて接触角を算出した、5回の撮影・算出結果の平均値である。 Table 2 shows a comparative example and the measurement results of the mesh configuration and contact angle used in the present invention. As for the contact angle values in Table 2, as a contact angle measurement test, 2 μl of water droplets were dropped, and 1 second after the droplets were applied, an image was acquired using DropMaster 501 manufactured by Kyowa Interface Science Co., Ltd., and the analysis software of the company was used. It is the average value of the results of five shootings and calculations for which the contact angle was calculated using FAMAS.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、測定の際の撥水加工された樹脂メッシュの一例としてポリエステルメッシュに撥水加工されたメッシュを用い、上流側メッシュ41、下流側メッシュ42の各寸法は表に示す通りである。また、測定の際の金属メッシュの一例として、SUS(ステンレス鋼)を用い、上流側メッシュ41、下流側メッシュ42の各寸法は表に示す通りである。 As an example of the water-repellent resin mesh at the time of measurement, a water-repellent mesh is used for the polyester mesh, and the dimensions of the upstream mesh 41 and the downstream mesh 42 are as shown in the table. Further, as an example of the metal mesh at the time of measurement, SUS (stainless steel) is used, and the dimensions of the upstream mesh 41 and the downstream mesh 42 are as shown in the table.
 表2を参照して、今回検討した、撥水加工された樹脂メッシュ及び金属メッシュは、比較例に係る既存のメッシュであるナイロンメッシュよりも、接触角が大きいことが分かる。 It can be seen that the water-repellent resin mesh and the metal mesh examined this time have a larger contact angle than the existing mesh nylon mesh according to the comparative example with reference to Table 2.
 上記例において、「撥水加工されたメッシュ」は、一般的な素材(例えば、ナイロンやポリエステル等の樹脂)に対して、スプレー塗布やディッピング法などを適用した湿式法や、あるいは真空成膜装置などを使った乾式法で有機材料(シリコーン)や無機材料(フッ素)を塗布したり、フッ素加工した樹脂を表面に微細なシワ加工した収縮プラスチックを用いる等により、撥水加工を施すことで、実現していた。 In the above example, the "water-repellent mesh" is a wet method in which a spray coating or dipping method is applied to a general material (for example, a resin such as nylon or polyester), or a vacuum film forming apparatus. By applying an organic material (silicone) or an inorganic material (fluorine) by a dry method using a method such as, or by applying a water-repellent treatment by using a shrinkable plastic with fine wrinkles on the surface of a fluorine-processed resin. It was realized.
 ただし、樹脂単体で撥水性が高い素材を用いる場合は、撥水加工をしなくても、「撥水樹脂メッシュ」となる。樹脂単体で撥水性が高い素材は例えば、テフロン(登録商標)等のフッ素樹脂である。撥水性の高いフッ素樹脂の例として、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、4フッ化エチレン・エチレン共重合樹脂(ETFE)等でありうる。 However, when a material with high water repellency is used as a single resin, it becomes a "water repellent resin mesh" even if it is not water repellent. A material having high water repellency as a single resin is, for example, a fluororesin such as Teflon (registered trademark). Examples of the fluororesin having high water repellency may be, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), ethylene tetrafluoride copolymer resin (ETFE), or the like. ..
 <本発明の発泡手段を用いた泡の泡質>
 図5A~図5Cに泡吐出容器から吐出された泡の写真を示す。図5Aは比較例のナイロンメッシュを用いた泡吐出容器から吐出された泡の吐出結果であり、図5Bは撥水加工された樹脂のメッシュを用いた泡吐出容器から吐出された泡吐出結果であり、図5Cは金属メッシュを用いた泡吐出容器から吐出された泡吐出結果である。
<Foam quality of foam using the foaming means of the present invention>
5A to 5C show photographs of bubbles discharged from the foam discharge container. FIG. 5A shows the result of foam discharge from the foam discharge container using the nylon mesh of the comparative example, and FIG. 5B shows the result of foam discharge discharged from the foam discharge container using the water-repellent resin mesh. Yes, FIG. 5C shows the result of foam ejection discharged from the foam ejection container using the metal mesh.
 図5Aと図5Bと図5Cとを比較すると、泡の質にほとんど差はなく、いずれも十分に泡立っていることが分かる。 Comparing FIGS. 5A, 5B and 5C, it can be seen that there is almost no difference in the quality of foam, and all of them are sufficiently foamed.
 <液剤の組成>
 本実施形態において、液剤Lは、水よりも高粘度である。空気と混合して泡化する前の液剤Lの粘度は、特に限定されないが、例えば、B型粘度計で測定して、20℃において1mPa・s以上200mPa・s以下とすることができ、2mPa・s以上100mPa・s以下であると、より好ましい。
<Composition of liquid>
In the present embodiment, the liquid agent L has a higher viscosity than water. The viscosity of the liquid agent L before being mixed with air and foaming is not particularly limited, but can be, for example, 1 mPa · s or more and 200 mPa · s or less at 20 ° C. as measured by a B-type viscometer, and 2 mPa. -It is more preferable that it is s or more and 100 mPa · s or less.
 本実施形態では、液剤101として、ハンドソープ、洗顔料、クレンジング剤、ボディソープ、食器用洗剤、整髪料、髭剃り用クリーム、ファンデーションや美容液等の肌用化粧料、染毛剤、消毒薬など、泡状で用いられる種々のものを例示することができる。 In the present embodiment, the liquid agent 101 includes hand soap, washing pigment, cleansing agent, body soap, dishwashing liquid, hair styling product, shaving cream, skin cosmetics such as foundation and beauty essence, hair dye, and disinfectant. Various things used in the form of foam can be exemplified.
 ここで、本発明の液吐出容器において、使用される液剤がハンドソープ、洗顔料、クレンジング剤、ボディソープ等の皮膚洗浄剤である場合、
皮膚洗浄剤の組成は、
(A)水
(B)界面活性剤、及び
(C)泡質改善剤
を含むことが知られている。
Here, in the liquid discharge container of the present invention, when the liquid agent used is a skin cleansing agent such as hand soap, face wash, cleansing agent, body soap, etc.
The composition of the skin cleanser is
It is known to contain (A) water (B) surfactant and (C) foam quality improver.
 ここで、(B)界面活性剤は、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、及び両性界面活性剤から選択される1種又は2種以上からなる。 Here, the (B) surfactant comprises one or more selected from nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
 ノニオン性界面活性剤としては、一般にノニオン界面活性剤として使用される化合物の中から適宜選択することができるが、例えば、ポリオキシアルキレン付加型のノニオン界面活性剤、モノあるいはジエタノールアミド系ノニオン界面活性剤、糖系ノニオン界面活性剤、グリセリン系ノニオン界面活性剤などが挙げられる。 The nonionic surfactant can be appropriately selected from compounds generally used as a nonionic surfactant, and for example, a polyoxyalkylene-added nonionic surfactant, a mono- or diethanolamide-based nonionic surfactant. Examples thereof include agents, sugar-based nonionic surfactants, and glycerin-based nonionic surfactants.
 アニオン性界面活性剤としては、一般にアニオン性界面活性剤として使用される化合物の中から適宜選択することができるが、脂肪酸石鹸、N-アシルグルタミン酸塩、アルキルエーテル酢酸等のカルボン酸塩型、α-オレフィンスルホン酸塩、アルカンスルホン酸塩、アルキルベンゼンスルホン酸等のスルホン酸型、高級アルコール硫酸エステル塩等の硫酸エステル塩型、リン酸エステル塩型等が挙げられる。 The anionic surfactant can be appropriately selected from compounds generally used as an anionic surfactant, and is a carboxylic acid salt type such as fatty acid soap, N-acylglutamate, alkyl ether acetic acid, α. -Examples include sulfonic acid types such as olefin sulfonates, alkane sulfonates and alkylbenzene sulfonic acids, sulfate ester salt types such as higher alcohol sulfates, and phosphoric acid ester salt types.
 カチオン性界面活性剤としては、一般にカチオン性界面活性剤として使用される化合物の中から適宜選択することができるが、脂肪族アミン塩、アルキル四級アンモニウム塩、芳香族四級アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩等を挙げることができる。 The cationic surfactant can be appropriately selected from compounds generally used as a cationic surfactant, and is an aliphatic amine salt, an alkyl quaternary ammonium salt, an aromatic quaternary ammonium salt, and a pyridinium salt. , Imidazolinium salt and the like.
 両性界面活性剤としては、一般に両性界面活性剤として使用される化合物の中から適宜選択することができるが、アルキルベタイン、アルキルアミドベタイン等のカルボベタイン型両性界面活性剤、アルキルスルホベタイン、アルキルヒドロキシスルホベタイン等のスルホベタイン型両性界面活性剤、ホスホベタイン型両性界面活性剤、イミダゾリン型両性界面活性剤、アミドアミノ酸塩等が挙げられる。 The amphoteric surfactant can be appropriately selected from compounds generally used as amphoteric surfactants, but carbobetaine-type amphoteric surfactants such as alkylbetaine and alkylamide betaine, alkylsulfobetaines and alkylhydroxys. Examples thereof include sulfobetaine-type amphoteric surfactants such as sulfobetaine, phosphobetaine-type amphoteric surfactants, imidazoline-type amphoteric surfactants, and amide amino acid salts.
 アルキルベタインとしては、ラウリルジメチルアミノ酢酸ベタイン等が挙げられる。アルキルアミドベタインとしては、ヤシ油脂肪酸アミドプロピルベタイン等が挙げられる。アルキルスルホベタインとしては、ヤシ油脂肪酸ジメチルスルホプロピルベタイン等が挙げられる。アルキルヒドロキシスルホベタインとしては、ラウリルジメチルアミノヒドロキシスルホベタイン等が挙げられる。ホスホベタイン型両性界面活性剤としては、ラウリルヒドロキシホスホベタイン等が挙げられる。イミダゾリン型両性界面活性剤としては、ヤシ油アルキル-N-ヒドロキシエチルイミダゾリニウムベタイン等が挙げられる。 Examples of the alkyl betaine include betaine lauryldimethylaminoacetate. Examples of the alkylamide betaine include coconut oil fatty acid amide propyl betaine. Examples of the alkylsulfobetaine include coconut oil fatty acid dimethylsulfopropyl betaine. Examples of the alkylhydroxysulfobetaine include lauryldimethylaminohydroxysulfobetaine. Examples of the phosphobetaine-type amphoteric surfactant include lauryl hydroxyphosphobetaine. Examples of the imidazoline-type amphoteric surfactant include coconut oil alkyl-N-hydroxyethyl imidazolinium betaine and the like.
 また、(C)泡質改善剤は、一般に持続性または弾力性に優れた泡質するために使用される化合物の中から適宜選択することができるが、例えば、塩化ジメチルジアリルアンモニウム・アクリルアミド共重合体、ポリオキシエチレンメチルグルコシド、ポリエチレングリコール、等が挙げられる。 Further, the foam quality improving agent (C) can be appropriately selected from compounds generally used for foaming having excellent durability or elasticity, and for example, dimethyldialylammonium chloride / acrylamide copolymer weight. Coalescence, polyoxyethylene methyl glucoside, polyethylene glycol, etc. can be mentioned.
 塩化ジメチルジアリルアンモニウム・アクリルアミド共重合体は、市販品を用いることができ、その具体例としては、マーコート550PR(塩化ジメチルジアリルアンモニウム:アクリルアミド=30:70(モル比)、重量平均分子量160万、ルーブリゾール社製)、マーコート3330PR(アクリル酸:塩化ジメチルジアリルアンモニウム:アクリルアミド=34:31:35(モル比)、重量平均分子量150万、ルーブリゾール社製)、マーコート740(塩化ジメチルジアリルアンモニウム:アクリルアミド=24:76(モル比)、重量平均分子量12万、ルーブリゾール社製)、マーコート2003PR(アクリル酸:塩化ジメチルジアリルアンモニウム:アクリルアミド=10:40:50(モル比)、重量平均分子量120万、ルーブリゾール社製)、マーコート280(アクリル酸:塩化ジメチルジアリルアンモニウム=35:65(モル比)、重量平均分子量45万、ルーブリゾール社製)、マーコート295(アクリル酸:塩化ジメチルジアリルアンモニウム=5:95(モル比)、重量平均分子量19万、ルーブリゾール社製)などが挙げられる。 Commercially available products can be used as the dimethyldiallylammonium chloride / acrylamide copolymer, and specific examples thereof include Marcourt 550PR (dimethyldiallylammonium chloride: acrylamide = 30:70 (molar ratio), weight average molecular weight 1.6 million, rubri. (Zol), Marcourt 3330PR (acrylic acid: dimethyldialylammonium chloride: acrylamide = 34:31:35 (molar ratio), weight average molecular weight 1.5 million, manufactured by Lubrizol), Marcourt 740 (dimethyldialylammonium chloride: acrylamide = 24:76 (molar ratio), weight average molecular weight 120,000, manufactured by Lubrizol), Marcourt 2003PR (acrylic acid: dimethyldialylammonium chloride: acrylamide = 10:40:50 (molar ratio), weight average molecular weight 1.2 million, rubri Zol Co., Ltd.), Marcourt 280 (acrylic acid: dimethyldialylammonium chloride = 35:65 (molar ratio), weight average molecular weight 450,000, manufactured by Lubrizol), Marcourt 295 (acrylic acid: dimethyldialylammonium chloride = 5:95) (Mole ratio), weight average molecular weight 190,000, manufactured by Lubrizol) and the like.
 アルコキシル化メチルグルコシドは、例えば、メチルグルセス-10、メチルグルセス-20、PPG-10メチルグルコースエーテル、およびPPG-20メチルグルコースエーテル(Lubrizol Advanced Materials, Inc.から各々、商品名Glucam(登録商標)E10、Glucam(登録商標)E20、Glucam(登録商標)P10、およびGlucam(登録商標)P20で入手可能)が挙げられ、疎水的に修飾されたアルコキシル化メチルグルコシド、例えば、PEG120メチルグルコースジオレエート、PEG-120メチルグルコーストリオレエート、およびPEG-20メチルグルコースセスキステアレート(Lubrizol Advanced Materials, Inc.から、各々、商品名、Glucamate(登録商標)DOE-120、Glucamate(商標)LT、およびGlucamate(商標)SSE-20で入手可能)、ならびにこれらの混合物などが挙げられる。 Alkoxylated methyl glucosides are, for example, methylgluces-10, methylgluces-20, PPG-10 methylglucose ether, and PPG-20 methylglucose ether (from Lubrizol Advanced Materials, Inc., trade names Glucam® E10, Glucam, respectively. (Available under Registered Trademarks) E20, Glucam® P10, and Glucam® P20), including hydrophobically modified alkoxylated methyl glucosides such as PEG120 methyl glucose dioleate, PEG- 120 Methyl Glucose Trioleate and PEG-20 Methyl Glucose Sesquistearate (from Lubrizol Advanced Materials, Inc., trade names, Glucamate® DOE-120, Glucamate® LT, and Glucamate® SSE, respectively. (Available at -20), as well as mixtures thereof and the like.
 ポリエチレングリコールは、例えば、PEG-20000(重量平均分子量2万、日油株式会社製)などが挙げられる。 Examples of polyethylene glycol include PEG-20000 (weight average molecular weight 20,000, manufactured by NOF CORPORATION).
 これらの泡質改善剤は、メッシュ上で液剤の膜がふくらむ際の個々の泡の膜粘度を強くするものであるため、ヘッド部50をプッシュし、液剤と気体とを混合した混合液剤がメッシュ41,42を通過した後、メッシュ41,42上に残ると、液剤の固化の原因になる。しかし、泡化する際の泡質を改善するためのものであるため、若干量混合する必要がある。 Since these foam quality improving agents strengthen the film viscosity of individual bubbles when the film of the liquid agent swells on the mesh, the head portion 50 is pushed and the mixed liquid agent in which the liquid agent and the gas are mixed is a mesh. If it remains on the mesh 41, 42 after passing through 41, 42, it causes solidification of the liquid agent. However, since it is for improving the foam quality at the time of foaming, it is necessary to mix a small amount.
 また、皮膚洗浄剤には保湿剤およびその他成分を含んでいてもよい。
保湿剤は、化粧料等に通常配合されるものから選択することができ、特に限定されないが、例えば、グリセリン、プロピレングリコール、ジプロピレングリコール、1,3-ブチレングリコール、エチレングリコール、ソルビトール等の多価アルコールが挙げられる。
前記その他の成分としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、粘度調整剤、溶剤、pH調整剤、ビタミン類、アミノ酸類、抗炎症剤、紫外線吸収剤、冷感付与剤、酸化防止剤、着色剤、香料、制汗剤、殺菌剤、消臭剤、防腐剤、包接化合物、水不溶性粉体(無機粉体、有機粉体等)、などが挙げられる。
The skin cleanser may also contain a moisturizer and other ingredients.
The moisturizing agent can be selected from those usually blended in cosmetics and the like, and is not particularly limited, but for example, a large amount of glycerin, propylene glycol, dipropylene glycol, 1,3-butylene glycol, ethylene glycol, sorbitol and the like. Propylene alcohol can be mentioned.
The other components are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected depending on the intended purpose. For example, viscosity regulators, solvents, pH regulators, vitamins, amino acids, etc. Anti-inflammatory agents, UV absorbers, cold sensation agents, antioxidants, colorants, fragrances, antiperspirants, bactericides, deodorants, preservatives, inclusion compounds, water-insoluble powders (inorganic powders, organics) Powder, etc.), etc.
 <経時変化の観測>
 ここで、表3に示す皮膚洗浄剤を液剤Lとして使用して、異なる種類のメッシュを用いた場合の押圧感覚の経時変化を観察する実験を行った。
<Observation of changes over time>
Here, an experiment was conducted in which the skin cleansing agent shown in Table 3 was used as the liquid agent L, and the change over time in the pressing sensation when different types of meshes were used was observed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 経過変化として、全ての容器に同じ皮膚洗浄液を液剤として入れ、表1に示す比較例のナイロンメッシュ、表2に示す撥水樹脂メッシュ、金属メッシュ(金属製のメッシュ)を用いた泡吐出容器を、それぞれ10個(N=10)ずつ用意し、50℃環境に放置し、1週間おきに常温に取り出して5回ヘッド部50を押下し、その際の押圧感覚を測定した。 As a change over time, the same skin cleaning solution was put into all the containers as a liquid agent, and a foam discharge container using the nylon mesh of the comparative example shown in Table 1, the water-repellent resin mesh shown in Table 2, and the metal mesh (metal mesh) was used. , 10 each (N = 10) were prepared, left in an environment of 50 ° C., taken out at room temperature every other week, and the head portion 50 was pressed 5 times, and the pressing sensation at that time was measured.
 図6は、比較例及び本発明の泡吐出容器を放置した際の、押圧感覚の実験結果である。図6の表において、〇は許容内のもの、×は「異常」のものを示している。この実験での「異常」は、ヘッド部50の押圧が重く(硬く)なったことを示している。この際、ヘッド部50の押圧が重くなると、吐出される泡が水っぽくなったり、大量の粗泡が混ざったりする現象が発生する。 FIG. 6 shows a comparative example and an experimental result of a pressing sensation when the foam discharge container of the present invention was left unattended. In the table of FIG. 6, ◯ indicates that it is within the allowable range, and × indicates that it is “abnormal”. The "abnormality" in this experiment indicates that the pressure on the head portion 50 became heavy (hard). At this time, if the pressure of the head portion 50 becomes heavy, a phenomenon occurs in which the discharged bubbles become watery or a large amount of coarse bubbles are mixed.
 図6から、比較例のメッシュを使用した泡吐出容器よりも、本発明の撥水樹脂メッシュ及び金属メッシュを使用した泡吐出容器の方が、長時間放置した際に、押圧感覚の変化が発生しにくいことがわかる。 From FIG. 6, the foam discharge container using the water-repellent resin mesh and the metal mesh of the present invention causes a change in the pressing sensation when left for a long time, as compared with the foam discharge container using the mesh of the comparative example. It turns out that it is difficult to do.
 図7に本発明に泡吐出容器への適用に適したメッシュの各寸法と接触角を示す。 FIG. 7 shows each dimension and contact angle of the mesh suitable for application to the foam discharge container according to the present invention.
 上述の実験では、接触角は、本発明のメッシュとして、撥水樹脂メッシュで上流側メッシュが129.27°、下流側メッシュが131.45°、金属メッシュで上流側メッシュが119.43°、下流側メッシュが119.795°のものを用いたが、図7に示すように、本発明の泡吐出容器において適用するメッシュは、水に対する接触角が115°~179°であると好適である。さらに好ましくは、一般的なメッシュの接触角よりも5°以上大きく、実現可能性が高い118°~175°であるとより好適である。 In the above experiment, the contact angles of the mesh of the present invention were 129.27 ° for the upstream mesh and 131.45 ° for the downstream mesh, 119.43 ° for the upstream mesh and 119.795 ° for the downstream mesh for the metal mesh. However, as shown in FIG. 7, the mesh applied in the foam discharge container of the present invention preferably has a contact angle with water of 115 ° to 179 °. More preferably, the contact angle is larger than the contact angle of a general mesh by 5 ° or more, and is more preferably 118 ° to 175 °, which is highly feasible.
 上述の実験では、上流側メッシュの一例として目開き96μm(撥水)、77μm(金属)のものを用いたが、本発明において、上流側メッシュの目開きは、70μm~300μmであってもよい。 In the above experiment, meshes having a mesh size of 96 μm (water repellency) and 77 μm (metal) were used as an example of the upstream mesh, but in the present invention, the mesh size of the upstream mesh may be 70 μm to 300 μm. ..
 また、下流側メッシュの一例として目開き48μm(撥水)、45μm(金属)のものを用いたが、本発明において、下流側メッシュの目開きは、30μm~80μmであってもよい。 Further, as an example of the downstream mesh, those having a mesh size of 48 μm (water repellency) and 45 μm (metal) were used, but in the present invention, the mesh size of the downstream mesh may be 30 μm to 80 μm.
 また、線径、オープニングエリアは図7に示す表のとおりである。そして、発泡部材は、2つのメッシュとして、混合液剤の流動方向の上流側と下流側に異なる種類のメッシュを適用した例を説明したが、メッシュの種類は、上流側及び下流側で、同じ種類であってもよい。 The wire diameter and opening area are as shown in the table shown in FIG. Then, as the foaming member, an example in which different types of meshes are applied to the upstream side and the downstream side in the flow direction of the mixed liquid as two meshes has been described, but the types of meshes are the same on the upstream side and the downstream side. It may be.
 さらに、発泡部材としてメッシュの数は1枚であってもよいし、あるいは、3枚以上であってもよい。メッシュの数が1枚の場合は、メッシュの目開きは、30μm~300μmであると好適である。 Further, the number of meshes as the foaming member may be one, or may be three or more. When the number of meshes is one, the mesh opening is preferably 30 μm to 300 μm.
 このような寸法及び接触角のメッシュを用いることで、泡吐出容器において、長時間放置しても、発泡部材における目詰まりの発生を抑制できる。 By using a mesh having such dimensions and contact angles, it is possible to suppress the occurrence of clogging in the foam member even if the foam discharge container is left for a long time.
 なお、図7では、撥水加工した樹脂メッシュの一例として、シリコーン加工又はフッ素加工等の撥水加工を施し、撥水性を115°以上に高くしたメッシュを例に示したが、素材自体に撥水性を有するフッ素樹脂であれば、表面を加工しなくても本発明のメッシュの対象に含みうる。 In FIG. 7, as an example of the water-repellent resin mesh, a mesh in which water-repellent treatment such as silicone processing or fluorine processing is performed to increase the water repellency to 115 ° or more is shown as an example, but the material itself is repellent. Any fluororesin having water-based properties can be included in the target of the mesh of the present invention without processing the surface.
 以上、本発明の好ましい実施形態について詳述したが、本発明は上記した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能なものである。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-mentioned specific embodiments, and various aspects are within the scope of the gist of the present invention described in the claims. It can be transformed and changed.
 本出願は、2019年4月22日に日本国特許庁に出願された特願2019-081300号に基づく優先権を主張するものであり、特願2019-081300号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2019-081300 filed with the Japan Patent Office on April 22, 2019, and the entire contents of Japanese Patent Application No. 2019-081300 are incorporated in this application. To do.
 1 泡吐出容器
 10 送出機構
 20 気液混合部
 30 噴射部材
 40 発泡部材
 41 上流側メッシュ(第1のメッシュ)
 42 下流側メッシュ(第2のメッシュ)
 50 ヘッド部
 51 吐出口
 52 吐出ノズル
 53 操作受部
 54 流動管
 55 外筒
 60 ネジキャップ部
 100 泡吐出ディスペンサー
 110 シリンダ部
 111 エアーシリンダ部
 112 開口部
 114 液シリンダ部
 115 縮径部
 120 ピストンガイド
 130 液ピストン
 140 ポペット
 150 気体ピストン
 160 ボール弁
 170 空気弁
 900 容器本体
 F 泡化した液剤
 L 液体の液剤
 M 混合液剤
1 Foam discharge container 10 Delivery mechanism 20 Gas-liquid mixing part 30 Injection member 40 Foam member 41 Upstream mesh (first mesh)
42 Downstream mesh (second mesh)
50 Head part 51 Discharge port 52 Discharge nozzle 53 Operation receiving part 54 Flow pipe 55 Outer cylinder 60 Screw cap part 100 Foam discharge dispenser 110 Cylinder part 111 Air cylinder part 112 Opening 114 Liquid cylinder part 115 Reduced diameter part 120 Piston guide 130 Liquid Piston 140 Poppet 150 Gas piston 160 Ball valve 170 Air valve 900 Container body F Foamed liquid L Liquid liquid M Mixed liquid

Claims (17)

  1.  液剤と気体とを混合した混合液剤を泡化させる発泡部材を有する泡吐出ディスペンサーであって、
     前記発泡部材は、水に対する接触角が115°~179°のメッシュである
     泡吐出ディスペンサー。
    A foam discharge dispenser having a foaming member that foams a mixed liquid agent in which a liquid agent and a gas are mixed.
    The foam member is a foam discharge dispenser having a contact angle with water of 115 ° to 179 °.
  2.  前記発泡部材は、撥水加工されたメッシュである
     請求項1に記載の泡吐出ディスペンサー。
    The foam discharge dispenser according to claim 1, wherein the foam member is a water-repellent mesh.
  3.  前記撥水加工されたメッシュの表面は、シリコーン加工又はフッ素加工されている
     請求項2に記載の泡吐出ディスペンサー。
    The foam discharge dispenser according to claim 2, wherein the surface of the water-repellent mesh is treated with silicone or fluorine.
  4.  前記撥水加工されるメッシュの素材は、樹脂である
     請求項2又は3に記載の泡吐出ディスペンサー。
    The foam discharge dispenser according to claim 2 or 3, wherein the material of the mesh to be water-repellent is a resin.
  5.  前記撥水加工されるメッシュの樹脂は、ナイロン又はポリエステルである
     請求項4に記載の泡吐出ディスペンサー。
    The foam discharge dispenser according to claim 4, wherein the resin of the mesh to be water-repellent is nylon or polyester.
  6.  前記発泡部材は、フッ素樹脂メッシュである
     請求項1に記載の泡吐出ディスペンサー。
    The foam discharge dispenser according to claim 1, wherein the foam member is a fluororesin mesh.
  7.  前記フッ素樹脂メッシュは、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、又は4フッ化エチレン・エチレン共重合樹脂(ETFE)である
     請求項6に記載の泡吐出ディスペンサー。
    The foam according to claim 6, wherein the fluororesin mesh is polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), or tetrafluoroethylene / ethylene copolymer resin (ETFE). Discharge dispenser.
  8.  前記発泡部材は、金属メッシュである
     請求項1乃至3のいずれか一項に記載の泡吐出ディスペンサー。
    The foam discharge dispenser according to any one of claims 1 to 3, wherein the foam member is a metal mesh.
  9.  前記金属メッシュは、ステンレス鋼である
     請求項8に記載の泡吐出ディスペンサー。
    The foam discharge dispenser according to claim 8, wherein the metal mesh is stainless steel.
  10.  前記メッシュの目開きは、30μm~300μmである
     請求項1乃至9のいずれか一項に記載の泡吐出ディスペンサー。
    The foam discharge dispenser according to any one of claims 1 to 9, wherein the mesh opening is 30 μm to 300 μm.
  11.  前記発泡部材は、1又は複数枚のメッシュを含む
     請求項1乃至10のいずれか一項に記載の泡吐出ディスペンサー。
    The foam discharge dispenser according to any one of claims 1 to 10, wherein the foam member includes one or a plurality of meshes.
  12.  前記発泡部材は、前記メッシュに対して、前記混合液剤の流動方向の上流側及び/又は下流側に異なる種類または、同じ種類の第2のメッシュを含む
     請求項11に記載の泡吐出ディスペンサー。 
    The foam discharge dispenser according to claim 11, wherein the foam member includes a second mesh of a different type or the same type on the upstream side and / or the downstream side of the mixed liquid agent in the flow direction with respect to the mesh.
  13.  当該泡吐出ディスペンサーは、
     前記液剤と気体とが混合する気液混合部と、
     前記気液混合部にて前記気体と混合した前記混合液剤が前記気液混合部から下流側に流動する流動管と、
     前記流動管の出口に連接され、泡化した前記液剤を吐出する吐出ノズルと、
     液剤を貯留する容器本体から前記吐出ノズルの入口に向けて前記液剤を送出する送出機構と、をさらに備えており、
     前記発泡部材は、前記流動管内に設けられる
     請求項1乃至12のいずれか一項に記載の泡吐出ディスペンサー。
    The foam discharge dispenser
    A gas-liquid mixing section where the liquid agent and gas are mixed,
    A flow tube in which the mixed liquid agent mixed with the gas in the gas-liquid mixing section flows downstream from the gas-liquid mixing section.
    A discharge nozzle that is connected to the outlet of the flow pipe and discharges the foamed liquid agent,
    It is further provided with a delivery mechanism for delivering the liquid agent from the container body for storing the liquid agent toward the inlet of the discharge nozzle.
    The foam discharge dispenser according to any one of claims 1 to 12, wherein the foam member is provided in the flow pipe.
  14.  請求項1乃至13のいずれか一項に記載の泡吐出ディスペンサーと、
     前記液剤を貯留する容器本体と、を備える
     泡吐出容器。
    The foam discharge dispenser according to any one of claims 1 to 13.
    A foam discharge container including a container body for storing the liquid agent.
  15.  前記液剤は、界面活性剤を含む
     請求項14に記載の泡吐出容器。
    The foam discharge container according to claim 14, wherein the liquid agent contains a surfactant.
  16.  前記界面活性剤に、泡質改善剤を含む
     請求項15に記載の泡吐出容器。
    The foam discharge container according to claim 15, wherein the surfactant contains a foam improving agent.
  17.  前記泡質改善剤は、塩化ジメチルジアリルアンモニウム・アクリルアミド共重合体、ポリオキシエチレンメチルグルコシド、ポリエチレングリコールである
     請求項16に記載の泡吐出容器。
    The foam discharge container according to claim 16, wherein the foam quality improving agent is a dimethyldiallyl ammonium chloride / acrylamide copolymer, polyoxyethylene methyl glucoside, or polyethylene glycol.
PCT/JP2020/016735 2019-04-22 2020-04-16 Foam ejecting dispenser and foam ejecting container WO2020218156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019081300A JP2020175940A (en) 2019-04-22 2019-04-22 Foam discharge dispenser, and foam discharge container
JP2019-081300 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020218156A1 true WO2020218156A1 (en) 2020-10-29

Family

ID=72936800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016735 WO2020218156A1 (en) 2019-04-22 2020-04-16 Foam ejecting dispenser and foam ejecting container

Country Status (2)

Country Link
JP (1) JP2020175940A (en)
WO (1) WO2020218156A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117165A (en) * 1998-10-09 2000-04-25 Nisshin Kagaku Kk Aerosol product for foaming
JP2010013995A (en) * 2008-07-02 2010-01-21 Tokyo Roki Co Ltd Filter and sedimenter
JP3163646U (en) * 2010-01-22 2010-10-28 ユニプラス株式会社 Ejection device in bubble ejector
WO2012002204A1 (en) * 2010-07-01 2012-01-05 株式会社メニコンネクト Dispenser for both foam and liquid
JP2012128174A (en) * 2010-12-15 2012-07-05 Seiko Epson Corp Die head and application method of paint
JP2013085687A (en) * 2011-10-18 2013-05-13 Panasonic Corp Clothing drying machine
JP2014166611A (en) * 2013-02-28 2014-09-11 Jfe Engineering Corp Filter body, filter device, and sea water treatment apparatus
JP2015024966A (en) * 2013-07-24 2015-02-05 ホーユー株式会社 Hair wash composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259932A (en) * 2007-04-10 2008-10-30 Kao Corp Foam discharger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117165A (en) * 1998-10-09 2000-04-25 Nisshin Kagaku Kk Aerosol product for foaming
JP2010013995A (en) * 2008-07-02 2010-01-21 Tokyo Roki Co Ltd Filter and sedimenter
JP3163646U (en) * 2010-01-22 2010-10-28 ユニプラス株式会社 Ejection device in bubble ejector
WO2012002204A1 (en) * 2010-07-01 2012-01-05 株式会社メニコンネクト Dispenser for both foam and liquid
JP2012128174A (en) * 2010-12-15 2012-07-05 Seiko Epson Corp Die head and application method of paint
JP2013085687A (en) * 2011-10-18 2013-05-13 Panasonic Corp Clothing drying machine
JP2014166611A (en) * 2013-02-28 2014-09-11 Jfe Engineering Corp Filter body, filter device, and sea water treatment apparatus
JP2015024966A (en) * 2013-07-24 2015-02-05 ホーユー株式会社 Hair wash composition

Also Published As

Publication number Publication date
JP2020175940A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP5474298B2 (en) Foam cleanser with suspended particles, method for producing the same and dispenser therefor
CA2906827C (en) Liquid-impregnated surfaces with enhanced durability
TWI660784B (en) Aerosol cosmetic
CN113056333B (en) Foam dispenser and method
CA2877170C (en) A foam generating dispenser
JP6887777B2 (en) Discharge container and foam agent in discharge container
JP2007261688A (en) Foam discharging container storing liquid detergent composition
WO2016104591A1 (en) Foam dispenser
EP3589391B1 (en) Apparatus and method for generating a microfoam
US20170231437A1 (en) High quality non-aerosol hand sanitizing foam
JP2019172313A (en) Liquid discharge container
AU2015326844A1 (en) Liquid dispenser with framed refill receiving bay
WO2020218156A1 (en) Foam ejecting dispenser and foam ejecting container
TWI786299B (en) Foam dispenser and foam spray container
JPWO2018012131A1 (en) Aerosol type right-turn valve mechanism of aerosol type and aerosol type product equipped with the right-turn valve mechanism
JP4880322B2 (en) Bubble jet
WO2021132440A1 (en) Foam discharge container
TWI832844B (en) Dispensing containers and accessories for discharging heads
JP2014009195A (en) Liquid skin-cleansing agent product
EP3463676B1 (en) Foam dispenser
JP4241995B2 (en) Aerosol products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794114

Country of ref document: EP

Kind code of ref document: A1