WO2020217639A1 - Electronic device and method of manufacture therefor - Google Patents

Electronic device and method of manufacture therefor Download PDF

Info

Publication number
WO2020217639A1
WO2020217639A1 PCT/JP2020/004335 JP2020004335W WO2020217639A1 WO 2020217639 A1 WO2020217639 A1 WO 2020217639A1 JP 2020004335 W JP2020004335 W JP 2020004335W WO 2020217639 A1 WO2020217639 A1 WO 2020217639A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
seal portion
electronic device
sealing
support wall
Prior art date
Application number
PCT/JP2020/004335
Other languages
French (fr)
Japanese (ja)
Inventor
徹 白神
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2020217639A1 publication Critical patent/WO2020217639A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to an electronic device such as a liquid crystal display and a method for manufacturing the same.
  • a liquid crystal display has a liquid crystal layer between two substrates, controls the orientation direction of liquid crystal molecules by an electric field generated from the electrodes of each substrate, and modulates the light emitted to the liquid crystal layer. It is an electronic device that displays images.
  • Patent Document 1 describes a first substrate having a first electrode and an alignment film, a second substrate having a second electrode and an alignment film, a liquid crystal layer formed between the first substrate and the second substrate, and a first substrate.
  • a liquid crystal display liquid crystal display device including a sealing material for joining one substrate and a second substrate is disclosed.
  • the sealing material for the liquid crystal display is made of a thermosetting type or photocurable type resin material.
  • the sealing material is formed so as to surround the liquid crystal layer between the first substrate and the second substrate so that the liquid crystal layer does not flow out to the outside.
  • the present invention has been made in view of the above circumstances, and it is a technical subject to improve the sealing property of an electronic device having a structure for sealing an object to be sealed.
  • the electronic device is for solving the above-mentioned problems, and is a sealed body sealed between the first substrate, the second substrate, and the first substrate and the second substrate. And a first seal portion that joins the first substrate and the second substrate, and a second seal portion that joins the first substrate and the second substrate outside the first seal portion.
  • the second seal portion is characterized by including glass.
  • the sealing property of the electronic device can be improved by sealing the object to be sealed by the first sealing portion and the second sealing portion.
  • the second sealing portion contains glass, it is possible to reliably prevent the intrusion of moisture into the object to be sealed.
  • the electronic device may be provided with a support wall for joining the first substrate and the second substrate on the outside of the second seal portion.
  • the support wall can be separated outward from the second seal portion and can continuously surround the second seal portion. Further, the support wall may be separated from the second seal portion to the outside and may intermittently surround the second seal portion.
  • the first seal portion and the support wall may be made of the same material. As a result, the manufacturing efficiency of the electronic device can be increased, and the manufacturing cost thereof can be reduced as much as possible.
  • the first seal portion and the support wall may be made of resin, and the sealed body may be made of liquid crystal.
  • the liquid crystal can be sealed efficiently and reliably.
  • the second seal portion may be made of a glass frit fired body containing glass and a refractory filler.
  • the distance between the first seal portion and the second seal portion is preferably 0.5 mm or more. Further, the distance between the second seal portion and the support wall may be 0.5 mm or more.
  • the width of the second seal portion is preferably 0.3 to 1.0 mm, and the width of the support wall is preferably 0.3 to 5.0 mm.
  • the present invention is for solving the above-mentioned problems, and is described above in a method for manufacturing an electronic device in which an object to be sealed is sealed between a first substrate and a second substrate by a sealing portion.
  • the seal portion includes a first seal portion that seals the material to be sealed inside and a second seal portion that is located outside the first seal portion, and the sealing material related to the first seal portion is the first.
  • the step of fixing to one substrate, the step of fixing the sealing material related to the second sealing portion and containing the glass frit to the second substrate, and the step of fixing the sealing material related to the first sealing portion are fixed.
  • the step of superimposing the first substrate and the second substrate to which the sealing material related to the second sealing portion is fixed, and the first substrate and the second substrate are related to the first sealing portion.
  • the step of joining with the sealing material and the step of joining the first substrate and the second substrate with the sealing material related to the second sealing portion are provided, and the sealing material related to the second sealing portion is used.
  • the bonding between the first substrate and the second substrate is characterized in that the glass frit is irradiated with a laser beam and heated.
  • the sealing property of the electronic device can be improved by sealing the object to be sealed by the first sealing portion and the second sealing portion. Further, by irradiating the glass frit of the sealing material related to the second sealing portion with laser light and heating it, the first substrate and the second substrate can be quickly joined and the airtightness of the second sealing portion can be improved. Can be done.
  • a step of forming a support wall for joining the first substrate and the second substrate on the outside of the sealing material related to the second sealing portion may be provided.
  • the support wall overlaps the first substrate to which the sealing material related to the first sealing portion is fixed and the second substrate to which the sealing material related to the second sealing portion is fixed. Prior to the matching step, it may be fixed to the first substrate or the second substrate.
  • the steps of fixing the sealing material related to the second sealing portion to the second substrate include a step of applying the paste-like glass frit to the second substrate and a step of applying the glass frit to the second substrate.
  • a step of heating the glass frit may be provided.
  • the glass frit may contain glass powder and a refractory filler.
  • FIG. 1 is a cross-sectional view taken along the line II-II of FIG.
  • It is a flowchart which shows the manufacturing method of an electronic device.
  • It is sectional drawing which shows the preparation process of the manufacturing method of an electronic device.
  • It is sectional drawing which shows the preparation process of the manufacturing method of an electronic device.
  • It is sectional drawing which shows the preparation process of the manufacturing method of an electronic device.
  • It is sectional drawing which shows the preparation process of the manufacturing method of an electronic device.
  • It is sectional drawing which shows the liquid crystal layer forming process of the manufacturing method of an electronic device.
  • It is sectional drawing which shows the liquid crystal layer forming process of the manufacturing method of an electronic device.
  • FIG. 14 is a cross-sectional view taken along the line of the XV-XV arrow of FIG. It is sectional drawing which shows the preparation process of the manufacturing method of an electronic device. It is a partial cross-sectional view which shows the main part of an electronic device. It is a top view of the electronic device which concerns on 3rd Embodiment. It is a top view of the electronic device which concerns on 4th Embodiment. It is sectional drawing which shows the other example of an electronic device.
  • 1 to 13 show a first embodiment of an electronic device according to the present invention and a method for manufacturing the same.
  • liquid crystal panel 1 and 2 show a liquid crystal panel 1 as an example of an electronic device.
  • the liquid crystal panel 1 seals the first substrate 2, the second substrate 3, the liquid crystal layer 4 as a sealed body arranged between the first substrate 2 and the second substrate 3, and the liquid crystal layer 4. It is provided with sealing portions 5 and 6 for stopping.
  • the first substrate 2 and the second substrate 3 are composed of a transparent glass plate.
  • the glass used for each of the substrates 2 and 3 for example, non-alkali glass is used, but the glass is not limited thereto.
  • the non-alkali glass is a glass that does not substantially contain an alkaline component (alkali metal oxide), and specifically, a glass having a weight ratio of an alkaline component of 3000 ppm or less. That is.
  • the weight ratio of the alkaline component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
  • As the non-alkali glass "OA-10G" and "OA-11" manufactured by Nippon Electric Glass Co., Ltd. are preferably used.
  • each of the first substrate 2 and the second substrate 3 is, for example, 0.1 to 2.0 mm, preferably 0.2 to 1.5 mm, and more preferably 0.3 to 1.2 mm.
  • the first substrate 2 has a first main surface 2a and a second main surface 2b.
  • the first main surface 2a faces the liquid crystal layer 4, and the second main surface 2b is located on the opposite side of the first main surface 2a.
  • the first main surface 2a has a first electrode layer 7 made of a transparent conductive film and a first alignment film 8 laminated on the first electrode layer 7.
  • a polarizing plate (not shown) is provided on the second main surface 2b.
  • the material of the first electrode layer 7 is not particularly limited as long as it has translucency and conductivity.
  • the first electrode layer 7 is composed of, for example, indium-doped tin oxide (ITO), fluorine-doped tin oxide (FTO), indium zinc oxide (IZO), aluminum-doped zinc oxide (AZO), and the like.
  • the first alignment film 8 is a transparent film made of a polyimide film or other material and having minute grooves formed by a rubbing treatment.
  • the liquid crystal molecules contained in the liquid crystal layer 4 can be oriented at a pretilt angle by the action of the first alignment film 8.
  • the second substrate 3 has a first main surface 3a and a second main surface 3b.
  • the first main surface 3a faces the liquid crystal layer 4 and is arranged so as to face the first main surface 2a of the first substrate 2.
  • the second main surface 3b is located on the opposite side of the first main surface 3a.
  • the first main surface 3a has a color filter layer 9, a second electrode layer 10 composed of a transparent conductive film, and a second alignment film 11 laminated on the second electrode layer 10.
  • a polarizing plate (not shown) is provided on the second main surface 3b.
  • the color filter layer 9 is composed of a black matrix and a plurality of colored pixels.
  • the second electrode layer 10 is laminated on the color filter layer 9.
  • the material of the second electrode layer 10 is the same as that of the first electrode layer 7.
  • the second alignment film 11 is made of the same material as the first alignment film 8.
  • the liquid crystal layer 4 is composed of a nematic liquid crystal or the like.
  • a plurality of spacers 12 are provided in the liquid crystal layer 4.
  • the liquid crystal layer 4 is sealed in a storage space composed of a first substrate 2, a second substrate 3, a spacer 12, and sealing portions 5 and 6.
  • the spacer 12 is formed in a spherical shape by silica or the like.
  • the spacer 12 comes into contact with the first main surface 2a of the first substrate 2 and the first main surface 3a of the second substrate 3, and is arranged in the liquid crystal layer 4 so that the liquid crystal layer 4 maintains a constant thickness. Will be done.
  • the spacer 12 may be provided outside the liquid crystal layer 4.
  • a spacer having a shape other than a spherical shape may be used.
  • plate-shaped glass may be used as a spacer.
  • the seal portions 5 and 6 are the first seal portion 5 that seals the liquid crystal layer 4 inside, and the second seal portion 6 that surrounds the first seal portion 5 at a position separated from the outside of the first seal portion 5. And include.
  • the first sealing portion 5 is cured by interposing a sealing material made of an epoxy resin having low temperature curability or an organic resin-based adhesive material such as an ultraviolet curable resin between the first substrate 2 and the second substrate 3. It is composed of.
  • the first seal portion 5 is formed in a rectangular ring shape in a plan view so as to surround the liquid crystal layer 4 (see FIG. 1).
  • the width W1 (see FIG. 2) of the first seal portion 5 is preferably 0.3 to 5.0 mm, more preferably 0.5 to 3.0 mm.
  • the second seal portion 6 includes glass and is composed of, for example, a fired body of glass frit.
  • the second seal portion 6 is formed at a position separated from the first seal portion 5 to the outside.
  • the distance D between the second seal portion 6 and the first seal portion 5 is preferably 0.5 mm or more.
  • the width W2 of the second seal portion 6 is narrower than the width W1 of the first seal portion 5.
  • the width W2 of the second seal portion 6 is preferably 0.3 to 1.0 mm, more preferably 0.3 to 0.5 mm.
  • the second sealing portion 6 is formed by interposing a sealing material between the first substrate 2 and the second substrate 3, softening and deforming the sealing material by heating, and then curing the sealing material.
  • the sealing material is composed of, for example, glass frit.
  • the glass frit contains glass powder, preferably further refractory filler powder.
  • the glass powder is a material for ensuring the bonding strength of the second sealing portion 6 by softening and flowing when heated and reacting with the first substrate 2 and the second substrate 3.
  • the refractory filler powder is a material that acts as an aggregate and reduces the coefficient of thermal expansion.
  • glass powder glass having an arbitrary composition may be used, but it is preferable to use glass having a relatively low melting point.
  • glass powder it is desirable to use any one of bismuth-based glass, silver phosphate-based glass, and silver tellurium-based glass alone or in combination thereof.
  • the bismuth-based glass preferably contains Bi 2 O 3 25 to 60%, B 2 O 3 20 to 35%, and CuO + MnO 5 to 40% in mol%, but is limited to this composition. It's not a thing.
  • the silver phosphate-based glass powder has a glass composition of Ag 2 O + Ag I 15 to 85%, TeO 20 to 35%, P 2 O 5 10 to 55%, Ga 2 O 30 to 20%, and TeO. 2 0 ⁇ 60%, ZnO 0 ⁇ 50%, Nb 2 O 5 0 ⁇ 30%, B 2 O 3 0 ⁇ 15%, but preferably contains WO 3 0 ⁇ 30%, is limited to the composition It's not a thing.
  • Silver telluride glass powder as a glass composition, in mol%, Ag 2 O + AgI 15 ⁇ 85%, TeO 2 10 ⁇ 60%, P 2 O 5 0 ⁇ 35%, Ga 2 O 3 0 ⁇ 20%, TeO 2 0 ⁇ 60%, ZnO 0 ⁇ 50%, Nb 2 O 5 0 ⁇ 30%, B 2 O 3 0 ⁇ 15%, but preferably contains WO 3 0 ⁇ 30%, limited to this composition is not.
  • a glass powder having a composition as exemplified above can suitably absorb the energy of laser light and be heated, and can be melted at a relatively low temperature and quickly sealed.
  • inorganic filler materials can be used as the refractory filler powder, and among them, cordylite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, ⁇ -eucryptite, and ⁇ -quartz. It is preferably composed of one or more materials selected from the solid solution.
  • the average particle size D 50 of the glass powder and the refractory filler powder is preferably less than 2 ⁇ m.
  • the "average particle size D 50 " is a value measured by the laser diffraction method, and the integrated amount is from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method. It means a particle size that is cumulatively 50%.
  • the maximum particle size D 99 of the glass powder and the refractory filler powder is preferably less than 10 ⁇ m.
  • the “maximum particle size D 99 " is a value measured by the laser diffraction method, and in the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the integrated amount starts from the smaller particle. It means a particle size that is 99% cumulative.
  • An absorbent that absorbs the heat of the laser beam may be further added to the glass frit.
  • the absorbent for example, a colored resin, a powder of a transition metal oxide, or the like can be used.
  • the average coefficient of linear thermal expansion of the second seal portion 6 at 30 to 300 ° C. is 5.5 to 9.5 ppm.
  • the first electrode layer 7 and the first alignment film 8 are formed on the first main surface 2a of the first substrate 2.
  • a transparent conductive film is formed on the first main surface 2a of the first substrate 2 by a film forming method such as a vapor deposition method, a sputtering method, or a CVD method.
  • a photoresist photosensitive resin
  • the resist layer is covered with a photomask and irradiated with light (for example, ultraviolet rays) (exposure step).
  • the pattern having a predetermined shape formed on the photomask is transferred to the resist layer.
  • a resist developer is supplied to the resist layer (development step).
  • the exposed portion of the resist layer is removed, and a resist pattern formed by the resist layer is formed on the transparent conductive film.
  • the transparent conductive film is etched to remove unnecessary portions of the transparent conductive film (etching step).
  • peeling step the first electrode layer 7 is formed on the first main surface 2a of the first substrate 2.
  • the first alignment film 8 is laminated on the first electrode layer 7.
  • the alignment film material is applied so as to overlap the first electrode layer 7 (for example, screen printing), and then the alignment film material is heated and dried. Then, a rubbing roll is used to form a plurality of minute grooves on the surface of the first alignment film 8 (rubbing treatment). As described above, the first electrode layer 7 and the first alignment film 8 are formed on the first main surface 2a of the first substrate 2.
  • the first seal portion 5 is fixed to the first substrate 2 (fixing step).
  • the sealing material 5a made of a paste-like resin material is cyclically applied to the first main surface 2a of the first substrate 2 by a dispenser. Then, the sealing material 5a is heated and dried. As a result, the first substrate 2 in which the first electrode layer 7, the first alignment film 8 and the first sealing portion 5 (sealing material 5a) are formed on the first main surface 2a is prepared.
  • a color filter layer 9, a second electrode layer 10, and a second alignment film 11 are formed on the second substrate 3.
  • the color resist coating step, the exposure step, and the developing / baking step are repeated.
  • the color filter layer 9 corresponding to the plurality of colors (RGB) is formed on the first main surface 3a.
  • the second electrode layer 10 is laminated on the first main surface 3a of the second substrate 3.
  • the second electrode layer 10 is laminated on the color filter layer 9 by a film forming method such as a vapor deposition method, similarly to the first electrode layer 7.
  • the second alignment film 11 is formed on the first main surface 3a of the second substrate 3.
  • the second alignment film 11 is laminated on the second electrode layer 10 through a coating step, a drying step, and a rubbing treatment, as in the case of the first alignment film 8.
  • the second seal portion 6 is fixed to the first main surface 3a of the second substrate 3.
  • the sealing material 6a made of glass frit is applied to the first main surface 3a (coating step).
  • the paste-like glass frit is cyclically coated on the first main surface 3a of the second substrate 3 by, for example, screen printing or a dispenser.
  • the glass frit is preferably in the state of a glass paste mixed with an organic vehicle.
  • the glass frit is irradiated with laser light (not shown), or the glass frit is heated by an electric furnace or the like (heating step). It is desirable that this heating step be performed at a temperature equal to or lower than the strain point of the second substrate 3. As a result, the glass powder of the glass frit is softened and flowed, so that the glass frit is fused to the first main surface 3a of the second substrate 3.
  • the glass frit (sealing material 6a) is temporarily fixed to the second substrate 3 by solidifying at least its surface.
  • a plurality of spacers 12 are sprayed on the first main surface 3a of the second substrate 3.
  • the spacer 12 is temporarily fixed to the second substrate 3 by heating the second substrate 3 at a predetermined temperature (for example, 120 ° C.).
  • the liquid crystal 4a is supplied to the portion of the first main surface 2a of the first substrate 2 surrounded by the first seal portion 5 (liquid crystal). Filling process).
  • the liquid crystal layer 4 is formed by the one-drop fill method (ODF method), but the liquid crystal layer 4 may be formed by another method.
  • the liquid crystal 4a is dropped from the liquid crystal supply device 13 arranged above the first substrate 2.
  • the liquid crystal supply device 13 drops a large number of liquid crystals 4a onto the first main surface 2a of the first substrate 2 while moving. As a result, a predetermined amount of liquid crystal 4a is filled inside the first seal portion 5 (see FIG. 10).
  • the first substrate 2 and the second substrate 3 are housed in a vacuum chamber 14 and are superposed in the vacuum chamber 14 (lamination step).
  • the first substrate 2 is placed on a table 14a arranged in the vacuum chamber 14.
  • the second substrate 3 is superposed on the first substrate 2 located on the lower side with the first main surface 3a facing downward.
  • the liquid crystal layer 4 is formed between the first substrate 2 and the second substrate 3.
  • a spacer 12 temporarily fixed to the second substrate 3 is arranged in the liquid crystal layer 4.
  • the laminated body LM formed by laminating the first substrate 2, the liquid crystal layer 4, and the second substrate 3 is formed. After that, the laminated body LM is taken out from the vacuum chamber 14 and proceeds to the next joining step S3.
  • the joining step S3 includes a first joining step of joining the first substrate 2 and the second substrate 3 by the first sealing portion 5, and a second sealing portion 6 after the first joining step of the first substrate 2 and the second substrate 3. Includes a second joining step of joining with.
  • the first sealing portion 5 (sealing material 5a) of the laminated LM is irradiated with ultraviolet UV by the ultraviolet irradiation device 15 (ultraviolet irradiation step).
  • the first sealing portion 5 fixed to the first substrate 2 becomes the first main surface 2a of the first substrate 2 and the first main surface 3a of the second substrate 3.
  • the liquid crystal layer 4 is sealed inside the first seal portion 5 by the annular first seal portion 5 joining the first substrate 2 and the second substrate 3 over the entire circumference thereof.
  • the laser beam L is irradiated from the laser irradiation device 16 arranged above the laminated body LM toward the second sealing portion 6 (sealing material 6a) (laser). Irradiation process).
  • a semiconductor laser is preferably used, but the laser is not limited to this, and various lasers such as a YAG laser, a CO 2 laser, an excimer laser, and an infrared laser may be used.
  • the wavelength of the laser beam L is preferably 600 to 1600 nm, but is not limited to this range.
  • the spot diameter DL of the laser beam L is set to be larger than the width W2 of the second seal portion 6. As a result, the laser beam L is irradiated over the entire width of the second seal portion 6. At this time, since the first seal portion 5 is located at a position away from the second seal portion 6, the laser beam L is not applied to the first seal portion 5. It is desirable that the distance D between the second seal portion 6 and the first seal portion 5 is set in relation to the spot diameter DL of the laser beam L so that the laser beam L is not irradiated to the first seal portion 5. ..
  • the laser irradiation device 16 scans the laser beam L along the second seal portion 6.
  • the laser beam L is irradiated over the entire circumference of the second sealing portion 6 formed in an annular shape. Further, the laser irradiation device 16 irradiates the laser beam L so as to orbit once or a plurality of times along the ring shape of the second seal portion 6.
  • the laser beam L passes through the second substrate 3 and irradiates the sealing material 6a (glass frit).
  • the glass component (glass powder) of the sealing material 6a is softened and fused to the first main surface 2a of the first substrate 2 and the first main surface 3a of the second substrate 3.
  • a second sealing portion 6 made of a fired glass frit body is formed on the outside of the first sealing portion 5 to join the first substrate 2 and the second substrate 3.
  • the second seal portion 6 is composed of a mixed fired body containing the above-mentioned glass, a refractory filler, and the like.
  • the glass may be in an amorphous state, a crystallized state, or a mixed state thereof.
  • the second sealing portion 6 seals the inner region thereof by joining the first substrate 2 and the second substrate 3 over the entire circumference thereof.
  • the liquid crystal panel 1 in which the liquid crystal layer 4 to be sealed is sealed between the first substrate 2 and the second substrate 3 is completed by the first seal portion 5 and the second seal portion 6. ..
  • the liquid crystal layer 4 is sealed by the first seal portion 5 and the second seal portion 6, so that the sealed body (liquid crystal layer) in the electronic device is sealed.
  • the sealing property of 4) can be improved. Since the second seal portion 6 is made of a fired glass frit body, it is highly airtight and can reliably prevent moisture from permeating into the liquid crystal layer 4. Further, since the glass frit fired body is superior in weather resistance and scientific durability as compared with other general sealing materials such as resin and metal, it is possible to maintain high airtightness performance for a long period of time even in a harsh environment.
  • the electronic device (liquid crystal panel 1) according to the present embodiment includes a support wall 17 for joining the first substrate 2 and the second substrate 3 on the outside of the second seal portion 6.
  • the support wall 17 is made of the same material as the first seal portion 5, that is, a thermosetting resin or an ultraviolet curable resin.
  • the support wall 17 is formed in a quadrangular shape and an annular shape so as to surround the second seal portion 6 over the entire circumference.
  • the support wall 17 continuously joins the first substrate 2 and the second substrate 3 over the entire circumference thereof.
  • the support wall 17 is separated outward from the second seal portion 6.
  • the distance D2 between the support wall 17 and the second seal portion 6 is about the same as the distance D1 between the first seal portion 5 and the second seal portion 6.
  • the interval D2 is preferably 0.5 mm or more. It is desirable that the interval D2 is set in a range in which the laser beam L is not irradiated on the support wall 17 in relation to the spot diameter DL of the laser beam L.
  • the alignment film 8 is provided between the first sealing portion 5 and the first main surface 2a of the first substrate 2 and between the first sealing portion 5 and the first main surface 3a of the second substrate 3. 11 is intervening.
  • the second sealing portion 6 has the first main surface 2a and the second of the first substrate 2 without the alignment films 8 and 11 intervening between the first substrate 2 and the second substrate 3. It is directly joined to the first main surface 3a of the substrate 3.
  • the support wall 17 directly joins the first main surfaces 2a and 3a of the substrates 2 and 3 without the alignment films 8 and 11 intervening between the substrates 2 and 3. .
  • the width W3 of the support wall 17 is substantially equal to the width W1 of the first seal portion 5 and wider than the width W2 of the second seal portion 6.
  • the width W3 of the support wall 17 is preferably 0.3 to 5.0 mm, more preferably 0.5 to 3.0 mm.
  • the first seal portion 5 has a spacer 12 inside.
  • the spacer 12 is made of the same material as that arranged in the liquid crystal layer 4 and has the same dimensions.
  • the width W1 of the first seal portion 5 is wider than the diameter DS of the spacer 12. As a result, the first seal portion 5 can join the first substrate 2 and the second substrate 3 while maintaining an appropriate distance between them.
  • a transparent conductive film 18 is formed on the second main surface 3b of the second substrate 3. As a result, it is possible to prevent the second main surface 3b from being charged and to prevent dust and the like from adhering to the surface of the liquid crystal panel 1.
  • the first seal portion 5 and the support wall 17 are fixed to the first main surface 2a of the first substrate 2. ..
  • the support wall 17 is placed before the liquid crystal layer forming step S2 in which the first substrate 2 to which the first seal portion 5 is fixed and the second substrate 3 to which the second seal portion 6 is fixed are overlapped. It is fixed to the first substrate 2.
  • the first seal portion 5 and the support wall 17 may be sequentially fixed to the first substrate 2, respectively. That is, the resin material 17a, which is the material of the support wall 17, may be applied to the first main surface 2a of the first substrate 2 by using the dispenser device used for applying the sealing material 5a. According to such a configuration, it is possible to manufacture the liquid crystal panel 1 having the support wall 17 easily and at low cost by diverting the existing equipment.
  • first seal portion 5 and the support wall 17 may be fixed to the first substrate 2 at the same time.
  • the first substrate 2 is coated with the sealing material 5a of the first sealing portion 5 with one nozzle and the resin material 17a of the support wall 17 with the other nozzle.
  • the sealing material 5a and the resin material 17a can be fixed at the same time. According to such a configuration, the liquid crystal panel 1 having the support wall 17 can be manufactured in a short tact time.
  • the first sealing portion 5 (sealing material 5a) and the support wall 17 (resin material 17a) are irradiated with ultraviolet UV UV, and then heated to perform the first sealing.
  • the first substrate 2 and the second substrate 3 are joined by the portion 5 and the support wall 17.
  • the second sealing portion 6 is irradiated with the laser beam L to join the first substrate 2 and the second substrate 3.
  • the second substrate 3 may be warped after the liquid crystal layer forming step S2 or the first bonding step. As shown in FIG. 17, the warp of the second substrate 3 is likely to occur at the end portion (the portion indicated by the alternate long and short dash line) of the second substrate 3 protruding from the first seal portion 5 toward the second seal portion 6. When such a warp occurs, as shown by the alternate long and short dash line in FIG. 17, the sealing material 6a fixed to the first main surface 3a of the second substrate 3 starts from the first main surface 2a of the first substrate 2. There is a risk of being separated.
  • the support wall 17 is provided on the outside of the second seal portion 6, and the first substrate 2 and the second substrate 3 are joined by the support wall 17 in the first joining step, as described above. It is possible to prevent the occurrence of warpage of the second substrate 3. As a result, in the second joining step, the first substrate 2 and the second substrate 3 can be reliably joined by the second sealing portion 6. Further, since the support wall 17 is continuously and annularly formed like the first seal portion 5, it also functions as a third seal portion that seals the inside thereof. Thereby, the sealing property of the liquid crystal panel 1 can be further improved. Further, even when the alignment films 8 and 11 are interposed between the first sealing portion 5 and the respective substrates 2 and 3, the substrates 2 and 3 are directly bonded by the second sealing portion 6. , The sealing property of the liquid crystal layer 4 can be maintained high.
  • the spacer 12 may not be provided inside the first seal portion 5.
  • FIG. 18 shows a third embodiment of the present invention.
  • the configuration of the support wall 17 is different from that of the second embodiment.
  • the support wall 17 is configured as a continuous annular portion, but the support wall 17 according to the present embodiment is configured as an annular portion that intermittently surrounds the second seal portion 6. .. That is, in the present embodiment, a plurality of support walls 17A are arranged in an annular shape around the second seal portion 6 at predetermined intervals.
  • FIG. 19 shows a fourth embodiment of the present invention.
  • a liquid crystal panel 1 including a plurality of liquid crystal elements will be illustrated.
  • the sealing mode of the plurality of liquid crystal layers 4 in the liquid crystal panel 1 is the same as that of the second embodiment, and is composed of the first sealing portion 5, the second sealing portion 6, and the support wall 17.
  • the liquid crystal panel 1 can be cut along the cutting line CL indicated by the alternate long and short dash line. As a result, each liquid crystal element can be divided, and the divided liquid crystal elements can be individually configured as a liquid crystal panel. This makes it possible to efficiently mass-produce electronic devices.
  • the present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect.
  • the present invention can be modified in various ways without departing from the gist of the present invention.
  • the liquid crystal panel 1 (liquid crystal display) is exemplified as the electronic device, but the present invention is not limited to this configuration.
  • the present invention can be applied to an organic EL display, a lighting device composed of a liquid crystal element or an organic EL element, an in-vehicle laser scanning device, a mirror monitor device, a semiconductor package device, and various other electronic devices.
  • the material to be sealed in the present invention is not limited to the liquid crystal layer 4, and may be a printing layer of an organic paste, a polarizing material, a semiconductor element, or other liquid or solid material.
  • the laminated body LM is formed by superimposing the second substrate 3 to which the second seal portion 6 is fixed on the first substrate 2, but the present invention is limited to this aspect. It's not something.
  • the first seal portion 5 and the second seal portion 6 may be fixed to the first substrate 2, and the second substrate 3 having no seal portion may be superposed on the first substrate 2.
  • the example in which the support wall 17 is fixed to the first substrate 2 is shown in the preparation step S1, but the present invention is not limited to this, and the support wall 17 may be fixed to the second substrate 3. ..
  • the alignment films 8 and 11 are interposed between the second seal portion 6 and the first substrate 2 and between the second seal portion 6 and the second substrate 3.
  • One substrate 2 and the second substrate 3 may be joined.
  • the alignment films 8 and 11 and the transparent conductive films constituting the electrode layers 7 and 10 may be interposed between the second sealing portion 6 and the substrates 2 and 3.
  • the alignment films 8 and 11 and the transparent conductive film and the like may be interposed between the support wall 17 and the substrates 2 and 3.
  • the support wall 17 may be made of, for example, the same material as the second seal portion 6 and the same method. That is, the support wall 17 may be a wall portion containing glass or made of glass frit, and may be formed by softening and curing a sealing material containing glass powder by laser light L.
  • the case where the paste-like glass frit is applied is illustrated, but the glass frit is processed into a frame-shaped press frit by press working in advance, and the press frit is placed on the substrate. Two seals may be provided.
  • Liquid crystal panel (electronic device) 2 1st substrate 3 2nd substrate 4 Liquid crystal layer (encapsulated body) 5 1st seal part 5a Seal material 6 2nd seal part 6a Seal material (glass frit) 7 First electrode layer 8 First alignment film 9 Color filter layer 10 Second electrode layer 11 Second alignment film 12 Spacer 17 Support wall 17a Resin material 17A Support wall S1 Preparation process S2 Liquid crystal layer formation process S3 Joining process

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

This electronic device is provided with: a first substrate 2; a second substrate 3; a sealed object 4 to be sealed between the first substrate and the second substrate 3; a first sealing section 5 that bonds the first substrate 2 and the second substrate 3; and a second sealing section 6 that bonds the first substrate 2 and the second substrate 3 at a position outward of the first sealing section 5. The second sealing section 6 contains glass.

Description

電子デバイス及びその製造方法Electronic devices and their manufacturing methods
 本発明は、液晶ディスプレイ等の電子デバイス及びその製造方法に関する。 The present invention relates to an electronic device such as a liquid crystal display and a method for manufacturing the same.
 近年、薄型、軽量、低消費電力等の利点から液晶ディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイが普及している。例えば、液晶ディスプレイは、二枚の基板の間に液晶層を備えており、各基板の電極から発生させた電界によって液晶分子の配向方向を制御し、液晶層に照射された光を変調することで、画像を表示する電子デバイスである。 In recent years, flat panel displays such as liquid crystal displays and organic EL displays have become widespread because of their advantages such as thinness, light weight, and low power consumption. For example, a liquid crystal display has a liquid crystal layer between two substrates, controls the orientation direction of liquid crystal molecules by an electric field generated from the electrodes of each substrate, and modulates the light emitted to the liquid crystal layer. It is an electronic device that displays images.
 特許文献1には、第一電極及び配向膜を有する第一基板と、第二電極及び配向膜を有する第二基板と、第一基板と第二基板の間に形成される液晶層と、第一基板と第二基板とを接合するシール材とを備える液晶ディスプレイ(液晶表示装置)が開示されている。この液晶ディスプレイに係るシール材は、熱硬化型又は光硬化型の樹脂材料により構成される。シール材は、液晶層が外側に流出しないように、第一基板と第二基板との間で当該液晶層を取り囲むように形成されている。 Patent Document 1 describes a first substrate having a first electrode and an alignment film, a second substrate having a second electrode and an alignment film, a liquid crystal layer formed between the first substrate and the second substrate, and a first substrate. A liquid crystal display (liquid crystal display device) including a sealing material for joining one substrate and a second substrate is disclosed. The sealing material for the liquid crystal display is made of a thermosetting type or photocurable type resin material. The sealing material is formed so as to surround the liquid crystal layer between the first substrate and the second substrate so that the liquid crystal layer does not flow out to the outside.
特開2013-148919号公報Japanese Unexamined Patent Publication No. 2013-148919
 液晶ディスプレイ等の電子デバイスの用途や使用環境は、今後、益々広範なものとなることが期待されている。多様な用途及び過酷な使用環境において電子デバイスが所期の機能を発揮するには、従来技術による封止性能では不十分な場合があり、被封止体(液晶層)に水分等が侵入しないように、また、被封止体が流出しないように、シール材の封止性能をさらに高めることが求められる。 It is expected that the applications and usage environments of electronic devices such as liquid crystal displays will become more widespread in the future. In order for an electronic device to perform its intended function in a variety of applications and in harsh usage environments, the sealing performance of the conventional technology may not be sufficient, and moisture or the like does not enter the object to be sealed (liquid crystal layer). As such, it is required to further improve the sealing performance of the sealing material so that the material to be sealed does not flow out.
 本発明は上記の事情に鑑みて為されたものであり、被封止体を封止する構造を有する電子デバイスの封止性を向上させることを技術的課題とする。 The present invention has been made in view of the above circumstances, and it is a technical subject to improve the sealing property of an electronic device having a structure for sealing an object to be sealed.
 本発明に係る電子デバイスは上記の課題を解決するためのものであり、第一基板と、第二基板と、前記第一基板と前記第二基板との間に封止される被封止体と、前記第一基板と前記第二基板とを接合する第一シール部と、前記第一シール部よりも外側で前記第一基板と前記第二基板とを接合する第二シール部と、を備え、前記第二シール部は、ガラスを含むことを特徴とする。 The electronic device according to the present invention is for solving the above-mentioned problems, and is a sealed body sealed between the first substrate, the second substrate, and the first substrate and the second substrate. And a first seal portion that joins the first substrate and the second substrate, and a second seal portion that joins the first substrate and the second substrate outside the first seal portion. The second seal portion is characterized by including glass.
 かかる構成によれば、被封止体を第一シール部及び第二シール部によって封止することにより、電子デバイスの封止性を向上させることができる。特に、第二シール部がガラスを含むことで、被封止体への水分の侵入を確実に防止できる。 According to such a configuration, the sealing property of the electronic device can be improved by sealing the object to be sealed by the first sealing portion and the second sealing portion. In particular, since the second sealing portion contains glass, it is possible to reliably prevent the intrusion of moisture into the object to be sealed.
 電子デバイスは、前記第二シール部の外側に、前記第一基板と第二基板とを接合する支持壁を備えてもよい。第一基板と第二基板とを支持壁により接合することで、第一基板と第二基板との間隔を一定に維持できる。これにより、第一基板と第二基板の間隔の変化に伴う第二シール部の接合不良を防止できる。 The electronic device may be provided with a support wall for joining the first substrate and the second substrate on the outside of the second seal portion. By joining the first substrate and the second substrate with a support wall, the distance between the first substrate and the second substrate can be maintained constant. As a result, it is possible to prevent poor bonding of the second seal portion due to a change in the distance between the first substrate and the second substrate.
 前記支持壁は、前記第二シール部から外側に離間され、かつ前記第二シール部を連続的に包囲し得る。また、前記支持壁は、前記第二シール部から外側に離間され、かつ前記第二シール部を断続的に包囲してもよい。 The support wall can be separated outward from the second seal portion and can continuously surround the second seal portion. Further, the support wall may be separated from the second seal portion to the outside and may intermittently surround the second seal portion.
 前記第一シール部及び前記支持壁は、同じ材料により構成されてもよい。これにより、電子デバイスの製造効率を高め、その製造コストを可及的に低減できる。 The first seal portion and the support wall may be made of the same material. As a result, the manufacturing efficiency of the electronic device can be increased, and the manufacturing cost thereof can be reduced as much as possible.
 望ましい実施形態において、前記第一シール部及び前記支持壁は、樹脂により構成されてもよく、前記被封止体は、液晶により構成されてもよい。第一シール部及び支持壁を樹脂とすることで、液晶の封止を効率良くかつ確実に行うことができる。 In a desirable embodiment, the first seal portion and the support wall may be made of resin, and the sealed body may be made of liquid crystal. By using resin for the first seal portion and the support wall, the liquid crystal can be sealed efficiently and reliably.
 前記第二シール部は、ガラスと耐火性フィラーとを含むガラスフリット焼成体から成るものであってもよい。 The second seal portion may be made of a glass frit fired body containing glass and a refractory filler.
 前記第一シール部と前記第二シール部との間隔は、0.5mm以上であることが好ましい。また、前記第二シール部と前記支持壁との間隔は、0.5mm以上であってもよい。また、前記第二シール部の幅は、0.3~1.0mmとされることが好ましく、前記支持壁の幅は、0.3~5.0mmとされることが好ましい。 The distance between the first seal portion and the second seal portion is preferably 0.5 mm or more. Further, the distance between the second seal portion and the support wall may be 0.5 mm or more. The width of the second seal portion is preferably 0.3 to 1.0 mm, and the width of the support wall is preferably 0.3 to 5.0 mm.
 本発明は、上記の課題を解決するためのものであって、第一基板と第二基板との間に被封止体がシール部によって封止されてなる電子デバイスを製造する方法において、前記シール部は、被封止体を内側に封止する第一シール部と、第一シール部の外側に位置する第二シール部と、を備え、前記第一シール部に係るシール材を前記第一基板に固定する工程と、前記第二シール部に係るシール材であってガラスフリットを含むシール材を前記第二基板に固定する工程と、前記第一シール部に係る前記シール材が固定された前記第一基板と、前記第二シール部に係る前記シール材が固定された前記第二基板とを重ね合わせる工程と、前記第一基板と前記第二基板とを前記第一シール部に係る前記シール材により接合する工程と、前記第一基板と前記第二基板とを前記第二シール部に係る前記シール材により接合する工程と、を備え、前記第二シール部に係る前記シール材による前記第一基板と前記第二基板との接合は、前記ガラスフリットにレーザ光を照射して加熱することを特徴とする。 The present invention is for solving the above-mentioned problems, and is described above in a method for manufacturing an electronic device in which an object to be sealed is sealed between a first substrate and a second substrate by a sealing portion. The seal portion includes a first seal portion that seals the material to be sealed inside and a second seal portion that is located outside the first seal portion, and the sealing material related to the first seal portion is the first. The step of fixing to one substrate, the step of fixing the sealing material related to the second sealing portion and containing the glass frit to the second substrate, and the step of fixing the sealing material related to the first sealing portion are fixed. The step of superimposing the first substrate and the second substrate to which the sealing material related to the second sealing portion is fixed, and the first substrate and the second substrate are related to the first sealing portion. The step of joining with the sealing material and the step of joining the first substrate and the second substrate with the sealing material related to the second sealing portion are provided, and the sealing material related to the second sealing portion is used. The bonding between the first substrate and the second substrate is characterized in that the glass frit is irradiated with a laser beam and heated.
 かかる構成によれば、被封止体を第一シール部及び第二シール部によって封止することにより、電子デバイスの封止性を向上させることができる。また、第二シール部に係るシール材のガラスフリットにレーザ光を照射して加熱することで、第一基板と第二基板とを迅速に接合できるとともに、第二シール部の気密性を高めることができる。 According to such a configuration, the sealing property of the electronic device can be improved by sealing the object to be sealed by the first sealing portion and the second sealing portion. Further, by irradiating the glass frit of the sealing material related to the second sealing portion with laser light and heating it, the first substrate and the second substrate can be quickly joined and the airtightness of the second sealing portion can be improved. Can be done.
 本方法において、前記第一基板と前記第二基板とを接合する支持壁を前記第二シール部に係る前記シール材の外側に形成する工程を備えてもよい。第一基板と第二基板とを支持壁により接合することで、第一基板と第二基板との間隔を一定に維持できる。これにより、第一基板と第二基板の間隔の変化に伴う第二シール部の接合不良を防止できる。 In this method, a step of forming a support wall for joining the first substrate and the second substrate on the outside of the sealing material related to the second sealing portion may be provided. By joining the first substrate and the second substrate with a support wall, the distance between the first substrate and the second substrate can be maintained constant. This makes it possible to prevent poor bonding of the second seal portion due to a change in the distance between the first substrate and the second substrate.
 本方法において、前記支持壁は、前記第一シール部に係る前記シール材が固定された前記第一基板と、前記第二シール部に係る前記シール材が固定された前記第二基板とを重ね合わせる工程の前に、前記第一基板又は前記第二基板に固定され得る。支持壁を第一基板又は第二基板に予め固定しておくことで、その後の第一基板と第二基板との重ね合わせ及び位置決めに係る作業を、効率良くかつ精度良く行うことができる。 In the present method, the support wall overlaps the first substrate to which the sealing material related to the first sealing portion is fixed and the second substrate to which the sealing material related to the second sealing portion is fixed. Prior to the matching step, it may be fixed to the first substrate or the second substrate. By fixing the support wall to the first substrate or the second substrate in advance, it is possible to efficiently and accurately perform the subsequent operations related to the overlapping and positioning of the first substrate and the second substrate.
 本方法において、前記第二シール部に係る前記シール材を前記第二基板に固定する工程は、前記第二基板にペースト状の前記ガラスフリットを塗布する工程と、前記第二基板に塗布された前記ガラスフリットを加熱する工程と、を備え得る。 In this method, the steps of fixing the sealing material related to the second sealing portion to the second substrate include a step of applying the paste-like glass frit to the second substrate and a step of applying the glass frit to the second substrate. A step of heating the glass frit may be provided.
 前記ガラスフリットは、ガラス粉末と耐火性フィラーとを含むものであってもよい。 The glass frit may contain glass powder and a refractory filler.
 本発明によれば、電子デバイスの封止性を向上させることが可能である。 According to the present invention, it is possible to improve the sealing property of the electronic device.
第一実施形態に係る電子デバイスの平面図である。It is a top view of the electronic device which concerns on 1st Embodiment. 図1のII―II矢視線断面図である。FIG. 1 is a cross-sectional view taken along the line II-II of FIG. 電子デバイスの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of an electronic device. 電子デバイスの製造方法の準備工程を示す断面図である。It is sectional drawing which shows the preparation process of the manufacturing method of an electronic device. 電子デバイスの製造方法の準備工程を示す断面図である。It is sectional drawing which shows the preparation process of the manufacturing method of an electronic device. 電子デバイスの製造方法の準備工程を示す断面図である。It is sectional drawing which shows the preparation process of the manufacturing method of an electronic device. 電子デバイスの製造方法の準備工程を示す断面図である。It is sectional drawing which shows the preparation process of the manufacturing method of an electronic device. 電子デバイスの製造方法の液晶層形成工程を示す断面図である。It is sectional drawing which shows the liquid crystal layer forming process of the manufacturing method of an electronic device. 電子デバイスの製造方法の液晶層形成工程を示す断面図である。It is sectional drawing which shows the liquid crystal layer forming process of the manufacturing method of an electronic device. 電子デバイスの製造方法の液晶層形成工程を示す断面図である。It is sectional drawing which shows the liquid crystal layer forming process of the manufacturing method of an electronic device. 電子デバイスの製造方法の液晶層形成工程を示す断面図である。It is sectional drawing which shows the liquid crystal layer forming process of the manufacturing method of an electronic device. 電子デバイスの製造方法の接合工程を示す断面図である。It is sectional drawing which shows the joining process of the manufacturing method of an electronic device. 電子デバイスの製造方法の接合工程を示す断面図である。It is sectional drawing which shows the joining process of the manufacturing method of an electronic device. 第二実施形態に係る電子デバイスの平面図である。It is a top view of the electronic device which concerns on 2nd Embodiment. 図14のXV―XV矢視線断面図である。FIG. 14 is a cross-sectional view taken along the line of the XV-XV arrow of FIG. 電子デバイスの製造方法の準備工程を示す断面図である。It is sectional drawing which shows the preparation process of the manufacturing method of an electronic device. 電子デバイスの要部を示す部分断面図である。It is a partial cross-sectional view which shows the main part of an electronic device. 第三実施形態に係る電子デバイスの平面図である。It is a top view of the electronic device which concerns on 3rd Embodiment. 第四実施形態に係る電子デバイスの平面図である。It is a top view of the electronic device which concerns on 4th Embodiment. 電子デバイスの他の例を示す断面図である。It is sectional drawing which shows the other example of an electronic device.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。図1乃至図13は、本発明に係る電子デバイス及びその製造方法の第一実施形態を示す。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. 1 to 13 show a first embodiment of an electronic device according to the present invention and a method for manufacturing the same.
 図1及び図2は、電子デバイスの一例として液晶パネル1を示す。液晶パネル1は、第一基板2と、第二基板3と、第一基板2と第二基板3との間に配される被封止体としての液晶層4と、当該液晶層4を封止するシール部5,6とを備える。 1 and 2 show a liquid crystal panel 1 as an example of an electronic device. The liquid crystal panel 1 seals the first substrate 2, the second substrate 3, the liquid crystal layer 4 as a sealed body arranged between the first substrate 2 and the second substrate 3, and the liquid crystal layer 4. It is provided with sealing portions 5 and 6 for stopping.
 第一基板2及び第二基板3は、透明なガラス板により構成される。各基板2,3に使用されるガラスとしては、例えば、無アルカリガラスが使用されるが、これに限定されない。本実施形態において、無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分の重量比が3000ppm以下のガラスのことである。本発明におけるアルカリ成分の重量比は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。無アルカリガラスとしては、日本電気硝子株式会社製の「OA-10G」や「OA-11」が好適に使用される。 The first substrate 2 and the second substrate 3 are composed of a transparent glass plate. As the glass used for each of the substrates 2 and 3, for example, non-alkali glass is used, but the glass is not limited thereto. In the present embodiment, the non-alkali glass is a glass that does not substantially contain an alkaline component (alkali metal oxide), and specifically, a glass having a weight ratio of an alkaline component of 3000 ppm or less. That is. The weight ratio of the alkaline component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less. As the non-alkali glass, "OA-10G" and "OA-11" manufactured by Nippon Electric Glass Co., Ltd. are preferably used.
 第一基板2及び第二基板3各々の厚みは、例えば、0.1~2.0mm、好ましくは0.2~1.5mm、より好ましくは0.3~1.2mmである。 The thickness of each of the first substrate 2 and the second substrate 3 is, for example, 0.1 to 2.0 mm, preferably 0.2 to 1.5 mm, and more preferably 0.3 to 1.2 mm.
 第一基板2は、第一主面2aと第二主面2bとを有する。第一主面2aは、液晶層4に面しており、第二主面2bは、第一主面2aの反対側に位置する。第一主面2aは、透明導電膜により構成される第一電極層7と、第一電極層7に積層される第一配向膜8とを有する。第二主面2bには、偏光板(図示せず)が設けられる。 The first substrate 2 has a first main surface 2a and a second main surface 2b. The first main surface 2a faces the liquid crystal layer 4, and the second main surface 2b is located on the opposite side of the first main surface 2a. The first main surface 2a has a first electrode layer 7 made of a transparent conductive film and a first alignment film 8 laminated on the first electrode layer 7. A polarizing plate (not shown) is provided on the second main surface 2b.
 第一電極層7(透明導電膜)の材質としては、透光性及び導電性を有するものであれば、特に限定されない。第一電極層7は、例えば、インジウムドープスズ酸化物(ITO)、フッ素ドープスズ酸化物(FTO)、インジウム亜鉛酸化物(IZO)、アルミニウムドープ亜鉛酸化物(AZO)などにより構成される。 The material of the first electrode layer 7 (transparent conductive film) is not particularly limited as long as it has translucency and conductivity. The first electrode layer 7 is composed of, for example, indium-doped tin oxide (ITO), fluorine-doped tin oxide (FTO), indium zinc oxide (IZO), aluminum-doped zinc oxide (AZO), and the like.
 第一配向膜8は、ポリイミド膜その他の材料により構成され、ラビング処理で微小な溝部が形成された透明膜である。液晶層4に含まれる液晶分子は、この第一配向膜8の作用によりプレチルト角で配向され得る。 The first alignment film 8 is a transparent film made of a polyimide film or other material and having minute grooves formed by a rubbing treatment. The liquid crystal molecules contained in the liquid crystal layer 4 can be oriented at a pretilt angle by the action of the first alignment film 8.
 第二基板3は、第一主面3aと第二主面3bとを有する。第一主面3aは、液晶層4に面し、第一基板2の第一主面2aと対向するように配される。第二主面3bは、第一主面3aの反対側に位置する。第一主面3aは、カラーフィルタ層9と、透明導電膜により構成される第二電極層10と、第二電極層10に積層される第二配向膜11とを有する。第二主面3bには、偏光板(図示せず)が設けられる。 The second substrate 3 has a first main surface 3a and a second main surface 3b. The first main surface 3a faces the liquid crystal layer 4 and is arranged so as to face the first main surface 2a of the first substrate 2. The second main surface 3b is located on the opposite side of the first main surface 3a. The first main surface 3a has a color filter layer 9, a second electrode layer 10 composed of a transparent conductive film, and a second alignment film 11 laminated on the second electrode layer 10. A polarizing plate (not shown) is provided on the second main surface 3b.
 カラーフィルタ層9は、ブラックマトリクス及び複数の着色画素により構成される。第二電極層10は、カラーフィルタ層9に積層されている。第二電極層10の材質は、第一電極層7と同様である。また、第二配向膜11は、第一配向膜8と同じ材料により構成さされる。 The color filter layer 9 is composed of a black matrix and a plurality of colored pixels. The second electrode layer 10 is laminated on the color filter layer 9. The material of the second electrode layer 10 is the same as that of the first electrode layer 7. Further, the second alignment film 11 is made of the same material as the first alignment film 8.
 液晶層4は、ネマティック液晶等により構成される。この液晶層4内には、複数のスペーサ12が設けられている。液晶層4は、第一基板2、第二基板3、スペーサ12及びシール部5,6により構成される収容空間に封止されている。 The liquid crystal layer 4 is composed of a nematic liquid crystal or the like. A plurality of spacers 12 are provided in the liquid crystal layer 4. The liquid crystal layer 4 is sealed in a storage space composed of a first substrate 2, a second substrate 3, a spacer 12, and sealing portions 5 and 6.
 スペーサ12は、シリカ等により球状に構成されている。スペーサ12は、第一基板2の第一主面2aと第二基板3の第一主面3aとに接触し、液晶層4が一定の厚みを維持するように、当該液晶層4内に配される。 The spacer 12 is formed in a spherical shape by silica or the like. The spacer 12 comes into contact with the first main surface 2a of the first substrate 2 and the first main surface 3a of the second substrate 3, and is arranged in the liquid crystal layer 4 so that the liquid crystal layer 4 maintains a constant thickness. Will be done.
 なお、スペーサ12は液晶層4の外部に設けても良い。この場合、例えば、球状以外の形状のスペーサを用いても良い。具体的には、板状のガラスをスペーサとして用いても良い。 The spacer 12 may be provided outside the liquid crystal layer 4. In this case, for example, a spacer having a shape other than a spherical shape may be used. Specifically, plate-shaped glass may be used as a spacer.
 シール部5,6は、液晶層4を内側に封止する第一シール部5と、第一シール部5の外側に離れた位置で、当該第一シール部5を包囲する第二シール部6とを含む。 The seal portions 5 and 6 are the first seal portion 5 that seals the liquid crystal layer 4 inside, and the second seal portion 6 that surrounds the first seal portion 5 at a position separated from the outside of the first seal portion 5. And include.
 第一シール部5は、低温硬化性を有するエポキシ樹脂、或いは紫外線硬化樹脂等の有機樹脂系接着材料等からなるシール材を第一基板2と第二基板3との間に介在させ、硬化させることにより構成される。第一シール部5は、液晶層4を包囲するように、平面視において四角形状の環状に構成される(図1参照)。第一シール部5の幅W1(図2参照)は、0.3~5.0mmとされることが好ましく、より好ましくは、0.5~3.0mmである。 The first sealing portion 5 is cured by interposing a sealing material made of an epoxy resin having low temperature curability or an organic resin-based adhesive material such as an ultraviolet curable resin between the first substrate 2 and the second substrate 3. It is composed of. The first seal portion 5 is formed in a rectangular ring shape in a plan view so as to surround the liquid crystal layer 4 (see FIG. 1). The width W1 (see FIG. 2) of the first seal portion 5 is preferably 0.3 to 5.0 mm, more preferably 0.5 to 3.0 mm.
 第二シール部6は、ガラスを含み、例えばガラスフリットの焼成体により構成される。第二シール部6は、第一シール部5から外側に離れた位置に形成される。第二シール部6と第一シール部5との間隔Dは、0.5mm以上であることが好ましい。第二シール部6の幅W2は、第一シール部5の幅W1よりも狭い。第二シール部6の幅W2は、0.3~1.0mmであることが好ましく、より好ましくは、0.3~0.5mmである。 The second seal portion 6 includes glass and is composed of, for example, a fired body of glass frit. The second seal portion 6 is formed at a position separated from the first seal portion 5 to the outside. The distance D between the second seal portion 6 and the first seal portion 5 is preferably 0.5 mm or more. The width W2 of the second seal portion 6 is narrower than the width W1 of the first seal portion 5. The width W2 of the second seal portion 6 is preferably 0.3 to 1.0 mm, more preferably 0.3 to 0.5 mm.
 第二シール部6は、シール材を第一基板2と第二基板3との間に介在させ、当該シール材を加熱することによって軟化変形した後、硬化させることにより形成される。シール材は、例えばガラスフリットにより構成される。ガラスフリットは、ガラス粉末を含み、好ましくはさらに耐火性フィラー粉末を含む。 The second sealing portion 6 is formed by interposing a sealing material between the first substrate 2 and the second substrate 3, softening and deforming the sealing material by heating, and then curing the sealing material. The sealing material is composed of, for example, glass frit. The glass frit contains glass powder, preferably further refractory filler powder.
 ガラス粉末は、加熱された場合に軟化流動して、第一基板2及び第二基板3と反応することで、第二シール部6の接合強度を確保するための材料である。耐火性フィラー粉末は、骨材として作用し、熱膨張係数を低下させるための材料である。 The glass powder is a material for ensuring the bonding strength of the second sealing portion 6 by softening and flowing when heated and reacting with the first substrate 2 and the second substrate 3. The refractory filler powder is a material that acts as an aggregate and reduces the coefficient of thermal expansion.
 ガラス粉末としては、任意の組成を有するガラスを用いて良いが、比較的融点が低いガラスを用いることが好ましい。例えば、ガラス粉末としては、ビスマス系ガラス、銀リン酸系ガラス、および銀テルル系ガラスの何れかを単独で、或いはこれらを混合して用いることが望ましい。 As the glass powder, glass having an arbitrary composition may be used, but it is preferable to use glass having a relatively low melting point. For example, as the glass powder, it is desirable to use any one of bismuth-based glass, silver phosphate-based glass, and silver tellurium-based glass alone or in combination thereof.
 ビスマス系ガラスは、ガラス組成として、モル%で、Bi 25~60%、B 20~35%、CuO+MnO 5~40%を含有することが好ましいが、この組成に限定されるものではない。 The bismuth-based glass preferably contains Bi 2 O 3 25 to 60%, B 2 O 3 20 to 35%, and CuO + MnO 5 to 40% in mol%, but is limited to this composition. It's not a thing.
 銀リン酸系ガラス粉末は、ガラス組成として、モル%で、Ag2O+AgI 15~85%、TeO2 0~35%、P25 10~55%、Ga23 0~20%、TeO2 0~60%、ZnO 0~50%、Nb25 0~30%、B23 0~15%、WO3 0~30%を含有することが好ましいが、この組成に限定されるものではない。 The silver phosphate-based glass powder has a glass composition of Ag 2 O + Ag I 15 to 85%, TeO 20 to 35%, P 2 O 5 10 to 55%, Ga 2 O 30 to 20%, and TeO. 2 0 ~ 60%, ZnO 0 ~ 50%, Nb 2 O 5 0 ~ 30%, B 2 O 3 0 ~ 15%, but preferably contains WO 3 0 ~ 30%, is limited to the composition It's not a thing.
 銀テルル系ガラス粉末は、ガラス組成として、モル%で、Ag2O+AgI 15~85%、TeO2 10~60%、P25 0~35%、Ga23 0~20%、TeO2 0~60%、ZnO 0~50%、Nb25 0~30%、B23 0~15%、WO3 0~30%を含有することが好ましいが、この組成に限定されるものではない。 Silver telluride glass powder, as a glass composition, in mol%, Ag 2 O + AgI 15 ~ 85%, TeO 2 10 ~ 60%, P 2 O 5 0 ~ 35%, Ga 2 O 3 0 ~ 20%, TeO 2 0 ~ 60%, ZnO 0 ~ 50%, Nb 2 O 5 0 ~ 30%, B 2 O 3 0 ~ 15%, but preferably contains WO 3 0 ~ 30%, limited to this composition is not.
 上述例示したような組成を有するガラス粉末であれば、好適にレーザ光のエネルギーを吸収し加熱されるとともに、比較的低温で融解し素早く封止を行うことが可能である。 A glass powder having a composition as exemplified above can suitably absorb the energy of laser light and be heated, and can be melted at a relatively low temperature and quickly sealed.
 耐火性フィラー粉末としては、種々の無機フィラー材料が使用可能であるが、その中でも、コーディライト、ジルコン、酸化錫、酸化ニオブ、リン酸ジルコニウム系セラミック、ウイレマイト、β-ユークリプタイト、β-石英固溶体から選ばれる一種又は二種以上の材料により構成されることが好ましい。 Various inorganic filler materials can be used as the refractory filler powder, and among them, cordylite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, β-eucryptite, and β-quartz. It is preferably composed of one or more materials selected from the solid solution.
 ガラス粉末及び耐火性フィラー粉末の平均粒径D50は、2μm未満とされることが好ましい。ここで、「平均粒径D50」とは、レーザ回折法で測定した値であって、レーザ回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒径を意味する。 The average particle size D 50 of the glass powder and the refractory filler powder is preferably less than 2 μm. Here, the "average particle size D 50 " is a value measured by the laser diffraction method, and the integrated amount is from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method. It means a particle size that is cumulatively 50%.
 ガラス粉末及び耐火性フィラー粉末の最大粒径D99は、10μm未満とされることが好ましい。ここで、「最大粒径D99」とは、レーザ回折法で測定した値であって、レーザ回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒径を意味する。 The maximum particle size D 99 of the glass powder and the refractory filler powder is preferably less than 10 μm. Here, the "maximum particle size D 99 " is a value measured by the laser diffraction method, and in the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the integrated amount starts from the smaller particle. It means a particle size that is 99% cumulative.
 上記ガラスフリットにはさらに、レーザ光の熱を吸収する吸収剤をさらに添加しても良い。吸収剤としては、例えば、着色樹脂や、遷移金属酸化物の粉末等を使用可能である。 An absorbent that absorbs the heat of the laser beam may be further added to the glass frit. As the absorbent, for example, a colored resin, a powder of a transition metal oxide, or the like can be used.
 第二シール部6の30~300℃における平均線熱膨張係数は5.5~9.5ppmである。 The average coefficient of linear thermal expansion of the second seal portion 6 at 30 to 300 ° C. is 5.5 to 9.5 ppm.
 以下、上記構成の液晶パネル1を製造する方法について説明する。図3に示すように、本方法は、第一基板2に第一電極層7等を形成し、又は第二基板3にカラーフィルタ層9等を形成する準備工程S1と、準備工程S1後に、第一基板2と第二基板3とを重ね合わせて液晶層4を形成する工程(液晶層形成工程)S2と、第一基板2と第二基板3とを接合する工程(接合工程)S3とを備える。 Hereinafter, a method for manufacturing the liquid crystal panel 1 having the above configuration will be described. As shown in FIG. 3, in this method, after the preparatory step S1 for forming the first electrode layer 7 and the like on the first substrate 2 or the color filter layer 9 and the like on the second substrate 3, and after the preparatory step S1. A step of forming a liquid crystal layer 4 by superimposing a first substrate 2 and a second substrate 3 (liquid crystal layer forming step) S2, and a step of joining the first substrate 2 and the second substrate 3 (bonding step) S3. To be equipped.
 準備工程S1では、図4に示すように、第一基板2の第一主面2aに、第一電極層7と第一配向膜8とを形成する。第一電極層7を形成するには、蒸着法、スパッタリング法、CVD法等の成膜法により、第一基板2の第一主面2aに透明導電膜を形成する。その後、透明導電膜にフォトレジスト(光感光性樹脂)を塗布してレジスト層を形成する(レジスト層形成工程)。次に、レジスト層にフォトマスクを被せて光(例えば紫外線)を照射する(露光工程)。これにより、フォトマスクに形成された所定形状のパターンがレジスト層に転写される。その後、レジスト層にレジスト現像液を供給する(現像工程)。例えばポジ型レジスト層を用いた場合は、レジスト層の露光部分が除去され、透明導電膜上にレジスト層によるレジストパターンが形成される。そして、透明導電膜に対してエッチング処理を行い、当該透明導電膜における不要部分を除去する(エッチング工程)。最後に、透明導電膜上に残存していたレジスト層を除去することで(剥離工程)、第一基板2の第一主面2aに、第一電極層7が形成される。 In the preparation step S1, as shown in FIG. 4, the first electrode layer 7 and the first alignment film 8 are formed on the first main surface 2a of the first substrate 2. In order to form the first electrode layer 7, a transparent conductive film is formed on the first main surface 2a of the first substrate 2 by a film forming method such as a vapor deposition method, a sputtering method, or a CVD method. Then, a photoresist (photosensitive resin) is applied to the transparent conductive film to form a resist layer (resist layer forming step). Next, the resist layer is covered with a photomask and irradiated with light (for example, ultraviolet rays) (exposure step). As a result, the pattern having a predetermined shape formed on the photomask is transferred to the resist layer. Then, a resist developer is supplied to the resist layer (development step). For example, when a positive resist layer is used, the exposed portion of the resist layer is removed, and a resist pattern formed by the resist layer is formed on the transparent conductive film. Then, the transparent conductive film is etched to remove unnecessary portions of the transparent conductive film (etching step). Finally, by removing the resist layer remaining on the transparent conductive film (peeling step), the first electrode layer 7 is formed on the first main surface 2a of the first substrate 2.
 その後、第一電極層7に第一配向膜8が積層される。第一配向膜8を形成するには、配向膜材料を第一電極層7に重なるように塗布(例えばスクリーン印刷)した後、当該配向膜材料を加熱して乾燥させる。その後、ラビングロールによって、第一配向膜8の表面に複数の微小な溝部を形成する(ラビング処理)。以上により、第一基板2の第一主面2aには、第一電極層7及び第一配向膜8が形成される。 After that, the first alignment film 8 is laminated on the first electrode layer 7. In order to form the first alignment film 8, the alignment film material is applied so as to overlap the first electrode layer 7 (for example, screen printing), and then the alignment film material is heated and dried. Then, a rubbing roll is used to form a plurality of minute grooves on the surface of the first alignment film 8 (rubbing treatment). As described above, the first electrode layer 7 and the first alignment film 8 are formed on the first main surface 2a of the first substrate 2.
 次に、図5に示すように、第一基板2に第一シール部5が固定される(固定工程)。固定工程では、ペースト状の樹脂材料からなるシール材5aをディスペンサにより第一基板2の第一主面2aに対して環状に塗布する。その後、シール材5aを加熱して乾燥させる。これにより、第一主面2aに第一電極層7、第一配向膜8及び第一シール部5(シール材5a)が形成された第一基板2が用意される。 Next, as shown in FIG. 5, the first seal portion 5 is fixed to the first substrate 2 (fixing step). In the fixing step, the sealing material 5a made of a paste-like resin material is cyclically applied to the first main surface 2a of the first substrate 2 by a dispenser. Then, the sealing material 5a is heated and dried. As a result, the first substrate 2 in which the first electrode layer 7, the first alignment film 8 and the first sealing portion 5 (sealing material 5a) are formed on the first main surface 2a is prepared.
 また、準備工程S1では、図6に示すように、第二基板3にカラーフィルタ層9、第二電極層10、及び第二配向膜11が形成される。カラーフィルタ層9を形成する工程では、第二基板3の第一主面3aにブラックマトリクスを形成した後、カラーレジスト塗布工程、露光工程、現像・ベーキング工程を繰り返す。これにより、複数色(RGB)に対応するカラーフィルタ層9が第一主面3aに形成される。 Further, in the preparation step S1, as shown in FIG. 6, a color filter layer 9, a second electrode layer 10, and a second alignment film 11 are formed on the second substrate 3. In the step of forming the color filter layer 9, after forming a black matrix on the first main surface 3a of the second substrate 3, the color resist coating step, the exposure step, and the developing / baking step are repeated. As a result, the color filter layer 9 corresponding to the plurality of colors (RGB) is formed on the first main surface 3a.
 次に、第二基板3の第一主面3aに、第二電極層10が積層される。第二電極層10は、第一電極層7と同様に、蒸着法等の成膜法によりカラーフィルタ層9に積層される。その後、第二基板3の第一主面3aに、第二配向膜11が形成される。第二配向膜11は、第一配向膜8の場合と同様に、塗布工程、乾燥工程及びラビング処理を経て第二電極層10に積層される。 Next, the second electrode layer 10 is laminated on the first main surface 3a of the second substrate 3. The second electrode layer 10 is laminated on the color filter layer 9 by a film forming method such as a vapor deposition method, similarly to the first electrode layer 7. After that, the second alignment film 11 is formed on the first main surface 3a of the second substrate 3. The second alignment film 11 is laminated on the second electrode layer 10 through a coating step, a drying step, and a rubbing treatment, as in the case of the first alignment film 8.
 次に、図7に示すように、第二基板3の第一主面3aに、第二シール部6が固定される。具体的には、ガラスフリットからなるシール材6aが第一主面3aに塗布される(塗布工程)。この塗布工程では、例えばスクリーン印刷、ディスペンサ等により、ペースト状のガラスフリットを第二基板3の第一主面3aに対して環状に塗布する。この際、ガラスフリットは、有機ビークルと混合されて成るガラスペーストの状態とすることが好ましい。 Next, as shown in FIG. 7, the second seal portion 6 is fixed to the first main surface 3a of the second substrate 3. Specifically, the sealing material 6a made of glass frit is applied to the first main surface 3a (coating step). In this coating step, the paste-like glass frit is cyclically coated on the first main surface 3a of the second substrate 3 by, for example, screen printing or a dispenser. At this time, the glass frit is preferably in the state of a glass paste mixed with an organic vehicle.
 その後、レーザ光(図示せず)をガラスフリットに照射し、または電気炉等によってガラスフリットを加熱する(加熱工程)。この加熱工程は、第二基板3の歪点以下の温度で行われることが望ましい。これにより、ガラスフリットのガラス粉末を軟化流動させることで、当該ガラスフリットを第二基板3の第一主面3aに融着させる。ガラスフリット(シール材6a)は、その少なくとも表面が固化することにより第二基板3に仮固定される。 After that, the glass frit is irradiated with laser light (not shown), or the glass frit is heated by an electric furnace or the like (heating step). It is desirable that this heating step be performed at a temperature equal to or lower than the strain point of the second substrate 3. As a result, the glass powder of the glass frit is softened and flowed, so that the glass frit is fused to the first main surface 3a of the second substrate 3. The glass frit (sealing material 6a) is temporarily fixed to the second substrate 3 by solidifying at least its surface.
 次に、図8に示すように、複数のスペーサ12が第二基板3の第一主面3aに散布される。その後、第二基板3を所定温度(例えば120℃)で加熱することで、スペーサ12は、第二基板3に仮固定される。 Next, as shown in FIG. 8, a plurality of spacers 12 are sprayed on the first main surface 3a of the second substrate 3. After that, the spacer 12 is temporarily fixed to the second substrate 3 by heating the second substrate 3 at a predetermined temperature (for example, 120 ° C.).
 液晶層形成工程S2では、図9及び図10に示すように、第一基板2の第一主面2aにおいて、第一シール部5によって包囲されている部分に、液晶4aが供給される(液晶充填工程)。なお、本実施形態に係る液晶層形成工程S2では、ワンドロップフィル法(ODF法)により液晶層4を形成するが、これに限らず他の方法により液晶層4を形成してもよい。 In the liquid crystal layer forming step S2, as shown in FIGS. 9 and 10, the liquid crystal 4a is supplied to the portion of the first main surface 2a of the first substrate 2 surrounded by the first seal portion 5 (liquid crystal). Filling process). In the liquid crystal layer forming step S2 according to the present embodiment, the liquid crystal layer 4 is formed by the one-drop fill method (ODF method), but the liquid crystal layer 4 may be formed by another method.
 図9に示すように、液晶4aは、第一基板2の上方に配置される液晶供給装置13から滴下される。液晶供給装置13は、移動しながら第一基板2の第一主面2aに多数の液晶4aを滴下する。これにより、第一シール部5の内側に所定量の液晶4aが充填される(図10参照)。 As shown in FIG. 9, the liquid crystal 4a is dropped from the liquid crystal supply device 13 arranged above the first substrate 2. The liquid crystal supply device 13 drops a large number of liquid crystals 4a onto the first main surface 2a of the first substrate 2 while moving. As a result, a predetermined amount of liquid crystal 4a is filled inside the first seal portion 5 (see FIG. 10).
 図11に示すように、第一基板2及び第二基板3は、真空チャンバ14に収容され、この真空チャンバ14内で重ね合わせられる(積層工程)。第一基板2は、真空チャンバ14内に配されるテーブル14aに載置される。第二基板3は、第一主面3aを下方に向けた状態で、下側に位置する第一基板2に重ね合わせられる。これにより、第一基板2と第二基板3との間に液晶層4が形成される。液晶層4内には、第二基板3に仮固定されていたスペーサ12が配置される。以上により、第一基板2、液晶層4及び第二基板3が積層してなる積層体LMが構成される。その後、積層体LMは真空チャンバ14から取り出され、次の接合工程S3へと移行する。 As shown in FIG. 11, the first substrate 2 and the second substrate 3 are housed in a vacuum chamber 14 and are superposed in the vacuum chamber 14 (lamination step). The first substrate 2 is placed on a table 14a arranged in the vacuum chamber 14. The second substrate 3 is superposed on the first substrate 2 located on the lower side with the first main surface 3a facing downward. As a result, the liquid crystal layer 4 is formed between the first substrate 2 and the second substrate 3. A spacer 12 temporarily fixed to the second substrate 3 is arranged in the liquid crystal layer 4. As described above, the laminated body LM formed by laminating the first substrate 2, the liquid crystal layer 4, and the second substrate 3 is formed. After that, the laminated body LM is taken out from the vacuum chamber 14 and proceeds to the next joining step S3.
 接合工程S3は、第一シール部5によって第一基板2と第二基板3とを接合する第一接合工程と、第一接合工程後に第二シール部6によって第一基板2と第二基板3とを接合する第二接合工程とを含む。 The joining step S3 includes a first joining step of joining the first substrate 2 and the second substrate 3 by the first sealing portion 5, and a second sealing portion 6 after the first joining step of the first substrate 2 and the second substrate 3. Includes a second joining step of joining with.
 図12に示すように、第一接合工程では、紫外線照射装置15により、積層体LMの第一シール部5(シール材5a)に紫外線UVを照射する(紫外線照射工程)。その後、当該積層体LMを加熱することで、第一基板2に固定されていた第一シール部5は、当該第一基板2の第一主面2aと第二基板3の第一主面3aとを接合する。環状の第一シール部5がその全周に亘り第一基板2と第二基板3とを接合することで、液晶層4は、当該第一シール部5の内側に封止される。 As shown in FIG. 12, in the first joining step, the first sealing portion 5 (sealing material 5a) of the laminated LM is irradiated with ultraviolet UV by the ultraviolet irradiation device 15 (ultraviolet irradiation step). After that, by heating the laminated body LM, the first sealing portion 5 fixed to the first substrate 2 becomes the first main surface 2a of the first substrate 2 and the first main surface 3a of the second substrate 3. And join. The liquid crystal layer 4 is sealed inside the first seal portion 5 by the annular first seal portion 5 joining the first substrate 2 and the second substrate 3 over the entire circumference thereof.
 図13に示すように、第二接合工程では、積層体LMの上方に配置されるレーザ照射装置16から、第二シール部6(シール材6a)に向かってレーザ光Lが照射される(レーザ照射工程)。使用されるレーザとしては、半導体レーザが好適に使用されるが、これに限らず、YAGレーザ、COレーザ、エキシマレーザ、赤外レーザ等の各種レーザを使用してもよい。レーザ光Lの波長は、600~1600nmとされることが好ましいが、この範囲に限定されない。 As shown in FIG. 13, in the second joining step, the laser beam L is irradiated from the laser irradiation device 16 arranged above the laminated body LM toward the second sealing portion 6 (sealing material 6a) (laser). Irradiation process). As the laser to be used, a semiconductor laser is preferably used, but the laser is not limited to this, and various lasers such as a YAG laser, a CO 2 laser, an excimer laser, and an infrared laser may be used. The wavelength of the laser beam L is preferably 600 to 1600 nm, but is not limited to this range.
 レーザ光Lのスポット径DLは、第二シール部6の幅W2よりも大きく設定されることが望ましい。これにより、第二シール部6の全幅に亘ってレーザ光Lが照射される。このとき、第一シール部5が第二シール部6から離れた位置にあるため、レーザ光Lは当該第一シール部5に照射されない。第二シール部6と第一シール部5との間隔Dは、レーザ光Lが第一シール部5に照射されないように、当該レーザ光Lのスポット径DLとの関係で設定されることが望ましい。 It is desirable that the spot diameter DL of the laser beam L is set to be larger than the width W2 of the second seal portion 6. As a result, the laser beam L is irradiated over the entire width of the second seal portion 6. At this time, since the first seal portion 5 is located at a position away from the second seal portion 6, the laser beam L is not applied to the first seal portion 5. It is desirable that the distance D between the second seal portion 6 and the first seal portion 5 is set in relation to the spot diameter DL of the laser beam L so that the laser beam L is not irradiated to the first seal portion 5. ..
 レーザ照射装置16は、レーザ光Lを第二シール部6に沿って走査する。レーザ光Lは、環状に構成される第二シール部6の全周に亘って照射される。また、レーザ照射装置16は、第二シール部6の環形状に沿って1回、又は複数回に亘り周回するようにレーザ光Lを照射する。 The laser irradiation device 16 scans the laser beam L along the second seal portion 6. The laser beam L is irradiated over the entire circumference of the second sealing portion 6 formed in an annular shape. Further, the laser irradiation device 16 irradiates the laser beam L so as to orbit once or a plurality of times along the ring shape of the second seal portion 6.
 レーザ光Lは、第二基板3を透過してシール材6a(ガラスフリット)に照射される。レーザ光Lの加熱により、シール材6aは、そのガラス成分(ガラス粉末)が軟化し、第一基板2の第一主面2a及び第二基板3の第一主面3aに融着する。シール材6aが凝固することにより、第一シール部5の外側で、第一基板2と第二基板3とを接合する、ガラスフリット焼成体から成る第二シール部6が形成される。具体的には、第二シール部6は、上述のガラスおよび耐火性フィラー等を含む混合焼成体により構成される。第二シール部6においてガラスは非晶質の状態であっても良いし、結晶化された状態であっても良いし、これらが混在した状態であっても良い。第二シール部6は、その全周に亘って第一基板2と第二基板3とを接合することで、その内側の領域を封止する。 The laser beam L passes through the second substrate 3 and irradiates the sealing material 6a (glass frit). By heating the laser beam L, the glass component (glass powder) of the sealing material 6a is softened and fused to the first main surface 2a of the first substrate 2 and the first main surface 3a of the second substrate 3. By solidifying the sealing material 6a, a second sealing portion 6 made of a fired glass frit body is formed on the outside of the first sealing portion 5 to join the first substrate 2 and the second substrate 3. Specifically, the second seal portion 6 is composed of a mixed fired body containing the above-mentioned glass, a refractory filler, and the like. In the second sealing portion 6, the glass may be in an amorphous state, a crystallized state, or a mixed state thereof. The second sealing portion 6 seals the inner region thereof by joining the first substrate 2 and the second substrate 3 over the entire circumference thereof.
 以上により、第一シール部5及び第二シール部6によって、被封止体である液晶層4が第一基板2と第二基板3との間に封止されてなる液晶パネル1が完成する。 As described above, the liquid crystal panel 1 in which the liquid crystal layer 4 to be sealed is sealed between the first substrate 2 and the second substrate 3 is completed by the first seal portion 5 and the second seal portion 6. ..
 以上説明した本実施形態に係る電子デバイスの製造方法によれば、液晶層4を第一シール部5と第二シール部6とにより封止することで、電子デバイスにおける被封止体(液晶層4)の封止性を向上させることができる。第二シール部6は、ガラスフリット焼成体により構成されることから、気密性が高く、液晶層4への水分透過を確実に防止できる。また、ガラスフリット焼成体は、樹脂や金属などの他の一般的なシール材料に比べ耐候性や科学的耐久性に優れるため、過酷な環境下においても長期にわたり高い気密性能を維持可能である。 According to the method for manufacturing an electronic device according to the present embodiment described above, the liquid crystal layer 4 is sealed by the first seal portion 5 and the second seal portion 6, so that the sealed body (liquid crystal layer) in the electronic device is sealed. The sealing property of 4) can be improved. Since the second seal portion 6 is made of a fired glass frit body, it is highly airtight and can reliably prevent moisture from permeating into the liquid crystal layer 4. Further, since the glass frit fired body is superior in weather resistance and scientific durability as compared with other general sealing materials such as resin and metal, it is possible to maintain high airtightness performance for a long period of time even in a harsh environment.
 図14乃至図17は、本発明の第二実施形態を示す。本実施形態に係る電子デバイス(液晶パネル1)は、第二シール部6の外側に、第一基板2と第二基板3とを接合する支持壁17を備える。支持壁17は、第一シール部5と同じ材料、すなわち熱硬化性樹脂又は紫外線硬化性樹脂により構成される。 14 to 17 show a second embodiment of the present invention. The electronic device (liquid crystal panel 1) according to the present embodiment includes a support wall 17 for joining the first substrate 2 and the second substrate 3 on the outside of the second seal portion 6. The support wall 17 is made of the same material as the first seal portion 5, that is, a thermosetting resin or an ultraviolet curable resin.
 図14に示すように、支持壁17は、第二シール部6を全周に亘って包囲するように、四角形状かつ環状に構成される。支持壁17は、その全周に亘って連続的に第一基板2と第二基板3とを接合する。支持壁17は、第二シール部6から外側に離間されている。 As shown in FIG. 14, the support wall 17 is formed in a quadrangular shape and an annular shape so as to surround the second seal portion 6 over the entire circumference. The support wall 17 continuously joins the first substrate 2 and the second substrate 3 over the entire circumference thereof. The support wall 17 is separated outward from the second seal portion 6.
 図15に示すように、支持壁17と第二シール部6との間隔D2は、第一シール部5と第二シール部6の間隔D1と同程度とされる。この間隔D2は、0.5mm以上であることが望ましい。この間隔D2は、レーザ光Lのスポット径DLとの関係で、レーザ光Lが支持壁17に照射されない範囲に設定されることが望ましい。 As shown in FIG. 15, the distance D2 between the support wall 17 and the second seal portion 6 is about the same as the distance D1 between the first seal portion 5 and the second seal portion 6. The interval D2 is preferably 0.5 mm or more. It is desirable that the interval D2 is set in a range in which the laser beam L is not irradiated on the support wall 17 in relation to the spot diameter DL of the laser beam L.
 本実施形態では、第一シール部5と第一基板2の第一主面2aとの間、及び第一シール部5と第二基板3の第一主面3aとの間に配向膜8,11が介在している。一方、第二シール部6は、第一基板2との間、及び第二基板3との間に配向膜8,11が介在することなく、第一基板2の第一主面2aと第二基板3の第一主面3aとを直接的に接合している。同様に、支持壁17は、各基板2,3との間に配向膜8,11が介在することなく、各基板2,3の各第一主面2a,3aを直接的に接合している。 In the present embodiment, the alignment film 8 is provided between the first sealing portion 5 and the first main surface 2a of the first substrate 2 and between the first sealing portion 5 and the first main surface 3a of the second substrate 3. 11 is intervening. On the other hand, the second sealing portion 6 has the first main surface 2a and the second of the first substrate 2 without the alignment films 8 and 11 intervening between the first substrate 2 and the second substrate 3. It is directly joined to the first main surface 3a of the substrate 3. Similarly, the support wall 17 directly joins the first main surfaces 2a and 3a of the substrates 2 and 3 without the alignment films 8 and 11 intervening between the substrates 2 and 3. ..
 支持壁17の幅W3は、第一シール部5の幅W1とほぼ等しく、第二シール部6の幅W2よりも広い。支持壁17の幅W3は、0.3~5.0mmであることが好ましく、より好ましくは、0.5~3.0mmである。 The width W3 of the support wall 17 is substantially equal to the width W1 of the first seal portion 5 and wider than the width W2 of the second seal portion 6. The width W3 of the support wall 17 is preferably 0.3 to 5.0 mm, more preferably 0.5 to 3.0 mm.
 第一シール部5は、内部にスペーサ12を有する。このスペーサ12は、液晶層4内に配置されるものと同じ材料で構成され、同じ寸法を有する。第一シール部5の幅W1は、スペーサ12の直径DSよりも広い。これにより、第一シール部5は、第一基板2と第二基板3との間隔を適正に維持した状態で両者を接合できる。 The first seal portion 5 has a spacer 12 inside. The spacer 12 is made of the same material as that arranged in the liquid crystal layer 4 and has the same dimensions. The width W1 of the first seal portion 5 is wider than the diameter DS of the spacer 12. As a result, the first seal portion 5 can join the first substrate 2 and the second substrate 3 while maintaining an appropriate distance between them.
 また、第二基板3の第二主面3bには、透明導電膜18が形成されている。これにより、第二主面3bの帯電を防止し、液晶パネル1の表面に対する塵埃等の付着を防止できる。 Further, a transparent conductive film 18 is formed on the second main surface 3b of the second substrate 3. As a result, it is possible to prevent the second main surface 3b from being charged and to prevent dust and the like from adhering to the surface of the liquid crystal panel 1.
 本実施形態におけるその他の構成は、第一実施形態と同じである。本実施形態において、第一実施形態と共通する構成要素には、共通の符号を付している。 Other configurations in this embodiment are the same as those in the first embodiment. In the present embodiment, the components common to the first embodiment are designated by a common reference numeral.
 本実施形態に係る液晶パネル1を製造するには、図16に示すように、準備工程S1において、第一基板2の第一主面2aに第一シール部5と支持壁17とを固定する。換言すると、第一シール部5が固定された第一基板2と、第二シール部6が固定された第二基板3とを重ね合わせる液晶層形成工程S2よりも前に、支持壁17は、第一基板2に固定される。 In order to manufacture the liquid crystal panel 1 according to the present embodiment, as shown in FIG. 16, in the preparation step S1, the first seal portion 5 and the support wall 17 are fixed to the first main surface 2a of the first substrate 2. .. In other words, the support wall 17 is placed before the liquid crystal layer forming step S2 in which the first substrate 2 to which the first seal portion 5 is fixed and the second substrate 3 to which the second seal portion 6 is fixed are overlapped. It is fixed to the first substrate 2.
 第一シール部5および支持壁17は、各々順次第一基板2に固定されてよい。すなわち、シール材5aの塗布に用いたディスペンサ装置を用いて、支持壁17の材料となる樹脂材17aを第一基板2の第一主面2aに塗布してもよい。このような構成によれば、既存設備を流用して容易且つ低コストに支持壁17を有する液晶パネル1を製造可能である。 The first seal portion 5 and the support wall 17 may be sequentially fixed to the first substrate 2, respectively. That is, the resin material 17a, which is the material of the support wall 17, may be applied to the first main surface 2a of the first substrate 2 by using the dispenser device used for applying the sealing material 5a. According to such a configuration, it is possible to manufacture the liquid crystal panel 1 having the support wall 17 easily and at low cost by diverting the existing equipment.
 また、第一シール部5および支持壁17は、同時に第一基板2に固定されてもよい。例えば、複数のノズルを備えたディスペンサ装置を用いて、一方のノズルで第一シール部5のシール材5aを、他方のノズルで支持壁17の樹脂材17aを塗布することにより、第一基板2にシール材5a及び樹脂材17aを同時に固定可能である。このような構成によれば、短いタクトタイムで支持壁17を有する液晶パネル1を製造可能である。 Further, the first seal portion 5 and the support wall 17 may be fixed to the first substrate 2 at the same time. For example, using a dispenser device provided with a plurality of nozzles, the first substrate 2 is coated with the sealing material 5a of the first sealing portion 5 with one nozzle and the resin material 17a of the support wall 17 with the other nozzle. The sealing material 5a and the resin material 17a can be fixed at the same time. According to such a configuration, the liquid crystal panel 1 having the support wall 17 can be manufactured in a short tact time.
 液晶層形成工程S2後、第一接合工程において、第一シール部5(シール材5a)と支持壁17(樹脂材17a)とに紫外線UVを照射し、その後に加熱することで、第一シール部5及び支持壁17によって第一基板2と第二基板3とを接合する。その後、第二接合工程において、第二シール部6にレーザ光Lを照射し、第一基板2と第二基板3とを接合する。 After the liquid crystal layer forming step S2, in the first joining step, the first sealing portion 5 (sealing material 5a) and the support wall 17 (resin material 17a) are irradiated with ultraviolet UV UV, and then heated to perform the first sealing. The first substrate 2 and the second substrate 3 are joined by the portion 5 and the support wall 17. After that, in the second joining step, the second sealing portion 6 is irradiated with the laser beam L to join the first substrate 2 and the second substrate 3.
 第一基板2および第二基板3の大きさ、厚さによっては、液晶層形成工程S2後又は第一接合工程後に、第二基板3に反りが生じる場合がある。図17に示すように、第二基板3の反りは、第一シール部5から第二シール部6に向かって突出する第二基板3の端部(二点鎖線で示す部分)に生じやすい。このような反りが生じた場合、図17において二点鎖線で示すように、第二基板3の第一主面3aに固定されているシール材6aが第一基板2の第一主面2aから離れた状態となるおそれがある。 Depending on the size and thickness of the first substrate 2 and the second substrate 3, the second substrate 3 may be warped after the liquid crystal layer forming step S2 or the first bonding step. As shown in FIG. 17, the warp of the second substrate 3 is likely to occur at the end portion (the portion indicated by the alternate long and short dash line) of the second substrate 3 protruding from the first seal portion 5 toward the second seal portion 6. When such a warp occurs, as shown by the alternate long and short dash line in FIG. 17, the sealing material 6a fixed to the first main surface 3a of the second substrate 3 starts from the first main surface 2a of the first substrate 2. There is a risk of being separated.
 本実施形態のように、第二シール部6の外側に支持壁17を設け、第一接合工程において第一基板2と第二基板3とを支持壁17により接合することで、上記のような第二基板3の反りの発生を防止できる。これにより、第二接合工程において、第二シール部6による第一基板2と第二基板3との接合を確実に行うことができる。また、支持壁17は、第一シール部5と同様に、連続的かつ環状に構成されることから、その内側を封止する第三シール部としても機能する。これにより、液晶パネル1の封止性をより一層向上させることができる。また、第一シール部5と各基板2,3との間に配向膜8,11が介在する場合であっても、第二シール部6によって各基板2,3を直接的に接合することで、液晶層4の封止性を高く維持できる。 As in the present embodiment, the support wall 17 is provided on the outside of the second seal portion 6, and the first substrate 2 and the second substrate 3 are joined by the support wall 17 in the first joining step, as described above. It is possible to prevent the occurrence of warpage of the second substrate 3. As a result, in the second joining step, the first substrate 2 and the second substrate 3 can be reliably joined by the second sealing portion 6. Further, since the support wall 17 is continuously and annularly formed like the first seal portion 5, it also functions as a third seal portion that seals the inside thereof. Thereby, the sealing property of the liquid crystal panel 1 can be further improved. Further, even when the alignment films 8 and 11 are interposed between the first sealing portion 5 and the respective substrates 2 and 3, the substrates 2 and 3 are directly bonded by the second sealing portion 6. , The sealing property of the liquid crystal layer 4 can be maintained high.
 なお、本実施形態において、第一実施形態と同様に、第一シール部5内部にスペーサ12を有しない態様としても良い。 Note that, in the present embodiment, as in the first embodiment, the spacer 12 may not be provided inside the first seal portion 5.
 図18は、本発明の第三実施形態を示す。本実施形態では、支持壁17の構成が第二実施形態と異なる。第二実施形態において、支持壁17は、連続的な環状部として構成されていたが、本実施形態に係る支持壁17は、第二シール部6を断続的に包囲する環状部として構成される。すなわち、本実施形態では、複数の支持壁17Aが所定の間隔をおいて、第二シール部6の周囲に環状に配されている。 FIG. 18 shows a third embodiment of the present invention. In the present embodiment, the configuration of the support wall 17 is different from that of the second embodiment. In the second embodiment, the support wall 17 is configured as a continuous annular portion, but the support wall 17 according to the present embodiment is configured as an annular portion that intermittently surrounds the second seal portion 6. .. That is, in the present embodiment, a plurality of support walls 17A are arranged in an annular shape around the second seal portion 6 at predetermined intervals.
 図19は、本発明の第四実施形態を示す。本実施形態では、複数の液晶素子を備えた液晶パネル1を例示する。液晶パネル1における複数の液晶層4の封止態様は第二実施形態と同じであり、第一シール部5、第二シール部6及び支持壁17により構成される。この液晶パネル1は、二点鎖線で示す切断線CLに沿って切断され得る。これにより、各液晶素子を分割し、分割された液晶素子を個別に液晶パネルとして構成できる。これにより、電子デバイスを効率良く量産することが可能になる。 FIG. 19 shows a fourth embodiment of the present invention. In this embodiment, a liquid crystal panel 1 including a plurality of liquid crystal elements will be illustrated. The sealing mode of the plurality of liquid crystal layers 4 in the liquid crystal panel 1 is the same as that of the second embodiment, and is composed of the first sealing portion 5, the second sealing portion 6, and the support wall 17. The liquid crystal panel 1 can be cut along the cutting line CL indicated by the alternate long and short dash line. As a result, each liquid crystal element can be divided, and the divided liquid crystal elements can be individually configured as a liquid crystal panel. This makes it possible to efficiently mass-produce electronic devices.
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect. The present invention can be modified in various ways without departing from the gist of the present invention.
 上記の実施形態では、電子デバイスとして、液晶パネル1(液晶ディスプレイ)を例示したが、本発明はこの構成に限定されない。例えば、本発明は、有機ELディスプレイや、液晶素子又は有機EL素子からなる照明装置、車載用のレーザ走査装置、ミラーモニター装置、半導体パッケージデバイス、その他の各種電子デバイスに適用できる。すなわち、本発明における被封止体は液晶層4に限られず、有機ペーストの印刷層、偏光材料、半導体素子、その他液状物や固形物であって良い。 In the above embodiment, the liquid crystal panel 1 (liquid crystal display) is exemplified as the electronic device, but the present invention is not limited to this configuration. For example, the present invention can be applied to an organic EL display, a lighting device composed of a liquid crystal element or an organic EL element, an in-vehicle laser scanning device, a mirror monitor device, a semiconductor package device, and various other electronic devices. That is, the material to be sealed in the present invention is not limited to the liquid crystal layer 4, and may be a printing layer of an organic paste, a polarizing material, a semiconductor element, or other liquid or solid material.
 上記の実施形態では、第二シール部6が固定された第二基板3を第一基板2に重ね合わせることで、積層体LMを構成する例を示したが、本発明はこの態様に限定されるものではない。例えば、第一基板2に第一シール部5及び第二シール部6を固定しておき、シール部を有していない第二基板3を第一基板2に重ね合わせてもよい。また、上記の実施形態では、準備工程S1において、第一基板2に支持壁17を固定する例を示したが、これに限らず、当該支持壁17を第二基板3に固定してもよい。 In the above embodiment, an example is shown in which the laminated body LM is formed by superimposing the second substrate 3 to which the second seal portion 6 is fixed on the first substrate 2, but the present invention is limited to this aspect. It's not something. For example, the first seal portion 5 and the second seal portion 6 may be fixed to the first substrate 2, and the second substrate 3 having no seal portion may be superposed on the first substrate 2. Further, in the above embodiment, the example in which the support wall 17 is fixed to the first substrate 2 is shown in the preparation step S1, but the present invention is not limited to this, and the support wall 17 may be fixed to the second substrate 3. ..
 上記の第二実施形態では、第一基板2と第二基板3とを第二シール部6及び支持壁17によって直接的に接合した例を示したが、本発明はこの構成に限定されるものではない。例えば、図20に示すように、第二シール部6と第一基板2との間、及び第二シール部6と第二基板3との間に、配向膜8,11を介在させて当該第一基板2と第二基板3とを接合してもよい。第二シール部6と各基板2,3との間には、配向膜8,11だけでなく、各電極層7,10を構成する透明導電膜等が介在してもよい。同様に、支持壁17と各基板2,3との間にも、配向膜8,11、及び透明導電膜等が介在してもよい。 In the second embodiment described above, an example in which the first substrate 2 and the second substrate 3 are directly joined by the second sealing portion 6 and the support wall 17 is shown, but the present invention is limited to this configuration. is not. For example, as shown in FIG. 20, the alignment films 8 and 11 are interposed between the second seal portion 6 and the first substrate 2 and between the second seal portion 6 and the second substrate 3. One substrate 2 and the second substrate 3 may be joined. Not only the alignment films 8 and 11 but also the transparent conductive films constituting the electrode layers 7 and 10 may be interposed between the second sealing portion 6 and the substrates 2 and 3. Similarly, the alignment films 8 and 11 and the transparent conductive film and the like may be interposed between the support wall 17 and the substrates 2 and 3.
 上記の実施形態では、支持壁17が樹脂により構成される場合を例示したが、支持壁17は、例えば、第二シール部6と同様の材料および同様の方法により構成して良い。すなわち、支持壁17は、ガラスを含む、或いはガラスフリットから成る壁部であって、ガラス粉末を含むシール材をレーザ光Lにより軟化および硬化して形成されたものであって良い。 In the above embodiment, the case where the support wall 17 is made of resin is illustrated, but the support wall 17 may be made of, for example, the same material as the second seal portion 6 and the same method. That is, the support wall 17 may be a wall portion containing glass or made of glass frit, and may be formed by softening and curing a sealing material containing glass powder by laser light L.
 上記の実施形態では、ペースト状のガラスフリットを塗布する場合を例示したが、ガラスフリットを予めプレス加工により枠状のプレスフリットの形態に加工し、当該プレスフリットを基板に載置することにより第二シール部を設けても良い。 In the above embodiment, the case where the paste-like glass frit is applied is illustrated, but the glass frit is processed into a frame-shaped press frit by press working in advance, and the press frit is placed on the substrate. Two seals may be provided.
 1      液晶パネル(電子デバイス)
 2      第一基板
 3      第二基板
 4      液晶層(被封止体)
 5      第一シール部
 5a     シール材
 6      第二シール部
 6a     シール材(ガラスフリット)
 7      第一電極層
 8      第一配向膜
 9      カラーフィルタ層
10      第二電極層
11      第二配向膜
12      スペーサ
17      支持壁
17a     樹脂材
17A     支持壁
 S1     準備工程
 S2     液晶層形成工程
 S3     接合工程
 
1 Liquid crystal panel (electronic device)
2 1st substrate 3 2nd substrate 4 Liquid crystal layer (encapsulated body)
5 1st seal part 5a Seal material 6 2nd seal part 6a Seal material (glass frit)
7 First electrode layer 8 First alignment film 9 Color filter layer 10 Second electrode layer 11 Second alignment film 12 Spacer 17 Support wall 17a Resin material 17A Support wall S1 Preparation process S2 Liquid crystal layer formation process S3 Joining process

Claims (15)

  1.  第一基板と、
     第二基板と、
     前記第一基板と前記第二基板との間に封止される被封止体と、
     前記第一基板と前記第二基板とを接合する第一シール部と、
     前記第一シール部よりも外側で前記第一基板と前記第二基板とを接合する第二シール部と、を備え、
     前記第二シール部は、ガラスを含むことを特徴とする、電子デバイス。
    With the first board
    With the second board
    An object to be sealed between the first substrate and the second substrate,
    A first seal portion that joins the first substrate and the second substrate,
    A second seal portion for joining the first substrate and the second substrate outside the first seal portion is provided.
    The second sealing portion is an electronic device including glass.
  2.  前記第二シール部の外側に、前記第一基板と第二基板とを接合する支持壁を備える、請求項1に記載の電子デバイス。 The electronic device according to claim 1, further comprising a support wall for joining the first substrate and the second substrate on the outside of the second seal portion.
  3.  前記支持壁は、前記第二シール部から外側に離間され、かつ前記第二シール部を連続的に包囲する、請求項2に記載の電子デバイス。 The electronic device according to claim 2, wherein the support wall is separated from the second seal portion to the outside and continuously surrounds the second seal portion.
  4.  前記支持壁は、前記第二シール部から外側に離間され、かつ前記第二シール部を断続的に包囲する、請求項2に記載の電子デバイス。 The electronic device according to claim 2, wherein the support wall is separated from the second seal portion to the outside and intermittently surrounds the second seal portion.
  5.  前記第一シール部及び前記支持壁は、同じ材料により構成される、請求項2から4のいずれか一項に記載の電子デバイス。 The electronic device according to any one of claims 2 to 4, wherein the first seal portion and the support wall are made of the same material.
  6.  前記第一シール部及び前記支持壁は、樹脂により構成されており、
     前記被封止体は、液晶により構成される、請求項2から5のいずれか一項に記載の電子デバイス。
    The first seal portion and the support wall are made of resin.
    The electronic device according to any one of claims 2 to 5, wherein the sealed body is made of a liquid crystal.
  7.  前記第二シール部は、ガラスと耐火性フィラーとを含むガラスフリット焼成体から成る、請求項1から6のいずれか一項に記載の電子デバイス。 The electronic device according to any one of claims 1 to 6, wherein the second seal portion is made of a glass frit fired body containing glass and a refractory filler.
  8.  前記第一シール部と前記第二シール部との間隔が0.5mm以上である、請求項1から7のいずれか一項に記載の電子デバイス。 The electronic device according to any one of claims 1 to 7, wherein the distance between the first seal portion and the second seal portion is 0.5 mm or more.
  9.  前記第二シール部と前記支持壁との間隔が0.5mm以上である、請求項2から6のいずれか一項に記載の電子デバイス。 The electronic device according to any one of claims 2 to 6, wherein the distance between the second seal portion and the support wall is 0.5 mm or more.
  10.  前記第二シール部の幅が、0.3~1.0mmであり、
     前記支持壁の幅が、0.3~5.0mmである、請求項2から6のいずれか一項に記載の電子デバイス。
    The width of the second seal portion is 0.3 to 1.0 mm.
    The electronic device according to any one of claims 2 to 6, wherein the width of the support wall is 0.3 to 5.0 mm.
  11.  第一基板と第二基板との間に被封止体がシール部によって封止されてなる電子デバイスを製造する方法において、
     前記シール部は、被封止体を内側に封止する第一シール部と、第一シール部の外側に位置する第二シール部と、を備え、
     前記第一シール部に係るシール材を前記第一基板に固定する工程と、
     前記第二シール部に係るシール材であってガラスフリットを含むシール材を前記第二基板に固定する工程と、
     前記第一シール部に係る前記シール材が固定された前記第一基板と、前記第二シール部に係る前記シール材が固定された前記第二基板とを重ね合わせる工程と、
     前記第一基板と前記第二基板とを前記第一シール部に係る前記シール材により接合する工程と、
     前記第一基板と前記第二基板とを前記第二シール部に係る前記シール材により接合する工程と、を備え、
     前記第二シール部に係る前記シール材による前記第一基板と前記第二基板との接合は、前記ガラスフリットにレーザ光を照射して加熱することを特徴とする、電子デバイスの製造方法。
    In a method of manufacturing an electronic device in which an object to be sealed is sealed between a first substrate and a second substrate by a sealing portion.
    The seal portion includes a first seal portion that seals the object to be sealed inside and a second seal portion that is located outside the first seal portion.
    A step of fixing the sealing material related to the first sealing portion to the first substrate, and
    A step of fixing the sealing material related to the second sealing portion and containing the glass frit to the second substrate,
    A step of superimposing the first substrate on which the sealing material related to the first sealing portion is fixed and the second substrate on which the sealing material related to the second sealing portion is fixed.
    A step of joining the first substrate and the second substrate with the sealing material related to the first sealing portion, and
    A step of joining the first substrate and the second substrate with the sealing material related to the second sealing portion is provided.
    A method for manufacturing an electronic device, wherein the bonding between the first substrate and the second substrate by the sealing material according to the second sealing portion is performed by irradiating the glass frit with laser light to heat the glass frit.
  12.  前記第一基板と前記第二基板とを接合する支持壁を前記第二シール部に係る前記シール材の外側に形成する工程を備える、請求項11に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 11, further comprising a step of forming a support wall for joining the first substrate and the second substrate on the outside of the sealing material related to the second sealing portion.
  13.  前記支持壁は、前記第一シール部に係る前記シール材が固定された前記第一基板と、前記第二シール部に係る前記シール材が固定された前記第二基板とを重ね合わせる工程の前に、前記第一基板又は前記第二基板に固定される、請求項12に記載の電子デバイスの製造方法。 The support wall is before the step of superimposing the first substrate on which the sealing material related to the first sealing portion is fixed and the second substrate on which the sealing material related to the second sealing portion is fixed. The method for manufacturing an electronic device according to claim 12, wherein the first substrate or the second substrate is fixed to the first substrate.
  14.  前記第二シール部に係る前記シール材を前記第二基板に固定する工程は、
     前記第二基板にペースト状の前記ガラスフリットを塗布する工程と、
     前記第二基板に塗布された前記ガラスフリットを加熱する工程と、を備える、請求項10から13のいずれか一項に記載の電子デバイスの製造方法。
    The step of fixing the sealing material related to the second sealing portion to the second substrate is
    The step of applying the paste-like glass frit to the second substrate, and
    The method for manufacturing an electronic device according to any one of claims 10 to 13, further comprising a step of heating the glass frit coated on the second substrate.
  15.  前記ガラスフリットは、ガラス粉末と耐火性フィラーとを含む、請求項10から14のいずれか一項に記載の電子デバイスの製造方法。
     
    The method for manufacturing an electronic device according to any one of claims 10 to 14, wherein the glass frit contains a glass powder and a refractory filler.
PCT/JP2020/004335 2019-04-25 2020-02-05 Electronic device and method of manufacture therefor WO2020217639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-084185 2019-04-25
JP2019084185A JP2020181094A (en) 2019-04-25 2019-04-25 Electronic device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2020217639A1 true WO2020217639A1 (en) 2020-10-29

Family

ID=72942459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004335 WO2020217639A1 (en) 2019-04-25 2020-02-05 Electronic device and method of manufacture therefor

Country Status (3)

Country Link
JP (1) JP2020181094A (en)
TW (1) TW202101091A (en)
WO (1) WO2020217639A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004567A1 (en) * 2009-07-07 2011-01-13 パナソニック株式会社 Organic electroluminescent display device and manufacturing method therefor
US20150108441A1 (en) * 2013-10-21 2015-04-23 Samsung Display Co., Ltd. Display device
WO2019064372A1 (en) * 2017-09-27 2019-04-04 シャープ株式会社 Base board sealing structure body, and, display device and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004567A1 (en) * 2009-07-07 2011-01-13 パナソニック株式会社 Organic electroluminescent display device and manufacturing method therefor
US20150108441A1 (en) * 2013-10-21 2015-04-23 Samsung Display Co., Ltd. Display device
WO2019064372A1 (en) * 2017-09-27 2019-04-04 シャープ株式会社 Base board sealing structure body, and, display device and production method therefor

Also Published As

Publication number Publication date
JP2020181094A (en) 2020-11-05
TW202101091A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
TWI451610B (en) Mother substrate structure of light emitting devices and light emitting device and method of fabricating the same
JP6348943B2 (en) Glass sealing using transparent material with transient absorption characteristics
KR101383710B1 (en) Display device and manufacturing method thereof
US7560858B2 (en) Sealing substrate and a pixel substrate of a display device joined by a metal joint solder
JP4809368B2 (en) System and method for frit sealing a glass package
CN100525559C (en) Display panel manufacturing method and display panel
JP6378760B2 (en) Glass sealing structure and sealing method
US20110014731A1 (en) Method for sealing a photonic device
WO2011004567A1 (en) Organic electroluminescent display device and manufacturing method therefor
US20080062360A1 (en) Liquid crystal display device
JP2011018479A (en) Organic electroluminescent display device and method of manufacturing the same
JP2019533184A (en) Laser welding sealed display module and modular display
JPH10162952A (en) Thin film el panel and manufacture thereof
WO2017045134A1 (en) Screen-printing mask, method for fabricating the same, and related packaging method
WO2019123649A1 (en) Sealing structure, organic el display device, display device, and method for manufacturing display device
JP2015141749A (en) Display device and method for manufacturing the same
TWI514642B (en) Method for packaging display panel and display panel packaging structure
TWI244565B (en) Liquid crystal display panel with fluid control wall
TWI402586B (en) Liquid crystal display panel
WO2020217639A1 (en) Electronic device and method of manufacture therefor
WO2021070769A1 (en) Bonded body manufacturing method and bonded body manufacturing device
JP2001337335A (en) Production method for liquid crystal display element
JP2007041625A5 (en)
CN104460100B (en) Display base plate and display panel and preparation method thereof, display device
KR100277650B1 (en) Flexible liquid crystal display device using ultraviolet sealant and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795607

Country of ref document: EP

Kind code of ref document: A1