WO2020218126A1 - Output control device, power generation system, output control method, control program, and recording medium - Google Patents

Output control device, power generation system, output control method, control program, and recording medium Download PDF

Info

Publication number
WO2020218126A1
WO2020218126A1 PCT/JP2020/016615 JP2020016615W WO2020218126A1 WO 2020218126 A1 WO2020218126 A1 WO 2020218126A1 JP 2020016615 W JP2020016615 W JP 2020016615W WO 2020218126 A1 WO2020218126 A1 WO 2020218126A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
power
generation facility
value
output
Prior art date
Application number
PCT/JP2020/016615
Other languages
French (fr)
Japanese (ja)
Inventor
浩文 光岡
松山 賢五
彰人 近藤
友騎 四谷
森下 聡
一樹 村澤
貴士 樋口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2020218126A1 publication Critical patent/WO2020218126A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the present invention relates to an output control device or the like that controls the output of a power generation system in which a plurality of power generation facilities are connected.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2018-7423 (Publication Date: January 11, 2018)
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2018-42295 (Publication date: March 15, 2018)"
  • One aspect of the present invention is to realize an output control device or the like capable of increasing the total output of a plurality of power generation facilities without exceeding the interconnection contract capacity.
  • the output control device transfers the generated power output from one or more first power generation facilities and the second power generation facility to the first power generation facility and the first power generation facility. It is an output control device of a power generation system that supplies power from the second power generation facility to each interconnection point of a commercial power system, and the power generation system has an interconnection contract capacity as an upper limit of the total supply power value at the interconnection point. Is set, the power generation value of the first power generation facility is acquired, and the power supply value at the interconnection point is taken into consideration in consideration of the transmission loss in each electric wire connecting each power generation facility and the interconnection point. The second power generation facility should output so that the total sum does not exceed the interconnection contract capacity and the total power generation value of the first power generation facility and the second power generation facility exceeds the interconnection contract capacity. Calculate the generated power value.
  • each of the generated power output from one or more first power generation facilities and the second power generation facility is commercialized from the first power generation facility and the second power generation facility.
  • This is an output control method for a power generation system that supplies power to each of the interconnection points of the power system.
  • the power generation system has an interconnection contract capacity set as an upper limit of the total power values at the interconnection points. 1
  • the power generation value of the power generation facility is acquired, and the total power at the interconnection point does not exceed the interconnection contract capacity in consideration of the loss in each electric wire connecting each power generation facility and the interconnection point.
  • the power value to be output by the second power generation facility is calculated so that the total power generated by the first power generation facility and the second power generation facility exceeds the interconnection contract capacity.
  • the total output of a plurality of power generation facilities can be further increased without exceeding the interconnection contract capacity.
  • FIG. 1 is a diagram showing an example of the configuration of the hybrid power generation system 100 (power generation system) in the present embodiment.
  • the electric power generated by the hybrid power generation system 100 is transmitted to the commercial electric power system 200.
  • the first generated power output from the first power generation facility P1 passes through the electric wire C1
  • the second generated power output from the second power generation facility P2 passes through the electric wire C2, respectively, in the commercial power system 200.
  • Power is transmitted up to the interconnection point 210.
  • the first power generation facility P1 will be described as a wind power generation system and the second power generation facility P2 will be described as a solar power generation system, but other types of power generation facilities may be used.
  • the types of power generation facilities of the first power generation facility P1 and the second power generation facility P2 may be different or the same.
  • the hybrid power generation system 100 includes a first power generation facility P1, a second power generation facility P2, an output control device 110, a measurement monitoring device 120 that monitors the first power generation facility P1, and a measurement monitoring device that monitors the second power generation facility P2.
  • the commercial power system 200 is a meter capable of measuring an interconnection point 210 to which the electric power generated by the hybrid power generation system 100 is supplied and a power value, voltage, resistance value and power factor supplied at the interconnection point 210. Includes M3 and. Then, the hybrid power generation system 100 acquires the measured value measured by the meter M3.
  • the first power generation power output from the first power generation facility P1 and the second power generation power output from the second power generation facility P2 are supplied to one interconnection point 210, and the power value
  • the present invention is not limited to this configuration. That is, the first generated power and the second generated power may be supplied to separate interconnection points. In that case, the same result as in FIG. 1 can be obtained by performing the calculation based on the respective data measured by the meters provided at each interconnection point.
  • the hybrid power generation system 100 has a defined power capacity (hereinafter referred to as an interconnection contract capacity) that can be supplied to the commercial power system 200, and supplies electricity equal to or larger than the interconnection contract capacity to the interconnection point 210. You can't.
  • an interconnection contract capacity a defined power capacity that can be supplied to the commercial power system 200, and supplies electricity equal to or larger than the interconnection contract capacity to the interconnection point 210. You can't.
  • the output is controlled by one of the power generation facilities included in the hybrid power generation system 100 (second power generation facility P2 in the present embodiment), and the other power generation facilities (first in the present embodiment).
  • the power generation facility P1) shall generate power at the maximum output possible at that time, and the total power supply at the interconnection point 210 shall not exceed the interconnection contract capacity.
  • the output control device 110 includes a data acquisition unit 111, a calculation unit 112, a storage unit 113, and an output control unit 114.
  • the data acquisition unit 111 acquires information about each power generation facility, such as output, from the measurement monitoring device 120, the measurement monitoring device 130, and the like.
  • the meter M1 passes the measurement data to the measurement monitoring device 120, the meter M2 passes the measurement data to the measurement monitoring device 130, and the meter M3 passes the measurement data to the data acquisition unit 111.
  • the calculation unit 112 calculates the necessary parameters.
  • the storage unit 113 holds, for example, constants such as the interconnection contract capacity, parameters calculated by the calculation unit 112, and the like.
  • the output control unit 114 controls the output of the second power generation facility P2 based on the calculated parameters, for example, through the measurement monitoring device 130.
  • the output control device 110 interconnects the generated power output from one or more first power generation facilities P1 and the second power generation facility P2 to the commercial power system 200 from the respective power generation facilities P1 and P2.
  • the hybrid power generation system 100 has an interconnection contract capacity set as an upper limit of the total supply power values at the interconnection point 210. Considering the transmission loss in the data acquisition unit 111 that acquires the first generated power value output from the first power generation facility P1, and the electric wires C1 and C2 that connect the power generation facilities P1 and P2 to the interconnection point 210.
  • the total power supply value at the interconnection point 210 does not exceed the interconnection contract capacity
  • the total power generation value at the first power generation facility P1 and the second power generation facility P2 is the interconnection contract capacity.
  • the second power generation facility P2 is provided with a calculation unit 112 for calculating the power generation value to be output so as to exceed the above. With this configuration, the total output of the first power generation facility P1 and the second power generation facility P2 can be further increased without exceeding the interconnection contract capacity.
  • the output control device 110 controls the power output by the second power generation facility P2 so that the power value output by the second power generation facility P2 becomes the power value calculated by the calculation unit 112.
  • FIG. 2 is a flowchart in the case of calculating the output of the second power generation facility P2 based on the first calculation method.
  • Step S301 the data acquisition unit 111 acquires the power values measured by the meters M1, the meter M2, and the meter M3, respectively, and passes them to the calculation unit 112.
  • Step S302 the calculation unit 112 subtracts the power value of the meter M3 from the sum of the power value of the meter M1 and the power value of the meter M2, and calculates the estimated loss power value of the electric wires C1 and C2. ..
  • step S303 the calculation unit 112 reads the interconnection contract capacity from the storage unit 113.
  • Step S304 the calculation unit 112 calculates the output upper limit value of the second power generation facility P2 by subtracting the power value in the meter M1 from the value obtained by adding the interconnection contract capacity and the estimated loss power value.
  • the calculated output upper limit value of the second power generation facility P2 may be held in the storage unit 113, for example.
  • Step S305 the output control unit 114 sets the output of the second power generation facility P2 to the output upper limit value through the measurement monitoring device 130.
  • the data acquisition unit 111 has the power generation value of the first power generation facility P1, the power generation value of the second power generation facility P2, and the continuous power generation facility P2.
  • Each supply power value at the system point 210 is acquired, and the calculation unit 112 obtains the power value from the first power generation facility P1 based on the difference between the power generation value of the first power generation facility P1 and the power value at the interconnection point 210.
  • the power value lost in the electric wire C1 up to the interconnection point 210 is calculated, and from the difference between the power generation value of the second power generation facility P2 and the power value at the interconnection point 210, the second power generation facility P2 to the said The power value lost in the electric wire C2 up to the interconnection point 210 is calculated, and the generated power of the first power generation facility P1 is subtracted from the sum of the interconnection contract capacity and the electric power value lost in the electric wires C1 and C2. Then, the power value to be output by the second power generation facility P2 is calculated. With this configuration, the output of the first power generation facility P1 and the second power generation facility P2 can be controlled in consideration of the loss due to the electric wires C1 and C2 according to the measured value of the electric power value.
  • FIG. 3 is a flowchart in the case of calculating the output of the second power generation facility P2 based on the second calculation method. The same steps as those mentioned above will not be repeated.
  • Step S3011 the data acquisition unit 111 acquires the power value and voltage of each meter from the meters M1 and M2, and passes them to the calculation unit 112.
  • the data acquisition unit 111 has outputs set by the measurement monitoring devices 120 and 130 in the first power generation facility P1 and the second power generation facility P2, respectively, instead of the power values and voltages measured by the meters M1 and M2.
  • the power value and voltage may be acquired.
  • Step S3032 the calculation unit 112 calculates the estimated loss power values of the electric wires C1 and C2, respectively.
  • the loss rate in the electric wire C1 is calculated.
  • the calculation unit 112 reads the design value of the electric wire C1 stored in the storage unit 113.
  • the design value of the electric wire C1 is that the resistance is 0.124 ⁇ per 1km and the length is 5km.
  • the measured value with the meter M1 is a power value of 10 MW and a voltage of 22 kV.
  • the estimated loss power value in the electric wire C1 from the first power generation facility P1 to the interconnection point 210 is calculated as follows.
  • Steps S303 to S305 are the same as in FIG.
  • the power factor was set to 1.0.
  • the data acquisition unit 111 may acquire each power factor measured by the meters M1 and M2, and in step S3021, the calculation unit 112 may perform the calculation in consideration of each power factor.
  • the estimated loss power value in the electric wires C1 and C2 and the output upper limit value of the second power generation facility P2 can be calculated more accurately.
  • the estimated loss power value corresponding to the measured value with the meters M1 and M2 can be calculated in advance as shown in FIG. Therefore, the data as shown in FIG. 4 may be stored in the storage unit 113, and the estimated loss power value may be read based on the measured values of the meters M1 and M2.
  • the first line of "first power generation facility P1" in FIG. 4 corresponds to the above calculation example.
  • the data acquisition unit 111 acquires the power generation value of the second power generation facility P2 together with the power generation value of the first power generation facility P1.
  • the calculation unit 112 loses in the electric wires C1 and C2 based on the power generation value of the first power generation facility P1, the power generation value of the second power generation facility P2, and the design values of the electric wires C1 and C2.
  • the power value to be generated is calculated, and the generated power value of the first power generation facility P1 is subtracted from the sum of the interconnection contract capacity and the power value lost in each of the electric wires C1 and C2 to obtain the second power generation facility P2. Calculates the power value to be output. With this configuration, even when the meter M3 cannot be used, the output of the first power generation facility P1 and the second power generation facility P2 can be controlled in consideration of the loss due to the electric wires C1 and C2.
  • FIG. 5 is a flowchart in the case of calculating the output of the second power generation facility P2 based on the third calculation method. The same steps as those mentioned above will not be repeated.
  • step S3012 the data acquisition unit 111 acquires the power value and the voltage measured by the meter M1 and the voltage value measured by the meter M2, and passes them to the calculation unit 112.
  • the data acquisition unit 111 has outputs set by the measurement monitoring devices 120 and 130 in the first power generation facility P1 and the second power generation facility P2, respectively, instead of the power values and voltages measured by the meters M1 and M2.
  • the power value and voltage may be acquired.
  • Step S3032 the calculation unit 112 reads the interconnection contract capacity and the resistance values of the electric wires C1 and C2 from the storage unit 113.
  • the resistance values of the electric wires C1 and C2 may be calculated by using the measured values by the sensors provided outside the hybrid power generation system 100 other than the meters M1 and M2. This makes it possible to calculate the output upper limit value of the second power generation facility P2 using a more accurate resistance value.
  • Step S3042 the calculation unit 112 calculates the output upper limit value of the second power generation facility P2 by calculating the following mathematical formulas (10) and (11).
  • Step S305 is the same as in FIG.
  • the power factor was set to 1.0.
  • the data acquisition unit 111 may acquire each power factor measured by the meters M1 and M2, and in step S3042, the calculation unit 112 may perform the calculation in consideration of each power factor.
  • the estimated loss power value in the electric wires C1 and C2 and the output upper limit value of the second power generation facility P2 can be calculated more accurately.
  • the data acquisition unit 111 together with the power generation value of the first power generation facility P1, the power generation voltage of the first power generation facility P1 and the second power generation.
  • the power generation voltage of the facility P2 is acquired, and the calculation unit 112 determines the power generation value of the first power generation facility P1, the power generation voltage of the first power generation facility P1, the power generation voltage of the second power generation facility P2, the electric wires C1 and the electric wires C1. Based on the resistance value of C2, the power value to be output by the second power generation facility P2 is calculated.
  • the output upper limit value in anticipation of loss is directly calculated without calculating the estimated loss amount, and the output control of the first power generation facility P1 and the second power generation facility P2 in consideration of the loss due to the electric wires C1 and C2 can be performed. it can. Therefore, a stricter output upper limit value can be set.
  • FIG. 6 is a table showing the calculation results by the third calculation method.
  • the calculation unit 112 may read such a calculated table from the storage unit 113 and calculate the output upper limit value of the second power generation facility P2 instead of the above calculation.
  • the interconnection contract capacity is 10000 kW
  • the output upper limit value of the second power generation facility P2 is set to 1209.3943 kW
  • the total output at the interconnection point is 9999.3943 kW, which is the maximum output that does not exceed the interconnection contract capacity.
  • the data acquisition unit 111 acquires the generated power value of the first power generation facility P1 from the meter M1 has been described.
  • the power generation value of the first power generation facility P1 may be stored in advance in the storage unit 113, and the data acquisition unit 111 may acquire the power generation value of the first power generation facility P1 from the storage unit 113.
  • the power value, voltage, resistance value, and power factor of the second power generation facility P2 are acquired from the meter M2.
  • the hybrid power generation system 100 may include a plurality of first power generation facilities P1. Further, the types of the plurality of power generation facilities and the power generation facilities of the second power generation facility P2 may be different or all may be the same.
  • the measured values of the respective outputs from the plurality of first power generation facilities P1 are combined into one to obtain a value equivalent to the value measured by the meter M1 in FIG. Obtainable.
  • the measured values of the outputs supplied from the plurality of first power generation facilities P1 to the respective interconnection points into one it is possible to obtain a value equivalent to the measured value with the meter M3 of FIG. it can. Then, by using these equivalent values, the output of the second power generation facility P2 can be calculated by the above-mentioned calculation methods 1 to 3.
  • the output control device 110 (particularly, the calculation unit 112 and the output control unit 114) may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software.
  • the output control device 110 includes a computer that executes a program instruction, which is software that realizes each function.
  • the computer includes, for example, at least one processor (control device) and at least one computer-readable recording medium that stores the program. Then, in the computer, the object of the present invention is achieved by the processor reading the program from the recording medium and executing the program.
  • the processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM Random Access Memory
  • the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • a transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • the output control device transfers the generated power output from one or more first power generation facilities and the second power generation facility to a commercial power system from the first power generation facility and the second power generation facility.
  • the output control device of the power generation system to be supplied to each of the interconnection points of the above, and the power generation system has an interconnection contract capacity set as an upper limit of the total sum of the supply power values at the interconnection point.
  • the total power supply value at the interconnection point exceeds the interconnection contract capacity in consideration of the transmission loss at each electric wire connecting each power generation facility and the interconnection point by acquiring the power generation value of the power generation facility.
  • the power generation value to be output by the second power generation facility is calculated so that the total power generation value of the first power generation facility and the second power generation facility exceeds the interconnection contract capacity.
  • the total output of each power generation facility can be made larger without exceeding the interconnection contract capacity in consideration of the loss due to the electric wire.
  • the output control device sets the generated power value of the first power generation facility, the generated power value of the second power generation facility, and the respective supply power values at the interconnection point. From the difference between the power generation value of the first power generation facility and the power value at the interconnection point, the power value lost in the electric wire from the first power generation facility to the interconnection point is calculated, and the first From the difference between the generated power value of the two power generation facilities and the power value at the interconnection point, the power value lost in the electric wire from the second power generation facility to the interconnection point is calculated, and the interconnection contract capacity and each of the above are calculated.
  • the power generation value of the first power generation facility may be subtracted from the sum of the power value lost in the electric wire to calculate the power value to be output by the second power generation facility.
  • the output of the power generation facility can be controlled in consideration of the loss due to the electric wire according to the measured value.
  • the output control device acquires the generated power value of the second power generation facility together with the generated power value of the first power generation facility, and obtains the generated power value of the first power generation facility. Based on the power generation value of the second power generation facility and the design value of each electric wire, the power value lost in each electric wire is calculated, and the interconnection contract capacity and the electric power value lost in each electric wire are used.
  • the power generation value of the first power generation facility may be subtracted from the sum of the above to calculate the power value to be output by the second power generation facility.
  • the output of the power generation facility can be controlled in consideration of the loss due to the electric wire.
  • the output control device acquires the power generation value of the first power generation facility, the power generation voltage of the first power generation facility, and the power generation voltage of the second power generation facility.
  • the power value to be output by the second power generation facility is calculated based on the power generation value of the first power generation facility, the power generation voltage of the first power generation facility, the power generation voltage of the second power generation facility, and the resistance value of each electric wire. You may.
  • the output control device may control the electric power output by the second power generation facility to the calculated electric power value in the first to fourth aspects.
  • the total output of each power generation facility can be made larger without exceeding the interconnection contract capacity in consideration of the loss due to the electric wire.
  • the second power generation facility may be a solar power generation facility.
  • the power generation system is a meter that measures the power generation values of the output control device, the first power generation facility, the second power generation facility, and the first power generation facility according to the first to sixth aspects. And may be provided.
  • the generated power output from one or more first power generation facilities and the second power generation facility is converted into a commercial power system from the first power generation facility and the second power generation facility.
  • This is an output control method of a power generation system that supplies power to each of the interconnection points of the above, and the power generation system has an interconnection contract capacity set as an upper limit of the total power values at the interconnection points, and the first power generation Obtaining the power generation value of the equipment, and considering the loss in each electric wire connecting each power generation equipment and the interconnection point, the total power at the interconnection point does not exceed the interconnection contract capacity, and
  • the power value to be output by the second power generation facility may be calculated so that the total power generated by the first power generation facility and the second power generation facility exceeds the interconnection contract capacity. According to the above configuration, the same effect as that of the first aspect is obtained.
  • the output control device may be realized by a computer.
  • the output control device is made into a computer by operating the computer as each part (software element) included in the output control device.
  • the output control program of the power generation equipment and the computer-readable recording medium on which the output control program is recorded are also included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

In the present invention, the total output of a plurality of power generation facilities is increased without exceeding an interconnected contracted capacity. An output control device (110) comprises: a data acquisition unit (111) that acquires a generated power value of a first power generation facility (P1); and a computation unit (112) that calculates a power value to be outputted by a second power generation facility (P2) so that: by taking into account the loss in each of the power lines (C1, C2) from the first power generation facility (P1) and the second power generation facility (P2) to an interconnection point (210), the sum total of power values at the interconnection point (210) does not exceed the interconnected contracted capacity; and the sum total of the generated power values of the first power generation facility (P1) and the second power generation facility (P2) exceeds the interconnected contracted capacity.

Description

出力制御装置、発電システム、出力制御方法、制御プログラム、および、記録媒体Output control device, power generation system, output control method, control program, and recording medium
 本発明は、複数の発電設備が連系した発電システムの出力を制御する出力制御装置等に関する。 The present invention relates to an output control device or the like that controls the output of a power generation system in which a plurality of power generation facilities are connected.
 自然界に存在する再生可能エネルギーを電力エネルギーに変換する方法として、例えば太陽光発電や風力発電があり、設備利用率の向上等を目的としてこれらの再生可能エネルギーを組み合わせて発電する方法(以下、ハイブリッド発電システム)がある。発電事業者がこの再生可能エネルギー発電装置を例えば電力供給会社の電力系統と連系させる場合には、事前にこれらの発電装置の合計最大出力電力値(以下、連系契約容量という)が定められる。そして、これらの発電装置は、連系契約容量を超える電力を商用電力系統へ供給することができない。これらの再生可能エネルギーによる発電を行う複数の発電設備の出力を、そのうちの1の発電設備の出力を制御することによって連系契約容量を超えないようにする従来技術が知られている。 As a method of converting renewable energy existing in the natural world into electric power energy, for example, there are solar power generation and wind power generation, and a method of generating power by combining these renewable energies for the purpose of improving equipment utilization rate (hereinafter, hybrid). There is a power generation system). When a power generation company interconnects this renewable energy power generation device with, for example, the power system of a power supply company, the total maximum output power value of these power generation devices (hereinafter referred to as interconnection contract capacity) is determined in advance. .. Then, these power generation devices cannot supply electric power exceeding the interconnection contract capacity to the commercial power system. There is known a conventional technique for controlling the output of a plurality of power generation facilities that generate power from these renewable energies so as not to exceed the interconnection contract capacity by controlling the output of one of the power generation facilities.
日本国公開特許公報「特開2018-7423号公報(公開日:2018年1月11日)」Japanese Patent Publication "Japanese Patent Laid-Open No. 2018-7423 (Publication Date: January 11, 2018)" 日本国公開特許公報「特開2018-42295号公報(公開日:2018年3月15日)」Japanese Patent Publication "Japanese Patent Laid-Open No. 2018-42295 (Publication date: March 15, 2018)"
 しかしながら、上述のような従来技術は、各発電設備から電力供給会社との連系点までの電線の抵抗等による電力のロスを考慮しておらず、連系契約容量を十分に活用できていないという問題がある。 However, the above-mentioned conventional technology does not consider the loss of electric power due to the resistance of the electric wire from each power generation facility to the interconnection point with the electric power supply company, and cannot fully utilize the interconnection contract capacity. There is a problem.
 本発明の一態様は、連系契約容量を超えずに複数の発電設備の総出力をより大きくすることができる出力制御装置等を実現することを目的とする。 One aspect of the present invention is to realize an output control device or the like capable of increasing the total output of a plurality of power generation facilities without exceeding the interconnection contract capacity.
 前記の課題を解決するために、本発明の一態様に係る出力制御装置は、1以上の第1発電設備、および第2発電設備から出力されたそれぞれの発電電力を、前記第1発電設備および前記第2発電設備から商用電力系統の連系点へそれぞれ供給する発電システムの出力制御装置であって、前記発電システムは、前記連系点における供給電力値の総和の上限値として連系契約容量が設定されており、前記第1発電設備の発電電力値を取得し、各発電設備と前記連系点とを接続する各電線における送電ロスを考慮して、前記連系点における供給電力値の総和が前記連系契約容量を上回らず、かつ、前記第1発電設備および前記第2発電設備における発電電力値の総和が前記連系契約容量を上回るように、前記第2発電設備が出力すべき発電電力値を算出する。 In order to solve the above-mentioned problems, the output control device according to one aspect of the present invention transfers the generated power output from one or more first power generation facilities and the second power generation facility to the first power generation facility and the first power generation facility. It is an output control device of a power generation system that supplies power from the second power generation facility to each interconnection point of a commercial power system, and the power generation system has an interconnection contract capacity as an upper limit of the total supply power value at the interconnection point. Is set, the power generation value of the first power generation facility is acquired, and the power supply value at the interconnection point is taken into consideration in consideration of the transmission loss in each electric wire connecting each power generation facility and the interconnection point. The second power generation facility should output so that the total sum does not exceed the interconnection contract capacity and the total power generation value of the first power generation facility and the second power generation facility exceeds the interconnection contract capacity. Calculate the generated power value.
 また、本発明の一態様に係る出力制御方法は、1以上の第1発電設備、および第2発電設備から出力されたそれぞれの発電電力を、前記第1発電設備および前記第2発電設備から商用電力系統の連系点へそれぞれ供給する発電システムの出力制御方法であって、前記発電システムは、前記連系点における電力値の総和の上限値として連系契約容量が設定されており、前記第1発電設備の発電電力値を取得し、各発電設備と前記連系点とを接続する各電線におけるロスを考慮して、前記連系点における電力の総和が前記連系契約容量を上回らず、かつ、前記第1発電設備および前記第2発電設備の発電電力の総和が前記連系契約容量を上回るように、前記第2発電設備が出力すべき電力値を算出する。 Further, in the output control method according to one aspect of the present invention, each of the generated power output from one or more first power generation facilities and the second power generation facility is commercialized from the first power generation facility and the second power generation facility. This is an output control method for a power generation system that supplies power to each of the interconnection points of the power system. The power generation system has an interconnection contract capacity set as an upper limit of the total power values at the interconnection points. 1 The power generation value of the power generation facility is acquired, and the total power at the interconnection point does not exceed the interconnection contract capacity in consideration of the loss in each electric wire connecting each power generation facility and the interconnection point. In addition, the power value to be output by the second power generation facility is calculated so that the total power generated by the first power generation facility and the second power generation facility exceeds the interconnection contract capacity.
 本発明の一態様によれば、連系契約容量を超えずに複数の発電設備の総出力をより大きくすることができる。 According to one aspect of the present invention, the total output of a plurality of power generation facilities can be further increased without exceeding the interconnection contract capacity.
本発明の実施形態に係るハイブリッド発電システムの全体的な構成に係るブロック図の一例である。This is an example of a block diagram relating to the overall configuration of the hybrid power generation system according to the embodiment of the present invention. 本発明の実施形態のうち計算方法1に係るフローチャートである。It is a flowchart which concerns on calculation method 1 of the Embodiment of this invention. 本発明の実施形態のうち計算方法2に係るフローチャートである。It is a flowchart which concerns on calculation method 2 of the Embodiment of this invention. 本発明の実施形態のうち計算方法2に係る表である。It is a table which concerns on the calculation method 2 in the Embodiment of this invention. 本発明の実施形態のうち計算方法3に係るフローチャートである。It is a flowchart which concerns on calculation method 3 of the Embodiment of this invention. 本発明の実施形態のうち計算方法3に係る表である。It is a table which concerns on calculation method 3 among the embodiments of this invention.
 〔実施形態1〕
 以下、本発明の一実施形態について、詳細に説明する。
[Embodiment 1]
Hereinafter, one embodiment of the present invention will be described in detail.
 (ハイブリッド発電システムの構成の概要)
 図1は、本実施形態におけるハイブリッド発電システム100(発電システム)の構成の例を示した図である。ハイブリッド発電システム100で発電された電力は、商用電力系統200へ送電される。詳細には、第1発電設備P1から出力される第1発電電力が電線C1を介して、第2発電設備P2から出力された第2発電電力が電線C2を介して、それぞれ商用電力系統200の連系点210まで送電される。なお、本実施形態では、第1発電設備P1を風力発電システム、第2発電設備P2を太陽光発電システムとして説明するが、他の種類の発電設備であってもよい。さらに、第1発電設備P1および第2発電設備P2の発電設備の種類は異なっていてもよいし、同一であってもよい。
(Overview of hybrid power generation system configuration)
FIG. 1 is a diagram showing an example of the configuration of the hybrid power generation system 100 (power generation system) in the present embodiment. The electric power generated by the hybrid power generation system 100 is transmitted to the commercial electric power system 200. Specifically, the first generated power output from the first power generation facility P1 passes through the electric wire C1, and the second generated power output from the second power generation facility P2 passes through the electric wire C2, respectively, in the commercial power system 200. Power is transmitted up to the interconnection point 210. In the present embodiment, the first power generation facility P1 will be described as a wind power generation system and the second power generation facility P2 will be described as a solar power generation system, but other types of power generation facilities may be used. Further, the types of power generation facilities of the first power generation facility P1 and the second power generation facility P2 may be different or the same.
 ハイブリッド発電システム100は、第1発電設備P1と、第2発電設備P2と、出力制御装置110と、第1発電設備P1を監視する計測監視装置120と、第2発電設備P2を監視する計測監視装置130と、第1発電設備P1から出力される第1発電電力値、電圧、抵抗値及び力率を計測可能なメータM1と、第2発電設備P2から出力される第2発電電力値、電圧、抵抗値及び力率を計測可能なメータM2と、を含む。 The hybrid power generation system 100 includes a first power generation facility P1, a second power generation facility P2, an output control device 110, a measurement monitoring device 120 that monitors the first power generation facility P1, and a measurement monitoring device that monitors the second power generation facility P2. The device 130, the meter M1 capable of measuring the first power generation power value, voltage, resistance value and force factor output from the first power generation facility P1, and the second power generation power value and voltage output from the second power generation facility P2. Includes a meter M2 capable of measuring resistance and force.
 また、商用電力系統200は、ハイブリッド発電システム100で発電された電力が供給される連系点210と、連系点210で供給される電力値、電圧、抵抗値及び力率を計測可能なメータM3と、を含む。そして、ハイブリッド発電システム100は、メータM3が測定した測定値を取得する。なお、図1には、第1発電設備P1から出力された第1発電電力と、第2発電設備P2から出力された第2発電電力とが、一つの連系点210に供給され、電力値等の計測のために一つのメータM3が設けられた構成を示すが、本発明はこの構成に限定されない。すなわち、第1発電電力と、第2発電電力とが、それぞれ別個の連系点に供給されてもよい。その場合、各連系点に設けたメータによって計測したそれぞれのデータに基づいて計算することにより、図1と同様の結果が得られる。 Further, the commercial power system 200 is a meter capable of measuring an interconnection point 210 to which the electric power generated by the hybrid power generation system 100 is supplied and a power value, voltage, resistance value and power factor supplied at the interconnection point 210. Includes M3 and. Then, the hybrid power generation system 100 acquires the measured value measured by the meter M3. In FIG. 1, the first power generation power output from the first power generation facility P1 and the second power generation power output from the second power generation facility P2 are supplied to one interconnection point 210, and the power value Although the configuration in which one meter M3 is provided for the measurement of the above is shown, the present invention is not limited to this configuration. That is, the first generated power and the second generated power may be supplied to separate interconnection points. In that case, the same result as in FIG. 1 can be obtained by performing the calculation based on the respective data measured by the meters provided at each interconnection point.
 また、ハイブリッド発電システム100は、商用電力系統200に供給することのできる電力容量(以下、連系契約容量とする)が定められており、連系契約容量以上の電気を連系点210に供給することはできない。 Further, the hybrid power generation system 100 has a defined power capacity (hereinafter referred to as an interconnection contract capacity) that can be supplied to the commercial power system 200, and supplies electricity equal to or larger than the interconnection contract capacity to the interconnection point 210. You can't.
 本実施形態では、出力制御がなされるのはハイブリッド発電システム100に含まれる発電設備のうち1つ(本実施形態では第2発電設備P2)であり、他の発電設備(本実施形態では第1発電設備P1)は、該発電設備がその時点で可能である最大出力で発電するものとし、連系点210における供給電力の合計は、連系契約容量を超えないものとする。 In the present embodiment, the output is controlled by one of the power generation facilities included in the hybrid power generation system 100 (second power generation facility P2 in the present embodiment), and the other power generation facilities (first in the present embodiment). The power generation facility P1) shall generate power at the maximum output possible at that time, and the total power supply at the interconnection point 210 shall not exceed the interconnection contract capacity.
 出力制御装置110は、データ取得部111と、計算部112と、記憶部113と、出力制御部114とを含む。データ取得部111は、計測監視装置120および計測監視装置130などから各発電設備に関する、例えば出力等の情報を取得する。メータM1は計測監視装置120に、メータM2は計測監視装置130に、メータM3はデータ取得部111にそれぞれの計測データを渡す。計算部112は、必要なパラメータを計算する。記憶部113は、例えば、連系契約容量等の定数や、計算部112によって算出されたパラメータ等を保持する。出力制御部114は、例えば、計測監視装置130を通じて、計算されたパラメータに基づき第2発電設備P2の出力を制御する。 The output control device 110 includes a data acquisition unit 111, a calculation unit 112, a storage unit 113, and an output control unit 114. The data acquisition unit 111 acquires information about each power generation facility, such as output, from the measurement monitoring device 120, the measurement monitoring device 130, and the like. The meter M1 passes the measurement data to the measurement monitoring device 120, the meter M2 passes the measurement data to the measurement monitoring device 130, and the meter M3 passes the measurement data to the data acquisition unit 111. The calculation unit 112 calculates the necessary parameters. The storage unit 113 holds, for example, constants such as the interconnection contract capacity, parameters calculated by the calculation unit 112, and the like. The output control unit 114 controls the output of the second power generation facility P2 based on the calculated parameters, for example, through the measurement monitoring device 130.
 以上のように、出力制御装置110は、1以上の第1発電設備P1、および第2発電設備P2から出力されたそれぞれの発電電力を、各発電設備P1及びP2から商用電力系統200の連系点210へそれぞれ供給するハイブリッド発電システム100の出力制御装置であって、前記ハイブリッド発電システム100は、前記連系点210における供給電力値の総和の上限値として連系契約容量が設定されており、第1発電設備P1から出力される第1発電電力値を取得するデータ取得部111と、各発電設備P1およびP2と前記連系点210とを接続する各電線C1およびC2における送電ロスを考慮して、前記連系点210における供給電力値の総和が前記連系契約容量を上回らず、かつ、前記第1発電設備P1および前記第2発電設備P2における発電電力値の総和が前記連系契約容量を上回るように、前記第2発電設備P2が出力すべき発電電力値を算出する計算部112とを備える。この構成により、連系契約容量を超えずに第1発電設備P1および第2発電設備P2の総出力をより大きくすることができる。 As described above, the output control device 110 interconnects the generated power output from one or more first power generation facilities P1 and the second power generation facility P2 to the commercial power system 200 from the respective power generation facilities P1 and P2. An output control device for the hybrid power generation system 100 to be supplied to each of the points 210. The hybrid power generation system 100 has an interconnection contract capacity set as an upper limit of the total supply power values at the interconnection point 210. Considering the transmission loss in the data acquisition unit 111 that acquires the first generated power value output from the first power generation facility P1, and the electric wires C1 and C2 that connect the power generation facilities P1 and P2 to the interconnection point 210. Therefore, the total power supply value at the interconnection point 210 does not exceed the interconnection contract capacity, and the total power generation value at the first power generation facility P1 and the second power generation facility P2 is the interconnection contract capacity. The second power generation facility P2 is provided with a calculation unit 112 for calculating the power generation value to be output so as to exceed the above. With this configuration, the total output of the first power generation facility P1 and the second power generation facility P2 can be further increased without exceeding the interconnection contract capacity.
 さらに、出力制御装置110は、第2発電設備P2が出力する電力値が計算部112が算出した電力値になるように、第2発電設備P2が出力する電力を制御する。 Further, the output control device 110 controls the power output by the second power generation facility P2 so that the power value output by the second power generation facility P2 becomes the power value calculated by the calculation unit 112.
 以下、計算部112が、第2発電設備P2が出力すべき電力値を算出する計算方法の例を説明する。 Hereinafter, an example of a calculation method in which the calculation unit 112 calculates the power value to be output by the second power generation facility P2 will be described.
 (計算方法1)
 図2は、第1の計算方法に基づいて第2発電設備P2の出力を算出する場合のフローチャートである。
(Calculation method 1)
FIG. 2 is a flowchart in the case of calculating the output of the second power generation facility P2 based on the first calculation method.
 (ステップS301)
 ステップS301において、データ取得部111は、メータM1、メータM2及びメータM3にて測定された電力値をそれぞれ取得して計算部112に渡す。なお、データ取得部111は、メータM1及びメータM2にて測定された電力値に代えて、それぞれ計測監視装置120及び130が第1発電設備P1及び第2発電設備P2にそれぞれ設定した出力電力値を取得してもよい。
(Step S301)
In step S301, the data acquisition unit 111 acquires the power values measured by the meters M1, the meter M2, and the meter M3, respectively, and passes them to the calculation unit 112. In the data acquisition unit 111, the output power values set by the measurement monitoring devices 120 and 130 in the first power generation facility P1 and the second power generation facility P2, respectively, instead of the power values measured by the meters M1 and M2, respectively. May be obtained.
 (ステップS302)
 ステップS302において、計算部112は、メータM1での電力値とメータM2での電力値を加算した値からメータM3での電力値を減算し、電線C1および電線C2におけるロス見込み電力値を算出する。
(Step S302)
In step S302, the calculation unit 112 subtracts the power value of the meter M3 from the sum of the power value of the meter M1 and the power value of the meter M2, and calculates the estimated loss power value of the electric wires C1 and C2. ..
 (ステップS303)
 ステップS303において、計算部112は、記憶部113から連系契約容量を読み込む。
(Step S303)
In step S303, the calculation unit 112 reads the interconnection contract capacity from the storage unit 113.
 (ステップS304)
 ステップS304において、計算部112は、連系契約容量とロス見込み電力値を加算した値からメータM1における電力値を減算することで、第2発電設備P2の出力上限値を算出する。算出された第2発電設備P2の出力上限値は、例えば記憶部113に保持されてもよい。
(Step S304)
In step S304, the calculation unit 112 calculates the output upper limit value of the second power generation facility P2 by subtracting the power value in the meter M1 from the value obtained by adding the interconnection contract capacity and the estimated loss power value. The calculated output upper limit value of the second power generation facility P2 may be held in the storage unit 113, for example.
 (ステップS305)
 ステップS305において、出力制御部114は、計測監視装置130を通じ、第2発電設備P2の出力を前記出力上限値に設定する。
(Step S305)
In step S305, the output control unit 114 sets the output of the second power generation facility P2 to the output upper limit value through the measurement monitoring device 130.
 以上のように、計算方法1を用いる場合、出力制御装置110は、データ取得部111が、前記第1発電設備P1の発電電力値とともに、前記第2発電設備P2の発電電力値、および前記連系点210におけるそれぞれの供給電力値を取得し、計算部112が、前記第1発電設備P1の発電電力値と前記連系点210における電力値との差から、前記第1発電設備P1から前記連系点210までの電線C1においてロスする電力値を算出するとともに、前記第2発電設備P2の発電電力値と前記連系点210における電力値との差から、前記第2発電設備P2から前記連系点210までの電線C2においてロスする電力値を算出し、前記連系契約容量と前記各電線C1及びC2においてロスする電力値との和から、前記第1発電設備P1の発電電力を減算して、前記第2発電設備P2が出力すべき電力値を算出する。この構成により、電力値の実測値に応じて、電線C1、C2によるロスを考慮した第1発電設備P1および第2発電設備P2の出力制御ができる。 As described above, when the calculation method 1 is used, in the output control device 110, the data acquisition unit 111 has the power generation value of the first power generation facility P1, the power generation value of the second power generation facility P2, and the continuous power generation facility P2. Each supply power value at the system point 210 is acquired, and the calculation unit 112 obtains the power value from the first power generation facility P1 based on the difference between the power generation value of the first power generation facility P1 and the power value at the interconnection point 210. The power value lost in the electric wire C1 up to the interconnection point 210 is calculated, and from the difference between the power generation value of the second power generation facility P2 and the power value at the interconnection point 210, the second power generation facility P2 to the said The power value lost in the electric wire C2 up to the interconnection point 210 is calculated, and the generated power of the first power generation facility P1 is subtracted from the sum of the interconnection contract capacity and the electric power value lost in the electric wires C1 and C2. Then, the power value to be output by the second power generation facility P2 is calculated. With this configuration, the output of the first power generation facility P1 and the second power generation facility P2 can be controlled in consideration of the loss due to the electric wires C1 and C2 according to the measured value of the electric power value.
 (計算方法2)
 図3は、第2の計算方法に基づいて第2発電設備P2の出力を算出する場合のフローチャートである。なお、前出のステップと同じステップについては、説明を繰り返さない。
(Calculation method 2)
FIG. 3 is a flowchart in the case of calculating the output of the second power generation facility P2 based on the second calculation method. The same steps as those mentioned above will not be repeated.
 (ステップS3011)
 ステップS3011において、データ取得部111は、メータM1及びメータM2から、各メータでの電力値、電圧をそれぞれ取得して計算部112に渡す。なお、データ取得部111は、メータM1及びメータM2にて測定された電力値及び電圧に代えて、それぞれ計測監視装置120及び130が第1発電設備P1及び第2発電設備P2にそれぞれ設定した出力電力値及び電圧を取得してもよい。
(Step S3011)
In step S3011, the data acquisition unit 111 acquires the power value and voltage of each meter from the meters M1 and M2, and passes them to the calculation unit 112. The data acquisition unit 111 has outputs set by the measurement monitoring devices 120 and 130 in the first power generation facility P1 and the second power generation facility P2, respectively, instead of the power values and voltages measured by the meters M1 and M2. The power value and voltage may be acquired.
 (ステップS3032)
 ステップS3032において、計算部112は、電線C1および電線C2におけるロス見込み電力値をそれぞれ算出する。ここでは、一例として、電線C1におけるロス率を算出する。計算部112は、記憶部113に保存された電線C1の設計値を読み込む。電線C1の設計値は、抵抗が1kmあたり0.124Ω、長さが5kmであるとする。また、メータM1での計測値は、電力値が10MW、電圧が22kVであるとする。この場合、第1発電設備P1から連系点210までの電線C1におけるロス見込み電力値は以下のように算出される。
(Step S3032)
In step S3032, the calculation unit 112 calculates the estimated loss power values of the electric wires C1 and C2, respectively. Here, as an example, the loss rate in the electric wire C1 is calculated. The calculation unit 112 reads the design value of the electric wire C1 stored in the storage unit 113. The design value of the electric wire C1 is that the resistance is 0.124Ω per 1km and the length is 5km. Further, it is assumed that the measured value with the meter M1 is a power value of 10 MW and a voltage of 22 kV. In this case, the estimated loss power value in the electric wire C1 from the first power generation facility P1 to the interconnection point 210 is calculated as follows.
 幹線電流は、10MW÷(22kV×√3)=262Aである。抵抗値は、0.124(Ω/km)×5(km)=0.62Ωである。そこで、電圧降下は、0.62(Ω)×262(A)×√3=281.35Vである。したがって、ロス見込み電力値は、281.35×262(A)×√3=127676Wとなる。 The main line current is 10 MW ÷ (22 kV × √3) = 262 A. The resistance value is 0.124 (Ω / km) × 5 (km) = 0.62Ω. Therefore, the voltage drop is 0.62 (Ω) × 262 (A) × √3 = 281.35V. Therefore, the estimated loss power value is 281.35 × 262 (A) × √3 = 127676W.
 (ステップS303~S305)
 ステップS303からステップS305までは、図2と同様である。
(Steps S303 to S305)
Steps S303 to S305 are the same as in FIG.
 なお、上記の計算例では、力率を1.0とした。しかし、ステップS3011において、データ取得部111がメータM1及びメータM2にて計測された各力率を取得し、ステップS3021において、計算部112が各力率を考慮して計算を行ってもよい。このように力率を考慮することで、電線C1、C2におけるロス見込み電力値および第2発電設備P2の出力上限値をより正確に算出することができる。 In the above calculation example, the power factor was set to 1.0. However, in step S3011, the data acquisition unit 111 may acquire each power factor measured by the meters M1 and M2, and in step S3021, the calculation unit 112 may perform the calculation in consideration of each power factor. By considering the power factor in this way, the estimated loss power value in the electric wires C1 and C2 and the output upper limit value of the second power generation facility P2 can be calculated more accurately.
 また、メータM1、M2での計測値に対応するロス見込み電力値は、図4のように、あらかじめ算出しておくことができる。そこで、図4のようなデータを記憶部113に保存しておき、メータM1、M2での計測値に応じて基づいてロス見込み電力値を読み取っても良い。図4の「第1発電設備P1」の1行目が、上記の計算例にあたる。 Further, the estimated loss power value corresponding to the measured value with the meters M1 and M2 can be calculated in advance as shown in FIG. Therefore, the data as shown in FIG. 4 may be stored in the storage unit 113, and the estimated loss power value may be read based on the measured values of the meters M1 and M2. The first line of "first power generation facility P1" in FIG. 4 corresponds to the above calculation example.
 以上のように、計算方法2を用いる場合、出力制御装置110は、データ取得部111が、前記第1発電設備P1の発電電力値とともに、前記第2発電設備P2の発電電力値を取得し、計算部112が、前記第1発電設備P1の発電電力値、前記第2発電設備P2の発電電力値、および、前記各電線C1及びC2の設計値に基づいて、前記各電線C1及びC2においてロスする電力値を算出し、前記連系契約容量と前記各電線C1及びC2においてロスする電力値との和から、前記第1発電設備P1の発電電力値を減算して、前記第2発電設備P2が出力すべき電力値を算出する。この構成により、メータM3を利用できない場合でも、電線C1、C2によるロスを考慮した第1発電設備P1および第2発電設備P2の出力制御ができる。 As described above, when the calculation method 2 is used, in the output control device 110, the data acquisition unit 111 acquires the power generation value of the second power generation facility P2 together with the power generation value of the first power generation facility P1. The calculation unit 112 loses in the electric wires C1 and C2 based on the power generation value of the first power generation facility P1, the power generation value of the second power generation facility P2, and the design values of the electric wires C1 and C2. The power value to be generated is calculated, and the generated power value of the first power generation facility P1 is subtracted from the sum of the interconnection contract capacity and the power value lost in each of the electric wires C1 and C2 to obtain the second power generation facility P2. Calculates the power value to be output. With this configuration, even when the meter M3 cannot be used, the output of the first power generation facility P1 and the second power generation facility P2 can be controlled in consideration of the loss due to the electric wires C1 and C2.
 (計算方法3)
 図5は、第3の計算方法に基づいて第2発電設備P2の出力を算出する場合のフローチャートである。なお、前出のステップと同じステップについては、説明を繰り返さない。
(Calculation method 3)
FIG. 5 is a flowchart in the case of calculating the output of the second power generation facility P2 based on the third calculation method. The same steps as those mentioned above will not be repeated.
 (ステップS3012)
 ステップS3012において、データ取得部111は、メータM1にて測定された電力値、電圧、並びにメータM2にて測定された電圧の値をそれぞれ取得して計算部112に渡す。なお、データ取得部111は、メータM1及びメータM2にて測定された電力値及び電圧に代えて、それぞれ計測監視装置120及び130が第1発電設備P1及び第2発電設備P2にそれぞれ設定した出力電力値及び電圧を取得してもよい。
(Step S3012)
In step S3012, the data acquisition unit 111 acquires the power value and the voltage measured by the meter M1 and the voltage value measured by the meter M2, and passes them to the calculation unit 112. The data acquisition unit 111 has outputs set by the measurement monitoring devices 120 and 130 in the first power generation facility P1 and the second power generation facility P2, respectively, instead of the power values and voltages measured by the meters M1 and M2. The power value and voltage may be acquired.
 (ステップS3032)
 ステップS3032において、計算部112は、記憶部113から連系契約容量及び電線C1、C2の抵抗値を読み込む。
(Step S3032)
In step S3032, the calculation unit 112 reads the interconnection contract capacity and the resistance values of the electric wires C1 and C2 from the storage unit 113.
 なお、電線C1、C2の抵抗値は、メータM1、M2以外のハイブリッド発電システム100の外部に設けられたセンサーによる計測値を用いて算出してもよい。これにより、より精度の高い抵抗値を用いて、第2発電設備P2の出力上限値を算出することが可能となる。 The resistance values of the electric wires C1 and C2 may be calculated by using the measured values by the sensors provided outside the hybrid power generation system 100 other than the meters M1 and M2. This makes it possible to calculate the output upper limit value of the second power generation facility P2 using a more accurate resistance value.
 (ステップS3042)
 ステップS3042において、計算部112は、以下の数式(10)(11)を演算することにより、第2発電設備P2の出力上限値を算出する。
(Step S3042)
In step S3042, the calculation unit 112 calculates the output upper limit value of the second power generation facility P2 by calculating the following mathematical formulas (10) and (11).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、上記数式(10)(11)は、以下の数式によって導出される。数式中の記号は以下のとおりである。
S:連系契約容量[W]
:第1発電設備P1の発電設備の出力[W]
:第2発電設備P2の発電設備の出力[W]
:第1発電設備P1の発電設備の電圧[V]
:第2発電設備P2の発電設備の電圧[V]
:第1発電設備P1から連系点210までのロス[W]
:第2発電設備P2から連系点210までのロス[W]
:第1発電設備P1から流れる電流[A]
:第2発電設備P2から流れる電流[A]
:第1発電設備P1から連系点210までの電線の抵抗値[Ω]
:第2発電設備P2から連系点210までの電線の抵抗値[Ω]
なお、電線C1、C2の導体温度の変化速度は極めて遅いため、温度変化による抵抗値の変化は無視するものとする。
The above mathematical formulas (10) and (11) are derived by the following mathematical formulas. The symbols in the formula are as follows.
S: Interconnection contract capacity [W]
Sw : Output of the power generation facility of the first power generation facility P1 [W]
Sp : Output of the power generation facility of the second power generation facility P2 [W]
V W : Voltage of the power generation facility of the first power generation facility P1 [V]
V p : Voltage of the power generation facility of the second power generation facility P2 [V]
L W : Loss from the first power generation facility P1 to the interconnection point 210 [W]
L p : Loss from the second power generation facility P2 to the interconnection point 210 [W]
I W : Current flowing from the first power generation facility P1 [A]
I p : Current flowing from the second power generation facility P2 [A]
R W: resistance of the wire up to the interconnection point 210 from the first power plant P1 [Omega]
R p : Resistance value of the electric wire from the second power generation facility P2 to the interconnection point 210 [Ω]
Since the change rate of the conductor temperature of the electric wires C1 and C2 is extremely slow, the change in the resistance value due to the temperature change is ignored.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 数式(6)及び(7)を数式(1)に代入して、変形する。 Substitute mathematical formulas (6) and (7) into mathematical formula (1) to transform.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 数式(9)を解の公式に当てはめると、数式(10)及び(11)が得られる。 Applying mathematical formula (9) to the solution formula gives mathematical formulas (10) and (11).
 (ステップS305)
 ステップS305は、図2と同様である。
(Step S305)
Step S305 is the same as in FIG.
 なお、上記の計算例では、力率を1.0とした。しかし、ステップS3012において、データ取得部111がメータM1及びメータM2にて計測された各力率を取得し、ステップS3042において、計算部112が各力率を考慮して計算を行ってもよい。このように力率を考慮することで、電線C1、C2におけるロス見込み電力値および第2発電設備P2の出力上限値をより正確に算出することができる。 In the above calculation example, the power factor was set to 1.0. However, in step S3012, the data acquisition unit 111 may acquire each power factor measured by the meters M1 and M2, and in step S3042, the calculation unit 112 may perform the calculation in consideration of each power factor. By considering the power factor in this way, the estimated loss power value in the electric wires C1 and C2 and the output upper limit value of the second power generation facility P2 can be calculated more accurately.
 以上のように、計算方法3を用いる場合、出力制御装置110は、データ取得部111が、前記第1発電設備P1の発電電力値とともに、前記第1発電設備P1の発電電圧、前記第2発電設備P2の発電電圧を取得し、計算部112が、前記第1発電設備P1の発電電力値、前記第1発電設備P1の発電電圧、前記第2発電設備P2の発電電圧、前記各電線C1及びC2の抵抗値に基づいて、前記第2発電設備P2が出力すべき電力値を算出する。この構成により、ロス見込み量を算出することなく、ロスを見込んだ出力上限値を直接算出して、電線C1、C2によるロスを考慮した第1発電設備P1および第2発電設備P2の出力制御ができる。よって、より厳密な出力上限値を設定できる。 As described above, when the calculation method 3 is used, in the output control device 110, the data acquisition unit 111, together with the power generation value of the first power generation facility P1, the power generation voltage of the first power generation facility P1 and the second power generation. The power generation voltage of the facility P2 is acquired, and the calculation unit 112 determines the power generation value of the first power generation facility P1, the power generation voltage of the first power generation facility P1, the power generation voltage of the second power generation facility P2, the electric wires C1 and the electric wires C1. Based on the resistance value of C2, the power value to be output by the second power generation facility P2 is calculated. With this configuration, the output upper limit value in anticipation of loss is directly calculated without calculating the estimated loss amount, and the output control of the first power generation facility P1 and the second power generation facility P2 in consideration of the loss due to the electric wires C1 and C2 can be performed. it can. Therefore, a stricter output upper limit value can be set.
 図6は、第3の計算方法による計算結果を示す表である。図5のステップS3042において、計算部112は、上記計算の代わりに、記憶部113からこのような計算済みの表を読み込んで第2発電設備P2の出力上限値を算出してもよい。例えば、連系契約容量が10000kWであるとして、図6のパターン1においては、第1発電設備P1の出力が9000kWのとき、第2発電設備P2の出力上限値を1209.3943kWに設定すれば、連系点における合計出力は9999.3943kWとなり、連系契約容量を超えない最大出力となる。 FIG. 6 is a table showing the calculation results by the third calculation method. In step S3042 of FIG. 5, the calculation unit 112 may read such a calculated table from the storage unit 113 and calculate the output upper limit value of the second power generation facility P2 instead of the above calculation. For example, assuming that the interconnection contract capacity is 10000 kW, in pattern 1 of FIG. 6, when the output of the first power generation facility P1 is 9000 kW, if the output upper limit value of the second power generation facility P2 is set to 1209.3943 kW, The total output at the interconnection point is 9999.3943 kW, which is the maximum output that does not exceed the interconnection contract capacity.
 〔変形例〕
 本実施形態では、データ取得部111が第1発電設備P1の発電電力値をメータM1から取得する場合について説明した。しかし、第1発電設備P1の発電電力値を記憶部113に予め格納しておき、データ取得部111は記憶部113から第1発電設備P1の発電電力値を取得してもよい。このように、P1の発電設備の電力を固定値とし、記憶部113に予め格納しておくことで、メータからの読み取りが不要になる。なお、この場合でも、第2発電設備P2の電力値、電圧、抵抗値及び力率は、メータM2から取得される。
[Modification example]
In the present embodiment, the case where the data acquisition unit 111 acquires the generated power value of the first power generation facility P1 from the meter M1 has been described. However, the power generation value of the first power generation facility P1 may be stored in advance in the storage unit 113, and the data acquisition unit 111 may acquire the power generation value of the first power generation facility P1 from the storage unit 113. In this way, by setting the electric power of the power generation facility of P1 to a fixed value and storing it in the storage unit 113 in advance, reading from the meter becomes unnecessary. Even in this case, the power value, voltage, resistance value, and power factor of the second power generation facility P2 are acquired from the meter M2.
 また、ハイブリッド発電システム100は、第1発電設備P1を複数含んでいてもよい。さらに、該複数の発電設備および第2発電設備P2の発電設備の種類は異なっていてもよいし、すべて同一であってもよい。第1発電設備P1が複数である場合、該複数の第1発電設備P1からのそれぞれの出力を測定した値を1つにまとめることで、図1のメータM1での測定値と等価な値を得ることができる。また、該複数の第1発電設備P1からそれぞれの連系点に供給される出力を測定した値を1つにまとめることで、図1のメータM3での測定値と等価な値を得ることができる。そして、これら等価な値を用いることで、上述した計算方法1~3により、第2発電設備P2の出力を算出することができる。 Further, the hybrid power generation system 100 may include a plurality of first power generation facilities P1. Further, the types of the plurality of power generation facilities and the power generation facilities of the second power generation facility P2 may be different or all may be the same. When there are a plurality of first power generation facilities P1, the measured values of the respective outputs from the plurality of first power generation facilities P1 are combined into one to obtain a value equivalent to the value measured by the meter M1 in FIG. Obtainable. Further, by combining the measured values of the outputs supplied from the plurality of first power generation facilities P1 to the respective interconnection points into one, it is possible to obtain a value equivalent to the measured value with the meter M3 of FIG. it can. Then, by using these equivalent values, the output of the second power generation facility P2 can be calculated by the above-mentioned calculation methods 1 to 3.
 〔ソフトウェアによる実現例〕
 出力制御装置110(特に計算部112及び出力制御部114)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of realization by software]
The output control device 110 (particularly, the calculation unit 112 and the output control unit 114) may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software.
 後者の場合、出力制御装置110は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば少なくとも1つのプロセッサ(制御装置)を備えていると共に、前記プログラムを記憶したコンピュータ読み取り可能な少なくとも1つの記録媒体を備えている。そして、前記コンピュータにおいて、前記プロセッサが前記プログラムを前記記録媒体から読み取って実行することにより、本発明の目的が達成される。前記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。前記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、前記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、前記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して前記コンピュータに供給されてもよい。なお、本発明の一態様は、前記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the output control device 110 includes a computer that executes a program instruction, which is software that realizes each function. The computer includes, for example, at least one processor (control device) and at least one computer-readable recording medium that stores the program. Then, in the computer, the object of the present invention is achieved by the processor reading the program from the recording medium and executing the program. As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (Random Access Memory) or the like for expanding the program may be further provided. Further, the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. In addition, one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 〔まとめ〕
 本発明の態様1に係る出力制御装置は、1以上の第1発電設備、および第2発電設備から出力されたそれぞれの発電電力を、前記第1発電設備および前記第2発電設備から商用電力系統の連系点へそれぞれ供給する発電システムの出力制御装置であって、前記発電システムは、前記連系点における供給電力値の総和の上限値として連系契約容量が設定されており、前記第1発電設備の発電電力値を取得し、各発電設備と前記連系点とを接続する各電線における送電ロスを考慮して、前記連系点における供給電力値の総和が前記連系契約容量を上回らず、かつ、前記第1発電設備および前記第2発電設備における発電電力値の総和が前記連系契約容量を上回るように、前記第2発電設備が出力すべき発電電力値を算出する。
[Summary]
The output control device according to the first aspect of the present invention transfers the generated power output from one or more first power generation facilities and the second power generation facility to a commercial power system from the first power generation facility and the second power generation facility. The output control device of the power generation system to be supplied to each of the interconnection points of the above, and the power generation system has an interconnection contract capacity set as an upper limit of the total sum of the supply power values at the interconnection point. The total power supply value at the interconnection point exceeds the interconnection contract capacity in consideration of the transmission loss at each electric wire connecting each power generation facility and the interconnection point by acquiring the power generation value of the power generation facility. However, the power generation value to be output by the second power generation facility is calculated so that the total power generation value of the first power generation facility and the second power generation facility exceeds the interconnection contract capacity.
 前記の構成によれば、電線によるロスを考慮して、連系契約容量を超えずに各発電設備の出力の合計をより大きくできる。 According to the above configuration, the total output of each power generation facility can be made larger without exceeding the interconnection contract capacity in consideration of the loss due to the electric wire.
 本発明の態様2に係る出力制御装置は、前記態様1において、前記第1発電設備の発電電力値とともに、前記第2発電設備の発電電力値、および前記連系点におけるそれぞれの供給電力値を取得し、前記第1発電設備の発電電力値と前記連系点における電力値との差から、前記第1発電設備から前記連系点までの電線においてロスする電力値を算出するとともに、前記第2発電設備の発電電力値と前記連系点における電力値との差から、前記第2発電設備から前記連系点までの電線においてロスする電力値を算出し、前記連系契約容量と前記各電線においてロスする電力値との和から、前記第1発電設備の発電電力を減算して、前記第2発電設備が出力すべき電力値を算出してもよい。 In the first aspect, the output control device according to the second aspect of the present invention sets the generated power value of the first power generation facility, the generated power value of the second power generation facility, and the respective supply power values at the interconnection point. From the difference between the power generation value of the first power generation facility and the power value at the interconnection point, the power value lost in the electric wire from the first power generation facility to the interconnection point is calculated, and the first From the difference between the generated power value of the two power generation facilities and the power value at the interconnection point, the power value lost in the electric wire from the second power generation facility to the interconnection point is calculated, and the interconnection contract capacity and each of the above are calculated. The power generation value of the first power generation facility may be subtracted from the sum of the power value lost in the electric wire to calculate the power value to be output by the second power generation facility.
 前記の構成によれば、実測値に応じて、電線によるロスを考慮した発電設備の出力制御ができる。 According to the above configuration, the output of the power generation facility can be controlled in consideration of the loss due to the electric wire according to the measured value.
 本発明の態様3に係る出力制御装置は、前記態様1において、前記第1発電設備の発電電力値とともに、前記第2発電設備の発電電力値を取得し、前記第1発電設備の発電電力値、前記第2発電設備の発電電力値、および、前記各電線の設計値に基づいて、前記各電線においてロスする電力値を算出し、前記連系契約容量と前記各電線においてロスする電力値との和から、前記第1発電設備の発電電力値を減算して、前記第2発電設備が出力すべき電力値を算出してもよい。 In the first aspect, the output control device according to the third aspect of the present invention acquires the generated power value of the second power generation facility together with the generated power value of the first power generation facility, and obtains the generated power value of the first power generation facility. Based on the power generation value of the second power generation facility and the design value of each electric wire, the power value lost in each electric wire is calculated, and the interconnection contract capacity and the electric power value lost in each electric wire are used. The power generation value of the first power generation facility may be subtracted from the sum of the above to calculate the power value to be output by the second power generation facility.
 前記の構成によれば、連系点にて電力値を取得することができない場合でも、電線によるロスを考慮した発電設備の出力制御ができる。 According to the above configuration, even if the power value cannot be obtained at the interconnection point, the output of the power generation facility can be controlled in consideration of the loss due to the electric wire.
 本発明の態様4に係る出力制御装置は、前記態様1において、前記第1発電設備の発電電力値とともに、前記第1発電設備の発電電圧、前記第2発電設備の発電電圧を取得し、前記第1発電設備の発電電力値、前記第1発電設備の発電電圧、前記第2発電設備の発電電圧、前記各電線の抵抗値に基づいて、前記第2発電設備が出力すべき電力値を算出してもよい。 In the first aspect, the output control device according to the fourth aspect of the present invention acquires the power generation value of the first power generation facility, the power generation voltage of the first power generation facility, and the power generation voltage of the second power generation facility. The power value to be output by the second power generation facility is calculated based on the power generation value of the first power generation facility, the power generation voltage of the first power generation facility, the power generation voltage of the second power generation facility, and the resistance value of each electric wire. You may.
 前記の構成によれば、計算過程を抑えつつ電線によるロスを正確に考慮した発電設備の出力制御ができる。 According to the above configuration, it is possible to control the output of the power generation facility in consideration of the loss due to the electric wire while suppressing the calculation process.
 本発明の態様5に係る出力制御装置は、前記態様1から4において、前記算出した前記電力値に、前記第2発電設備が出力する電力を制御してもよい。 The output control device according to the fifth aspect of the present invention may control the electric power output by the second power generation facility to the calculated electric power value in the first to fourth aspects.
 前記の構成によれば、電線によるロスを考慮して、連系契約容量を超えずに各発電設備の出力の合計をより大きくできる。 According to the above configuration, the total output of each power generation facility can be made larger without exceeding the interconnection contract capacity in consideration of the loss due to the electric wire.
 本発明の態様6に係る出力制御装置は、前記態様1から5において、前記第2発電設備は、太陽光発電設備であってもよい。 In the output control device according to the sixth aspect of the present invention, in the first to fifth aspects, the second power generation facility may be a solar power generation facility.
 本発明の態様7に係る発電システムは、前記態様1から6の、出力制御装置と、前記第1発電設備と、前記第2発電設備と、前記第1発電設備の発電電力値を計測するメータと、を備えていてもよい。 The power generation system according to the seventh aspect of the present invention is a meter that measures the power generation values of the output control device, the first power generation facility, the second power generation facility, and the first power generation facility according to the first to sixth aspects. And may be provided.
 前記の構成によれば、前記態様1と同様の効果を奏する。 According to the above configuration, the same effect as that of the first aspect is obtained.
 本発明の態様8に係る出力制御方法は、1以上の第1発電設備、および第2発電設備から出力されたそれぞれの発電電力を、前記第1発電設備および前記第2発電設備から商用電力系統の連系点へそれぞれ供給する発電システムの出力制御方法であって、前記発電システムは、前記連系点における電力値の総和の上限値として連系契約容量が設定されており、前記第1発電設備の発電電力値を取得し、各発電設備と前記連系点とを接続する各電線におけるロスを考慮して、前記連系点における電力の総和が前記連系契約容量を上回らず、かつ、前記第1発電設備および前記第2発電設備の発電電力の総和が前記連系契約容量を上回るように、前記第2発電設備が出力すべき電力値を算出してもよい。前記の構成によれば、前記態様1と同様の効果を奏する。 In the output control method according to the eighth aspect of the present invention, the generated power output from one or more first power generation facilities and the second power generation facility is converted into a commercial power system from the first power generation facility and the second power generation facility. This is an output control method of a power generation system that supplies power to each of the interconnection points of the above, and the power generation system has an interconnection contract capacity set as an upper limit of the total power values at the interconnection points, and the first power generation Obtaining the power generation value of the equipment, and considering the loss in each electric wire connecting each power generation equipment and the interconnection point, the total power at the interconnection point does not exceed the interconnection contract capacity, and The power value to be output by the second power generation facility may be calculated so that the total power generated by the first power generation facility and the second power generation facility exceeds the interconnection contract capacity. According to the above configuration, the same effect as that of the first aspect is obtained.
 本発明の各態様に係る出力制御装置は、コンピュータによって実現してもよく、この場合には、コンピュータを前記出力制御装置が備える各部(ソフトウェア要素)として動作させることにより前記出力制御装置をコンピュータにて実現させる発電設備の出力制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The output control device according to each aspect of the present invention may be realized by a computer. In this case, the output control device is made into a computer by operating the computer as each part (software element) included in the output control device. The output control program of the power generation equipment and the computer-readable recording medium on which the output control program is recorded are also included in the scope of the present invention.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
100 ハイブリッド発電システム(発電システム)
110 出力制御装置
111 データ取得部
112 計算部
114 出力制御部
200 商用電力系統
210 連系点
C1、C2 電線
M1、M2、M3 メータ
P1 第1発電設備
P2 第2発電設備
100 hybrid power generation system (power generation system)
110 Output control device 111 Data acquisition unit 112 Calculation unit 114 Output control unit 200 Commercial power system 210 Interconnection points C1, C2 Wires M1, M2, M3 Meter P1 First power generation equipment P2 Second power generation equipment

Claims (10)

  1.  1以上の第1発電設備、および第2発電設備から出力されたそれぞれの発電電力を、前記第1発電設備および前記第2発電設備から商用電力系統の連系点へそれぞれ供給する発電システムの出力制御装置であって、
     前記発電システムは、前記連系点における供給電力値の総和の上限値として連系契約容量が設定されており、
     前記第1発電設備の発電電力値を取得し、
     各発電設備と前記連系点とを接続する各電線における送電ロスを考慮して、前記連系点における供給電力値の総和が前記連系契約容量を上回らず、かつ、前記第1発電設備および前記第2発電設備における発電電力値の総和が前記連系契約容量を上回るように、前記第2発電設備が出力すべき発電電力値を算出する、出力制御装置。
    The output of the power generation system that supplies the generated power output from one or more first power generation facilities and the second power generation facility to the interconnection points of the commercial power system from the first power generation facility and the second power generation facility, respectively. It ’s a control device,
    In the power generation system, the interconnection contract capacity is set as the upper limit of the total sum of the power supply values at the interconnection point.
    Obtain the power generation value of the first power generation facility and
    Considering the transmission loss in each electric wire connecting each power generation facility and the interconnection point, the total power supply value at the interconnection point does not exceed the interconnection contract capacity, and the first power generation facility and the first power generation facility and An output control device that calculates the power generation value to be output by the second power generation facility so that the total power generation value of the second power generation facility exceeds the interconnection contract capacity.
  2.  前記第1発電設備の発電電力値とともに、前記第2発電設備の発電電力値、および前記連系点におけるそれぞれの供給電力値を取得し、
      前記第1発電設備の発電電力値と前記連系点における電力値との差から、前記第1発電設備から前記連系点までの電線においてロスする電力値を算出するとともに、
      前記第2発電設備の発電電力値と前記連系点における電力値との差から、前記第2発電設備から前記連系点までの電線においてロスする電力値を算出し、
      前記連系契約容量と前記各電線においてロスする電力値との和から、前記第1発電設備の発電電力を減算して、前記第2発電設備が出力すべき電力値を算出する、請求項1に記載の出力制御装置。
    The power generation value of the first power generation facility, the power generation value of the second power generation facility, and the respective supply power values at the interconnection point are acquired.
    From the difference between the generated power value of the first power generation facility and the power value at the interconnection point, the power value lost in the electric wire from the first power generation facility to the interconnection point is calculated, and the power value is calculated.
    From the difference between the generated power value of the second power generation facility and the power value at the interconnection point, the power value lost in the electric wire from the second power generation facility to the interconnection point is calculated.
    Claim 1 for calculating the power value to be output by the second power generation facility by subtracting the power generated by the first power generation facility from the sum of the interconnection contract capacity and the power value lost in each electric wire. The output control device described in.
  3.  前記第1発電設備の発電電力値とともに、前記第2発電設備の発電電力値を取得し、
     前記第1発電設備の発電電力値、前記第2発電設備の発電電力値、および、前記各電線の設計値に基づいて、前記各電線においてロスする電力値を算出し、
     前記連系契約容量と前記各電線においてロスする電力値との和から、前記第1発電設備の発電電力値を減算して、前記第2発電設備が出力すべき電力値を算出する、請求項1に記載の出力制御装置。
    Acquire the power generation value of the second power generation facility together with the power generation value of the first power generation facility.
    Based on the power generation value of the first power generation facility, the power generation value of the second power generation facility, and the design value of each electric wire, the power value lost in each electric wire is calculated.
    The claim that the power value to be output by the second power generation facility is calculated by subtracting the power generation value of the first power generation facility from the sum of the interconnection contract capacity and the power value lost in each electric wire. The output control device according to 1.
  4.  前記第1発電設備の発電電力値とともに、前記第1発電設備の発電電圧、前記第2発電設備の発電電圧を取得し、
     前記第1発電設備の発電電力値、前記第1発電設備の発電電圧、前記第2発電設備の発電電圧、前記各電線の抵抗値に基づいて、前記第2発電設備が出力すべき電力値を算出する、請求項1に記載の出力制御装置。
    Acquire the power generation voltage of the first power generation facility and the power generation voltage of the second power generation facility together with the power generation value of the first power generation facility.
    The power value to be output by the second power generation facility is calculated based on the power generation value of the first power generation facility, the power generation voltage of the first power generation facility, the power generation voltage of the second power generation facility, and the resistance value of each electric wire. The output control device according to claim 1, which is calculated.
  5.  前記算出した前記電力値に、前記第2発電設備が出力する電力を制御する、請求項1から4のいずれか1項に記載の出力制御装置。 The output control device according to any one of claims 1 to 4, which controls the power output by the second power generation facility to the calculated power value.
  6.  前記第2発電設備は、太陽光発電設備である、請求項1から5のいずれか1項に記載の出力制御装置。 The output control device according to any one of claims 1 to 5, wherein the second power generation facility is a solar power generation facility.
  7.  請求項1から6のいずれか1項に記載の出力制御装置と、前記第1発電設備と、前記第2発電設備と、前記第1発電設備の発電電力値を計測するメータと、を備える発電システム。 A power generation comprising the output control device according to any one of claims 1 to 6, the first power generation facility, the second power generation facility, and a meter for measuring the power generation value of the first power generation facility. system.
  8.  1以上の第1発電設備、および第2発電設備から出力されたそれぞれの発電電力を、前記第1発電設備および前記第2発電設備から商用電力系統の連系点へそれぞれ供給する発電システムの出力制御方法であって、
     前記発電システムは、前記連系点における供給電力値の総和の上限値として連系契約容量が設定されており、
     前記第1発電設備の発電電力値を取得し、
     各発電設備と前記連系点とを接続する各電線におけるロスを考慮して、前記連系点における電力の総和が前記連系契約容量を上回らず、かつ、前記第1発電設備および前記第2発電設備の発電電力の総和が前記連系契約容量を上回るように、前記第2発電設備が出力すべき電力値を算出する、出力制御方法。
    The output of the power generation system that supplies the generated power output from one or more first power generation facilities and the second power generation facility to the interconnection points of the commercial power system from the first power generation facility and the second power generation facility, respectively. It ’s a control method,
    In the power generation system, the interconnection contract capacity is set as the upper limit of the total sum of the power supply values at the interconnection point.
    Obtain the power generation value of the first power generation facility and
    Considering the loss in each electric wire connecting each power generation facility and the interconnection point, the total power at the interconnection point does not exceed the interconnection contract capacity, and the first power generation facility and the second An output control method for calculating a power value to be output by the second power generation facility so that the total power generated by the power generation facility exceeds the interconnection contract capacity.
  9.  請求項1に記載の出力制御装置としてコンピュータを機能させるための制御プログラムであって、コンピュータに請求項1の処理を実行させるための制御プログラム。 A control program for operating a computer as the output control device according to claim 1, and a control program for causing the computer to execute the process of claim 1.
  10.  請求項9に記載の制御プログラムを記録した、コンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the control program according to claim 9 is recorded.
PCT/JP2020/016615 2019-04-22 2020-04-15 Output control device, power generation system, output control method, control program, and recording medium WO2020218126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-081266 2019-04-22
JP2019081266A JP6921892B2 (en) 2019-04-22 2019-04-22 Output control device, power generation system, output control method, control program, and recording medium

Publications (1)

Publication Number Publication Date
WO2020218126A1 true WO2020218126A1 (en) 2020-10-29

Family

ID=72937509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016615 WO2020218126A1 (en) 2019-04-22 2020-04-15 Output control device, power generation system, output control method, control program, and recording medium

Country Status (2)

Country Link
JP (1) JP6921892B2 (en)
WO (1) WO2020218126A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166608A (en) * 2004-12-08 2006-06-22 Kansai Electric Power Co Inc:The Power transmission and distribution method
JP2009261076A (en) * 2008-04-15 2009-11-05 Hitachi Engineering & Services Co Ltd Wind power station
JP2018042295A (en) * 2016-09-05 2018-03-15 株式会社日立パワーソリューションズ Power generation system using renewable energy and control method therefor, and interconnection generation power extension method for power generation system using renewable energy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166608A (en) * 2004-12-08 2006-06-22 Kansai Electric Power Co Inc:The Power transmission and distribution method
JP2009261076A (en) * 2008-04-15 2009-11-05 Hitachi Engineering & Services Co Ltd Wind power station
JP2018042295A (en) * 2016-09-05 2018-03-15 株式会社日立パワーソリューションズ Power generation system using renewable energy and control method therefor, and interconnection generation power extension method for power generation system using renewable energy

Also Published As

Publication number Publication date
JP6921892B2 (en) 2021-08-18
JP2020178516A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
EP3446133B1 (en) Method of determining mutual voltage sensitivity coefficients between a plurality of measuring nodes of an electric power network
Sun et al. On-line power system inertia calculation using wide area measurements
CN108370157B (en) Method of controlling power distribution
CN109791394B (en) Method for resynchronization of a microgrid based on participation factors
JP6163494B2 (en) Power converter and method for controlling power converter
CN106063070B (en) Method and system for injecting or extracting power in electric power networks
CN105553115B (en) Method and system and non-transient computer-readable media for the primary side voltage for determining distribution transformer
CN109478085A (en) Microgrid power power flow monitor and control
Mehrtash et al. Reliability evaluation of power systems considering restructuring and renewable generators
CN109802442B (en) Method and control system for controlling a voltage source converter using power synchronous control
RU2605446C1 (en) Wind-driven power plant and method of electrical energy input
JP2006217742A (en) Voltage distribution calculation device of power distribution system, inter-zone load calculation device, and its method
EP3472912A1 (en) System and method for controlling a power generating unit
JP2015094752A (en) Transformer connection phase determination device, method, and program
CN107069718A (en) The low-voltage distribution network line loss calculation method influenceed based on three-phase imbalance on line loss
CN110492524A (en) Active-control method for frequency and system without the communication soft direct join net of marine wind electric field
US20170180006A1 (en) Power Sharing for DC Microgrids
Saberi et al. A heuristic benders-decomposition-based algorithm for transient stability constrained optimal power flow
Li et al. Pseudo-dynamic network modeling for PMU-based state estimation of hybrid AC/DC grids
WO2015190434A1 (en) Impedance estimation device and estimation method for power distribution line
KR20150059313A (en) Auto Generation Control Method based on maximum power transmission
Othman et al. A novel smart meter technique for voltage and current estimation in active distribution networks
WO2022151701A1 (en) Automatic control method and apparatus for voltage of transformer substation
Weber et al. Case study of designing a locally distributed real-time simulation infrastructure
WO2020218126A1 (en) Output control device, power generation system, output control method, control program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795176

Country of ref document: EP

Kind code of ref document: A1