WO2020218147A1 - Antenna, antenna system, array antenna, and array antenna system - Google Patents

Antenna, antenna system, array antenna, and array antenna system Download PDF

Info

Publication number
WO2020218147A1
WO2020218147A1 PCT/JP2020/016707 JP2020016707W WO2020218147A1 WO 2020218147 A1 WO2020218147 A1 WO 2020218147A1 JP 2020016707 W JP2020016707 W JP 2020016707W WO 2020218147 A1 WO2020218147 A1 WO 2020218147A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
ground conductor
phase
conductor
antenna element
Prior art date
Application number
PCT/JP2020/016707
Other languages
French (fr)
Japanese (ja)
Inventor
小向 康文
弘晃 小林
康充 高井
岡田 真一
義範 平松
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080029884.7A priority Critical patent/CN113711439A/en
Priority to JP2021516051A priority patent/JPWO2020218147A1/ja
Publication of WO2020218147A1 publication Critical patent/WO2020218147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present disclosure relates to antennas, antenna systems, array antennas and array antenna systems.
  • Patent Document 1 a module provided with a coil antenna for transmitting and receiving signals by non-contact communication with a non-contact IC card formed of a spiral pattern coil has been disclosed (for example, Patent Document 1).
  • the ground conductor of such a cable may be connected to the ground conductor provided in the module.
  • the antenna included in the module may also be connected to the ground conductor provided in the module. In such a case, the current leaking from the antenna to the ground conductor of the module flows to the ground conductor of the cable. As a result, the radiation characteristics of the antenna may be affected by the cable.
  • the present disclosure provides an antenna or the like that can improve the radiation characteristics.
  • the antenna according to one aspect of the present disclosure is connected to a loop-shaped antenna element formed by a conductor having open ends at both ends and one of the open ends of the antenna element so as to surround the outer periphery of the antenna element. It comprises an annular first grounding conductor that is arranged closed.
  • the radiation characteristics can be improved.
  • FIG. 1 is a plan view of the antenna system according to the first embodiment.
  • FIG. 2A is a diagram showing a simulation result of the current distribution of the antenna system according to the comparative example.
  • FIG. 2B is a diagram showing a simulation result of the current distribution of the antenna system according to the first embodiment.
  • FIG. 3 is a plan view of the array antenna system according to the second embodiment.
  • FIG. 4 is a circuit configuration diagram showing an example of the phase control unit according to the second embodiment.
  • FIG. 5 is a circuit configuration diagram showing an example of a part of the phase control unit according to the second embodiment.
  • FIG. 6 is a graph showing an example of the phase characteristics of each phase device in the phase control unit according to the second embodiment.
  • FIG. 1 is a plan view of the antenna system according to the first embodiment.
  • FIG. 2A is a diagram showing a simulation result of the current distribution of the antenna system according to the comparative example.
  • FIG. 2B is a diagram showing a simulation result of the current distribution of the
  • FIG. 7 is a graph showing directivity characteristics when the phase difference of the array antenna according to the second embodiment is 90 degrees.
  • FIG. 8 is a graph showing directivity characteristics when the phase difference of the array antenna according to the second embodiment is 180 degrees.
  • FIG. 9 is a graph showing directivity characteristics when there is no phase difference of the array antenna according to the second embodiment.
  • FIG. 10 is a graph showing the directivity characteristics of the array antenna according to the second embodiment when there is no phase difference in the state where the cable is connected.
  • the antenna according to one aspect of the present disclosure is connected to a loop-shaped antenna element formed by a conductor having open ends at both ends and one of the open ends of the antenna element so as to surround the outer periphery of the antenna element. It comprises an annular first grounding conductor that is arranged closed.
  • one open end of the antenna element is connected to the ground conductor (called the second ground conductor) of the control board provided with the control circuit for controlling the antenna, and the second ground conductor is connected to the ground conductor of a cable such as a coaxial cable (called the second ground conductor).
  • a cable such as a coaxial cable
  • an outer conductor of a coaxial cable may be connected, and power may be supplied to the antenna element via the cable.
  • a current may leak from the antenna element to the second ground conductor, the leaked current may flow to the ground conductor of the cable, and the radiation characteristics of the antenna may be affected by the cable. Therefore, an annular first grounding conductor arranged so as to surround the outer circumference of the antenna element is connected to one open end of the antenna element.
  • the radiation characteristics of the antenna are less affected by the cable, and the radiation characteristics can be improved.
  • the antenna element may be formed in a circular loop shape.
  • the antenna element may be formed in a circular loop shape.
  • the antenna may further include a perturbation element composed of a conductor branched from the antenna element.
  • the perturbation element can radiate a circularly polarized radio wave from the antenna.
  • the antenna system includes the above-mentioned antenna and a control board, and the control board includes a control circuit for controlling the antenna, the open end of one of the antenna elements, and the first.
  • a second grounding conductor connected to one grounding conductor is provided.
  • the array antenna according to one aspect of the present disclosure is configured by arranging a plurality of the above antennas.
  • the array antenna system includes the above-mentioned array antenna and a control board, and the control board is a control circuit for controlling the array antenna, and a plurality of control circuits constituting the array antenna. It includes a control circuit including a phase control unit for controlling the phase of the radio wave output from the antenna, and a second ground conductor connected to one of the open ends of the antenna element and the first ground conductor.
  • FIG. 1 is a plan view of the antenna system 1 according to the first embodiment.
  • the antenna system 1 is a system for radiating and receiving radio waves.
  • the antenna system 1 includes an antenna 10 and a control board 20.
  • the antenna 10 and the control board 20 may be integrally formed.
  • the antenna system 1 may be realized by one substrate 30.
  • the substrate 30 may be, for example, a printed wiring board, or the antenna 10 and the control substrate 20 may be formed on one substrate 30.
  • the left side portion of the substrate 30 is referred to as an antenna 10
  • the right portion is referred to as a control substrate 20.
  • the antenna 10 and the control board 20 may not be formed on one board 30, but may be formed separately.
  • the antenna 10 includes an antenna element 11, a first ground conductor 12, a perturbation element 13, and a feeding point 14.
  • the antenna element 11 is a loop-shaped radiating element formed by a conductor having open ends at both ends.
  • the antenna element 11 is formed as a conductor pattern on the substrate 30, for example.
  • the antenna element 11 in order to make the shape of the antenna element 11 easy to understand, the antenna element 11 is hatched with diagonal lines extending from the upper right to the lower left.
  • the antenna element 11 is formed, for example, in a circular loop shape.
  • the antenna element 11 is not limited to a circular shape but may have a polygonal shape as long as it has a loop shape.
  • FIG. 1 shows a loop-shaped antenna element 11 having one round as the loop-shaped antenna element 11, but the antenna element 11 is not limited to the loop shape of one round, but has a loop shape of one round or more. It may be (that is, spiral).
  • One open end of the antenna element 11 is connected to the first ground conductor 12 and the second ground conductor 21 described later. The other open end side of the antenna element 11 is connected to the feeding point 14.
  • the first grounding conductor 12 is an annular grounding conductor connected to one open end of the antenna element 11 and closed so as to surround the outer circumference of the antenna element 11.
  • the first grounding conductor 12 is formed as a conductor pattern on the substrate 30, for example.
  • the first grounding conductor 12 is hatched with dots.
  • a broken line is added to the boundary between the first grounding conductor 12 and the second grounding conductor 21 described later.
  • the first ground conductor 12 and the second ground conductor 21 described later may be seamlessly connected on the substrate 30.
  • the first ground conductor 12 is arranged along the antenna element 11.
  • the first ground conductor 12 is formed in an annular shape along the outer circumference of the loop.
  • the first ground conductor 12 may not be formed in an annular shape as long as it is closed and arranged so as to surround the outer periphery of the antenna element 11, and may be formed in a polygonal annular shape.
  • the first ground conductor 12 may also be formed in a square ring shape along the outer circumference of the antenna element 11.
  • the perturbation element 13 is a radiating element composed of a conductor branched from the antenna element 11.
  • the perturbation element 13 is formed as a conductor pattern on the substrate 30, for example.
  • the perturbation element 13 is hatched with diagonal lines extending from the upper left to the lower right.
  • the perturbation element 13 is formed so as to branch off from the loop-shaped antenna element 11 and extend inside the loop, it may be formed so as to extend outside the loop.
  • the perturbation element 13 has a linear shape, it is not limited to the linear shape and may have a curved shape.
  • the perturbation element 13 can radiate a circularly polarized radio wave from the antenna 10.
  • a right-handed circularly polarized radio wave can be radiated to the front side of the paper in FIG. 1, and a left-handed circularly polarized radio wave can be radiated to the back side of the paper in FIG.
  • the antenna 10 does not have to include the perturbation element 13 when emitting linearly polarized radio waves.
  • the feeding point 14 is provided, for example, on the other open end side of the antenna element 11, supplies high-frequency power to the antenna element 11, and receives high-frequency power generated by receiving radio waves at the antenna element 11, such as a receiver. It is a point for transmitting to.
  • the feeding point 14 is connected to an input / output IF (interface) 23 to which a cable such as a coaxial cable is connected via a control circuit 22, as will be described later.
  • the feeding point 14 is shown to be provided at the other open end of the antenna element 11 in FIG. 1, it does not have to be provided at the open end and is deviated from the open end of the antenna element 11. It may be provided at a position.
  • the control board 20 includes a second ground conductor 21, a control circuit 22, and an input / output IF 23.
  • the second ground conductor 21 is a ground conductor connected to one open end of the antenna element 11 and the first ground conductor 12.
  • the second grounding conductor 21 is formed as a solid pattern on, for example, the control board 20 (board 30). In FIG. 1, in order to make the shape of the second grounding conductor 21 easy to understand, the second grounding conductor 21 is hatched with dots different from those of the first grounding conductor 12.
  • the control circuit 22 is a circuit that controls the antenna 10.
  • the control circuit 22 may be provided on only one main surface of the control board 20, may be provided on both sides, or when the control board 20 (board 30) is a multilayer board, the control circuit 22 may be provided on only one main surface. It may be provided in the inner layer.
  • the control circuit 22 includes, for example, an impedance matching circuit, a filter circuit, a switch circuit, and the like.
  • the input / output IF23 is an interface to which a cable such as a coaxial cable is connected, and when the cable is a coaxial cable, it is a coaxial connector.
  • a cable such as a coaxial cable
  • an RFIC Radio Frequency Integrated Circuit
  • the coaxial cable is connected to the coaxial connector, so that the internal conductor of the coaxial cable is connected to the feeding point 14 via the control circuit 22. Will be done.
  • the outer conductor (ground conductor) of the coaxial cable is connected to the second ground conductor 21.
  • the characteristic configuration of the present disclosure is an annular first ground conductor 12 that is connected to one open end of the antenna element 11 and is closed and arranged so as to surround the outer circumference of the antenna element 11.
  • the effect of the antenna 10 including the first ground conductor 12 will be described with reference to FIGS. 2A and 2B.
  • FIG. 2A is a diagram showing a simulation result of the current distribution of the antenna system according to the comparative example.
  • FIG. 2B is a diagram showing a simulation result of the current distribution of the antenna system 1 according to the first embodiment.
  • the lighter the color, the more concentrated the current In FIGS. 2A and 2B, the lighter the color, the more concentrated the current.
  • the antenna system according to the comparative example is not provided with the first ground conductor 12. Therefore, by comparing FIG. 2A and FIG. 2B, the effect of providing the first grounding conductor 12 can be confirmed.
  • the antenna element 11 is transferred to the second ground conductor 21. It can be seen that the inflow of current is large. For example, when the ground conductor of the cable is connected to the second ground conductor 21, the current leaked from the antenna element 11 to the second ground conductor 21 flows to the ground conductor of the cable. As a result, the radiation characteristics of the antenna 10 may be affected by the cable (for example, radiation noise from the cable) and the radiation characteristics may deteriorate.
  • the current is not concentrated in the portion of the second ground conductor 21 surrounded by the broken line A, and instead, the second ground conductor 21 is provided. It can be seen that the current is concentrated in the portion of the ground conductor 12 surrounded by the broken line B. That is, by providing the first ground conductor 12, it is possible to suppress the inflow of current from the antenna element 11 to the second ground conductor 21.
  • one open end of the antenna element 11 is connected to the second ground conductor 21 of the control board 20, and the ground conductor of a cable such as a coaxial cable (for example, the outer conductor of the coaxial cable) is connected to the second ground conductor 21. ) Is connected, and power may be supplied to the antenna element 11 via a cable.
  • a current may leak from the antenna element 11 to the second ground conductor 21, the leaked current may flow to the ground conductor of the cable, and the radiation characteristics of the antenna 10 may be affected by the cable. Therefore, an annular first grounding conductor 12 arranged so as to surround the outer circumference of the antenna element 11 is connected to one open end of the antenna element 11.
  • the current is less likely to leak from the antenna element 11 to the second ground conductor 21, and the current is less likely to flow through the ground conductor of the cable connected to the second ground conductor 21. Therefore, the radiation characteristic of the antenna 10 is less affected by the cable, and the radiation characteristic can be improved.
  • FIG. 3 is a plan view of the array antenna system 2 according to the second embodiment.
  • the array antenna system 2 is a system for radiating and receiving radio waves.
  • the array antenna system 2 includes an array antenna 100 and a control board 200.
  • the directivity of the array antenna 100 can be controlled. That is, radio waves can be transmitted and received to an object arranged in a specific direction with respect to the array antenna 100.
  • the array antenna 100 and the control board 200 may be integrally formed.
  • the array antenna system 2 may be realized by one substrate 300.
  • the substrate 300 may be, for example, a printed wiring board, or the array antenna 100 and the control substrate 200 may be formed on one substrate 300.
  • the lower portion of the substrate 300 is referred to as an array antenna 100, and the upper portion is referred to as a control substrate 200.
  • the array antenna 100 and the control board 200 may not be formed on one board 300, or may be formed separately.
  • the array antenna 100 is configured by arranging a plurality of antennas 10 according to the first embodiment, and includes, for example, four antennas 10.
  • the four antennas 10 are antennas 10a to 10d. That is, the antennas 10a to 10d each include an antenna element 11, a first ground conductor 12, a perturbation element 13, and a feeding point 14.
  • the antenna elements 11, the first ground conductor 12, and the perturbation element 13 of the antennas 10a to 10d are formed as a conductor pattern on the substrate 300, for example.
  • each of the feeding points 14 of the antennas 10a to 10d is connected to an input / output IF 230 to which a cable such as a coaxial cable is connected via a control circuit 220.
  • the number of antennas 10 included in the array antenna 100 is not limited to four, and may be two, three, or five or more.
  • the control board 200 includes a second ground conductor 210, a control circuit 220, and an input / output IF 230.
  • the second grounding conductor 210 is a grounding conductor connected to one open end of each of the antenna elements 11 of the antennas 10a to 10d and to each of the first grounding conductors 12 of the antennas 10a to 10d.
  • the second ground conductor 210 is formed as a solid pattern on, for example, the control board 200 (board 300). In FIG. 3, in order to make the shape of the second grounding conductor 210 easy to understand, the second grounding conductor 210 is hatched with dots different from those of the first grounding conductor 12.
  • the control circuit 220 is a circuit that controls the array antenna 100.
  • the control circuit 220 may be provided on only one main surface of the control board 200 or on both sides, or when the control board 200 (board 300) is a multilayer board, the control circuit 220 may be provided on only one main surface of the control board 200. It may be provided in the inner layer.
  • the control circuit 220 includes, for example, an impedance matching circuit, a filter circuit, a switch circuit, and the like. Further, for example, the control circuit 220 includes a phase control unit 227 (see FIG. 4 described later) that controls the phase of radio waves output from a plurality of antennas 10a to 10d constituting the array antenna 100.
  • the input / output IF230 is an interface to which a cable such as a coaxial cable is connected, and when the cable is a coaxial cable, it is a coaxial connector.
  • a cable such as a coaxial cable
  • RFIC or the like is connected to the input / output IF230 via a cable.
  • the coaxial cable is connected to the coaxial connector, so that the internal conductor of the coaxial cable is connected to the antennas 10a to 10d via the control circuit 220. It is connected to each feeding point 14.
  • high-frequency power from the RFICs and the like can be supplied to the respective antenna elements 11 of the antennas 10a to 10d at the time of transmission, and high-frequency power from the respective antenna elements 11 of the antennas 10a to 10d can be supplied to the RFICs and the like at the time of reception. Can be transmitted to. Further, the outer conductor (ground conductor) of the coaxial cable is connected to the second ground conductor 210.
  • phase control unit 227 will be described with reference to FIGS. 4 to 6.
  • FIG. 4 is a circuit configuration diagram showing an example of the phase control unit 227 according to the second embodiment.
  • FIG. 4 also shows the input / output IF230 and the antennas 10a to 10d.
  • the input / output IF230 in FIG. 4 indicates, for example, a terminal to which the inner conductor of the coaxial cable is connected.
  • the portion of the input / output IF 230 to which the outer conductor (ground conductor) of the coaxial cable is connected is connected to the second ground conductor 210 (not shown in FIG. 4).
  • the control circuit 220 may include other circuits such as an impedance matching circuit or a filter circuit in addition to the phase control unit 227, but the illustration of the other circuits is omitted in FIG.
  • the directivity of the array antenna 100 can be controlled by giving a phase difference to the high frequency signals transmitted to each of the antennas 10a to 10d via the input / output IF230.
  • the phase control unit 227 is configured to control the directivity of the array antenna 100, and includes switches SW11 and SW12 and phase devices ⁇ 1 to ⁇ n (n is an integer of 2 or more) provided corresponding to the antenna 10a. Switches SW21, SW22 and phase devices ⁇ 1 to ⁇ n provided corresponding to the antenna 10b, switches SW31, SW32 and phase devices ⁇ 1 to ⁇ n provided corresponding to the antenna 10c, and phase devices ⁇ 1 to ⁇ n provided corresponding to the antenna 10d. The switches SW41 and SW42 and the phase devices ⁇ 1 to ⁇ n are provided.
  • the switch SW11 is an SPnT (Single Pole n Throw) switch, and the common terminal is connected to the input / output IF230, and the selection terminal is connected to the phase units ⁇ 1 to ⁇ n.
  • the switch SW21 is an SPnT switch, and the common terminal is connected to the input / output IF230, and the selection terminal is connected to the phase units ⁇ 1 to ⁇ n.
  • the switch SW31 is an SPnT switch, and the common terminal is connected to the input / output IF230, and the selection terminal is connected to the phase units ⁇ 1 to ⁇ n.
  • the switch SW41 is an SPnT switch, and the common terminal is connected to the input / output IF230, and the selection terminal is connected to the phase units ⁇ 1 to ⁇ n.
  • the phase devices ⁇ 1 to ⁇ n, ⁇ 1 to ⁇ n, ⁇ 1 to ⁇ n, and ⁇ 1 to ⁇ n are phase adjustment circuits.
  • the phase devices ⁇ 1 to ⁇ n, ⁇ 1 to ⁇ n, ⁇ 1 to ⁇ n, and ⁇ 1 to ⁇ n are circuits composed of impedance elements such as inductors and capacitors, and the amount of phase adjustment depends on the connection form and element parameters of each impedance element. It can be decided.
  • the switch SW12 is an SPnT switch, the common terminal is connected to the feeding point 14 of the antenna 10a, and the selection terminal is connected to the phase units ⁇ 1 to ⁇ n.
  • the switch SW22 is an SPnT switch, and the common terminal is connected to the feeding point 14 of the antenna 10b, and the selection terminal is connected to the phase units ⁇ 1 to ⁇ n.
  • the switch SW32 is an SPnT switch, and the common terminal is connected to the feeding point 14 of the antenna 10c, and the selection terminal is connected to the phase units ⁇ 1 to ⁇ n.
  • the switch SW42 is an SPnT switch, and the common terminal is connected to the feeding point 14 of the antenna 10d, and the selection terminal is connected to the phase units ⁇ 1 to ⁇ n.
  • Each switch is controlled according to an instruction from the RFIC or an instruction from an integrated circuit such as a microcomputer included in the control circuit 220.
  • each switch it is possible to control which phase device the high frequency signal from the input / output IF 230 passes through, that is, it depends on the phase device that passes through the phase adjustment amount of the high frequency signal. it can.
  • the phase of the high frequency signal transmitted to each of the antennas 10a to 10d constituting the array antenna can be shifted, and the directivity of the array antenna 100 can be controlled.
  • phase control unit 227 a more detailed configuration example of the phase control unit 227 will be described with reference to FIG. 5 focusing on the switch SW11, the phase devices ⁇ 1 to ⁇ n, and the switch SW12.
  • FIG. 5 is a circuit configuration diagram showing an example of a part of the phase control unit 227 according to the second embodiment.
  • the phase devices ⁇ 1 to ⁇ 4 are realized by, for example, a ⁇ -type LC circuit.
  • the number of inductors and capacitors and the connection form are not limited to those shown in FIG.
  • phase adjustment amount of the high-frequency signal transmitted to the antenna 10a is adjusted according to the phase controller ⁇ 1
  • the switch SW11 and the switch SW12 are controlled so as to be connected to the selection terminal of.
  • the phase characteristics shown in FIG. 6 can be realized by adjusting the parameters of the inductor and the capacitor constituting each of the phase devices ⁇ 1 to ⁇ 4.
  • FIG. 6 is a graph showing an example of the phase characteristics of the phase devices ⁇ 1 to ⁇ 4 in the phase control unit 227 according to the second embodiment.
  • the high-frequency signals transmitted to the antennas 10a to 10d are, for example, UHF (Ultra High Frequency) band radio signals, and attention is paid to the phases of ⁇ 1 to ⁇ 4 of the phase controller at 0.92 GHz.
  • UHF Ultra High Frequency
  • the phase device ⁇ 1 can shift the phase of the signal passing through the phase device ⁇ 1 by 38 degrees
  • the phase device ⁇ 2 can shift the phase of the signal passing through the phase device ⁇ 2 by ⁇ 9.
  • the phase device ⁇ 3 can shift the phase of the signal passing through the phase device ⁇ 3 by ⁇ 103 degrees
  • the phase device ⁇ 4 can shift the phase of the signal passing through the phase device ⁇ 4 by -143 degrees.
  • the phase devices ⁇ 1 to ⁇ 4 the phase devices ⁇ 1 to ⁇ 4 and the phase devices ⁇ 1 to ⁇ 4, the phase of the signal passing through them can be shifted in the same manner as the phase devices ⁇ 1 to ⁇ 4.
  • the directivity can be controlled by shifting the phase.
  • FIG. 7 is a graph showing the directivity characteristics when the phase difference of the array antenna 100 according to the second embodiment is 90 degrees.
  • FIG. 8 is a graph showing the directivity characteristics when the phase difference of the array antenna 100 according to the second embodiment is 180 degrees.
  • FIG. 9 is a graph showing the directivity characteristics when there is no phase difference of the array antenna 100 according to the second embodiment.
  • the phase difference between the high frequency signal transmitted to the antenna 10a and the high frequency signal transmitted to the antenna 10b is 90 degrees
  • the position of the high frequency signal transmitted to the antenna 10b and the high frequency signal transmitted to the antenna 10c is 90 degrees
  • the tilt angle of the array antenna 100 can be set to, for example, about 30 degrees.
  • the phase difference between the high-frequency signal transmitted to the antenna 10a and the high-frequency signal transmitted to the antenna 10b is 180 degrees
  • the high-frequency signal transmitted to the antenna 10b and the high-frequency signal transmitted to the antenna 10c Each switch is controlled so that the phase difference between the two is 180 degrees and the phase difference between the high frequency signal transmitted to the antenna 10c and the high frequency signal transmitted to the antenna 10d is 180 degrees.
  • the tilt angle of the array antenna 100 can be set to, for example, 60 degrees.
  • the phase difference between the high-frequency signal transmitted to the antenna 10a and the high-frequency signal transmitted to the antenna 10b becomes 0 degrees
  • the high-frequency signal transmitted to the antenna 10b and the high-frequency signal transmitted to the antenna 10c Each switch is controlled so that the phase difference between the two is 0 degrees and the phase difference between the high frequency signal transmitted to the antenna 10c and the high frequency signal transmitted to the antenna 10d is 0 degrees.
  • the tilt angle of the array antenna 100 can be set to, for example, 0 degrees (that is, the directivity can be not controlled).
  • the directivity of the array antenna 100 can be controlled by giving a phase difference to the high frequency signals transmitted to each of the antennas 10a to 10d by the phase control unit 227.
  • FIGS. 7 to 9 show the directivity characteristics of the array antenna 100 in the state where the cable is not connected. Therefore, the influence on the directivity when the cable is connected will be described with reference to FIG. 10, focusing on, for example, the array antenna 100 when there is no phase difference (that is, in the state of FIG. 9).
  • FIG. 10 is a graph showing the directivity characteristics of the array antenna 100 according to the second embodiment when there is no phase difference in the state where the cable is connected.
  • the gain of the array antenna 100 when there is no phase difference is 6.33 dBi as shown in FIG. 9 when the cable is not connected, whereas it is 5.08 dBi as shown in FIG. 10 when the cable is connected.
  • the gain is slightly smaller when the cable is connected.
  • this gain difference includes about 1 dB due to the loss of the cable itself and the loss of the power supply line, and the gain difference is substantially about 0.3 dB. Therefore, it can be seen that, for example, the influence of the cable other than the loss of the cable itself and the loss of the feeding line is almost no influence due to the radiation noise from the cable.
  • annular first ground conductor 12 arranged so as to surround the outer circumference of the antenna element 11 is connected to one open end of each of the antenna elements 11 of the antennas 10a to 10d. Because it has been done. That is, the current is less likely to leak from the antenna elements 11 of the antennas 10a to 10d to the second ground conductor 210, and the current is less likely to flow to the ground conductor of the cable connected to the second ground conductor 210. Therefore, the radiation characteristics of the array antenna 100 are less affected by the cable, and as shown in FIG. 10, the radiation characteristics can be improved.
  • the antenna 10, the antenna system 1, the array antenna 100, and the array antenna system 2 have been described above based on the embodiments, but the present disclosure is limited to the above embodiments. is not. As long as the gist of the present disclosure is not deviated, various modifications that can be conceived by those skilled in the art are applied to the above-described embodiment, and a form constructed by combining components in different embodiments is also within the scope of one or more embodiments. May be included within.
  • This disclosure can be used for devices or systems equipped with antennas.
  • Antenna system 2 Array antenna system 10, 10a, 10b, 10c, 10d Antenna 11 Antenna element 12 First ground conductor 13 Perturbation element 14 Feed point 20, 200 Control board 21, 210 Second ground conductor 22, 220 Control circuit 23, 230 I / O IF 30, 300 Board 100 Array antenna 227 Phase control unit SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42 Switch ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ n, ⁇ 1, ⁇ 2, ⁇ n, ⁇ 1, ⁇ 2, ⁇ n, ⁇ 1 , ⁇ 2, ⁇ n phase device

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

An antenna (10) is provided with: a looped antenna element (11) formed by a conductor having open ends on both ends; and an annular first grounding conductor (12) which is connected to one open end of the antenna element (11) and is disposed and closed so as to surround an outer periphery of the antenna element (11).

Description

アンテナ、アンテナシステム、アレイアンテナ及びアレイアンテナシステムAntennas, antenna systems, array antennas and array antenna systems
 本開示は、アンテナ、アンテナシステム、アレイアンテナ及びアレイアンテナシステムに関する。 The present disclosure relates to antennas, antenna systems, array antennas and array antenna systems.
 従来、スパイラル状のパターンコイルで形成された、非接触ICカードとの間で非接触通信により信号の授受を行うためのコイルアンテナを備えるモジュールが開示されている(例えば、特許文献1)。 Conventionally, a module provided with a coil antenna for transmitting and receiving signals by non-contact communication with a non-contact IC card formed of a spiral pattern coil has been disclosed (for example, Patent Document 1).
特開2008-269386号公報Japanese Unexamined Patent Publication No. 2008-269386
 モジュールが備えるアンテナに対して同軸ケーブル等のケーブルを介して給電が行われる場合に、このようなケーブルの接地導体がモジュールに設けられた接地導体に接続される場合がある。一方で、特許文献1に開示されるように、モジュールが備えるアンテナもモジュールに設けられた上記接地導体に接続される場合がある。このような場合に、アンテナからモジュールの接地導体に漏れる電流がケーブルの接地導体に流れる。これにより、アンテナの放射特性がケーブルの影響を受けることがある。 When power is supplied to the antenna provided in the module via a cable such as a coaxial cable, the ground conductor of such a cable may be connected to the ground conductor provided in the module. On the other hand, as disclosed in Patent Document 1, the antenna included in the module may also be connected to the ground conductor provided in the module. In such a case, the current leaking from the antenna to the ground conductor of the module flows to the ground conductor of the cable. As a result, the radiation characteristics of the antenna may be affected by the cable.
 そこで、本開示は、放射特性を改善できるアンテナ等を提供する。 Therefore, the present disclosure provides an antenna or the like that can improve the radiation characteristics.
 本開示の一態様に係るアンテナは、両端に開放端を有する導体によって形成されるループ状のアンテナ素子と、前記アンテナ素子の一方の前記開放端に接続され、前記アンテナ素子の外周を取り巻くように閉じて配置される環状の第1接地導体と、を備える。 The antenna according to one aspect of the present disclosure is connected to a loop-shaped antenna element formed by a conductor having open ends at both ends and one of the open ends of the antenna element so as to surround the outer periphery of the antenna element. It comprises an annular first grounding conductor that is arranged closed.
 本開示に係るアンテナ等によれば、放射特性を改善できる。 According to the antenna and the like according to the present disclosure, the radiation characteristics can be improved.
図1は、実施の形態1に係るアンテナシステムの平面図である。FIG. 1 is a plan view of the antenna system according to the first embodiment. 図2Aは、比較例に係るアンテナシステムの電流分布のシミュレーション結果を示す図である。FIG. 2A is a diagram showing a simulation result of the current distribution of the antenna system according to the comparative example. 図2Bは、実施の形態1に係るアンテナシステムの電流分布のシミュレーション結果を示す図である。FIG. 2B is a diagram showing a simulation result of the current distribution of the antenna system according to the first embodiment. 図3は、実施の形態2に係るアレイアンテナシステムの平面図である。FIG. 3 is a plan view of the array antenna system according to the second embodiment. 図4は、実施の形態2に係る位相制御部の一例を示す回路構成図である。FIG. 4 is a circuit configuration diagram showing an example of the phase control unit according to the second embodiment. 図5は、実施の形態2に係る位相制御部の一部の一例を示す回路構成図である。FIG. 5 is a circuit configuration diagram showing an example of a part of the phase control unit according to the second embodiment. 図6は、実施の形態2に係る位相制御部における各位相器の位相特性の一例を示すグラフである。FIG. 6 is a graph showing an example of the phase characteristics of each phase device in the phase control unit according to the second embodiment. 図7は、実施の形態2に係るアレイアンテナの位相差が90度のときの指向特性を示すグラフである。FIG. 7 is a graph showing directivity characteristics when the phase difference of the array antenna according to the second embodiment is 90 degrees. 図8は、実施の形態2に係るアレイアンテナの位相差が180度のときの指向特性を示すグラフである。FIG. 8 is a graph showing directivity characteristics when the phase difference of the array antenna according to the second embodiment is 180 degrees. 図9は、実施の形態2に係るアレイアンテナの位相差がないときの指向特性を示すグラフである。FIG. 9 is a graph showing directivity characteristics when there is no phase difference of the array antenna according to the second embodiment. 図10は、実施の形態2に係るアレイアンテナの、ケーブルを接続した状態での位相差がないときの指向特性を示すグラフである。FIG. 10 is a graph showing the directivity characteristics of the array antenna according to the second embodiment when there is no phase difference in the state where the cable is connected.
 本開示の一態様に係るアンテナは、両端に開放端を有する導体によって形成されるループ状のアンテナ素子と、前記アンテナ素子の一方の前記開放端に接続され、前記アンテナ素子の外周を取り巻くように閉じて配置される環状の第1接地導体と、を備える。 The antenna according to one aspect of the present disclosure is connected to a loop-shaped antenna element formed by a conductor having open ends at both ends and one of the open ends of the antenna element so as to surround the outer periphery of the antenna element. It comprises an annular first grounding conductor that is arranged closed.
 例えば、アンテナを制御する制御回路を備える制御基板の接地導体(第2接地導体と呼ぶ)にアンテナ素子の一方の開放端が接続され、第2接地導体に、同軸ケーブル等のケーブルの接地導体(例えば同軸ケーブルの外部導体)が接続され、ケーブルを介してアンテナ素子への給電が行われる場合がある。このような場合に、アンテナ素子から第2接地導体へ電流が漏れ、漏れた電流がケーブルの接地導体に流れ、アンテナの放射特性がケーブルの影響を受ける場合がある。そこで、アンテナ素子の一方の開放端にアンテナ素子の外周を取り巻くように配置される環状の第1接地導体が接続される。これにより、アンテナ素子から第2接地導体へ電流が漏れにくくなり、第2接地導体に接続されたケーブルの接地導体に電流が流れにくくなる。したがって、アンテナの放射特性がケーブルの影響を受けにくくなり、放射特性を改善できる。 For example, one open end of the antenna element is connected to the ground conductor (called the second ground conductor) of the control board provided with the control circuit for controlling the antenna, and the second ground conductor is connected to the ground conductor of a cable such as a coaxial cable (called the second ground conductor). For example, an outer conductor of a coaxial cable) may be connected, and power may be supplied to the antenna element via the cable. In such a case, a current may leak from the antenna element to the second ground conductor, the leaked current may flow to the ground conductor of the cable, and the radiation characteristics of the antenna may be affected by the cable. Therefore, an annular first grounding conductor arranged so as to surround the outer circumference of the antenna element is connected to one open end of the antenna element. As a result, it becomes difficult for the current to leak from the antenna element to the second ground conductor, and it becomes difficult for the current to flow to the ground conductor of the cable connected to the second ground conductor. Therefore, the radiation characteristics of the antenna are less affected by the cable, and the radiation characteristics can be improved.
 また、前記アンテナ素子は、円形のループ状に形成されてもよい。 Further, the antenna element may be formed in a circular loop shape.
 このように、アンテナ素子は円形のループ状に形成されてもよい。 In this way, the antenna element may be formed in a circular loop shape.
 また、前記アンテナは、前記アンテナ素子から分岐した導体により構成される摂動素子を更に備えていてもよい。 Further, the antenna may further include a perturbation element composed of a conductor branched from the antenna element.
 これによれば、摂動素子によって、アンテナから円偏波の電波を放射できる。 According to this, the perturbation element can radiate a circularly polarized radio wave from the antenna.
 本開示の一態様に係るアンテナシステムは、上記のアンテナと、制御基板と、を備え、前記制御基板は、前記アンテナの制御を行う制御回路と、前記アンテナ素子の一方の前記開放端及び前記第1接地導体に接続される第2接地導体と、を備える。 The antenna system according to one aspect of the present disclosure includes the above-mentioned antenna and a control board, and the control board includes a control circuit for controlling the antenna, the open end of one of the antenna elements, and the first. A second grounding conductor connected to one grounding conductor is provided.
 これによれば、放射特性を改善できるアンテナシステムを提供できる。 According to this, it is possible to provide an antenna system that can improve the radiation characteristics.
 本開示の一態様に係るアレイアンテナは、上記のアンテナを複数配列して構成される。 The array antenna according to one aspect of the present disclosure is configured by arranging a plurality of the above antennas.
 これによれば、放射特性を改善できるアレイアンテナを提供できる。 According to this, it is possible to provide an array antenna that can improve the radiation characteristics.
 本開示の一態様に係るアレイアンテナシステムは、上記のアレイアンテナと、制御基板と、を備え、前記制御基板は、前記アレイアンテナの制御を行う制御回路であって、前記アレイアンテナを構成する複数の前記アンテナから出力される電波の位相を制御する位相制御部を含む制御回路と、前記アンテナ素子の一方の前記開放端及び前記第1接地導体に接続される第2接地導体と、を備える。 The array antenna system according to one aspect of the present disclosure includes the above-mentioned array antenna and a control board, and the control board is a control circuit for controlling the array antenna, and a plurality of control circuits constituting the array antenna. It includes a control circuit including a phase control unit for controlling the phase of the radio wave output from the antenna, and a second ground conductor connected to one of the open ends of the antenna element and the first ground conductor.
 これによれば、放射特性を改善できるアレイアンテナシステムを提供できる。 According to this, it is possible to provide an array antenna system that can improve the radiation characteristics.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。 It should be noted that all of the embodiments described below show comprehensive or specific examples. Numerical values, shapes, components, arrangement positions and connection forms of components, steps, step order, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure.
 (実施の形態1)
 以下、図1から図2Bを用いて実施の形態1について説明する。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 2B.
 図1は、実施の形態1に係るアンテナシステム1の平面図である。 FIG. 1 is a plan view of the antenna system 1 according to the first embodiment.
 アンテナシステム1は、電波を放射し、また、電波を受信するためのシステムである。アンテナシステム1は、アンテナ10と、制御基板20と、を備える。なお、アンテナ10と制御基板20とは一体に形成されていてもよい。例えば、図1に示すように、アンテナシステム1は、1つの基板30によって実現されてもよい。基板30は、例えば、プリント配線基板であってもよく、アンテナ10と制御基板20とが1つの基板30上に形成されていてもよい。図1では、基板30の左側部分をアンテナ10と呼び、右側部分を制御基板20と呼んでいる。なお、アンテナ10と制御基板20とが1つの基板30上に形成されなくてもよく、別体に形成されてもよい。 The antenna system 1 is a system for radiating and receiving radio waves. The antenna system 1 includes an antenna 10 and a control board 20. The antenna 10 and the control board 20 may be integrally formed. For example, as shown in FIG. 1, the antenna system 1 may be realized by one substrate 30. The substrate 30 may be, for example, a printed wiring board, or the antenna 10 and the control substrate 20 may be formed on one substrate 30. In FIG. 1, the left side portion of the substrate 30 is referred to as an antenna 10, and the right portion is referred to as a control substrate 20. The antenna 10 and the control board 20 may not be formed on one board 30, but may be formed separately.
 アンテナ10は、アンテナ素子11と、第1接地導体12と、摂動素子13と、給電点14とを備える。 The antenna 10 includes an antenna element 11, a first ground conductor 12, a perturbation element 13, and a feeding point 14.
 アンテナ素子11は、両端に開放端を有する導体によって形成されるループ状の放射素子である。アンテナ素子11は、例えば、基板30上に導体パターンとして形成される。図1では、アンテナ素子11の形状をわかりやすくするために、アンテナ素子11に右上から左下へ延びる斜線のハッチングを付している。アンテナ素子11は、例えば、円形のループ状に形成される。なお、アンテナ素子11は、ループ状であれば、円形に限らず多角形形状であってもよい。また、図1には、ループ状のアンテナ素子11として、1周のループ状のアンテナ素子11を示しているが、アンテナ素子11は、1周のループ状に限らず、1周以上のループ状(つまり渦巻状)であってもよい。アンテナ素子11の一方の開放端は、第1接地導体12及び後述する第2接地導体21に接続される。アンテナ素子11の他方の開放端側は、給電点14に接続される。 The antenna element 11 is a loop-shaped radiating element formed by a conductor having open ends at both ends. The antenna element 11 is formed as a conductor pattern on the substrate 30, for example. In FIG. 1, in order to make the shape of the antenna element 11 easy to understand, the antenna element 11 is hatched with diagonal lines extending from the upper right to the lower left. The antenna element 11 is formed, for example, in a circular loop shape. The antenna element 11 is not limited to a circular shape but may have a polygonal shape as long as it has a loop shape. Further, FIG. 1 shows a loop-shaped antenna element 11 having one round as the loop-shaped antenna element 11, but the antenna element 11 is not limited to the loop shape of one round, but has a loop shape of one round or more. It may be (that is, spiral). One open end of the antenna element 11 is connected to the first ground conductor 12 and the second ground conductor 21 described later. The other open end side of the antenna element 11 is connected to the feeding point 14.
 第1接地導体12は、アンテナ素子11の一方の開放端に接続され、アンテナ素子11の外周を取り巻くように閉じて配置される環状の接地導体である。第1接地導体12は、例えば、基板30上に導体パターンとして形成される。図1では、第1接地導体12の形状をわかりやすくするために、第1接地導体12にドットのハッチングを付している。また、第1接地導体12が環状であることをわかりやすくするために、第1接地導体12と後述する第2接地導体21との境界に破線を付している。例えば、第1接地導体12と後述する第2接地導体21とは、基板30上において切れ目なく接続されていてもよい。例えば、第1接地導体12は、アンテナ素子11に沿って配置される。例えば、アンテナ素子11は、円形のループ状に形成されるため、第1接地導体12は、当該ループの外周に沿うように、円環状に形成される。なお、第1接地導体12は、アンテナ素子11の外周を取り巻くように閉じて配置されていれば、円環状に形成されなくてもよく、多角形の環状に形成されてもよい。例えば、アンテナ素子11が方形のループ状の場合、第1接地導体12についても、アンテナ素子11の外周に沿って方形の環状に形成されてもよい。 The first grounding conductor 12 is an annular grounding conductor connected to one open end of the antenna element 11 and closed so as to surround the outer circumference of the antenna element 11. The first grounding conductor 12 is formed as a conductor pattern on the substrate 30, for example. In FIG. 1, in order to make the shape of the first grounding conductor 12 easy to understand, the first grounding conductor 12 is hatched with dots. Further, in order to make it easy to understand that the first grounding conductor 12 is annular, a broken line is added to the boundary between the first grounding conductor 12 and the second grounding conductor 21 described later. For example, the first ground conductor 12 and the second ground conductor 21 described later may be seamlessly connected on the substrate 30. For example, the first ground conductor 12 is arranged along the antenna element 11. For example, since the antenna element 11 is formed in a circular loop shape, the first ground conductor 12 is formed in an annular shape along the outer circumference of the loop. The first ground conductor 12 may not be formed in an annular shape as long as it is closed and arranged so as to surround the outer periphery of the antenna element 11, and may be formed in a polygonal annular shape. For example, when the antenna element 11 has a square loop shape, the first ground conductor 12 may also be formed in a square ring shape along the outer circumference of the antenna element 11.
 摂動素子13は、アンテナ素子11から分岐した導体により構成される放射素子である。摂動素子13は、例えば、基板30上に導体パターンとして形成される。図1では、摂動素子13の形状をわかりやすくするために、摂動素子13に左上から右下へ延びる斜線のハッチングを付している。なお、摂動素子13が、ループ状のアンテナ素子11から分岐して当該ループの内側へ延びるように形成されるが、当該ループの外側へ延びるように形成されてもよい。また、摂動素子13は、直線形状を有しているが、直線形状に限らず曲線形状であってもよい。摂動素子13によって、アンテナ10から円偏波の電波を放射できる。例えば、図1の紙面手前側へ右旋円偏波の電波を放射でき、図1の紙面奥側へ左旋円偏波の電波を放射できる。なお、アンテナ10は、直線偏波の電波を放射する場合には、摂動素子13を備えていなくてもよい。 The perturbation element 13 is a radiating element composed of a conductor branched from the antenna element 11. The perturbation element 13 is formed as a conductor pattern on the substrate 30, for example. In FIG. 1, in order to make the shape of the perturbation element 13 easy to understand, the perturbation element 13 is hatched with diagonal lines extending from the upper left to the lower right. Although the perturbation element 13 is formed so as to branch off from the loop-shaped antenna element 11 and extend inside the loop, it may be formed so as to extend outside the loop. Further, although the perturbation element 13 has a linear shape, it is not limited to the linear shape and may have a curved shape. The perturbation element 13 can radiate a circularly polarized radio wave from the antenna 10. For example, a right-handed circularly polarized radio wave can be radiated to the front side of the paper in FIG. 1, and a left-handed circularly polarized radio wave can be radiated to the back side of the paper in FIG. Note that the antenna 10 does not have to include the perturbation element 13 when emitting linearly polarized radio waves.
 給電点14は、例えば、アンテナ素子11の他方の開放端側に設けられ、アンテナ素子11に高周波電力を給電し、また、アンテナ素子11で電波を受信することで発生した高周波電力を受信機等に伝送するための点である。例えば、給電点14は、後述するように、制御回路22を介して同軸ケーブル等のケーブルが接続される入出力IF(インタフェース)23に接続される。なお、図1では、給電点14は、アンテナ素子11の他方の開放端に設けられるように示しているが、当該開放端に設けられなくてもよく、アンテナ素子11の当該開放端からずれた位置に設けられてもよい。 The feeding point 14 is provided, for example, on the other open end side of the antenna element 11, supplies high-frequency power to the antenna element 11, and receives high-frequency power generated by receiving radio waves at the antenna element 11, such as a receiver. It is a point for transmitting to. For example, the feeding point 14 is connected to an input / output IF (interface) 23 to which a cable such as a coaxial cable is connected via a control circuit 22, as will be described later. Although the feeding point 14 is shown to be provided at the other open end of the antenna element 11 in FIG. 1, it does not have to be provided at the open end and is deviated from the open end of the antenna element 11. It may be provided at a position.
 制御基板20は、第2接地導体21と、制御回路22と、入出力IF23と、を備える。 The control board 20 includes a second ground conductor 21, a control circuit 22, and an input / output IF 23.
 第2接地導体21は、アンテナ素子11の一方の開放端及び第1接地導体12に接続される接地導体である。第2接地導体21は、例えば、制御基板20(基板30)上にベタパターンとして形成される。図1では、第2接地導体21の形状をわかりやすくするために、第2接地導体21に第1接地導体12とは異なるドットのハッチングを付している。 The second ground conductor 21 is a ground conductor connected to one open end of the antenna element 11 and the first ground conductor 12. The second grounding conductor 21 is formed as a solid pattern on, for example, the control board 20 (board 30). In FIG. 1, in order to make the shape of the second grounding conductor 21 easy to understand, the second grounding conductor 21 is hatched with dots different from those of the first grounding conductor 12.
 制御回路22は、アンテナ10の制御を行う回路である。制御回路22は、その構成部品が制御基板20の一方主面にのみ設けられてもよいし、両面に設けられてもよいし、制御基板20(基板30)が多層基板である場合には、内層に設けられてもよい。制御回路22は、例えば、インピーダンス整合回路、フィルタ回路、又は、スイッチ回路等を含む。 The control circuit 22 is a circuit that controls the antenna 10. The control circuit 22 may be provided on only one main surface of the control board 20, may be provided on both sides, or when the control board 20 (board 30) is a multilayer board, the control circuit 22 may be provided on only one main surface. It may be provided in the inner layer. The control circuit 22 includes, for example, an impedance matching circuit, a filter circuit, a switch circuit, and the like.
 入出力IF23は、同軸ケーブル等のケーブルが接続されるインタフェースであり、ケーブルが同軸ケーブルの場合、同軸コネクタである。入出力IF23は、ケーブルを介して例えばRFIC(Radio Frequency Integrated Circuit)等が接続される。例えば、ケーブルが同軸ケーブルであり、入出力IF23が同軸コネクタである場合に、同軸ケーブルが同軸コネクタに接続されることで、同軸ケーブルの内部導体は、制御回路22を介して給電点14に接続される。これにより、送信時にはRFIC等からの高周波電力をアンテナ素子11に供給することができ、また、受信時にはアンテナ素子11からの高周波電力をRFIC等に伝送できる。また、同軸ケーブルの外部導体(接地導体)は、第2接地導体21に接続される。 The input / output IF23 is an interface to which a cable such as a coaxial cable is connected, and when the cable is a coaxial cable, it is a coaxial connector. For example, an RFIC (Radio Frequency Integrated Circuit) or the like is connected to the input / output IF23 via a cable. For example, when the cable is a coaxial cable and the input / output IF23 is a coaxial connector, the coaxial cable is connected to the coaxial connector, so that the internal conductor of the coaxial cable is connected to the feeding point 14 via the control circuit 22. Will be done. As a result, high-frequency power from the RFIC or the like can be supplied to the antenna element 11 at the time of transmission, and high-frequency power from the antenna element 11 can be transmitted to the RFIC or the like at the time of reception. Further, the outer conductor (ground conductor) of the coaxial cable is connected to the second ground conductor 21.
 本開示の特徴的な構成は、アンテナ素子11の一方の開放端に接続され、アンテナ素子11の外周を取り巻くように閉じて配置される環状の第1接地導体12である。アンテナ10がこのような第1接地導体12を備えることで奏される効果について、図2A及び図2Bを用いて説明する。 The characteristic configuration of the present disclosure is an annular first ground conductor 12 that is connected to one open end of the antenna element 11 and is closed and arranged so as to surround the outer circumference of the antenna element 11. The effect of the antenna 10 including the first ground conductor 12 will be described with reference to FIGS. 2A and 2B.
 図2Aは、比較例に係るアンテナシステムの電流分布のシミュレーション結果を示す図である。図2Bは、実施の形態1に係るアンテナシステム1の電流分布のシミュレーション結果を示す図である。図2A及び図2Bにおいて、色が薄いほど電流が集中していることを示す。 FIG. 2A is a diagram showing a simulation result of the current distribution of the antenna system according to the comparative example. FIG. 2B is a diagram showing a simulation result of the current distribution of the antenna system 1 according to the first embodiment. In FIGS. 2A and 2B, the lighter the color, the more concentrated the current.
 比較例に係るアンテナシステムには、第1接地導体12が設けられていない。したがって、図2Aと図2Bを比較することで、第1接地導体12が設けられることの効果を確認できる。 The antenna system according to the comparative example is not provided with the first ground conductor 12. Therefore, by comparing FIG. 2A and FIG. 2B, the effect of providing the first grounding conductor 12 can be confirmed.
 図2Aに示すように、第1接地導体12が設けられない場合、第2接地導体21におけるAの破線で囲った部分に電流が集中しており、アンテナ素子11から第2接地導体21への電流の流れ込みが大きくなっていることがわかる。例えば、第2接地導体21にケーブルの接地導体を接続すると、アンテナ素子11から第2接地導体21に漏れた電流がケーブルの接地導体に流れる。これにより、アンテナ10の放射特性がケーブルの影響(例えばケーブルからの放射ノイズ)を受けて放射特性が劣化する可能性がある。 As shown in FIG. 2A, when the first ground conductor 12 is not provided, the current is concentrated in the portion of the second ground conductor 21 surrounded by the broken line A, and the antenna element 11 is transferred to the second ground conductor 21. It can be seen that the inflow of current is large. For example, when the ground conductor of the cable is connected to the second ground conductor 21, the current leaked from the antenna element 11 to the second ground conductor 21 flows to the ground conductor of the cable. As a result, the radiation characteristics of the antenna 10 may be affected by the cable (for example, radiation noise from the cable) and the radiation characteristics may deteriorate.
 一方で、図2Bに示すように、第1接地導体12を備えるアンテナシステム1の場合、第2接地導体21におけるAの破線で囲った部分に電流が集中しておらず、その代わりに、第1接地導体12におけるBの破線で囲った部分に電流が集中していることがわかる。つまり、第1接地導体12が設けられることで、アンテナ素子11から第2接地導体21への電流の流れ込みを抑制できる。 On the other hand, as shown in FIG. 2B, in the case of the antenna system 1 provided with the first ground conductor 12, the current is not concentrated in the portion of the second ground conductor 21 surrounded by the broken line A, and instead, the second ground conductor 21 is provided. It can be seen that the current is concentrated in the portion of the ground conductor 12 surrounded by the broken line B. That is, by providing the first ground conductor 12, it is possible to suppress the inflow of current from the antenna element 11 to the second ground conductor 21.
 以上説明したように、制御基板20の第2接地導体21にアンテナ素子11の一方の開放端が接続され、第2接地導体21に、同軸ケーブル等のケーブルの接地導体(例えば同軸ケーブルの外部導体)が接続され、ケーブルを介してアンテナ素子11への給電が行われる場合がある。このような場合に、アンテナ素子11から第2接地導体21へ電流が漏れ、漏れた電流がケーブルの接地導体に流れ、アンテナ10の放射特性がケーブルの影響を受ける場合がある。そこで、アンテナ素子11の一方の開放端にアンテナ素子11の外周を取り巻くように配置される環状の第1接地導体12が接続される。これにより、アンテナ素子11から第2接地導体21へ電流が漏れにくくなり、第2接地導体21に接続されたケーブルの接地導体に電流が流れにくくなる。したがって、アンテナ10の放射特性がケーブルの影響を受けにくくなり、放射特性を改善できる。 As described above, one open end of the antenna element 11 is connected to the second ground conductor 21 of the control board 20, and the ground conductor of a cable such as a coaxial cable (for example, the outer conductor of the coaxial cable) is connected to the second ground conductor 21. ) Is connected, and power may be supplied to the antenna element 11 via a cable. In such a case, a current may leak from the antenna element 11 to the second ground conductor 21, the leaked current may flow to the ground conductor of the cable, and the radiation characteristics of the antenna 10 may be affected by the cable. Therefore, an annular first grounding conductor 12 arranged so as to surround the outer circumference of the antenna element 11 is connected to one open end of the antenna element 11. As a result, the current is less likely to leak from the antenna element 11 to the second ground conductor 21, and the current is less likely to flow through the ground conductor of the cable connected to the second ground conductor 21. Therefore, the radiation characteristic of the antenna 10 is less affected by the cable, and the radiation characteristic can be improved.
 (実施の形態2)
 次に、図3から図10を用いて実施の形態2について説明する。実施の形態2では、実施の形態1に係るアンテナ10を複数配列して構成されるアレイアンテナ100及びアレイアンテナ100を備えるアレイアンテナシステム2について説明する。
(Embodiment 2)
Next, the second embodiment will be described with reference to FIGS. 3 to 10. In the second embodiment, an array antenna 100 including a plurality of antennas 10 according to the first embodiment and an array antenna 100 will be described.
 図3は、実施の形態2に係るアレイアンテナシステム2の平面図である。 FIG. 3 is a plan view of the array antenna system 2 according to the second embodiment.
 アレイアンテナシステム2は、電波を放射し、また、電波を受信するためのシステムである。アレイアンテナシステム2は、アレイアンテナ100と、制御基板200と、を備える。アレイアンテナシステム2では、アレイアンテナ100の指向性を制御することができる。つまり、アレイアンテナ100に対して特定の方向に配置された対象物に対して、電波の送受信を行うことができる。なお、アレイアンテナ100と制御基板200とは一体に形成されていてもよい。例えば、図3に示すように、アレイアンテナシステム2は、1つの基板300によって実現されてもよい。基板300は、例えば、プリント配線基板であってもよく、アレイアンテナ100と制御基板200とが1つの基板300上に形成されていてもよい。図3では、基板300の下側部分をアレイアンテナ100と呼び、上側部分を制御基板200と呼んでいる。なお、アレイアンテナ100と制御基板200とが1つの基板300上に形成されなくてもよく、別体に形成されてもよい。 The array antenna system 2 is a system for radiating and receiving radio waves. The array antenna system 2 includes an array antenna 100 and a control board 200. In the array antenna system 2, the directivity of the array antenna 100 can be controlled. That is, radio waves can be transmitted and received to an object arranged in a specific direction with respect to the array antenna 100. The array antenna 100 and the control board 200 may be integrally formed. For example, as shown in FIG. 3, the array antenna system 2 may be realized by one substrate 300. The substrate 300 may be, for example, a printed wiring board, or the array antenna 100 and the control substrate 200 may be formed on one substrate 300. In FIG. 3, the lower portion of the substrate 300 is referred to as an array antenna 100, and the upper portion is referred to as a control substrate 200. The array antenna 100 and the control board 200 may not be formed on one board 300, or may be formed separately.
 アレイアンテナ100は、実施の形態1に係るアンテナ10を複数配列して構成され、例えば、アンテナ10を4つ備える。ここでは、4つのアンテナ10をアンテナ10a~10dとしている。すなわち、アンテナ10a~10dは、それぞれ、アンテナ素子11と、第1接地導体12と、摂動素子13と、給電点14とを備える。アンテナ10a~10dのそれぞれのアンテナ素子11、第1接地導体12及び摂動素子13は、例えば、基板300上に導体パターンとして形成される。アンテナ10a~10dのそれぞれの給電点14は、後述するように、制御回路220を介して同軸ケーブル等のケーブルが接続される入出力IF230に接続される。なお、アレイアンテナ100が備えるアンテナ10の数は、4つに限らず、2つ、3つ、又は5つ以上であってもよい。 The array antenna 100 is configured by arranging a plurality of antennas 10 according to the first embodiment, and includes, for example, four antennas 10. Here, the four antennas 10 are antennas 10a to 10d. That is, the antennas 10a to 10d each include an antenna element 11, a first ground conductor 12, a perturbation element 13, and a feeding point 14. The antenna elements 11, the first ground conductor 12, and the perturbation element 13 of the antennas 10a to 10d are formed as a conductor pattern on the substrate 300, for example. As will be described later, each of the feeding points 14 of the antennas 10a to 10d is connected to an input / output IF 230 to which a cable such as a coaxial cable is connected via a control circuit 220. The number of antennas 10 included in the array antenna 100 is not limited to four, and may be two, three, or five or more.
 制御基板200は、第2接地導体210と、制御回路220と、入出力IF230と、を備える。 The control board 200 includes a second ground conductor 210, a control circuit 220, and an input / output IF 230.
 第2接地導体210は、アンテナ10a~10dのそれぞれのアンテナ素子11の一方の開放端、及び、アンテナ10a~10dのそれぞれの第1接地導体12に接続される接地導体である。第2接地導体210は、例えば、制御基板200(基板300)上にベタパターンとして形成される。図3では、第2接地導体210の形状をわかりやすくするために、第2接地導体210に第1接地導体12とは異なるドットのハッチングを付している。 The second grounding conductor 210 is a grounding conductor connected to one open end of each of the antenna elements 11 of the antennas 10a to 10d and to each of the first grounding conductors 12 of the antennas 10a to 10d. The second ground conductor 210 is formed as a solid pattern on, for example, the control board 200 (board 300). In FIG. 3, in order to make the shape of the second grounding conductor 210 easy to understand, the second grounding conductor 210 is hatched with dots different from those of the first grounding conductor 12.
 制御回路220は、アレイアンテナ100の制御を行う回路である。制御回路220は、その構成部品が制御基板200の一方主面にのみ設けられてもよいし、両面に設けられてもよいし、制御基板200(基板300)が多層基板である場合には、内層に設けられてもよい。制御回路220は、例えば、インピーダンス整合回路、フィルタ回路、又は、スイッチ回路等を含む。また、例えば、制御回路220は、アレイアンテナ100を構成する複数のアンテナ10a~10dから出力される電波の位相を制御する位相制御部227(後述する図4参照)を含む。 The control circuit 220 is a circuit that controls the array antenna 100. The control circuit 220 may be provided on only one main surface of the control board 200 or on both sides, or when the control board 200 (board 300) is a multilayer board, the control circuit 220 may be provided on only one main surface of the control board 200. It may be provided in the inner layer. The control circuit 220 includes, for example, an impedance matching circuit, a filter circuit, a switch circuit, and the like. Further, for example, the control circuit 220 includes a phase control unit 227 (see FIG. 4 described later) that controls the phase of radio waves output from a plurality of antennas 10a to 10d constituting the array antenna 100.
 入出力IF230は、同軸ケーブル等のケーブルが接続されるインタフェースであり、ケーブルが同軸ケーブルの場合、同軸コネクタである。入出力IF230は、ケーブルを介して例えばRFIC等が接続される。例えば、ケーブルが同軸ケーブルであり、入出力IF230が同軸コネクタである場合に、同軸ケーブルが同軸コネクタに接続されることで、同軸ケーブルの内部導体は、制御回路220を介してアンテナ10a~10dのそれぞれの給電点14に接続される。これにより、送信時にはRFIC等からの高周波電力をアンテナ10a~10dのそれぞれのアンテナ素子11に供給することができ、また、受信時にはアンテナ10a~10dのそれぞれのアンテナ素子11からの高周波電力をRFIC等に伝送できる。また、同軸ケーブルの外部導体(接地導体)は、第2接地導体210に接続される。 The input / output IF230 is an interface to which a cable such as a coaxial cable is connected, and when the cable is a coaxial cable, it is a coaxial connector. For example, RFIC or the like is connected to the input / output IF230 via a cable. For example, when the cable is a coaxial cable and the input / output IF230 is a coaxial connector, the coaxial cable is connected to the coaxial connector, so that the internal conductor of the coaxial cable is connected to the antennas 10a to 10d via the control circuit 220. It is connected to each feeding point 14. As a result, high-frequency power from the RFICs and the like can be supplied to the respective antenna elements 11 of the antennas 10a to 10d at the time of transmission, and high-frequency power from the respective antenna elements 11 of the antennas 10a to 10d can be supplied to the RFICs and the like at the time of reception. Can be transmitted to. Further, the outer conductor (ground conductor) of the coaxial cable is connected to the second ground conductor 210.
 ここで、位相制御部227について、図4から図6を用いて説明する。 Here, the phase control unit 227 will be described with reference to FIGS. 4 to 6.
 図4は、実施の形態2に係る位相制御部227の一例を示す回路構成図である。なお、図4には、位相制御部227の他に、入出力IF230及びアンテナ10a~10dも示している。また、図4における入出力IF230は、例えば、同軸ケーブルの内部導体が接続される端子を示している。入出力IF230における同軸ケーブルの外部導体(接地導体)が接続される部分については、第2接地導体210に接続されている(図4では図示せず)。また、制御回路220には、位相制御部227以外にもインピーダンス整合回路又はフィルタ回路等の他の回路が含まれ得るが、図4では他の回路の図示を省略している。 FIG. 4 is a circuit configuration diagram showing an example of the phase control unit 227 according to the second embodiment. In addition to the phase control unit 227, FIG. 4 also shows the input / output IF230 and the antennas 10a to 10d. Further, the input / output IF230 in FIG. 4 indicates, for example, a terminal to which the inner conductor of the coaxial cable is connected. The portion of the input / output IF 230 to which the outer conductor (ground conductor) of the coaxial cable is connected is connected to the second ground conductor 210 (not shown in FIG. 4). Further, the control circuit 220 may include other circuits such as an impedance matching circuit or a filter circuit in addition to the phase control unit 227, but the illustration of the other circuits is omitted in FIG.
 例えば、入出力IF230を介してアンテナ10a~10dのそれぞれに伝送される高周波信号に位相差が与えられることで、アレイアンテナ100の指向性を制御することができる。 For example, the directivity of the array antenna 100 can be controlled by giving a phase difference to the high frequency signals transmitted to each of the antennas 10a to 10d via the input / output IF230.
 位相制御部227は、アレイアンテナ100の指向性を制御するための構成であり、アンテナ10aに対応して設けられたスイッチSW11、SW12及び位相器α1~αn(nは2以上の整数)と、アンテナ10bに対応して設けられたスイッチSW21、SW22及び位相器β1~βnと、アンテナ10cに対応して設けられたスイッチSW31、SW32及び位相器γ1~γnと、アンテナ10dに対応して設けられたスイッチSW41、SW42及び位相器δ1~δnと、を備える。 The phase control unit 227 is configured to control the directivity of the array antenna 100, and includes switches SW11 and SW12 and phase devices α1 to αn (n is an integer of 2 or more) provided corresponding to the antenna 10a. Switches SW21, SW22 and phase devices β1 to βn provided corresponding to the antenna 10b, switches SW31, SW32 and phase devices γ1 to γn provided corresponding to the antenna 10c, and phase devices γ1 to γn provided corresponding to the antenna 10d. The switches SW41 and SW42 and the phase devices δ1 to δn are provided.
 スイッチSW11は、SPnT(Single Pole n Throw)スイッチであり、共通端子が入出力IF230に接続され、選択端子が位相器α1~αnに接続される。スイッチSW21は、SPnTスイッチであり、共通端子が入出力IF230に接続され、選択端子が位相器β1~βnに接続される。スイッチSW31は、SPnTスイッチであり、共通端子が入出力IF230に接続され、選択端子が位相器γ1~γnに接続される。スイッチSW41は、SPnTスイッチであり、共通端子が入出力IF230に接続され、選択端子が位相器δ1~δnに接続される。 The switch SW11 is an SPnT (Single Pole n Throw) switch, and the common terminal is connected to the input / output IF230, and the selection terminal is connected to the phase units α1 to αn. The switch SW21 is an SPnT switch, and the common terminal is connected to the input / output IF230, and the selection terminal is connected to the phase units β1 to βn. The switch SW31 is an SPnT switch, and the common terminal is connected to the input / output IF230, and the selection terminal is connected to the phase units γ1 to γn. The switch SW41 is an SPnT switch, and the common terminal is connected to the input / output IF230, and the selection terminal is connected to the phase units δ1 to δn.
 位相器α1~αn、β1~βn、γ1~γn及びδ1~δnは、位相調整回路である。位相器α1~αn、β1~βn、γ1~γn及びδ1~δnは、例えば、インダクタ及びキャパシタ等のインピーダンス素子からなる回路であり、各インピーダンス素子の接続形態及び素子パラメータによって、位相の調整量が決められる。 The phase devices α1 to αn, β1 to βn, γ1 to γn, and δ1 to δn are phase adjustment circuits. The phase devices α1 to αn, β1 to βn, γ1 to γn, and δ1 to δn are circuits composed of impedance elements such as inductors and capacitors, and the amount of phase adjustment depends on the connection form and element parameters of each impedance element. It can be decided.
 スイッチSW12は、SPnTスイッチであり、共通端子がアンテナ10aの給電点14に接続され、選択端子が位相器α1~αnに接続される。スイッチSW22は、SPnTスイッチであり、共通端子がアンテナ10bの給電点14に接続され、選択端子が位相器β1~βnに接続される。スイッチSW32は、SPnTスイッチであり、共通端子がアンテナ10cの給電点14に接続され、選択端子が位相器γ1~γnに接続される。スイッチSW42は、SPnTスイッチであり、共通端子がアンテナ10dの給電点14に接続され、選択端子が位相器δ1~δnに接続される。 The switch SW12 is an SPnT switch, the common terminal is connected to the feeding point 14 of the antenna 10a, and the selection terminal is connected to the phase units α1 to αn. The switch SW22 is an SPnT switch, and the common terminal is connected to the feeding point 14 of the antenna 10b, and the selection terminal is connected to the phase units β1 to βn. The switch SW32 is an SPnT switch, and the common terminal is connected to the feeding point 14 of the antenna 10c, and the selection terminal is connected to the phase units γ1 to γn. The switch SW42 is an SPnT switch, and the common terminal is connected to the feeding point 14 of the antenna 10d, and the selection terminal is connected to the phase units δ1 to δn.
 各スイッチは、RFICからの指示、又は、制御回路220に含まれるマイコン等の集積回路からの指示に応じて制御される。各スイッチが制御されることで、入出力IF230からの高周波信号がどの位相器を通過するかを制御でき、つまり、高周波信号の位相の調整量を通過する位相器に応じたものとすることができる。これにより、アレイアンテナを構成するアンテナ10a~10dのそれぞれに伝送される高周波信号の位相をずらすことができ、アレイアンテナ100の指向性を制御することができる。 Each switch is controlled according to an instruction from the RFIC or an instruction from an integrated circuit such as a microcomputer included in the control circuit 220. By controlling each switch, it is possible to control which phase device the high frequency signal from the input / output IF 230 passes through, that is, it depends on the phase device that passes through the phase adjustment amount of the high frequency signal. it can. As a result, the phase of the high frequency signal transmitted to each of the antennas 10a to 10d constituting the array antenna can be shifted, and the directivity of the array antenna 100 can be controlled.
 ここで、位相制御部227のより詳細な構成例を、スイッチSW11、位相器α1~αn及びスイッチSW12に着目した図5を用いて説明する。 Here, a more detailed configuration example of the phase control unit 227 will be described with reference to FIG. 5 focusing on the switch SW11, the phase devices α1 to αn, and the switch SW12.
 図5は、実施の形態2に係る位相制御部227の一部の一例を示す回路構成図である。図5では、スイッチSW11及びスイッチSW21をSP4Tスイッチとし、位相器α1~α4を示している(つまり、n=4としている)。 FIG. 5 is a circuit configuration diagram showing an example of a part of the phase control unit 227 according to the second embodiment. In FIG. 5, the switch SW11 and the switch SW21 are SP4T switches, and the phase units α1 to α4 are shown (that is, n = 4).
 図5に示すように、位相器α1~α4は、例えば、π型のLC回路により実現される。なお、インダクタ及びキャパシタの数及び接続形態は図5に示すものに限らない。 As shown in FIG. 5, the phase devices α1 to α4 are realized by, for example, a π-type LC circuit. The number of inductors and capacitors and the connection form are not limited to those shown in FIG.
 例えば、アンテナ10aに伝送される高周波信号の位相の調整量を位相器α1に応じたものにする場合には、スイッチSW11及びスイッチSW12の共通端子と、図5に示す選択端子のうちの最も上の選択端子とが接続されるように、スイッチSW11及びスイッチSW12が制御される。位相器α1~α4のそれぞれについて、それぞれを構成するインダクタ及びキャパシタのパラメータを調整することで、例えば、図6に示すような位相特性を実現できる。 For example, when the phase adjustment amount of the high-frequency signal transmitted to the antenna 10a is adjusted according to the phase controller α1, the top of the common terminals of the switch SW11 and the switch SW12 and the selection terminal shown in FIG. The switch SW11 and the switch SW12 are controlled so as to be connected to the selection terminal of. For example, the phase characteristics shown in FIG. 6 can be realized by adjusting the parameters of the inductor and the capacitor constituting each of the phase devices α1 to α4.
 図6は、実施の形態2に係る位相制御部227における位相器α1~α4の位相特性の一例を示すグラフである。なお、アンテナ10a~10dに伝送される高周波信号を、例えば、UHF(Ultra High Frequency)帯の無線信号とし、0.92GHzでの位相器のα1~α4の位相に着目している。 FIG. 6 is a graph showing an example of the phase characteristics of the phase devices α1 to α4 in the phase control unit 227 according to the second embodiment. The high-frequency signals transmitted to the antennas 10a to 10d are, for example, UHF (Ultra High Frequency) band radio signals, and attention is paid to the phases of α1 to α4 of the phase controller at 0.92 GHz.
 図6に示すように、それぞれ0.92GHzにおいて、位相器α1は位相器α1を通過する信号の位相を38度ずらすことができ、位相器α2は位相器α2を通過する信号の位相を-9度ずらすことができ、位相器α3は位相器α3を通過する信号の位相を-103度ずらすことができ、位相器α4は位相器α4を通過する信号の位相を-143度ずらすことができている。位相器β1~β4、位相器γ1~γ4及び位相器δ1~δ4についても、位相器α1~α4と同じように自身を通過する信号の位相をずらすことができる。 As shown in FIG. 6, at 0.92 GHz, the phase device α1 can shift the phase of the signal passing through the phase device α1 by 38 degrees, and the phase device α2 can shift the phase of the signal passing through the phase device α2 by −9. The phase device α3 can shift the phase of the signal passing through the phase device α3 by −103 degrees, and the phase device α4 can shift the phase of the signal passing through the phase device α4 by -143 degrees. There is. As for the phase devices β1 to β4, the phase devices γ1 to γ4, and the phase devices δ1 to δ4, the phase of the signal passing through them can be shifted in the same manner as the phase devices α1 to α4.
 次に、位相をずらすことで指向性を制御できることを図7から図9を用いて説明する。 Next, it will be described with reference to FIGS. 7 to 9 that the directivity can be controlled by shifting the phase.
 図7は、実施の形態2に係るアレイアンテナ100の位相差が90度のときの指向特性を示すグラフである。 FIG. 7 is a graph showing the directivity characteristics when the phase difference of the array antenna 100 according to the second embodiment is 90 degrees.
 図8は、実施の形態2に係るアレイアンテナ100の位相差が180度のときの指向特性を示すグラフである。 FIG. 8 is a graph showing the directivity characteristics when the phase difference of the array antenna 100 according to the second embodiment is 180 degrees.
 図9は、実施の形態2に係るアレイアンテナ100の位相差がないときの指向特性を示すグラフである。 FIG. 9 is a graph showing the directivity characteristics when there is no phase difference of the array antenna 100 according to the second embodiment.
 例えば、アンテナ10aに伝送される高周波信号と、アンテナ10bに伝送される高周波信号との位相差が90度となり、アンテナ10bに伝送される高周波信号と、アンテナ10cに伝送される高周波信号との位相差が90度となり、アンテナ10cに伝送される高周波信号と、アンテナ10dに伝送される高周波信号との位相差が90度となるように、各スイッチを制御する。これにより、図7に示すように、アレイアンテナ100のチルト角を例えば約30度とすることができる。 For example, the phase difference between the high frequency signal transmitted to the antenna 10a and the high frequency signal transmitted to the antenna 10b is 90 degrees, and the position of the high frequency signal transmitted to the antenna 10b and the high frequency signal transmitted to the antenna 10c. Each switch is controlled so that the phase difference is 90 degrees and the phase difference between the high frequency signal transmitted to the antenna 10c and the high frequency signal transmitted to the antenna 10d is 90 degrees. As a result, as shown in FIG. 7, the tilt angle of the array antenna 100 can be set to, for example, about 30 degrees.
 また、例えば、アンテナ10aに伝送される高周波信号と、アンテナ10bに伝送される高周波信号との位相差が180度となり、アンテナ10bに伝送される高周波信号と、アンテナ10cに伝送される高周波信号との位相差が180度となり、アンテナ10cに伝送される高周波信号と、アンテナ10dに伝送される高周波信号との位相差が180度となるように、各スイッチを制御する。これにより、図8に示すように、アレイアンテナ100のチルト角を例えば60度とすることができる。 Further, for example, the phase difference between the high-frequency signal transmitted to the antenna 10a and the high-frequency signal transmitted to the antenna 10b is 180 degrees, and the high-frequency signal transmitted to the antenna 10b and the high-frequency signal transmitted to the antenna 10c Each switch is controlled so that the phase difference between the two is 180 degrees and the phase difference between the high frequency signal transmitted to the antenna 10c and the high frequency signal transmitted to the antenna 10d is 180 degrees. As a result, as shown in FIG. 8, the tilt angle of the array antenna 100 can be set to, for example, 60 degrees.
 また、例えば、アンテナ10aに伝送される高周波信号と、アンテナ10bに伝送される高周波信号との位相差が0度となり、アンテナ10bに伝送される高周波信号と、アンテナ10cに伝送される高周波信号との位相差が0度となり、アンテナ10cに伝送される高周波信号と、アンテナ10dに伝送される高周波信号との位相差が0度となるように、各スイッチを制御する。この場合、図9に示すように、アレイアンテナ100のチルト角を例えば0度とすることができる(つまり、指向性を制御しないようにすることができる)。 Further, for example, the phase difference between the high-frequency signal transmitted to the antenna 10a and the high-frequency signal transmitted to the antenna 10b becomes 0 degrees, and the high-frequency signal transmitted to the antenna 10b and the high-frequency signal transmitted to the antenna 10c Each switch is controlled so that the phase difference between the two is 0 degrees and the phase difference between the high frequency signal transmitted to the antenna 10c and the high frequency signal transmitted to the antenna 10d is 0 degrees. In this case, as shown in FIG. 9, the tilt angle of the array antenna 100 can be set to, for example, 0 degrees (that is, the directivity can be not controlled).
 このように、位相制御部227によって、アンテナ10a~10dのそれぞれに伝送される高周波信号に位相差を与えることで、アレイアンテナ100の指向性を制御できる。 In this way, the directivity of the array antenna 100 can be controlled by giving a phase difference to the high frequency signals transmitted to each of the antennas 10a to 10d by the phase control unit 227.
 なお、図7から図9は、ケーブルを接続しない状態でのアレイアンテナ100の指向特性を示している。そこで、ケーブルを接続したときの指向特性への影響について、例えば位相差がないときの(つまり、図9の状態での)アレイアンテナ100に着目して、図10を用いて説明する。 Note that FIGS. 7 to 9 show the directivity characteristics of the array antenna 100 in the state where the cable is not connected. Therefore, the influence on the directivity when the cable is connected will be described with reference to FIG. 10, focusing on, for example, the array antenna 100 when there is no phase difference (that is, in the state of FIG. 9).
 図10は、実施の形態2に係るアレイアンテナ100の、ケーブルを接続した状態での位相差がないときの指向特性を示すグラフである。 FIG. 10 is a graph showing the directivity characteristics of the array antenna 100 according to the second embodiment when there is no phase difference in the state where the cable is connected.
 位相差がないときのアレイアンテナ100の利得は、ケーブルを接続しない状態では図9に示すように6.33dBiであるのに対して、ケーブルを接続した状態では図10に示すように5.08dBiとなっており、ケーブルを接続した状態では多少利得が小さくなっている。ただし、この利得の差には、ケーブル自体のロス及び給電線路のロスによるものが約1dB分含まれており、利得の差は、実質的には、0.3dBほどになる。このため、ケーブル自体のロス及び給電線路のロス以外のケーブルの影響として、例えば、ケーブルからの放射ノイズによる影響は、ほとんどないことがわかる。 The gain of the array antenna 100 when there is no phase difference is 6.33 dBi as shown in FIG. 9 when the cable is not connected, whereas it is 5.08 dBi as shown in FIG. 10 when the cable is connected. The gain is slightly smaller when the cable is connected. However, this gain difference includes about 1 dB due to the loss of the cable itself and the loss of the power supply line, and the gain difference is substantially about 0.3 dB. Therefore, it can be seen that, for example, the influence of the cable other than the loss of the cable itself and the loss of the feeding line is almost no influence due to the radiation noise from the cable.
 これは、実施の形態1で説明したように、アンテナ10a~10dのそれぞれのアンテナ素子11の一方の開放端にアンテナ素子11の外周を取り巻くように配置される環状の第1接地導体12が接続されているためである。つまり、アンテナ10a~10dのそれぞれのアンテナ素子11から第2接地導体210へ電流が漏れにくくなり、第2接地導体210に接続されたケーブルの接地導体に電流が流れにくくなっている。したがって、アレイアンテナ100の放射特性がケーブルの影響を受けにくくなっており、図10に示すように、放射特性を改善できる。 As described in the first embodiment, an annular first ground conductor 12 arranged so as to surround the outer circumference of the antenna element 11 is connected to one open end of each of the antenna elements 11 of the antennas 10a to 10d. Because it has been done. That is, the current is less likely to leak from the antenna elements 11 of the antennas 10a to 10d to the second ground conductor 210, and the current is less likely to flow to the ground conductor of the cable connected to the second ground conductor 210. Therefore, the radiation characteristics of the array antenna 100 are less affected by the cable, and as shown in FIG. 10, the radiation characteristics can be improved.
 以上、一つ又は複数の態様に係るアンテナ10、アンテナシステム1、アレイアンテナ100及びアレイアンテナシステム2について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。 The antenna 10, the antenna system 1, the array antenna 100, and the array antenna system 2 according to one or more embodiments have been described above based on the embodiments, but the present disclosure is limited to the above embodiments. is not. As long as the gist of the present disclosure is not deviated, various modifications that can be conceived by those skilled in the art are applied to the above-described embodiment, and a form constructed by combining components in different embodiments is also within the scope of one or more embodiments. May be included within.
 本開示は、アンテナを備える装置又はシステム等に利用できる。 This disclosure can be used for devices or systems equipped with antennas.
 1 アンテナシステム
 2 アレイアンテナシステム
 10、10a、10b、10c、10d アンテナ
 11 アンテナ素子
 12 第1接地導体
 13 摂動素子
 14 給電点
 20、200 制御基板
 21、210 第2接地導体
 22、220 制御回路
 23、230 入出力IF
 30、300 基板
 100 アレイアンテナ
 227 位相制御部
 SW11、SW12、SW21、SW22、SW31、SW32、SW41、SW42 スイッチ
 α1、α2、α3、α4、αn、β1、β2、βn、γ1、γ2、γn、δ1、δ2、δn 位相器
1 Antenna system 2 Array antenna system 10, 10a, 10b, 10c, 10d Antenna 11 Antenna element 12 First ground conductor 13 Perturbation element 14 Feed point 20, 200 Control board 21, 210 Second ground conductor 22, 220 Control circuit 23, 230 I / O IF
30, 300 Board 100 Array antenna 227 Phase control unit SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42 Switch α1, α2, α3, α4, αn, β1, β2, βn, γ1, γ2, γn, δ1 , Δ2, δn phase device

Claims (6)

  1.  両端に開放端を有する導体によって形成されるループ状のアンテナ素子と、
     前記アンテナ素子の一方の前記開放端に接続され、前記アンテナ素子の外周を取り巻くように閉じて配置される環状の第1接地導体と、を備えるアンテナ。
    A loop-shaped antenna element formed by a conductor having open ends at both ends,
    An antenna including an annular first grounding conductor connected to one of the open ends of the antenna element and closed so as to surround the outer periphery of the antenna element.
  2.  前記アンテナ素子は、円形のループ状に形成される、請求項1に記載のアンテナ。 The antenna according to claim 1, wherein the antenna element is formed in a circular loop shape.
  3.  前記アンテナ素子から分岐した導体により構成される摂動素子を更に備える、請求項1又は2に記載のアンテナ。 The antenna according to claim 1 or 2, further comprising a perturbation element composed of a conductor branched from the antenna element.
  4.  請求項1~3のいずれか1項に記載のアンテナと、
     制御基板と、を備え、
     前記制御基板は、
     前記アンテナの制御を行う制御回路と、
     前記アンテナ素子の一方の前記開放端及び前記第1接地導体に接続される第2接地導体と、を備える、アンテナシステム。
    The antenna according to any one of claims 1 to 3 and
    With a control board,
    The control board
    A control circuit that controls the antenna and
    An antenna system comprising one open end of the antenna element and a second ground conductor connected to the first ground conductor.
  5.  請求項1~3のいずれか1項に記載のアンテナを複数配列して構成される、アレイアンテナ。 An array antenna configured by arranging a plurality of antennas according to any one of claims 1 to 3.
  6.  請求項5に記載のアレイアンテナと、
     制御基板と、を備え、
     前記制御基板は、
     前記アレイアンテナの制御を行う制御回路であって、前記アレイアンテナを構成する複数の前記アンテナから出力される電波の位相を制御する位相制御部を含む制御回路と、
     前記アンテナ素子の一方の前記開放端及び前記第1接地導体に接続される第2接地導体と、を備える、アレイアンテナシステム。
    The array antenna according to claim 5 and
    With a control board,
    The control board
    A control circuit that controls the array antenna and includes a phase control unit that controls the phase of radio waves output from the plurality of antennas constituting the array antenna.
    An array antenna system comprising one open end of the antenna element and a second ground conductor connected to the first ground conductor.
PCT/JP2020/016707 2019-04-25 2020-04-16 Antenna, antenna system, array antenna, and array antenna system WO2020218147A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080029884.7A CN113711439A (en) 2019-04-25 2020-04-16 Antenna, antenna system, array antenna and array antenna system
JP2021516051A JPWO2020218147A1 (en) 2019-04-25 2020-04-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019084751 2019-04-25
JP2019-084751 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020218147A1 true WO2020218147A1 (en) 2020-10-29

Family

ID=72942483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016707 WO2020218147A1 (en) 2019-04-25 2020-04-16 Antenna, antenna system, array antenna, and array antenna system

Country Status (3)

Country Link
JP (1) JPWO2020218147A1 (en)
CN (1) CN113711439A (en)
WO (1) WO2020218147A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123910A1 (en) * 2020-12-07 2022-06-16 パナソニックIpマネジメント株式会社 Component supply system and reading device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099658A (en) * 1998-09-24 2000-04-07 Tamura Electric Works Ltd Radio device
JP2000268138A (en) * 1999-03-15 2000-09-29 Hitachi Information Technology Co Ltd Communication equipment for radio card
JP2009105614A (en) * 2007-10-23 2009-05-14 Panasonic Corp On-board antenna device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099658A (en) * 1998-09-24 2000-04-07 Tamura Electric Works Ltd Radio device
JP2000268138A (en) * 1999-03-15 2000-09-29 Hitachi Information Technology Co Ltd Communication equipment for radio card
JP2009105614A (en) * 2007-10-23 2009-05-14 Panasonic Corp On-board antenna device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123910A1 (en) * 2020-12-07 2022-06-16 パナソニックIpマネジメント株式会社 Component supply system and reading device

Also Published As

Publication number Publication date
JPWO2020218147A1 (en) 2020-10-29
CN113711439A (en) 2021-11-26

Similar Documents

Publication Publication Date Title
US10790596B2 (en) Smart antenna assembly
EP2201646B1 (en) Dual polarized low profile antenna
US8525731B2 (en) Small antenna using SRR structure in wireless communication system and method for manufacturing the same
EP2290746B1 (en) Planar antenna with isotropic radiation pattern
US20040227683A1 (en) Integrated front end antenna
US6819302B2 (en) Dual port helical-dipole antenna and array
US9525207B2 (en) Reconfigurable antenna structure with parasitic elements
US10333215B2 (en) Multi-band array antenna
CN112018494B (en) Antenna and mobile terminal
WO2014039949A1 (en) Multiband monopole antenna apparatus with ground plane aperture
TW201436368A (en) Tunable antenna
JP2018082277A (en) Antenna device
JP6984019B2 (en) Antenna array and wireless communication device
US11456764B2 (en) Multi-function communication device with millimeter-wave range operation
US10230161B2 (en) Low-band reflector for dual band directional antenna
EP1920498B1 (en) Wideband structural antenna operating in the hf range, particularly for naval installations
US7839344B2 (en) Wideband multifunction antenna operating in the HF range, particularly for naval installations
US20060044190A1 (en) Rotatable microstrip patch antenna and array antenna using the same
JP4910868B2 (en) Antenna device
WO2020218147A1 (en) Antenna, antenna system, array antenna, and array antenna system
US7286086B2 (en) Gain-adjustable antenna
US20060290574A1 (en) Antenna and portable device using the same
WO2013104656A1 (en) A reconfigurable antenna structure
CN110277651B (en) Intelligent antenna device
EP3989358A1 (en) Antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794039

Country of ref document: EP

Kind code of ref document: A1