WO2020217779A1 - Glass panel unit and manufacturing method for glass panel unit - Google Patents

Glass panel unit and manufacturing method for glass panel unit Download PDF

Info

Publication number
WO2020217779A1
WO2020217779A1 PCT/JP2020/011476 JP2020011476W WO2020217779A1 WO 2020217779 A1 WO2020217779 A1 WO 2020217779A1 JP 2020011476 W JP2020011476 W JP 2020011476W WO 2020217779 A1 WO2020217779 A1 WO 2020217779A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
lid
glass
main body
panel unit
Prior art date
Application number
PCT/JP2020/011476
Other languages
French (fr)
Japanese (ja)
Inventor
瓜生 英一
阿部 裕之
将 石橋
長谷川 和也
野中 正貴
清水 丈司
治彦 石川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021515868A priority Critical patent/JPWO2020217779A1/ja
Publication of WO2020217779A1 publication Critical patent/WO2020217779A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing

Definitions

  • This disclosure relates to a glass panel unit and a method for manufacturing the glass panel unit. More specifically, the present disclosure relates to a glass panel unit for heat insulation and a method for manufacturing the glass panel unit for heat insulation.
  • Patent Document 1 discloses a low-pressure double glazing in which the distance between two flat glass sheets is held by a titanium spacer.
  • An object of the present disclosure is to provide a glass panel unit and a method for manufacturing the glass panel unit, which can make heat transfer less likely to occur in a vacuum space.
  • the glass panel unit includes a main body, a lid, and a first frame.
  • the main body portion includes a first glass plate, a second glass plate, a second frame body, a vacuum space, a gas adsorbent, and an exhaust hole.
  • the second glass plate faces the first glass plate.
  • the second frame body is located between the first glass plate and the second glass plate, and airtightly joins the first glass plate and the second glass plate.
  • the vacuum space is surrounded by the first glass plate, the second glass plate, and the second frame.
  • the gas adsorbent is in the vacuum space.
  • the exhaust hole is formed in the first glass plate or the second glass plate.
  • the lid is on the outside of the main body.
  • the first frame body surrounds the peripheral edge of the exhaust hole and airtightly joins the main body portion and the lid body.
  • the method for manufacturing a glass panel unit is a method for manufacturing a glass panel unit.
  • the method includes a preparation step, a melting step, an exhaust step, a sealing step, and an activation step.
  • the preparatory step is a step of preparing an assembled product.
  • the assembled product includes a main body, a lid, a first peripheral wall, and a gap.
  • the main body includes a first glass plate, a second glass plate, a second peripheral wall, an internal space, a gas adsorbent, and an exhaust hole.
  • the second glass plate faces the first glass plate.
  • the second peripheral wall has a frame shape and is located between the first glass plate and the second glass plate.
  • the internal space is surrounded by the first glass plate, the second glass plate, and the second peripheral wall.
  • the gas adsorbent is arranged in the internal space.
  • the exhaust hole is formed in one of the first glass plate and the second glass plate.
  • the lid is on the outside of the main body.
  • the first peripheral wall surrounds the peripheral edge of the exhaust hole with a part thereof opened, and is between the main body and the lid.
  • the gap is formed by a portion of the first peripheral wall that is partially open, and connects the internal space and the external space through the exhaust hole.
  • the melting step is a step of melting the second peripheral wall and airtightly joining the first glass plate and the second glass plate.
  • the exhaust step is a step of exhausting the internal space through the gap and the exhaust hole to form a vacuum space.
  • the sealing step is a step of melting the first peripheral wall by local heating to close the gap and airtightly joining the main body and the lid.
  • the activation step is a step of activating the gas adsorb
  • FIG. 1 is a perspective view showing a glass panel unit according to an embodiment.
  • FIG. 2 is a plan view showing the same glass panel unit.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 4 is a perspective view showing an intermediate stage of the preparation process in the method for manufacturing the glass panel unit according to the embodiment.
  • FIG. 5 is an explanatory diagram of the same preparatory process.
  • FIG. 6 is an explanatory diagram of the same preparatory process.
  • FIG. 7 is an explanatory diagram of the same manufacturing method.
  • FIG. 8 is a plan view showing work-in-process in the same manufacturing method.
  • FIG. 9 is an explanatory diagram of an exhaust process in the same manufacturing method.
  • FIG. 10 is an explanatory diagram of a sealing process in the same manufacturing method.
  • FIG. 11 is an explanatory diagram of an activation step in the same production method.
  • the glass panel unit 100 includes a main body 10, a lid 16, and a first frame 17 (see FIG. 1).
  • the main body 10 includes a first glass plate 1, a second glass plate 2, a second frame body 41, a vacuum space 52, a gas adsorbent 44, and an exhaust hole 50.
  • the second glass plate 2 faces the first glass plate 1.
  • the second frame body 41 is located between the first glass plate 1 and the second glass plate 2, and airtightly joins the first glass plate 1 and the second glass plate 2.
  • the vacuum space 52 is surrounded by the first glass plate 1, the second glass plate 2, and the second frame 41.
  • the gas adsorbent 44 is in the vacuum space 52.
  • the exhaust hole 50 is formed in one of the first glass plate 1 and the second glass plate 2.
  • the lid 16 is on the outside of the main body 10.
  • the first frame body 17 surrounds the peripheral edge of the exhaust hole 50 and airtightly joins the main body portion 10 and the lid body 16.
  • the first frame body 17 since the first frame body 17 is not in the vacuum space 52 between the first glass plate 1 and the second glass plate 2, heat transfer by the first frame body 17 is performed. It does not occur in the vacuum space 52. Therefore, it is possible to make it difficult for heat transfer to occur in the vacuum space 52. Further, the first frame body 17 airtightly joins the main body portion 10 and the lid body 16, so that the exhaust hole 50 can be sealed by the first frame body 17 and the lid body 16.
  • FIGS. 1 to 3 schematically shows each configuration of the glass panel unit 100.
  • the dimensional shape of each of the illustrated configurations is different from the actual dimensional shape.
  • the glass panel unit 100 includes a main body portion 10, a lid body 16, and a first frame body 17.
  • the main body portion 10 is a portion constituting the main body (glass panel unit main body) of the glass panel unit 100, and constitutes the main outer shape of the glass panel unit 100. Moreover, the main body portion 10 is a portion other than the lid body 16 and the first frame body 17.
  • a main body 10 includes a first glass plate 1, a second glass plate 2, a second frame body 41, a vacuum space 52, a gas adsorbent 44, an exhaust hole 50, and a plurality of spacers 43. , Equipped with.
  • the plane shape of the main body 10 is larger than that of the lid 16 (see FIG. 2).
  • the first glass plate 1 faces the second glass plate 2 in the thickness direction D1 (see FIG. 3).
  • the first glass plate 1 is parallel to the second glass plate 2. Further, the first glass plate 1 is separated from the second glass plate 2 in the thickness direction D1.
  • a second frame 41 and a vacuum space 52 are formed between the first glass plate 1 and the second glass plate 2. In the vacuum space 52, there are a plurality of spacers 43 and a gas adsorbent 44.
  • an exhaust hole 50 is formed in the first glass plate 1.
  • the exhaust hole 50 is a hole that penetrates the first glass plate 1 in the thickness direction D1 (see FIG. 3). Further, the exhaust hole 50 is a hole used for exhausting in the process of manufacturing the glass panel unit 100 (exhaust step described later).
  • the exhaust hole 50 is preferably located at a position close to the second frame 41 (in the example of FIG. 1, the upper right corner) in a plan view of the glass panel unit 100 in the thickness direction D1. In this case, since the lid 16 is provided so as to overlap the exhaust hole 50 in the plan view in the thickness direction D1, the lid 16 becomes inconspicuous.
  • the exhaust hole 50 is airtightly sealed by the first frame body 17 and the lid body 16.
  • the first glass plate 1 includes a glass panel (first glass plate main body) 15 which is the main body thereof and a low emissivity film 45 laminated on the glass panel 15 (see, for example, FIG. 3).
  • the glass panel 15 is a glass panel having translucency.
  • Examples of the glass panel 15 include soda lime glass, high strain point glass, chemically tempered glass, non-alkali glass, quartz glass, neoceram, and physically tempered glass.
  • the glass panel 15 has a facing surface (first facing surface) 12 facing the second glass plate 2.
  • the low emissivity film 45 is laminated on most of the facing surfaces 12. Specifically, in a plan view of the first glass plate 1 in the thickness direction D1, the low emissivity film 45 is laminated on the facing surface 12 excluding the periphery of each position of the second frame 41 and the exhaust hole 50. ..
  • the low-emissivity film 45 is a film containing a metal such as silver having low radioactivity, and has a function of suppressing heat transfer due to radiation.
  • the low emissivity film 45 is also called an infrared reflective film, and although it has translucency, it has a property of making it difficult for infrared rays to pass through.
  • the second glass plate 2 faces the first glass plate 1 in the thickness direction D1. As shown in FIG. 3, the second glass plate 2 has a facing surface (second facing surface) 22 facing the first glass plate 1.
  • the second glass plate 2 includes a glass panel (second glass plate main body) 25 which is the main body thereof. Examples of the glass panel 25 include soda lime glass, high strain point glass, chemically tempered glass, non-alkali glass, quartz glass, neoceram, and physically tempered glass.
  • the second glass plate 2 may be composed of only the glass panel 25.
  • the second glass plate 2 includes a bottomed recess 2a as shown in FIG.
  • the recess 2a is arranged in the vacuum space 52.
  • the recess 2a is formed so that a part of the facing surface 22 is recessed with respect to the vacuum space 52 toward the side opposite to the first glass plate 1 in the thickness direction D1 (see FIG. 3).
  • the recess 2a is provided in a place where the spacer 43 is not provided.
  • the gas adsorbent 44 is arranged in the recess 2a. Specifically, the gas adsorbent 44 is in contact with the bottom surface of the recess 2a.
  • the second frame body 41 airtightly joins the first peripheral edge portion 13 of the first glass plate 1 and the second peripheral edge portion 23 of the second glass plate 2.
  • the first peripheral edge portion 13 is a frame-shaped portion along the outer peripheral edge of the first glass plate 1.
  • the second peripheral edge portion 23 is a frame-shaped portion along the outer peripheral edge of the second glass plate 2.
  • the second frame body 41 is composed of a second peripheral wall 410, which will be described later, which is a frame-shaped sealing material (second sealing material). Specifically, the second frame 41 is a portion where the second sealing material is melt-hardened.
  • the second sealing material contains a glass frit having a predetermined softening point.
  • the second sealing material consists of, for example, only glass frit.
  • any glass frit can be adopted as long as the first glass plate 1 and the second glass plate 2 can be joined by melt hardening.
  • the glass frit is, for example, a low melting point glass frit.
  • An example of a low melting point glass frit is a V-Te-Ag glass frit.
  • the vacuum space 52 is surrounded by the first glass plate 1, the second glass plate 2, and the second frame 41.
  • the degree of vacuum of the vacuum space 52 is equal to or less than a predetermined value.
  • the degree of vacuum in the vacuum space 52 may be such that the heat insulating property of the glass panel unit 100 is not easily lowered, and the degree of vacuum is not particularly limited.
  • the degree of vacuum of the vacuum space 52 is, for example, 0.1 Pa or less.
  • the plurality of spacers 43 are arranged at a distance from each other. Each of the spacers 43 is interposed between the first glass plate 1 and the second glass plate 2. That is, each of the spacers 43 is in contact with the first glass plate 1 and the second glass plate 2.
  • the plurality of spacers 43 are in the vacuum space 52, and the distance between the first glass plate 1 and the second glass plate 2 is maintained at a predetermined distance. It is preferable that all or a part of the plurality of spacers 43 is made of a resin such as polyimide.
  • the gas adsorbent 44 contains a metal getter material. In this case, since the gas adsorbent 44 can adsorb the gas in the vacuum space 52 by activating the gas adsorbent 44, it is possible to prevent the quality of the vacuum space 52 from being deteriorated. This makes it difficult to reduce the heat insulating property of the glass panel unit 100.
  • the metal getter material is a metal getter material having a metal surface capable of chemically adsorbing gas molecules.
  • the metal getter material include a zirconium-based getter material such as Zr-Al and Zr-V-Fe; and a titanium-based getter material.
  • the metal getter material can adsorb the gas existing in the vacuum space 52. This makes it difficult for heat transfer to occur in the vacuum space 52.
  • the gas in the vacuum space 52 include water vapor, nitrogen, oxygen, hydrogen, and carbon dioxide.
  • the metal getter material may adsorb (chemically adsorb) gas molecules on the metal surface before its activation. Even if gas molecules are adsorbed on the metal surface of the metal getter material in this way, the gas molecules can be diffused inside the metal getter material at the time of activation.
  • the glass panel unit 100 includes a lid 16 as described above.
  • the lid 16 is on the outside of the main body 10. That is, in the thickness direction D1, the main body 10, the first frame 17, and the lid 16 are arranged in this order.
  • the planar shape of the lid 16 is smaller than the first glass plate 1 and larger than the exhaust hole 50 in a plan view of the main body 10 in the thickness direction D1. Therefore, the vacuum space 52 can be reliably sealed by the first frame body 17 airtightly joining the first glass plate 1 and the lid body 16.
  • the lid 16 is formed in a plate shape in the present embodiment (see FIG. 1), the lid body 16 may be formed in any shape such as a hemisphere.
  • the lid body 16 has a lid body main body portion 16a and a joint portion 16b.
  • the lid body 16a and the joint 16b are integrated to form the lid 16.
  • the lid body 16a is a part that constitutes the main outer shape of the lid 16.
  • the lid body 16a has a rigidity capable of sealing the exhaust hole 50. Examples of the material constituting such a lid body 16a include metal and the like.
  • the joint portion 16b is a portion of the lid body 16 that is joined to the first frame body 17.
  • a portion formed by subjecting a surface treatment such as a glass coat to the surface of the lid main body 16a facing the exhaust hole 50 becomes the joint 16b.
  • the joint between the lid body 16 and the first frame body 17 can be strengthened.
  • the exhaust hole 50 can be more reliably sealed between the lid body 16 and the first frame body 17.
  • the joint 16b contains glass.
  • the first frame body 17 contains glass, the first frame body 17 is more likely to be strongly bonded to the joint portion 16b containing glass. As a result, the exhaust hole 50 can be more reliably sealed between the lid body 16 and the first frame body 17.
  • the glass panel unit 100 includes the first frame body 17.
  • the first frame body 17 surrounds the peripheral edge of the exhaust hole 50 and airtightly joins the main body portion 10 (specifically, the first glass plate 1) and the lid body 16.
  • Such a first frame body 17 is composed of a first peripheral wall 170, which will be described later, which is a frame-shaped sealing material (first sealing material). That is, the first frame body 17 is a portion where the first sealing material is melt-hardened.
  • the first sealing material contains a glass frit having a predetermined softening point.
  • the first sealing material consists of, for example, only glass frit. Any glass frit can be adopted as long as the main body 10, specifically the first glass plate 1, and the lid 16 can be joined by melting and curing the glass frit.
  • the glass frit is, for example, a low melting point glass frit.
  • An example of a low melting point glass frit is a V-Te-Ag glass frit.
  • the softening point of the first sealing material is preferably higher than that of the second sealing material. In this case, when the second sealing material is melted in the melting step described later, the first sealing material is less likely to melt, so that the gap 18 described later can be less likely to be closed. As a result, the exhaust hole 50 and the gap 18 described later can be used as an exhaust path for creating the vacuum space 52.
  • the softening point of the first sealing material is preferably higher than the melting temperature Tm described later.
  • the softening point of the first sealing material is, for example, 330 ° C.
  • the first frame body 17 surrounds the peripheral edge of the exhaust hole 50 without interruption in a plan view of the main body 10 in the thickness direction D1 (see FIG. 2).
  • the planar shape of the first frame 17 is annular, but the planar shape of the first frame 17 is not particularly limited as long as it surrounds the peripheral edge of the exhaust hole 50.
  • Other examples of the planar shape of the first frame body 17 include an ellipse and a polygon such as a triangle and a quadrangle.
  • the first frame body 17 may be joined over the entire surface of the surfaces where the joint portion 16b and the main body portion 10 face each other, except for the portion overlapping the exhaust hole 50.
  • the first frame body 17 joins the lid body 16 and the main body portion 10, so that the first frame body 17 is not in the vacuum space 52 formed between the first and second glass plates 1 and 2. Therefore, heat transfer by the first frame body 17 does not occur in the vacuum space 52. Therefore, it is possible to make it difficult for heat transfer to occur in the vacuum space 52. Further, the first frame body 17 airtightly joins the main body portion 10 and the lid body 16, so that the exhaust hole 50 can be sealed by the first frame body 17 and the lid body 16.
  • the glass panel unit 100 described above has excellent heat insulating properties and is easy to handle. Therefore, it can be satisfactorily used for window glass and the like. Further, for example, by arranging the glass panel unit 100 on the door portion of the refrigerator or freezer, it becomes possible to check the internal state without interfering with the function of the refrigerator or freezer by utilizing the high heat insulating property. It can be expected to be used for home or business use.
  • a manufacturing method of the glass panel unit 100 according to the present embodiment (hereinafter, may be simply referred to as a manufacturing method (M)) will be described with reference to FIGS. 4 to 11.
  • the manufacturing method (M) is a method for manufacturing the glass panel unit 100. Therefore, for the manufacturing method (M), the description of the glass panel unit 100 can be referred to.
  • the manufacturing method (M) includes a preparation step (see FIGS. 4 to 6), a melting step (see FIG. 7), an exhaust step (see FIGS. 7 to 9), and a sealing step (see FIG. 10). It includes an activation step (see FIG. 11).
  • the preparation process is a process of preparing the assembled product 81 as shown in FIG.
  • Assembly 81 is an intermediate product for making the glass panel unit as shown in FIG.
  • the assembled product 81 includes a main body portion 810, a first peripheral wall 170, a lid body 16, and a gap 18 (see FIG. 6).
  • the main body portion 810 is a part that constitutes the main body (assembled product main body) of the assembled product 81, and constitutes the main outer shape of the assembled product 81. Moreover, the main body portion 810 is a portion other than the lid body 16 and the first peripheral wall 170.
  • a main body 810 includes a first glass plate 1, a second glass plate 2, a second peripheral wall 410, an internal space 510, a plurality of spacers 43, a gas adsorbent 44, and an exhaust hole 50. Be prepared.
  • the plan shape of the main body 810 is larger than that of the lid 16 (see FIG. 6).
  • the assembled product 81 basically has the same structure as the glass panel unit 100. Specifically, in the assembled product 81, the internal space 510 is not exhausted, the first peripheral wall 170 and the second peripheral wall 410 are not melt-hardened, and the gas adsorbent 44 is not activated.
  • the preparation process includes a main body manufacturing step for manufacturing the main body 810.
  • the main body manufacturing step in order to manufacture the main body 810, the first glass plate 1, the second glass plate 2, the exhaust hole 50, the recess 2a, the second peripheral wall 410, and the plurality of spacers 43 are used. This is a step of creating the gas adsorbent 44 and the internal space 510.
  • the main body manufacturing process includes the first to seventh steps. The order of the second to sixth steps may be changed as appropriate.
  • the first step is a step of forming the first glass plate 1 and the second glass plate 2 (glass plate forming step). For example, in the first step, the first glass plate 1 and the second glass plate 2 are manufactured. Further, in the first step, the first glass plate 1 and the second glass plate 2 are washed as needed.
  • the second step is a step of forming the exhaust hole 50 (exhaust hole forming step).
  • exhaust hole forming step As shown in FIG. 4, an exhaust hole 50 is formed in the first glass plate 1. Further, in the second step, the first glass plate 1 is washed if necessary.
  • the third step is a step of forming the recess 2a (recess forming step).
  • a recess 2a is formed in the second glass plate 2.
  • the recess 2a is formed so that a part of the facing surface 22 is recessed in a direction parallel to the thickness direction D1. Further, in the third step, the second glass plate 2 is washed if necessary.
  • the fourth step is a step of forming the spacer 43 (spacer forming step).
  • a plurality of spacers 43 are formed in advance, and the plurality of spacers 43 are arranged at intervals on one surface (opposing surface) 22 of the second glass plate 2 by using a chip mounter or the like. To do.
  • the plurality of spacers 43 are used to maintain the distance between the first and second glass plates 1 and 2 in the glass panel unit 100 as shown in FIG. 1 at a predetermined distance. Examples of the material constituting such a spacer 43 include resin and the like.
  • the spacer 43 is formed in advance and arranged on the second glass plate 2, but a plurality of spacers 43 are formed on the second glass plate 2 by using a well-known thin film forming technique. It may be formed in 2.
  • the spacer 43 contains a resin
  • the plurality of spacers 43 may be formed by using a photolithography technique and an etching technique as a method different from the above-mentioned forming method.
  • the plurality of spacers 43 can be formed by using a photocurable material or the like.
  • Each spacer 43 is a columnar shape having a height substantially equal to the predetermined interval.
  • the spacer 43 has a diameter of 1 mm and a height of 100 ⁇ m.
  • each spacer 43 may have a desired shape such as a prismatic shape or a spherical shape.
  • the fifth step is a step of forming the gas adsorbent 44 (gas adsorbent forming step).
  • the gas adsorbent 44 is arranged in the recess 2a by using a chip mounter or the like.
  • the sixth step is a step of forming the second peripheral wall 410 (second peripheral wall forming step).
  • the second sealing material is applied to the second peripheral edge portion 23 of the second glass plate 2 using a dispenser or the like, and then the second sealing material is dried to form the second peripheral wall 410. (See FIG. 4).
  • the second peripheral wall 410 is an intermediate for producing the second frame body 41.
  • the second glass plate 2 as shown in FIG. 4 can be obtained.
  • the second glass plate 2 is formed with a recess 2a, a second peripheral wall 410, an internal space 510, a plurality of spacers 43, and a gas adsorbent 44.
  • the seventh step is a step (placement step) of arranging the first glass plate 1 and the second glass plate 2.
  • the first glass plate 1 and the second glass plate 2 are arranged so as to be parallel to each other and face each other.
  • an internal space 510 surrounded by the first glass plate 1, the second glass plate 2, and the second peripheral wall 410 is formed.
  • the low emissivity film 45 is opposed to the second glass plate 2 to arrange the first glass plate 1.
  • the main body 810 is obtained by the main body manufacturing process described above. Then, the assembled product 81 is obtained by performing the 8th to 10th steps after the main body manufacturing step. The order of the 8th to 10th steps can be changed as appropriate.
  • the eighth step is a step of forming the lid 16 (lid forming step).
  • the surface of the lid 16 facing the first peripheral wall 170 is subjected to surface treatment such as glass coating.
  • the portion subjected to the surface treatment in this way is referred to as a joint portion 16b.
  • the ninth step is a step of forming the first peripheral wall 170 (first peripheral wall forming step).
  • the first sealing material is applied to the outer surface of the first glass plate 1 by using a dispenser or the like to form the first peripheral wall 170.
  • the first peripheral wall 170 has an annular (for example, C-shaped) shape with a part of opening (see FIG. 5). The portion where this part is opened becomes the gap 18.
  • the first peripheral wall 170 is formed so as to surround the exhaust hole 50 on the outer surface of the first glass plate 1 at a position away from the peripheral edge of the exhaust hole 50.
  • the first peripheral wall 170 is an intermediate for producing the first frame body 17.
  • the tenth step is a step of arranging the lid 16 on the main body 810 (lid arranging step).
  • the lid 16 is arranged so that the joint portion 16b faces the first glass plate 1 and the first peripheral wall 170.
  • the gap 18 connects the external space and the exhaust hole between the main body 810 and the lid 16. Therefore, the gap 18 connects the internal space 510 and the external space via the exhaust hole 50.
  • the assembled product 81 as shown in FIG. 6 can be obtained. After the assembly 81 is manufactured, a melting step, an exhaust step, a sealing step, and an activation step are executed.
  • the melting step is a step of melting the second peripheral wall 410 by heating and airtightly joining the first glass plate 1 and the second glass plate 2. During the melting process, the second sealing material constituting the second peripheral wall 410 is melted. As a result, the molten second peripheral wall 410 is joined to the first glass plate 1 and the second glass plate 2.
  • the temperature (melting temperature) Tm of the melting step is selected to be a temperature equal to or higher than the softening point of the second sealing material.
  • the softening point of the second sealing material is not particularly limited, but is, for example, 260 ° C to 270 ° C.
  • the melting temperature Tm is selected, for example, 300 ° C.
  • the work-in-process 8 is an intermediate for manufacturing the glass panel unit 100. That is, in the manufacturing method (M), the work-in-process 8 is an article obtained in the middle of the process of manufacturing the glass panel unit 100 from the assembled product 81.
  • the work-in-process 8 basically has the same structure as the assembled product 81. In the work-in-process 8 shown in FIG. 8, the exhaust of the internal space 510 is in the middle, the first peripheral wall 170 is not melted, and the gas adsorbent 44 is not activated.
  • an exhaust step and a sealing step are performed.
  • the exhaust step is a step of forming a vacuum space 52 by exhausting the internal space 510 through the gap 18 and the exhaust hole 50.
  • the exhaust step is performed so that, for example, the degree of vacuum in the vacuum space 52 is 0.1 Pa or less.
  • the exhaust step may be started in the middle of the melting step (see FIG. 7).
  • the exhaust step may be started in the middle of cooling the work-in-process 8 from the melting temperature Tm to the temperature (sealing temperature) Ts of the sealing step.
  • Tm melting temperature
  • Ts sealing temperature
  • a sealing step is performed after the vacuum space 52 is formed.
  • the sealing step is performed in the middle of the exhaust step (see FIG. 7).
  • the sealing step is a step of melting the first peripheral wall 170 by local heating to close the gap 18 and airtightly joining the main body portion 810 and the lid body 16.
  • the exhaust step and the sealing step according to the present embodiment are executed by using the devices shown in FIGS. 9 and 10.
  • This device includes a decompression mechanism 71 and a heating mechanism 72.
  • the decompression mechanism 71 includes an internal space 74, a pressing mechanism 73, an exhaust head 75, and a connecting portion 753 connected to the exhaust head 75. Further, the decompression mechanism 71 is configured to decompress the internal space 510 formed in the work-in-process 8 through the gap 18 and the exhaust hole 50, and maintain the decompression state.
  • the internal space 74 opens at the lower end of the exhaust head 75 and a portion connecting the exhaust head 75 and the connection portion 753.
  • the exhaust head 75 has a lid 16 arranged in the internal space 74, and the lid 16 is pressed toward the first glass plate 1 by the pressing mechanism 73, and the main body of the work in process 8, specifically, the first. 1 It is airtightly pressed against the glass plate 1. Then, when the air in the exhaust head 75 is sucked through the connecting portion 753 (see the white arrow in FIG. 9), the internal space 510 is exhausted through the gap 18 and the exhaust hole 50.
  • the connection portion 753 connects between the exhaust head 75 and the vacuum pump.
  • the pressing mechanism 73 is provided in the internal space 74.
  • the pressing mechanism 73 is configured to press the lid 16 toward the first glass plate 1 while the vacuum space 52 is maintained by the decompression mechanism 71. That is, the lid 16 is elastically pressed toward the first glass plate 1 by the pressing mechanism 73.
  • the sealing process is performed by operating the heating mechanism 72.
  • the heating mechanism 72 is arranged on the side opposite to the exhaust head 75 with respect to the work in process 8 in the thickness direction D1 (see FIG. 10).
  • the heating mechanism 72 is configured to heat the first peripheral wall 170 between the lid 16 and the main body of the work-in-process 8 in a non-contact manner.
  • the heating mechanism 72 heats only the first peripheral wall 170 while maintaining the temperature of the work-in-process 8 at the sealing temperature Ts.
  • the sealing temperature Ts is, for example, 250 ° C.
  • the heating mechanism 72 includes an irradiator 720 as shown in FIG.
  • the irradiator 720 is configured to irradiate the first peripheral wall 170 with infrared rays (near infrared rays) via the first and second glass plates 1 and 2.
  • infrared rays near infrared rays
  • the first peripheral wall 170 is heated and melted.
  • the melted first peripheral wall 170 is hardened by heat removal to form the first frame body 17.
  • the gap 18 is closed in the first frame body 17, and the lid body 16 and the main body of the work-in-process 8 are airtightly joined by the first frame body 17.
  • the exhaust hole 50 is sealed by the first frame body 17 and the lid body 16 while the vacuum space 52 is maintained.
  • the vacuum space 52 can be maintained even if the exhaust head 75 is removed.
  • the exhaust hole 50 is sealed with the first frame body 17 and the lid body 16, and then the vacuum pump is stopped to end the exhaust process.
  • the activation step is a step of activating the gas adsorbent 44 by local heating.
  • the temperature of the entire work-in-process 8 excluding the gas adsorbent 44 and its peripheral portion may be about room temperature.
  • the gas adsorbent 44 in the vacuum space 52 is locally heated to a predetermined activation temperature by the local heating mechanism 6 as shown in FIG.
  • the local heating mechanism 6 is arranged on the side opposite to the second glass plate 2 with respect to the gas adsorbent 44 in the thickness direction D1 and outside the first glass plate 1 (see FIG. 11).
  • the local heating mechanism 6 may be arranged on the side opposite to the first glass plate 1 with respect to the gas adsorbent 44 in the thickness direction D1 and outside the second glass plate 2.
  • the activation temperature of the gas adsorbent 44 is arbitrarily set according to the type of metal getter material.
  • the activation temperature is, for example, a temperature higher than the melting temperature Tm.
  • the melting step can be performed by making it difficult for the gas adsorbent 44 to be activated. That is, it is possible to make it difficult for the gas adsorbent 44 to be activated in the melting step. Further, since the gas adsorbent 44 is locally heated during the activation step, the first and second frame bodies 17 and 41 are not remelted.
  • the local heating mechanism 6 includes an irradiator 61.
  • the irradiator 61 is a device configured to emit a laser to the gas adsorbent 44, and includes a light source. As shown in FIG. 11, the irradiator 61 can irradiate the gas adsorbent 44 with a laser via the first glass plate 1. Alternatively, the irradiator 61 may irradiate the gas adsorbent 44 with a laser via the second glass plate 2.
  • the gas adsorbent 44 is locally heated in a non-contact manner.
  • the heating time of the gas adsorbent 44 can be shortened. Therefore, the work efficiency for activating the gas adsorbent 44 can be improved.
  • the metal getter material can adsorb the gas existing in the vacuum space 52 by activating the metal getter material.
  • the gas existing in the vacuum space 52 include water vapor, nitrogen, oxygen, hydrogen, and carbon dioxide.
  • the tablet-type metal getter material is activated by induction heating. Specifically, the tablet-type metal getter material is induced and heated by a laser from the irradiator 61. The gas adsorbent 44 is locally heated by such induction heating of the tablet-type metal getter material.
  • the gas adsorbent 44 may be irradiated with the laser from the irradiator 61 via the first glass plate 1, or the gas adsorbent may be irradiated through the second glass plate 2. 44 may be irradiated.
  • the glass panel unit 100 as shown in FIG. 1 can be obtained.
  • the glass panel unit 100 manufactured by the above manufacturing method (M) has excellent heat insulating properties and is easy to handle. Therefore, the glass panel unit 100 can be satisfactorily used for window glass and the like. Further, for example, the glass panel unit 100 can be arranged at the door portion of the refrigerator or freezer. In this case, it is expected that the glass panel unit 100 will be used for home or business use, for example, the internal state can be confirmed without interfering with the functions of the refrigerator and the freezer by utilizing the high heat insulating property.
  • the plane shape of the glass panel unit 100 is quadrangular, but in the modified example, the glass panel unit 100 may have any plane shape such as a circle.
  • the planar shape of the lid 16 is quadrangular, but in the modified example, the lid 16 may have any planar shape such as a circle.
  • the lid 16 is a plate-shaped member, but in a modified example, the lid 16 may be a member having an arbitrary shape such as a hemisphere.
  • the first glass plate 1 has the same planar shape as the second glass plate 2, but in the modified example, the first glass plate 1 may be different from the planar shape of the second glass plate 2.
  • a plurality of spacers 43 are arranged on the second glass plate 2 in the fourth step, but in the modified example, a plurality of spacers 43 may be arranged on the first glass plate 1, or a plurality of spacers 43 may be arranged on the first glass plate 1. Spacer 43 may be assigned to the first glass plate 1 and the second glass plate 2 and arranged. Therefore, the plurality of spacers 43 can be arranged on at least one of the first glass plate 1 and the second glass plate 2.
  • the gas adsorbent 44 is arranged on the second glass plate 2 in the fifth step, but in the modified example, the gas adsorbent 44 may be arranged on the first glass plate 1. Alternatively, the gas adsorbent 44 may be arranged on both the first glass plate 1 and the second glass plate 2. Therefore, the gas adsorbent 44 can be arranged on at least one of the first glass plate 1 and the second glass plate 2.
  • the first sealing material is applied to the first glass plate 1 to form the first peripheral wall 170 in the ninth step, but in the modified example, the first sealing material is applied to the joint portion 16b. It may be applied to form the first peripheral wall 170.
  • one glass panel unit 100 includes one gas adsorbent 44, but in a modified example, one glass panel unit 100 may include two or more gas adsorbents 44. In this case, all the gas adsorbents 44 are in the vacuum space 52.
  • the exhaust hole 50 is formed in the first glass plate 1, but in the modified example, the exhaust hole 50 may be formed in the second glass plate 2. Therefore, the exhaust hole 50 can be formed in one of the first glass plate 1 and the second glass plate 2.
  • the first aspect is a glass panel unit (100), which includes a main body (10), a lid (16), and a first frame (17).
  • the main body (10) includes a first glass plate (1), a second glass plate (2), a second frame body (41), a vacuum space (52), a gas adsorbent (44), and an exhaust gas. It comprises a hole (50).
  • the second glass plate (2) faces the first glass plate (1).
  • the second frame body (41) is located between the first glass plate (1) and the second glass plate (2), and airtightly joins the first glass plate (1) and the second glass plate (2). ..
  • the vacuum space (52) is surrounded by a first glass plate (1), a second glass plate (2), and a second frame body (41).
  • the gas adsorbent (44) is in the vacuum space (52).
  • the exhaust hole (50) is formed in one of the first glass plate (1) and the second glass plate (2).
  • the lid (16) is on the outside of the main body (10).
  • the first frame body (17) surrounds the peripheral edge of the exhaust hole (50) and airtightly joins the main body portion (10) and the lid body (16).
  • the first frame body (17) since the first frame body (17) is not in the vacuum space (52) between the first glass plate (1) and the second glass plate (2), the first frame body (17) ) Does not occur in the vacuum space (52). Therefore, it is possible to make it difficult for heat transfer to occur in the vacuum space (52). Further, the first frame body (17) airtightly joins the main body portion (10) and the lid body (16), so that the exhaust hole (50) is formed between the first frame body (17) and the lid body (16). Can be sealed.
  • the second aspect is the glass panel unit (100) of the first aspect, and the lid body (16) has a lid body main body portion (16a) and a joint portion (16b).
  • the lid body (16a) constitutes the outer shape of the lid (16).
  • the joint portion (16b) is joined to the first frame body (17).
  • the first frame body (17) since the first frame body (17) is not in the vacuum space (52) between the first glass plate (1) and the second glass plate (2), the first frame body (17) ) Does not occur in the vacuum space (52). Therefore, it is possible to make it difficult for heat transfer to occur in the vacuum space (52). Further, the first frame body (17) airtightly joins the main body portion (10) and the lid body (16), so that the exhaust hole (50) is formed between the first frame body (17) and the lid body (16). Can be sealed.
  • the third aspect is the glass panel unit (100) of the second aspect, and the joint portion (16b) is surface-treated on the surface of the lid body (16) to be joined with the first frame body (17). It is a part.
  • the joint between the lid body (16) and the first frame body (17) can be strengthened.
  • the exhaust hole (50) can be more reliably sealed between the lid body (16) and the first frame body (17).
  • the fourth aspect is the glass panel unit (100) of the second or third aspect, and the joint portion (16b) includes glass.
  • the joint between the lid body (16) and the first frame body (17) can be strengthened.
  • the exhaust hole (50) can be more reliably sealed between the lid body (16) and the first frame body (17).
  • a fifth aspect is a method for manufacturing the glass panel unit (100), that is, a method for manufacturing the glass panel unit (100), which is a preparation step, a melting step, an exhaust step, a sealing step, and an activation step. And, including.
  • the preparation step is a step of preparing the assembled product (81).
  • the assembled product (81) includes a main body portion (810), a lid body (16), a first peripheral wall (170), and a gap (18).
  • the main body (810) includes a first glass plate (1), a second glass plate (2), a second peripheral wall (410), an internal space (510), a gas adsorbent (44), and an exhaust hole. (50) and.
  • the second glass plate (2) faces the first glass plate (1).
  • the second peripheral wall (410) has a frame shape and is located between the first glass plate (1) and the second glass plate (2).
  • the internal space (510) is surrounded by a first glass plate (1), a second glass plate (2), and a second peripheral wall (410).
  • the gas adsorbent (44) is arranged in the internal space (510).
  • the exhaust hole (50) is formed in one of the first glass plate (1) and the second glass plate (2).
  • the lid (16) is on the outside of the main body (810).
  • the first peripheral wall (170) surrounds the peripheral edge of the exhaust hole (50) with a part thereof opened, and is between the main body portion (810) and the lid (16).
  • the gap (18) is formed by a portion of the first peripheral wall (170) that is partially opened, and connects the internal space (510) and the external space via an exhaust hole (50).
  • the melting step is a step of melting the second peripheral wall (410) and airtightly joining the first glass plate (1) and the second glass plate (2).
  • the exhaust step is a step of exhausting the internal space (510) through the gap (18) and the exhaust hole (50) to form a vacuum space (52).
  • the sealing step is a step of melting the first peripheral wall (170) by local heating to close the gap (18) and airtightly joining the main body portion (810) and the lid (16).
  • the activation step is a step of activating the gas adsorbent (44) by local heating.
  • the first frame body composed of the first peripheral wall (170) is in the vacuum space (52) between the first glass plate (1) and the second glass plate (2). Therefore, heat transfer by the first frame does not occur in the vacuum space (52). Therefore, it is possible to make it difficult for heat transfer to occur in the vacuum space (52). Further, the first frame body airtightly joins the main body portion (10) and the lid body (16), so that the exhaust hole (50) is sealed between the first frame body and the lid body (16). be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

The present disclosure provides a glass panel unit that can be configured to cause heat transfer not to easily occur inside a vacuum space. This glass panel unit 100 is provided with a body part 10, a lid 16, and a first frame body 17. The body part 10 is provided with a first glass plate 1, a second glass plate 2, a second frame body 41, a vacuum space 52, a gas adsorption body 44, and an exhaust hole 50. The lid 16 is on an outer portion of the body part 10. The first frame body 17 surrounds the peripheral edge of the discharge hole 50 and airtightly joins the body part 10 and the lid 16.

Description

ガラスパネルユニット、及びガラスパネルユニットの製造方法Glass panel unit and manufacturing method of glass panel unit
 本開示は、ガラスパネルユニット、及びガラスパネルユニットの製造方法に関する。より詳細には、本開示は、断熱用のガラスパネルユニット、及び断熱用のガラスパネルユニットの製造方法に関する。 This disclosure relates to a glass panel unit and a method for manufacturing the glass panel unit. More specifically, the present disclosure relates to a glass panel unit for heat insulation and a method for manufacturing the glass panel unit for heat insulation.
 特許文献1には、2枚の板ガラスの間隔をチタン製スペーサーで保持させた低圧複層ガラスが開示されている。 Patent Document 1 discloses a low-pressure double glazing in which the distance between two flat glass sheets is held by a titanium spacer.
特開平10-330134号公報Japanese Unexamined Patent Publication No. 10-330134
 しかし、特許文献1の場合、2枚の板ガラスの間に低圧空間(真空空間)を形成しても、スペーサーにより熱伝達が生じやすい。すなわち、真空空間で熱伝達が生じやすい。 However, in the case of Patent Document 1, even if a low-pressure space (vacuum space) is formed between two flat glass sheets, heat transfer is likely to occur due to the spacer. That is, heat transfer is likely to occur in a vacuum space.
 本開示の課題は、真空空間内で熱伝達を生じにくくすることができる、ガラスパネルユニット、及びガラスパネルユニットの製造方法を提供することである。 An object of the present disclosure is to provide a glass panel unit and a method for manufacturing the glass panel unit, which can make heat transfer less likely to occur in a vacuum space.
 本開示の一態様に係るガラスパネルユニットは、本体部と、蓋体と、第1枠体と、を備える。前記本体部は、第1ガラス板と、第2ガラス板と、第2枠体と、真空空間と、ガス吸着体と、排気孔と、を備える。前記第2ガラス板は、前記第1ガラス板に対向する。前記第2枠体は、前記第1ガラス板と前記第2ガラス板との間にあり、前記第1ガラス板と前記第2ガラス板を気密に接合する。前記真空空間は、前記第1ガラス板と前記第2ガラス板と前記第2枠体とで囲まれている。前記ガス吸着体は、前記真空空間内にある。前記排気孔は、前記第1ガラス板又は前記第2ガラス板に形成されている。前記蓋体は、前記本体部の外側にある。前記第1枠体は、前記排気孔の周縁を囲んで前記本体部と前記蓋体とを気密に接合する。 The glass panel unit according to one aspect of the present disclosure includes a main body, a lid, and a first frame. The main body portion includes a first glass plate, a second glass plate, a second frame body, a vacuum space, a gas adsorbent, and an exhaust hole. The second glass plate faces the first glass plate. The second frame body is located between the first glass plate and the second glass plate, and airtightly joins the first glass plate and the second glass plate. The vacuum space is surrounded by the first glass plate, the second glass plate, and the second frame. The gas adsorbent is in the vacuum space. The exhaust hole is formed in the first glass plate or the second glass plate. The lid is on the outside of the main body. The first frame body surrounds the peripheral edge of the exhaust hole and airtightly joins the main body portion and the lid body.
 本開示の一態様に係るガラスパネルユニットの製造方法は、ガラスパネルユニットを製造する方法である。前記方法は、準備工程と、溶融工程と、排気工程と、封止工程と、活性化工程と、を含む。前記準備工程は、組立て品を用意する工程である。前記組立て品は、本体部と、蓋体と、第1周壁と、隙間と、を備える。前記本体部は、第1ガラス板と、第2ガラス板と、第2周壁と、内部空間と、ガス吸着体と、排気孔と、を備える。前記第2ガラス板は、前記第1ガラス板に対向する。前記第2周壁は、枠状であり、前記第1ガラス板と前記第2ガラス板との間にある。前記内部空間は前記第1ガラス板と前記第2ガラス板と前記第2周壁とで囲まれている。前記ガス吸着体は、前記内部空間内に配置されている。前記排気孔は、前記第1ガラス板及び前記第2ガラス板のうち一方に形成されている。前記蓋体は、前記本体部の外側にある。前記第1周壁は、その一部が開口した状態で、前記排気孔の周縁を囲み、かつ前記本体部と前記蓋体との間にある。前記隙間は、前記第1周壁の一部が開口した部分により構成され、かつ前記排気孔を介して前記内部空間と外部空間とを繋ぐ。前記溶融工程は、前記第2周壁を溶融させて前記第1ガラス板と前記第2ガラス板とを気密に接合させる工程である。前記排気工程は、前記隙間と前記排気孔とを介して前記内部空間を排気させて真空空間とする工程である。前記封止工程は、局所加熱により前記第1周壁を溶融させて前記隙間を塞ぎ、かつ前記本体部と前記蓋体とを気密に接合させる工程である。前記活性化工程は、局所加熱により前記ガス吸着体を活性化させる工程である。 The method for manufacturing a glass panel unit according to one aspect of the present disclosure is a method for manufacturing a glass panel unit. The method includes a preparation step, a melting step, an exhaust step, a sealing step, and an activation step. The preparatory step is a step of preparing an assembled product. The assembled product includes a main body, a lid, a first peripheral wall, and a gap. The main body includes a first glass plate, a second glass plate, a second peripheral wall, an internal space, a gas adsorbent, and an exhaust hole. The second glass plate faces the first glass plate. The second peripheral wall has a frame shape and is located between the first glass plate and the second glass plate. The internal space is surrounded by the first glass plate, the second glass plate, and the second peripheral wall. The gas adsorbent is arranged in the internal space. The exhaust hole is formed in one of the first glass plate and the second glass plate. The lid is on the outside of the main body. The first peripheral wall surrounds the peripheral edge of the exhaust hole with a part thereof opened, and is between the main body and the lid. The gap is formed by a portion of the first peripheral wall that is partially open, and connects the internal space and the external space through the exhaust hole. The melting step is a step of melting the second peripheral wall and airtightly joining the first glass plate and the second glass plate. The exhaust step is a step of exhausting the internal space through the gap and the exhaust hole to form a vacuum space. The sealing step is a step of melting the first peripheral wall by local heating to close the gap and airtightly joining the main body and the lid. The activation step is a step of activating the gas adsorbent by local heating.
図1は、一実施形態に係るガラスパネルユニットを示す斜視図である。FIG. 1 is a perspective view showing a glass panel unit according to an embodiment. 図2は、同上のガラスパネルユニットを示す平面図である。FIG. 2 is a plan view showing the same glass panel unit. 図3は、図2のA-A線断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. 図4は、一実施形態に係るガラスパネルユニットの製造方法において、準備工程の途中段階を示す斜視図である。FIG. 4 is a perspective view showing an intermediate stage of the preparation process in the method for manufacturing the glass panel unit according to the embodiment. 図5は、同上の準備工程の説明図である。FIG. 5 is an explanatory diagram of the same preparatory process. 図6は、同上の準備工程の説明図である。FIG. 6 is an explanatory diagram of the same preparatory process. 図7は、同上の製造方法の説明図である。FIG. 7 is an explanatory diagram of the same manufacturing method. 図8は、同上の製造方法における仕掛品を示す平面図である。FIG. 8 is a plan view showing work-in-process in the same manufacturing method. 図9は、同上の製造方法における排気工程の説明図である。FIG. 9 is an explanatory diagram of an exhaust process in the same manufacturing method. 図10は、同上の製造方法における封止工程の説明図である。FIG. 10 is an explanatory diagram of a sealing process in the same manufacturing method. 図11は、同上の製造方法における活性化工程の説明図である。FIG. 11 is an explanatory diagram of an activation step in the same production method.
 以下、本開示を実施するための形態を説明する。 Hereinafter, a mode for implementing the present disclosure will be described.
 <ガラスパネルユニット>
 まず、一実施形態に係るガラスパネルユニット100の概要を説明する。
<Glass panel unit>
First, an outline of the glass panel unit 100 according to the embodiment will be described.
 ガラスパネルユニット100は、本体部10と、蓋体16と、第1枠体17と、を備える(図1参照)。本体部10は、第1ガラス板1と、第2ガラス板2と、第2枠体41と、真空空間52と、ガス吸着体44と、排気孔50と、を備える。第2ガラス板2は、第1ガラス板1に対向する。第2枠体41は、第1ガラス板1と第2ガラス板2との間にあり、第1ガラス板1と第2ガラス板2とを気密に接合する。真空空間52は、第1ガラス板1と第2ガラス板2と第2枠体41とで囲まれている。ガス吸着体44は、真空空間52内にある。排気孔50は、第1ガラス板1及び第2ガラス板2のうち一方に形成されている。蓋体16は、本体部10の外側にある。第1枠体17は、排気孔50の周縁を囲んで本体部10と蓋体16とを気密に接合する。 The glass panel unit 100 includes a main body 10, a lid 16, and a first frame 17 (see FIG. 1). The main body 10 includes a first glass plate 1, a second glass plate 2, a second frame body 41, a vacuum space 52, a gas adsorbent 44, and an exhaust hole 50. The second glass plate 2 faces the first glass plate 1. The second frame body 41 is located between the first glass plate 1 and the second glass plate 2, and airtightly joins the first glass plate 1 and the second glass plate 2. The vacuum space 52 is surrounded by the first glass plate 1, the second glass plate 2, and the second frame 41. The gas adsorbent 44 is in the vacuum space 52. The exhaust hole 50 is formed in one of the first glass plate 1 and the second glass plate 2. The lid 16 is on the outside of the main body 10. The first frame body 17 surrounds the peripheral edge of the exhaust hole 50 and airtightly joins the main body portion 10 and the lid body 16.
 このようなガラスパネルユニット100によれば、第1枠体17は、第1ガラス板1と第2ガラス板2との間の真空空間52内にないため、第1枠体17による熱伝達が真空空間52内で生じない。このため、真空空間52内で熱伝達を生じにくくすることができる。また、第1枠体17が本体部10と蓋体16とを気密に接合することで、第1枠体17と蓋体16とで排気孔50を封止することができる。 According to such a glass panel unit 100, since the first frame body 17 is not in the vacuum space 52 between the first glass plate 1 and the second glass plate 2, heat transfer by the first frame body 17 is performed. It does not occur in the vacuum space 52. Therefore, it is possible to make it difficult for heat transfer to occur in the vacuum space 52. Further, the first frame body 17 airtightly joins the main body portion 10 and the lid body 16, so that the exhaust hole 50 can be sealed by the first frame body 17 and the lid body 16.
 次に、本実施形態に係るガラスパネルユニット100を、図1~図3を参照して詳細に説明する。図1~図3の各々は、ガラスパネルユニット100の各構成を、模式的に示している。図示された各構成の寸法形状は、実際の寸法形状とは相違する。 Next, the glass panel unit 100 according to the present embodiment will be described in detail with reference to FIGS. 1 to 3. Each of FIGS. 1 to 3 schematically shows each configuration of the glass panel unit 100. The dimensional shape of each of the illustrated configurations is different from the actual dimensional shape.
 ガラスパネルユニット100は、図1のように、本体部10と、蓋体16と、第1枠体17と、を備える。 As shown in FIG. 1, the glass panel unit 100 includes a main body portion 10, a lid body 16, and a first frame body 17.
 本体部10は、図1のように、ガラスパネルユニット100の本体(ガラスパネルユニット本体)を構成する部分であって、ガラスパネルユニット100の主な外形状を構成する。しかも本体部10は、蓋体16及び第1枠体17以外の部分である。このような本体部10は、第1ガラス板1と、第2ガラス板2と、第2枠体41と、真空空間52と、ガス吸着体44と、排気孔50と、複数のスペーサ43と、を備える。本体部10の厚み方向D1でガラスパネルユニット100を見た平面視において、本体部10の平面形状は、蓋体16よりも大きい(図2参照)。 As shown in FIG. 1, the main body portion 10 is a portion constituting the main body (glass panel unit main body) of the glass panel unit 100, and constitutes the main outer shape of the glass panel unit 100. Moreover, the main body portion 10 is a portion other than the lid body 16 and the first frame body 17. Such a main body 10 includes a first glass plate 1, a second glass plate 2, a second frame body 41, a vacuum space 52, a gas adsorbent 44, an exhaust hole 50, and a plurality of spacers 43. , Equipped with. When the glass panel unit 100 is viewed in the thickness direction D1 of the main body 10, the plane shape of the main body 10 is larger than that of the lid 16 (see FIG. 2).
 第1ガラス板1は、厚み方向D1において、第2ガラス板2と対向している(図3参照)。第1ガラス板1は、第2ガラス板2と平行である。また、第1ガラス板1は、厚み方向D1において、第2ガラス板2と離れている。そして、第1ガラス板1と第2ガラス板2との間に、第2枠体41と、真空空間52とが形成されている。真空空間52内に、複数のスペーサ43と、ガス吸着体44とがある。 The first glass plate 1 faces the second glass plate 2 in the thickness direction D1 (see FIG. 3). The first glass plate 1 is parallel to the second glass plate 2. Further, the first glass plate 1 is separated from the second glass plate 2 in the thickness direction D1. A second frame 41 and a vacuum space 52 are formed between the first glass plate 1 and the second glass plate 2. In the vacuum space 52, there are a plurality of spacers 43 and a gas adsorbent 44.
 第1ガラス板1には、図1のように、排気孔50が形成されている。排気孔50は、厚み方向D1に第1ガラス板1を貫通する孔である(図3参照)。また、排気孔50は、ガラスパネルユニット100を製造する過程(後述の排気工程)で、排気を行うために用いられる孔である。排気孔50は、厚み方向D1でガラスパネルユニット100を見た平面視において、第2枠体41に近づけた位置(図1の例では、右上の角)にあることが好ましい。この場合、厚み方向D1の平面視で、排気孔50に重ねて蓋体16が設けられるため、蓋体16が目立ちにくくなる。 As shown in FIG. 1, an exhaust hole 50 is formed in the first glass plate 1. The exhaust hole 50 is a hole that penetrates the first glass plate 1 in the thickness direction D1 (see FIG. 3). Further, the exhaust hole 50 is a hole used for exhausting in the process of manufacturing the glass panel unit 100 (exhaust step described later). The exhaust hole 50 is preferably located at a position close to the second frame 41 (in the example of FIG. 1, the upper right corner) in a plan view of the glass panel unit 100 in the thickness direction D1. In this case, since the lid 16 is provided so as to overlap the exhaust hole 50 in the plan view in the thickness direction D1, the lid 16 becomes inconspicuous.
 ガラスパネルユニット100では、図1のように、排気孔50は第1枠体17及び蓋体16によって気密に封止されている。 In the glass panel unit 100, as shown in FIG. 1, the exhaust hole 50 is airtightly sealed by the first frame body 17 and the lid body 16.
 第1ガラス板1は、その本体であるガラスパネル(第1ガラス板本体)15と、ガラスパネル15に積層された低放射膜45を含む(例えば、図3参照)。 The first glass plate 1 includes a glass panel (first glass plate main body) 15 which is the main body thereof and a low emissivity film 45 laminated on the glass panel 15 (see, for example, FIG. 3).
 ガラスパネル15は、透光性を有するガラス製パネルである。ガラスパネル15としては、例えば、ソーダライムガラス、高歪点ガラス、化学強化ガラス、無アルカリガラス、石英ガラス、ネオセラム、及び物理強化ガラスが挙げられる。 The glass panel 15 is a glass panel having translucency. Examples of the glass panel 15 include soda lime glass, high strain point glass, chemically tempered glass, non-alkali glass, quartz glass, neoceram, and physically tempered glass.
 ガラスパネル15は、図3のように、第2ガラス板2と対向する対向面(第1対向面)12を有する。対向面12のうち大部分に低放射膜45が積層されている。具体的には、厚み方向D1で第1ガラス板1を見た平面視において、第2枠体41、及び排気孔50の各位置周辺を除く対向面12に低放射膜45が積層されている。低放射膜45は、低放射性を有する銀等の金属を含有する膜であり、放射による伝熱を抑制する機能を有する。低放射膜45は、赤外線反射膜とも呼ばれ、透光性を有するものの、赤外線を透過させにくい性質を有する。 As shown in FIG. 3, the glass panel 15 has a facing surface (first facing surface) 12 facing the second glass plate 2. The low emissivity film 45 is laminated on most of the facing surfaces 12. Specifically, in a plan view of the first glass plate 1 in the thickness direction D1, the low emissivity film 45 is laminated on the facing surface 12 excluding the periphery of each position of the second frame 41 and the exhaust hole 50. .. The low-emissivity film 45 is a film containing a metal such as silver having low radioactivity, and has a function of suppressing heat transfer due to radiation. The low emissivity film 45 is also called an infrared reflective film, and although it has translucency, it has a property of making it difficult for infrared rays to pass through.
 第2ガラス板2は、厚み方向D1において、第1ガラス板1と対向する。この第2ガラス板2は、図3のように、第1ガラス板1と対向する対向面(第2対向面)22を有する。第2ガラス板2は、その本体であるガラスパネル(第2ガラス板本体)25を含む。ガラスパネル25としては、例えば、ソーダライムガラス、高歪点ガラス、化学強化ガラス、無アルカリガラス、石英ガラス、ネオセラム、及び物理強化ガラスが挙げられる。第2ガラス板2は、ガラスパネル25のみから構成されてもよい。 The second glass plate 2 faces the first glass plate 1 in the thickness direction D1. As shown in FIG. 3, the second glass plate 2 has a facing surface (second facing surface) 22 facing the first glass plate 1. The second glass plate 2 includes a glass panel (second glass plate main body) 25 which is the main body thereof. Examples of the glass panel 25 include soda lime glass, high strain point glass, chemically tempered glass, non-alkali glass, quartz glass, neoceram, and physically tempered glass. The second glass plate 2 may be composed of only the glass panel 25.
 第2ガラス板2は、図3のように有底の凹部2aを備える。凹部2aは、真空空間52内に配置されている。凹部2aは、厚み方向D1において、対向面22の一部が真空空間52に対して第1ガラス板1とは反対側に向かって凹むようにして形成されている(図3参照)。凹部2aは、スペーサ43がない箇所に設けられている。そして、凹部2a内に、ガス吸着体44が配置されている。具体的には、凹部2aの底面にガス吸着体44が接している。 The second glass plate 2 includes a bottomed recess 2a as shown in FIG. The recess 2a is arranged in the vacuum space 52. The recess 2a is formed so that a part of the facing surface 22 is recessed with respect to the vacuum space 52 toward the side opposite to the first glass plate 1 in the thickness direction D1 (see FIG. 3). The recess 2a is provided in a place where the spacer 43 is not provided. Then, the gas adsorbent 44 is arranged in the recess 2a. Specifically, the gas adsorbent 44 is in contact with the bottom surface of the recess 2a.
 第2枠体41は、第1ガラス板1の第1周縁部13と、第2ガラス板2の第2周縁部23とを気密に接合している。第1周縁部13は、第1ガラス板1の外周縁に沿う枠状の部位である。第2周縁部23は、第2ガラス板2の外周縁に沿う枠状の部位である。 The second frame body 41 airtightly joins the first peripheral edge portion 13 of the first glass plate 1 and the second peripheral edge portion 23 of the second glass plate 2. The first peripheral edge portion 13 is a frame-shaped portion along the outer peripheral edge of the first glass plate 1. The second peripheral edge portion 23 is a frame-shaped portion along the outer peripheral edge of the second glass plate 2.
 第2枠体41は、枠状の封着材(第2封着材)である後述の第2周壁410からなる。具体的には、第2枠体41は、第2封着材を溶融硬化させた部位である。第2封着材は、所定の軟化点を有するガラスフリットを含有する。第2封着材は、例えば、ガラスフリットのみからなる。ガラスフリットは、溶融硬化することで第1ガラス板1と第2ガラス板2とを接合できればよく、任意のガラスフリットを採用できる。ガラスフリットは、例えば、低融点ガラスフリットである。低融点ガラスフリットの一例は、V-Te-Ag系ガラスフリットである。 The second frame body 41 is composed of a second peripheral wall 410, which will be described later, which is a frame-shaped sealing material (second sealing material). Specifically, the second frame 41 is a portion where the second sealing material is melt-hardened. The second sealing material contains a glass frit having a predetermined softening point. The second sealing material consists of, for example, only glass frit. As the glass frit, any glass frit can be adopted as long as the first glass plate 1 and the second glass plate 2 can be joined by melt hardening. The glass frit is, for example, a low melting point glass frit. An example of a low melting point glass frit is a V-Te-Ag glass frit.
 真空空間52は、第1ガラス板1と第2ガラス板2と第2枠体41とで囲まれている。真空空間52は、その真空度が所定値以下である。真空空間52の真空度は、ガラスパネルユニット100の断熱性を低下させにくくできればよく、真空度は特に限定されない。真空空間52の真空度は、例えば、0.1Pa以下である。 The vacuum space 52 is surrounded by the first glass plate 1, the second glass plate 2, and the second frame 41. The degree of vacuum of the vacuum space 52 is equal to or less than a predetermined value. The degree of vacuum in the vacuum space 52 may be such that the heat insulating property of the glass panel unit 100 is not easily lowered, and the degree of vacuum is not particularly limited. The degree of vacuum of the vacuum space 52 is, for example, 0.1 Pa or less.
 複数のスペーサ43は、互いに距離をあけて配置されている。スペーサ43の各々は、第1ガラス板1と第2ガラス板2との間に介在している。すなわち、スペーサ43の各々は、第1ガラス板1と第2ガラス板2とに接触している。 The plurality of spacers 43 are arranged at a distance from each other. Each of the spacers 43 is interposed between the first glass plate 1 and the second glass plate 2. That is, each of the spacers 43 is in contact with the first glass plate 1 and the second glass plate 2.
 複数のスペーサ43は、真空空間52内にあり、第1ガラス板1と第2ガラス板2の間の距離を、所定距離に維持する。複数のスペーサ43のうち、全部または一部が、ポリイミド等の樹脂で形成されていることが好ましい。 The plurality of spacers 43 are in the vacuum space 52, and the distance between the first glass plate 1 and the second glass plate 2 is maintained at a predetermined distance. It is preferable that all or a part of the plurality of spacers 43 is made of a resin such as polyimide.
 スペーサ43の材質として樹脂を採用することで、スペーサ43の熱伝導率を抑えることができるという利点がある。さらに、スペーサ43の材質としてポリイミドを採用した場合には、耐熱性に優れる(加熱処理過程で形状を維持しやすい)という利点がある。 By using resin as the material of the spacer 43, there is an advantage that the thermal conductivity of the spacer 43 can be suppressed. Further, when polyimide is used as the material of the spacer 43, there is an advantage that the heat resistance is excellent (the shape can be easily maintained in the heat treatment process).
 ガス吸着体44は、金属ゲッタ材を含有する。この場合、ガス吸着体44の活性化により、ガス吸着体44は真空空間52中の気体を吸着できるため、真空空間52の品質を低下させにくくできる。これにより、ガラスパネルユニット100の断熱性を低下させにくくできる。 The gas adsorbent 44 contains a metal getter material. In this case, since the gas adsorbent 44 can adsorb the gas in the vacuum space 52 by activating the gas adsorbent 44, it is possible to prevent the quality of the vacuum space 52 from being deteriorated. This makes it difficult to reduce the heat insulating property of the glass panel unit 100.
 金属ゲッタ材は、気体分子を化学的に吸着することのできる金属表面を有する金属製のゲッタ材である。金属ゲッタ材として、例えば、Zr-Al系、及びZr-V-Fe等のジルコニウム系ゲッタ材;並びにチタン系ゲッタ材が挙げられる。 The metal getter material is a metal getter material having a metal surface capable of chemically adsorbing gas molecules. Examples of the metal getter material include a zirconium-based getter material such as Zr-Al and Zr-V-Fe; and a titanium-based getter material.
 ガス吸着体44は金属ゲッタ材を含有しているため、金属ゲッタ材は真空空間52中に存在する気体を吸着することができる。これにより、真空空間52内で熱伝達を生じにくくすることができる。真空空間52中の気体として、例えば、水蒸気、窒素、酸素、水素、及び二酸化炭素が挙げられる。 Since the gas adsorbent 44 contains a metal getter material, the metal getter material can adsorb the gas existing in the vacuum space 52. This makes it difficult for heat transfer to occur in the vacuum space 52. Examples of the gas in the vacuum space 52 include water vapor, nitrogen, oxygen, hydrogen, and carbon dioxide.
 また、金属ゲッタ材は、その活性化前において、金属表面に気体分子を吸着(化学吸着)していてもよい。このように金属ゲッタ材の金属表面に気体分子が吸着されていても、この気体分子を、活性化の際に、金属ゲッタ材の内部に拡散させることができる。 Further, the metal getter material may adsorb (chemically adsorb) gas molecules on the metal surface before its activation. Even if gas molecules are adsorbed on the metal surface of the metal getter material in this way, the gas molecules can be diffused inside the metal getter material at the time of activation.
 ガラスパネルユニット100は、上記の通り、蓋体16を備える。蓋体16は、本体部10の外側にある。つまり、厚み方向D1において、本体部10と、第1枠体17と、蓋体16とが、この順で配置されている。蓋体16の平面形状は、厚み方向D1で本体部10を見た平面視において、第1ガラス板1よりも小さく、排気孔50よりも大きい。このため、第1枠体17が第1ガラス板1と蓋体16とを気密に接合することにより、真空空間52を確実に封止することができる。蓋体16は、本実施形態では板状に形成されているが(図1参照)、半球状等の任意の形状に形成されていてもよい。 The glass panel unit 100 includes a lid 16 as described above. The lid 16 is on the outside of the main body 10. That is, in the thickness direction D1, the main body 10, the first frame 17, and the lid 16 are arranged in this order. The planar shape of the lid 16 is smaller than the first glass plate 1 and larger than the exhaust hole 50 in a plan view of the main body 10 in the thickness direction D1. Therefore, the vacuum space 52 can be reliably sealed by the first frame body 17 airtightly joining the first glass plate 1 and the lid body 16. Although the lid 16 is formed in a plate shape in the present embodiment (see FIG. 1), the lid body 16 may be formed in any shape such as a hemisphere.
 蓋体16は、図3のように、蓋体本体部16aと、接合部16bとを有する。本実施形態では、蓋体本体部16aと接合部16bが一体となって蓋体16を構成する。 As shown in FIG. 3, the lid body 16 has a lid body main body portion 16a and a joint portion 16b. In the present embodiment, the lid body 16a and the joint 16b are integrated to form the lid 16.
 蓋体本体部16aは、蓋体16の主な外形状を構成する部分である。蓋体本体部16aは排気孔50を封止できる剛性を有する。このような蓋体本体部16aを構成する材料として、例えば、金属等が挙げられる。 The lid body 16a is a part that constitutes the main outer shape of the lid 16. The lid body 16a has a rigidity capable of sealing the exhaust hole 50. Examples of the material constituting such a lid body 16a include metal and the like.
 接合部16bは、蓋体16のうち、第1枠体17と接合する部分である。蓋体16と第1枠体17とを接合させるため、排気孔50と対向する蓋体本体部16aの表面に、ガラスコート等の表面処理を施して形成された部分が接合部16bとなる。蓋体16が接合部16bを備えることで、蓋体16と第1枠体17との接合をより強くすることができる。これにより、蓋体16と第1枠体17とで排気孔50をより確実に封止することができる。 The joint portion 16b is a portion of the lid body 16 that is joined to the first frame body 17. In order to join the lid 16 and the first frame 17, a portion formed by subjecting a surface treatment such as a glass coat to the surface of the lid main body 16a facing the exhaust hole 50 becomes the joint 16b. When the lid body 16 includes the joint portion 16b, the joint between the lid body 16 and the first frame body 17 can be strengthened. As a result, the exhaust hole 50 can be more reliably sealed between the lid body 16 and the first frame body 17.
 また、蓋体本体部16aの表面にガラスコートが施されている場合、接合部16bはガラスを含む。第1枠体17がガラスを含む場合、第1枠体17は、ガラスを含む接合部16bと、より強く接合しやすい。これにより、蓋体16と第1枠体17とで排気孔50をより確実に封止することができる。 Further, when the surface of the lid body 16a is coated with glass, the joint 16b contains glass. When the first frame body 17 contains glass, the first frame body 17 is more likely to be strongly bonded to the joint portion 16b containing glass. As a result, the exhaust hole 50 can be more reliably sealed between the lid body 16 and the first frame body 17.
 ガラスパネルユニット100は、上記の通り、第1枠体17を備える。第1枠体17は、排気孔50の周縁を囲んで本体部10(具体的には、第1ガラス板1)と蓋体16とを気密に接合する。このような第1枠体17は、枠状の封着材(第1封着材)である後述の第1周壁170からなる。すなわち、第1枠体17は、第1封着材を溶融硬化させた部位である。第1封着材は、所定の軟化点を有するガラスフリットを含有する。第1封着材は、例えば、ガラスフリットのみからなる。ガラスフリットは溶融硬化することで、本体部10、具体的には第1ガラス板1と、蓋体16とを接合できればよく、任意のガラスフリットを採用できる。ガラスフリットは、例えば、低融点ガラスフリットである。低融点ガラスフリットの一例は、V-Te-Ag系ガラスフリットである。第1封着材の軟化点は、第2封着材よりも高いことが好ましい。この場合、後述の溶融工程で第2封着材が溶融する際に、第1封着材は溶融しにくくなるため、後述の隙間18を塞ぎにくくすることができる。これにより、排気孔50及び後述の隙間18を、真空空間52を作製するための排気路として利用できる。第1封着材の軟化点は、後述の溶融温度Tmよりも高いことが好ましい。第1封着材の軟化点は、例えば、330℃である。 As described above, the glass panel unit 100 includes the first frame body 17. The first frame body 17 surrounds the peripheral edge of the exhaust hole 50 and airtightly joins the main body portion 10 (specifically, the first glass plate 1) and the lid body 16. Such a first frame body 17 is composed of a first peripheral wall 170, which will be described later, which is a frame-shaped sealing material (first sealing material). That is, the first frame body 17 is a portion where the first sealing material is melt-hardened. The first sealing material contains a glass frit having a predetermined softening point. The first sealing material consists of, for example, only glass frit. Any glass frit can be adopted as long as the main body 10, specifically the first glass plate 1, and the lid 16 can be joined by melting and curing the glass frit. The glass frit is, for example, a low melting point glass frit. An example of a low melting point glass frit is a V-Te-Ag glass frit. The softening point of the first sealing material is preferably higher than that of the second sealing material. In this case, when the second sealing material is melted in the melting step described later, the first sealing material is less likely to melt, so that the gap 18 described later can be less likely to be closed. As a result, the exhaust hole 50 and the gap 18 described later can be used as an exhaust path for creating the vacuum space 52. The softening point of the first sealing material is preferably higher than the melting temperature Tm described later. The softening point of the first sealing material is, for example, 330 ° C.
 第1枠体17は、厚み方向D1で本体部10を見た平面視で、途切れることなく排気孔50の周縁を囲んでいる(図2参照)。本実施形態では、第1枠体17の平面形状は環状であるが、排気孔50の周縁を囲めば、第1枠体17の平面形状は特に限定されない。第1枠体17の平面形状の他例として、楕円形、並びに三角形及び四角形等の多角形が挙げられる。また、第1枠体17は、接合部16bと本体部10とが対向し合う面のうち、排気孔50と重なる部分を除く面同士を全体にわたって接合してもよい。 The first frame body 17 surrounds the peripheral edge of the exhaust hole 50 without interruption in a plan view of the main body 10 in the thickness direction D1 (see FIG. 2). In the present embodiment, the planar shape of the first frame 17 is annular, but the planar shape of the first frame 17 is not particularly limited as long as it surrounds the peripheral edge of the exhaust hole 50. Other examples of the planar shape of the first frame body 17 include an ellipse and a polygon such as a triangle and a quadrangle. Further, the first frame body 17 may be joined over the entire surface of the surfaces where the joint portion 16b and the main body portion 10 face each other, except for the portion overlapping the exhaust hole 50.
 蓋体16と本体部10とを第1枠体17が接合することで、この第1枠体17は、第1及び第2ガラス板1、2の間に形成された真空空間52内にないため、第1枠体17による熱伝達が真空空間52内で生じない。このため、真空空間52内で熱伝達を生じにくくすることができる。また、第1枠体17が本体部10と蓋体16とを気密に接合することで、第1枠体17と蓋体16とで排気孔50を封止することができる。 The first frame body 17 joins the lid body 16 and the main body portion 10, so that the first frame body 17 is not in the vacuum space 52 formed between the first and second glass plates 1 and 2. Therefore, heat transfer by the first frame body 17 does not occur in the vacuum space 52. Therefore, it is possible to make it difficult for heat transfer to occur in the vacuum space 52. Further, the first frame body 17 airtightly joins the main body portion 10 and the lid body 16, so that the exhaust hole 50 can be sealed by the first frame body 17 and the lid body 16.
 上記説明のガラスパネルユニット100は、優れた断熱性を有し、かつ、取り扱いが容易である。このため、窓ガラスなどに良好に使用できる。また、例えば、冷蔵庫や冷凍庫の扉部分に、ガラスパネルユニット100を配置することで、高い断熱性を活かして冷蔵庫や冷凍庫の機能を妨げることなく、内部の状態を確認することができるようになるなど、家庭用もしくは業務用の用途が期待できる。 The glass panel unit 100 described above has excellent heat insulating properties and is easy to handle. Therefore, it can be satisfactorily used for window glass and the like. Further, for example, by arranging the glass panel unit 100 on the door portion of the refrigerator or freezer, it becomes possible to check the internal state without interfering with the function of the refrigerator or freezer by utilizing the high heat insulating property. It can be expected to be used for home or business use.
 <ガラスパネルユニットの製造方法>
 次に、本実施形態に係るガラスパネルユニット100の製造方法(以下、単に製造方法(M)という場合がある)を図4~図11を参照して説明する。製造方法(M)は、ガラスパネルユニット100を製造するための方法である。このため、製造方法(M)は、ガラスパネルユニット100の説明を参照することができる。
<Manufacturing method of glass panel unit>
Next, a manufacturing method of the glass panel unit 100 according to the present embodiment (hereinafter, may be simply referred to as a manufacturing method (M)) will be described with reference to FIGS. 4 to 11. The manufacturing method (M) is a method for manufacturing the glass panel unit 100. Therefore, for the manufacturing method (M), the description of the glass panel unit 100 can be referred to.
 製造方法(M)は、準備工程(図4~図6参照)と、溶融工程(図7参照)と、排気工程(図7~図9参照)と、封止工程(図10参照)と、活性化工程(図11参照)とを含む。 The manufacturing method (M) includes a preparation step (see FIGS. 4 to 6), a melting step (see FIG. 7), an exhaust step (see FIGS. 7 to 9), and a sealing step (see FIG. 10). It includes an activation step (see FIG. 11).
 準備工程は、図6のような組立て品81を用意する工程である。組立て品81は、図1のようなガラスパネルユニットを作製するための中間生成物である。 The preparation process is a process of preparing the assembled product 81 as shown in FIG. Assembly 81 is an intermediate product for making the glass panel unit as shown in FIG.
 組立て品81は、本体部810と、第1周壁170と、蓋体16と、隙間18と、を備える(図6参照)。 The assembled product 81 includes a main body portion 810, a first peripheral wall 170, a lid body 16, and a gap 18 (see FIG. 6).
 本体部810は、図6のように組立て品81の本体(組立て品本体)を構成する部分であって、組立て品81の主な外形状を構成する。しかも本体部810は、蓋体16及び第1周壁170以外の部分である。このような本体部810は、第1ガラス板1と、第2ガラス板2と、第2周壁410と、内部空間510と、複数のスペーサ43と、ガス吸着体44と、排気孔50とを備える。本体部810の厚み方向D1で組立て品81を見た平面視において、本体部810の平面形状は、蓋体16よりも大きい(図6参照)。 As shown in FIG. 6, the main body portion 810 is a part that constitutes the main body (assembled product main body) of the assembled product 81, and constitutes the main outer shape of the assembled product 81. Moreover, the main body portion 810 is a portion other than the lid body 16 and the first peripheral wall 170. Such a main body 810 includes a first glass plate 1, a second glass plate 2, a second peripheral wall 410, an internal space 510, a plurality of spacers 43, a gas adsorbent 44, and an exhaust hole 50. Be prepared. In a plan view of the assembled product 81 in the thickness direction D1 of the main body 810, the plan shape of the main body 810 is larger than that of the lid 16 (see FIG. 6).
 組立て品81は、基本的にガラスパネルユニット100と同じ構造を有する。具体的には、組立て品81では、内部空間510が排気されていなく、第1周壁170と第2周壁410とが溶融硬化されていなく、ガス吸着体44が活性化していない。 The assembled product 81 basically has the same structure as the glass panel unit 100. Specifically, in the assembled product 81, the internal space 510 is not exhausted, the first peripheral wall 170 and the second peripheral wall 410 are not melt-hardened, and the gas adsorbent 44 is not activated.
 準備工程は、本体部810を作製する本体部作製工程を含む。本体部作製工程は、本体部810を作製するために、第1ガラス板1と、第2ガラス板2と、排気孔50と、凹部2aと、第2周壁410と、複数のスペーサ43と、ガス吸着体44と、内部空間510と、を作成する工程である。本体部作製工程は、第1~第7工程を有する。なお、第2~第6工程の順番は、適宜変更してもよい。 The preparation process includes a main body manufacturing step for manufacturing the main body 810. In the main body manufacturing step, in order to manufacture the main body 810, the first glass plate 1, the second glass plate 2, the exhaust hole 50, the recess 2a, the second peripheral wall 410, and the plurality of spacers 43 are used. This is a step of creating the gas adsorbent 44 and the internal space 510. The main body manufacturing process includes the first to seventh steps. The order of the second to sixth steps may be changed as appropriate.
 第1工程は、第1ガラス板1及び第2ガラス板2を形成する工程(ガラス板形成工程)である。例えば、第1工程では、第1ガラス板1及び第2ガラス板2を作製する。また、第1工程では、必要に応じて、第1ガラス板1及び第2ガラス板2を洗浄する。 The first step is a step of forming the first glass plate 1 and the second glass plate 2 (glass plate forming step). For example, in the first step, the first glass plate 1 and the second glass plate 2 are manufactured. Further, in the first step, the first glass plate 1 and the second glass plate 2 are washed as needed.
 第2工程は、排気孔50を形成する工程(排気孔形成工程)である。第2工程では、図4のように、第1ガラス板1に、排気孔50を形成する。また、第2工程では、必要に応じて、第1ガラス板1を洗浄する。 The second step is a step of forming the exhaust hole 50 (exhaust hole forming step). In the second step, as shown in FIG. 4, an exhaust hole 50 is formed in the first glass plate 1. Further, in the second step, the first glass plate 1 is washed if necessary.
 第3工程は、凹部2aを形成する工程(凹部形成工程)である。第3工程では、図4のように、第2ガラス板2に凹部2aを形成する。具体的には凹部2aは、対向面22の一部が厚み方向D1と平行な方向に凹むようにして形成される。また、第3工程では、必要に応じて、第2ガラス板2を洗浄する。 The third step is a step of forming the recess 2a (recess forming step). In the third step, as shown in FIG. 4, a recess 2a is formed in the second glass plate 2. Specifically, the recess 2a is formed so that a part of the facing surface 22 is recessed in a direction parallel to the thickness direction D1. Further, in the third step, the second glass plate 2 is washed if necessary.
 第4工程は、スペーサ43を形成する工程(スペーサ形成工程)である。第4工程では、複数のスペーサ43を予め形成しておき、チップマウンタなどを利用して、複数のスペーサ43を、第2ガラス板2の一表面(対向面)22において、間隔を空けて配置する。複数のスペーサ43は、図1のようなガラスパネルユニット100における第1及び第2ガラス板1,2間の間隔を所定間隔に維持するために用いられる。このようなスペーサ43を構成する材料として、例えば、樹脂等が挙げられる。 The fourth step is a step of forming the spacer 43 (spacer forming step). In the fourth step, a plurality of spacers 43 are formed in advance, and the plurality of spacers 43 are arranged at intervals on one surface (opposing surface) 22 of the second glass plate 2 by using a chip mounter or the like. To do. The plurality of spacers 43 are used to maintain the distance between the first and second glass plates 1 and 2 in the glass panel unit 100 as shown in FIG. 1 at a predetermined distance. Examples of the material constituting such a spacer 43 include resin and the like.
 本実施形態の第4工程では、上記の通り、スペーサ43を予め形成して第2ガラス板2に配置しているが、周知の薄膜形成技術を利用して複数のスペーサ43を第2ガラス板2に形成してもよい。また、スペーサ43が樹脂を含む場合、複数のスペーサ43は、上記の形成方法と異なる方法として、フォトリソグラフィ技術及びエッチング技術を利用して形成されていてもよい。この場合、複数のスペーサ43は、光硬化性材料などを用いて形成することができる。 In the fourth step of the present embodiment, as described above, the spacer 43 is formed in advance and arranged on the second glass plate 2, but a plurality of spacers 43 are formed on the second glass plate 2 by using a well-known thin film forming technique. It may be formed in 2. When the spacer 43 contains a resin, the plurality of spacers 43 may be formed by using a photolithography technique and an etching technique as a method different from the above-mentioned forming method. In this case, the plurality of spacers 43 can be formed by using a photocurable material or the like.
 なお、スペーサ43の大きさ、スペーサ43の数、スペーサ43の間隔、スペーサ43の配置パターンは、適宜選択することができる。各スペーサ43は、上記所定間隔とほぼ等しい高さを有する円柱状である。例えば、スペーサ43は、直径が1mm、高さが100μmである。なお、各スペーサ43は、角柱状や球状などの所望の形状であってもよい。 The size of the spacer 43, the number of spacers 43, the spacing of the spacers 43, and the arrangement pattern of the spacers 43 can be appropriately selected. Each spacer 43 is a columnar shape having a height substantially equal to the predetermined interval. For example, the spacer 43 has a diameter of 1 mm and a height of 100 μm. In addition, each spacer 43 may have a desired shape such as a prismatic shape or a spherical shape.
 第5工程は、ガス吸着体44を形成する工程(ガス吸着体形成工程)である。第5工程では、チップマウンタなどを利用して、ガス吸着体44を凹部2a内に配置する。 The fifth step is a step of forming the gas adsorbent 44 (gas adsorbent forming step). In the fifth step, the gas adsorbent 44 is arranged in the recess 2a by using a chip mounter or the like.
 第6工程は、第2周壁410を形成する工程(第2周壁形成工程)である。第6工程では、ディスペンサなどを利用して、第2封着材を第2ガラス板2の第2周縁部23に塗布し、その後第2封着材を乾燥させて第2周壁410を形成する(図4参照)。第2周壁410は、第2枠体41を作製するための中間体である。 The sixth step is a step of forming the second peripheral wall 410 (second peripheral wall forming step). In the sixth step, the second sealing material is applied to the second peripheral edge portion 23 of the second glass plate 2 using a dispenser or the like, and then the second sealing material is dried to form the second peripheral wall 410. (See FIG. 4). The second peripheral wall 410 is an intermediate for producing the second frame body 41.
 第1工程から第6工程が終了することで、図4のような第2ガラス板2が得られる。この第2ガラス板2には、凹部2aと、第2周壁410と、内部空間510と、複数のスペーサ43と、ガス吸着体44とが形成されている。 By completing the first to sixth steps, the second glass plate 2 as shown in FIG. 4 can be obtained. The second glass plate 2 is formed with a recess 2a, a second peripheral wall 410, an internal space 510, a plurality of spacers 43, and a gas adsorbent 44.
 第7工程は、第1ガラス板1と第2ガラス板2とを配置する工程(配置工程)である。第7工程では、図4のように、第1ガラス板1と第2ガラス板2とは、互いに平行かつ対向するように配置される。これにより、第1ガラス板1と第2ガラス板2と第2周壁410とで囲まれた内部空間510が形成される。なお、第7工程の際、低放射膜45を第2ガラス板2に対向させて第1ガラス板1を配置させる。 The seventh step is a step (placement step) of arranging the first glass plate 1 and the second glass plate 2. In the seventh step, as shown in FIG. 4, the first glass plate 1 and the second glass plate 2 are arranged so as to be parallel to each other and face each other. As a result, an internal space 510 surrounded by the first glass plate 1, the second glass plate 2, and the second peripheral wall 410 is formed. In the seventh step, the low emissivity film 45 is opposed to the second glass plate 2 to arrange the first glass plate 1.
 上述した本体部作製工程によって、本体部810が得られる。そして、本体部作製工程の後に、第8~第10工程を行うことで、組立て品81が得られる。なお、第8~第10工程の順は、適宜変更できる。 The main body 810 is obtained by the main body manufacturing process described above. Then, the assembled product 81 is obtained by performing the 8th to 10th steps after the main body manufacturing step. The order of the 8th to 10th steps can be changed as appropriate.
 第8工程は、蓋体16を形成する工程(蓋体形成工程)である。第8工程では、蓋体16のうち、第1周壁170に対向する面にガラスコート等の表面処理を施す。このようにして表面処理が施された部分を接合部16bとする。 The eighth step is a step of forming the lid 16 (lid forming step). In the eighth step, the surface of the lid 16 facing the first peripheral wall 170 is subjected to surface treatment such as glass coating. The portion subjected to the surface treatment in this way is referred to as a joint portion 16b.
 第9工程は、第1周壁170を形成する工程(第1周壁形成工程)である。第9工程では、ディスペンサなどを利用して、第1封着材を第1ガラス板1の外面に塗布して第1周壁170を形成する。この第1周壁170は、一部が開口した環状(たとえばC字状)の形状を有する(図5参照)。この一部が開口した部分が隙間18となる。第9工程では、図5のように、第1ガラス板1の外面上で排気孔50の周縁から離れた位置で排気孔50を囲むようにして第1周壁170が形成される。第1周壁170は、第1枠体17を作製するための中間体である。 The ninth step is a step of forming the first peripheral wall 170 (first peripheral wall forming step). In the ninth step, the first sealing material is applied to the outer surface of the first glass plate 1 by using a dispenser or the like to form the first peripheral wall 170. The first peripheral wall 170 has an annular (for example, C-shaped) shape with a part of opening (see FIG. 5). The portion where this part is opened becomes the gap 18. In the ninth step, as shown in FIG. 5, the first peripheral wall 170 is formed so as to surround the exhaust hole 50 on the outer surface of the first glass plate 1 at a position away from the peripheral edge of the exhaust hole 50. The first peripheral wall 170 is an intermediate for producing the first frame body 17.
 第10工程は、本体部810に蓋体16を配置させる工程である(蓋体配置工程)。第10工程では、接合部16bを第1ガラス板1及び第1周壁170に対向させて蓋体16を配置する。これにより、隙間18は、本体部810と蓋体16との間で、外部空間と排気孔とを繋ぐ。このため、隙間18は、排気孔50を介して内部空間510と外部空間とを繋ぐ。 The tenth step is a step of arranging the lid 16 on the main body 810 (lid arranging step). In the tenth step, the lid 16 is arranged so that the joint portion 16b faces the first glass plate 1 and the first peripheral wall 170. As a result, the gap 18 connects the external space and the exhaust hole between the main body 810 and the lid 16. Therefore, the gap 18 connects the internal space 510 and the external space via the exhaust hole 50.
 上述した第8~第10工程を行うことで、図6のような組立て品81が得られる。組立て品81の作製後、溶融工程と、排気工程と、封止工程と、活性化工程とが実行される。 By performing the 8th to 10th steps described above, the assembled product 81 as shown in FIG. 6 can be obtained. After the assembly 81 is manufactured, a melting step, an exhaust step, a sealing step, and an activation step are executed.
 溶融工程は、加熱により第2周壁410を溶融させて第1ガラス板1と第2ガラス板2とを気密に接合させる工程である。溶融工程中、第2周壁410を構成する第2封着材が溶融される。これにより、溶融した第2周壁410は第1ガラス板1と第2ガラス板2とに接合する。 The melting step is a step of melting the second peripheral wall 410 by heating and airtightly joining the first glass plate 1 and the second glass plate 2. During the melting process, the second sealing material constituting the second peripheral wall 410 is melted. As a result, the molten second peripheral wall 410 is joined to the first glass plate 1 and the second glass plate 2.
 溶融工程を行うにあたって、溶融工程の温度(溶融温度)Tmは、第2封着材の軟化点以上の温度に選択される。第2封着材の軟化点は、特に限定されないが、例えば、260℃~270℃である。この場合、溶融温度Tmは、例えば、300℃に選択される。 In performing the melting step, the temperature (melting temperature) Tm of the melting step is selected to be a temperature equal to or higher than the softening point of the second sealing material. The softening point of the second sealing material is not particularly limited, but is, for example, 260 ° C to 270 ° C. In this case, the melting temperature Tm is selected, for example, 300 ° C.
 第2周壁410の溶融後、溶融工程中の温度が第2封着材の軟化点よりも低くなると、溶融した第2周壁410が硬化して第2枠体41が形成される。これにより、図8のような仕掛品8が得られる。仕掛品8は、ガラスパネルユニット100を作製するための中間体である。すなわち、製造方法(M)において、仕掛品8は、組立て品81からガラスパネルユニット100を製造する過程の途中段階で得られる物品である。仕掛品8は、基本的に組立て品81と同じ構造を有する。図8に示す仕掛品8では、内部空間510の排気が途中であり、第1周壁170が溶融しておらず、ガス吸着体44が活性化されていない。 After the second peripheral wall 410 is melted, when the temperature during the melting process becomes lower than the softening point of the second sealing material, the melted second peripheral wall 410 is hardened to form the second frame 41. As a result, the work-in-process 8 as shown in FIG. 8 is obtained. The work-in-process 8 is an intermediate for manufacturing the glass panel unit 100. That is, in the manufacturing method (M), the work-in-process 8 is an article obtained in the middle of the process of manufacturing the glass panel unit 100 from the assembled product 81. The work-in-process 8 basically has the same structure as the assembled product 81. In the work-in-process 8 shown in FIG. 8, the exhaust of the internal space 510 is in the middle, the first peripheral wall 170 is not melted, and the gas adsorbent 44 is not activated.
 本実施形態では、第2周壁410の溶融後、排気工程、及び封止工程が行われる。 In the present embodiment, after melting the second peripheral wall 410, an exhaust step and a sealing step are performed.
 排気工程は、隙間18及び排気孔50を介して内部空間510を排気することで真空空間52を形成する工程である。排気工程は、例えば、真空空間52の真空度が0.1Pa以下となるようにして行われる。 The exhaust step is a step of forming a vacuum space 52 by exhausting the internal space 510 through the gap 18 and the exhaust hole 50. The exhaust step is performed so that, for example, the degree of vacuum in the vacuum space 52 is 0.1 Pa or less.
 また、第2周壁410が溶融していれば、溶融工程の途中で排気工程が開始されてもよい(図7参照)。あるいは、仕掛品8を溶融温度Tmから封止工程の温度(封止温度)Tsに冷却する途中で、排気工程が開始されてもよい。溶融温度Tmから封止温度Tsに冷却する際に、溶融した第2周壁410は硬化して第2枠体41となる。 Further, if the second peripheral wall 410 is melted, the exhaust step may be started in the middle of the melting step (see FIG. 7). Alternatively, the exhaust step may be started in the middle of cooling the work-in-process 8 from the melting temperature Tm to the temperature (sealing temperature) Ts of the sealing step. When cooling from the melting temperature Tm to the sealing temperature Ts, the melted second peripheral wall 410 is cured to become the second frame 41.
 製造方法(M)では、真空空間52の形成後、封止工程が行われる。この場合、真空空間52の真空度を維持するために、封止工程は、排気工程の途中で行われる(図7参照)。ここで、封止工程は、局所加熱により第1周壁170を溶融させて隙間18を塞ぎ、かつ本体部810と蓋体16とを気密に接合させる工程である。 In the manufacturing method (M), a sealing step is performed after the vacuum space 52 is formed. In this case, in order to maintain the degree of vacuum in the vacuum space 52, the sealing step is performed in the middle of the exhaust step (see FIG. 7). Here, the sealing step is a step of melting the first peripheral wall 170 by local heating to close the gap 18 and airtightly joining the main body portion 810 and the lid body 16.
 本実施形態に係る排気工程と、封止工程とは、図9及び図10のような装置を用いて実行される。この装置は、減圧機構71と、加熱機構72と、を備える。 The exhaust step and the sealing step according to the present embodiment are executed by using the devices shown in FIGS. 9 and 10. This device includes a decompression mechanism 71 and a heating mechanism 72.
 減圧機構71は、内部空間74と、押圧機構73と、排気ヘッド75と、排気ヘッド75に繋がる接続部753を備える。また、減圧機構71は、仕掛品8に形成された内部空間510を、隙間18及び排気孔50を通じて減圧し、かつ、減圧状態で維持するように構成されている。 The decompression mechanism 71 includes an internal space 74, a pressing mechanism 73, an exhaust head 75, and a connecting portion 753 connected to the exhaust head 75. Further, the decompression mechanism 71 is configured to decompress the internal space 510 formed in the work-in-process 8 through the gap 18 and the exhaust hole 50, and maintain the decompression state.
 内部空間74は、排気ヘッド75の下端と、排気ヘッド75と接続部753とを繋ぐ箇所とに開口する。 The internal space 74 opens at the lower end of the exhaust head 75 and a portion connecting the exhaust head 75 and the connection portion 753.
 排気ヘッド75は、内部空間74内に蓋体16を配置し、かつ押圧機構73により蓋体16を第1ガラス板1に向かって押し付けた状態で、仕掛品8の本体、具体的には第1ガラス板1に気密に押し当てられる。そして、排気ヘッド75内の空気を、接続部753を通じて吸引すると(図9中の白抜き矢印参照)、隙間18及び排気孔50を通じて、内部空間510が排気される。なお、接続部753は、排気ヘッド75と真空ポンプとの間を接続する。 The exhaust head 75 has a lid 16 arranged in the internal space 74, and the lid 16 is pressed toward the first glass plate 1 by the pressing mechanism 73, and the main body of the work in process 8, specifically, the first. 1 It is airtightly pressed against the glass plate 1. Then, when the air in the exhaust head 75 is sucked through the connecting portion 753 (see the white arrow in FIG. 9), the internal space 510 is exhausted through the gap 18 and the exhaust hole 50. The connection portion 753 connects between the exhaust head 75 and the vacuum pump.
 押圧機構73は、内部空間74に設けられている。押圧機構73は、減圧機構71によって真空空間52を維持した状態で、蓋体16を第1ガラス板1に向けて押し付けるように構成される。すなわち、蓋体16は、押圧機構73により、第1ガラス板1に向けて弾性的に押し付けられる。 The pressing mechanism 73 is provided in the internal space 74. The pressing mechanism 73 is configured to press the lid 16 toward the first glass plate 1 while the vacuum space 52 is maintained by the decompression mechanism 71. That is, the lid 16 is elastically pressed toward the first glass plate 1 by the pressing mechanism 73.
 次に加熱機構72を作動させることで、封止工程が行われる。加熱機構72は、厚み方向D1において、仕掛品8に対して排気ヘッド75とは反対側に配置される(図10参照)。加熱機構72は、蓋体16と、仕掛品8の本体との間にある第1周壁170を非接触で加熱するように構成されている。封止工程の際、仕掛品8の温度を封止温度Tsに維持させながら、加熱機構72で第1周壁170だけを加熱する。これにより、第1周壁170が溶融し、その後、押圧機構73による弾性力により隙間18を塞ぐと共に、溶融した第1周壁170で蓋体16と仕掛品8の本体とを気密に接合する。封止温度Tsは、例えば250℃である。 Next, the sealing process is performed by operating the heating mechanism 72. The heating mechanism 72 is arranged on the side opposite to the exhaust head 75 with respect to the work in process 8 in the thickness direction D1 (see FIG. 10). The heating mechanism 72 is configured to heat the first peripheral wall 170 between the lid 16 and the main body of the work-in-process 8 in a non-contact manner. During the sealing step, the heating mechanism 72 heats only the first peripheral wall 170 while maintaining the temperature of the work-in-process 8 at the sealing temperature Ts. As a result, the first peripheral wall 170 is melted, and then the gap 18 is closed by the elastic force of the pressing mechanism 73, and the lid 16 and the main body of the work-in-process 8 are airtightly joined by the melted first peripheral wall 170. The sealing temperature Ts is, for example, 250 ° C.
 加熱機構72は、図10のように照射器720を含む。照射器720は、第1及び第2ガラス板1、2を介して、第1周壁170に赤外線(近赤外線)を照射するように構成されている。第1周壁170に赤外線を照射すると、第1周壁170は加熱されて溶融する。そして、赤外線の照射を停止すると、溶融した第1周壁170が除熱により硬化することで第1枠体17が形成される。第1枠体17では隙間18が塞がっており、蓋体16と仕掛品8の本体とが第1枠体17で気密に接合されている。 The heating mechanism 72 includes an irradiator 720 as shown in FIG. The irradiator 720 is configured to irradiate the first peripheral wall 170 with infrared rays (near infrared rays) via the first and second glass plates 1 and 2. When the first peripheral wall 170 is irradiated with infrared rays, the first peripheral wall 170 is heated and melted. Then, when the irradiation of infrared rays is stopped, the melted first peripheral wall 170 is hardened by heat removal to form the first frame body 17. The gap 18 is closed in the first frame body 17, and the lid body 16 and the main body of the work-in-process 8 are airtightly joined by the first frame body 17.
 封止工程中、加熱機構72と押圧機構73の両方を実行させることで、真空空間52が維持されたまま、排気孔50が第1枠体17及び蓋体16により封止される。排気孔50を封止することで、排気ヘッド75を取り外しても、真空空間52を維持させることができる。排気ヘッド75を取り外すにあたって、排気孔50を第1枠体17及び蓋体16で封止させた後、真空ポンプを停止して排気工程を終了する。 By executing both the heating mechanism 72 and the pressing mechanism 73 during the sealing process, the exhaust hole 50 is sealed by the first frame body 17 and the lid body 16 while the vacuum space 52 is maintained. By sealing the exhaust hole 50, the vacuum space 52 can be maintained even if the exhaust head 75 is removed. When removing the exhaust head 75, the exhaust hole 50 is sealed with the first frame body 17 and the lid body 16, and then the vacuum pump is stopped to end the exhaust process.
 活性化工程は、局所加熱によりガス吸着体44を活性化させる工程である。活性化工程中、ガス吸着体44及びその周辺部分を除く仕掛品8全体の温度は、室温程度であってもよい。 The activation step is a step of activating the gas adsorbent 44 by local heating. During the activation step, the temperature of the entire work-in-process 8 excluding the gas adsorbent 44 and its peripheral portion may be about room temperature.
 活性化工程では、真空空間52内のガス吸着体44が、図11のような局所加熱機構6によって、所定の活性化温度に至るまで局所加熱される。局所加熱機構6は、厚み方向D1において、ガス吸着体44に対して第2ガラス板2とは反対側で、かつ第1ガラス板1の外側に配置されている(図11参照)。あるいは、局所加熱機構6は、厚み方向D1において、ガス吸着体44に対して第1ガラス板1とは反対側で、かつ第2ガラス板2の外側に配置されていてもよい。 In the activation step, the gas adsorbent 44 in the vacuum space 52 is locally heated to a predetermined activation temperature by the local heating mechanism 6 as shown in FIG. The local heating mechanism 6 is arranged on the side opposite to the second glass plate 2 with respect to the gas adsorbent 44 in the thickness direction D1 and outside the first glass plate 1 (see FIG. 11). Alternatively, the local heating mechanism 6 may be arranged on the side opposite to the first glass plate 1 with respect to the gas adsorbent 44 in the thickness direction D1 and outside the second glass plate 2.
 ガス吸着体44の活性化温度は、金属ゲッタ材の種類に応じて任意に設定される。活性化温度は、例えば、溶融温度Tmよりも高い温度である。この場合、ガス吸着体44の活性化を起こしにくくして溶融工程を行うことができる。すなわち、溶融工程でガス吸着体44の活性化を起こしにくくできる。また、活性化工程中、ガス吸着体44は局所加熱されるため、第1及び第2枠体17、41は再溶融しない。 The activation temperature of the gas adsorbent 44 is arbitrarily set according to the type of metal getter material. The activation temperature is, for example, a temperature higher than the melting temperature Tm. In this case, the melting step can be performed by making it difficult for the gas adsorbent 44 to be activated. That is, it is possible to make it difficult for the gas adsorbent 44 to be activated in the melting step. Further, since the gas adsorbent 44 is locally heated during the activation step, the first and second frame bodies 17 and 41 are not remelted.
 局所加熱機構6は、照射器61を含む。照射器61は、ガス吸着体44にレーザーを出射するように構成された機器であって、光源を含む。照射器61は、図11のように、第1ガラス板1を介してガス吸着体44にレーザーを照射することができる。あるいは、照射器61は、第2ガラス板2を介してガス吸着体44にレーザーを照射してもよい。ガス吸着体44にレーザー照射することで、ガス吸着体44は非接触で局所加熱される。ガス吸着体44をレーザー照射で局所加熱することで、ガス吸着体44の加熱時間を短縮できる。このため、ガス吸着体44を活性化させるための作業効率を向上させることができる。 The local heating mechanism 6 includes an irradiator 61. The irradiator 61 is a device configured to emit a laser to the gas adsorbent 44, and includes a light source. As shown in FIG. 11, the irradiator 61 can irradiate the gas adsorbent 44 with a laser via the first glass plate 1. Alternatively, the irradiator 61 may irradiate the gas adsorbent 44 with a laser via the second glass plate 2. By irradiating the gas adsorbent 44 with a laser, the gas adsorbent 44 is locally heated in a non-contact manner. By locally heating the gas adsorbent 44 by laser irradiation, the heating time of the gas adsorbent 44 can be shortened. Therefore, the work efficiency for activating the gas adsorbent 44 can be improved.
 ガス吸着体44は金属ゲッタ材を含有しているため、金属ゲッタ材を活性化させることで、金属ゲッタ材は、真空空間52内に存在する気体を吸着することができる。真空空間52内に存在する気体として、例えば、水蒸気、窒素、酸素、水素、及び二酸化炭素が挙げられる。 Since the gas adsorbent 44 contains a metal getter material, the metal getter material can adsorb the gas existing in the vacuum space 52 by activating the metal getter material. Examples of the gas existing in the vacuum space 52 include water vapor, nitrogen, oxygen, hydrogen, and carbon dioxide.
 また、ガス吸着体44がタブレット型の金属ゲッタ材を含む場合、タブレット型金属ゲッタ材を誘導加熱で活性化させる。具体的には、タブレット型金属ゲッタ材は、照射器61からのレーザーにより誘導加熱される。このようなタブレット型金属ゲッタ材の誘導加熱により、ガス吸着体44は局所加熱される。タブレット型金属ゲッタ材を誘導加熱させる際、照射器61からのレーザーを、第1ガラス板1を介してガス吸着体44に照射してもよく、あるいは第2ガラス板2を介してガス吸着体44に照射してもよい。 Further, when the gas adsorbent 44 contains a tablet-type metal getter material, the tablet-type metal getter material is activated by induction heating. Specifically, the tablet-type metal getter material is induced and heated by a laser from the irradiator 61. The gas adsorbent 44 is locally heated by such induction heating of the tablet-type metal getter material. When the tablet type metal getter material is induced and heated, the gas adsorbent 44 may be irradiated with the laser from the irradiator 61 via the first glass plate 1, or the gas adsorbent may be irradiated through the second glass plate 2. 44 may be irradiated.
 上記の活性化工程によりガス吸着体44を活性化することで、図1のようなガラスパネルユニット100が得られる。 By activating the gas adsorbent 44 by the above activation step, the glass panel unit 100 as shown in FIG. 1 can be obtained.
 上記の製造方法(M)によって製造されたガラスパネルユニット100は、優れた断熱性を有し、かつ、取り扱いが容易である。このため、ガラスパネルユニット100は窓ガラスなどに良好に使用できる。また、例えば、冷蔵庫や冷凍庫の扉部分にガラスパネルユニット100を配置することができる。この場合、ガラスパネルユニット100の高い断熱性を活かして冷蔵庫や冷凍庫の機能を妨げることなく、内部の状態を確認することができるようになるなど、家庭用もしくは業務用の用途が期待できる。 The glass panel unit 100 manufactured by the above manufacturing method (M) has excellent heat insulating properties and is easy to handle. Therefore, the glass panel unit 100 can be satisfactorily used for window glass and the like. Further, for example, the glass panel unit 100 can be arranged at the door portion of the refrigerator or freezer. In this case, it is expected that the glass panel unit 100 will be used for home or business use, for example, the internal state can be confirmed without interfering with the functions of the refrigerator and the freezer by utilizing the high heat insulating property.
 なお、上記したガラスパネルユニット100の各構成や、ガラスパネルユニット100を製造するための各工程は、適宜に設計変更が可能である。この設計変更の例を、変形例として以下に列挙する。 The design of each configuration of the above-mentioned glass panel unit 100 and each process for manufacturing the glass panel unit 100 can be appropriately changed. Examples of this design change are listed below as modification examples.
 <変形例>
 上記実施形態ではガラスパネルユニット100の平面形状は四角形であるが、変形例ではガラスパネルユニット100は円形等の任意の平面形状であってもよい。
<Modification example>
In the above embodiment, the plane shape of the glass panel unit 100 is quadrangular, but in the modified example, the glass panel unit 100 may have any plane shape such as a circle.
 上記実施形態では蓋体16の平面形状は四角形であるが、変形例では蓋体16は円形等の任意の平面形状であってもよい。 In the above embodiment, the planar shape of the lid 16 is quadrangular, but in the modified example, the lid 16 may have any planar shape such as a circle.
 上記実施形態では蓋体16は板状の部材であるが、変形例で蓋体16は半球状等の任意の形状を有する部材であってもよい。 In the above embodiment, the lid 16 is a plate-shaped member, but in a modified example, the lid 16 may be a member having an arbitrary shape such as a hemisphere.
 上記実施形態では第1ガラス板1は第2ガラス板2の平面形状を同じであるが、変形例では第1ガラス板1は第2ガラス板2の平面形状と異なっていてもよい。 In the above embodiment, the first glass plate 1 has the same planar shape as the second glass plate 2, but in the modified example, the first glass plate 1 may be different from the planar shape of the second glass plate 2.
 上記実施形態では、第4工程の際に複数のスペーサ43を第2ガラス板2に配置しているが、変形例では複数のスペーサ43を第1ガラス板1に配置してもよく、あるいは複数のスペーサ43を第1ガラス板1と第2ガラス板2に割り当てて配置してもよい。したがって、複数のスペーサ43は、第1ガラス板1と第2ガラス板2との少なくとも一方に配置することができる。 In the above embodiment, a plurality of spacers 43 are arranged on the second glass plate 2 in the fourth step, but in the modified example, a plurality of spacers 43 may be arranged on the first glass plate 1, or a plurality of spacers 43 may be arranged on the first glass plate 1. Spacer 43 may be assigned to the first glass plate 1 and the second glass plate 2 and arranged. Therefore, the plurality of spacers 43 can be arranged on at least one of the first glass plate 1 and the second glass plate 2.
 上記実施形態では、第5工程の際に、第2ガラス板2にガス吸着体44を配置しているが、変形例では、ガス吸着体44を第1ガラス板1に配置してもよく、あるいはガス吸着体44を第1ガラス板1と第2ガラス板2の両方に配置してもよい。したがって、ガス吸着体44は、第1ガラス板1と第2ガラス板2との少なくとも一方に配置することができる。 In the above embodiment, the gas adsorbent 44 is arranged on the second glass plate 2 in the fifth step, but in the modified example, the gas adsorbent 44 may be arranged on the first glass plate 1. Alternatively, the gas adsorbent 44 may be arranged on both the first glass plate 1 and the second glass plate 2. Therefore, the gas adsorbent 44 can be arranged on at least one of the first glass plate 1 and the second glass plate 2.
 上記実施形態では、第9工程の際に第1ガラス板1に第1封着材を塗布して第1周壁170を形成しているが、変形例では接合部16bに第1封着材を塗布して第1周壁170を形成してもよい。 In the above embodiment, the first sealing material is applied to the first glass plate 1 to form the first peripheral wall 170 in the ninth step, but in the modified example, the first sealing material is applied to the joint portion 16b. It may be applied to form the first peripheral wall 170.
 上記実施形態では1つのガラスパネルユニット100が1つのガス吸着体44を備えているが、変形例では1つのガラスパネルユニット100が2つ以上のガス吸着体44を備えてもよい。この場合、全てのガス吸着体44が真空空間52内にある。 In the above embodiment, one glass panel unit 100 includes one gas adsorbent 44, but in a modified example, one glass panel unit 100 may include two or more gas adsorbents 44. In this case, all the gas adsorbents 44 are in the vacuum space 52.
 上記実施形態では排気孔50は第1ガラス板1に形成されているが、変形例では排気孔50は第2ガラス板2に形成されてもよい。したがって、第1ガラス板1及び第2ガラス板2のうち一方に排気孔50を形成することができる。 In the above embodiment, the exhaust hole 50 is formed in the first glass plate 1, but in the modified example, the exhaust hole 50 may be formed in the second glass plate 2. Therefore, the exhaust hole 50 can be formed in one of the first glass plate 1 and the second glass plate 2.
 <まとめ>
 上記の実施形態及び変形例の通り、本開示は、下記の態様を含む。
<Summary>
As in the above embodiments and modifications, the present disclosure includes the following aspects.
 第1態様は、ガラスパネルユニット(100)であって、本体部(10)と、蓋体(16)と、第1枠体(17)と、を備える。本体部(10)は、第1ガラス板(1)と、第2ガラス板(2)と、第2枠体(41)と、真空空間(52)と、ガス吸着体(44)と、排気孔(50)と、を備える。第2ガラス板(2)は、第1ガラス板(1)に対向する。第2枠体(41)は、第1ガラス板(1)と第2ガラス板(2)との間にあり、第1ガラス板(1)と第2ガラス板(2)を気密に接合する。真空空間(52)は、第1ガラス板(1)と第2ガラス板(2)と第2枠体(41)とで囲まれている。ガス吸着体(44)は、真空空間(52)内にある。排気孔(50)は、第1ガラス板(1)及び第2ガラス板(2)のうち一方に形成されている。蓋体(16)は、本体部(10)の外側にある。第1枠体(17)は、排気孔(50)の周縁を囲んで本体部(10)と蓋体(16)とを気密に接合する。 The first aspect is a glass panel unit (100), which includes a main body (10), a lid (16), and a first frame (17). The main body (10) includes a first glass plate (1), a second glass plate (2), a second frame body (41), a vacuum space (52), a gas adsorbent (44), and an exhaust gas. It comprises a hole (50). The second glass plate (2) faces the first glass plate (1). The second frame body (41) is located between the first glass plate (1) and the second glass plate (2), and airtightly joins the first glass plate (1) and the second glass plate (2). .. The vacuum space (52) is surrounded by a first glass plate (1), a second glass plate (2), and a second frame body (41). The gas adsorbent (44) is in the vacuum space (52). The exhaust hole (50) is formed in one of the first glass plate (1) and the second glass plate (2). The lid (16) is on the outside of the main body (10). The first frame body (17) surrounds the peripheral edge of the exhaust hole (50) and airtightly joins the main body portion (10) and the lid body (16).
 第1態様によれば、第1枠体(17)は第1ガラス板(1)と第2ガラス板(2)との間の真空空間(52)内にないため、第1枠体(17)による熱伝達が真空空間(52)内で生じない。このため、真空空間(52)内で熱伝達を生じにくくすることができる。また、第1枠体(17)が本体部(10)と蓋体(16)とを気密に接合することで、第1枠体(17)と蓋体(16)とで排気孔(50)を封止することができる。 According to the first aspect, since the first frame body (17) is not in the vacuum space (52) between the first glass plate (1) and the second glass plate (2), the first frame body (17) ) Does not occur in the vacuum space (52). Therefore, it is possible to make it difficult for heat transfer to occur in the vacuum space (52). Further, the first frame body (17) airtightly joins the main body portion (10) and the lid body (16), so that the exhaust hole (50) is formed between the first frame body (17) and the lid body (16). Can be sealed.
 第2態様は、第1態様のガラスパネルユニット(100)であって、蓋体(16)は、蓋体本体部(16a)と、接合部(16b)とを有する。蓋体本体部(16a)は、蓋体(16)の外形状を構成する。接合部(16b)は、第1枠体(17)と接合する。 The second aspect is the glass panel unit (100) of the first aspect, and the lid body (16) has a lid body main body portion (16a) and a joint portion (16b). The lid body (16a) constitutes the outer shape of the lid (16). The joint portion (16b) is joined to the first frame body (17).
 第2態様によれば、第1枠体(17)は第1ガラス板(1)と第2ガラス板(2)との間の真空空間(52)内にないため、第1枠体(17)による熱伝達が真空空間(52)内で生じない。このため、真空空間(52)内で熱伝達を生じにくくすることができる。また、第1枠体(17)が本体部(10)と蓋体(16)とを気密に接合することで、第1枠体(17)と蓋体(16)とで排気孔(50)を封止することができる。 According to the second aspect, since the first frame body (17) is not in the vacuum space (52) between the first glass plate (1) and the second glass plate (2), the first frame body (17) ) Does not occur in the vacuum space (52). Therefore, it is possible to make it difficult for heat transfer to occur in the vacuum space (52). Further, the first frame body (17) airtightly joins the main body portion (10) and the lid body (16), so that the exhaust hole (50) is formed between the first frame body (17) and the lid body (16). Can be sealed.
 第3態様は、第2態様のガラスパネルユニット(100)であって、接合部(16b)は、蓋体(16)のうち、第1枠体(17)と接合する表面に表面処理された部分である。 The third aspect is the glass panel unit (100) of the second aspect, and the joint portion (16b) is surface-treated on the surface of the lid body (16) to be joined with the first frame body (17). It is a part.
 第3態様によれば、蓋体(16)と第1枠体(17)との接合をより強くすることができる。これにより、蓋体(16)と第1枠体(17)とで排気孔(50)をより確実に封止することができる。 According to the third aspect, the joint between the lid body (16) and the first frame body (17) can be strengthened. As a result, the exhaust hole (50) can be more reliably sealed between the lid body (16) and the first frame body (17).
 第4態様は、第2又は第3態様のガラスパネルユニット(100)であって、接合部(16b)は、ガラスを含む。 The fourth aspect is the glass panel unit (100) of the second or third aspect, and the joint portion (16b) includes glass.
 第4態様によれば、蓋体(16)と第1枠体(17)との接合をより強くすることができる。これにより、蓋体(16)と第1枠体(17)とで排気孔(50)をより確実に封止することができる。 According to the fourth aspect, the joint between the lid body (16) and the first frame body (17) can be strengthened. As a result, the exhaust hole (50) can be more reliably sealed between the lid body (16) and the first frame body (17).
 第5態様は、ガラスパネルユニット(100)の製造方法、すなわちガラスパネルユニット(100)を製造する方法であって、準備工程と、溶融工程と、排気工程と、封止工程と、活性化工程と、を含む。前記準備工程は、組立て品(81)を用意する工程である。組立て品(81)は、本体部(810)と、蓋体(16)と、第1周壁(170)と、隙間(18)とを備える。本体部(810)は、第1ガラス板(1)と、第2ガラス板(2)と、第2周壁(410)と、内部空間(510)と、ガス吸着体(44)と、排気孔(50)と、を備える。第2ガラス板(2)は、第1ガラス板(1)に対向する。第2周壁(410)は、枠状であり、第1ガラス板(1)と第2ガラス板(2)との間にある。内部空間(510)は、第1ガラス板(1)と第2ガラス板(2)と第2周壁(410)とで囲まれている。ガス吸着体(44)は、内部空間(510)内に配置されている。排気孔(50)は、第1ガラス板(1)及び第2ガラス板(2)のうち一方に形成されている。蓋体(16)は、本体部(810)の外側にある。第1周壁(170)は、その一部が開口した状態で、排気孔(50)の周縁を囲み、かつ本体部(810)と蓋体(16)との間にある。隙間(18)は、第1周壁(170)の一部が開口した部分により構成され、かつ排気孔(50)を介して内部空間(510)と外部空間とを繋ぐ。前記溶融工程は、第2周壁(410)を溶融させて第1ガラス板(1)と第2ガラス板(2)とを気密に接合させる工程である。前記排気工程は、隙間(18)と排気孔(50)とを介して内部空間(510)を排気させて真空空間(52)とする工程である。前記封止工程は、局所加熱により第1周壁(170)を溶融させて隙間(18)を塞ぎ、かつ本体部(810)と蓋体(16)とを気密に接合させる工程である。前記活性化工程は、局所加熱によりガス吸着体(44)を活性化させる工程である。 A fifth aspect is a method for manufacturing the glass panel unit (100), that is, a method for manufacturing the glass panel unit (100), which is a preparation step, a melting step, an exhaust step, a sealing step, and an activation step. And, including. The preparation step is a step of preparing the assembled product (81). The assembled product (81) includes a main body portion (810), a lid body (16), a first peripheral wall (170), and a gap (18). The main body (810) includes a first glass plate (1), a second glass plate (2), a second peripheral wall (410), an internal space (510), a gas adsorbent (44), and an exhaust hole. (50) and. The second glass plate (2) faces the first glass plate (1). The second peripheral wall (410) has a frame shape and is located between the first glass plate (1) and the second glass plate (2). The internal space (510) is surrounded by a first glass plate (1), a second glass plate (2), and a second peripheral wall (410). The gas adsorbent (44) is arranged in the internal space (510). The exhaust hole (50) is formed in one of the first glass plate (1) and the second glass plate (2). The lid (16) is on the outside of the main body (810). The first peripheral wall (170) surrounds the peripheral edge of the exhaust hole (50) with a part thereof opened, and is between the main body portion (810) and the lid (16). The gap (18) is formed by a portion of the first peripheral wall (170) that is partially opened, and connects the internal space (510) and the external space via an exhaust hole (50). The melting step is a step of melting the second peripheral wall (410) and airtightly joining the first glass plate (1) and the second glass plate (2). The exhaust step is a step of exhausting the internal space (510) through the gap (18) and the exhaust hole (50) to form a vacuum space (52). The sealing step is a step of melting the first peripheral wall (170) by local heating to close the gap (18) and airtightly joining the main body portion (810) and the lid (16). The activation step is a step of activating the gas adsorbent (44) by local heating.
 第5態様によれば、活性化工程後、第1周壁(170)からなる第1枠体は第1ガラス板(1)と第2ガラス板(2)との間の真空空間(52)内にないため、前記第1枠体による熱伝達が真空空間(52)内で生じない。このため、真空空間(52)内で熱伝達を生じにくくすることができる。また、前記第1枠体が本体部(10)と蓋体(16)とを気密に接合することで、前記第1枠体と蓋体(16)とで排気孔(50)を封止することができる。 According to the fifth aspect, after the activation step, the first frame body composed of the first peripheral wall (170) is in the vacuum space (52) between the first glass plate (1) and the second glass plate (2). Therefore, heat transfer by the first frame does not occur in the vacuum space (52). Therefore, it is possible to make it difficult for heat transfer to occur in the vacuum space (52). Further, the first frame body airtightly joins the main body portion (10) and the lid body (16), so that the exhaust hole (50) is sealed between the first frame body and the lid body (16). be able to.
 100 ガラスパネルユニット
 10  本体部
 1   第1ガラス板
 2   第2ガラス板
 16  蓋体
 16a 蓋体本体部
 16b 接合部
 17  第1枠体
 18  隙間
 41  第2枠体
 44  ガス吸着体
 50  排気孔
 52  真空空間
 81  組立て品
 810 本体部
 170 第1周壁
 410 第2周壁
 510 内部空間

 
100 Glass panel unit 10 Main body 1 1st glass plate 2 2nd glass plate 16 Lid body 16a Lid body main body 16b Joint 17 1st frame 18 Gap 41 2nd frame 44 Gas adsorbent 50 Exhaust hole 52 Vacuum space 81 Assembled product 810 Main body 170 1st peripheral wall 410 2nd peripheral wall 510 Internal space

Claims (5)

  1.  本体部と、蓋体と、第1枠体と、を備え、
     前記本体部は、
     第1ガラス板と、
     前記第1ガラス板に対向する第2ガラス板と、
     前記第1ガラス板と前記第2ガラス板との間にあり、前記第1ガラス板と前記第2ガラス板を気密に接合する第2枠体と、
     前記第1ガラス板と前記第2ガラス板と前記第2枠体とで囲まれた真空空間と、
     前記真空空間内にあるガス吸着体と、
     前記第1ガラス板及び前記第2ガラス板のうち一方に形成された排気孔と、
     を備え、
     前記蓋体は、前記本体部の外側にあり、
     前記第1枠体は、前記排気孔の周縁を囲んで前記本体部と前記蓋体とを気密に接合する、
     ガラスパネルユニット。
    It includes a main body, a lid, and a first frame.
    The main body
    The first glass plate and
    A second glass plate facing the first glass plate and
    A second frame that is between the first glass plate and the second glass plate and airtightly joins the first glass plate and the second glass plate.
    A vacuum space surrounded by the first glass plate, the second glass plate, and the second frame body,
    The gas adsorbent in the vacuum space and
    An exhaust hole formed in one of the first glass plate and the second glass plate,
    With
    The lid is on the outside of the body and
    The first frame body surrounds the peripheral edge of the exhaust hole and airtightly joins the main body portion and the lid body.
    Glass panel unit.
  2.  前記蓋体は、前記蓋体の外形状を構成する蓋体本体部と、前記第1枠体と接合する接合部と、を有する、
     請求項1に記載のガラスパネルユニット。
    The lid body has a lid body main body portion that constitutes the outer shape of the lid body, and a joint portion that is joined to the first frame body.
    The glass panel unit according to claim 1.
  3.  前記接合部は、前記蓋体のうち、前記第1枠体と接合する表面に表面処理された部分である、
     請求項2に記載のガラスパネルユニット。
    The joint portion is a portion of the lid body whose surface is surface-treated to be joined to the first frame body.
    The glass panel unit according to claim 2.
  4.  前記接合部は、ガラスを含む、
     請求項2又は3に記載のガラスパネルユニット。
    The joint contains glass.
    The glass panel unit according to claim 2 or 3.
  5.  ガラスパネルユニットを製造する方法であって、
     準備工程と、溶融工程と、排気工程と、封止工程と、活性化工程と、を含み、
     前記準備工程は、組立て品を用意する工程であり、
     前記組立て品は、本体部と、蓋体と、第1周壁と、隙間と、を備え、
     前記本体部は、
     第1ガラス板と、
     前記第1ガラス板に対向する第2ガラス板と、
     前記第1ガラス板と前記第2ガラス板との間にある枠状の第2周壁と、
     前記第1ガラス板と前記第2ガラス板と前記第2周壁とで囲まれた内部空間と、
     前記内部空間内に配置されたガス吸着体と、
     前記第1ガラス板及び前記第2ガラス板のうち一方に形成された排気孔と、
     を備え、
     前記蓋体は、前記本体部の外側にあり、
     前記第1周壁は、その一部が開口した状態で、前記排気孔の周縁を囲み、かつ前記本体部と前記蓋体との間にあり、
     前記隙間は、前記第1周壁の一部が開口した部分により構成され、かつ前記排気孔を介して前記内部空間と外部空間とを繋ぎ、
     前記溶融工程は、前記第2周壁を溶融させて前記第1ガラス板と前記第2ガラス板とを気密に接合させる工程であり、
     前記排気工程は、前記隙間と前記排気孔とを介して前記内部空間を排気させて真空空間とする工程であり、
     前記封止工程は、局所加熱により前記第1周壁を溶融させて前記隙間を塞ぎ、かつ前記本体部と前記蓋体とを気密に接合させる工程であり、
     前記活性化工程は、局所加熱により前記ガス吸着体を活性化させる工程である、
     ガラスパネルユニットの製造方法。

     
    It is a method of manufacturing a glass panel unit.
    Including a preparation step, a melting step, an exhaust step, a sealing step, and an activation step,
    The preparatory step is a step of preparing an assembled product.
    The assembled product includes a main body, a lid, a first peripheral wall, and a gap.
    The main body
    The first glass plate and
    A second glass plate facing the first glass plate and
    A frame-shaped second peripheral wall between the first glass plate and the second glass plate,
    An internal space surrounded by the first glass plate, the second glass plate, and the second peripheral wall,
    The gas adsorbent arranged in the internal space and
    An exhaust hole formed in one of the first glass plate and the second glass plate,
    With
    The lid is on the outside of the body and
    The first peripheral wall surrounds the peripheral edge of the exhaust hole with a part thereof opened, and is between the main body and the lid.
    The gap is formed by a portion of the first peripheral wall that is partially open, and connects the internal space and the external space through the exhaust hole.
    The melting step is a step of melting the second peripheral wall and airtightly joining the first glass plate and the second glass plate.
    The exhaust step is a step of exhausting the internal space through the gap and the exhaust hole to form a vacuum space.
    The sealing step is a step of melting the first peripheral wall by local heating to close the gap and airtightly joining the main body and the lid.
    The activation step is a step of activating the gas adsorbent by local heating.
    Manufacturing method of glass panel unit.

PCT/JP2020/011476 2019-04-26 2020-03-16 Glass panel unit and manufacturing method for glass panel unit WO2020217779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021515868A JPWO2020217779A1 (en) 2019-04-26 2020-03-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-086745 2019-04-26
JP2019086745 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020217779A1 true WO2020217779A1 (en) 2020-10-29

Family

ID=72942470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011476 WO2020217779A1 (en) 2019-04-26 2020-03-16 Glass panel unit and manufacturing method for glass panel unit

Country Status (2)

Country Link
JP (1) JPWO2020217779A1 (en)
WO (1) WO2020217779A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086305A (en) * 1998-09-17 2000-03-28 Nippon Sheet Glass Co Ltd Glass panel
JP2003192400A (en) * 2001-12-25 2003-07-09 Nippon Sheet Glass Co Ltd Glass panel
JP2003192399A (en) * 2001-12-25 2003-07-09 Nippon Sheet Glass Co Ltd Cover for glass panel suction hole and method of using the same
JP2003192401A (en) * 2001-12-25 2003-07-09 Nippon Sheet Glass Co Ltd Reduced pressure heater for double-glazed unit
JP2005139055A (en) * 2003-11-10 2005-06-02 Nippon Sheet Glass Co Ltd Method of manufacturing glass panel and glass panel manufactured by the manufacturing method
JP2016500625A (en) * 2012-09-27 2016-01-14 ガーディアン・インダストリーズ・コーポレーション Low temperature hermetic sealing by laser
WO2016009948A1 (en) * 2014-07-18 2016-01-21 旭硝子株式会社 Vacuum multi-layer glass
WO2016009949A1 (en) * 2014-07-18 2016-01-21 旭硝子株式会社 Vacuum multilayer glass and method for manufacturing vacuum multilayer glass
WO2018221396A1 (en) * 2017-05-31 2018-12-06 パナソニックIpマネジメント株式会社 Method for producing glass panel unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137612A (en) * 2001-10-25 2003-05-14 Nippon Sheet Glass Co Ltd Glass panel and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086305A (en) * 1998-09-17 2000-03-28 Nippon Sheet Glass Co Ltd Glass panel
JP2003192400A (en) * 2001-12-25 2003-07-09 Nippon Sheet Glass Co Ltd Glass panel
JP2003192399A (en) * 2001-12-25 2003-07-09 Nippon Sheet Glass Co Ltd Cover for glass panel suction hole and method of using the same
JP2003192401A (en) * 2001-12-25 2003-07-09 Nippon Sheet Glass Co Ltd Reduced pressure heater for double-glazed unit
JP2005139055A (en) * 2003-11-10 2005-06-02 Nippon Sheet Glass Co Ltd Method of manufacturing glass panel and glass panel manufactured by the manufacturing method
JP2016500625A (en) * 2012-09-27 2016-01-14 ガーディアン・インダストリーズ・コーポレーション Low temperature hermetic sealing by laser
WO2016009948A1 (en) * 2014-07-18 2016-01-21 旭硝子株式会社 Vacuum multi-layer glass
WO2016009949A1 (en) * 2014-07-18 2016-01-21 旭硝子株式会社 Vacuum multilayer glass and method for manufacturing vacuum multilayer glass
WO2018221396A1 (en) * 2017-05-31 2018-12-06 パナソニックIpマネジメント株式会社 Method for producing glass panel unit

Also Published As

Publication number Publication date
JPWO2020217779A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
TWI631085B (en) Method for manufacturing glass panel unit, method for manufacturing building fittings, apparatus for manufacturing glass panel unit, and glass panel unit
EP3647291A1 (en) Production method for glass panel unit
JP6865392B2 (en) Manufacturing method of glass panel unit
WO2020217779A1 (en) Glass panel unit and manufacturing method for glass panel unit
WO2020026624A1 (en) Method for producing glass panel unit
JP7113298B2 (en) Glass panel unit manufacturing method and glass window manufacturing method
JP6868836B2 (en) Glass panel unit manufacturing method, fitting manufacturing method and gas adsorption unit
WO2018062124A1 (en) Method for producing glass panel unit and method for producing glass window
JPWO2019003997A1 (en) Gas adsorption unit manufacturing method, glass panel unit manufacturing method and fitting manufacturing method
WO2018221396A1 (en) Method for producing glass panel unit
JPWO2019208003A1 (en) Glass panel unit and manufacturing method of glass panel unit
JPWO2020075406A1 (en) Glass panel unit and glass window
JPWO2019208002A1 (en) Glass panel unit, glass window, glass panel unit manufacturing method and glass window manufacturing method
JP7228819B2 (en) Assembly for obtaining glass panel unit and method for manufacturing glass panel unit
EP3816127B1 (en) Method for manufacturing glass panel unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794642

Country of ref document: EP

Kind code of ref document: A1