WO2020217782A1 - Negative electrode addditive for alkaline battery, and alkaline battery - Google Patents

Negative electrode addditive for alkaline battery, and alkaline battery Download PDF

Info

Publication number
WO2020217782A1
WO2020217782A1 PCT/JP2020/011677 JP2020011677W WO2020217782A1 WO 2020217782 A1 WO2020217782 A1 WO 2020217782A1 JP 2020011677 W JP2020011677 W JP 2020011677W WO 2020217782 A1 WO2020217782 A1 WO 2020217782A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
negative electrode
alkaline battery
additive
group
Prior art date
Application number
PCT/JP2020/011677
Other languages
French (fr)
Japanese (ja)
Inventor
興滋 加峰
孝之 中野
亜耶 竹村
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Publication of WO2020217782A1 publication Critical patent/WO2020217782A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to an additive for the negative electrode of an alkaline battery and an alkaline battery. More specifically, the present invention relates to a negative electrode additive for primary and secondary alkaline batteries having a negative electrode material mainly composed of an alkaline electrolytic solution and zinc powder, and an alkaline battery using the same.
  • the negative electrode material of an alkaline battery has been a high-concentration alkaline electrolytic solution (containing a high-concentration potassium hydroxide aqueous solution and, if necessary, zinc oxide, etc.), zinc powder and / or zinc alloy powder (in the present specification).
  • Zinc powder, etc. is used as the main component.
  • Zinc powder or the like in the alkaline electrolytic solution tends to settle, and a gelling agent may be further used for the purpose of preventing this.
  • the alkali metal salt powder of high degree of polymerization crosslinked polyacrylic acid can be used alone, or the alkali metal salt powder of high degree of polymerization crosslinked polyacrylic acid having a thickening effect and the alkali metal of carboxymethyl cellulose can be used.
  • Those using a salt in combination have been proposed (for example, Patent Document 1).
  • a compound having a thickening action such as crosslinked poly (meth) acrylic acid having different particle diameters and salts thereof is mixed and used as a gelling agent (see, for example, Patent Document 2).
  • the present invention has been made in view of these problems, and an object of the present invention is to have excellent sedimentation prevention properties such as zinc powder in an alkaline electrolytic solution, and to use one material without using a plurality of materials. It is an object of the present invention to provide an additive for a negative electrode of an alkaline battery capable of exhibiting performance.
  • the present invention contains a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes (a1) by hydrolysis and a cross-linked polymer (A) containing a cross-linking agent (b) as an essential constituent monomer unit.
  • the amount of the soluble component of the crosslinked polymer (A) in 0.9% by weight of physiological saline (hereinafter, also simply referred to as physiological saline) is 5 to 40% by weight based on the weight of (A).
  • the ratio (Mw / Mn) of (Mw) is 4.0 to 6.0, and the chromatography of the gel permeation chromatography method obtained for the soluble component of the crosslinked polymer (A) in physiological saline
  • the ratio of the area of soluble components having a molecular weight of 100,000 or less to the total area of the gram is 50% or less;
  • the viscosity of a mixed solution prepared by adding 2% by weight of the negative electrode additive (G) for an alkaline battery to a 40% by weight aqueous potassium hydroxide solution at 25 ° C. is 10 to 60 Pa ⁇ s.
  • the negative electrode additive (G) for the alkaline battery of the present invention and the alkaline battery using the additive (G) have the following effects.
  • the negative electrode additive (G) for the alkaline battery of the present invention is excellent in preventing the precipitation of zinc powder and the like in the negative electrode material. Therefore, when used in an alkaline battery, it is possible to produce a battery having extremely excellent discharge duration and impact resistance over a long period of time with a small amount.
  • the negative electrode additive (G) for the alkaline battery of the present invention can exhibit performance with one material without using a plurality of materials, the battery production process can be reduced as much as possible, and the production cost can be reduced. Excellent in terms of.
  • the negative electrode material to which the negative electrode additive (G) for the alkaline battery of the present invention is added has an appropriate viscosity at the time of filling, and the negative electrode material is easily drained. Therefore, since there is little variation in the filling amount of the negative electrode material per battery, it is possible to produce a battery having uniform quality even during mass production. Further, even in a small battery, the negative electrode material can be filled uniformly and at high speed, so that a battery having uniform quality can be produced.
  • the negative electrode additive (G) of the alkaline battery of the present invention is also a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) which becomes (a1) by hydrolysis (hereinafter, hydrolyzable vinyl monomer (a2)). ) And the cross-linking polymer (A) containing the cross-linking agent (b) as an essential constituent monomer.
  • the water-soluble vinyl monomer means a vinyl monomer having a property of dissolving at least 100 g in 100 g of water at 25 ° C.
  • the water-soluble vinyl monomer (a1) and / or the hydrolyzable vinyl monomer (a2) is not particularly limited, and examples thereof include the water-soluble radical polymerization monomer described in JP-A-2005-075982.
  • the water-soluble vinyl monomer (a1) is preferable, more preferably an anionic vinyl monomer, and particularly preferably a vinyl group-containing carboxylic acid (salt) having 3 to 30 carbon atoms ⁇ unsaturated monocarboxylic acid).
  • Acids (salts) [(meth) acrylic acid, crotonic acid, cinnamic acid and their salts, etc.]; unsaturated dicarboxylic acids (salts) (maleic acid, fumaric acid, citraconic acid, itaconic acid and their salts, etc.); and Monoalkyl (1 to 8 carbon atoms) ester of unsaturated dicarboxylic acid (maleic acid monobutyl ester, fumaric acid monobutyl ester, maleic acid ethylcarbitol monoester, fumaric acid ethylcarbitol monoester, citraconic acid mono Butyl esters, itaconic acid glycol monoesters, etc. ⁇ , especially unsaturated monocarboxylic acids (salts), most preferably acrylic acids (salts).
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid
  • “... acid (salt)” means "... acid” and / or “... acid acid”.
  • the salt include alkali metal salts such as potassium, sodium and lithium, and alkaline earth metal salts such as calcium.
  • the unit derived from the water-soluble vinyl monomer (a1) may be an unneutralized product or a neutralized product (unit of a water-soluble vinyl monomer salt). Further, it is preferable that the crosslinked polymer (A) is partially or completely neutralized from the viewpoint of reducing adhesiveness, improving dispersibility, and workability in producing the crosslinked polymer (A).
  • alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and lithium hydroxide, and water are used.
  • An alkaline earth metal hydroxide such as calcium oxide or an aqueous solution thereof may be added to the monomer stage before the polymerization or the hydrogel after the polymerization, but the alkaline and non-hydrolyzable cross-linking agent (b2) described later has poor water solubility.
  • the cross-linking agent (b2) is separated from the monomer aqueous solution even if a predetermined amount of the cross-linking agent (b2) is added, and the predetermined cross-linking cannot be performed.
  • the crosslinked polymer (A) may not be obtained, and the degree of neutralization of the water-soluble vinyl monomer (a1) is set to 0 to 30 mol%, and the crosslinking agent (b2) is also contained to carry out the polymerization. If necessary, it is more preferable to add an alkali metal hydroxide to the hydrogel to adjust the degree of neutralization.
  • the final degree of neutralization of the anionic vinyl monomer ⁇ anionic vinyl is preferably 0 to 90, more preferably 40 to 80, and particularly preferably 60 to 70. Within these ranges, the impact resistance and discharge characteristics of the negative electrode material are further improved.
  • the anionic base means a neutralized anionic group.
  • the contents of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are (a1), (a2) and alkaline and hydrolyzed from the viewpoint of the absorbability of the negative electrode additive (G) of the alkaline battery.
  • 98.0 to 99.90% by weight is preferable, and 99.0 to 99.85% by weight is particularly preferable, based on the total weight of the cross-linking agent (b1) and the alkaline and non-hydrolyzing cross-linking agent (b2). It is preferably 99.2 to 99.83% by weight.
  • water-soluble vinyl monomer (a1) and / or the hydrolyzable vinyl monomer (a2) one type may be used alone or two or more types may be used in combination.
  • water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are preferably used alone or in combination with (a2) from the viewpoint of the discharge characteristics of the alkaline battery.
  • a1) Alone is used when both the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent units, the molar ratio of the units derived from these vinyl monomers ⁇ (a1) / (a2) ⁇ is the alkaline battery. From the viewpoint of discharge characteristics, it is preferably 75/25 to 99/1, more preferably 85/15 to 98/2, and most preferably 90/10 to 95/5.
  • the crosslinked polymer (A) can contain other vinyl monomer (a3) copolymerizable with these as a constituent unit.
  • the other vinyl monomer (a3) may be used alone or in combination of two or more.
  • the other copolymerizable vinyl monomer (a3) is not particularly limited, and the hydrophobic vinyl monomer disclosed in paragraphs [0028] to [0029] of Japanese Patent No. 36485553, JP-A-2003- Hydrophobic vinyl monomers (such as the vinyl monomers disclosed in paragraph [0025] of Japanese Patent Application Laid-Open No. 165883 and paragraph [0058] of JP-A-2005-75982) can be used, and specifically, for example, (i) below. -(Iii) vinyl monomer and the like can be used.
  • Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, halogen-substituted styrene such as vinylnaphthalene and dichlorostyrene and the like.
  • Alkenes ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.
  • alkaziene butadiene and isoprene, etc.
  • (Iii) Alicyclic ethylenic monomer having 5 to 15 carbon atoms Monoethylene unsaturated monomer (pinene, limonene, inden, etc.); and polyethylene vinyl monomer [cyclopentadiene, bicyclopentadiene, ethylidene norbornene, etc.] and the like.
  • the content (mol%) of the other vinyl monomer (a3) unit in the copolymer (A) is the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit from the viewpoint of absorption performance and the like. Based on the total number of moles, 0 to 5 mol% is preferable, more preferably 0 to 3 mol%, particularly preferably 0 to 2 mol%, particularly preferably 0 to 1.5 mol%, and the absorption performance and the like. From the viewpoint, the content of the other vinyl monomer (a3) unit is most preferably 0 mol%.
  • the crosslinked polymer (A) is made into a crosslinked product by using a crosslinking agent (b).
  • the cross-linking agent (b) include a cross-linking agent (b1) that is alkaline and hydrolyzes, and a cross-linking agent (b2) that is alkaline and does not hydrolyze.
  • the term "leaving" of the alkaline electrolytic solution means that the negative electrode additive (G) of the alkaline battery and the alkaline electrolytic solution cannot be maintained in a substantially uniform mixed state, and the negative electrode additive (G) of the alkaline battery cannot be maintained. ) And the alkaline electrolytic solution are separated.
  • cross-linking agent (b1) that hydrolyzes alkaline “hydrolyzing with alkalinity” means that the unit derived from (b1) in the cross-linked polymer (A) has a hydrolyzable bond, and is hydrolyzable.
  • the bond may be a bond that the cross-linking agent (b1) originally has in the molecule ⁇ the cross-linking agent in this case is a cross-linking agent (b11) having a hydrolyzable bond in the molecule ⁇ , a cross-linked polymer.
  • the bond formed by the cross-linking reaction with the other monomer ⁇ (a1) or (a2) ⁇ constituting (A) may be hydrolyzed ⁇ the cross-linking agent in this case is cross-linked.
  • the bond formed is a hydrolyzable cross-linking agent (b12) ⁇ .
  • the hydrolyzable bond includes an ester bond, an amide bond and the like.
  • cross-linking agent (b11) having a hydrolyzable bond in the molecule examples include N, N'-methylenebisacrylamide, ethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, and trimethylolpropane tri (). 2 to 10 ethylenic properties in molecules such as meta) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate and polyglycerin (polymerization degree 3 to 13) polyacrylate. Examples thereof include copolymerizable cross-linking agents having an unsaturated bond.
  • cross-linking agent (b12) in which the bond formed by the cross-linking reaction is hydrolyzable examples include a polyvalent glycidyl compound (ethylene glycol diglycidyl ether, etc.), a polyvalent isocyanate compound (4,4'-diphenylmethane diisocyanate, etc.), and a polyvalent Examples thereof include reactive cross-linking agents that react with carboxylic acids typified by amine compounds (ethylene diamine, etc.) and polyhydric alcohol compounds (glycerin, etc.). The reactive cross-linking agent can react with (meth) acrylic acid (salt) to form an ester bond or an amide bond.
  • cross-linking agents (b1) that hydrolyze with alkali polyvalent acrylamide compounds and polyvalent acrylate compounds are preferable, and more preferable, from the viewpoint of viscosity stability of the negative electrode material to which the negative electrode additive (G) for an alkaline battery is added.
  • N N'-methylenebisacrylamide, ethylene glycol di (meth) acrylate, trimethylolpropantri (meth) acrylate and pentaerythritol tri (meth) acrylate, more preferably N, N'-methylenebisacrylamide, Ethylene glycol di (meth) acrylates, trimethyl propantri (meth) acrylates and ethylene glycol diglycidyl ethers, most preferably N, N'-methylenebisacrylamide and trimethyl propantri (meth) acrylates.
  • the alkaline, non-hydrolyzable cross-linking agent (b2) is a cross-linking agent that does not have a hydrolyzable bond in the molecule and does not generate a hydrolyzable bond by a cross-linking reaction.
  • a cross-linking agent (b2) include a cross-linking agent having two or more vinyl ether bonds (b21) and a cross-linking agent having two or more allyl ether bonds (b22).
  • it is a cross-linking agent having two or more allyl ether bonds from the viewpoint of reactivity and the like.
  • cross-linking agent (b21) having two or more vinyl ether bonds examples include ethylene glycol divinyl ether, 1,4-butanediol divinyl ether, 1,4-cyclohexanedimethanol divinyl ether, 1,6-hexanediol divinyl ether, and polyethylene.
  • examples thereof include glycol divinyl ether (polymerization degree 2 to 5), bisphenol A divinyl ether, pentaerythritol trivinyl ether, sorbitol trivinyl ether and polyglycerin (polymerization degree 3 to 13) polyvinyl ether.
  • Examples of the cross-linking agent (b22) having two or more allyl ether bonds include a cross-linking agent (b221) having two allyl groups in the molecule and containing no hydroxyl group, and a cross-linking agent (b221) having two allyl groups in the molecule and having a hydroxyl group.
  • Examples thereof include a cross-linking agent (b224) having 1 to 3 of.
  • the compatibility with the vinyl monomer (a1) and / or (a2) ⁇ particularly (meth) acrylic acid (salt) ⁇ is good, the uniformity of cross-linking is increased, and the addition to the negative electrode of an alkaline battery is performed.
  • the performance of the agent (G) is improved, and the long-term stability of the viscosity of the negative electrode material containing the negative electrode additive (G) for the alkaline battery is further excellent.
  • cross-linking agent (b221) having two allyl groups in the molecule and containing no hydroxyl group examples include 1,4-cyclohexanedimethanol diallyl ether, alkylene (2 to 5 carbon atoms) glycol diallyl ether, and polyalkylene (carbon number). 2 to 6) Glycol (weight average molecular weight: 100 to 4000) diallyl ether and the like can be mentioned.
  • Examples of the cross-linking agent (b222) having two allyl groups and 1 to 5 hydroxyl groups in the molecule include glycerin diallyl ether, trimethylolpropane diallyl ether, pentaerythritol diallyl ether, and polyglycerin (degree of polymerization 2 to 5). Examples thereof include diallyl ether and the like. Examples of the cross-linking agent (b223) having 3 to 10 allyl groups in the molecule and no hydroxyl group include trimethylolpropane triallyl ether, glycerin triallyl ether, pentaerythritol tetraallyl ether, and tetraallyloxyethane. Can be mentioned.
  • cross-linking agent (b224) having 3 to 10 allyl groups and 1 to 3 hydroxyl groups in the molecule examples include pentaerythritol triallyl ether, diglycerin triallyl ether, sorbitol triallyl ether, and polyglycerin (degree of polymerization). 3 to 13) Polyallyl ether and the like can be mentioned.
  • cross-linking agents (b2) Two or more kinds of cross-linking agents (b2) that are alkaline and do not hydrolyze may be used in combination.
  • the cross-linking agent (b2) having two or more allyl ether bonds is preferable, and more preferably, the cross-linking agent ⁇ (b222) and (b222) having 1 to 5 hydroxyl groups and 2 to 10 allyl groups.
  • b224) ⁇ particularly preferably a cross-linking agent (b224) having 3 to 10 allyl groups and 1 to 3 hydroxyl groups in the molecule, most preferably pentaerythritol triallyl ether, diglycerin triallyl ether and sorbitol tri. Allyl ether. It is preferable to use these cross-linking agents because they have good compatibility with the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) and can carry out efficient cross-linking.
  • the content of the cross-linking agent (b1) hydrolyzed by alkali in the cross-linking polymer (A) in the present invention depends on the type of the cross-linking agent (b1) and the average degree of polymerization, but the water-soluble vinyl monomer (a1) and Based on the total weight of the hydrolyzable vinyl monomer (a2), it is preferably 0.05 to 1% by weight, more preferably 0.1 to 0.8% by weight, and particularly preferably 0.1 to 0.5% by weight. is there. Within these ranges, excessive separation of the alkaline electrolytic solution can be prevented, so that the long-term discharge characteristics of the battery are further excellent.
  • the content of the cross-linking agent (b2) that is alkaline and does not hydrolyze in the cross-linking polymer (A) depends on the type of the cross-linking agent (b2), but is a water-soluble vinyl monomer (a1) and a hydrolyzable vinyl monomer (a2). ), It is preferably 0.05 to 1% by weight, more preferably 0.05 to 0.5% by weight, and particularly preferably 0.1 to 0.3% by weight, based on the total weight of). Within these ranges, the long-term discharge characteristics of the battery are further excellent.
  • the weight ratio [(b1) / (b2)] of the cross-linking agent (b1) in the cross-linking polymer (A) to the cross-linking agent (b2) is preferably 1 to 5, more preferably 1.7 to 4, particularly preferably. Is 1.9 to 3. Within these ranges, excessive separation of the alkaline electrolytic solution can be prevented, so that the long-term discharge characteristics of the battery are further excellent.
  • the total content of the cross-linking agent (b1) and the cross-linking agent (b2) is preferably 0.10 to 2.0 weight based on the total weight of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2). %, More preferably 0.30 to 1.0% by weight, and particularly preferably 0.40 to 0.8% by weight. Within these ranges, excessive separation of the alkaline electrolytic solution can be prevented, so that the long-term discharge characteristics of the battery are further excellent. Further, the stability of the negative electrode additive (G) of the alkaline battery is improved, and the long-term stability of the viscosity of the alkaline electrolytic solution containing the negative electrode additive (G) of the alkaline battery is further excellent.
  • the crosslinked polymer (A) is a monomer composition containing a water-soluble vinyl monomer (a1) and / or a hydrolyzable vinyl monomer (a2) and a crosslinking agent (b), which is an organic iodine compound, an organic tellurium compound, and an organic antimony. It can be obtained by polymerizing in the presence of at least one organic representative element compound selected from the group consisting of a compound and an organic bismuth compound. By adjusting the amount of the organic typical element compound used, the amount of the crosslinked polymer (A) soluble component in the physiological saline and the molecular weight of the crosslinked polymer (A) soluble component in the physiological saline are 100.
  • the ratio of the area of the soluble component having a molecular weight of 100,000 or less to the total area of the chromatogram of the ion chromatography method can be set in a desired range.
  • the organic iodine compound, the organic tellurium compound, the organic antimony compound, and the organic bismuth compound are not limited as long as they are organic typical element compounds that act as dormant species for radical polymerization, and the organic iodine compounds described as dormant species in WO2011 / 016166, WO2004.
  • the organic tellurium compound described in / 014848, the organic antimony compound described in WO2006 / 001496, the organic bismuth compound described in WO2006 / 062255, and the like can be used.
  • the organic main group element compound represented by the following general formula (1) is preferable from the viewpoint of reactivity.
  • These organic typical element compounds may be used alone or in combination of two or more.
  • R 1 and R 2 in the general formula (1) independently form a hydrogen atom, a saturated hydrocarbon group having 1 to 7 carbon atoms, or at least one non-additive polymerizable double bond or at least one non-additive polymerizable triple bond, respectively. It is a monovalent group having 1 to 7 carbon atoms, and R 3 is an n-valent saturated hydrocarbon group having 1 to 7 carbon atoms or at least one non-additive polymerizable double bond or at least one non-additive polymerizable triple bond.
  • n-valent group having a bond and having 2 to 12 carbon atoms except that at least one of R 1 to R 3 in one molecule is the above-mentioned corresponding non-additive polymerizable double bond or at least. It is a group having one non-additive polymerizable triple bond, n is an integer of 1 to 3, R 1 and R 2 may be bonded to each other when n is 1, and X 1 is a tellurium element.
  • the non-additive polymerizable double bond (hereinafter, also simply referred to as a non-polymerizable double bond) and the non-additive polymerizable triple bond (hereinafter, also simply referred to as a non-polymerizable triple bond) are unsaturated bonds.
  • the bonds excluding the addition polymerizable unsaturated bond (additional polymerizable carbon-carbon double bond and addition polymerizable carbon-carbon triple bond, respectively), and are non-additive polymerizable double bond and non-additive polymerizable double bond.
  • the triple bond includes a carbon-oxygen double bond contained in a carbonyl group, a carbon-nitrogen triple bond contained in a nitrile group, a carbon-carbon double bond constituting an aromatic hydrocarbon, and oxygen constituting a heteroaromatic compound.
  • -Nitrogen double bond, carbon-nitrogen double bond, etc. among which carbon-oxygen double bond contained in carbonyl group, carbon-nitrogen triple bond contained in nitrile group and carbon constituting aromatic hydrocarbon -Carbon double bonds are preferred.
  • the saturated hydrocarbon groups having 1 to 7 carbon atoms are linear saturated hydrocarbon groups having 1 to 7 carbon atoms (methyl group, ethyl).
  • a linear saturated hydrocarbon group having 1 to 5 carbon atoms is preferable from the viewpoint of solubility and polymeriz
  • R 1 and R 2 are monovalent groups having at least one non-polymerizable double bond or at least one non-polymerizable triple bond and having 1 to 7 carbon atoms
  • the preferred group is a carboxy (salt) group. (Carbon number 1, carbon-oxygen double bond), phenyl group (carbon number 6, non-polymerizable carbon-carbon double bond), cyano group (carbon number 1, carbon-nitrogen triple bond), cyanomethyl group (carbon number) 2.
  • Carbon-nitrogen triple bond Carbon-nitrogen triple bond), cyanoethyl group (3 carbons, carbon-nitrogen triple bond), cyanopropyl group (4 carbons, carbon-nitrogen triple bond), cyanobutyl group (5 carbons, carbon-nitrogen triple bond) ), Cyanopentyl group (6 carbons, carbon-nitrogen triple bond), cyanohexyl group (7 carbons, carbon-nitrogen triple bond), carboxymethyl group (2 carbons, carbon-oxygen double bond), carboxyethyl Group (3 carbons, carbon-oxygen double bond), carboxypropyl group (4 carbons, carbon-oxygen double bond), carboxybutyl group (5 carbons, carbon-oxygen double bond), carboxypentyl group (4 carbons, carbon-oxygen double bond) 6 carbons, carbon-oxygen double bond), carboxyhexyl group (7 carbons, carbon-oxygen double bond), benzyl group (7 carbons, non-polymerizable carbon-carbon double bond), methoxycarbonyl group (7 carbons,
  • the salt examples include alkali metal (lithium, sodium, potassium, etc.) salt, alkaline earth metal (magnesium, calcium, etc.) salt, ammonium (NH 4 ) salt, and the like.
  • alkali metal salt and an ammonium salt are preferable, and an alkali metal salt is more preferable, and a sodium salt is particularly preferable, from the viewpoint of the amount of absorption of a 40 wt% potassium hydroxide aqueous solution.
  • R 3 is an n-valent saturated hydrocarbon group having 1 to 7 carbon atoms or an n-valent group having 2 to 12 carbon atoms having at least one non-polymerizable double bond or at least one non-polymerizable triple bond.
  • N is an integer of 1 to 3.
  • n-valent saturated hydrocarbon group having 1 to 7 carbon atoms represented by R 3 1 valent The saturated hydrocarbon group, straight-chain saturated hydrocarbon group having 1 to 7 carbon atoms having 1 to 7 carbon atoms (Methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, heptyl group, etc.) and branched saturated hydrocarbon group with 1 to 7 carbon atoms (i-propyl group, isobutyl).
  • n-valent saturated hydrocarbon group having 1 to 7 carbon atoms represented by R 3 examples of the divalent saturated hydrocarbon group having 1 to 7 carbon atoms, a divalent straight-chain saturated having 1 to 7 carbon atoms A hydrocarbon group (methylene group, ethylene group, propylene group, butylene group, penten group, hexene group, heptene group, etc.) and a divalent branched saturated hydrocarbon group having 1 to 7 carbon atoms (isopropylene group, isobutylene group, s) -Butylene group, t-butylene group, isopentylene group, neopentylene group, t-pentylene group, 1-methylbutylene group, isohexylene group, s-hexylene group, t-hexylene group, neohexylene group, isoheptylene group, etc.).
  • the trivalent saturated hydrocarbon group having 1 to 7 carbon atoms includes a methine group and the like.
  • a methyl group, methylene group and methine group are preferred, more preferred is a methyl group and methylene group.
  • R 3 has at least one non-polymerizable double bond or at least one non-polymerizable triple bond and has 2 to 12 carbon atoms
  • the monovalent groups are R 1 and R 2 .
  • R 3 is a divalent group having at least one non-polymerizable double bond or at least one non-polymerizable triple bond and having 2 to 12 carbon atoms
  • a preferred group is a benzenediyl group (6 carbon atoms).
  • Non-polymerizable carbon-carbon double bond Non-polymerizable carbon-carbon double bond
  • 1-methoxycarbonyl-carbonyloxyethylene oxycarbonyl group (6 carbons, oxygen-oxygen double bond)
  • carbonyloxyethylene carbonyl group (4 carbons, oxygen-oxygen dibond) (Double bond) and the like.
  • R 3 is a trivalent group having at least one non-polymerizable double bond or at least one non-polymerizable triple bond and having 2 to 12 carbon atoms
  • a benzenetriyl group carbon number
  • Non-polymerizable carbon-carbon double bond and 2-carbonyloxy-carbonyloxypropylene carbonyl group (5 carbon atoms, oxygen-oxygen double bond) and the like.
  • R 1 and R 2 may be bonded to each other, and preferred groups having a ring structure formed by bonding R 1 and R 2 to each other are a ⁇ -butyrolactonyl group and Examples include a fluorenyl group.
  • the group in which R 1 and R 2 are bonded to each other to form a ring structure contains a carbon atom to which R 1 and R 2 are bonded in the ring structure.
  • X 1 is a monovalent main group or iodo group having a tellurium element, an antimony element or a bismuth element, preferably a methylteranyl group, a dimethylstibanyl group, a dimethylbismutanyl group and an iodine group, and more preferably.
  • those having an iodo group include 2-iodopropionitrile, 2-iodo-2-methylpropionitrile, ⁇ -iodobenzyl cyanide, and 2 -Iodopropionic acid amide, ethyl-2-iodo-2-methylpropionate, methyl 2-iodo-2-methylpropionic acid, propyl 2-iodo-2-methylpropionic acid, 2-iodo-2-methylpropionic acid Butyl, 2-iodo-2-methylpropionic acid pentyl, 2-iodo-2-methylpropionic acid hydroxyethyl, 2-iodo-2-methylpropionic acid (salt), 2-iodopropionic acid (salt), 2-iodine Acetic acid (salt), methyl 2-iodoacetate, ethyl 2-iodoacetate, ethyl 2-iodopentanoate
  • those having a tellurium element include 2-methylteranylpropionitrile, 2-methyl-2-methylteranylpropionitrile, and ⁇ -methyltera.
  • those having an antimonic element include 2-dimethylstivanyl propionitrile, 2-methyl-2-dimethylstivanyl propionitrile, and ⁇ -dimethylsti. Vanylbenzyl cyanide, 2-dimethylstivanylpropionic acid amide, ethyl-2-methyl-2-dimethylstibanyl-propionate, methyl 2-methyl-dimethylstibanylpropionate, propyl 2-methyl-dimethylstibanylpropionate, Butyl 2-methyl-dimethylstibanylpropionate, pentyl 2-methyl-dimethylstibanylpropionate, hydroxyethyl 2-methyl-dimethylstivanylpropionate, 2-methyl-2-dimethylstivanyl-propionic acid (salt), 2-Dimethylstibanyl propionic acid (salt), 2-dimethylstivanylacetic acid (salt), 2-dimethylstivanylmethyla
  • those having a bismuth element include 2-dimethylbismutanyl propionitrile, 2-methyl-2-dimethylbismutanyl propionitrile, and ⁇ -.
  • 2-iodo-2-methylpropionitrile ethyl-2-iodo-2-methylpropionate
  • 2-iodo-2-methylpropionic acid salt
  • 2-iodoacetic acid salts
  • the amount of the organic main group element compound used is preferably 0.0005 to 0.1 based on the weights of the above-mentioned monomers (a1), (a2), cross-linking agent (b) and other monomers (a3) used if necessary. By weight%, more preferably 0.005 to 0.05% by weight. Within these ranges, the amount of the soluble component in the physiological saline and the gel permi obtained for the Mw / Mn of the component having a molecular weight of 100,000 or less and the soluble component in the physiological saline.
  • the ratio of the area of the soluble component having a molecular weight of 100,000 or less to the total area of the chromatogram of the ion chromatography method was in an appropriate range, and the negative electrode additive (G) for the alkaline battery was added.
  • the viscosity of the negative electrode material becomes appropriate, the zinc powder and the like do not settle, and the impact resistance and discharge characteristics are good.
  • a method for polymerizing a monomer composition containing a water-soluble vinyl monomer (a1) and / or a hydrolyzable vinyl monomer (a2) and a cross-linking agent (b) in the presence of the above-mentioned organic typical element compound is an aqueous solution polymerization.
  • Known polymerization methods such as suspension polymerization, massive polymerization, reverse phase suspension polymerization and emulsion polymerization can be applied.
  • the organic main group element compound may be present in the monomer or the monomer aqueous solution, or may be added at the time of adding the initiator or the like to the monomer solution or the like.
  • aqueous polymerization, suspension polymerization, reverse phase suspension polymerization and emulsion polymerization are preferable from the viewpoint of discharge characteristics and impact resistance, and aqueous solution polymerization, reverse phase suspension polymerization and emulsion polymerization are more preferable.
  • Particularly preferred are aqueous solution polymerization and reverse phase suspension polymerization.
  • Known polymerization initiators, chain transfer agents and / or solvents and the like can be used for these polymerizations.
  • the method of polymerizing by aqueous solution polymerization, suspension polymerization, reverse phase suspension polymerization and emulsion polymerization may be a known method, for example, a method of polymerizing using a radical polymerization initiator, a method of irradiating with radiation, ultraviolet rays or electron beams. Can be mentioned.
  • the initiator used is an azo compound [azobisisovaleronitrile, azobisisobutyronitrile, 4,4'-azobis (4-cyanovaleric acid), 2,2'-.
  • Azobis [2-methyl-N- (2-hydroxyethyl) propionamide, 2,2'-azobis (2-amidinopropane) hydrochloride, etc.] inorganic peroxides [hydrogen peroxide, potassium persulfate, ammonium persulfate, etc.] Sodium persulfate, etc.], organic peroxide [di-t-butyl peroxide, cumenehydroperoxide, etc.], redox initiator [alkali metal salt sulfite or bicarbonate, ammonium sulfite, ammonium bicarbonate, L- A combination of a reducing agent such as ascorbic acid and a peroxide such as an alkali metal salt persulfate, ammonium per
  • the polymerization temperature varies depending on the type of initiator used, but is preferably ⁇ 10 ° C. to 100 ° C., more preferably ⁇ 10 ° C. to 80 ° C. from the viewpoint of increasing the degree of polymerization of the polymer.
  • the amount of the initiator is also not particularly limited, but the degree of polymerization of the polymer is based on the total weight of the vinyl monomers (a1), (a2), the cross-linking agent (b) and other monomers (a3) used if necessary. From the viewpoint of increasing the value, 0.000001 to 3.0% by weight is preferable, and 0.000001 to 0.5% by weight is more preferable.
  • the polymerization concentration of the monomer varies depending on other polymerization conditions, but the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are parallel to the polymerization reaction when the polymerization concentration is increased.
  • pseudo-crosslinking (self-crosslinking) of the monomer itself is likely to occur, leading to a decrease in the amount of absorption and a decrease in the average degree of polymerization of the polymer, and it is difficult to control the temperature during polymerization.
  • the polymerization concentration is preferably 10 to 40% by weight, more preferably 10 to 30% by weight, because the polymerization concentration tends to increase.
  • the polymerization temperature is preferably ⁇ 10 to 100 ° C., more preferably ⁇ 10 to 80 ° C.
  • the amount of dissolved oxygen during polymerization depends on the amount of radical initiator added and the like, but is preferably 0 to 2 ppm (2 ⁇ 10 -4 % by weight or less), and more preferably 0 to 0.5 ppm (0.5 ⁇ ). 10-4 % by weight or less). Within these ranges, a crosslinked polymer (A) having a high degree of polymerization can be produced.
  • the degree of neutralization of the acid group at the time of polymerization is such that a predetermined amount of the cross-linking agents (b1) and (b2) can be completely dissolved in the aqueous monomer solution.
  • a predetermined amount of the cross-linking agents (b1) and (b2) can be completely dissolved in the aqueous monomer solution.
  • (b2) has poor water solubility, and in particular, the solubility of a monomer having an acid group in an aqueous solution is extremely low, and even if a predetermined amount of (b2) is added, (b2) is obtained from the aqueous monomer solution. It may be separated and the predetermined cross-linking may not be possible.
  • the degree of neutralization of the monomer having an acid group at the time of polymerization is preferably 0 to 30 mol%, and if necessary, further neutralization is performed after polymerization, and after polymerization in an unneutralized state, after polymerization if necessary. It is more preferable to neutralize. Further, when the monomer having an acid group is polymerized under the same conditions, the lower the degree of polymerization is, the higher the degree of polymerization is likely to be. Therefore, in order to increase the degree of polymerization of the polymer, the degree of polymerization is low. It is preferable to carry out polymerization.
  • the reverse phase suspension polymerization method is a polymerization method in which an aqueous solution of a monomer is suspended and dispersed in a hydrophobic organic solvent typified by hexane, toluene, xylene and the like in the presence of a dispersant and polymerized.
  • the monomer concentration in the aqueous monomer solution is preferably 10 to 40% by weight, more preferably 10 to 30% by weight, as described above. Within these ranges, a crosslinked polymer (A) having a high degree of polymerization can be produced.
  • a dispersant may be used at the time of polymerization.
  • the dispersant include sorbitan fatty acid esters such as sorbitan monostearate ester having an HLB (Hydrophile-Lipofile Balance) value of 3 to 8, glycerin fatty acid esters such as glycerin monostearic acid ester, and sucrose distearate ester.
  • Hydrophiles in molecules such as surfactants such as sugar fatty acid esters, maleides of ethylene / acrylic acid copolymers, maleides of ethylene / vinyl acetate copolymers, and styrene sulfonic acid (salt) / styrene copolymers.
  • a polymer dispersant having a sex group and soluble in a solvent for dispersing the aqueous monomer solution hydrophilic group; 0.1 to 20% by weight, weight average molecular weight; 1,000 to 1,000,000), etc.
  • the size of the suspended particles of the monomer aqueous solution in the solvent can be easily adjusted, and the crosslinked polymer (A) having the required particle size can be used. It is preferable because a hydrogel can be produced.
  • the amount of the dispersant used is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight, based on the weight of the hydrophobic organic solvent.
  • the weight ratio (W / O ratio) of the aqueous monomer solution and the hydrophobic organic solvent in the reverse phase suspension polymerization is preferably 0.1 to 2.0, more preferably 0.3 to 1.0. Within these ranges, the particle size of the crosslinked polymer (A) can be further adjusted.
  • the average degree of polymerization of the polymer when the polymer is produced under exactly the same conditions except that the crosslinking agent (b) is not used is preferably 5,000 to 1,000,000. It is more preferable to carry out the polymerization under the conditions that are, more preferably 10,000 to 1,000,000.
  • the viscosity of the high-concentration alkaline aqueous solution to which the negative electrode additive (G) of the alkaline battery is added is reduced and / or by using an appropriate amount of the cross-linking agent. It is possible to prevent an increase in spinnability.
  • the measurement of the average degree of polymerization can be carried out in the same manner as the method for measuring the weight average molecular weight and the number average molecular weight of the soluble component of the crosslinked polymer (A) in physiological saline, which will be described later.
  • the crosslinked polymer (A) obtained by aqueous solution polymerization, reverse phase suspension polymerization or the like is obtained as a gel containing water (hydrous gel).
  • the hydrogel is used as an additive (G) for the negative electrode of an alkaline battery after being dried.
  • the hydrogel is subdivided to some extent (the level of subdivision is about 0.5 to 20 mm square) or noodles with a meat chopper or a cutter type coarse crusher, and if necessary.
  • air-permeable drying for example, laminating the hydrogel on a punching metal or screen and forcibly aerating hot air at 50 to 150 ° C. (Drying) and aeration drying (a hydrogel is placed in a container, hot air is aerated and circulated to dry, and the gel is further subdivided and dried by a machine such as a rotary kiln).
  • air-permeable drying is preferable because it enables efficient drying in a short time.
  • the method for drying the hydrogel is that the polymerized hydrogel and the organic solvent are solid-liquid separated by a method such as decantation and then dried under reduced pressure (decompression: about 100 to 50,000 Pa). Alternatively, air drying is generally performed.
  • the hydrogel in the aqueous solution polymerization for example, there is a contact drying method in which the hydrogel is compression-stretched and dried on a drum dryer, but since the hydrogel has poor thermal conductivity, it is necessary to perform drying. It is necessary to make a thin film of hydrogel on the drum.
  • the material of a commercially available drum dryer is generally made of a metal having a lower ionization tendency than zinc such as iron, chromium and nickel, the frequency of contact with the drum metal surface per hydrogel becomes extremely high.
  • the hydrogel is a hydrogel such as poly (meth) acrylic acid (salt), the content of metal elements having a lower ionization tendency than zinc eluted in the gel is higher.
  • the contact frequency between the water-containing gel and the drum is extremely high and the water-containing gel has high adhesiveness, it is necessary to bring a knife-like object into contact with the drum dryer to peel the dried product from the drum dryer. And the mechanical wear of the knife causes the metal surface of the drum or knife to wear and the metal to get mixed into the dried material.
  • a contact drying method such as a drum dryer is used, metal ions and metal powder are likely to be mixed in the negative electrode additive (G) of the alkaline battery, and the metal having a lower ionization tendency than zinc (standard electrode potential).
  • the negative electrode additive (G) of these alkaline batteries is used as the negative electrode additive (G) of an alkaline battery, the zinc powder in the battery is placed between the metal ion or the metal powder having a lower ionization tendency than zinc. Because of the formation, hydrogen gas is generated by electrolysis, which raises the pressure inside the battery, which may cause the outflow of alkaline electrolyte and, in the worst case, damage to the battery.
  • the thin film-like dried product obtained by compressing and stretching the hydrogel on a drum dryer and dried is then pulverized to adjust the particle size of the dried product to a desired particle size, but the particles are scaly. Therefore, the strength is much weaker than that of the crushed block-shaped dried product obtained by the air-permeable drying method or the aeration drying method. Therefore, when the gel is swollen in a high-concentration alkaline aqueous solution and mechanically stirred and mixed with the zinc powder, the swollen gel is destroyed and the gel becomes smaller. Therefore, it is preferable not to use a contact drying method such as a drum dryer.
  • the drying temperature at the time of drying the hydrogel varies depending on the dryer used, the drying time, and the like, but is preferably 50 to 150 ° C, more preferably 80 to 130 ° C. If the drying temperature is 50 ° C. or lower, it takes a long time to dry, and the productivity is significantly lowered. When the temperature is 50 ° C. or higher, drying does not require a long time and is efficient.
  • the drying time also varies depending on the model of the dryer used, the drying temperature, and the like, but is preferably 5 to 300 minutes, more preferably 5 to 120 minutes.
  • the dried product of the crosslinked polymer (A) thus obtained is pulverized and pulverized if necessary.
  • the crushing method may be a known method, for example, an impact crusher (pin mill, cutter mill, skillel mill, ACM pulperizer, etc.) or an air crusher (jet crusher, etc.).
  • a dry powder having a desired particle size can be collected using a sieve machine equipped with a screen (vibration sieve machine, centrifugal sieve machine, etc.).
  • the amount of soluble component of the crosslinked polymer (A) in the present invention in physiological saline (0.9% by weight sodium chloride aqueous solution; the same applies to other parts in the present specification) is based on the weight of (A). It is 5 to 40% by weight, preferably 5 to 25% by weight, and more preferably 5 to 15% by weight. When the amount of soluble components is in these ranges, the viscosity of the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added is in a suitable range, and the negative electrode material drains well, so that a battery with stable quality can be obtained.
  • the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added becomes spinnable, the drainage of the negative electrode material is remarkably deteriorated, and the filling amount varies. The quality is not stable. If the amount of the soluble component is less than 5% by weight, the viscosity of the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added becomes low, and zinc powder or the like is settled, resulting in deterioration of impact resistance and discharge characteristics. ..
  • the amount of the soluble component of the crosslinked polymer (A) in physiological saline can be measured by the following method. ⁇ Method of measuring the amount of soluble component in physiological saline of (A)> 1 g of the negative electrode additive (G) for an alkaline battery is precisely weighed (the precision value is S0), added to 250 ml of physiological saline, stirred for 3 hours, and then the swollen gel is applied to filter paper (Advantech Filter Paper). Remove with No. 1 qualitative filter paper). The filtrate obtained after removing the gel is used as an extract of soluble components.
  • ⁇ Method of measuring the amount of soluble component in physiological saline of (A)> 1 g of the negative electrode additive (G) for an alkaline battery is precisely weighed (the precision value is S0), added to 250 ml of physiological saline, stirred for 3 hours, and then the swollen gel is applied to filter paper (Advantech Filter Paper). Remove with No. 1 qualitative
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the ratio (Mw / Mn) of is 4.0 to 6.0, preferably 4.0 to 5.5, and more preferably 4.0 to 5.0.
  • the viscosity of the alkaline electrolytic solution to which the negative electrode additive (G) for the alkaline battery is added becomes a suitable range, and the negative electrode material Better drainage. Therefore, it is possible to manufacture a battery with stable quality and prevent the zinc powder or the like from settling in the negative electrode material, so that a battery having excellent discharge characteristics over time can be produced.
  • the Mw / Mn of the soluble component having a molecular weight of 100,000 or less exceeds 6.0, the amount of the low molecular weight component in the soluble component increases, so that the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added Since the viscosity becomes low and zinc powder or the like is settled, the impact resistance and discharge characteristics are deteriorated.
  • Mw / Mn is less than 4.0, the amount of the high molecular weight component in the soluble component increases, so that the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added shows spinnability and the negative electrode. The quality of the battery is not stable because the drainage of the material deteriorates remarkably and the filling amount varies.
  • the soluble component having a molecular weight of 100,000 or less with respect to the total area of the chromatogram of the gel permeation chromatography method obtained for the soluble component of the crosslinked polymer (A) in physiological saline.
  • the area ratio is 50% or less, preferably 45% or less, and more preferably 40% or less.
  • the viscosity of the alkaline electrolytic solution to which the negative electrode additive (G) for the alkaline battery is added is in a suitable range.
  • the ratio of the areas of Mw and Mn of the component having a molecular weight of 100,000 or less and the soluble component having a molecular weight of 100,000 or less among the soluble components of the crosslinked polymer (A) in physiological saline is gel permeation chromatography. It is obtained by obtaining a chromatogram of a soluble component by the method (GPC method) and calculating the ratio of Mw, Mn and area in a section having a molecular weight of 100,000 or less. More specifically, under the following conditions, the area of the chromatographic pattern detected at the elution time of 100,000 or less, based on the molecular weight calculated from the calibration curve obtained using the standard polyethylene oxide as the reference substance, is determined in (A).
  • (B) be the area of the chromatographic pattern detected at the elution time having a molecular weight of more than 100,000.
  • the Mw of the component having a molecular weight of 100,000 or less is the measured value of the weight average molecular weight of the above-mentioned (A)
  • the Mn of the component having a molecular weight of 100,000 or less is the measured value of the number average molecular weight of the above-mentioned (A).
  • the ratio of the area of the component having a molecular weight of 100,000 or less is a value obtained by [(A) / ((A) + (B))] ⁇ 100 (%).
  • the negative electrode additive (G) of the alkaline battery of the present invention has a range in which problems do not occur in workability and battery characteristics for the purpose of improving the fluidity at the time of filling a mixture of negative electrode substances other than the crosslinked polymer (A). And, if necessary, other additives may be included. Examples of other additives include thickeners, vibration and shock resistance improvers, discharge characteristic improvers and the like.
  • the thickener examples include CMC (carboxymethyl cellulose), natural gum (guar gum, etc.), uncrosslinked poly (meth) acrylic acid (salt), water-soluble resins such as polyvinyl alcohol, and the like.
  • the particle size of the thickener added as necessary is not particularly limited, but the volume average particle size of the dried product is preferably 0.1 to 100 ⁇ m (further, 0.1 to 50 ⁇ m). Within this range, handling is easy, such as when mixing with an alkaline electrolytic solution and filling the negative electrode container of the battery.
  • oxides, hydroxides, sulfides and the like of metal elements selected from the group consisting of titanium, indium, tin and bismuth can be used.
  • the discharge characteristic improving agent include known compounds such as silicon dioxide and potassium silicate.
  • the content is preferably 0 to 5.0% by weight, more preferably 0 to 3.0% by weight, based on the weight of the alkaline electrolytic solution.
  • additives may be added at any stage ⁇ of the cross-linked polymer (A) manufacturing process, the polymerization step, the shredding step, the drying step, the pulverization step, the surface cross-linking step and / or before and after these steps ⁇ . Can be done.
  • the absorption amount of the 40 wt% potassium hydroxide aqueous solution of the negative electrode additive (G) of the alkaline battery of the present invention is preferably 40 to 70 g / g, more preferably 42 to 65 g / g, and particularly preferably 45 to 60. Within these ranges, excessive separation of the alkaline electrolytic solution can be prevented, and the long-term discharge characteristics of the battery are further excellent. In addition, the impact resistance and productivity (process simplification) of alkaline batteries are excellent.
  • the absorption amount of the 40 wt% potassium hydroxide aqueous solution of the negative electrode additive (G) of the alkaline battery of the present invention is measured by the following method. ⁇ Measuring method of absorption amount of 40 wt% potassium hydroxide aqueous solution> 1.00 g of the measurement sample was placed in a tea bag (length 20 cm, width 10 cm) made of a nylon mesh having a mesh size of 63 ⁇ m (JIS Z8801-1: 2006), and placed in 1,000 ml of a 40 wt% potassium hydroxide aqueous solution without stirring.
  • the tea bag After soaking for 14 hours, the tea bag is hung for 30 minutes to remove excess potassium hydroxide aqueous solution, and the weight (h1) of the tea bag is measured.
  • the temperature of the physiological saline used and the measurement atmosphere shall be 25 ° C ⁇ 2 ° C.
  • the weight (h2) of the tea bag after centrifugal dehydration is measured in the same manner as above except that the measurement sample is not used, and the absorption amount of 0 wt% potassium hydroxide aqueous solution is calculated from the following formula.
  • Absorption amount of 40 wt% potassium hydroxide aqueous solution (g / g) (h1)-(h2)
  • the viscosity (Pa ⁇ s) of a mixed solution prepared by adding 2% by weight of the negative electrode additive (G) for an alkaline battery to a 40% by weight potassium hydroxide aqueous solution is 10 to 60, preferably 25. It is ⁇ 50, more preferably 30-40. If the viscosity of the mixed solution is outside the range of 10 to 60 Pa ⁇ s, excessive separation of the alkaline electrolytic solution cannot be prevented, the long-term discharge characteristics of the battery are inferior, and impact resistance and productivity (filling). Sex) gets worse.
  • the viscosity of a mixed solution prepared by adding 2% by weight of the negative electrode additive (G) for an alkaline battery to a 40% by weight aqueous potassium hydroxide solution is measured by the following method.
  • a B-type viscometer (manufactured by TOKIMEC) is used for measurement at a measurement temperature of 25 ° C. in accordance with JIS7117-1: 1999.
  • the rotor No. No. 4 is used, and the measurement is performed at a rotation speed of 3 rpm.
  • the volume average particle size of the negative electrode additive (G) of the alkaline battery in the present invention is preferably 30 to 400 ⁇ m, more preferably 30 to 170 ⁇ m, and particularly preferably 30 to 100 ⁇ m.
  • the volume average particle size is in these ranges, the viscosity of the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added is in a suitable range, and the negative electrode material drains well. Therefore, it is possible to manufacture a battery with stable quality and prevent the zinc powder or the like from settling in the negative electrode material, so that a battery having excellent discharge characteristics over time can be produced.
  • the volume average particle size of the negative electrode additive (G) of the alkaline battery of the present invention is such that the negative electrode additive (G) of the alkaline battery is dispersed in methanol and a laser diffraction type particle size distribution measuring device [Microtrack (Nikkiso Co., Ltd.) Manufactured by)].
  • the liquid separation rate of the negative electrode material containing the negative electrode additive (G) of the alkaline battery of the present invention is preferably 10% by weight or less, more preferably 0.1 to 5% by weight, and particularly preferably 0.1 to 3%. By weight%, most preferably 0.5 to 2.5% by weight. Within these ranges, the long-term discharge characteristics of the battery are further excellent.
  • the above liquid separation rate is measured by the following method.
  • G additive
  • a zinc powder having a volume average particle diameter of 200 ⁇ m 200 parts by weight of a zinc powder having a volume average particle diameter of 200 ⁇ m are stirred and mixed until uniform to make a negative electrode material for an alkaline battery.
  • To make. Weigh 75.0 g of this negative electrode material into the bottom of a tea bag made of a nylon screen with an opening of 32 ⁇ m (400 mesh) prepared in accordance with JIS K7223-1996, and let stand at 25 ° C. for 168 hours (1 week). ..
  • the alkaline battery to which the negative electrode additive (G) of the alkaline battery of the present invention can be applied is not particularly limited, and is a general alkaline battery having a negative electrode material composed of an alkaline electrolytic solution and zinc powder, for example, LR. It can be applied not only to -20 (AA alkaline battery) and LR-6 (AA alkaline battery), but also to various other primary or secondary alkaline batteries.
  • Alkaline batteries generally have a structure in which a positive electrode agent, a current collector rod, and a gel negative electrode are enclosed in an outer can, and the positive electrode agent and the gel negative electrode are separated by a separator or the like.
  • Additive (G) for negative electrode of alkaline battery of the present invention alkaline electrolytic solution (for example, high-concentration potassium hydroxide aqueous solution, if necessary, zinc oxide and the like are contained), zinc powder and the like (in other words, zinc powder). , Zinc alloy powder, or zinc powder and zinc alloy powder), and if necessary, other additives are premixed to prepare a mixture of negative electrode substances, which is filled in the negative electrode container of the battery to obtain a gel negative electrode.
  • alkaline electrolytic solution for example, high-concentration potassium hydroxide aqueous solution, if necessary, zinc oxide and the like are contained
  • zinc powder and the like in other words, zinc powder.
  • Zinc alloy powder, or zinc powder and zinc alloy powder Zinc alloy powder, or zinc powder and zinc alloy powder
  • other additives are premixed to prepare a mixture of negative electrode substances, which is filled in the negative electrode container of the battery to obtain a gel negative electrode.
  • zinc alloy powder means what is usually used as a negative electrode material in an alkaline battery, and is itself known to those skilled in the art.
  • the alkaline electrolytic solution is filled and the gel-like negative electrode is filled in the container.
  • the method (1) described above in which zinc powder or the like can be uniformly dispersed in the negative electrode container of the battery is preferable.
  • the amount of the negative electrode additive (G) added to the alkaline battery varies depending on the structure of the negative electrode container, the particle size of zinc powder, etc., and the concentration of the alkaline electrolytic solution, but is 0.5 based on the weight of the alkaline electrolytic solution. It is preferably from 10% by weight, more preferably 1.0 to 5.0% by weight. When the addition amount is 0.5 to 10% by weight, the viscosity of the alkaline electrolytic solution containing the gelling agent becomes appropriate, sedimentation of zinc powder and the like can be prevented, and handleability is easy.
  • ultrapure water indicates water having an electric conductivity of 0.06 ⁇ S / cm or less
  • ion-exchanged water indicates water having an electric conductivity of 1.0 ⁇ S / cm or less.
  • Example 1 In a 3 liter adiabatic polymerization tank, 380 g of acrylic acid, 0.49 g of pentaerythritol triaryl ether (0.13% by weight of acrylic acid), 1.33 g of trimethylolpropane triacrylate (0.35% by weight of acrylic acid) and After adding 1600 g of ion-exchanged water and stirring and mixing to prepare an acrylic acid aqueous solution, the acrylic acid aqueous solution was cooled to 3 ° C. After cooling, nitrogen was aerated in the acrylic acid aqueous solution at a flow rate of 5 L / min to bring the dissolved oxygen concentration in the acrylic acid aqueous solution to 0.10 ppm or less.
  • the dissolved oxygen concentration was measured using an oxygen concentration meter (ORBISPHERE 510, manufactured by HACH ULTRA) based on the diaphragm electrode method. After confirming that the acrylic acid aqueous solution was at 3 ° C., 2,2'-azobis (2-amidinopropane) hydrochloride (sum) having a concentration of 10% by weight was used as a polymerization initiator in an adiabatic polymerization tank while continuing nitrogen aeration. Kojunyaku Kogyo Co., Ltd., trade name: V-50) aqueous solution 11.40 g, 2-iodo-2-methylpropionitrile (manufactured by TCI) 0.055 g, concentration 1.0 wt% hydrogen peroxide solution 1.
  • the water-containing gel taken out was subdivided into a noodle shape with a thickness of 3 to 10 mm using a small meat chopper (manufactured by Royal), and a 49 wt% sodium hydroxide (special grade reagent) aqueous solution was added to the subdivided water-containing gel. After adding 132 g, the mixture was uniformly kneaded into a hydrogel using the small meat chopper to neutralize it. The neutralized hydrogel was laminated on a SUS screen with an opening of 850 ⁇ m to a thickness of 5 cm, and hot air at 150 ° C was blown for 1 hour using a small air-permeable dryer (manufactured by Inoue Metal Co., Ltd.).
  • the water in the hydrogel was evaporated to obtain a dry gel.
  • a sieve having a mesh size of 150 ⁇ m (100 mesh) is used to collect particles having a particle size of 150 ⁇ m or less, and the negative electrode additive (G-1) for the alkaline battery of the present invention.
  • Example 2 The dried gel obtained in Example 1 is pulverized using a cooking mixer, and then a sieve having a particle size of 45 ⁇ m or less is collected using a sieve having a mesh size of 45 ⁇ m (330 mesh) to collect a negative electrode of the alkaline battery of the present invention. Additive (G-2) for use was obtained.
  • Example 3 The dried gel obtained in Example 1 is pulverized using a cooking mixer, and then a sieve having a particle size of 250 ⁇ m or less is collected using a sieve having a mesh size of 250 ⁇ m (60 mesh) to collect a negative electrode of the alkaline battery of the present invention. Additive (G-3) for use was obtained.
  • Example 4 The dried gel obtained in Example 1 was pulverized using a cooking mixer, and then a sieve having a mesh size of 600 ⁇ m (26 mesh) was used to collect particles having a particle size of 600 ⁇ m or less, and the negative electrode of the alkaline battery of the present invention was collected. Additive (G-4) for use was obtained.
  • Example 5 Same as Example 1 except that the amount of trimethylolpropane triacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 0.76 g (0.20% by weight of acrylic acid).
  • the negative electrode additive (G-5) for the alkaline battery of the present invention was obtained.
  • Example 6 Except that the amount of trimethylolpropane triacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 2.09 g (0.55% by weight of acrylic acid), the same as in Example 1. Similarly, an additive (G-6) for the negative electrode of the alkaline battery of the present invention was obtained.
  • Example 7 Same as in Example 1 except that the amount of pentaerythritol triallyl ether charged in Example 1 was changed from 0.49 g (0.13% by weight of acrylic acid) to 0.38 g (0.10% by weight of acrylic acid).
  • the negative electrode additive (G-7) for the alkaline battery of the present invention was obtained.
  • Example 8 Same as in Example 1 except that the amount of pentaerythritol triaryl ether charged in Example 1 was changed from 0.49 g (0.13% by weight of acrylic acid) to 0.76 g (0.20% by weight of acrylic acid).
  • the negative electrode additive (G-8) for the alkaline battery of the present invention was obtained.
  • Example 9 The negative electrode additive (G) for the alkaline battery of the present invention is the same as in Example 1 except that the amount of 2-iodo-2-methylpropionitrile charged in Example 1 is changed from 0.055 g to 0.028 g. -9) was obtained.
  • Example 10 The negative electrode additive (G) for the alkaline battery of the present invention is the same as in Example 1 except that the amount of 2-iodo-2-methylpropionitrile charged in Example 1 is changed from 0.055 g to 0.083 g. -10) was obtained.
  • Example 11 The negative electrode additive alkaline battery of the alkaline battery of the present invention is the same as in Example 1 except that the charge amount of 2-iodo-2-methylpropionitrile in Example 1 is changed from 0.055 g to 0.110 g. Negative electrode additive (G-11) was obtained.
  • Example 12 The amount of trimethylol propantriacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 0.19 g (0.05% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.19 g (0.05% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0.
  • An additive (G-12) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 028 g.
  • Example 13 The amount of trimethylolpropane triacrylate of Example 1 charged was changed from 1.33 g (0.35% by weight of acrylic acid) to 3.80 g (1.00% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.76 g (0.20% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0.
  • An additive (G-13) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 028 g.
  • Example 14 The amount of trimethylolpropane triacrylate of Example 1 charged was changed from 1.33 g (0.35% by weight of acrylic acid) to 3.80 g (1.00% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 3.80 g (1.00% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0.
  • An additive (G-14) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 028 g.
  • Example 15 The amount of trimethylolpropan triacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 0.95 g (0.25% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.19 g (0.05% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0.
  • An additive (G-15) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 028 g.
  • Example 17 The amount of trimethylolpropane triacrylate of Example 1 charged from 1.33 g (0.35% by weight of acrylic acid) to 3.80 g (1.00% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.76 g (0.20% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0. An additive (G-17) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 110 g.
  • Example 18 The amount of trimethylolpropane triacrylate of Example 1 charged was changed from 1.33 g (0.35% by weight of acrylic acid) to 3.80 g (1.00% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 3.80 g (1.00% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0.
  • An additive (G-18) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 110 g.
  • Example 19 The amount of trimethylolpropan triacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 0.95 g (0.25% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.19 g (0.05% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0.
  • An additive (G-19) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 110 g.
  • Example 20 The amount of trimethylolpropane triacrylate of Example 1 charged from 1.33 g (0.35% by weight of acrylic acid) to 0.95 g (0.25% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. was changed from 0.49 g (0.13% by weight of acrylic acid) to 0.26 g (0.07% by weight of acrylic acid) in the same manner as in Example 1 and added to the negative electrode of the alkaline battery of the present invention. The agent (G-20) was obtained.
  • Example 21 The amount of trimethylolpropan triacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 0.95 g (0.25% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.26 g (0.07% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0.
  • An additive (G-21) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 028 g.
  • ⁇ Comparative example 1> 460.0 g of acrylic acid, 1.15 g of pentaerythritol triaryl ether (0.25 wt% of acrylic acid), 0.92 g of trimethylolpropane triacrylate (0.20 wt% of acrylic acid) in a 3 liter adiabatic polymerization tank. ) And 1600 g of ion-exchanged water were added and mixed by stirring to prepare an acrylic acid aqueous solution, and then the acrylic acid aqueous solution was cooled to 3 ° C. After cooling, nitrogen was aerated in the acrylic acid aqueous solution at a flow rate of 5 L / min to bring the dissolved oxygen concentration in the acrylic acid aqueous solution to 0.10 ppm or less.
  • the hydrogel obtained by the polymerization reaction was taken out from the polymerization reaction tank.
  • the water-containing gel taken out was subdivided into a noodle shape with a thickness of 3 to 10 mm using a small meat chopper (manufactured by Royal), and a 49 wt% sodium hydroxide (special grade reagent) aqueous solution was added to the subdivided water-containing gel.
  • the water-containing gel was uniformly kneaded and neutralized using the small meat chopper.
  • the neutralized hydrogel was laminated on a SUS screen with an opening of 850 ⁇ m to a thickness of 5 cm, and hot air at 150 ° C was blown for 1 hour using a small air-permeable dryer (manufactured by Inoue Metal Co., Ltd.).
  • the water in the hydrogel was evaporated to obtain a dry gel.
  • a sieve having a mesh size of 45 ⁇ m (330 mesh) was used to collect particles having a particle size of 45 ⁇ m or less to obtain an additive (H-1) for the negative electrode of an alkaline battery. ..
  • Comparative example 2 The dried gel obtained in Comparative Example 1 is pulverized using a cooking mixer, and then added to the negative electrode of an alkaline battery by collecting particles having a particle size of 150 ⁇ m or less using a sieve having a mesh size of 150 ⁇ m (100 mesh). The agent (H-2) was obtained.
  • Comparative Example 3 The dried gel obtained in Comparative Example 1 is pulverized using a cooking mixer, and then added to the negative electrode of an alkaline battery by collecting a particle having a particle size of 250 ⁇ m or less using a sieve having a mesh size of 250 ⁇ m (60 mesh). The agent (H-3) was obtained.
  • Comparative example 4 The dried gel obtained in Comparative Example 1 is pulverized using a cooking mixer, and then added to the negative electrode of an alkaline battery by collecting particles having a particle size of 600 ⁇ m or less using a sieve having a mesh size of 600 ⁇ m (26 mesh). Agent (H-4) was obtained.
  • Example 5 Same as Example 1 except that the amount of pentaerythritol triallyl ether charged in Example 1 was changed from 0.49 g (0.13% by weight of acrylic acid) to 2.26 g (0.60% by weight of acrylic acid). To obtain an additive (H-5) for the negative electrode of an alkaline battery.
  • Example 6 The amount of pentaerythritol triallyl ether charged in Example 1 was increased from 0.49 g (0.13% by weight of acrylic acid) to 2.26 g (0.60% by weight of acrylic acid), 2-iodo-2-methylpro.
  • An additive (H-6) for the negative electrode of an alkaline battery was obtained in the same manner as in Example 1 except that the amount of pionitrile charged was changed from 0.055 g to 0.172 g.
  • Example 8 Same as in Example 1 except that the amount of pentaerythritol triallyl ether charged in Example 1 was changed from 0.49 g (0.13% by weight of acrylic acid) to 3.02 g (0.80% by weight of acrylic acid). To obtain an additive (H-8) for the negative electrode of an alkaline battery.
  • Example 9 The amount of pentaerythritol triallyl ether charged in Example 1 was increased from 0.49 g (0.13% by weight of acrylic acid) to 3.02 g (0.80% by weight of acrylic acid), 2-iodo-2-methylpro.
  • An additive (H-9) for the negative electrode of an alkaline battery was obtained in the same manner as in Example 1 except that the amount of pionitrile charged was changed from 0.055 g to 0.172 g.
  • H-2 negative electrode additive
  • polyacrylic acid average molecular weight: about 25,000, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • Ratio of the area of the soluble component having a molecular weight of 100,000 or less (the ratio of the area of the soluble component in the table) to the total area of the chromatogram of the ion chromatography method, 40% by weight potassium hydroxide and the negative electrode of the alkaline battery Measure the viscosity of the mixed solution to which 2% by weight of the additive is added (in the table, the viscosity of the mixed solution), the absorption amount of the 40% by weight potassium hydroxide aqueous solution (absorption amount in the table), and the liquid separation rate by the above-mentioned method.
  • Tables 1 and 2 Examples
  • Tables 3 to 4 Comparative Examples
  • the additives for the negative electrode of the alkaline battery of the present invention are 40% by weight potassium hydroxide aqueous solution absorption amount, 40% by weight potassium hydroxide aqueous solution and the negative electrode additive of the alkaline battery (compared to the comparative ones). It can be seen that the viscosity and the release rate of the mixed solution to which 2% by weight of G) is added are excellent. From this, the additive for the negative electrode of the alkaline battery of the present invention imparts sufficient viscosity to the negative electrode material without using a material having a thickening function such as polyacrylic acid, and is suitable for workability for injecting the negative electrode material.
  • the impact resistance of the battery can be improved by preventing the precipitation of zinc.
  • the absorption amount of the 40% potassium hydroxide aqueous solution is in a suitable range, excessive separation of the alkaline electrolytic solution can be prevented, so that the battery duration after long-term storage is maintained, and the long-term discharge characteristics of the battery are maintained. It can be said that it is excellent. Since it is not necessary to use a material having a thickening function, it is possible to reduce the process of dissolving and homogenizing the material having a thickening function, and it can be said that the cost and work efficiency are excellent.
  • zinc powder is used by using the negative electrode additives (G-1) to (G-21) of the alkaline battery of the present invention and the negative electrode additives (H-1) to (H-22) of the comparative alkaline battery.
  • Tables 5 to 6 show the results of measuring the sedimentation property, the variation in injection time and injection amount, the battery duration and the impact resistance by the following methods.
  • 50 g of the prepared negative electrode material was placed in a sample bottle (diameter 34 mm, height 77 mm, made of polypropylene) having a sealable capacity of 50 ml, and the bubbles entered during mixing were defoamed under reduced pressure.
  • a sample bottle (diameter 34 mm, height 77 mm, made of polypropylene) having a sealable capacity of 50 ml, and the bubbles entered during mixing were defoamed under reduced pressure.
  • the device attached to the powder tester manufactured by Hosokawa Micron Co., Ltd.
  • Tapping was promoted to settle the zinc powder.
  • the most sedimented distance (mm) of the zinc powder is measured from the initial position of the zinc powder (the position of the upper end of the negative electrode material in the sample bottle), and this is the sedimentation property (mm) of the zinc powder. And said.
  • the defoamed negative electrode material was sucked into a 10 ml syringe having an inner diameter of 2 mm and a scale of 0.1 ml unit. From the height of the mouth of a 5 ml sample bottle (inner diameter 18 mm, height 40 mm), push the syringe by 5.0 ml to inject the negative electrode material into the sample bottle, and from the time when the pushing of the syringe is completed, the negative electrode from the syringe inlet. The time (seconds) until the material was completely separated was measured with a stopwatch. The same operation was repeated 20 times in total, and the arithmetic mean value was taken as the injection time (seconds). The weight of the negative electrode gel injected into the sample bottle (20 times each) was measured, and the standard deviation ( ⁇ ) of the injection amount was calculated to obtain the variation in the injection amount.
  • the material of the shrink tube is polyethylene
  • the material of the positive electrode material is 50 parts by weight of electrolytic manganese dioxide
  • 5 parts by weight of acetylene black and 40% by weight of potassium hydroxide.
  • a nickel-plated steel plate was used as the material of the terminal plate.
  • An external resistor of 2 ⁇ was connected to the produced model battery at room temperature (20 to 25 ° C.), and the battery was continuously discharged, and the time until the voltage dropped to 0.9V was defined as the battery duration (hour). After producing the model battery, the same operation was performed on the model battery that had been allowed to stand in a constant temperature bath at 80 ° C. for 15 days, and the battery duration was measured.
  • the additives for the negative electrode of the alkaline battery of the present invention are excellent in the sedimentation property of zinc powder, the variation of injection time and injection amount, the duration of the battery and the impact resistance as compared with those of the comparative example. You can see that there is.
  • the negative electrode additive (G) for the alkaline battery of the present invention is not only a cylindrical alkaline battery, but also a negative electrode for primary and secondary alkaline batteries such as alkaline button batteries, silver oxide batteries, nickel-cadmium storage batteries, and nickel-hydrogen storage batteries. It is also useful as an additive. Further, the alkaline battery using the negative electrode additive of the alkaline battery of the present invention is useful as an alkaline battery with improved production efficiency because it has excellent impact resistance, excellent discharge characteristics, and excellent viscosity stability of the negative electrode material. Is.

Abstract

Provided is a negative electrode additive for alkaline battery which has outstanding sedimentation prevention properties for zinc powder and the like in an alkali electrolyte, and which can exhibit performance in a single material. The negative electrode additive contains: a cross-linked polymer (A) which has, as essential constituent monomers, an aqueous vinyl monomer (a1) and/or a hydrolyzable vinyl monomer (a2) and a cross-linking agent (b). The negative electrode additive satisfies the following: (1) the amount of the component of the cross-linkable polymer (A) that can be dissolved in saline solution is 5-20 wt% with respect to the weight of (A); (2) the ratio (Mw/Mn) of Mw to Mn of the component having a molecular weight not exceeding 100,000, from within the component of (A) that can be dissolved in saline solution falls within the range of 4.0-6.0, and the ratio of the surface area of components having a molecular weight not exceeding 100,000 with respect to the total surface area of a GPC chromatogram does not exceed 50%; and (3) the viscosity at 25°C of a mixed solution obtained by adding 2 wt% of the negative electrode additive (G) for alkaline battery to a 40 wt% aqueous solution of potassium hydroxide is 10-60 Pa·s.

Description

アルカリ電池の負極用添加剤及びアルカリ電池Negative electrode additives for alkaline batteries and alkaline batteries
 本発明は、アルカリ電池の負極用添加剤及びアルカリ電池に関する。更に詳しくは、アルカリ電解液と亜鉛粉末等を主とする負極材を有する一次及び二次アルカリ電池用の負極用添加剤及びそれを使用したアルカリ電池に関する。 The present invention relates to an additive for the negative electrode of an alkaline battery and an alkaline battery. More specifically, the present invention relates to a negative electrode additive for primary and secondary alkaline batteries having a negative electrode material mainly composed of an alkaline electrolytic solution and zinc powder, and an alkaline battery using the same.
 従来、アルカリ電池の負極材には、高濃度のアルカリ電解液(高濃度の水酸化カリウム水溶液及び必要により酸化亜鉛等を含有させたもの)と亜鉛粉末及び/又は亜鉛合金粉末(本明細書中、亜鉛粉末等ともいう)との混合物が主成分として使用されている。アルカリ電解液中の亜鉛粉末等は沈降しやすく、これを防止する目的で、更にゲル化剤が用いられることがある。ゲル化剤としては、高重合度架橋型ポリアクリル酸のアルカリ金属塩粉末を単独で用いたり、増粘作用がある、高重合度架橋型ポリアクリル酸のアルカリ金属塩粉末にカルボキシメチルセルロースのアルカリ金属塩を併用したものが提案されている(例えば特許文献1)。また、粒径の異なる架橋分岐型ポリ(メタ)アクリル酸及びその塩類等の増粘作用がある化合物を混合してゲル化剤として用いたものが提案されている(例えば特許文献2参照)。 Conventionally, the negative electrode material of an alkaline battery has been a high-concentration alkaline electrolytic solution (containing a high-concentration potassium hydroxide aqueous solution and, if necessary, zinc oxide, etc.), zinc powder and / or zinc alloy powder (in the present specification). , Zinc powder, etc.) is used as the main component. Zinc powder or the like in the alkaline electrolytic solution tends to settle, and a gelling agent may be further used for the purpose of preventing this. As the gelling agent, the alkali metal salt powder of high degree of polymerization crosslinked polyacrylic acid can be used alone, or the alkali metal salt powder of high degree of polymerization crosslinked polyacrylic acid having a thickening effect and the alkali metal of carboxymethyl cellulose can be used. Those using a salt in combination have been proposed (for example, Patent Document 1). Further, a compound having a thickening action such as crosslinked poly (meth) acrylic acid having different particle diameters and salts thereof is mixed and used as a gelling agent (see, for example, Patent Document 2).
特許第2775829号公報Japanese Patent No. 2775829 特許第3371532号公報Japanese Patent No. 3371532
 しかしながら、特許文献1及び2に記載のゲル化剤はアルカリ電解液中の亜鉛粉末等の沈降防止性が十分とは言えず、電池の長期に渡る放電特性の維持や耐衝撃性等の点で必ずしも満足のいくものではなかった。また、複数の材料を混合する必要があり、生産工程が増えるという問題もあった。 However, the gelling agents described in Patent Documents 1 and 2 do not have sufficient anti-sedimentation properties for zinc powder and the like in the alkaline electrolytic solution, and in terms of maintaining the discharge characteristics of the battery for a long period of time and impact resistance. It wasn't always satisfactory. In addition, there is a problem that it is necessary to mix a plurality of materials and the number of production processes increases.
 本発明はこれらの問題点に鑑みてなされたものであり、本発明の目的は、アルカリ電解液中の亜鉛粉末等の沈降防止性に優れ、かつ、複数の材料を用いることなく1つの材料で性能発現が可能な、アルカリ電池の負極用添加剤を提供することにある。 The present invention has been made in view of these problems, and an object of the present invention is to have excellent sedimentation prevention properties such as zinc powder in an alkaline electrolytic solution, and to use one material without using a plurality of materials. It is an object of the present invention to provide an additive for a negative electrode of an alkaline battery capable of exhibiting performance.
 本発明は、水溶性ビニルモノマー(a1)及び/又は加水分解により(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単量体単位とする架橋重合体(A)を含有し、下記(1)~(3)を満たすアルカリ電池の負極用添加剤(G)、並びに、該負極用添加剤(G)及び亜鉛粉末等を含有してなるアルカリ電池である:
(1)架橋重合体(A)の0.9重量%生理食塩水(以下、単に生理食塩水ともいう)への可溶性成分量が、(A)の重量を基準として5~40重量%である;
(2)架橋重合体(A)の生理食塩水への可溶性成分の内の、いずれも、後述の方法で求められる、分子量が100,000以下の成分の数平均分子量(Mn)に対する重量平均分子量(Mw)の比率(Mw/Mn)が、4.0~6.0であり、架橋重合体(A)の生理食塩水への可溶性成分に対して得られたゲルパーミエーションクロマトグラフィー法のクロマトグラムの全面積に対して分子量が100,000以下の可溶性成分の面積の割合が、50%以下である;
(3)40重量%水酸化カリウム水溶液にアルカリ電池の負極用添加剤(G)を2重量%添加した混合液の25℃における粘度が、10~60Pa・sである。
The present invention contains a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes (a1) by hydrolysis and a cross-linked polymer (A) containing a cross-linking agent (b) as an essential constituent monomer unit. An alkaline battery containing the negative electrode additive (G) of the alkaline battery satisfying the following (1) to (3), the negative electrode additive (G), zinc powder, and the like:
(1) The amount of the soluble component of the crosslinked polymer (A) in 0.9% by weight of physiological saline (hereinafter, also simply referred to as physiological saline) is 5 to 40% by weight based on the weight of (A). ;
(2) Among the soluble components of the crosslinked polymer (A) in physiological saline, all of them have a weight average molecular weight with respect to the number average molecular weight (Mn) of the components having a molecular weight of 100,000 or less, which are obtained by the method described later. The ratio (Mw / Mn) of (Mw) is 4.0 to 6.0, and the chromatography of the gel permeation chromatography method obtained for the soluble component of the crosslinked polymer (A) in physiological saline The ratio of the area of soluble components having a molecular weight of 100,000 or less to the total area of the gram is 50% or less;
(3) The viscosity of a mixed solution prepared by adding 2% by weight of the negative electrode additive (G) for an alkaline battery to a 40% by weight aqueous potassium hydroxide solution at 25 ° C. is 10 to 60 Pa · s.
 本発明のアルカリ電池の負極用添加剤(G)及びそれを使用したアルカリ電池は下記の効果を奏する。
(1)本発明のアルカリ電池の負極用添加剤(G)は負極材中における亜鉛粉末等の沈降防止性に優れる。従って、アルカリ電池に使用した場合、少量でかつ長期間に亘って、放電の持続時間や耐衝撃性に極めて優れた電池を作製することができる。
(2)本発明のアルカリ電池の負極用添加剤(G)は複数の材料を用いることなく1つの材料で性能発現が可能であるため、電池の生産工程を極力少なくすることができ、生産コストの面で優れる。
(3)本発明のアルカリ電池の負極用添加剤(G)を添加した負極材は充填時の粘度が適切な範囲にあり、負極材の液切れがよい。このため、電池1個あたり負極材の充填量のバラツキが少ないため、大量生産時も均一な品質を有する電池を生産できる。また、サイズが小さい電池においても、均一に且つ高速で負極材を充填することができるため、均一な品質を有する電池を生産できる。
The negative electrode additive (G) for the alkaline battery of the present invention and the alkaline battery using the additive (G) have the following effects.
(1) The negative electrode additive (G) for the alkaline battery of the present invention is excellent in preventing the precipitation of zinc powder and the like in the negative electrode material. Therefore, when used in an alkaline battery, it is possible to produce a battery having extremely excellent discharge duration and impact resistance over a long period of time with a small amount.
(2) Since the negative electrode additive (G) for the alkaline battery of the present invention can exhibit performance with one material without using a plurality of materials, the battery production process can be reduced as much as possible, and the production cost can be reduced. Excellent in terms of.
(3) The negative electrode material to which the negative electrode additive (G) for the alkaline battery of the present invention is added has an appropriate viscosity at the time of filling, and the negative electrode material is easily drained. Therefore, since there is little variation in the filling amount of the negative electrode material per battery, it is possible to produce a battery having uniform quality even during mass production. Further, even in a small battery, the negative electrode material can be filled uniformly and at high speed, so that a battery having uniform quality can be produced.
 本発明のアルカリ電池の負極用添加剤(G)は、水溶性ビニルモノマー(a1)及び/又は加水分解により(a1)となるビニルモノマー(a2)(以下、加水分解性ビニルモノマー(a2)ともいう)並びに架橋剤(b)を必須構成単量体とする架橋重合体(A)を含有する。 The negative electrode additive (G) of the alkaline battery of the present invention is also a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) which becomes (a1) by hydrolysis (hereinafter, hydrolyzable vinyl monomer (a2)). ) And the cross-linking polymer (A) containing the cross-linking agent (b) as an essential constituent monomer.
 本発明において、水溶性ビニルモノマーとは、25℃の水100gに少なくとも100g溶解する性質を持つビニルモノマーを意味する。
 水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)としては特に限定がないが、例えば、特開2005-075982号公報に記載の水溶性ラジカル重合単量体が挙げられる。これらの内、放電特性の観点から、水溶性ビニルモノマー(a1)が好ましく、更に好ましくはアニオン性ビニルモノマー、特に好ましくは炭素数3~30のビニル基含有カルボン酸(塩){不飽和モノカルボン酸(塩)[(メタ)アクリル酸、クロトン酸、桂皮酸及びこれらの塩等];不飽和ジカルボン酸(塩)(マレイン酸、フマル酸、シトラコン酸、イタコン酸及びこれらの塩等);及び前記不飽和ジカルボン酸のモノアルキル(炭素数1~8)エステル(マレイン酸モノブチルエステル、フマル酸モノブチルエステル、マレイン酸のエチルカルビトールモノエステル、フマル酸のエチルカルビトールモノエステル、シトラコン酸モノブチルエステル及びイタコン酸グリコールモノエステル等}、とりわけ好ましくは不飽和モノカルボン酸(塩)、最も好ましくはアクリル酸(塩)である。
In the present invention, the water-soluble vinyl monomer means a vinyl monomer having a property of dissolving at least 100 g in 100 g of water at 25 ° C.
The water-soluble vinyl monomer (a1) and / or the hydrolyzable vinyl monomer (a2) is not particularly limited, and examples thereof include the water-soluble radical polymerization monomer described in JP-A-2005-075982. Of these, from the viewpoint of discharge characteristics, the water-soluble vinyl monomer (a1) is preferable, more preferably an anionic vinyl monomer, and particularly preferably a vinyl group-containing carboxylic acid (salt) having 3 to 30 carbon atoms {unsaturated monocarboxylic acid). Acids (salts) [(meth) acrylic acid, crotonic acid, cinnamic acid and their salts, etc.]; unsaturated dicarboxylic acids (salts) (maleic acid, fumaric acid, citraconic acid, itaconic acid and their salts, etc.); and Monoalkyl (1 to 8 carbon atoms) ester of unsaturated dicarboxylic acid (maleic acid monobutyl ester, fumaric acid monobutyl ester, maleic acid ethylcarbitol monoester, fumaric acid ethylcarbitol monoester, citraconic acid mono Butyl esters, itaconic acid glycol monoesters, etc.}, especially unsaturated monocarboxylic acids (salts), most preferably acrylic acids (salts).
 本発明において、(メタ)アクリル酸とはアクリル酸及び/又はメタクリル酸を意味し、「・・・酸(塩)」とは「・・・酸」及び/又は「・・・酸塩」を意味する。塩としては、カリウム、ナトリウム、リチウム等のアルカリ金属塩、カルシウム等のアルカリ土類金属塩が含まれる。 In the present invention, (meth) acrylic acid means acrylic acid and / or methacrylic acid, and "... acid (salt)" means "... acid" and / or "... acid acid". means. Examples of the salt include alkali metal salts such as potassium, sodium and lithium, and alkaline earth metal salts such as calcium.
 水溶性ビニルモノマー(a1)に由来する単位は未中和体であっても、中和体(水溶性ビニルモノマー塩の単位)であっても構わない。また、架橋重合体(A)は、粘着性低減や分散性改良及び架橋重合体(A)の製造上の作業性の観点から、一部又は全てが中和されていることが好ましい。 The unit derived from the water-soluble vinyl monomer (a1) may be an unneutralized product or a neutralized product (unit of a water-soluble vinyl monomer salt). Further, it is preferable that the crosslinked polymer (A) is partially or completely neutralized from the viewpoint of reducing adhesiveness, improving dispersibility, and workability in producing the crosslinked polymer (A).
 架橋重合体(A)に含まれる水溶性ビニルモノマー(a1)に由来する単位の中和を行う場合は、一般的に水酸化カリウム、水酸化ナトリウム、水酸化リチウム等の水酸化アルカリ金属、水酸化カルシウム等の水酸化アルカリ土類金属又はその水溶液を重合前のモノマー段階、あるいは重合後の含水ゲルに添加すればよいが、後述するアルカリ性で加水分解しない架橋剤(b2)は水溶性が乏しいため、水溶性ビニルモノマー(a1)の中和度が高い状態で重合すると、所定量の架橋剤(b2)を添加しても架橋剤(b2)がモノマー水溶液から分離し所定の架橋が行えず架橋重合体(A)が得られない場合があり、水溶性ビニルモノマー(a1)の中和度を0~30モル%としておいて、架橋剤(b2)も含有させて重合を行った後、必要により含水ゲルに水酸化アルカリ金属を添加して中和度を調整する方がより好ましい。 When neutralizing units derived from the water-soluble vinyl monomer (a1) contained in the crosslinked polymer (A), generally, alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and lithium hydroxide, and water are used. An alkaline earth metal hydroxide such as calcium oxide or an aqueous solution thereof may be added to the monomer stage before the polymerization or the hydrogel after the polymerization, but the alkaline and non-hydrolyzable cross-linking agent (b2) described later has poor water solubility. Therefore, when the water-soluble vinyl monomer (a1) is polymerized in a highly neutralized state, the cross-linking agent (b2) is separated from the monomer aqueous solution even if a predetermined amount of the cross-linking agent (b2) is added, and the predetermined cross-linking cannot be performed. The crosslinked polymer (A) may not be obtained, and the degree of neutralization of the water-soluble vinyl monomer (a1) is set to 0 to 30 mol%, and the crosslinking agent (b2) is also contained to carry out the polymerization. If necessary, it is more preferable to add an alkali metal hydroxide to the hydrogel to adjust the degree of neutralization.
 架橋重合体(A)の水溶性ビニルモノマー(a1)として、アニオン性ビニルモノマー{最も好ましくはアクリル酸(塩)}を使用する場合、アニオン性ビニルモノマーの最終的な中和度{アニオン性ビニルモノマーのアニオン基及びアニオン塩基の合計モル数に基づく、アニオン塩基の含有量(モル%)}は、0~90が好ましく、更に好ましくは40~80、特に好ましくは60~70である。これらの範囲であると、負極材の耐衝撃性や放電特性が更によくなる。尚、アニオン塩基とは中和されたアニオン基を意味する。 When an anionic vinyl monomer {most preferably acrylic acid (salt)} is used as the water-soluble vinyl monomer (a1) of the crosslinked polymer (A), the final degree of neutralization of the anionic vinyl monomer {anionic vinyl The content of the anionic base (mol%)} based on the total number of moles of the anionic group and the anionic base of the monomer is preferably 0 to 90, more preferably 40 to 80, and particularly preferably 60 to 70. Within these ranges, the impact resistance and discharge characteristics of the negative electrode material are further improved. The anionic base means a neutralized anionic group.
 水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の含有量は、アルカリ電池の負極用添加剤(G)の吸収能の観点から、(a1)、(a2)、アルカリ性で加水分解する架橋剤(b1)並びにアルカリ性で加水分解しない架橋剤(b2)の合計重量を基準として、98.0~99.90重量%が好ましく、更に好ましくは99.0~99.85重量%、特に好ましくは99.2~99.83重量%である。 The contents of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are (a1), (a2) and alkaline and hydrolyzed from the viewpoint of the absorbability of the negative electrode additive (G) of the alkaline battery. 98.0 to 99.90% by weight is preferable, and 99.0 to 99.85% by weight is particularly preferable, based on the total weight of the cross-linking agent (b1) and the alkaline and non-hydrolyzing cross-linking agent (b2). It is preferably 99.2 to 99.83% by weight.
 水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)は、それぞれ、1種を単独で用いても2種以上を併用してもよい。 As the water-soluble vinyl monomer (a1) and / or the hydrolyzable vinyl monomer (a2), one type may be used alone or two or more types may be used in combination.
 水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の内、アルカリ電池の放電特性の観点から、(a1)単独及び(a1)と(a2)の併用が好ましく、更に好ましいのは(a1)単独である。
 水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の両方を構成単位とする場合、これらのビニルモノマーに由来する単位のモル比{(a1)/(a2)}は、アルカリ電池の放電特性の観点から、75/25~99/1が好ましく、更に好ましくは85/15~98/2、最も好ましくは90/10~95/5である。
Of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), (a1) alone and (a1) and (a2) are preferably used alone or in combination with (a2) from the viewpoint of the discharge characteristics of the alkaline battery. a1) Alone.
When both the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent units, the molar ratio of the units derived from these vinyl monomers {(a1) / (a2)} is the alkaline battery. From the viewpoint of discharge characteristics, it is preferably 75/25 to 99/1, more preferably 85/15 to 98/2, and most preferably 90/10 to 95/5.
 架橋重合体(A)は、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の他に、これらと共重合可能なその他のビニルモノマー(a3)を構成単位とすることができる。その他のビニルモノマー(a3)は1種を単独で用いても2種以上を併用してもよい。 In addition to the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), the crosslinked polymer (A) can contain other vinyl monomer (a3) copolymerizable with these as a constituent unit. The other vinyl monomer (a3) may be used alone or in combination of two or more.
 共重合可能なその他のビニルモノマー(a3)としては特に限定はなく、公知(例えば、特許第3648553号公報の段落[0028]~[0029]に開示されている疎水性ビニルモノマー、特開2003-165883号公報の段落[0025]及び特開2005-75982号公報の段落[0058]に開示されているビニルモノマー等)の疎水性ビニルモノマー等が使用でき、具体的には例えば下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
 スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン及びジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレン性モノマー
 アルケン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等);並びにアルカジエン(ブタジエン及びイソプレン等)等。
(iii)炭素数5~15の脂環式エチレン性モノマー
 モノエチレン性不飽和モノマー(ピネン、リモネン及びインデン等);並びにポリエチレン性ビニルモノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
The other copolymerizable vinyl monomer (a3) is not particularly limited, and the hydrophobic vinyl monomer disclosed in paragraphs [0028] to [0029] of Japanese Patent No. 36485553, JP-A-2003- Hydrophobic vinyl monomers (such as the vinyl monomers disclosed in paragraph [0025] of Japanese Patent Application Laid-Open No. 165883 and paragraph [0058] of JP-A-2005-75982) can be used, and specifically, for example, (i) below. -(Iii) vinyl monomer and the like can be used.
(I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, halogen-substituted styrene such as vinylnaphthalene and dichlorostyrene and the like.
(Ii) Alkenes (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.); and alkaziene (butadiene and isoprene, etc.) having 2 to 20 carbon atoms.
(Iii) Alicyclic ethylenic monomer having 5 to 15 carbon atoms Monoethylene unsaturated monomer (pinene, limonene, inden, etc.); and polyethylene vinyl monomer [cyclopentadiene, bicyclopentadiene, ethylidene norbornene, etc.] and the like.
 共重合体(A)におけるその他のビニルモノマー(a3)単位の含有量(モル%)は、吸収性能等の観点から、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位の合計モル数に基づいて、0~5モル%が好ましく、更に好ましくは0~3モル%、特に好ましくは0~2モル%、とりわけ好ましくは0~1.5モル%であり、吸収性能等の観点から、その他のビニルモノマー(a3)単位の含有量が0モル%であることが最も好ましい。 The content (mol%) of the other vinyl monomer (a3) unit in the copolymer (A) is the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit from the viewpoint of absorption performance and the like. Based on the total number of moles, 0 to 5 mol% is preferable, more preferably 0 to 3 mol%, particularly preferably 0 to 2 mol%, particularly preferably 0 to 1.5 mol%, and the absorption performance and the like. From the viewpoint, the content of the other vinyl monomer (a3) unit is most preferably 0 mol%.
 架橋重合体(A)は、架橋剤(b)を用いて架橋体とされてなる。架橋剤(b)としては、アルカリ性で加水分解する架橋剤(b1)及びアルカリ性で加水分解しない架橋剤(b2)等が挙げられる。
 本発明においては(b1)と(b2)を併用することが好ましい。(b1)及び(b2)を併用することにより、アルカリ電池の負極用添加剤(G)の粘度安定性が更に向上し、アルカリ電解液の離液を防止することできるため、電池の長期間に亘る放電を維持することができる。更に電池へ充填する際に均一に注入することができ、電池1個あたりの電解液の注入量の偏りも小さくなるので好ましい。
 尚、ここでアルカリ電解液の「離液」とは、アルカリ電池の負極用添加剤(G)とアルカリ電解液とのほぼ均一な混合状態を保持できず、アルカリ電池の負極用添加剤(G)とアルカリ電解液とが分離してしまうことを意味する。
The crosslinked polymer (A) is made into a crosslinked product by using a crosslinking agent (b). Examples of the cross-linking agent (b) include a cross-linking agent (b1) that is alkaline and hydrolyzes, and a cross-linking agent (b2) that is alkaline and does not hydrolyze.
In the present invention, it is preferable to use (b1) and (b2) together. By using (b1) and (b2) together, the viscosity stability of the negative electrode additive (G) of the alkaline battery can be further improved, and the separation of the alkaline electrolytic solution can be prevented, so that the battery can be used for a long period of time. It is possible to maintain the discharge over. Further, it is preferable because it can be uniformly injected when filling the battery and the bias in the injection amount of the electrolytic solution per battery is small.
Here, the term "leaving" of the alkaline electrolytic solution means that the negative electrode additive (G) of the alkaline battery and the alkaline electrolytic solution cannot be maintained in a substantially uniform mixed state, and the negative electrode additive (G) of the alkaline battery cannot be maintained. ) And the alkaline electrolytic solution are separated.
 アルカリ性で加水分解する架橋剤(b1)において「アルカリ性で加水分解する」とは、架橋重合体(A)において(b1)に由来する単位が加水分解性結合を有することを意味し、加水分解性結合は、架橋剤(b1)がもともと分子内に有する結合であってもよいし{この場合の架橋剤を、分子内に加水分解性結合を有する架橋剤(b11)とする}、架橋重合体(A)を構成する他の単量体{(a1)又は(a2)}と架橋反応して生成する結合が加水分解するものであってもよい{この場合の架橋剤を、架橋反応して生成する結合が加水分解性の架橋剤(b12)とする}。
 加水分解性結合としてはエステル結合及びアミド結合等が含まれる。
In the cross-linking agent (b1) that hydrolyzes alkaline, "hydrolyzing with alkalinity" means that the unit derived from (b1) in the cross-linked polymer (A) has a hydrolyzable bond, and is hydrolyzable. The bond may be a bond that the cross-linking agent (b1) originally has in the molecule {the cross-linking agent in this case is a cross-linking agent (b11) having a hydrolyzable bond in the molecule}, a cross-linked polymer. The bond formed by the cross-linking reaction with the other monomer {(a1) or (a2)} constituting (A) may be hydrolyzed {the cross-linking agent in this case is cross-linked. The bond formed is a hydrolyzable cross-linking agent (b12)}.
The hydrolyzable bond includes an ester bond, an amide bond and the like.
 分子内に加水分解性結合を有する架橋剤(b11)としては、例えば、N,N’-メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート及びペンタエリスリトールテトラ(メタ)アクリレート及びポリグリセリン(重合度3~13)ポリアクリレート等の分子内に2~10のエチレン性不飽和結合を有する共重合性の架橋剤が挙げられる。 Examples of the cross-linking agent (b11) having a hydrolyzable bond in the molecule include N, N'-methylenebisacrylamide, ethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, and trimethylolpropane tri (). 2 to 10 ethylenic properties in molecules such as meta) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate and polyglycerin (polymerization degree 3 to 13) polyacrylate. Examples thereof include copolymerizable cross-linking agents having an unsaturated bond.
 架橋反応して生成する結合が加水分解性の架橋剤(b12)としては、多価グリシジル化合物(エチレングリコールジグリシジルエーテル等)、多価イソシアネート化合物(4,4’-ジフェニルメタンジイソシアネート等)、多価アミン化合物(エチレンジアミン等)及び多価アルコール化合物(グリセリン等)等に代表されるカルボン酸と反応する反応型架橋剤が挙げられる。反応型架橋剤は、(メタ)アクリル酸(塩)と反応してエステル結合又はアミド結合を形成することができる。 Examples of the cross-linking agent (b12) in which the bond formed by the cross-linking reaction is hydrolyzable include a polyvalent glycidyl compound (ethylene glycol diglycidyl ether, etc.), a polyvalent isocyanate compound (4,4'-diphenylmethane diisocyanate, etc.), and a polyvalent Examples thereof include reactive cross-linking agents that react with carboxylic acids typified by amine compounds (ethylene diamine, etc.) and polyhydric alcohol compounds (glycerin, etc.). The reactive cross-linking agent can react with (meth) acrylic acid (salt) to form an ester bond or an amide bond.
 アルカリ性で加水分解する架橋剤(b1)の内、アルカリ電池の負極用添加剤(G)を添加した負極材の粘度安定性の観点から、多価アクリルアミド化合物及び多価アクリレート化合物が好ましく、更に好ましいのはN,N’-メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート及びペンタエリスリトールトリ(メタ)アクリレート、特に更に好ましいのはN,N’-メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート及びエチレングリコールジグリシジルエーテル、最も好ましいのはN,N’-メチレンビスアクリルアミド及びトリメチロールプロパントリ(メタ)アクリレートである。 Among the cross-linking agents (b1) that hydrolyze with alkali, polyvalent acrylamide compounds and polyvalent acrylate compounds are preferable, and more preferable, from the viewpoint of viscosity stability of the negative electrode material to which the negative electrode additive (G) for an alkaline battery is added. Of N, N'-methylenebisacrylamide, ethylene glycol di (meth) acrylate, trimethylolpropantri (meth) acrylate and pentaerythritol tri (meth) acrylate, more preferably N, N'-methylenebisacrylamide, Ethylene glycol di (meth) acrylates, trimethyl propantri (meth) acrylates and ethylene glycol diglycidyl ethers, most preferably N, N'-methylenebisacrylamide and trimethyl propantri (meth) acrylates.
 アルカリ性で加水分解しない架橋剤(b2)は、加水分解性結合を分子内に有さず、また、架橋反応により加水分解性結合を生成しない架橋剤である。このような架橋剤(b2)としては、2個以上のビニルエーテル結合を有する架橋剤(b21)及び2個以上のアリルエーテル結合を有する架橋剤(b22)等が挙げられる。好ましくは、反応性等の観点から、2個以上のアリルエーテル結合を有する架橋剤である。 The alkaline, non-hydrolyzable cross-linking agent (b2) is a cross-linking agent that does not have a hydrolyzable bond in the molecule and does not generate a hydrolyzable bond by a cross-linking reaction. Examples of such a cross-linking agent (b2) include a cross-linking agent having two or more vinyl ether bonds (b21) and a cross-linking agent having two or more allyl ether bonds (b22). Preferably, it is a cross-linking agent having two or more allyl ether bonds from the viewpoint of reactivity and the like.
 2個以上のビニルエーテル結合を有する架橋剤(b21)としては、エチレングリコールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、ポリエチレングリコールジビニルエーテル(重合度2~5)、ビスフェノールAジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ソルビトールトリビニルエーテル及びポリグリセリン(重合度3~13)ポリビニルエーテル等が挙げられる。 Examples of the cross-linking agent (b21) having two or more vinyl ether bonds include ethylene glycol divinyl ether, 1,4-butanediol divinyl ether, 1,4-cyclohexanedimethanol divinyl ether, 1,6-hexanediol divinyl ether, and polyethylene. Examples thereof include glycol divinyl ether (polymerization degree 2 to 5), bisphenol A divinyl ether, pentaerythritol trivinyl ether, sorbitol trivinyl ether and polyglycerin (polymerization degree 3 to 13) polyvinyl ether.
 2個以上のアリルエーテル結合を有する架橋剤(b22)としては、分子内にアリル基を2個有しかつ水酸基を含まない架橋剤(b221)、分子内にアリル基を2個有しかつ水酸基を1~5個有する架橋剤(b222)、分子内にアリル基を3~10個有しかつ水酸基を有さない架橋剤(b223)、分子内にアリル基が3~10個有しかつ水酸基を1~3個有する架橋剤(b224)等が挙げられる。分子内に水酸基を含むと、ビニルモノマー(a1)及び/又は(a2){特に(メタ)アクリル酸(塩)}との相溶性が良く、架橋の均一性が増してアルカリ電池の負極用添加剤(G)の性能が向上し、アルカリ電池の負極用添加剤(G)を含む負極材の粘度の長期安定性が更に優れる。 Examples of the cross-linking agent (b22) having two or more allyl ether bonds include a cross-linking agent (b221) having two allyl groups in the molecule and containing no hydroxyl group, and a cross-linking agent (b221) having two allyl groups in the molecule and having a hydroxyl group. A cross-linking agent (b222) having 1 to 5 allyl groups, a cross-linking agent (b223) having 3 to 10 allyl groups in the molecule and no hydroxyl group, and a cross-linking agent having 3 to 10 allyl groups in the molecule and having a hydroxyl group. Examples thereof include a cross-linking agent (b224) having 1 to 3 of. When a hydroxyl group is contained in the molecule, the compatibility with the vinyl monomer (a1) and / or (a2) {particularly (meth) acrylic acid (salt)} is good, the uniformity of cross-linking is increased, and the addition to the negative electrode of an alkaline battery is performed. The performance of the agent (G) is improved, and the long-term stability of the viscosity of the negative electrode material containing the negative electrode additive (G) for the alkaline battery is further excellent.
 分子内にアリル基を2個有しかつ水酸基を含まない架橋剤(b221)としては、1,4-シクロヘキサンジメタノールジアリルエーテル、アルキレン(炭素数2~5)グリコールジアリルエーテル及びポリアルキレン(炭素数2~6)グリコール(重量平均分子量:100~4000)ジアリルエーテル等が挙げられる。
 分子内にアリル基を2個有しかつ水酸基を1~5個有する架橋剤(b222)としては、グリセリンジアリルエーテル、トリメチロールプロパンジアリルエーテル及びペンタエリスリトールジアリルエーテル、ポリグリセリン(重合度2~5)ジアリルエーテル等が挙げられる。
 分子内にアリル基を3~10個有しかつ水酸基を有さない架橋剤(b223)としては、トリメチロールプロパントリアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル及びテトラアリルオキシエタン等が挙げられる。
 分子内にアリル基が3~10個有しかつ水酸基を1~3個有する架橋剤(b224)としては、ペンタエリスリトールトリアリルエーテル及びジグリセリントリアリルエーテル、ソルビトールトリアリルエーテル、ポリグリセリン(重合度3~13)ポリアリルエーテル等が挙げられる。
Examples of the cross-linking agent (b221) having two allyl groups in the molecule and containing no hydroxyl group include 1,4-cyclohexanedimethanol diallyl ether, alkylene (2 to 5 carbon atoms) glycol diallyl ether, and polyalkylene (carbon number). 2 to 6) Glycol (weight average molecular weight: 100 to 4000) diallyl ether and the like can be mentioned.
Examples of the cross-linking agent (b222) having two allyl groups and 1 to 5 hydroxyl groups in the molecule include glycerin diallyl ether, trimethylolpropane diallyl ether, pentaerythritol diallyl ether, and polyglycerin (degree of polymerization 2 to 5). Examples thereof include diallyl ether and the like.
Examples of the cross-linking agent (b223) having 3 to 10 allyl groups in the molecule and no hydroxyl group include trimethylolpropane triallyl ether, glycerin triallyl ether, pentaerythritol tetraallyl ether, and tetraallyloxyethane. Can be mentioned.
Examples of the cross-linking agent (b224) having 3 to 10 allyl groups and 1 to 3 hydroxyl groups in the molecule include pentaerythritol triallyl ether, diglycerin triallyl ether, sorbitol triallyl ether, and polyglycerin (degree of polymerization). 3 to 13) Polyallyl ether and the like can be mentioned.
 アルカリ性で加水分解しない架橋剤(b2)は2種以上を併用してもよい。
 架橋剤(b2)の内、2個以上のアリルエーテル結合を有する架橋剤(b22)が好ましく、更に好ましくは水酸基1~5個及びアリル基を2~10個有する架橋剤{(b222)及び(b224)}、特に好ましくは分子内にアリル基を3~10個有しかつ水酸基を1~3個有する架橋剤(b224)、最も好ましくはペンタエリスリトールトリアリルエーテル、ジグリセリントリアリルエーテル及びソルビトールトリアリルエーテルである。これらの架橋剤を用いると、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)との相溶性が良く効率的な架橋が行えるので好ましい。
Two or more kinds of cross-linking agents (b2) that are alkaline and do not hydrolyze may be used in combination.
Among the cross-linking agents (b2), the cross-linking agent (b22) having two or more allyl ether bonds is preferable, and more preferably, the cross-linking agent {(b222) and (b222) having 1 to 5 hydroxyl groups and 2 to 10 allyl groups. b224)}, particularly preferably a cross-linking agent (b224) having 3 to 10 allyl groups and 1 to 3 hydroxyl groups in the molecule, most preferably pentaerythritol triallyl ether, diglycerin triallyl ether and sorbitol tri. Allyl ether. It is preferable to use these cross-linking agents because they have good compatibility with the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) and can carry out efficient cross-linking.
 本発明における架橋重合体(A)中のアルカリ性で加水分解する架橋剤(b1)の含有量は、架橋剤(b1)の種類、平均重合度にもよるが、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の合計重量を基準として好ましくは0.05~1重量%、更に好ましくは0.1~0.8重量%、特に好ましくは0.1~0.5重量%である。これらの範囲であると、アルカリ電解液の過剰な離液を防止できるため、電池の長期に亘る放電特性が更に優れる。 The content of the cross-linking agent (b1) hydrolyzed by alkali in the cross-linking polymer (A) in the present invention depends on the type of the cross-linking agent (b1) and the average degree of polymerization, but the water-soluble vinyl monomer (a1) and Based on the total weight of the hydrolyzable vinyl monomer (a2), it is preferably 0.05 to 1% by weight, more preferably 0.1 to 0.8% by weight, and particularly preferably 0.1 to 0.5% by weight. is there. Within these ranges, excessive separation of the alkaline electrolytic solution can be prevented, so that the long-term discharge characteristics of the battery are further excellent.
 架橋重合体(A)中のアルカリ性で加水分解しない架橋剤(b2)の含有量は、架橋剤(b2)の種類にもよるが、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の合計重量を基準として、好ましくは0.05~1重量%、更に好ましくは0.05~0.5重量%、特に好ましくは0.1~0.3重量%である。これらの範囲であると、電池の長期に亘る放電特性が更に優れる。 The content of the cross-linking agent (b2) that is alkaline and does not hydrolyze in the cross-linking polymer (A) depends on the type of the cross-linking agent (b2), but is a water-soluble vinyl monomer (a1) and a hydrolyzable vinyl monomer (a2). ), It is preferably 0.05 to 1% by weight, more preferably 0.05 to 0.5% by weight, and particularly preferably 0.1 to 0.3% by weight, based on the total weight of). Within these ranges, the long-term discharge characteristics of the battery are further excellent.
 架橋重合体(A)中の架橋剤(b1)の架橋剤(b2)に対する重量比率[(b1)/(b2)]は、好ましくは1~5、更に好ましくは1.7~4、特に好ましくは1.9~3である。これらの範囲であると、アルカリ電解液の過剰な離液を防止できるため、電池の長期に亘る放電特性が更に優れる。 The weight ratio [(b1) / (b2)] of the cross-linking agent (b1) in the cross-linking polymer (A) to the cross-linking agent (b2) is preferably 1 to 5, more preferably 1.7 to 4, particularly preferably. Is 1.9 to 3. Within these ranges, excessive separation of the alkaline electrolytic solution can be prevented, so that the long-term discharge characteristics of the battery are further excellent.
 架橋剤(b1)及び架橋剤(b2)の合計含有量は、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の合計重量に基づいて、好ましくは0.10~2.0重量%、更に好ましくは0.30~1.0重量%、特に好ましくは0.40~0.8重量%である。これらの範囲であると、アルカリ電解液の過剰な離液を防止できるため、電池の長期に亘る放電特性が更に優れる。また、アルカリ電池の負極用添加剤(G)の安定性が向上し、アルカリ電池の負極用添加剤(G)を含むアルカリ電解液の粘度の長期安定性が更に優れる。 The total content of the cross-linking agent (b1) and the cross-linking agent (b2) is preferably 0.10 to 2.0 weight based on the total weight of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2). %, More preferably 0.30 to 1.0% by weight, and particularly preferably 0.40 to 0.8% by weight. Within these ranges, excessive separation of the alkaline electrolytic solution can be prevented, so that the long-term discharge characteristics of the battery are further excellent. Further, the stability of the negative electrode additive (G) of the alkaline battery is improved, and the long-term stability of the viscosity of the alkaline electrolytic solution containing the negative electrode additive (G) of the alkaline battery is further excellent.
 架橋重合体(A)は水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)並びに架橋剤(b)を含む単量体組成物を、有機ヨウ素化合物、有機テルル化合物、有機アンチモン化合物及び有機ビスマス化合物からなる群から選ばれる少なくとも1種の有機典型元素化合物の存在下に重合することにより得ることができる。有機典型元素化合物の使用量を調整することにより、架橋重合体(A)の生理食塩水への可溶性成分の量、架橋重合体(A)の生理食塩水への可溶性成分の内の分子量が100,000以下の成分の数平均分子量(Mn)に対する重量平均分子量(Mw)の比率(Mw/Mn)、及び架橋重合体(A)の生理食塩水への可溶性成分に対して得られたゲルパーミエーションクロマトグラフィー法のクロマトグラムの全面積に対して、分子量が100,000以下の可溶性成分の面積の割合を所望の範囲とすることができる。 The crosslinked polymer (A) is a monomer composition containing a water-soluble vinyl monomer (a1) and / or a hydrolyzable vinyl monomer (a2) and a crosslinking agent (b), which is an organic iodine compound, an organic tellurium compound, and an organic antimony. It can be obtained by polymerizing in the presence of at least one organic representative element compound selected from the group consisting of a compound and an organic bismuth compound. By adjusting the amount of the organic typical element compound used, the amount of the crosslinked polymer (A) soluble component in the physiological saline and the molecular weight of the crosslinked polymer (A) soluble component in the physiological saline are 100. The gel perm obtained with respect to the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the components of 000 or less and the soluble component of the crosslinked polymer (A) in physiological saline. The ratio of the area of the soluble component having a molecular weight of 100,000 or less to the total area of the chromatogram of the ion chromatography method can be set in a desired range.
 有機ヨウ素化合物、有機テルル化合物、有機アンチモン化合物及び有機ビスマス化合物としては、ラジカル重合のドーマント種として働く有機典型元素化合物であれば制限はなく、WO2011/016166にドーマント種として記載の有機ヨウ素化合物、WO2004/014848に記載の有機テルル化合物、WO2006/001496に記載の有機アンチモン化合物及びWO2006/062255に記載の有機ビスマス化合物等を用いることができる。なかでも反応性の観点から、下記一般式(1)で表される有機典型元素化合物が好ましい。
 これら有機典型元素化合物は1種を単独で使用しても2種以上を併用してもよい。
The organic iodine compound, the organic tellurium compound, the organic antimony compound, and the organic bismuth compound are not limited as long as they are organic typical element compounds that act as dormant species for radical polymerization, and the organic iodine compounds described as dormant species in WO2011 / 016166, WO2004. The organic tellurium compound described in / 014848, the organic antimony compound described in WO2006 / 001496, the organic bismuth compound described in WO2006 / 062255, and the like can be used. Among them, the organic main group element compound represented by the following general formula (1) is preferable from the viewpoint of reactivity.
These organic typical element compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)におけるR及びRはそれぞれ独立に水素原子、炭素数1~7の飽和炭化水素基又は少なくとも1つの非付加重合性二重結合若しくは少なくとも1つの非付加重合性三重結合を有する炭素数1~7の1価の基であり、Rは炭素数1~7のn価の飽和炭化水素基又は少なくとも1つの非付加重合性二重結合若しくは少なくとも1つの非付加重合性三重結合を有する炭素数2~12であるn価の基であり、但し、1分子中、R~Rの内少なくとも一つは、前記の、対応する、非付加重合性二重結合又は少なくとも1つの非付加重合性三重結合を有する基であり、nは1~3の整数であり、nが1である場合にR及びRは互いに結合していてもよく、Xはテルル元素、アンチモン元素若しくはビスマス元素を有する1価の有機典型元素基又はヨード基である。 R 1 and R 2 in the general formula (1) independently form a hydrogen atom, a saturated hydrocarbon group having 1 to 7 carbon atoms, or at least one non-additive polymerizable double bond or at least one non-additive polymerizable triple bond, respectively. It is a monovalent group having 1 to 7 carbon atoms, and R 3 is an n-valent saturated hydrocarbon group having 1 to 7 carbon atoms or at least one non-additive polymerizable double bond or at least one non-additive polymerizable triple bond. It is an n-valent group having a bond and having 2 to 12 carbon atoms, except that at least one of R 1 to R 3 in one molecule is the above-mentioned corresponding non-additive polymerizable double bond or at least. It is a group having one non-additive polymerizable triple bond, n is an integer of 1 to 3, R 1 and R 2 may be bonded to each other when n is 1, and X 1 is a tellurium element. , A monovalent organic typical element group or an iodo group having an antimonal element or a bismuth element.
 本明細書中、非付加重合性二重結合(以下、単に非重合性二重結合ともいう)及び非付加重合性三重結合(以下、単に非重合性三重結合ともいう)とは、不飽和結合の内、付加重合性不飽和結合(それぞれ、付加重合性炭素-炭素二重結合及び付加重合性炭素-炭素三重結合)を除いた結合であり、非付加重合性二重結合及び非付加重合性三重結合としては、カルボニル基に含まれる炭素-酸素二重結合、ニトリル基に含まれる炭素-窒素三重結合、芳香族炭化水素を構成する炭素-炭素二重結合及び複素芳香族化合物を構成する酸素-窒素二重結合並びに炭素-窒素二重結合等が挙げられ、なかでもカルボニル基に含まれる炭素-酸素二重結合、ニトリル基に含まれる炭素-窒素三重結合及び芳香族炭化水素を構成する炭素-炭素二重結合が好ましい。 In the present specification, the non-additive polymerizable double bond (hereinafter, also simply referred to as a non-polymerizable double bond) and the non-additive polymerizable triple bond (hereinafter, also simply referred to as a non-polymerizable triple bond) are unsaturated bonds. Of these, the bonds excluding the addition polymerizable unsaturated bond (additional polymerizable carbon-carbon double bond and addition polymerizable carbon-carbon triple bond, respectively), and are non-additive polymerizable double bond and non-additive polymerizable double bond. The triple bond includes a carbon-oxygen double bond contained in a carbonyl group, a carbon-nitrogen triple bond contained in a nitrile group, a carbon-carbon double bond constituting an aromatic hydrocarbon, and oxygen constituting a heteroaromatic compound. -Nitrogen double bond, carbon-nitrogen double bond, etc., among which carbon-oxygen double bond contained in carbonyl group, carbon-nitrogen triple bond contained in nitrile group and carbon constituting aromatic hydrocarbon -Carbon double bonds are preferred.
 R及びRが炭素数1~7の飽和炭化水素基である場合、炭素数1~7の飽和炭化水素基としては、炭素数1~7の直鎖飽和炭化水素基(メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基及びn-ヘキシル基等)及び炭素数1~7の分岐飽和炭化水素基(i-プロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、1-メチルブチル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基、ネオヘキシル基、ヘプチル基等)が挙げられる。なかでも溶解性と重合性の観点等から好ましいのは炭素数1~5の直鎖飽和炭化水素基であり、更に好ましいのは炭素数1~3の直鎖飽和炭化水素基である。 When R 1 and R 2 are saturated hydrocarbon groups having 1 to 7 carbon atoms, the saturated hydrocarbon groups having 1 to 7 carbon atoms are linear saturated hydrocarbon groups having 1 to 7 carbon atoms (methyl group, ethyl). Group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, etc.) and branched saturated hydrocarbon group with 1 to 7 carbon atoms (i-propyl group, isobutyl group, s-butyl group, t -Butyl group, isopentyl group, neopentyl group, t-pentyl group, 1-methylbutyl group, isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, heptyl group, etc.). Among them, a linear saturated hydrocarbon group having 1 to 5 carbon atoms is preferable from the viewpoint of solubility and polymerizable property, and a linear saturated hydrocarbon group having 1 to 3 carbon atoms is more preferable.
 R及びRが少なくとも1つの非重合性二重結合又は少なくとも1つの非重合性三重結合を有する炭素数1~7である1価の基である場合、好ましい基としてはカルボキシ(塩)基(炭素数1、炭素-酸素二重結合)、フェニル基(炭素数6、非重合性炭素-炭素二重結合)、シアノ基(炭素数1、炭素-窒素三重結合)、シアノメチル基(炭素数2、炭素-窒素三重結合)、シアノエチル基(炭素数3、炭素-窒素三重結合)、シアノプロピル基(炭素数4、炭素-窒素三重結合)、シアノブチル基(炭素数5、炭素-窒素三重結合)、シアノペンチル基(炭素数6、炭素-窒素三重結合)、シアノヘキシル基(炭素数7、炭素-窒素三重結合)、カルボキシメチル基(炭素数2、炭素-酸素二重結合)、カルボキシエチル基(炭素数3、炭素-酸素二重結合)、カルボキシプロピル基(炭素数4、炭素-酸素二重結合)、カルボキシブチル基(炭素数5、炭素―酸素二重結合)、カルボキシペンチル基(炭素数6、炭素―酸素二重結合)、カルボキシヘキシル基(炭素数7、炭素―酸素二重結合)、ベンジル基(炭素数7、非重合性炭素-炭素二重結合)、メトキシカルボニル基(炭素数2、炭素-酸素二重結合)、エトキシカルボニル基(炭素数3、炭素-酸素二重結合)、プロピルオキシカルボニル基(炭素数4、炭素-酸素二重結合)、ブチルオキシカルボニル基(炭素数5、炭素-酸素二重結合)、ペンチルオキシカルボニル基(炭素数6、炭素-酸素二重結合)、ヘキシルオキシカルボニル基(炭素数7、炭素-酸素二重結合)、ヒドロキシエトキシカルボニル基(炭素数3、炭素-酸素二重結合)、ヒドロキシプロピルオキシカルボニル基(炭素数4、炭素-酸素二重結合)、ヒドロキシブチルオキシカルボニル基(炭素数5、炭素-酸素二重結合)、ヒドロキシペンチルオキシカルボニル基(炭素数6、炭素-酸素二重結合)及びヒドロキシヘキシルオキシカルボニル基(炭素数7、炭素-酸素二重結合)等が挙げられ、更に好ましいのは、カルボキシ(塩)基、シアノ基、カルボキシメチル基及びカルボキシエチル基である。
 また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩及びアンモニウム(NH)塩等が挙げられる。これらの塩の内、40重量%水酸化カリウム水溶液の吸収量の観点から、アルカリ金属塩及びアンモニウム塩が好ましく、更に好ましいのはアルカリ金属塩、特に好ましいのはナトリウム塩である。
When R 1 and R 2 are monovalent groups having at least one non-polymerizable double bond or at least one non-polymerizable triple bond and having 1 to 7 carbon atoms, the preferred group is a carboxy (salt) group. (Carbon number 1, carbon-oxygen double bond), phenyl group (carbon number 6, non-polymerizable carbon-carbon double bond), cyano group (carbon number 1, carbon-nitrogen triple bond), cyanomethyl group (carbon number) 2. Carbon-nitrogen triple bond), cyanoethyl group (3 carbons, carbon-nitrogen triple bond), cyanopropyl group (4 carbons, carbon-nitrogen triple bond), cyanobutyl group (5 carbons, carbon-nitrogen triple bond) ), Cyanopentyl group (6 carbons, carbon-nitrogen triple bond), cyanohexyl group (7 carbons, carbon-nitrogen triple bond), carboxymethyl group (2 carbons, carbon-oxygen double bond), carboxyethyl Group (3 carbons, carbon-oxygen double bond), carboxypropyl group (4 carbons, carbon-oxygen double bond), carboxybutyl group (5 carbons, carbon-oxygen double bond), carboxypentyl group (4 carbons, carbon-oxygen double bond) 6 carbons, carbon-oxygen double bond), carboxyhexyl group (7 carbons, carbon-oxygen double bond), benzyl group (7 carbons, non-polymerizable carbon-carbon double bond), methoxycarbonyl group (7 carbons, non-polymerizable carbon-carbon double bond) Carbon number 2, carbon-oxygen double bond), ethoxycarbonyl group (carbon number 3, carbon-oxygen double bond), propyloxycarbonyl group (carbon number 4, carbon-oxygen double bond), butyloxycarbonyl group (carbon number 4, carbon-oxygen double bond) 5 carbons, carbon-oxygen double bond), pentyloxycarbonyl group (6 carbons, carbon-oxygen double bond), hexyloxycarbonyl group (7 carbons, carbon-oxygen double bond), hydroxyethoxycarbonyl group (3 carbons, carbon-oxygen double bond), hydroxypropyloxycarbonyl group (4 carbons, carbon-oxygen double bond), hydroxybutyloxycarbonyl group (5 carbons, carbon-oxygen double bond), hydroxy Examples thereof include a pentyloxycarbonyl group (6 carbons, carbon-oxygen double bond) and a hydroxyhexyloxycarbonyl group (7 carbons, carbon-oxygen double bond), and more preferably, a carboxy (salt) group, It is a cyano group, a carboxymethyl group and a carboxyethyl group.
Examples of the salt include alkali metal (lithium, sodium, potassium, etc.) salt, alkaline earth metal (magnesium, calcium, etc.) salt, ammonium (NH 4 ) salt, and the like. Among these salts, an alkali metal salt and an ammonium salt are preferable, and an alkali metal salt is more preferable, and a sodium salt is particularly preferable, from the viewpoint of the amount of absorption of a 40 wt% potassium hydroxide aqueous solution.
 Rは炭素数1~7のn価の飽和炭化水素基又は少なくとも1つの非重合性二重結合若しくは少なくとも1つの非重合性三重結合を有する炭素数2~12であるn価の基であり、nは1~3の整数である。 R 3 is an n-valent saturated hydrocarbon group having 1 to 7 carbon atoms or an n-valent group having 2 to 12 carbon atoms having at least one non-polymerizable double bond or at least one non-polymerizable triple bond. , N is an integer of 1 to 3.
 Rで表される炭素数1~7のn価の飽和炭化水素基の内、炭素数1~7の1価の飽和炭化水素基としては、炭素数1~7の直鎖飽和炭化水素基(メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基及びヘプチル基等)及び炭素数1~7の分岐飽和炭化水素基(i-プロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、1-メチルブチル基、イソヘキシル基、s-ヘキシル基、t-ヘキシル基、ネオヘキシル基及びイソヘプチル基等)が挙げられる。
 Rで表される炭素数1~7のn価の飽和炭化水素基の内、炭素数1~7の2価の飽和炭化水素基としては、炭素数1~7の2価の直鎖飽和炭化水素基(メチレン基、エチレン基、プロピレン基、ブチレン基、ペンテン基、ヘキセン基及びヘプテン基等)及び炭素数1~7の2価の分岐飽和炭化水素基(イソプロピレン基、イソブチレン基、s-ブチレン基、t-ブチレン基、イソペンチレン基、ネオペンチレン基、t-ペンチレン基、1-メチルブチレン基、イソヘキシレン基、s-ヘキシレン基、t-ヘキシレン基、ネオヘキシレン基及びイソヘプチレン基等)が挙げられる。
 Rで表される炭素数1~7のn価の飽和炭化水素基の内、炭素数1~7の3価の飽和炭化水素基としては、メチン基等が挙げられる。
 Rで表される炭素数1~7のn価の飽和炭化水素基の内、メチル基、メチレン基及びメチン基が好ましく、更に好ましいのはメチル基及びメチレン基である。
Of n-valent saturated hydrocarbon group having 1 to 7 carbon atoms represented by R 3, 1 valent The saturated hydrocarbon group, straight-chain saturated hydrocarbon group having 1 to 7 carbon atoms having 1 to 7 carbon atoms (Methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, heptyl group, etc.) and branched saturated hydrocarbon group with 1 to 7 carbon atoms (i-propyl group, isobutyl). Group, s-butyl group, t-butyl group, isopentyl group, neopentyl group, t-pentyl group, 1-methylbutyl group, isohexyl group, s-hexyl group, t-hexyl group, neohexyl group, isoheptyl group, etc.) Be done.
Of n-valent saturated hydrocarbon group having 1 to 7 carbon atoms represented by R 3, examples of the divalent saturated hydrocarbon group having 1 to 7 carbon atoms, a divalent straight-chain saturated having 1 to 7 carbon atoms A hydrocarbon group (methylene group, ethylene group, propylene group, butylene group, penten group, hexene group, heptene group, etc.) and a divalent branched saturated hydrocarbon group having 1 to 7 carbon atoms (isopropylene group, isobutylene group, s) -Butylene group, t-butylene group, isopentylene group, neopentylene group, t-pentylene group, 1-methylbutylene group, isohexylene group, s-hexylene group, t-hexylene group, neohexylene group, isoheptylene group, etc.).
Among the n-valent saturated hydrocarbon groups having 1 to 7 carbon atoms represented by R 3 , the trivalent saturated hydrocarbon group having 1 to 7 carbon atoms includes a methine group and the like.
Of n-valent saturated hydrocarbon group having 1 to 7 carbon atoms represented by R 3, a methyl group, methylene group and methine group are preferred, more preferred is a methyl group and methylene group.
 Rが少なくとも1つの非重合性二重結合又は少なくとも1つの非重合性三重結合を有する炭素数2~12であるn価の基の内、1価の基としては、R及びRで例示した基と同じ基が挙げられ、好ましいものも同じである。
 Rが少なくとも1つの非重合性二重結合又は少なくとも1つの非重合性三重結合を有する炭素数2~12である2価の基である場合、好ましい基としては、ベンゼンジイル基(炭素数6、非重合性炭素-炭素二重結合)、1-メトキシカルボニル-カルボニルオキシエチレンオキシカルボニル基(炭素数6、酸素-酸素二重結合)及びカルボニルオキシエチレンカルボニル基(炭素数4、酸素-酸素二重結合)等が挙げられる。
 Rが少なくとも1つの非重合性二重結合又は少なくとも1つの非重合性三重結合を有する炭素数2~12である3価の基である場合、好ましいものとしては、ベンゼントリイル基(炭素数6、非重合性炭素-炭素二重結合)及び2-カルボニルオキシ-カルボニルオキシプロピレンカルボニル基(炭素数5、酸素-酸素二重結合)等が挙げられる。
Of the n-valent groups in which R 3 has at least one non-polymerizable double bond or at least one non-polymerizable triple bond and has 2 to 12 carbon atoms, the monovalent groups are R 1 and R 2 . The same groups as those exemplified are mentioned, and so are the preferred ones.
When R 3 is a divalent group having at least one non-polymerizable double bond or at least one non-polymerizable triple bond and having 2 to 12 carbon atoms, a preferred group is a benzenediyl group (6 carbon atoms). , Non-polymerizable carbon-carbon double bond), 1-methoxycarbonyl-carbonyloxyethylene oxycarbonyl group (6 carbons, oxygen-oxygen double bond) and carbonyloxyethylene carbonyl group (4 carbons, oxygen-oxygen dibond) (Double bond) and the like.
When R 3 is a trivalent group having at least one non-polymerizable double bond or at least one non-polymerizable triple bond and having 2 to 12 carbon atoms, a benzenetriyl group (carbon number) is preferable. 6. Non-polymerizable carbon-carbon double bond) and 2-carbonyloxy-carbonyloxypropylene carbonyl group (5 carbon atoms, oxygen-oxygen double bond) and the like.
 nが1である場合にR及びRは互いに結合していてもよく、R及びRが互いに結合して形成される環構造を有する基として好ましいものとしては、γ-ブチロラクトニル基及びフルオレニル基等が挙げられる。尚、R及びRが互いに結合して環構造を形成する基は、R及びRが結合した炭素原子を環構造中に含む。 When n is 1, R 1 and R 2 may be bonded to each other, and preferred groups having a ring structure formed by bonding R 1 and R 2 to each other are a γ-butyrolactonyl group and Examples include a fluorenyl group. The group in which R 1 and R 2 are bonded to each other to form a ring structure contains a carbon atom to which R 1 and R 2 are bonded in the ring structure.
 Xはテルル元素、アンチモン元素若しくはビスマス元素を有する1価の有機典型元素基又はヨード基であり、好ましいのはメチルテラニル基、ジメチルスチバニル基、ジメチルビスムタニル基及びヨード基、更に好ましいのはメチルテラニル基及びヨード基、特に好ましいのはヨード基である。 X 1 is a monovalent main group or iodo group having a tellurium element, an antimony element or a bismuth element, preferably a methylteranyl group, a dimethylstibanyl group, a dimethylbismutanyl group and an iodine group, and more preferably. Methyltelnaryl groups and iodo groups, particularly preferably iodo groups.
 一般式(1)で表される有機典型元素化合物の内でヨード基を有するものとしては、2-ヨードプロピオニトリル、2-ヨード-2-メチルプロピオニトリル、α-ヨードベンジルシアニド、2-ヨードプロピオン酸アミド、エチル-2-ヨード-2-メチルプロピオネート、2-ヨード-2-メチルプロピオン酸メチル、2-ヨード-2-メチルプロピオン酸プロピル、2-ヨード-2-メチルプロピオン酸ブチル、2-ヨード-2-メチルプロピオン酸ペンチル、2-ヨード-2-メチルプロピオン酸ヒドロキシエチル、2-ヨード-2-メチルプロピオン酸(塩)、2-ヨードプロピオン酸(塩)、2-ヨード酢酸(塩)、2-ヨード酢酸メチル、2-ヨード酢酸エチル、2-ヨードペンタン酸エチル、2-ヨードペンタン酸メチル、2-ヨードペンタン酸(塩)、2-ヨードヘキサン酸(塩)、2-ヨードヘプタン酸(塩)、2,5-ジヨードアジピン酸ジエチル、2,5-ジヨードアジピン酸(塩)、2,6-ジヨード-ヘプタン二酸ジメチル、2,6-ジヨード-ヘプタン二酸(塩)、α-ヨード-γ-ブチロラクトン、2-ヨードアセトフェノン、ベンジルヨージド、2-ヨード-2-フェニル酢酸(塩)、2-ヨード-2-フェニル酢酸メチル、2-ヨード-2-フェニル酢酸エチル、2-ヨード-2-(4’-メチルフェニル)酢酸エチル、2-ヨード-2-フェニル酢酸-ヒドロキシエチル、2-ヨード-2-(4’-ニトロフェニル)酢酸エチル、4-ニトロベンジルヨージド、(1-ヨードエチル)ベンゼン、ヨードジフェニルメタン、9-ヨード-9H-フルオレン、p-キシリレンジヨージド、1,4-ビス(1’-ヨードエチル)ベンゼン、エチレングリコールビス(2-メチル―2-ヨード―プロピオネート)、トリス(2-メチル-ヨードプロピオン酸)グリセロール、1,3,5-トリス(1’-ヨードエチルベンゼン)及びエチレングリコールビス(2-ヨード―2フェニルアセテート)等が挙げられる。 Among the organic typical element compounds represented by the general formula (1), those having an iodo group include 2-iodopropionitrile, 2-iodo-2-methylpropionitrile, α-iodobenzyl cyanide, and 2 -Iodopropionic acid amide, ethyl-2-iodo-2-methylpropionate, methyl 2-iodo-2-methylpropionic acid, propyl 2-iodo-2-methylpropionic acid, 2-iodo-2-methylpropionic acid Butyl, 2-iodo-2-methylpropionic acid pentyl, 2-iodo-2-methylpropionic acid hydroxyethyl, 2-iodo-2-methylpropionic acid (salt), 2-iodopropionic acid (salt), 2-iodine Acetic acid (salt), methyl 2-iodoacetate, ethyl 2-iodoacetate, ethyl 2-iodopentanoate, methyl 2-iodopentanoate, 2-iodopentanoic acid (salt), 2-iodohexanoic acid (salt), 2 -Iodoheptanoic acid (salt), diethyl 2,5-diiodoadipine, 2,5-diiodoadipine acid (salt), dimethyl 2,6-diiodo-heptanediate, 2,6-diiodo-heptanoic acid (Salt), α-iodo-γ-butyrolactone, 2-iodoacetophenone, benzyl iodide, 2-iodo-2-phenylacetic acid (salt), 2-iodo-2-phenylacetate methyl, 2-iodo-2-phenyl Ethyl acetate, 2-iodo-2- (4'-methylphenyl) ethyl acetate, 2-iodo-2-phenylacetic acid-hydroxyethyl, 2-iodo-2- (4'-nitrophenyl) ethyl acetate, 4-nitro Benzyl iodide, (1-iodoethyl) benzene, iododiphenylmethane, 9-iodo-9H-fluorene, p-xylylene diiodide, 1,4-bis (1'-iodoethyl) benzene, ethylene glycol bis (2-methyl- 2-iodo-propionate), tris (2-methyl-iodopropionic acid) glycerol, 1,3,5-tris (1'-iodoethylbenzene), ethylene glycol bis (2-iodo-2phenylacetate) and the like. ..
 一般式(1)で表される有機典型元素化合物の内でテルル元素を有するものとしては、2-メチルテラニルプロピオニトリル、2-メチル-2-メチルテラニルプロピオニトリル、α-メチルテラニルベンジルシアニド、2-メチルテラニルプロピオン酸アミド、エチル-2-メチル-2-メチルテラニル-プロピオネート、2-メチル-メチルテラニルプロピオン酸メチル、2-メチル-メチルテラニルプロピオン酸プロピル、2-メチル-メチルテラニルプロピオン酸ブチル、2-メチル-メチルテラニルプロピオン酸ペンチル、2-メチル-メチルテラニルプロピオン酸ヒドロキシエチル、2-メチル-2-メチルテラニル-プロピオン酸(塩)、2-メチルテラニルプロピオン酸(塩)、2-メチルテラニル酢酸(塩)、2-メチルテラニル酢酸メチル、2-メチルテラニル酢酸エチル、2-メチルテラニルペンタン酸エチル、2-メチルテラニルペンタン酸メチル、2-メチルテラニルペンタン酸(塩)、2-メチルテラニルヘキサン酸(塩)、2-メチルテラニルヘプタン酸(塩)、2,5-ジメチルテラニルアジピン酸ジエチル、2,5-ジメチルテラニルアジピン酸(塩)、2,6-ジメチルテラニル-ヘプタン二酸ジメチル、2,6-ジメチルテラニル-ヘプタン二酸(塩)、α-メチルテラニル-γ-ブチロラクトン、2-メチルテラニルアセトフェノン、2-メチルテラニル-2-フェニル酢酸(塩)、2-メチルテラニル-2-フェニル酢酸メチル、2-メチルテラニル-2-フェニル酢酸エチル、2-メチルテラニル-2-(4’-メチルフェニル)酢酸エチル、2-メチルテラニル-2-フェニル酢酸-ヒドロキシエチル、2-メチルテラニル-2-(4’-ニトロフェニル)酢酸エチル、(1-メチルテラニルエチル)ベンゼン、メチルテラニルジフェニルメタン、9-メチルテラニル-9H-フルオレン、1,4-ビス(1’-メチルテラニルエチル)ベンゼン、エチレングリコールビス(2-メチル―2-メチルテラニル―プロピオネート)、トリス(2-メチル-メチルテラニルプロピオン酸)グリセロール、1,3,5-トリス(1’-メチルテラニルエチルベンゼン)及びエチレングリコールビス(2-メチルテラニル―2フェニルアセテート)等が挙げられる。 Among the organic typical element compounds represented by the general formula (1), those having a tellurium element include 2-methylteranylpropionitrile, 2-methyl-2-methylteranylpropionitrile, and α-methyltera. Nylbenzyl cyanide, 2-methylteranylpropionic acid amide, ethyl-2-methyl-2-methylteranyl-propionate, methyl 2-methyl-methylteranylpropionate, propyl 2-methyl-methylteranylpropionate, 2- Butyl methyl-methylteranylpropionate, pentyl 2-methyl-methylteranylpropionate, hydroxyethyl 2-methyl-methylteranylpropionate, 2-methyl-2-methylteranyl-propionic acid (salt), 2-methyltera Nylpropionic acid (salt), 2-methylteranylacetic acid (salt), methyl 2-methylteranylacetate, ethyl 2-methylteranylacetate, ethyl 2-methylteranylpentanoate, methyl 2-methylteranylpentanoate, 2-methylteranyl Pentanoic acid (salt), 2-methylteranylhexanoic acid (salt), 2-methylteranylheptanic acid (salt), diethyl 2,5-dimethylteranyl adipate, 2,5-dimethylteranyl adipate (salt) ), 2,6-Dimethylteranyl-heptanediate dimethyl, 2,6-dimethylteranyl-heptanedioic acid (salt), α-methylteranyl-γ-butyrolactone, 2-methylteranylacetophenone, 2-methylteranyl-2 -Phenylacetic acid (salt), 2-methylteranyl-2-phenylacetate methyl, 2-methylteranyl-2-phenylacetate ethyl, 2-methylteranyl-2- (4'-methylphenyl) ethyl acetate, 2-methylteranyl-2-phenyl -Hydroxyethyl acetate, 2-methylteranyl-2- (4'-nitrophenyl) ethyl acetate, (1-methylteranylethyl) benzene, methylteranyldiphenylmethane, 9-methylteranyl-9H-fluorene, 1,4-bis ( 1'-Methylteranylethyl) benzene, ethylene glycol bis (2-methyl-2-methylteranyl-propionate), tris (2-methyl-methylteranylpropionic acid) glycerol, 1,3,5-tris (1'- Methylteranyl ethylbenzene), ethylene glycol bis (2-methylteranyl-2 phenylacetate) and the like.
 一般式(1)で表される有機典型元素化合物の内でアンチモン元素を有するものとしては、2-ジメチルスチバニルプロピオニトリル、2-メチル-2-ジメチルスチバニルプロピオニトリル、α-ジメチルスチバニルベンジルシアニド、2-ジメチルスチバニルプロピオン酸アミド、エチル-2-メチル-2-ジメチルスチバニル-プロピオネート、2-メチル-ジメチルスチバニルプロピオン酸メチル、2-メチル-ジメチルスチバニルプロピオン酸プロピル、2-メチル-ジメチルスチバニルプロピオン酸ブチル、2-メチル-ジメチルスチバニルプロピオン酸ペンチル、2-メチル-ジメチルスチバニルプロピオン酸ヒドロキシエチル、2-メチル-2-ジメチルスチバニル-プロピオン酸(塩)、2-ジメチルスチバニルプロピオン酸(塩)、2-ジメチルスチバニル酢酸(塩)、2-ジメチルスチバニル酢酸メチル、2-ジメチルスチバニル酢酸エチル、2-ジメチルスチバニルペンタン酸エチル、2-ジメチルスチバニルペンタン酸メチル、2-ジメチルスチバニルペンタン酸(塩)、2-ジメチルスチバニルヘキサン酸(塩)、2-ジメチルスチバニルヘプタン酸(塩)、2,5-ジジメチルスチバニルアジピン酸ジエチル、2,5-ジジメチルスチバニルアジピン酸(塩)、2,6-ジジメチルスチバニル-ヘプタン二酸ジメチル、2,6-ジジメチルスチバニル-ヘプタン二酸(塩)、α-ジメチルスチバニル-γ-ブチロラクトン、2-ジメチルスチバニルアセトフェノン、2-ジメチルスチバニル-2-フェニル酢酸(塩)、2-ジメチルスチバニル-2-フェニル酢酸メチル、2-ジメチルスチバニル-2-フェニル酢酸エチル、2-ジメチルスチバニル-2-(4’-メチルフェニル)酢酸エチル、2-ジメチルスチバニル-2-フェニル酢酸-ヒドロキシエチル、2-ジメチルスチバニル-2-(4’-ニトロフェニル)酢酸エチル、(1-ジメチルスチバニルエチル)ベンゼン、ジメチルスチバニルジフェニルメタン、9-ジメチルスチバニル-9H-フルオレン、1,4-ビス(1’-ジメチルスチバニルエチル)ベンゼン、エチレングリコールビス(2-メチル―2-ジメチルスチバニル―プロピオネート)、トリス(2-メチル-ジメチルスチバニルプロピオン酸)グリセロール、1,3,5-トリス(1’-ジメチルスチバニルエチルベンゼン)及びエチレングリコールビス(2-ジメチルスチバニル-2フェニルアセテート)等が挙げられる。 Among the organic typical element compounds represented by the general formula (1), those having an antimonic element include 2-dimethylstivanyl propionitrile, 2-methyl-2-dimethylstivanyl propionitrile, and α-dimethylsti. Vanylbenzyl cyanide, 2-dimethylstivanylpropionic acid amide, ethyl-2-methyl-2-dimethylstibanyl-propionate, methyl 2-methyl-dimethylstibanylpropionate, propyl 2-methyl-dimethylstibanylpropionate, Butyl 2-methyl-dimethylstibanylpropionate, pentyl 2-methyl-dimethylstibanylpropionate, hydroxyethyl 2-methyl-dimethylstivanylpropionate, 2-methyl-2-dimethylstivanyl-propionic acid (salt), 2-Dimethylstibanyl propionic acid (salt), 2-dimethylstivanylacetic acid (salt), 2-dimethylstivanylmethylacetate, 2-dimethylstivanylacetate, ethyl 2-dimethylstivanylpentanoate, 2-dimethylsti Methyl vanylpentate, 2-dimethylstibanylpentanoic acid (salt), 2-dimethylstivanylhexanoic acid (salt), 2-dimethylstivanylheptanic acid (salt), diethyl 2,5-didimethylstivanyladipate, 2,5-Didimethylstivanyl adiponic acid (salt), 2,6-didimethylstivanyl-dimethyl heptanedioate, 2,6-didimethylstivanyl-heptanedioic acid (salt), α-dimethylstivanyl- γ-Butyrolactone, 2-dimethylstivanyl acetophenone, 2-dimethylstivanyl-2-phenylacetic acid (salt), 2-dimethylstivanyl-2-phenylacetate methyl, 2-dimethylstivanyl-2-phenylacetate ethyl, 2 -Dimethylstivanyl-2- (4'-methylphenyl) ethyl acetate, 2-dimethylstivanyl-2-phenylacetate-hydroxyethyl, 2-dimethylstivanyl-2- (4'-nitrophenyl) ethyl acetate, ( 1-Dimethylstivanylethyl) benzene, dimethylstivanyldiphenylmethane, 9-dimethylstivanyl-9H-fluorene, 1,4-bis (1'-dimethylstivanylethyl) benzene, ethyleneglycolbis (2-methyl-2- Dimethylstivanyl-propionate), tris (2-methyl-dimethylstivanylpropionic acid) glycerol, 1,3,5-tris (1'-dimethylstivanylethylbenzene) and ethylene glycol bis ( 2-Dimethylstivanyl-2 phenylacetate) and the like.
 一般式(1)で表される有機典型元素化合物の内でビスマス元素を有するものとしては、2-ジメチルビスムタニルプロピオニトリル、2-メチル-2-ジメチルビスムタニルプロピオニトリル、α-ジメチルビスムタニルベンジルシアニド、2-ジメチルビスムタニルプロピオン酸アミド、エチル-2-メチル-2-ジメチルビスムタニルプロピオネート、2-メチル-ジメチルビスムタニルプロピオン酸メチル、2-メチル-ジメチルビスムタニルプロピオン酸プロピル、2-メチル-ジメチルビスムタニルプロピオン酸ブチル、2-メチル-ジメチルビスムタニルプロピオン酸ペンチル、2-メチル-ジメチルビスムタニルプロピオン酸ヒドロキシエチル、2-メチル-2-ジメチルビスムタニルプロピオン酸(塩)、2-ジメチルビスムタニルプロピオン酸(塩)、2-ジメチルビスムタニル酢酸(塩)、2-ジメチルビスムタニル酢酸メチル、2-ジメチルビスムタニル酢酸エチル、2-ジメチルビスムタニルペンタン酸エチル、2-ジメチルビスムタニルプペンタン酸メチル、2-ジメチルビスムタニルプペンタン酸(塩)、2-ジメチルビスムタニルヘキサン酸(塩)、2-ジメチルビスムタニルヘプタン酸(塩)、2,5-ジジメチルビスムタニルアジピン酸ジエチル、2,5-ジジメチルビスムタニルアジピン酸(塩)、2,6-ジジメチルビスムタニルヘプタン二酸ジメチル、2,6-ジジメチルビスムタニルヘプタン二酸(塩)、α-ジメチルビスムタニルγ-ブチロラクトン、2-ジメチルビスムタニルアセトフェノン、2-ジメチルビスムタニル2-フェニル酢酸(塩)、2-ジメチルビスムタニル2-フェニル酢酸メチル、2-ジメチルビスムタニル2-フェニル酢酸エチル、2-ジメチルビスムタニル2-(4’-メチルフェニル)酢酸エチル、2-ジメチルビスムタニル2-フェニル酢酸-ヒドロキシエチル、2-ジメチルビスムタニル2-(4’-ニトロフェニル)酢酸エチル、(1-ジメチルビスムタニルエチル)ベンゼン、ジメチルビスムタニルジフェニルメタン、9-ジメチルビスムタニル9H-フルオレン、1,4-ビス(1’-ジメチルビスムタニルエチル)ベンゼン、エチレングリコールビス(2-メチル―2-ジメチルビスムタニルプロピオネート)、トリス(2-メチル-ジメチルビスムタニルプロピオン酸)グリセロール、1,3,5-トリス(1’-ジメチルビスムタニルエチルベンゼン)及びエチレングリコールビス(2-ジメチルビスムタニル2フェニルアセテート)等が挙げられる。 Among the organic typical element compounds represented by the general formula (1), those having a bismuth element include 2-dimethylbismutanyl propionitrile, 2-methyl-2-dimethylbismutanyl propionitrile, and α-. Dimethylbismutanylbenzyl cyanide, 2-dimethylbismutanylpropionic acid amide, ethyl-2-methyl-2-dimethylbismutanylpropionate, methyl 2-methyl-dimethylbismutanylpropionate, 2-methyl- Propyl dimethylbismutanylpropionate, butyl 2-methyl-dimethylbismutanylpropionate, pentyl 2-methyl-dimethylbismutanylpropionate, hydroxyethyl 2-methyl-dimethylbismutanylpropionate, 2-methyl-2 -Dimethylbismutanylpropionic acid (salt), 2-dimethylbismutanylpropionic acid (salt), 2-dimethylbismutanylacetic acid (salt), 2-dimethylbismutanylacetic acid methyl, 2-dimethylbismutanylacetic acid Ethyl, ethyl 2-dimethylbismutanylpentanoate, methyl 2-dimethylbismutanylppentanoate, 2-dimethylbismutanylpupanoic acid (salt), 2-dimethylbismutanylhexanoic acid (salt), 2- Didimethylbismutanyl heptanic acid (salt), diethyl 2,5-didimethylbismutanyl adipate, 2,5-didimethylbismutanyl adiponic acid (salt), 2,6-didimethylbismutanyl heptaniic acid Dimethyl, 2,6-didimethylbismutanyl heptaniic acid (salt), α-dimethylbismutanyl γ-butyrolactone, 2-dimethylbismutanyl acetphenone, 2-dimethylbismutanyl 2-phenylacetic acid (salt), 2-Dimethylbismutanyl 2-Methyl phenylacetate, 2-Dimethylbismutanyl 2-Ethylphenylacetate, 2-Dimethylbismutanyl 2- (4'-methylphenyl) Ethyl acetate, 2-Dimethylbismutanyl 2- Phenylacetic acid-hydroxyethyl, 2-dimethylbismutanyl 2- (4'-nitrophenyl) ethyl acetate, (1-dimethylbismutanylethyl) benzene, dimethylbismutanyldiphenylmethane, 9-dimethylbismutanyl 9H-fluorene , 1,4-bis (1'-dimethylbismutanylethyl) benzene, ethylene glycol bis (2-methyl-2-dimethylbismutanylpropionate), tris (2-methyl-dimethylbismutanylpropionic acid) Gglycerol, 1,3,5-tris (1'-dimethylbi) Sumtanylethylbenzene) and ethylene glycol bis (2-dimethylbismutanyl 2 phenylacetate) and the like.
 これらの内で好ましいのは、2-ヨード-2-メチルプロピオニトリル、エチル-2-ヨード-2-メチルプロピオネート、2-ヨード-2-メチルプロピオン酸(塩)、2-ヨード酢酸(塩)、2-ヨード酢酸メチル、2,5-ジヨードアジピン酸ジエチル、2,5-ジヨードアジピン酸、エチレングリコールビス(2-メチル―2-ヨード―プロピオネート)、エチレングリコールビス(2-ヨード―2フェニルアセテート)、2-メチルテラニルプロピオニトリル、エチル-2-メチル-2-メチルテラニル-プロピオネート、2,5-ビスメチルテラニルアジピン酸ジエチル、エチレングリコールビス(2-メチル―2-メチルテラニル―プロピオネート)、エチレングリコールビス(2-メチルテラニル―2フェニルアセテート)、2-ジメチルスチバニルプロピオニトリル、エチル-2-メチル-2-ジメチルスチバニル-プロピオネート及び2-ジメチルビスムタニルプロピオニトリル及びエチル-2-メチル-2-ジメチルビスムタニルプロピオネートである。 Of these, 2-iodo-2-methylpropionitrile, ethyl-2-iodo-2-methylpropionate, 2-iodo-2-methylpropionic acid (salt), and 2-iodoacetic acid (salts) are preferred. Salt), methyl 2-iodoacetate, diethyl 2,5-diiodoadipate, 2,5-diiodoadiponic acid, ethylene glycol bis (2-methyl-2-iodo-propionate), ethylene glycol bis (2-iodo) -2phenylacetate), 2-methylteranylpropionitrile, ethyl-2-methyl-2-methylteranyl-propionate, diethyl 2,5-bismethylteranyl adipate, ethyleneglycolbis (2-methyl-2-methylteranyl) -Propionate), ethylene glycol bis (2-methylteranyl-2phenylacetate), 2-dimethylstivanyl propionitrile, ethyl-2-methyl-2-dimethylstivanyl-propionate and 2-dimethylbismutanyl propionitrile and It is ethyl-2-methyl-2-dimethylbismutanyl propionate.
 有機典型元素化合物の使用量は、上記モノマー(a1)、(a2)、架橋剤(b)及び必要により使用するその他のモノマー(a3)の重量に基づいて、好ましくは0.0005~0.1重量%、更に好ましくは0.005~0.05重量%である。これらの範囲であると、生理食塩水への可溶性成分の量と可溶性成分の内の分子量が100,000以下の成分のMw/Mn及び生理食塩水への可溶性成分に対して得られたゲルパーミエーションクロマトグラフィー法のクロマトグラムの全面積に対して、分子量が100,000以下の可溶性成分の面積の割合が適度な範囲のものが得られ、アルカリ電池の負極用添加剤(G)を添加した負極材の粘度が適性なものとなり、亜鉛粉末等の沈降が生じることなく、耐衝撃性や放電特性が良好である。 The amount of the organic main group element compound used is preferably 0.0005 to 0.1 based on the weights of the above-mentioned monomers (a1), (a2), cross-linking agent (b) and other monomers (a3) used if necessary. By weight%, more preferably 0.005 to 0.05% by weight. Within these ranges, the amount of the soluble component in the physiological saline and the gel permi obtained for the Mw / Mn of the component having a molecular weight of 100,000 or less and the soluble component in the physiological saline. The ratio of the area of the soluble component having a molecular weight of 100,000 or less to the total area of the chromatogram of the ion chromatography method was in an appropriate range, and the negative electrode additive (G) for the alkaline battery was added. The viscosity of the negative electrode material becomes appropriate, the zinc powder and the like do not settle, and the impact resistance and discharge characteristics are good.
 水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)並びに架橋剤(b)を含む単量体組成物を前記の有機典型元素化合物の存在下に重合する方法には、水溶液重合、懸濁重合、塊状重合、逆相懸濁重合及び乳化重合等の公知の重合方法等を適用することができる。これらの重合方法においては、有機典型元素化合物はモノマー又はモノマー水溶液に存在させておいてもよいし、モノマー溶液等への開始剤等の添加時に添加してもよい。 A method for polymerizing a monomer composition containing a water-soluble vinyl monomer (a1) and / or a hydrolyzable vinyl monomer (a2) and a cross-linking agent (b) in the presence of the above-mentioned organic typical element compound is an aqueous solution polymerization. , Known polymerization methods such as suspension polymerization, massive polymerization, reverse phase suspension polymerization and emulsion polymerization can be applied. In these polymerization methods, the organic main group element compound may be present in the monomer or the monomer aqueous solution, or may be added at the time of adding the initiator or the like to the monomer solution or the like.
 これらの重合方法の内、放電特性及び耐衝撃性の観点から好ましいのは水溶液重合、懸濁重合、逆相懸濁重合及び乳化重合、更に好ましいのは水溶液重合、逆相懸濁重合及び乳化重合、特に好ましいのは水溶液重合及び逆相懸濁重合である。これらの重合には、公知の重合開始剤、連鎖移動剤及び/又は溶媒等が使用できる。 Of these polymerization methods, aqueous polymerization, suspension polymerization, reverse phase suspension polymerization and emulsion polymerization are preferable from the viewpoint of discharge characteristics and impact resistance, and aqueous solution polymerization, reverse phase suspension polymerization and emulsion polymerization are more preferable. Particularly preferred are aqueous solution polymerization and reverse phase suspension polymerization. Known polymerization initiators, chain transfer agents and / or solvents and the like can be used for these polymerizations.
 水溶液重合、懸濁重合、逆相懸濁重合及び乳化重合で重合する方法は、公知の方法でよく、例えばラジカル重合開始剤を用いて重合する方法、放射線、紫外線又は電子線等を照射する方法が挙げられる。 The method of polymerizing by aqueous solution polymerization, suspension polymerization, reverse phase suspension polymerization and emulsion polymerization may be a known method, for example, a method of polymerizing using a radical polymerization initiator, a method of irradiating with radiation, ultraviolet rays or electron beams. Can be mentioned.
 ラジカル重合開始剤を用いる場合、この開始剤としては、アゾ化合物[アゾビスイソバレロニトリル、アゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノバレリックアシッド)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド、2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド等]、無機過酸化物[過酸化水素、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等]、有機過酸化物[ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド等]、レドックス開始剤[アルカリ金属塩の亜硫酸塩若しくは重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム、L-アスコルビン酸等の還元剤と、アルカリ金属塩の過硫酸塩、過硫酸アンモニウム、過酸化水素水等の過酸化物の組み合わせ]等が挙げられる。これらは1種を単独で用いても2種類以上を併用してもよい。 When a radical polymerization initiator is used, the initiator used is an azo compound [azobisisovaleronitrile, azobisisobutyronitrile, 4,4'-azobis (4-cyanovaleric acid), 2,2'-. Azobis [2-methyl-N- (2-hydroxyethyl) propionamide, 2,2'-azobis (2-amidinopropane) hydrochloride, etc.], inorganic peroxides [hydrogen peroxide, potassium persulfate, ammonium persulfate, etc.] Sodium persulfate, etc.], organic peroxide [di-t-butyl peroxide, cumenehydroperoxide, etc.], redox initiator [alkali metal salt sulfite or bicarbonate, ammonium sulfite, ammonium bicarbonate, L- A combination of a reducing agent such as ascorbic acid and a peroxide such as an alkali metal salt persulfate, ammonium persulfate, and hydrogen peroxide solution] and the like. These may be used alone or in combination of two or more.
 重合温度は使用する開始剤の種類等によっても異なるが、ポリマーの重合度をより高くする観点から、好ましくは-10℃~100℃、更に好ましくは-10℃~80℃である。 The polymerization temperature varies depending on the type of initiator used, but is preferably −10 ° C. to 100 ° C., more preferably −10 ° C. to 80 ° C. from the viewpoint of increasing the degree of polymerization of the polymer.
 開始剤の量に関しても、特に限定はないが、ビニルモノマー(a1)、(a2)、架橋剤(b)及び必要により使用するその他のモノマー(a3)の合計重量を基準として、ポリマーの重合度をより高くする観点から、0.000001~3.0重量%が好ましく、更に好ましくは0.000001~0.5重量%である。 The amount of the initiator is also not particularly limited, but the degree of polymerization of the polymer is based on the total weight of the vinyl monomers (a1), (a2), the cross-linking agent (b) and other monomers (a3) used if necessary. From the viewpoint of increasing the value, 0.000001 to 3.0% by weight is preferable, and 0.000001 to 0.5% by weight is more preferable.
 水溶液重合の場合、単量体の重合濃度は、他の重合条件によっても種々異なるが、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)は、重合濃度を高くすると重合反応と並行してモノマー自体の疑似架橋(自己架橋)が起こり易く、吸収量の低下やポリマーの平均重合度の低下を招くこと、また重合時の温度コントロールも行いづらくポリマーの平均重合度の低下やオリゴマー成分の増加を招きやすいので、重合濃度は、10~40重量%が好ましく、更に好ましくは10~30重量%である。また、重合温度に関しては-10~100℃が好ましく、更に好ましくは-10~80℃である。重合時の溶存酸素量に関しては、ラジカル開始剤の添加量等にもよるが、0~2ppm(2×10-4重量%以下)が好ましく、更に好ましくは0~0.5ppm(0.5×10-4重量%以下)である。これらの範囲であると、高重合度の架橋重合体(A)を製造することができる。 In the case of aqueous solution polymerization, the polymerization concentration of the monomer varies depending on other polymerization conditions, but the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are parallel to the polymerization reaction when the polymerization concentration is increased. As a result, pseudo-crosslinking (self-crosslinking) of the monomer itself is likely to occur, leading to a decrease in the amount of absorption and a decrease in the average degree of polymerization of the polymer, and it is difficult to control the temperature during polymerization. The polymerization concentration is preferably 10 to 40% by weight, more preferably 10 to 30% by weight, because the polymerization concentration tends to increase. The polymerization temperature is preferably −10 to 100 ° C., more preferably −10 to 80 ° C. The amount of dissolved oxygen during polymerization depends on the amount of radical initiator added and the like, but is preferably 0 to 2 ppm (2 × 10 -4 % by weight or less), and more preferably 0 to 0.5 ppm (0.5 ×). 10-4 % by weight or less). Within these ranges, a crosslinked polymer (A) having a high degree of polymerization can be produced.
 (メタ)アクリル酸等の酸基を有するモノマーを使用する場合、重合時の酸基の中和度は、所定量の架橋剤(b1)及び(b2)がモノマー水溶液に完全に溶解できるのであれば特に限定はない。しかし、(b1)に比べて、(b2)は水溶性が乏しく、また特に酸基を有するモノマーの水溶液に対する溶解度は極めて低く所定量の(b2)を添加しても(b2)がモノマー水溶液から分離し所定の架橋が行えない場合がある。従って、重合時の酸基を有するモノマーの中和度は、0~30モル%で重合を行ない必要により重合後に更に中和するのが好ましく、未中和の状態で重合した後必要により重合後に中和するのがより好ましい。また、酸基を有するモノマーは、同一条件で重合を行った場合、中和度が低い方が重合度が上がりやすいため、ポリマーの重合度を大きくするためにも、中和度が低い状態で重合を行った方が好ましい。 When a monomer having an acid group such as (meth) acrylic acid is used, the degree of neutralization of the acid group at the time of polymerization is such that a predetermined amount of the cross-linking agents (b1) and (b2) can be completely dissolved in the aqueous monomer solution. There is no particular limitation. However, compared to (b1), (b2) has poor water solubility, and in particular, the solubility of a monomer having an acid group in an aqueous solution is extremely low, and even if a predetermined amount of (b2) is added, (b2) is obtained from the aqueous monomer solution. It may be separated and the predetermined cross-linking may not be possible. Therefore, the degree of neutralization of the monomer having an acid group at the time of polymerization is preferably 0 to 30 mol%, and if necessary, further neutralization is performed after polymerization, and after polymerization in an unneutralized state, after polymerization if necessary. It is more preferable to neutralize. Further, when the monomer having an acid group is polymerized under the same conditions, the lower the degree of polymerization is, the higher the degree of polymerization is likely to be. Therefore, in order to increase the degree of polymerization of the polymer, the degree of polymerization is low. It is preferable to carry out polymerization.
 逆相懸濁重合法は、ヘキサン、トルエン及びキシレン等に代表される疎水性有機溶媒中でモノマーの水溶液を、分散剤の存在下、懸濁・分散して重合する重合法であるが、この重合法においても、上記同様モノマー水溶液中のモノマー濃度は10~40重量%が好ましく、更に好ましくは10~30重量%である。これらの範囲であると、高重合度の架橋重合体(A)を製造することができる。 The reverse phase suspension polymerization method is a polymerization method in which an aqueous solution of a monomer is suspended and dispersed in a hydrophobic organic solvent typified by hexane, toluene, xylene and the like in the presence of a dispersant and polymerized. Also in the polymerization method, the monomer concentration in the aqueous monomer solution is preferably 10 to 40% by weight, more preferably 10 to 30% by weight, as described above. Within these ranges, a crosslinked polymer (A) having a high degree of polymerization can be produced.
 尚、この逆相懸濁重合法に関しては、重合時に分散剤を使用してもよい。分散剤としては、HLB(Hydrophile-Lipophile Balance)値が3~8のソルビタンモノステアリン酸エステル等のソルビタン脂肪酸エステル類、グリセリンモノステアリン酸エステル等のグリセリン脂肪酸エステル類及びショ糖ジステアリン酸エステル等のショ糖脂肪酸エステル類等の界面活性剤や、エチレン/アクリル酸共重合体のマレイン化物、エチレン/酢酸ビニル共重合体のマレイン化物、スチレンスルホン酸(塩)/スチレン共重合体等の分子内に親水性基を有し、かつ、モノマー水溶液を分散させる溶媒に可溶な高分子分散剤(親水性基;0.1~20重量%、重量平均分子量;1,000~1,000,000)等を例示できるが、分散剤としては高分子分散剤を使用した方が、溶媒中でのモノマー水溶液の懸濁粒子の大きさを調整しやすく、必要とする粒子径の架橋重合体(A)の含水ゲルを作製できるので好ましい。 Regarding this reverse phase suspension polymerization method, a dispersant may be used at the time of polymerization. Examples of the dispersant include sorbitan fatty acid esters such as sorbitan monostearate ester having an HLB (Hydrophile-Lipofile Balance) value of 3 to 8, glycerin fatty acid esters such as glycerin monostearic acid ester, and sucrose distearate ester. Hydrophiles in molecules such as surfactants such as sugar fatty acid esters, maleides of ethylene / acrylic acid copolymers, maleides of ethylene / vinyl acetate copolymers, and styrene sulfonic acid (salt) / styrene copolymers. A polymer dispersant having a sex group and soluble in a solvent for dispersing the aqueous monomer solution (hydrophilic group; 0.1 to 20% by weight, weight average molecular weight; 1,000 to 1,000,000), etc. However, when a polymer dispersant is used as the dispersant, the size of the suspended particles of the monomer aqueous solution in the solvent can be easily adjusted, and the crosslinked polymer (A) having the required particle size can be used. It is preferable because a hydrogel can be produced.
 分散剤の使用量は、アルカリ電池の放電特性の観点から、疎水性有機溶媒の重量を基準として、0.1~20重量%が好ましく、更に好ましくは0.5~10重量%である。逆相懸濁重合におけるモノマー水溶液と疎水性有機溶媒との重量比率(W/O比率)は、0.1~2.0が好ましく、0.3~1.0が更に好ましい。これらの範囲であると、架橋重合体(A)の粒子径が更に調整しやすい。 From the viewpoint of the discharge characteristics of the alkaline battery, the amount of the dispersant used is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight, based on the weight of the hydrophobic organic solvent. The weight ratio (W / O ratio) of the aqueous monomer solution and the hydrophobic organic solvent in the reverse phase suspension polymerization is preferably 0.1 to 2.0, more preferably 0.3 to 1.0. Within these ranges, the particle size of the crosslinked polymer (A) can be further adjusted.
 架橋重合体(A)の製造において、架橋剤(b)を使用しない以外は全く同じ条件で重合体を製造した場合のポリマーの平均重合度が、好ましくは5,000~1,000,000となる条件、更に好ましくは10,000~1,000,000となる条件で重合することが更に好ましい。平均重合度が、5,000以上となる条件で重合を行うと、適量の架橋剤を使用することによりアルカリ電池の負極用添加剤(G)を添加した高濃度アルカリ水溶液の粘度低下及び/又は曳糸性の増大を防止することができる。上記平均重合度の測定は、後述の架橋重合体(A)の生理食塩水への可溶性成分の重量平均分子量及び数平均分子量の測定方法と同様にして行うことができる。 In the production of the crosslinked polymer (A), the average degree of polymerization of the polymer when the polymer is produced under exactly the same conditions except that the crosslinking agent (b) is not used is preferably 5,000 to 1,000,000. It is more preferable to carry out the polymerization under the conditions that are, more preferably 10,000 to 1,000,000. When the polymerization is carried out under the condition that the average degree of polymerization is 5,000 or more, the viscosity of the high-concentration alkaline aqueous solution to which the negative electrode additive (G) of the alkaline battery is added is reduced and / or by using an appropriate amount of the cross-linking agent. It is possible to prevent an increase in spinnability. The measurement of the average degree of polymerization can be carried out in the same manner as the method for measuring the weight average molecular weight and the number average molecular weight of the soluble component of the crosslinked polymer (A) in physiological saline, which will be described later.
 本発明において、水溶液重合又は逆相懸濁重合等により得た架橋重合体(A)は、水を含むゲル(含水ゲル)として得られる。含水ゲルは、乾燥した後にアルカリ電池の負極用添加剤(G)として使用する。含水ゲルの乾燥方法に関しては、水溶液重合の場合、含水ゲルをミートチョッパーやカッター式の粗砕機でゲルをある程度細分化(細分化のレベルは0.5~20mm角程度)あるいはヌードル化し、必要により水酸化アルカリ金属水溶液等を添加して含水ゲルの中和を行った後、透気乾燥(例えば、パンチングメタルやスクリーン上に含水ゲルを積層し、強制的に50~150℃の熱風を通気させて乾燥する。)や通気乾燥(含水ゲルを容器中に入れ、熱風を通気・循環させ乾燥、ロータリーキルンの様な機械で更にゲルを細分化しながら乾燥する)等の方法を例示できる。これらの中で、透気乾燥が短時間で効率的な乾燥が行えるため好ましい。一方、逆相懸濁重合の場合の含水ゲルの乾燥方法は、重合した含水ゲルと有機溶媒をデカンテーション等の方法で固液分離した後、減圧乾燥(減圧度;100~50,000Pa程度)又は通気乾燥を行うのが一般的である。 In the present invention, the crosslinked polymer (A) obtained by aqueous solution polymerization, reverse phase suspension polymerization or the like is obtained as a gel containing water (hydrous gel). The hydrogel is used as an additive (G) for the negative electrode of an alkaline battery after being dried. Regarding the method of drying the hydrogel, in the case of aqueous polymerization, the hydrogel is subdivided to some extent (the level of subdivision is about 0.5 to 20 mm square) or noodles with a meat chopper or a cutter type coarse crusher, and if necessary. After neutralizing the hydrogel by adding an aqueous alkali metal hydroxide solution, etc., air-permeable drying (for example, laminating the hydrogel on a punching metal or screen and forcibly aerating hot air at 50 to 150 ° C. (Drying) and aeration drying (a hydrogel is placed in a container, hot air is aerated and circulated to dry, and the gel is further subdivided and dried by a machine such as a rotary kiln). Of these, air-permeable drying is preferable because it enables efficient drying in a short time. On the other hand, in the case of reverse phase suspension polymerization, the method for drying the hydrogel is that the polymerized hydrogel and the organic solvent are solid-liquid separated by a method such as decantation and then dried under reduced pressure (decompression: about 100 to 50,000 Pa). Alternatively, air drying is generally performed.
 水溶液重合における含水ゲルの他の乾燥方法としては、例えば、ドラムドライヤー上に含水ゲルを圧縮延伸して乾燥する接触乾燥法等があるが、含水ゲルは熱伝導が悪いため、乾燥を行うためにドラム上に含水ゲルの薄膜を作製する必要がある。しかし、市販のドラムドライヤーの材質は、一般的に鉄、クロム及びニッケル等の亜鉛よりイオン化傾向の低い金属で形成されているため、含水ゲルあたりのドラム金属面と接触する頻度が極めて高くなり、また含水ゲルはポリ(メタ)アクリル酸(塩)等の含水ゲルであるため、ゲル中に溶出する亜鉛よりイオン化傾向の低い金属元素の含有量が多くなる。更に、該含水ゲルとドラムとの接触頻度が極めて高く、該含水ゲルは粘着性が高いため、ナイフの様なものをドラムドライヤーに接触させて乾燥物をドラムドライヤーから剥離させる必要があり、ドラムとナイフの機械的摩耗のためドラムあるいはナイフの金属面が摩耗し、金属が乾燥物中に混入する。以上の様に、ドラムドライヤー等の接触乾燥法を利用すると、アルカリ電池の負極用添加剤(G)中に金属イオンや金属粉末が混入しやすく、これら亜鉛よりイオン化傾向の低い金属(標準電極電位が亜鉛よりも低い金属のことで、Cr、Fe、Ni、Sn、Pb、Cu、Hg、Ag等の金属)イオンや金属粉末をかなり多量に含有することになる。これらのアルカリ電池の負極用添加剤(G)をアルカリ電池の負極用添加剤(G)として使用すると、電池中の亜鉛粉末が亜鉛よりイオン化傾向の低い金属イオン又は金属粉末との間で電池を形成するため、電気分解により水素ガスが発生し、それにより電池内部の圧力が上昇し、更にはアルカリ電解液の流出やひどい場合は電池の破損を引き起こす場合がある。更に、含水ゲルをドラムドライヤー上で圧縮延伸して乾燥した薄膜フィルム状乾燥物は、その後、粉砕を行い乾燥物の粒径を所望の粒径に調整しても粒子が鱗片状となっているため、透気乾燥法や通気乾燥法で得られるブロック状の乾燥物の粉砕物と比較すると、遙かに強度が弱い。このため、高濃度のアルカリ水溶液中で膨潤させ亜鉛粉末と機械的に攪拌混合すると、膨潤したゲルが破壊されてしまいゲルが小さくなる。従って、ドラムドライヤー等の接触乾燥法を利用しないことが好ましい。 As another drying method of the hydrogel in the aqueous solution polymerization, for example, there is a contact drying method in which the hydrogel is compression-stretched and dried on a drum dryer, but since the hydrogel has poor thermal conductivity, it is necessary to perform drying. It is necessary to make a thin film of hydrogel on the drum. However, since the material of a commercially available drum dryer is generally made of a metal having a lower ionization tendency than zinc such as iron, chromium and nickel, the frequency of contact with the drum metal surface per hydrogel becomes extremely high. Further, since the hydrogel is a hydrogel such as poly (meth) acrylic acid (salt), the content of metal elements having a lower ionization tendency than zinc eluted in the gel is higher. Further, since the contact frequency between the water-containing gel and the drum is extremely high and the water-containing gel has high adhesiveness, it is necessary to bring a knife-like object into contact with the drum dryer to peel the dried product from the drum dryer. And the mechanical wear of the knife causes the metal surface of the drum or knife to wear and the metal to get mixed into the dried material. As described above, when a contact drying method such as a drum dryer is used, metal ions and metal powder are likely to be mixed in the negative electrode additive (G) of the alkaline battery, and the metal having a lower ionization tendency than zinc (standard electrode potential). Is a metal having a lower value than zinc, and contains a considerably large amount of Cr, Fe, Ni, Sn, Pb, Cu, Hg, Ag and other metals) ions and metal powder. When the negative electrode additive (G) of these alkaline batteries is used as the negative electrode additive (G) of an alkaline battery, the zinc powder in the battery is placed between the metal ion or the metal powder having a lower ionization tendency than zinc. Because of the formation, hydrogen gas is generated by electrolysis, which raises the pressure inside the battery, which may cause the outflow of alkaline electrolyte and, in the worst case, damage to the battery. Further, the thin film-like dried product obtained by compressing and stretching the hydrogel on a drum dryer and dried is then pulverized to adjust the particle size of the dried product to a desired particle size, but the particles are scaly. Therefore, the strength is much weaker than that of the crushed block-shaped dried product obtained by the air-permeable drying method or the aeration drying method. Therefore, when the gel is swollen in a high-concentration alkaline aqueous solution and mechanically stirred and mixed with the zinc powder, the swollen gel is destroyed and the gel becomes smaller. Therefore, it is preferable not to use a contact drying method such as a drum dryer.
 本発明において、含水ゲル乾燥時の乾燥温度は、使用する乾燥機や乾燥時間等により種々異なるが、好ましくは、50~150℃、更に好ましくは80~130℃である。乾燥温度が、50℃以下であると乾燥に長時間を要し、生産性が著しく低下する。50℃以上であると乾燥に長時間を要さず効率的である。乾燥時間に関しても、使用する乾燥機の機種及び乾燥温度等により異なるが、好ましくは5~300分、更に好ましくは、5~120分である。 In the present invention, the drying temperature at the time of drying the hydrogel varies depending on the dryer used, the drying time, and the like, but is preferably 50 to 150 ° C, more preferably 80 to 130 ° C. If the drying temperature is 50 ° C. or lower, it takes a long time to dry, and the productivity is significantly lowered. When the temperature is 50 ° C. or higher, drying does not require a long time and is efficient. The drying time also varies depending on the model of the dryer used, the drying temperature, and the like, but is preferably 5 to 300 minutes, more preferably 5 to 120 minutes.
 このようにして得られた架橋重合体(A)の乾燥物は、必要により粉砕して粉末化する。粉砕方法は、公知の方法でよく、例えば衝撃粉砕機(ピンミル、カッターミル、スキレルミル及びACMパルペライザー等)や空気粉砕機(ジェット粉砕機等)で行うことができる。 The dried product of the crosslinked polymer (A) thus obtained is pulverized and pulverized if necessary. The crushing method may be a known method, for example, an impact crusher (pin mill, cutter mill, skillel mill, ACM pulperizer, etc.) or an air crusher (jet crusher, etc.).
 粉末化した架橋重合体(A)は、必要により、スクリーンを備えたフルイ機(振動フルイ機、遠心フルイ機等)を用いて、所望の粒子径の乾燥粉末を採取することができる。 For the powdered crosslinked polymer (A), if necessary, a dry powder having a desired particle size can be collected using a sieve machine equipped with a screen (vibration sieve machine, centrifugal sieve machine, etc.).
 本発明において、乾燥後の任意の段階で、磁気を利用した除鉄機を用いて混入した鉄等の金属粉末を除去するのが好ましい。しかし、除鉄機を用いてかなり精密に除鉄を行っても、除鉄機では磁性のない金属を除去するのは困難であり、また磁性のある金属に関しても、乾燥したポリマー粒子内部に含まれているものや乾燥粒子に付着しているものは除去できない。従って、初めからこれら金属が混入しないように、生産設備に関しても、十分に配慮することが望ましい。 In the present invention, it is preferable to remove mixed metal powder such as iron by using an iron remover using magnetism at an arbitrary stage after drying. However, even if iron is removed with a high degree of precision using an iron remover, it is difficult for the iron remover to remove non-magnetic metals, and magnetic metals are also contained inside the dried polymer particles. It cannot be removed if it is stuck or adheres to dry particles. Therefore, it is desirable to give due consideration to the production equipment so that these metals are not mixed from the beginning.
 本発明における架橋重合体(A)の生理食塩水(0.9重量%の塩化ナトリウム水溶液。本明細書において他の箇所もおなじ。)への可溶性成分量は、(A)の重量を基準として5~40重量%であり、好ましくは5~25重量%、更に好ましくは5~15重量%である。
 可溶性成分量がこれらの範囲であると、アルカリ電池の負極用添加剤(G)を添加したアルカリ電解液の粘度が好適な範囲となり、負極材の液切れが良くなるため品質が安定した電池を製造することができ、かつ負極材中での亜鉛粉末等の沈降を防ぐことができるようになるため、経時での放電特性に優れた電池を生産できる。可溶性成分量が40重量%を超えるとアルカリ電池の負極用添加剤(G)を添加したアルカリ電解液に曳糸性が現れ、負極材の液切れが著しく悪化し充填量にばらつきが生じるため電池の品質が安定しない。可溶性成分量が5重量%に満たない場合はアルカリ電池の負極用添加剤(G)を添加したアルカリ電解液の粘度が低くなり亜鉛粉末等の沈降が生じるため耐衝撃性や放電特性が悪化する。
The amount of soluble component of the crosslinked polymer (A) in the present invention in physiological saline (0.9% by weight sodium chloride aqueous solution; the same applies to other parts in the present specification) is based on the weight of (A). It is 5 to 40% by weight, preferably 5 to 25% by weight, and more preferably 5 to 15% by weight.
When the amount of soluble components is in these ranges, the viscosity of the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added is in a suitable range, and the negative electrode material drains well, so that a battery with stable quality can be obtained. Since it can be manufactured and sedimentation of zinc powder or the like in the negative electrode material can be prevented, a battery having excellent discharge characteristics over time can be produced. When the amount of the soluble component exceeds 40% by weight, the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added becomes spinnable, the drainage of the negative electrode material is remarkably deteriorated, and the filling amount varies. The quality is not stable. If the amount of the soluble component is less than 5% by weight, the viscosity of the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added becomes low, and zinc powder or the like is settled, resulting in deterioration of impact resistance and discharge characteristics. ..
 架橋重合体(A)の生理食塩水への可溶性成分量は、以下の方法で測定することができる。
 <(A)の生理食塩水への可溶性成分量の測定方法>
 アルカリ電池の負極用添加剤(G)1gを精秤し(精秤値をS0とする)、生理食塩水250mlに添加して3時間撹拌した後に、膨潤したゲルをろ紙(アドバンテック社製Filter Paper 1号定性ろ紙)にて取り除く。ゲルを取り除いた後に得られるろ液を可溶性成分の抽出液とする。
 上記の方法によって得られた可溶性成分の抽出液約25mlを容量50mlのナス型フラスコに入れてエバポレーターを用いて減圧下に水を留去する。ナス型フラスコに抽出液を約25ml追加して減圧下に水を留去する操作を繰り返して抽出液全量について水を留去する。次に残留物の入ったナス型フラスコを130℃の循風乾燥機中で90分間静置後、デシケーター中で15分間静置してナス型フラスコを室温まで冷却する。冷却後にナス型フラスコ中の残留物の重量(S1)を測定する。同様の操作を先の操作で用いた抽出液と等量の生理食塩水について行い、冷却後の残留物の重量(S2)を測定する。尚、冷却後の残留物の重量は、冷却後の残留物が入ったナス型フラスコの重量から予め測定しておいたナス型フラスコの重量を引くことにより求める。
 上記で得られた(S0)、(S1)及び(S2)を用いて次式から可溶性成分量を算出する。
 可溶性成分量(%)=(S1-S2)÷S0×100
The amount of the soluble component of the crosslinked polymer (A) in physiological saline can be measured by the following method.
<Method of measuring the amount of soluble component in physiological saline of (A)>
1 g of the negative electrode additive (G) for an alkaline battery is precisely weighed (the precision value is S0), added to 250 ml of physiological saline, stirred for 3 hours, and then the swollen gel is applied to filter paper (Advantech Filter Paper). Remove with No. 1 qualitative filter paper). The filtrate obtained after removing the gel is used as an extract of soluble components.
About 25 ml of the extract of the soluble component obtained by the above method is placed in an eggplant-shaped flask having a capacity of 50 ml, and water is distilled off under reduced pressure using an evaporator. About 25 ml of the extract is added to the eggplant-shaped flask, and the operation of distilling water under reduced pressure is repeated to distill off water for the entire amount of the extract. Next, the eggplant-shaped flask containing the residue is allowed to stand in a circulating air dryer at 130 ° C. for 90 minutes, and then allowed to stand in a desiccator for 15 minutes to cool the eggplant-shaped flask to room temperature. After cooling, the weight (S1) of the residue in the eggplant-shaped flask is measured. The same operation is performed on the same amount of physiological saline as the extract used in the previous operation, and the weight (S2) of the residue after cooling is measured. The weight of the residue after cooling is obtained by subtracting the weight of the eggplant-shaped flask measured in advance from the weight of the eggplant-shaped flask containing the residue after cooling.
Using (S0), (S1) and (S2) obtained above, the amount of soluble component is calculated from the following formula.
Soluble component amount (%) = (S1-S2) ÷ S0 × 100
 本発明における、架橋重合体(A)の生理食塩水への可溶性成分の内の分子量100,000以下の成分の数平均分子量(以下、Mnと略記)に対する重量平均分子量(以下、Mwと略記)の比率(Mw/Mn)は4.0~6.0であり、好ましくは4.0~5.5、更に好ましくは4.0~5.0である。
 可溶性成分の内の分子量100,000以下の成分のMw/Mnがこの範囲であると、アルカリ電池の負極用添加剤(G)を添加したアルカリ電解液の粘度が好適な範囲となり、負極材の液切れが良くなる。このため品質が安定した電池を製造することができ、かつ負極材中での亜鉛粉末等の沈降を防ぐことができるようになるため、経時での放電特性に優れた電池を生産できる。分子量が100,000以下の可溶性成分のMw/Mnが6.0を超えると可溶性成分中の低分子量成分の量が多くなるためアルカリ電池の負極用添加剤(G)を添加したアルカリ電解液の粘度が低くなり、亜鉛粉末等の沈降が生じるため耐衝撃性や放電特性が悪化する。Mw/Mnが4.0に満たない場合は、可溶性成分中の高分子量成分の量が多くなるためアルカリ電池の負極用添加剤(G)を添加したアルカリ電解液に曳糸性が現れ、負極材の液切れが著しく悪化し充填量にばらつきが生じるため電池の品質が安定しない。
In the present invention, the weight average molecular weight (hereinafter, abbreviated as Mw) with respect to the number average molecular weight (hereinafter, abbreviated as Mn) of the component having a molecular weight of 100,000 or less among the components soluble in the physiological saline of the crosslinked polymer (A). The ratio (Mw / Mn) of is 4.0 to 6.0, preferably 4.0 to 5.5, and more preferably 4.0 to 5.0.
When Mw / Mn of the component having a molecular weight of 100,000 or less among the soluble components is in this range, the viscosity of the alkaline electrolytic solution to which the negative electrode additive (G) for the alkaline battery is added becomes a suitable range, and the negative electrode material Better drainage. Therefore, it is possible to manufacture a battery with stable quality and prevent the zinc powder or the like from settling in the negative electrode material, so that a battery having excellent discharge characteristics over time can be produced. When the Mw / Mn of the soluble component having a molecular weight of 100,000 or less exceeds 6.0, the amount of the low molecular weight component in the soluble component increases, so that the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added Since the viscosity becomes low and zinc powder or the like is settled, the impact resistance and discharge characteristics are deteriorated. When Mw / Mn is less than 4.0, the amount of the high molecular weight component in the soluble component increases, so that the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added shows spinnability and the negative electrode. The quality of the battery is not stable because the drainage of the material deteriorates remarkably and the filling amount varies.
 本発明における、架橋重合体(A)の生理食塩水への可溶性成分に対して得られたゲルパーミエーションクロマトグラフィー法のクロマトグラムの全面積に対して、分子量が100,000以下の可溶性成分の面積の割合は50%以下であり、好ましくは45%以下、更に好ましくは40%以下である。
 分子量100,000以下の可溶性成分の面積の割合がこれらの範囲であると、アルカリ電池の負極用添加剤(G)を添加したアルカリ電解液の粘度が好適な範囲となる。このため、負極材の液切れが良くなり品質が安定した電池を製造することができ、かつ負極材中での亜鉛粉末等の沈降を防ぐことができるようになるため、経時での放電特性に優れた電池を生産できる。分子量が100,000以下の可溶性成分の面積の割合が50%を超えると可溶性成分中の低分子量成分の量が多くなるためアルカリ電池の負極用添加剤(G)を添加したアルカリ電解液の粘度が低くなり、亜鉛粉末等の沈降が生じるため耐衝撃性や放電特性が悪化する。
In the present invention, the soluble component having a molecular weight of 100,000 or less with respect to the total area of the chromatogram of the gel permeation chromatography method obtained for the soluble component of the crosslinked polymer (A) in physiological saline. The area ratio is 50% or less, preferably 45% or less, and more preferably 40% or less.
When the ratio of the area of the soluble component having a molecular weight of 100,000 or less is in these ranges, the viscosity of the alkaline electrolytic solution to which the negative electrode additive (G) for the alkaline battery is added is in a suitable range. For this reason, it is possible to manufacture a battery in which the negative electrode material drains well and the quality is stable, and it is possible to prevent the zinc powder and the like from settling in the negative electrode material. Can produce excellent batteries. When the ratio of the area of the soluble component having a molecular weight of 100,000 or less exceeds 50%, the amount of the low molecular weight component in the soluble component increases. Therefore, the viscosity of the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added. Is lowered, and the zinc powder and the like are settled, so that the impact resistance and the discharge characteristics are deteriorated.
 架橋重合体(A)の生理食塩水への可溶性成分の内の分子量が100,000以下の成分のMwとMn及び分子量が100,000以下の可溶性成分の面積の割合は、ゲルパーミエーションクロマトグラフィー法(GPC法)によって可溶性成分のクロマトグラムを得て、分子量が100,000以下の区画におけるMw、Mn及び面積の割合を算出することにより求められる。
 より詳しくは、以下の条件で、標準ポリエチレンオキシドを基準物質として得られた較正曲線から算出した分子量に基づき、分子量100,000以下となる溶出時間で検出されるクロマトパターンの面積を(A)、分子量100,000より大きくなる溶出時間で検出されるクロマトパターンの面積を(B)とする。分子量が100,000以下の成分のMwとは前述(A)の重量平均分子量の測定値であり、分子量が100,000以下の成分のMnとは前述(A)の数平均分子量の測定値であり、分子量が100,000以下の成分の面積の割合は、[(A)/((A)+(B))]×100(%)で求められる値である。
装置:「HLC-8320」(東ソー株式会社製)
カラム:「TSK Guardcolumn PWXL」(1本)、「TSKgel G60000 PWXL、TSKgel G3000 PWXL」(1本)(いずれも東ソー株式会社製)を各1本連結したもの
移動相:0.5重量%酢酸ナトリウム水溶液/メタノール=7/3(体積比)
測定液:上述の可溶性成分量の測定方法における可溶性成分の抽出液
溶液注入量:50μl
流量:1.0ml/分
測定温度:40℃
検出装置:屈折率検出器
基準物質:標準ポリエチレンオキシド
The ratio of the areas of Mw and Mn of the component having a molecular weight of 100,000 or less and the soluble component having a molecular weight of 100,000 or less among the soluble components of the crosslinked polymer (A) in physiological saline is gel permeation chromatography. It is obtained by obtaining a chromatogram of a soluble component by the method (GPC method) and calculating the ratio of Mw, Mn and area in a section having a molecular weight of 100,000 or less.
More specifically, under the following conditions, the area of the chromatographic pattern detected at the elution time of 100,000 or less, based on the molecular weight calculated from the calibration curve obtained using the standard polyethylene oxide as the reference substance, is determined in (A). Let (B) be the area of the chromatographic pattern detected at the elution time having a molecular weight of more than 100,000. The Mw of the component having a molecular weight of 100,000 or less is the measured value of the weight average molecular weight of the above-mentioned (A), and the Mn of the component having a molecular weight of 100,000 or less is the measured value of the number average molecular weight of the above-mentioned (A). The ratio of the area of the component having a molecular weight of 100,000 or less is a value obtained by [(A) / ((A) + (B))] × 100 (%).
Equipment: "HLC-8320" (manufactured by Tosoh Corporation)
Column: "TSK Guard volume PWXL" (1), "TSKgel G60000 PWXL, TSKgel G3000 PWXL" (1) (all manufactured by Tosoh Corporation) connected 1 each Mobile phase: 0.5 wt% sodium acetate Aqueous solution / methanol = 7/3 (volume ratio)
Measuring solution: Extract solution injection amount of soluble component in the above-mentioned method for measuring the amount of soluble component: 50 μl
Flow rate: 1.0 ml / min Measurement temperature: 40 ° C
Detector: Refractive index detector Reference substance: Standard polyethylene oxide
 本発明のアルカリ電池の負極用添加剤(G)は架橋重合体(A)以外に負極物質の混合物の充填時の流動性の改善等を目的として、作業性や電池特性に問題が起こらない範囲で、必要により他の添加剤を含んでもよい。
 他の添加剤としては、増粘剤、耐振動衝撃性向上剤及び放電特性向上剤等が挙げられる。
The negative electrode additive (G) of the alkaline battery of the present invention has a range in which problems do not occur in workability and battery characteristics for the purpose of improving the fluidity at the time of filling a mixture of negative electrode substances other than the crosslinked polymer (A). And, if necessary, other additives may be included.
Examples of other additives include thickeners, vibration and shock resistance improvers, discharge characteristic improvers and the like.
 増粘剤としては、例えば、CMC(カルボキシメチルセルロース)、天然ガム(グァーガム等)、架橋されていないポリ(メタ)アクリル酸(塩)及びポリビニルアルコール等の水溶性樹脂等を例示することができる。これら必要により添加する増粘剤の粒子径は特に限定されないが、乾燥物の体積平均粒子径で0.1~100μm(更には0.1~50μm)であることが好ましい。この範囲であるとアルカリ電解液と混合させ電池の負極容器に充填する際等、取扱いが容易である。 Examples of the thickener include CMC (carboxymethyl cellulose), natural gum (guar gum, etc.), uncrosslinked poly (meth) acrylic acid (salt), water-soluble resins such as polyvinyl alcohol, and the like. The particle size of the thickener added as necessary is not particularly limited, but the volume average particle size of the dried product is preferably 0.1 to 100 μm (further, 0.1 to 50 μm). Within this range, handling is easy, such as when mixing with an alkaline electrolytic solution and filling the negative electrode container of the battery.
 耐振動衝撃性向上剤としては、チタン、インジウム、スズ及びビスマスからなる群から選ばれる金属元素の酸化物、水酸化物及び硫化物等が使用できる。
 放電特性向上剤としては、二酸化珪素及び珪酸カリウム等の公知の化合物等が挙げられる。
As the vibration and shock resistance improver, oxides, hydroxides, sulfides and the like of metal elements selected from the group consisting of titanium, indium, tin and bismuth can be used.
Examples of the discharge characteristic improving agent include known compounds such as silicon dioxide and potassium silicate.
 他の添加剤を含有する場合の含有量は、アルカリ電解液の重量を基準として、それぞれ0~5.0重量%が好ましく、0~3.0重量%が更に好ましい。 When other additives are contained, the content is preferably 0 to 5.0% by weight, more preferably 0 to 3.0% by weight, based on the weight of the alkaline electrolytic solution.
 その他の添加剤は、任意の段階{架橋重合体(A)製造工程のうち、重合工程、細断工程、乾燥工程、粉砕工程、表面架橋工程及び/又はこれらの工程の前後}において添加することができる。 Other additives may be added at any stage {of the cross-linked polymer (A) manufacturing process, the polymerization step, the shredding step, the drying step, the pulverization step, the surface cross-linking step and / or before and after these steps}. Can be done.
 本発明のアルカリ電池の負極用添加剤(G)の40重量%水酸化カリウム水溶液吸収量は40~70g/gが好ましく、更に好ましくは42~65g/g、特に好ましくは45~60である。これらの範囲であるとアルカリ電解液の過剰な離液を防止でき、電池の長期に亘る放電特性が更に優れる。また、アルカリ電池の耐衝撃性、生産性(工程簡略化)が優れる。 The absorption amount of the 40 wt% potassium hydroxide aqueous solution of the negative electrode additive (G) of the alkaline battery of the present invention is preferably 40 to 70 g / g, more preferably 42 to 65 g / g, and particularly preferably 45 to 60. Within these ranges, excessive separation of the alkaline electrolytic solution can be prevented, and the long-term discharge characteristics of the battery are further excellent. In addition, the impact resistance and productivity (process simplification) of alkaline batteries are excellent.
 本発明のアルカリ電池の負極用添加剤(G)の40重量%水酸化カリウム水溶液吸収量は以下の方法で測定される。
<40重量%水酸化カリウム水溶液吸収量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網で作製したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、40重量%水酸化カリウム水溶液1,000ml中に無撹拌下、14時間浸漬した後、30分間吊るして過剰の水酸化カリウム水溶液を除去し、ティーバッグの重量(h1)を測定する。尚、使用する生理食塩水及び測定雰囲気の温度は25℃±2℃とする。測定試料を用いない以外は上記と同様にして、遠心脱水後のティーバッグの重量(h2)を測定し、下記式から0重量%水酸化カリウム水溶液吸収量を算出する。
 40重量%水酸化カリウム水溶液吸収量(g/g)=(h1)-(h2)
The absorption amount of the 40 wt% potassium hydroxide aqueous solution of the negative electrode additive (G) of the alkaline battery of the present invention is measured by the following method.
<Measuring method of absorption amount of 40 wt% potassium hydroxide aqueous solution>
1.00 g of the measurement sample was placed in a tea bag (length 20 cm, width 10 cm) made of a nylon mesh having a mesh size of 63 μm (JIS Z8801-1: 2006), and placed in 1,000 ml of a 40 wt% potassium hydroxide aqueous solution without stirring. After soaking for 14 hours, the tea bag is hung for 30 minutes to remove excess potassium hydroxide aqueous solution, and the weight (h1) of the tea bag is measured. The temperature of the physiological saline used and the measurement atmosphere shall be 25 ° C ± 2 ° C. The weight (h2) of the tea bag after centrifugal dehydration is measured in the same manner as above except that the measurement sample is not used, and the absorption amount of 0 wt% potassium hydroxide aqueous solution is calculated from the following formula.
Absorption amount of 40 wt% potassium hydroxide aqueous solution (g / g) = (h1)-(h2)
 本発明において、40重量%水酸化カリウム水溶液にアルカリ電池の負極用添加剤(G)を2重量%添加した混合液の25℃における粘度(Pa・s)は10~60であり、好ましくは25~50、更に好ましくは30~40である。混合液の粘度が10~60Pa・sの範囲外であると、アルカリ電解液の過剰な離液を防止できず、電池の長期に亘る放電特性に劣り、また、耐衝撃性及び生産性(充填性)が悪くなる。 In the present invention, the viscosity (Pa · s) of a mixed solution prepared by adding 2% by weight of the negative electrode additive (G) for an alkaline battery to a 40% by weight potassium hydroxide aqueous solution is 10 to 60, preferably 25. It is ~ 50, more preferably 30-40. If the viscosity of the mixed solution is outside the range of 10 to 60 Pa · s, excessive separation of the alkaline electrolytic solution cannot be prevented, the long-term discharge characteristics of the battery are inferior, and impact resistance and productivity (filling). Sex) gets worse.
 40重量%水酸化カリウム水溶液にアルカリ電池の負極用添加剤(G)を2重量%添加した混合液の粘度は以下の方法で測定される。
<混合液の粘度測定方法>
 40重量%水酸化カリウム水溶液98重量部及びアルカリ電池の負極用添加剤(G)2重量部を均一になるまで撹拌混合して25℃で16時間放置した後の混合液を測定試料とし、デジタルB型粘度計(TOKIMEC社製)を用いて、測定温度25℃で、JIS7117-1:1999に準拠して測定する。尚、ローターNo.4を使用し、回転数3rpmで測定する。
The viscosity of a mixed solution prepared by adding 2% by weight of the negative electrode additive (G) for an alkaline battery to a 40% by weight aqueous potassium hydroxide solution is measured by the following method.
<Method of measuring viscosity of mixed solution>
98 parts by weight of a 40 wt% potassium hydroxide aqueous solution and 2 parts by weight of the negative electrode additive (G) of an alkaline battery were stirred and mixed until uniform and left at 25 ° C. for 16 hours, and then the mixed solution was used as a measurement sample and digitally used. A B-type viscometer (manufactured by TOKIMEC) is used for measurement at a measurement temperature of 25 ° C. in accordance with JIS7117-1: 1999. In addition, the rotor No. No. 4 is used, and the measurement is performed at a rotation speed of 3 rpm.
 本発明におけるアルカリ電池の負極用添加剤(G)の体積平均粒子径は、好ましくは30~400μm、更に好ましくは30~170μm、特に好ましくは30~100μmである。体積平均粒子径がこれらの範囲であると、アルカリ電池の負極用添加剤(G)を添加したアルカリ電解液の粘度が好適な範囲となり、負極材の液切れが良くなる。このため品質が安定した電池を製造することができ、かつ負極材中での亜鉛粉末の沈降を防ぐことができるようになるため、経時での放電特性に優れた電池を生産できる。 The volume average particle size of the negative electrode additive (G) of the alkaline battery in the present invention is preferably 30 to 400 μm, more preferably 30 to 170 μm, and particularly preferably 30 to 100 μm. When the volume average particle size is in these ranges, the viscosity of the alkaline electrolytic solution to which the negative electrode additive (G) of the alkaline battery is added is in a suitable range, and the negative electrode material drains well. Therefore, it is possible to manufacture a battery with stable quality and prevent the zinc powder or the like from settling in the negative electrode material, so that a battery having excellent discharge characteristics over time can be produced.
 本発明のアルカリ電池の負極用添加剤(G)の体積平均粒子径は、アルカリ電池の負極用添加剤(G)をメタノールに分散させ、レーザー回折式粒度分布測定装置[マイクロトラック(日機装株式会社製)]により測定される。 The volume average particle size of the negative electrode additive (G) of the alkaline battery of the present invention is such that the negative electrode additive (G) of the alkaline battery is dispersed in methanol and a laser diffraction type particle size distribution measuring device [Microtrack (Nikkiso Co., Ltd.) Manufactured by)].
 本発明のアルカリ電池の負極用添加剤(G)を含有する負極材の離液率は、10重量%以下が好ましく、更に好ましくは0.1~5重量%、特に好ましくは0.1~3重量%、最も好ましくは0.5~2.5重量%である。これらの範囲であると電池の長期に渡る放電特性が更に優れる。 The liquid separation rate of the negative electrode material containing the negative electrode additive (G) of the alkaline battery of the present invention is preferably 10% by weight or less, more preferably 0.1 to 5% by weight, and particularly preferably 0.1 to 3%. By weight%, most preferably 0.5 to 2.5% by weight. Within these ranges, the long-term discharge characteristics of the battery are further excellent.
 尚、上記の離液率は以下の方法で測定される。
<離液率の測定方法>
 40重量%水酸化カリウム水溶液100重量部、アルカリ電池の負極用添加剤(G)2重量部及び体積平均粒子径200μmの亜鉛粉末200重量部を均一になるまで撹拌混合してアルカリ電池用負極材作製する。本負極材をJIS K7223-1996に準拠して作製した目開きが32μm(400メッシュ)のナイロンスクリーンからなるティーバッグの底部に75.0g測り入れ、25℃で168時間(1週間)静置する。その後、このティーバッグをクリップでつり下げ静置して30分間水切りを行った後、ティーバッグの水切り後の重量(W1)(g)を測定する。また、本負極材を入れずにティーバッグのみで同様の操作を行い、ティーバッグの重量(W2)(g)を測定する。下式により離液率を算出する。
 離液率(重量%)=[{75.0}-{W1}+{W2}]/{75.0}×100
The above liquid separation rate is measured by the following method.
<Measurement method of liquid separation rate>
100 parts by weight of a 40 wt% potassium hydroxide aqueous solution, 2 parts by weight of an additive (G) for a negative electrode of an alkaline battery, and 200 parts by weight of a zinc powder having a volume average particle diameter of 200 μm are stirred and mixed until uniform to make a negative electrode material for an alkaline battery. To make. Weigh 75.0 g of this negative electrode material into the bottom of a tea bag made of a nylon screen with an opening of 32 μm (400 mesh) prepared in accordance with JIS K7223-1996, and let stand at 25 ° C. for 168 hours (1 week). .. Then, the tea bag is hung with a clip and allowed to stand to drain water for 30 minutes, and then the weight (W1) (g) of the tea bag after draining is measured. Further, the same operation is performed only with the tea bag without inserting the negative electrode material, and the weight (W2) (g) of the tea bag is measured. The liquid separation rate is calculated by the following formula.
Liquid separation rate (% by weight) = [{75.0}-{W1} + {W2}] / {75.0} x 100
 本発明のアルカリ電池の負極用添加剤(G)を適用できるアルカリ電池としては特に限定されず、アルカリ電解液及び亜鉛粉末等からなる負極材をを有してなる一般的なアルカリ電池、例えばLR-20(単1型アルカリ電池)、LR-6型(単3型アルカリ電池)はもとより、その他各種の一次又は二次アルカリ電池に適用できる。アルカリ電池は、一般的に外装缶の中に正極剤、集電棒及びゲル負極が封入された構造を有し、正極剤とゲル負極とはセパレーター等により分離されている。 The alkaline battery to which the negative electrode additive (G) of the alkaline battery of the present invention can be applied is not particularly limited, and is a general alkaline battery having a negative electrode material composed of an alkaline electrolytic solution and zinc powder, for example, LR. It can be applied not only to -20 (AA alkaline battery) and LR-6 (AA alkaline battery), but also to various other primary or secondary alkaline batteries. Alkaline batteries generally have a structure in which a positive electrode agent, a current collector rod, and a gel negative electrode are enclosed in an outer can, and the positive electrode agent and the gel negative electrode are separated by a separator or the like.
 本発明のアルカリ電池の負極用添加剤(G)のアルカリ電池への充填方法としては、
(1)本発明のアルカリ電池の負極用添加剤(G)、アルカリ電解液(例えば高濃度の水酸化カリウム水溶液、必要により酸化亜鉛等を含有する)、亜鉛粉末等(換言すれば、亜鉛粉末、亜鉛合金粉末、又は、亜鉛粉末及び亜鉛合金粉末)、及び必要により他の添加剤を事前混合し負極物質の混合物を作製し、電池の負極容器内にこれを充填してゲル状負極とする方法、なお、亜鉛合金粉末はアルカリ電池において負極材に通常使用されるものを意味し、それ自体、当業者に知られたものである。
(2)本発明のアルカリ電池の負極用添加剤(G)及び亜鉛粉末等及び必要により他の添加剤を電池の負極容器内に充填した後、アルカリ電解液を充填し容器内でゲル状負極を生成する方法等を例示できる。
 上記のうち、亜鉛粉末等が電池の負極容器内に均一に分散できる上記(1)の方法が好ましい。
As a method for filling the alkaline battery with the negative electrode additive (G) of the alkaline battery of the present invention,
(1) Additive (G) for negative electrode of alkaline battery of the present invention, alkaline electrolytic solution (for example, high-concentration potassium hydroxide aqueous solution, if necessary, zinc oxide and the like are contained), zinc powder and the like (in other words, zinc powder). , Zinc alloy powder, or zinc powder and zinc alloy powder), and if necessary, other additives are premixed to prepare a mixture of negative electrode substances, which is filled in the negative electrode container of the battery to obtain a gel negative electrode. Method, in addition, zinc alloy powder means what is usually used as a negative electrode material in an alkaline battery, and is itself known to those skilled in the art.
(2) After filling the negative electrode container of the battery with the negative electrode additive (G) and zinc powder of the alkaline battery of the present invention and other additives if necessary, the alkaline electrolytic solution is filled and the gel-like negative electrode is filled in the container. Can be exemplified as a method of generating.
Of the above, the method (1) described above in which zinc powder or the like can be uniformly dispersed in the negative electrode container of the battery is preferable.
 アルカリ電池の負極用添加剤(G)の添加量は、負極容器の構造、亜鉛粉末等の粒径及びアルカリ電解液の濃度によっても種々異なるが、アルカリ電解液の重量を基準として、0.5~10重量%が好ましく、1.0~5.0重量%が更に好ましい。添加量が、0.5~10重量%であると、ゲル化剤を含んだアルカリ電解液の粘度が適度となり、亜鉛粉末等の沈降を防止でき取り扱い性も容易である。 The amount of the negative electrode additive (G) added to the alkaline battery varies depending on the structure of the negative electrode container, the particle size of zinc powder, etc., and the concentration of the alkaline electrolytic solution, but is 0.5 based on the weight of the alkaline electrolytic solution. It is preferably from 10% by weight, more preferably 1.0 to 5.0% by weight. When the addition amount is 0.5 to 10% by weight, the viscosity of the alkaline electrolytic solution containing the gelling agent becomes appropriate, sedimentation of zinc powder and the like can be prevented, and handleability is easy.
 以下、実施例及び比較例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、超純水は電気伝導率0.06μS/cm以下の水、イオン交換水は電気伝導率1.0μS/cm以下の水を示す。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, ultrapure water indicates water having an electric conductivity of 0.06 μS / cm or less, and ion-exchanged water indicates water having an electric conductivity of 1.0 μS / cm or less.
<実施例1>
 3リットルの断熱重合槽に、アクリル酸380g、ペンタエリスリトールトリアリルエーテル0.49g(対アクリル酸0.13重量%)、トリメチロールプロパントリアクリレート1.33g(対アクリル酸0.35重量%)及びイオン交換水1600gを入れて撹拌混合してアクリル酸水溶液を調製した後、アクリル酸水溶液を3℃に冷却した。冷却後、アクリル酸水溶液中に窒素を流量5L/minで通気して、アクリル酸水溶液中の溶存酸素濃度を0.10ppm以下とした。溶存酸素濃度は、隔膜電極法に基づく酸素濃度計(ORBISPHERE 510、HACH ULTRA社製)を用いて測定した。アクリル酸水溶液が3℃であることを確認した後に、窒素通気を継続しながら断熱重合槽に重合開始剤として、濃度10重量%の2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド(和光純薬工業株式会社製、商品名:V-50)水溶液11.40g、2-ヨード-2-メチルプロピオニトリル(TCI製)0.055g、濃度1.0重量%の過酸化水素水1.14g、濃度1.0重量%のL-アスコルビン酸水溶液1.14g、濃度0.1重量%の硫酸鉄(III)水溶液0.57gを添加した。重合開始剤添加後25分間窒素通気を継続した後に窒素通気を停止し、16時間静置して重合反応を行った。16時間静置後に、重合反応によって得られる含水ゲルを重合反応槽から取り出した。
 取り出した含水ゲルを、小型ミートチョッパー(ローヤル社製)を用いて3~10mmの太さのヌードル状になるように細分化し、細分化した含水ゲルに49重量%水酸化ナトリウム(試薬特級)水溶液132gを加えた後に前記小型ミートチョッパーを用いて含水ゲルに均一混練して中和した。
 中和した含水ゲルを目開き850μmのSUS製のスクリ-ンの上に厚さ5cmで積層し、小型透気乾燥機(井上金属株式会社製)を用いて150℃の熱風を1時間含水ゲルに透気させて含水ゲル中の水分を蒸発させ、乾燥ゲルを得た。
 乾燥ゲルをクッキングミキサーを用いて粉砕した後に、目開き150μm(100メッシュ)の篩を用いて、粒子径150μm以下のものを採取し、本発明のアルカリ電池の負極用添加剤(G-1)を得た。
<Example 1>
In a 3 liter adiabatic polymerization tank, 380 g of acrylic acid, 0.49 g of pentaerythritol triaryl ether (0.13% by weight of acrylic acid), 1.33 g of trimethylolpropane triacrylate (0.35% by weight of acrylic acid) and After adding 1600 g of ion-exchanged water and stirring and mixing to prepare an acrylic acid aqueous solution, the acrylic acid aqueous solution was cooled to 3 ° C. After cooling, nitrogen was aerated in the acrylic acid aqueous solution at a flow rate of 5 L / min to bring the dissolved oxygen concentration in the acrylic acid aqueous solution to 0.10 ppm or less. The dissolved oxygen concentration was measured using an oxygen concentration meter (ORBISPHERE 510, manufactured by HACH ULTRA) based on the diaphragm electrode method. After confirming that the acrylic acid aqueous solution was at 3 ° C., 2,2'-azobis (2-amidinopropane) hydrochloride (sum) having a concentration of 10% by weight was used as a polymerization initiator in an adiabatic polymerization tank while continuing nitrogen aeration. Kojunyaku Kogyo Co., Ltd., trade name: V-50) aqueous solution 11.40 g, 2-iodo-2-methylpropionitrile (manufactured by TCI) 0.055 g, concentration 1.0 wt% hydrogen peroxide solution 1. 14 g, 1.14 g of an L-ascorbic acid aqueous solution having a concentration of 1.0 wt%, and 0.57 g of an iron (III) aqueous solution having a concentration of 0.1 wt% were added. After the addition of the polymerization initiator, nitrogen aeration was continued for 25 minutes, nitrogen aeration was stopped, and the mixture was allowed to stand for 16 hours to carry out the polymerization reaction. After allowing to stand for 16 hours, the hydrogel obtained by the polymerization reaction was taken out from the polymerization reaction tank.
The water-containing gel taken out was subdivided into a noodle shape with a thickness of 3 to 10 mm using a small meat chopper (manufactured by Royal), and a 49 wt% sodium hydroxide (special grade reagent) aqueous solution was added to the subdivided water-containing gel. After adding 132 g, the mixture was uniformly kneaded into a hydrogel using the small meat chopper to neutralize it.
The neutralized hydrogel was laminated on a SUS screen with an opening of 850 μm to a thickness of 5 cm, and hot air at 150 ° C was blown for 1 hour using a small air-permeable dryer (manufactured by Inoue Metal Co., Ltd.). The water in the hydrogel was evaporated to obtain a dry gel.
After crushing the dried gel with a cooking mixer, a sieve having a mesh size of 150 μm (100 mesh) is used to collect particles having a particle size of 150 μm or less, and the negative electrode additive (G-1) for the alkaline battery of the present invention. Got
<実施例2>
 実施例1で得られた乾燥ゲルを、クッキングミキサーを用いて粉砕した後に、目開き45μm(330メッシュ)の篩を用いて、粒子径45μm以下のものを採取し、本発明のアルカリ電池の負極用添加剤(G-2)を得た。
<Example 2>
The dried gel obtained in Example 1 is pulverized using a cooking mixer, and then a sieve having a particle size of 45 μm or less is collected using a sieve having a mesh size of 45 μm (330 mesh) to collect a negative electrode of the alkaline battery of the present invention. Additive (G-2) for use was obtained.
<実施例3>
 実施例1で得られた乾燥ゲルを、クッキングミキサーを用いて粉砕した後に、目開き250μm(60メッシュ)の篩を用いて、粒子径250μm以下のものを採取し、本発明のアルカリ電池の負極用添加剤(G-3)を得た。
<Example 3>
The dried gel obtained in Example 1 is pulverized using a cooking mixer, and then a sieve having a particle size of 250 μm or less is collected using a sieve having a mesh size of 250 μm (60 mesh) to collect a negative electrode of the alkaline battery of the present invention. Additive (G-3) for use was obtained.
<実施例4>
 実施例1で得られた乾燥ゲルを、クッキングミキサーを用いて粉砕した後に、目開き600μm(26メッシュ)の篩を用いて、粒子径600μm以下のものを採取し、本発明のアルカリ電池の負極用添加剤(G-4)を得た。
<Example 4>
The dried gel obtained in Example 1 was pulverized using a cooking mixer, and then a sieve having a mesh size of 600 μm (26 mesh) was used to collect particles having a particle size of 600 μm or less, and the negative electrode of the alkaline battery of the present invention was collected. Additive (G-4) for use was obtained.
<実施例5>
 実施例1のトリメチロールプロパントリアクリレートの仕込量を1.33g(対アクリル酸0.35重量%)から0.76g(対アクリル酸0.20重量%)へ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-5)を得た。
<Example 5>
Same as Example 1 except that the amount of trimethylolpropane triacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 0.76 g (0.20% by weight of acrylic acid). The negative electrode additive (G-5) for the alkaline battery of the present invention was obtained.
<実施例6>
 実施例1のトリメチロールプロパントリアクリレートの仕込量を1.33g(対アクリル酸0.35重量%)から2.09g(対アクリル酸0.55重量%)へ代えた以外は、実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-6)を得た。
<Example 6>
Except that the amount of trimethylolpropane triacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 2.09 g (0.55% by weight of acrylic acid), the same as in Example 1. Similarly, an additive (G-6) for the negative electrode of the alkaline battery of the present invention was obtained.
<実施例7>
 実施例1のペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から0.38g(対アクリル酸0.10重量%)へ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-7)を得た。
<Example 7>
Same as in Example 1 except that the amount of pentaerythritol triallyl ether charged in Example 1 was changed from 0.49 g (0.13% by weight of acrylic acid) to 0.38 g (0.10% by weight of acrylic acid). The negative electrode additive (G-7) for the alkaline battery of the present invention was obtained.
<実施例8>
 実施例1のペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から0.76g(対アクリル酸0.20重量%)に代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-8)を得た。
<Example 8>
Same as in Example 1 except that the amount of pentaerythritol triaryl ether charged in Example 1 was changed from 0.49 g (0.13% by weight of acrylic acid) to 0.76 g (0.20% by weight of acrylic acid). The negative electrode additive (G-8) for the alkaline battery of the present invention was obtained.
<実施例9>
 実施例1の2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.028gへ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-9)を得た。
<Example 9>
The negative electrode additive (G) for the alkaline battery of the present invention is the same as in Example 1 except that the amount of 2-iodo-2-methylpropionitrile charged in Example 1 is changed from 0.055 g to 0.028 g. -9) was obtained.
<実施例10>
 実施例1の2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.083gへ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-10)を得た。
<Example 10>
The negative electrode additive (G) for the alkaline battery of the present invention is the same as in Example 1 except that the amount of 2-iodo-2-methylpropionitrile charged in Example 1 is changed from 0.055 g to 0.083 g. -10) was obtained.
<実施例11>
 実施例1の2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.110gへ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤アルカリ電池の負極用添加剤(G-11)を得た。
<Example 11>
The negative electrode additive alkaline battery of the alkaline battery of the present invention is the same as in Example 1 except that the charge amount of 2-iodo-2-methylpropionitrile in Example 1 is changed from 0.055 g to 0.110 g. Negative electrode additive (G-11) was obtained.
<実施例12>
 実施例1のトリメチロールプロパントリアクリレートの仕込量を1.33g(対アクリル酸0.35重量%)から0.19g(対アクリル酸0.05重量%)へ、ペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から0.19g(対アクリル酸0.05重量%)へ、2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.028gへ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-12)を得た。
<Example 12>
The amount of trimethylol propantriacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 0.19 g (0.05% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.19 g (0.05% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0. An additive (G-12) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 028 g.
<実施例13>
 実施例1のトリメチロールプロパントリアクリレートの仕込量を1.33g(対アクリル酸0.35重量%)から3.80g(対アクリル酸1.00重量%)へ、ペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から0.76g(対アクリル酸0.20重量%)へ、2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.028gへ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-13)を得た。
<Example 13>
The amount of trimethylolpropane triacrylate of Example 1 charged was changed from 1.33 g (0.35% by weight of acrylic acid) to 3.80 g (1.00% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.76 g (0.20% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0. An additive (G-13) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 028 g.
<実施例14>
 実施例1のトリメチロールプロパントリアクリレートの仕込量を1.33g(対アクリル酸0.35重量%)から3.80g(対アクリル酸1.00重量%)へ、ペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から3.80g(対アクリル酸1.00重量%)へ、2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.028gへ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-14)を得た。
<Example 14>
The amount of trimethylolpropane triacrylate of Example 1 charged was changed from 1.33 g (0.35% by weight of acrylic acid) to 3.80 g (1.00% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 3.80 g (1.00% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0. An additive (G-14) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 028 g.
<実施例15>
 実施例1のトリメチロールプロパントリアクリレートの仕込量を1.33g(対アクリル酸0.35重量%)から0.95g(対アクリル酸0.25重量%)へ、ペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から0.19g(対アクリル酸0.05重量%)へ、2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.028gへ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-15)を得た。
<Example 15>
The amount of trimethylolpropan triacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 0.95 g (0.25% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.19 g (0.05% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0. An additive (G-15) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 028 g.
<実施例16>
 実施例1のトリメチロールプロパントリアクリレートの仕込量を1.33g(対アクリル酸0.35重量%)から0.19g(対アクリル酸0.05重量%)へ、ペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から0.19g(対アクリル酸0.05重量%)へ、2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.110gへ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-16)を得た。
<Example 16>
The amount of trimethylol propantriacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 0.19 g (0.05% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.19 g (0.05% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0. An additive (G-16) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 110 g.
<実施例17>
 実施例1のトリメチロールプロパントリアクリレートの仕込量を1.33g(対アクリル酸0.35重量%)から3.80g(対アクリル酸1.00重量%)へ、ペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から0.76g(対アクリル酸0.20重量%)へ、2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.110gへ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-17)を得た。
<Example 17>
The amount of trimethylolpropane triacrylate of Example 1 charged from 1.33 g (0.35% by weight of acrylic acid) to 3.80 g (1.00% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.76 g (0.20% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0. An additive (G-17) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 110 g.
<実施例18>
 実施例1のトリメチロールプロパントリアクリレートの仕込量を1.33g(対アクリル酸0.35重量%)から3.80g(対アクリル酸1.00重量%)へ、ペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から3.80g(対アクリル酸1.00重量%)へ、2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.110gへ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-18)を得た。
<Example 18>
The amount of trimethylolpropane triacrylate of Example 1 charged was changed from 1.33 g (0.35% by weight of acrylic acid) to 3.80 g (1.00% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 3.80 g (1.00% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0. An additive (G-18) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 110 g.
<実施例19>
 実施例1のトリメチロールプロパントリアクリレートの仕込量を1.33g(対アクリル酸0.35重量%)から0.95g(対アクリル酸0.25重量%)へ、ペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から0.19g(対アクリル酸0.05重量%)へ、2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.110gへ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-19)を得た。
<Example 19>
The amount of trimethylolpropan triacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 0.95 g (0.25% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.19 g (0.05% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0. An additive (G-19) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 110 g.
<実施例20>
 実施例1のトリメチロールプロパントリアクリレートの仕込量を1.33g(対アクリル酸0.35重量%)から0.95g(対アクリル酸0.25重量%)へ、ペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から0.26g(対アクリル酸0.07重量%)へ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-20)を得た。
<Example 20>
The amount of trimethylolpropane triacrylate of Example 1 charged from 1.33 g (0.35% by weight of acrylic acid) to 0.95 g (0.25% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. Was changed from 0.49 g (0.13% by weight of acrylic acid) to 0.26 g (0.07% by weight of acrylic acid) in the same manner as in Example 1 and added to the negative electrode of the alkaline battery of the present invention. The agent (G-20) was obtained.
<実施例21>
 実施例1のトリメチロールプロパントリアクリレートの仕込量を1.33g(対アクリル酸0.35重量%)から0.95g(対アクリル酸0.25重量%)へ、ペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から0.26g(対アクリル酸0.07重量%)へ、2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.028gへ代えた以外は実施例1と同様にして、本発明のアルカリ電池の負極用添加剤(G-21)を得た。
<Example 21>
The amount of trimethylolpropan triacrylate charged in Example 1 was changed from 1.33 g (0.35% by weight of acrylic acid) to 0.95 g (0.25% by weight of acrylic acid), and the amount of pentaerythritol triallyl ether charged. From 0.49 g (0.13% by weight of acrylic acid) to 0.26 g (0.07% by weight of acrylic acid), and the amount of 2-iodo-2-methylpropionitrile charged from 0.055 g to 0. An additive (G-21) for the negative electrode of the alkaline battery of the present invention was obtained in the same manner as in Example 1 except that the amount was replaced with 028 g.
<比較例1>
 3リットルの断熱重合槽に、アクリル酸460.0g、ペンタエリスリトールトリアリルエーテル1.15g(対アクリル酸0.25重量%)、トリメチロールプロパントリアクリレート0.92g(対アクリル酸0.20重量%)及びイオン交換水1600gを入れて撹拌混合してアクリル酸水溶液を調製した後、アクリル酸水溶液を3℃に冷却した。冷却後、アクリル酸水溶液中に窒素を流量5L/minで通気して、アクリル酸水溶液中の溶存酸素濃度を0.10ppm以下とした。アクリル酸水溶液が3℃であることを確認した後に、窒素通気を継続しながら断熱重合槽に重合開始剤として、濃度10重量%の2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド(和光純薬工業株式会社製、商品名:V-50)水溶液13.8g、濃度1.0重量%の過酸化水素水1.38g、濃度1.0重量%のL-アスコルビン酸水溶液1.38g、濃度0.1重量%の硫酸鉄(III)水溶液0.68gを添加した。重合開始剤添加後25分間窒素通気を継続した後に窒素通気を停止し、16時間静置して重合反応を行った。16時間静置後に、重合反応によって得られる含水ゲルを重合反応槽から取り出した。
 取り出した含水ゲルを、小型ミートチョッパー(ローヤル社製)を用いて3~10mmの太さのヌードル状になるように細分化し、細分化した含水ゲルに49重量%水酸化ナトリウム(試薬特級)水溶液169gを加えた後に前記小型ミートチョッパーを用いて含水ゲルに均一混練して中和した。
 中和した含水ゲルを目開き850μmのSUS製のスクリ-ンの上に厚さ5cmで積層し、小型透気乾燥機(井上金属株式会社製)を用いて150℃の熱風を1時間含水ゲルに透気させて含水ゲル中の水分を蒸発させ、乾燥ゲルを得た。
 乾燥ゲルをクッキングミキサーを用いて粉砕した後に、目開き45μm(330メッシュ)の篩を用いて、粒子径45μm以下のものを採取し、アルカリ電池の負極用添加剤(H-1)を得た。
<Comparative example 1>
460.0 g of acrylic acid, 1.15 g of pentaerythritol triaryl ether (0.25 wt% of acrylic acid), 0.92 g of trimethylolpropane triacrylate (0.20 wt% of acrylic acid) in a 3 liter adiabatic polymerization tank. ) And 1600 g of ion-exchanged water were added and mixed by stirring to prepare an acrylic acid aqueous solution, and then the acrylic acid aqueous solution was cooled to 3 ° C. After cooling, nitrogen was aerated in the acrylic acid aqueous solution at a flow rate of 5 L / min to bring the dissolved oxygen concentration in the acrylic acid aqueous solution to 0.10 ppm or less. After confirming that the aqueous acrylic acid solution was at 3 ° C., 2,2'-azobis (2-amidinopropane) hydrochloride (sum) having a concentration of 10% by weight was used as a polymerization initiator in an adiabatic polymerization tank while continuing nitrogen aeration. Kojunyaku Kogyo Co., Ltd., trade name: V-50) aqueous solution 13.8 g, concentration 1.0% by weight hydrogen peroxide solution 1.38 g, concentration 1.0% by weight L-ascorbic acid aqueous solution 1.38 g, 0.68 g of an aqueous solution of iron (III) sulfate having a concentration of 0.1% by weight was added. After the addition of the polymerization initiator, nitrogen aeration was continued for 25 minutes, nitrogen aeration was stopped, and the mixture was allowed to stand for 16 hours to carry out the polymerization reaction. After allowing to stand for 16 hours, the hydrogel obtained by the polymerization reaction was taken out from the polymerization reaction tank.
The water-containing gel taken out was subdivided into a noodle shape with a thickness of 3 to 10 mm using a small meat chopper (manufactured by Royal), and a 49 wt% sodium hydroxide (special grade reagent) aqueous solution was added to the subdivided water-containing gel. After adding 169 g, the water-containing gel was uniformly kneaded and neutralized using the small meat chopper.
The neutralized hydrogel was laminated on a SUS screen with an opening of 850 μm to a thickness of 5 cm, and hot air at 150 ° C was blown for 1 hour using a small air-permeable dryer (manufactured by Inoue Metal Co., Ltd.). The water in the hydrogel was evaporated to obtain a dry gel.
After crushing the dried gel with a cooking mixer, a sieve having a mesh size of 45 μm (330 mesh) was used to collect particles having a particle size of 45 μm or less to obtain an additive (H-1) for the negative electrode of an alkaline battery. ..
<比較例2>
 比較例1で得られた乾燥ゲルを、クッキングミキサーを用いて粉砕した後に、目開き150μm(100メッシュ)の篩を用いて、粒子径150μm以下のものを採取することによりアルカリ電池の負極用添加剤(H-2)を得た。
<Comparative example 2>
The dried gel obtained in Comparative Example 1 is pulverized using a cooking mixer, and then added to the negative electrode of an alkaline battery by collecting particles having a particle size of 150 μm or less using a sieve having a mesh size of 150 μm (100 mesh). The agent (H-2) was obtained.
<比較例3>
 比較例1で得られた乾燥ゲルを、クッキングミキサーを用いて粉砕した後に、目開き250μm(60メッシュ)の篩を用いて、粒子径250μm以下のものを採取することによりアルカリ電池の負極用添加剤(H-3)を得た。
<Comparative example 3>
The dried gel obtained in Comparative Example 1 is pulverized using a cooking mixer, and then added to the negative electrode of an alkaline battery by collecting a particle having a particle size of 250 μm or less using a sieve having a mesh size of 250 μm (60 mesh). The agent (H-3) was obtained.
<比較例4>
 比較例1で得られた乾燥ゲルを、クッキングミキサーを用いて粉砕した後に、目開き600μm(26メッシュ)の篩を用いて、粒子径600μm以下のものを採取することによりアルカリ電池の負極用添加剤(H-4)を得た。
<Comparative example 4>
The dried gel obtained in Comparative Example 1 is pulverized using a cooking mixer, and then added to the negative electrode of an alkaline battery by collecting particles having a particle size of 600 μm or less using a sieve having a mesh size of 600 μm (26 mesh). Agent (H-4) was obtained.
<比較例5>
 実施例1のペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から2.26g(対アクリル酸0.60重量%)へ代えた以外は実施例1と同様にして、アルカリ電池の負極用添加剤(H-5)を得た。
<Comparative example 5>
Same as Example 1 except that the amount of pentaerythritol triallyl ether charged in Example 1 was changed from 0.49 g (0.13% by weight of acrylic acid) to 2.26 g (0.60% by weight of acrylic acid). To obtain an additive (H-5) for the negative electrode of an alkaline battery.
<比較例6>
 実施例1のペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から2.26g(対アクリル酸0.60重量%)へ、2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.172gへ代えた以外は実施例1と同様にして、アルカリ電池の負極用添加剤(H-6)を得た。
<Comparative Example 6>
The amount of pentaerythritol triallyl ether charged in Example 1 was increased from 0.49 g (0.13% by weight of acrylic acid) to 2.26 g (0.60% by weight of acrylic acid), 2-iodo-2-methylpro. An additive (H-6) for the negative electrode of an alkaline battery was obtained in the same manner as in Example 1 except that the amount of pionitrile charged was changed from 0.055 g to 0.172 g.
<比較例7>
 比較例2のペンタエリスリトールトリアリルエーテルの仕込量を1.15g(対アクリル酸0.25重量%)から、2.76g(対アクリル酸0.60重量%)へ代えた以外は比較例2と同様にして乾燥ゲルを得た。乾燥ゲルを、クッキングミキサーを用いて粉砕した後に、目開き150μm(100メッシュ)の篩を用いて、粒子径150μm以下のものを採取することによりアルカリ電池の負極用添加剤(H-7)を得た。
<Comparative example 7>
Compared with Comparative Example 2 except that the amount of pentaerythritol triaryl ether charged in Comparative Example 2 was changed from 1.15 g (0.25% by weight of acrylic acid) to 2.76 g (0.60% by weight of acrylic acid). A dry gel was obtained in the same manner. After crushing the dried gel with a cooking mixer, a sieve having a mesh size of 150 μm (100 mesh) is used to collect particles having a particle size of 150 μm or less to obtain an additive (H-7) for the negative electrode of an alkaline battery. Obtained.
<比較例8>
 実施例1のペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から3.02g(対アクリル酸0.80重量%)へ代えた以外は実施例1と同様にして、アルカリ電池の負極用添加剤(H-8)を得た。
<Comparative Example 8>
Same as in Example 1 except that the amount of pentaerythritol triallyl ether charged in Example 1 was changed from 0.49 g (0.13% by weight of acrylic acid) to 3.02 g (0.80% by weight of acrylic acid). To obtain an additive (H-8) for the negative electrode of an alkaline battery.
<比較例9>
 実施例1のペンタエリスリトールトリアリルエーテルの仕込量を0.49g(対アクリル酸0.13重量%)から3.02g(対アクリル酸0.80重量%)へ、2-ヨード-2-メチルプロピオニトリルの仕込量を0.055gから0.172gへ代えた以外は実施例1と同様にして、アルカリ電池の負極用添加剤(H-9)を得た。
<Comparative Example 9>
The amount of pentaerythritol triallyl ether charged in Example 1 was increased from 0.49 g (0.13% by weight of acrylic acid) to 3.02 g (0.80% by weight of acrylic acid), 2-iodo-2-methylpro. An additive (H-9) for the negative electrode of an alkaline battery was obtained in the same manner as in Example 1 except that the amount of pionitrile charged was changed from 0.055 g to 0.172 g.
<比較例10>
 アルカリ電池の負極用添加剤(H-2)166.7gと市販のポリアクリル酸25,000(平均分子量:約25,000、富士フィルム和光純薬株式会社製)33.3gをニーダーに仕込み、5分間攪拌後混合物を取出し、アルカリ電池の負極用添加剤(H-10)を得た。
<Comparative Example 10>
166.7 g of the negative electrode additive (H-2) for alkaline batteries and 25,000 commercially available polyacrylic acid (average molecular weight: about 25,000, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 33.3 g were charged into the kneader. After stirring for 5 minutes, the mixture was taken out to obtain an additive (H-10) for the negative electrode of an alkaline battery.
<比較例11>
 アルカリ電池の負極用添加剤(H-5)166.7gと市販のポリアクリル酸25,000(平均分子量:約25,000、富士フィルム和光純薬株式会社製)33.3gをニーダーに仕込み、5分間攪拌後混合物を取出し、アルカリ電池の負極用添加剤(H-11)を得た。
<Comparative Example 11>
166.7 g of the negative electrode additive (H-5) for alkaline batteries and 25,000 g of commercially available polyacrylic acid (average molecular weight: about 25,000, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were charged into the kneader. After stirring for 5 minutes, the mixture was taken out to obtain an additive (H-11) for the negative electrode of an alkaline battery.
<比較例12>
 アルカリ電池の負極用添加剤(H-6)166.7gと市販のポリアクリル酸25,000(平均分子量:約25,000、富士フィルム和光純薬株式会社製)33.3gをニーダーに仕込み、5分間攪拌後混合物を取出し、アルカリ電池の負極用添加剤(H-12)を得た。
<Comparative Example 12>
166.7 g of the negative electrode additive (H-6) for alkaline batteries and 25,000 commercially available polyacrylic acid (average molecular weight: about 25,000, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 33.3 g were charged into the kneader. After stirring for 5 minutes, the mixture was taken out to obtain an additive (H-12) for the negative electrode of an alkaline battery.
<比較例13>
 アルカリ電池の負極用添加剤(H-7)166.7gと市販のCarbopol 974PNF(LubrisolAdvancedMaterials.Inc製)33.3gをニーダーに仕込み、5分間攪拌後混合物を取出し、アルカリ電池の負極用添加剤(H-13)を得た。
<Comparative Example 13>
166.7 g of the negative electrode additive (H-7) for an alkaline battery and 33.3 g of a commercially available Carbopol 974 PNF (manufactured by Lubriso Advanced Materials. Inc) were charged into a kneader, and after stirring for 5 minutes, the mixture was taken out, and the additive for the negative electrode of an alkaline battery (made by Lubriso Advanced Materials. H-13) was obtained.
<比較例14>
 アルカリ電池の負極用添加剤(H-8)166.7gと市販のCarbopol 974PNF(LubrisolAdvancedMaterials.Inc製)33.3gをニーダーに仕込み、5分間攪拌後混合物を取出し、アルカリ電池の負極用添加剤(H-14)を得た。
<Comparative Example 14>
166.7 g of the negative electrode additive (H-8) for an alkaline battery and 33.3 g of a commercially available Carbopol 974 PNF (manufactured by Lubriso Advanced Materials. Inc) were charged into a kneader, and after stirring for 5 minutes, the mixture was taken out, and the additive for the negative electrode of an alkaline battery (made by Lubriso Advanced Materials. H-14) was obtained.
<比較例15>
 アルカリ電池の負極用添加剤(H-2)62.5gと市販のポリアクリル酸25,000(平均分子量:約25,000、富士フィルム和光純薬株式会社製)137.5gをニーダーに仕込み、5分間攪拌後混合物を取出し、アルカリ電池の負極用添加剤(H-15)を得た。
<Comparative Example 15>
62.5 g of the negative electrode additive (H-2) for alkaline batteries and 25,000 g of commercially available polyacrylic acid (average molecular weight: about 25,000, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were charged into the kneader. After stirring for 5 minutes, the mixture was taken out to obtain an additive (H-15) for the negative electrode of an alkaline battery.
<比較例16>
 アルカリ電池の負極用添加剤(H-5)62.5gと市販のポリアクリル酸25,000(平均分子量:約25,000、富士フィルム和光純薬株式会社製)137.5gをニーダーに仕込み、5分間攪拌後混合物を取出し、アルカリ電池の負極用添加剤(H-16)を得た。
<Comparative Example 16>
62.5 g of the negative electrode additive (H-5) for alkaline batteries and 25,000 g of commercially available polyacrylic acid (average molecular weight: about 25,000, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were charged into the kneader. After stirring for 5 minutes, the mixture was taken out to obtain an additive (H-16) for the negative electrode of an alkaline battery.
<比較例17>
 アルカリ電池の負極用添加剤(H-6)62.5gと市販のポリアクリル酸25,000(平均分子量:約25,000、富士フィルム和光純薬株式会社製)137.5gをニーダーに仕込み、5分間攪拌後混合物を取出し、アルカリ電池の負極用添加剤(H-17)を得た。
<Comparative example 17>
62.5 g of the negative electrode additive (H-6) for alkaline batteries and 25,000 g of commercially available polyacrylic acid (average molecular weight: about 25,000, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were charged into the kneader. After stirring for 5 minutes, the mixture was taken out to obtain an additive (H-17) for the negative electrode of an alkaline battery.
<比較例18>
 アルカリ電池の負極用添加剤(H-7)62.5gと市販のCarbopol 974PNF(LubrisolAdvancedMaterials.Inc製)137.5gをニーダーに仕込み、5分間攪拌後混合物を取出し、アルカリ電池の負極用添加剤(H-18)を得た。
<Comparative Example 18>
Add 62.5 g of the negative electrode additive (H-7) for alkaline batteries and 137.5 g of commercially available Carbopol 974PNF (manufactured by Lubriso Advanced Materials. Inc) to the kneader, stir for 5 minutes, remove the mixture, and remove the negative electrode additive (H-7) for alkaline batteries. H-18) was obtained.
<比較例19>
 アルカリ電池の負極用添加剤(H-8)62.5gと市販のCarbopol 974PNF(LubrisolAdvancedMaterials.Inc製)137.5gをニーダーに仕込み、5分間攪拌後混合物を取出し、アルカリ電池の負極用添加剤(H-19)を得た。
<Comparative Example 19>
Add 62.5 g of the negative electrode additive (H-8) for alkaline batteries and 137.5 g of commercially available Carbopol 974PNF (manufactured by Lubriso Advanced Materials. Inc) to the kneader, stir for 5 minutes, remove the mixture, and remove the negative electrode additive (H-8) for alkaline batteries. H-19) was obtained.
<比較例20>
 アルカリ電池の負極用添加剤(H-9)62.5gと市販のCarbopol 974PNF(LubrisolAdvancedMaterials.Inc製)137.5gをニーダーに仕込み、5分間攪拌後混合物を取出し、アルカリ電池の負極用添加剤(H-20)を得た。
<Comparative Example 20>
Add 62.5 g of the negative electrode additive (H-9) for alkaline batteries and 137.5 g of commercially available Carbopol 974PNF (manufactured by Lubriso Advanced Materials. Inc) to the kneader, stir for 5 minutes, remove the mixture, and remove the negative electrode additive (H-9) for alkaline batteries. H-20) was obtained.
<比較例21>
 市販のポリアクリル酸25,000(平均分子量:約25,000、富士フィルム和光純薬株式会社製)を比較用のアルカリ電池の負極用添加剤(H-21)とした。
<Comparative Example 21>
Commercially available polyacrylic acid 25,000 (average molecular weight: about 25,000, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used as a negative electrode additive (H-21) for a comparative alkaline battery.
<比較例22>
 市販のCarbopol 974PNF(LubrisolAdvancedMaterials.Inc製)を比較用のアルカリ電池の負極用添加剤(H-22)とした。
<Comparative Example 22>
A commercially available Carbopol 974PNF (manufactured by Rubysol Advanced Materials. Inc.) was used as a negative electrode additive (H-22) for a comparative alkaline battery.
 実施例1~21で製造したアルカリ電池の負極用添加剤(G-1)~(G-21)及び比較例1~22で製造した比較用のアルカリ電池の負極用添加剤(H-1)~(H-22)について、体積平均粒子径、生理食塩水への可溶性成分量、可溶性成分の内の分子量が100,000以下の成分のMw/Mn、可溶性成分に対して得られたゲルパーミエーションクロマトグラフィー法のクロマトグラムの全面積に対して、分子量が100,000以下の可溶性成分の面積の割合(表中、可溶性成分の面積の割合)、40重量%水酸化カリウムにアルカリ電池の負極用添加剤を2重量%添加した混合液の粘度(表中、混合液の粘度)、40重量%水酸化カリウム水溶液の吸収量(表中、吸収量)及び離液率を前述の方法で測定した結果を、アルカリ電池の負極用添加剤に使用した架橋剤の比率及び中和度と共に表1~2(実施例)、表3~表4(比較例)に示す。 Negative electrode additives (G-1) to (G-21) for alkaline batteries manufactured in Examples 1 to 21 and negative electrode additives (H-1) for comparative alkaline batteries manufactured in Comparative Examples 1 to 22. Regarding (H-22), the volume average particle size, the amount of soluble component in physiological saline, Mw / Mn of the component having a molecular weight of 100,000 or less among the soluble components, and the gel perm obtained for the soluble component. Ratio of the area of the soluble component having a molecular weight of 100,000 or less (the ratio of the area of the soluble component in the table) to the total area of the chromatogram of the ion chromatography method, 40% by weight potassium hydroxide and the negative electrode of the alkaline battery Measure the viscosity of the mixed solution to which 2% by weight of the additive is added (in the table, the viscosity of the mixed solution), the absorption amount of the 40% by weight potassium hydroxide aqueous solution (absorption amount in the table), and the liquid separation rate by the above-mentioned method. The results are shown in Tables 1 and 2 (Examples) and Tables 3 to 4 (Comparative Examples) together with the ratio of the cross-linking agent used as the negative electrode additive of the alkaline battery and the degree of neutralization.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~4から、本発明のアルカリ電池の負極用添加剤は、比較のものと比べ、40重量%水酸化カリウム水溶液吸収量、40重量%水酸化カリウム水溶液にアルカリ電池の負極用添加剤(G)を2重量%添加した混合液の粘度及び離液率が優れていることが分かる。
 このことから、本発明のアルカリ電池の負極用添加剤は、ポリアクリル酸などの増粘機能を持つ材料を用いなくても十分な粘度を負極材に付与し、負極材注入に好適な作業性を与えることができ、負極材充填時の注入時間と注入量のばらつきが好適になる。さらに亜鉛の沈降を防止することで電池の耐衝撃性を高めることができる。また、40%水酸化カリウム水溶液吸収量が好適な範囲となることによりアルカリ電解液の過剰な離液を防止できるため、長期保管後の電池の持続時間が維持され、電池の長期に亘る放電特性に優れると言える。増粘機能を持つ材料を用いる必要が無いため、増粘機能を持つ材料を溶解・均一化する工程を削減することが出来、コスト及び作業効率も優れているということが出来る。
From Tables 1 to 4, the additives for the negative electrode of the alkaline battery of the present invention are 40% by weight potassium hydroxide aqueous solution absorption amount, 40% by weight potassium hydroxide aqueous solution and the negative electrode additive of the alkaline battery (compared to the comparative ones). It can be seen that the viscosity and the release rate of the mixed solution to which 2% by weight of G) is added are excellent.
From this, the additive for the negative electrode of the alkaline battery of the present invention imparts sufficient viscosity to the negative electrode material without using a material having a thickening function such as polyacrylic acid, and is suitable for workability for injecting the negative electrode material. Can be given, and variations in the injection time and the injection amount at the time of filling the negative electrode material become suitable. Furthermore, the impact resistance of the battery can be improved by preventing the precipitation of zinc. In addition, since the absorption amount of the 40% potassium hydroxide aqueous solution is in a suitable range, excessive separation of the alkaline electrolytic solution can be prevented, so that the battery duration after long-term storage is maintained, and the long-term discharge characteristics of the battery are maintained. It can be said that it is excellent. Since it is not necessary to use a material having a thickening function, it is possible to reduce the process of dissolving and homogenizing the material having a thickening function, and it can be said that the cost and work efficiency are excellent.
 更に、本発明のアルカリ電池の負極用添加剤(G-1)~(G-21)及び比較のアルカリ電池の負極用添加剤(H-1)~(H-22)を用いて、亜鉛粉末の沈降性、注入時間と注入量のバラツキ、電池の持続時間及び耐衝撃性を下記の方法で測定した結果を表5~6に示す。 Further, zinc powder is used by using the negative electrode additives (G-1) to (G-21) of the alkaline battery of the present invention and the negative electrode additives (H-1) to (H-22) of the comparative alkaline battery. Tables 5 to 6 show the results of measuring the sedimentation property, the variation in injection time and injection amount, the battery duration and the impact resistance by the following methods.
(1)亜鉛粉末の沈降性
 容量1リットルの2軸のニーダー(入江商会社製、品名:PNV-1)に、33重量%水酸化カリウム水溶液150gと体積平均粒子径200μmの亜鉛粉末(UNION MINIERES.A.社製)300g、アルカリ電池の負極用添加剤3.0gを添加し、50rpmの回転速度で60分間混合し、負極材を作製した。作製した負極材50gを、密閉可能な容量50mlのサンプル瓶(直径34mm、高さ77mm、ポリプロピレン製)に入れ、混合時に入った気泡を減圧下で脱泡した。
 サンプル瓶を密閉し、40℃の恒温槽で30日間放置した後、パウダーテスター(ホソカワミクロン株式会社製)付属の装置を用いて、サンプル瓶を3cmの高さから30回/minの割合で300回タッピングして、亜鉛粉末の沈降を促進させた。タッピングを終了した後、亜鉛粉末の初期の位置(サンプル瓶中の負極材の上端部の位置)から亜鉛粉末の最も沈降した距離(mm)を測定し、これを亜鉛粉末の沈降性(mm)とした。
(1) Precipitation of zinc powder In a biaxial kneader (manufactured by Irie Trading Co., Ltd., product name: PNV-1) with a capacity of 1 liter, 150 g of a 33 wt% potassium hydroxide aqueous solution and zinc powder having a volume average particle diameter of 200 μm (UNION MINIERES) A. A.) 300 g and 3.0 g of an additive for the negative electrode of an alkaline battery were added and mixed at a rotation speed of 50 rpm for 60 minutes to prepare a negative electrode material. 50 g of the prepared negative electrode material was placed in a sample bottle (diameter 34 mm, height 77 mm, made of polypropylene) having a sealable capacity of 50 ml, and the bubbles entered during mixing were defoamed under reduced pressure.
After sealing the sample bottle and leaving it in a constant temperature bath at 40 ° C for 30 days, use the device attached to the powder tester (manufactured by Hosokawa Micron Co., Ltd.) to measure the sample bottle 300 times from a height of 3 cm at a rate of 30 times / min. Tapping was promoted to settle the zinc powder. After the tapping is completed, the most sedimented distance (mm) of the zinc powder is measured from the initial position of the zinc powder (the position of the upper end of the negative electrode material in the sample bottle), and this is the sedimentation property (mm) of the zinc powder. And said.
(2)注入時間と注入量のバラツキ
 容量1リットルの2軸のニーダーに33重量%水酸化カリウム水溶液150g、体積平均粒子径200μmの亜鉛粉末(UNION MINIERES.A.社製)300g、アルカリ電池の負極用添加剤3.0gを添加し、50rpmの回転速度で60分間混合し、負極材を作製した。作製した負極材をビーカーに移し、混合時に入った気泡を減圧下で脱泡した。脱泡した負極材を、注入口が2mmの内径を有し、かつ0.1ml単位の目盛りを有する10mlの注射器内部に吸引した。
 5mlのサンプル瓶(内径18mm、高さ40mm)の口の高さから、注射器を5.0ml分押し込んで負極材をサンプル瓶に注入し、注射器の押し込みを終了した時点から、注射器注入口から負極材が完全に分離した時点までの時間(秒)をストップウオッチで測定した。同様な操作を計20回繰り返してその算術平均値を注入時間(秒)とした。
 サンプル瓶に注入された負極ゲルの重量(20回それぞれ)を測定し、注入量の標準偏差(σ)を算出して、注入量のバラツキとした。
(2) Variation in injection time and injection amount In a biaxial kneader with a capacity of 1 liter, 150 g of 33 wt% potassium hydroxide aqueous solution, 300 g of zinc powder (manufactured by UNION MINIERES.A.) having a volume average particle diameter of 200 μm, and an alkaline battery 3.0 g of an additive for a negative electrode was added and mixed at a rotation speed of 50 rpm for 60 minutes to prepare a negative electrode material. The prepared negative electrode material was transferred to a beaker, and the bubbles that entered during mixing were defoamed under reduced pressure. The defoamed negative electrode material was sucked into a 10 ml syringe having an inner diameter of 2 mm and a scale of 0.1 ml unit.
From the height of the mouth of a 5 ml sample bottle (inner diameter 18 mm, height 40 mm), push the syringe by 5.0 ml to inject the negative electrode material into the sample bottle, and from the time when the pushing of the syringe is completed, the negative electrode from the syringe inlet. The time (seconds) until the material was completely separated was measured with a stopwatch. The same operation was repeated 20 times in total, and the arithmetic mean value was taken as the injection time (seconds).
The weight of the negative electrode gel injected into the sample bottle (20 times each) was measured, and the standard deviation (σ) of the injection amount was calculated to obtain the variation in the injection amount.
(3)電池の持続時間
 容量1リットルの2軸のニーダーに、33重量%の水酸化カリウム水溶液150gと体積平均粒子径200μmの亜鉛粉末(UNION MINIERES.A.社製)300g、アルカリ電池の負極用添加剤3.0gを添加し、50rpmで60分間混合し、負極材を作製し、減圧下で脱泡を行った後、この負極材15gを、LR-6型のモデル電池の負極容器内に注入し、モデル電池を作製した。
 尚、モデル電池の負極材以外の各部位の構成材料として、収縮チューブの材質としてはポリエチレン、正極材の材質としては電解二酸化マンガン50重量部、アセチレンブラック5重量部及び濃度40重量%水酸化カリウム水溶液1重量部からなる配合物、外装缶の材質としてはニッケルメッキ鋼板、セパレーターの材質としてはポリオレフィン、集電棒の材質としてはスズめっきした黄銅製の棒、ガスケットの材質としてはポリオレフィン系樹脂、負極端子板の材質としてはニッケルメッキ鋼板を用いた。
 作製したモデル電池に、室温(20~25℃)で2Ωの外部抵抗を接続して、連続放電し、電圧が0.9Vに低下するまでの時間を電池の持続時間(hour)とした。
 モデル電池作製後、80℃の恒温槽で15日間静置したモデル電池に関しても同様な操作を行い、電池の持続時間を測定した。
(3) Battery duration In a biaxial kneader with a capacity of 1 liter, 150 g of a 33 wt% potassium hydroxide aqueous solution, 300 g of zinc powder (manufactured by UNION MINIERES.A.) having a volume average particle diameter of 200 μm, and a negative electrode of an alkaline battery. 3.0 g of the additive for use is added and mixed at 50 rpm for 60 minutes to prepare a negative electrode material, and after defoaming under reduced pressure, 15 g of this negative electrode material is placed in the negative electrode container of the LR-6 type model battery. A model battery was prepared by injecting into.
As the constituent materials of each part other than the negative electrode material of the model battery, the material of the shrink tube is polyethylene, the material of the positive electrode material is 50 parts by weight of electrolytic manganese dioxide, 5 parts by weight of acetylene black, and 40% by weight of potassium hydroxide. A compound consisting of 1 part by weight of an aqueous solution, a nickel-plated steel plate as the material of the outer can, a polyolefin as the material of the separator, a tin-plated brass rod as the material of the current collector rod, a polyolefin resin as the material of the gasket, and a negative electrode. A nickel-plated steel plate was used as the material of the terminal plate.
An external resistor of 2Ω was connected to the produced model battery at room temperature (20 to 25 ° C.), and the battery was continuously discharged, and the time until the voltage dropped to 0.9V was defined as the battery duration (hour).
After producing the model battery, the same operation was performed on the model battery that had been allowed to stand in a constant temperature bath at 80 ° C. for 15 days, and the battery duration was measured.
(4)電池の耐衝撃性
 上記と同様にして作製したモデル電池に、室温(20~25℃)で2Ωの外部抵抗を接続して連続放電しながら、モデル電池を1mの高さから木材上に10回連続して落下させ、初回の落下前の電圧と10回目の落下直後の電圧を測定し、下式により耐衝撃性(%)を算出した。
  耐衝撃性(%)={10回目の落下直後の電圧(V)/初回の落下前の電圧(V)}×100
 モデル電池作製後、80℃の恒温槽で15日間静置したモデル電池に関しても同様な操作を行い、耐衝撃性を求めた。
(4) Impact resistance of the battery While connecting a 2Ω external resistor at room temperature (20 to 25 ° C) to the model battery manufactured in the same manner as above and continuously discharging the model battery, the model battery is placed on wood from a height of 1 m. The battery was dropped 10 times in a row, the voltage before the first drop and the voltage immediately after the 10th drop were measured, and the impact resistance (%) was calculated by the following formula.
Impact resistance (%) = {voltage immediately after the 10th drop (V) / voltage before the first drop (V)} x 100
After producing the model battery, the same operation was performed on the model battery that had been allowed to stand in a constant temperature bath at 80 ° C. for 15 days, and the impact resistance was determined.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表5~6から、本発明のアルカリ電池の負極用添加剤は、比較例のものと比べ、亜鉛粉末の沈降性、注入時間と注入量のバラツキ、電池の持続時間及び耐衝撃性に優れていることが分かる。 From Tables 5 to 6, the additives for the negative electrode of the alkaline battery of the present invention are excellent in the sedimentation property of zinc powder, the variation of injection time and injection amount, the duration of the battery and the impact resistance as compared with those of the comparative example. You can see that there is.
 本発明のアルカリ電池の負極用添加剤(G)は、円筒状のアルカリ電池のみならず、アルカリボタン電池、酸化銀電池、ニッケルカドミウム蓄電池、ニッケル水素蓄電池等の一次及び二次アルカリ電池用の負極用添加剤としても有用である。また、本発明のアルカリ電池の負極用添加剤を用いたアルカリ電池は、耐衝撃性に優れ、放電特性の維持に優れ、負極材の粘度安定性に優れるため生産効率が向上したアルカリ電池として有用である。 The negative electrode additive (G) for the alkaline battery of the present invention is not only a cylindrical alkaline battery, but also a negative electrode for primary and secondary alkaline batteries such as alkaline button batteries, silver oxide batteries, nickel-cadmium storage batteries, and nickel-hydrogen storage batteries. It is also useful as an additive. Further, the alkaline battery using the negative electrode additive of the alkaline battery of the present invention is useful as an alkaline battery with improved production efficiency because it has excellent impact resistance, excellent discharge characteristics, and excellent viscosity stability of the negative electrode material. Is.

Claims (5)

  1.  水溶性ビニルモノマー(a1)及び/又は加水分解により(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単量体単位とする架橋重合体(A)を含有し、下記(1)~(3)を満たすアルカリ電池の負極用添加剤(G):
    (1)架橋重合体(A)の0.9重量%生理食塩水への可溶性成分量が、(A)の重量を基準として5~40重量%である;
    (2)架橋重合体(A)の0.9重量%生理食塩水への可溶性成分の内の、いずれも下記の方法で求められる、分子量が100,000以下の成分の数平均分子量(Mn)に対する重量平均分子量(Mw)の比率(Mw/Mn)が、4.0~6.0であり、架橋重合体(A)の生理食塩水への可溶性成分に対して得られたゲルパーミエーションクロマトグラフィー法のクロマトグラムの全面積に対して、分子量が100,000以下の可溶性成分の面積の割合が、50%以下である;
    方法:
    ゲルパーミエーションクロマトグラフィー法によってクロマトグラムを得て、分子量が100,000以下の区画におけるMw、Mn、及び面積の割合、をそれぞれ算出することにより求める;
    (3)40重量%水酸化カリウム水溶液にアルカリ電池の負極用添加剤(G)を2重量%添加した混合液の25℃における粘度が、10~60Pa・sである。
    It contains a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes (a1) by hydrolysis and a cross-linked polymer (A) containing a cross-linking agent (b) as an essential constituent monomer unit. Additive for negative electrode (G) of alkaline battery satisfying 1) to (3):
    (1) The amount of the soluble component of the crosslinked polymer (A) in 0.9% by weight of physiological saline is 5 to 40% by weight based on the weight of (A);
    (2) Of the components soluble in 0.9% by weight of the crosslinked polymer (A) in physiological saline, the number average molecular weight (Mn) of the components having a molecular weight of 100,000 or less, which are all determined by the following methods. The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the amount of the crosslinked polymer (A) was 4.0 to 6.0, and the gel permeation chromatograph obtained with respect to the soluble component of the crosslinked polymer (A) in physiological saline was obtained. The ratio of the area of the soluble component having a molecular weight of 100,000 or less to the total area of the chromatogram of the imaging method is 50% or less;
    Method:
    Obtained by obtaining a chromatogram by gel permeation chromatography and calculating the proportions of Mw, Mn, and area in compartments having a molecular weight of 100,000 or less;
    (3) The viscosity of a mixed solution prepared by adding 2% by weight of the negative electrode additive (G) for an alkaline battery to a 40% by weight aqueous potassium hydroxide solution at 25 ° C. is 10 to 60 Pa · s.
  2.  40重量%水酸化カリウム水溶液の吸収量が40~70g/gである請求項1記載のアルカリ電池の負極用添加剤。 The additive for the negative electrode of an alkaline battery according to claim 1, wherein the absorption amount of a 40 wt% potassium hydroxide aqueous solution is 40 to 70 g / g.
  3.  架橋剤(b)が、アルカリで加水分解する架橋剤(b1)及びアルカリで加水分解しない架橋剤(b2)からなり、架橋剤(b1)及び架橋剤(b2)の量が、いずれも、独立して、水溶性ビニルモノマー(a1)及びビニルモノマー(a2)の合計重量を基準として0.05~1重量%であり、(b1)の(b2)に対する重量比率[(b1)/(b2)]が1~5である請求項1又は2記載のアルカリ電池の負極用添加剤。 The cross-linking agent (b) is composed of a cross-linking agent (b1) that hydrolyzes with an alkali and a cross-linking agent (b2) that does not hydrolyze with an alkali, and the amounts of the cross-linking agent (b1) and the cross-linking agent (b2) are independent. Then, it is 0.05 to 1% by weight based on the total weight of the water-soluble vinyl monomer (a1) and the vinyl monomer (a2), and the weight ratio of (b1) to (b2) [(b1) / (b2)). ] Is 1 to 5, the additive for the negative electrode of the alkaline battery according to claim 1 or 2.
  4.  40重量%水酸化カリウム水溶液100重量部、アルカリ電池の負極用添加剤(G)2重量部及び亜鉛粉末200重量部を均一になるまで撹拌混合し、25℃で168時間静置した混合液の離液率が10重量%以下である請求項1~3のいずれか記載のアルカリ電池の負極用添加剤。 100 parts by weight of a 40% by weight aqueous potassium hydroxide solution, 2 parts by weight of the negative additive (G) for an alkaline battery and 200 parts by weight of zinc powder were stirred and mixed until uniform, and the mixture was allowed to stand at 25 ° C. for 168 hours. The additive for a negative electrode of an alkaline battery according to any one of claims 1 to 3, wherein the liquid separation rate is 10% by weight or less.
  5.  請求項1~4のいずれか記載のアルカリ電池の負極用添加剤並びに負極材としての亜鉛粉末及び/又は亜鉛合金粉末を含有してなるアルカリ電池。 An alkaline battery containing the additive for the negative electrode of the alkaline battery according to any one of claims 1 to 4 and zinc powder and / or zinc alloy powder as the negative electrode material.
PCT/JP2020/011677 2019-04-25 2020-03-17 Negative electrode addditive for alkaline battery, and alkaline battery WO2020217782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-084025 2019-04-25
JP2019084025A JP2022096002A (en) 2019-04-25 2019-04-25 Gelatinizer for alkaline batteries and alkaline battery

Publications (1)

Publication Number Publication Date
WO2020217782A1 true WO2020217782A1 (en) 2020-10-29

Family

ID=72942001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011677 WO2020217782A1 (en) 2019-04-25 2020-03-17 Negative electrode addditive for alkaline battery, and alkaline battery

Country Status (2)

Country Link
JP (1) JP2022096002A (en)
WO (1) WO2020217782A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388902A (en) * 2022-01-05 2022-04-22 武汉理工大学 Method for inhibiting growth of zinc dendrite in zinc ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049306A (en) * 2004-07-08 2006-02-16 Sanyo Chem Ind Ltd Gelling agent for alkaline battery and alkaline battery
WO2017057706A1 (en) * 2015-10-02 2017-04-06 Sdpグローバル株式会社 Water absorbent resin particles and method for producing same
JP2017103217A (en) * 2015-11-25 2017-06-08 三洋化成工業株式会社 Gelling agent for alkaline battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049306A (en) * 2004-07-08 2006-02-16 Sanyo Chem Ind Ltd Gelling agent for alkaline battery and alkaline battery
WO2017057706A1 (en) * 2015-10-02 2017-04-06 Sdpグローバル株式会社 Water absorbent resin particles and method for producing same
JP2017103217A (en) * 2015-11-25 2017-06-08 三洋化成工業株式会社 Gelling agent for alkaline battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388902A (en) * 2022-01-05 2022-04-22 武汉理工大学 Method for inhibiting growth of zinc dendrite in zinc ion battery
CN114388902B (en) * 2022-01-05 2023-11-14 武汉理工大学 Method for inhibiting zinc dendrite growth in zinc ion battery

Also Published As

Publication number Publication date
JP2022096002A (en) 2022-06-29

Similar Documents

Publication Publication Date Title
WO2008029502A1 (en) Binder for electrode formation, slurry for electrode formation using the binder, electrode using the slurry, secondary battery using the electrode, and capacitor using the electrode
JP3323468B2 (en) Gelling agent for alkaline batteries and alkaline batteries
JP4331704B2 (en) Gelling agent for alkaline battery and alkaline battery
KR100887810B1 (en) Thickener for alkaline battery and alkaline battery
WO2020217782A1 (en) Negative electrode addditive for alkaline battery, and alkaline battery
KR20040021671A (en) Gelling agent for alkaline cell and alkaline cell
WO2003031453A1 (en) Process for producing boric ester compound, electrolyte for electrochemical device, and secondary battery
US20120115038A1 (en) Gelling agent for electrolyte solution for alkaline battery
KR100847983B1 (en) Gelling agent for alkaline battery and alkaline battery
US20240105948A1 (en) Secondary battery electrode binder, secondary battery electrode mixture layer composition, secondary battery electrode and secondary battery
JP5514117B2 (en) Thickener for alkaline battery and alkaline battery
JP2008034379A (en) Thickener for alkaline battery, and alkaline battery
JP6223788B2 (en) Binder for alkaline battery positive electrode and alkaline battery
JPWO2020110847A1 (en) Binder for secondary battery electrode, composition for secondary battery electrode mixture layer and secondary battery electrode
JP5647944B2 (en) Binder for alkaline battery positive electrode and alkaline battery
JP2017103217A (en) Gelling agent for alkaline battery
JP5711590B2 (en) Binder for alkaline battery positive electrode and alkaline battery
JP5450030B2 (en) Binder for aqueous electrode composition for non-aqueous secondary battery
JP2006079901A (en) Thickener for alkaline battery and alkaline battery
JP5698067B2 (en) Thickener for alkaline batteries
JP2007294409A (en) Gelling agent for alkaline cell, and alkaline cell
JP2022061830A (en) Binder composition, electrode mixture, electrode, and non-aqueous electrolyte secondary battery
JP2024001684A (en) Coated positive electrode active material particles for lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP