WO2020217608A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2020217608A1
WO2020217608A1 PCT/JP2020/001705 JP2020001705W WO2020217608A1 WO 2020217608 A1 WO2020217608 A1 WO 2020217608A1 JP 2020001705 W JP2020001705 W JP 2020001705W WO 2020217608 A1 WO2020217608 A1 WO 2020217608A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent substrate
layer
display device
liquid crystal
transparent
Prior art date
Application number
PCT/JP2020/001705
Other languages
French (fr)
Japanese (ja)
Inventor
久徳 川上
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2020217608A1 publication Critical patent/WO2020217608A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • An embodiment of the present invention relates to a display device.
  • the light modulation element includes a polymer dispersed liquid crystal layer as the light modulation layer.
  • the light modulation element is arranged behind the light guide plate and scatters the light incident from the side surface of the light guide plate.
  • JP-A-2010-92682 Japanese Unexamined Patent Publication No. 2016-57338
  • An object of the present embodiment is to provide a display device capable of suppressing deterioration of display quality.
  • a light emitting element a first transparent substrate, a first transparent electrode provided on the first transparent substrate, a second transparent substrate having a first side surface facing the light emitting element, and a second transparent substrate.
  • a second transparent electrode a liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and a liquid crystal molecule, a first ultraviolet cut layer, and a second ultraviolet cut layer.
  • the liquid crystal layer is provided with a display device provided between the first ultraviolet ray cut layer and the second ultraviolet ray cut layer.
  • the present embodiment it is possible to provide a display device capable of suppressing deterioration of display quality.
  • FIG. 1 is a plan view showing a configuration example of the display device DSP of the present embodiment.
  • FIG. 2 is a cross-sectional view showing a configuration example of the display panel PNL shown in FIG.
  • FIG. 3 is a cross-sectional view showing a first configuration example of the display device DSP.
  • FIG. 4 is a diagram showing the spectral characteristics of the ultraviolet cut layer.
  • FIG. 5 is a cross-sectional view schematically showing a modified example of the display device DSP.
  • FIG. 6 is a cross-sectional view showing a second configuration example of the display device DSP.
  • FIG. 7 is a cross-sectional view showing a third configuration example of the display device DSP.
  • FIG. 8 is a cross-sectional view showing a fourth configuration example of the display device DSP.
  • FIG. 1 is a plan view showing a configuration example of the display device DSP of the present embodiment.
  • FIG. 2 is a cross-sectional view showing a configuration example of the display panel PNL shown in
  • FIG. 9 is a cross-sectional view showing a fifth configuration example of the display device DSP.
  • FIG. 10 is a cross-sectional view showing a sixth configuration example of the display device DSP.
  • FIG. 11 is a cross-sectional view showing a seventh configuration example of the display device DSP.
  • FIG. 12 is a cross-sectional view showing an eighth configuration example of the display device DSP.
  • FIG. 13 is an exploded perspective view showing a ninth configuration example of the display device DSP.
  • FIG. 14 is a plan view of the display device DSP shown in FIG.
  • FIG. 15 is a plan view showing a modified example of the display device DSP in the ninth configuration example.
  • FIG. 16 is a plan view showing a tenth configuration example of the display device DSP.
  • FIG. 1 is a plan view showing a configuration example of the display device DSP of the present embodiment.
  • the first direction X, the second direction Y, and the third direction Z are orthogonal to each other, but may intersect at an angle other than 90 degrees.
  • the first direction X and the second direction Y correspond to the directions parallel to the main surface of the substrate constituting the display device DSP
  • the third direction Z corresponds to the thickness direction of the display device DSP.
  • viewing the XY plane defined by the first direction X and the second direction Y is referred to as a plan view.
  • the display device DSP includes a display panel PNL, a wiring board 1, an IC chip 2, and a light source device 3.
  • the display panel PNL includes a first substrate SUB1, a second substrate SUB2, a liquid crystal layer LC, and a seal SE.
  • the first substrate SUB1 and the second substrate SUB2 are formed in a flat plate shape parallel to the XY plane.
  • the first substrate SUB1 and the second substrate SUB2 are superimposed in a plan view.
  • the first substrate SUB1 and the second substrate SUB2 are adhered by a seal SE.
  • the liquid crystal layer LC is held between the first substrate SUB1 and the second substrate SUB2, and is sealed by the seal SE.
  • the liquid crystal layer LC and the seal SE are shown by different diagonal lines.
  • the liquid crystal layer LC includes a polymer-dispersed liquid crystal containing a polymer 31 and liquid crystal molecules 32.
  • the polymer 31 is a liquid crystal polymer.
  • the polymer 31 is formed in a streak extending along the first direction X and is aligned in the second direction Y.
  • the liquid crystal molecules 32 are dispersed in the gaps of the polymer 31, and the long axis thereof is oriented along the first direction X.
  • Each of the polymer 31 and the liquid crystal molecule 32 has optical anisotropy or refractive index anisotropy.
  • the responsiveness of the polymer 31 to the electric field is lower than the responsiveness of the liquid crystal molecule 32 to the electric field.
  • the orientation direction of the polymer 31 hardly changes regardless of the presence or absence of an electric field.
  • the orientation direction of the liquid crystal molecules 32 changes according to the electric field when a voltage higher than the threshold value is applied to the liquid crystal layer LC.
  • the optical axes of the polymer 31 and the liquid crystal molecules 32 are parallel to each other, and the light incident on the liquid crystal layer LC is hardly scattered in the liquid crystal layer LC.
  • Transparent transparent state.
  • the optical axes of the polymer 31 and the liquid crystal molecule 32 intersect each other, and the light incident on the liquid crystal layer LC is scattered in the liquid crystal layer LC (scattered state).
  • the display panel PNL includes a display unit DA for displaying an image and a frame-shaped non-display unit NDA that surrounds the display unit DA.
  • the seal SE is located on the non-display portion NDA.
  • the display unit DA includes pixels PX arranged in a matrix in the first direction X and the second direction Y. As shown enlarged in FIG. 1, each pixel PX includes a switching element SW, a pixel electrode PE, a common electrode CE, a liquid crystal layer LC, and the like.
  • the switching element SW is composed of, for example, a thin film transistor (TFT), and is electrically connected to the scanning line G and the signal line S.
  • the scanning line G is electrically connected to the switching element SW in each of the pixels PX arranged in the first direction X.
  • the signal line S is electrically connected to the switching element SW in each of the pixels PX arranged in the second direction Y.
  • the pixel electrode PE is electrically connected to the switching element SW.
  • the common electrode CE is commonly provided for a plurality of pixel electrode PEs. Each of the pixel electrode PEs faces the common electrode CE in the third direction Z.
  • the liquid crystal layer LC (particularly, the liquid crystal molecule 32) is driven by an electric field generated between the pixel electrode PE and the common electrode CE.
  • the capacitance CS is formed, for example, between an electrode having the same potential as the common electrode CE and an electrode having the same potential as the pixel electrode PE.
  • the scanning line G, the signal line S, the switching element SW, and the pixel electrode PE are provided on the first substrate SUB1, and the common electrode CE is provided on the second substrate SUB2.
  • the scanning line G and the signal line S are electrically connected to the wiring board 1 or the IC chip 2.
  • the wiring board 1 and the IC chip 2 are mounted on the extension portion Ex of the first board SUB1.
  • the extending portion Ex corresponds to a portion of the first substrate SUB1 that does not overlap with the second substrate SUB2.
  • the wiring board 1 is, for example, a bendable flexible printed circuit board.
  • the IC chip 2 has, for example, a built-in display driver that outputs a signal necessary for displaying an image.
  • the IC chip 2 may be mounted on the wiring board 1.
  • the light source device 3 includes a plurality of light emitting elements LD.
  • the plurality of light emitting elements LD are superimposed on the extending portion Ex in a plan view. These light emitting elements LD are arranged at intervals along the first direction X.
  • the light emitting element LD is, for example, a light emitting diode, and includes a red light emitting unit, a green light emitting unit, and a blue light emitting unit, although not described in detail.
  • These light emitting elements LD are arranged along the end portion E21 of the second substrate SUB2, and emit light toward the end portion E21.
  • the end portion E21 extends along the first direction X in a plan view.
  • a transparent light guide body may be arranged between the light emitting element LD and the end portion E21.
  • FIG. 2 is a cross-sectional view showing a configuration example of the display panel PNL shown in FIG.
  • the first substrate SUB1 includes a transparent substrate 10, insulating films 11 and 12, a capacitance electrode 13, a switching element SW, a pixel electrode PE, and an alignment film AL1.
  • the transparent substrate 10 includes an outer surface 10A and an inner surface 10B on the opposite side of the outer surface 10A.
  • the switching element SW is provided on the inner surface 10B side.
  • the insulating film 11 is provided on the inner surface 10B and covers the switching element SW.
  • the scanning line G and the signal line S shown in FIG. 1 are provided between the transparent substrate 10 and the insulating film 11, but are not shown here.
  • the capacitance electrode 13 is provided between the insulating films 11 and 12.
  • the pixel electrode PE is provided for each pixel PX between the insulating film 12 and the alignment film AL1. That is, the capacitance electrode 13 is provided between the transparent substrate 10 and the pixel electrode PE.
  • the pixel electrode PE is electrically connected to the switching element SW via the opening OP of the capacitance electrode 13.
  • the pixel electrode PE sandwiches the insulating film 12 and overlaps with the capacitance electrode 13 to form the capacitance CS of the pixel PX.
  • the alignment film AL1 covers the pixel electrode PE.
  • the alignment film AL1 is in contact with the liquid crystal layer LC.
  • the second substrate SUB2 includes a transparent substrate 20, a common electrode CE, and an alignment film AL2.
  • the transparent substrate 20 includes an inner surface 20A and an outer surface 20B on the opposite side of the inner surface 20A.
  • the inner surface 20A of the transparent substrate 20 faces the inner surface 10B of the first transparent substrate 10.
  • the common electrode CE is provided on the inner surface 20A.
  • the alignment film AL2 covers the common electrode CE.
  • the alignment film AL2 is in contact with the liquid crystal layer LC.
  • a light-shielding layer may be provided directly above the switching element SW, the scanning line G, and the signal line S, respectively.
  • a transparent insulating film may be provided between the transparent substrate 20 and the common electrode CE, or between the common electrode CE and the alignment film AL2.
  • the common electrode CE is arranged over the plurality of pixel PXs and faces the plurality of pixel electrodes PE in the third direction Z. Further, the common electrode CE is electrically connected to the capacitance electrode 13 and has the same potential as the capacitance electrode 13.
  • the liquid crystal layer LC is located between the pixel electrode PE and the common electrode CE.
  • the transparent substrates 10 and 20 are, for example, glass substrates, but may be insulating substrates such as plastic substrates.
  • the insulating film 11 includes, for example, a transparent inorganic insulating film such as silicon oxide, silicon nitride, and silicon oxynitride, and a transparent organic insulating film such as acrylic resin.
  • the insulating film 12 is a transparent inorganic insulating film such as silicon nitride.
  • the capacitive electrode 13, the pixel electrode PE, and the common electrode CE are transparent electrodes formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the alignment films AL1 and AL2 are horizontal alignment films having an orientation regulating force substantially parallel to the XY plane.
  • the alignment films AL1 and AL2 are oriented along the first direction X.
  • the alignment treatment may be a rubbing treatment or a photoalignment treatment.
  • the transparent substrate 10 corresponds to the first transparent substrate
  • the pixel electrode PE corresponds to the first transparent electrode
  • the transparent substrate 20 corresponds to the second transparent substrate
  • the common electrode CE corresponds to the second transparent substrate.
  • the transparent substrate 10 may correspond to the second transparent substrate
  • the transparent substrate 20 may correspond to the first transparent substrate.
  • the pixel electrode PE corresponds to the second transparent electrode
  • the common electrode CE corresponds to the first transparent electrode.
  • FIG. 3 is a cross-sectional view showing a first configuration example of the display device DSP. As for the display panel PNL, only the main part is simplified and shown.
  • the display device DSP includes a first ultraviolet ray cut layer (first layer) 51, a second ultraviolet ray cut layer (second layer) 52, and a transparent substrate (third transparent substrate) 30. , Is equipped.
  • the first ultraviolet ray cut layer 51 and the second ultraviolet ray cut layer 52 are provided at least in a region overlapping the liquid crystal layer LC in the third direction Z.
  • the first ultraviolet cut layer 51 is provided on the outer surface 10A of the transparent substrate 10
  • the second ultraviolet cut layer 52 is provided on the outer surface 20B of the transparent substrate 20. That is, the liquid crystal layer LC is provided between the first ultraviolet ray cut layer 51 and the second ultraviolet ray cut layer 52.
  • the first ultraviolet cut layer 51 and the second ultraviolet cut layer 52 extend not only to the region superposed on the liquid crystal layer LC but also to the region superposed on the seal SE surrounding the liquid crystal layer LC. There is. For example, it is desirable that the first ultraviolet cut layer 51 is provided on the entire surface of the outer surface 10A, and the second ultraviolet cut layer 52 is provided on the entire surface of the outer surface 20B. The spectral characteristics of the first ultraviolet cut layer 51 and the second ultraviolet cut layer 52 will be described later.
  • the transparent substrate 30 includes an inner surface 30A and an outer surface 30B on the opposite side of the inner surface 30A.
  • the second ultraviolet ray cut layer 52 is interposed between the outer surface 20B of the transparent substrate 20 and the inner surface 30A of the transparent substrate 30, and functions as an adhesive layer for bonding the transparent substrate 20 and the transparent substrate 30.
  • the transparent substrate 30 is, for example, a glass substrate, but may be an insulating substrate such as a plastic substrate.
  • the transparent substrate 30 has a refractive index equivalent to that of the transparent substrates 10 and 20.
  • the second ultraviolet cut layer 52 has a refractive index equivalent to that of each of the transparent substrates 20 and 30.
  • the term "equivalent" here includes not only the case where the refractive index difference is zero but also the case where the refractive index difference is 0.03 or less.
  • the transparent substrate 20 has a side surface 20C, and the transparent substrate 30 has a side surface 30C.
  • the side surface 20C corresponds to the end portion E21 of the second substrate SUB2 shown in FIG.
  • the side surface 30C is located directly above the side surface 20C.
  • the light emitting element LD faces the side surface 20C and the side surface 30C in the second direction Y.
  • the light emitting element LD is electrically connected to the wiring board F.
  • the light guide LG is provided between the light emitting element LD and the side surfaces 20C and 30C, and guides the light L1 emitted from the light emitting element LD to the side surfaces 20C and 30C.
  • the light guide LG is fixed to the first substrate SUB1 by the adhesive AD1 and fixed to the wiring board F by the adhesive AD2.
  • the pressure-sensitive adhesives AD1 and AD2 may include a reflective layer.
  • the light emitting element LD emits light L1 toward the light guide LG.
  • the light L1 emitted from the light emitting element LD travels along the direction of the arrow indicating the second direction Y, passes through the light guide LG, enters the transparent substrate 20 from the side surface 20C, and enters the transparent substrate 20 from the side surface 30C.
  • the light L1 incident on the transparent substrates 20 and 30 travels inside the display panel PNL while being repeatedly reflected.
  • the light L1 incident on the liquid crystal layer LC to which no voltage is applied passes through the liquid crystal layer LC with almost no scattering.
  • the light L1 incident on the liquid crystal layer LC to which the voltage is applied is scattered by the liquid crystal layer LC.
  • the display device DSP can be observed from the outer surface 10A side as well as from the outer surface 30B side. Further, the background of the display device DSP can be observed via the display device DSP regardless of whether the display device DSP is observed from the outer surface 10A side or the outer surface 30B side.
  • FIG. 4 is a diagram showing the spectral characteristics of the ultraviolet cut layer.
  • FIG. 4A is a diagram for explaining a measurement method for measuring the spectral transmittance of the sample SP.
  • the light source 101 and the detector 102 are provided facing each other.
  • the transparent glass substrate 103 is provided between the light source 101 and the detector 102.
  • the sample SP is provided on the glass substrate 103.
  • the light source 101 irradiates the sample SP with natural light via the glass substrate 103.
  • the detector 102 detects the transmitted light transmitted through the sample SP.
  • the transmittance T (%) is defined as Lt / Li.
  • FIG. 4B is a diagram showing the measurement result of the spectral transmittance.
  • FIG. 4 (C) is an expansion of the wavelength range from 360 nm to 420 nm in the spectral transmittance shown in FIG. 4 (B).
  • the spectral transmittance shown here corresponds to the result of measuring the ultraviolet cut layer applicable to this embodiment as a sample SP.
  • the ultraviolet cut layer has a spectral characteristic that the transmittance of natural light in the wavelength range of 380 nm or less is 10% or less and the transmittance of natural light in the wavelength range of 400 nm or more and 700 nm or less is 80% or more. There is.
  • the transmittance is almost 0% in the wavelength range of 370 nm or less, and the transmittance is 90% or more in the wavelength range of 420 nm or more.
  • the transmittance in the wavelength range of 380 nm or less is 10% or less of the transmittance in the wavelength range of 420 nm or more.
  • the ultraviolet ray blocking layer transmits most of the visible light and is transparent in appearance, but shields most of the ultraviolet rays. Shielding here includes reflecting and absorbing.
  • the first ultraviolet ray cut layer 51 and the second ultraviolet ray cut layer 52 applicable in the present embodiment those having the spectral characteristics shown in FIG. 4 are suitable.
  • the transmittance of natural light in the wavelength range of 380 nm or less is referred to as ultraviolet transmittance.
  • the ultraviolet transmittance of the ultraviolet cut layer applied in the present embodiment is smaller than the ultraviolet transmittance of the transparent substrates 10 and 20.
  • the liquid crystal layer LC is provided between the first ultraviolet ray cut layer 51 and the second ultraviolet ray cut layer 52.
  • the first ultraviolet ray cut layer 51 and the second ultraviolet ray cut layer 52 shield the ultraviolet rays emitted from the outside of the display device DSP toward the liquid crystal layer LC. Therefore, destruction or deterioration of the liquid crystal layer LC due to ultraviolet rays can be suppressed. Further, in a scattered state in which a voltage is applied to the liquid crystal layer LC, it is possible to suppress a decrease in scattering brightness due to deterioration of the liquid crystal layer LC. Further, in a transparent state in which the applied voltage of the liquid crystal layer LC is less than the threshold voltage, it is possible to suppress a decrease in the transmittance due to deterioration of the liquid crystal layer LC.
  • the second ultraviolet ray cut layer 52 also has a function as an adhesive layer for laminating the transparent substrates 20 and 30. Therefore, the number of parts, the material cost, and the manufacturing process can be reduced as compared with the case where the second ultraviolet ray cut layer is separately provided in addition to the adhesive layer, and the thickness of the display device DSP can be increased. Can be suppressed.
  • FIG. 5 is a cross-sectional view schematically showing a modified example of the display device DSP.
  • the optical layer OL is provided on the outer surface 30B of the transparent substrate 30.
  • the optical layer OL is, for example, an antireflection layer, an anti-fingerprint coating, a protective layer, and the like.
  • the first ultraviolet ray cut layer 51 is formed directly on the outer surface 10A.
  • the first ultraviolet ray cut layer 51 is formed as a film member, and is bonded to the outer surface 10A by a transparent adhesive layer 53.
  • the first ultraviolet cut layer 51 is interposed between the outer surface 10A of the transparent substrate 10 and the inner surface 40B of the transparent substrate 40, and the transparent substrate 10 and the transparent substrate 40 It functions as an adhesive layer for laminating.
  • the transparent substrate 40 is, for example, a glass substrate similar to the transparent substrate 10.
  • the first ultraviolet cut layer 51 is interposed between the outer surface 10A of the transparent substrate 10 and the inner surface 41B of the transparent resin film 41, and is interposed between the transparent substrate 10 and the resin film. It functions as an adhesive layer for laminating 41 and.
  • the same effect as described above can be obtained.
  • the visibility of the background or the visibility of the displayed image is improved when observed from the side of the outer surface 30B.
  • the rigidity of the display panel PNL is improved.
  • the resin film 41 prevents the glass from scattering.
  • FIG. 6 is a cross-sectional view showing a second configuration example of the display device DSP.
  • the second configuration example shown in FIG. 6 is different from the first configuration example shown in FIG. 3 in that the second ultraviolet cut layer 52 is provided on the outer surface 30B of the transparent substrate 30.
  • the transparent substrates 20 and 30 are bonded by a transparent adhesive layer 54.
  • the adhesive layer 54 has a refractive index equivalent to that of each of the transparent substrates 20 and 30.
  • the liquid crystal layer LC is not shown, it is provided between the transparent substrates 10 and 20 as in the first configuration example. That is, in the second configuration example as well, the liquid crystal layer LC is provided between the first ultraviolet cut layer 51 and the second ultraviolet cut layer 52, as in the first configuration example. Therefore, according to the second configuration example, the same effect as that of the first configuration example can be obtained.
  • FIG. 7 is a cross-sectional view showing a third configuration example of the display device DSP.
  • the third configuration example shown in FIG. 7 is different from the first configuration example shown in FIG. 3 in that the first ultraviolet cut layer 51 has a refractive index smaller than that of the transparent substrate 10.
  • the refractive index n1 of the transparent substrate 10 is 1.51
  • the refractive index n2 of the first ultraviolet cut layer 51 is 1.43 (n1> n2).
  • the refractive indexes of the transparent substrates 20 and 30 and the second ultraviolet cut layer 52 are equivalent to the refractive index n1.
  • the display device DSP includes a transparent protective member 61.
  • the first ultraviolet ray cut layer 51 functions as an adhesive layer for bonding the transparent substrate 10 and the protective member 61.
  • the same effect as that of the first configuration example can be obtained.
  • the light L1 emitted from the light emitting element LD the light L1 incident on the transparent substrate 10 is reflected at the interface between the transparent substrate 10 and the first ultraviolet ray cut layer 51. Therefore, among the light L1, the light guided to the protective member 61 or the light guided to the outside of the display device DSP can be reduced. Therefore, it is possible to suppress the attenuation of light due to the leakage of light L1. Further, even when minute scratches are formed on the protective member 61 or when stains such as fingerprints are attached to the protective member 61, undesired scattering at these sites can be suppressed.
  • FIG. 8 is a cross-sectional view showing a fourth configuration example of the display device DSP.
  • the first ultraviolet cut layer 51 has a refractive index smaller than that of the transparent substrate 10 and the second ultraviolet cut layer 52 is a transparent substrate as compared with the second configuration example shown in FIG. It differs in that it has a refractive index less than 30.
  • the refractive index n1 of the transparent substrate 10 and the refractive index n3 of the transparent substrate 30 are 1.51
  • the refractive index n2 of the first ultraviolet ray cut layer 51 and the refractive index n4 of the second ultraviolet ray cut layer 52 are 1.43.
  • the refractive indexes of the transparent substrate 20 and the adhesive layer 54 are equivalent to the refractive index n1.
  • the display device DSP includes transparent protective members 61 and 62.
  • the first ultraviolet ray cut layer 51 functions as an adhesive layer for bonding the transparent substrate 10 and the protective member 61.
  • the second ultraviolet ray cut layer 52 functions as an adhesive layer for bonding the transparent substrate 30 and the protective member 62.
  • the same effect as that of the first configuration example can be obtained.
  • the light L1 emitted from the light emitting element LD the light L1 incident on the transparent substrate 10 is reflected at the interface between the transparent substrate 10 and the first ultraviolet ray cut layer 51, and the light L1 incident on the transparent substrate 30 is It is reflected at the interface between the transparent substrate 30 and the second UV cut layer 52. Therefore, as in the third configuration example, it is possible to suppress the attenuation of light due to the leakage of light L1. Moreover, even if undesired scattering in the protective members 61 and 62 can be suppressed.
  • FIG. 9 is a cross-sectional view showing a fifth configuration example of the display device DSP.
  • the fifth configuration example shown in FIG. 9 is different from the first configuration example shown in FIG. 3 in that an air layer 70 is provided between the first ultraviolet cut layer 51 and the transparent substrate 10.
  • the first ultraviolet ray cut layer 51 is provided on the touch sensor 80.
  • the touch sensor 80 is shown in a simplified manner, the touch sensor 80 includes a transparent support base material 81 and a transparent sensor electrode 82 provided on the support base material 81.
  • the support base material 81 may be a film member or a glass substrate.
  • the sensor electrode 82 is a transparent electrode formed of the above-mentioned transparent conductive material.
  • the wiring board 83 is electrically connected to the sensor electrode 82, and forms a transmission path for a signal for driving the sensor electrode 82 and a detection signal from the sensor electrode 82.
  • Such a touch sensor 80 is provided between the transparent protective member 84 and the transparent substrate 10.
  • the first ultraviolet ray cut layer 51 functions as an adhesive layer for bonding the protective member 84 and the touch panel 80.
  • the spacer 85 is provided between the touch panel 80 and the transparent substrate 10. In the example shown in FIG. 9, the spacer 85 is provided between the transparent substrate 10 and the supporting substrate 81.
  • the spacer 85 is provided on the outside of the display unit DA or in a region that overlaps with the seal SE.
  • the spacer 85 is formed in a frame shape similar to the seal SE shown in FIG. 1 in a plan view.
  • the spacer 85 forms an air layer 70 between the transparent substrate 10 and the support base material 81 in a region overlapping the display unit DA, and attaches the transparent substrate 10 and the support base material 81 to the outside of the display unit DA. Functions as an adhesive layer.
  • the same effect as that of the first configuration example can be obtained.
  • the light L1 emitted from the light emitting element LD the light L1 incident on the transparent substrate 10 is reflected at the interface between the transparent substrate 10 and the air layer 70. Therefore, as in the third configuration example, it is possible to suppress the attenuation of light due to the leakage of light L1.
  • a finger or the like operating the touch panel 80 touches the protective member 84, even if stains such as fingerprints adhere to the protective member 84, undesired scattering at these parts is suppressed. Can be done. Further, even when minute scratches are formed on the protective member 84, undesired scattering at these sites can be suppressed.
  • An optical layer such as a transparent protective member or an antireflection layer may be provided on at least one of the outer surface 10A of the transparent substrate 10 and the outer surface 30B of the transparent substrate 30.
  • FIG. 10 is a cross-sectional view showing a sixth configuration example of the display device DSP.
  • the sixth configuration example shown in FIG. 10 is different from the second configuration example shown in FIG. 6 in that the second ultraviolet cut layer 52 is provided between the liquid crystal layer LC and the transparent substrate 20. ..
  • the first ultraviolet cut layer 51 is provided on the outer surface 10A of the transparent substrate 10
  • the second ultraviolet cut layer 52 is provided on the inner surface 20A of the transparent substrate 20.
  • the second UV cut layer 52 is located between the transparent substrate 20 and the common electrode CE.
  • the second ultraviolet cut layer 52 is not limited to the example of being directly formed on the inner surface 20A, and may be provided anywhere between the liquid crystal layer LC and the transparent substrate 20.
  • the second UV cut layer 52 may be replaced with the alignment film AL2, or may be another thin film different from the alignment film AL2.
  • the second ultraviolet ray cut layer 52 may be located between the liquid crystal layer LC and the common electrode CE.
  • the second ultraviolet cut layer 52 has a refractive index equivalent to that of the transparent substrate 20.
  • the first ultraviolet cut layer 51 is not limited to the example of being directly formed on the outer surface 10A, and for example, as in the fifth configuration example shown in FIG. 9, air is provided between the first ultraviolet cut layer 51 and the transparent substrate 10.
  • the layer 70 may be provided. According to such a sixth configuration example, the same effect as that of the first configuration example can be obtained.
  • FIG. 11 is a cross-sectional view showing a seventh configuration example of the display device DSP.
  • the seventh configuration example shown in FIG. 11 is different from the first configuration example shown in FIG. 3 in that the first ultraviolet cut layer 51 is provided between the transparent substrate 10 and the liquid crystal layer LC. ..
  • the first ultraviolet cut layer 51 is provided on the inner surface 10B of the transparent substrate 10
  • the second ultraviolet cut layer 52 is provided between the transparent substrates 20 and 30.
  • the first ultraviolet cut layer 51 is located between the transparent substrate 10 and the pixel electrode PE.
  • the first ultraviolet cut layer 51 is not limited to the example of being directly formed on the inner surface 10B, and may be provided anywhere between the transparent substrate 10 and the liquid crystal layer LC.
  • the first ultraviolet cut layer 51 may be replaced with the alignment film AL1 or may be another thin film different from the alignment film AL1.
  • the first ultraviolet ray cut layer 51 may be located between the liquid crystal layer LC and the pixel electrode PE.
  • the first ultraviolet cut layer 51 has a refractive index equivalent to that of the transparent substrate 10.
  • the second ultraviolet ray cut layer 52 may be provided on the outer surface 30B of the transparent substrate 30, for example, as in the second configuration example shown in FIG. According to such a seventh configuration example, the same effect as that of the first configuration example can be obtained.
  • FIG. 12 is a cross-sectional view showing an eighth configuration example of the display device DSP.
  • the eighth configuration example shown in FIG. 12 corresponds to a combination of the sixth configuration example shown in FIG. 10 and the seventh configuration example shown in FIG. That is, the first ultraviolet cut layer 51 is provided between the transparent substrate 10 and the liquid crystal layer LC, and the second ultraviolet cut layer 52 is provided between the liquid crystal layer LC and the transparent substrate 20.
  • the transparent substrate 30 is omitted in the example shown in FIG. 12, the transparent substrates 20 and 30 may be bonded to each other via the adhesive layer 54 as in the sixth configuration example shown in FIG. According to such an eighth configuration example, the same effect as that of the first configuration example can be obtained.
  • FIG. 13 is an exploded perspective view showing a ninth configuration example of the display device DSP.
  • the wiring board 1, the IC chip 2, and the light source device 3 are not shown.
  • the transparent substrate 20 includes side surfaces (second side surface) 20D, 20E, and 20F in addition to the side surface (first side surface) 20C described with reference to FIG.
  • the transparent substrate 10 also includes side surfaces 10D, 10E, and 10F.
  • the transparent substrate 30 also includes side surfaces 30D, 30E, and 30F.
  • the display device DSP includes a third ultraviolet ray cut layer 91 to 93.
  • the third ultraviolet ray cut layer 91 is provided on the side surfaces 10D, 20D, and 30D.
  • the third ultraviolet ray cut layer 92 is provided on the side surfaces 10E, 20E, and 30E.
  • the third ultraviolet ray cut layer 93 is provided on the side surfaces 10F, 20F, and 30F.
  • the third ultraviolet cut layers 91 to 93 may be connected to each other.
  • the third UV cut layers 91 to 93 may be transparent or colored like the first UV cut layer 51 and the like.
  • the third ultraviolet cut layers 91 to 93 have a spectral characteristic in which the transmittance of natural light in a wavelength range of at least 380 nm or less is 10% or less.
  • FIG. 14 is a plan view of the display device DSP shown in FIG.
  • the third ultraviolet cut layers 91 to 93 shield ultraviolet rays (UV) emitted from the outside of the display device DSP. Even if the seal SE surrounding the liquid crystal layer LC has a spectral characteristic of transmitting ultraviolet rays, the third ultraviolet cut layers 91 to 93 provided on the outside of the seal SE allow the ultraviolet rays to reach the liquid crystal layer LC. It is suppressed.
  • UV ultraviolet rays
  • Such a ninth configuration example can be appropriately combined with the above-mentioned first to eighth configuration examples. That is, in the display device DSP, the ultraviolet rays from the outer surface 10A side of the transparent substrate 10 are shielded by the first ultraviolet ray cut layer 51, and the ultraviolet rays from the outer surface 20B side of the transparent substrate 20 (or the outer surface 30B side of the transparent substrate 30) are the first. 2
  • the ultraviolet rays cut layer 52 are shielded, and the ultraviolet rays from the side surfaces of the transparent substrates 10 to 30 are shielded by the third ultraviolet ray cut layers 91 to 93.
  • destruction or deterioration of the liquid crystal layer LC due to ultraviolet rays can be suppressed, and the life of the liquid crystal layer LC can be extended.
  • FIG. 15 is a plan view showing a first modification of the display device DSP in the ninth configuration example.
  • the third ultraviolet cut layers 91 to 93 are opaque and include a reflective layer. That is, the third ultraviolet cut layers 91 to 93 shield the ultraviolet rays from the outside and reflect the light L1 from the light emitting element LD. That is, the light L1 that has passed through the display unit DA and passed through the seal SE is reflected again toward the display unit DA.
  • the reflected light from the third ultraviolet cut layers 91 to 93 contributes to the display, so that the brightness is lowered (or the light emitting element LD is close to the light emitting element LD).
  • the difference in brightness from the area) is alleviated.
  • FIG. 16 is a plan view showing a first modification of the display device DSP in the ninth configuration example.
  • the second modification shown in FIG. 16 is different in that the peripheral edge portion PNLE of the display panel PNL is surrounded by the housing 100.
  • the frame-shaped housing 100 functions as a third ultraviolet ray blocking layer, and the housing 100 surrounds the peripheral portion PNLE over the entire circumference.
  • the wiring board 1, the IC chip 2, and the light source device 3 are housed in the housing 100.
  • Such a tenth configuration example can be appropriately combined with the above-mentioned first to eighth configuration examples. Therefore, according to the tenth configuration example, the same effect as that of the ninth configuration example can be obtained.
  • the first transparent electrode provided on the first transparent substrate and A second transparent substrate having a first side surface facing the light emitting element, The second transparent electrode provided on the second transparent substrate and A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules, The first UV cut layer and With a second UV cut layer, The liquid crystal layer is a display device provided between the first ultraviolet ray cut layer and the second ultraviolet ray cut layer.
  • Each of the first ultraviolet ray cut layer and the second ultraviolet ray cut layer has a transmittance of natural light in a wavelength range of 380 nm or less of 10% or less, and a transmittance of natural light in a wavelength range of 400 nm or more and 700 nm or less of 80% or more.
  • the display device according to (1) which has the spectral characteristics of. (3) Equipped with a third transparent substrate
  • the display device according to (1) or (2), wherein the second ultraviolet ray cut layer is an adhesive layer for laminating the second transparent substrate and the third transparent substrate.
  • the second ultraviolet ray cut layer has a refractive index equivalent to that of each of the second transparent substrate and the third transparent substrate.
  • the second transparent substrate includes a second side surface different from the first side surface.
  • the first transparent electrode provided on the first transparent substrate and A second transparent substrate having a first side surface facing the light emitting element, The second transparent electrode provided on the second transparent substrate and A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules, With the third transparent substrate The first ultraviolet ray blocking layer provided on the outer surface of the first transparent substrate and A second ultraviolet ray-cutting layer for bonding the second transparent substrate and the third transparent substrate,
  • the display device is equipped with.
  • the first transparent electrode provided on the first transparent substrate and A second transparent substrate having a first side surface facing the light emitting element, The second transparent electrode provided on the second transparent substrate and A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules, With the third transparent substrate Protective material and A first ultraviolet ray blocking layer for bonding the protective member and the first transparent substrate, A second ultraviolet ray-cutting layer for bonding the second transparent substrate and the third transparent substrate, With A display device in which the first ultraviolet ray cut layer has a refractive index smaller than that of the first transparent substrate.
  • the first transparent electrode provided on the first transparent substrate and A second transparent substrate having a first side surface facing the light emitting element, The second transparent electrode provided on the second transparent substrate and A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules, With the third transparent substrate The first UV cut layer and A second ultraviolet ray-cutting layer for bonding the second transparent substrate and the third transparent substrate is provided.
  • a display device in which an air layer is provided between the first ultraviolet ray cut layer and the first transparent substrate.
  • the first transparent electrode provided on the first transparent substrate and A second transparent substrate having a first side surface facing the light emitting element, The second transparent electrode provided on the second transparent substrate and A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules, The first ultraviolet ray blocking layer provided on the outer surface of the first transparent substrate and A second ultraviolet ray blocking layer provided between the liquid crystal layer and the second transparent substrate,
  • the display device is equipped with.
  • the first transparent electrode provided on the first transparent substrate and With the second transparent substrate
  • the second transparent electrode provided on the second transparent substrate and A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules,
  • the first UV cut layer and The second UV cut layer and With a third UV cut layer The liquid crystal layer is provided between the first ultraviolet ray cut layer and the second ultraviolet ray cut layer, and is provided.
  • the second transparent substrate includes a first side surface facing the light emitting element and a second side surface different from the first side surface.
  • the third ultraviolet ray cut layer is a display device provided on the second side surface.
  • DSP ... Display device PNL ... Display panel LD ... Light emitting element SUB1 ... First substrate 10 ... Transparent substrate SW ... Switching element PE ... Pixel electrode SUB2 ... Second substrate 20 ... Transparent substrate CE ... Common electrode LC ... Liquid crystal layer 31 ... Polymer 32 ... Liquid crystal molecule 30 ... Transparent substrate 51 ... First UV cut layer 52 ... Second UV cut layer 53 ... Third UV cut layer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)

Abstract

The purpose of the present embodiment is to provide a display device capable of suppressing degradation in display quality. This display device (DSP) according to the present embodiment is provided with: a light-emitting element (LD); a first transparent substrate (10); a first transparent electrode (PE) provide to the first transparent substrate; a second transparent substrate (20) provided with a first side surface (20C) facing the light-emitting element; a second transparent electrode (CE) provided to the second transparent substrate; a liquid crystal layer (LC) positioned between the first transparent electrode and the second transparent electrode and including a polymer and liquid crystal molecules; a first ultraviolet cut layer (51); and a second ultraviolet cut layer (52), wherein the liquid crystal layer is provided between the first ultraviolet cut layer and the second ultraviolet cut layer.

Description

表示装置Display device
 本発明の実施形態は、表示装置に関する。 An embodiment of the present invention relates to a display device.
 近年、光に対して散乱性あるいは透明性を呈する光変調素子を備えた照明装置が種々提案されている。一例では、光変調素子は、光変調層として高分子分散液晶層を備えている。光変調素子は、導光板の背後に配置され、導光板の側面から入射した光を散乱するものである。 In recent years, various lighting devices equipped with a light modulation element that exhibits scattering or transparency with respect to light have been proposed. In one example, the light modulation element includes a polymer dispersed liquid crystal layer as the light modulation layer. The light modulation element is arranged behind the light guide plate and scatters the light incident from the side surface of the light guide plate.
特開2010-92682号公報JP-A-2010-92682 特開2016-57338号公報Japanese Unexamined Patent Publication No. 2016-57338
 本実施形態の目的は、表示品位の低下を抑制することが可能な表示装置を提供することにある。 An object of the present embodiment is to provide a display device capable of suppressing deterioration of display quality.
 本実施形態によれば、
 発光素子と、第1透明基板と、前記第1透明基板に設けられた第1透明電極と、前記発光素子と向かい合う第1側面を備えた第2透明基板と、前記第2透明基板に設けられた第2透明電極と、前記第1透明電極と前記第2透明電極との間に位置し、ポリマー及び液晶分子を含む液晶層と、第1紫外線カット層と、第2紫外線カット層と、を備え、前記液晶層は、前記第1紫外線カット層と前記第2紫外線カット層との間に設けられている、表示装置が提供される。
According to this embodiment
A light emitting element, a first transparent substrate, a first transparent electrode provided on the first transparent substrate, a second transparent substrate having a first side surface facing the light emitting element, and a second transparent substrate. A second transparent electrode, a liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and a liquid crystal molecule, a first ultraviolet cut layer, and a second ultraviolet cut layer. The liquid crystal layer is provided with a display device provided between the first ultraviolet ray cut layer and the second ultraviolet ray cut layer.
 本実施形態によれば、表示品位の低下を抑制することが可能な表示装置を提供することができる。 According to the present embodiment, it is possible to provide a display device capable of suppressing deterioration of display quality.
図1は、本実施形態の表示装置DSPの一構成例を示す平面図である。FIG. 1 is a plan view showing a configuration example of the display device DSP of the present embodiment. 図2は、図1に示した表示パネルPNLの一構成例を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration example of the display panel PNL shown in FIG. 図3は、表示装置DSPの第1構成例を示す断面図である。FIG. 3 is a cross-sectional view showing a first configuration example of the display device DSP. 図4は、紫外線カット層の分光特性を示す図である。FIG. 4 is a diagram showing the spectral characteristics of the ultraviolet cut layer. 図5は、表示装置DSPの変形例を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a modified example of the display device DSP. 図6は、表示装置DSPの第2構成例を示す断面図である。FIG. 6 is a cross-sectional view showing a second configuration example of the display device DSP. 図7は、表示装置DSPの第3構成例を示す断面図である。FIG. 7 is a cross-sectional view showing a third configuration example of the display device DSP. 図8は、表示装置DSPの第4構成例を示す断面図である。FIG. 8 is a cross-sectional view showing a fourth configuration example of the display device DSP. 図9は、表示装置DSPの第5構成例を示す断面図である。FIG. 9 is a cross-sectional view showing a fifth configuration example of the display device DSP. 図10は、表示装置DSPの第6構成例を示す断面図である。FIG. 10 is a cross-sectional view showing a sixth configuration example of the display device DSP. 図11は、表示装置DSPの第7構成例を示す断面図である。FIG. 11 is a cross-sectional view showing a seventh configuration example of the display device DSP. 図12は、表示装置DSPの第8構成例を示す断面図である。FIG. 12 is a cross-sectional view showing an eighth configuration example of the display device DSP. 図13は、表示装置DSPの第9構成例を示す分解斜視図である。FIG. 13 is an exploded perspective view showing a ninth configuration example of the display device DSP. 図14は、図13に示した表示装置DSPの平面図である。FIG. 14 is a plan view of the display device DSP shown in FIG. 図15は、第9構成例における表示装置DSPの変形例を示す平面図である。FIG. 15 is a plan view showing a modified example of the display device DSP in the ninth configuration example. 図16は、表示装置DSPの第10構成例を示す平面図である。FIG. 16 is a plan view showing a tenth configuration example of the display device DSP.
 以下、本実施形態について、図面を参照しながら説明する。なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。 Hereinafter, this embodiment will be described with reference to the drawings. It should be noted that the disclosure is merely an example, and those skilled in the art can easily conceive of appropriate changes while maintaining the gist of the invention are naturally included in the scope of the present invention. Further, in order to clarify the description, the drawings may schematically represent the width, thickness, shape, etc. of each part as compared with the actual embodiment, but this is merely an example, and the present invention It does not limit the interpretation. Further, in the present specification and each figure, components exhibiting the same or similar functions as those described above with respect to the above-mentioned figures may be designated by the same reference numerals, and duplicate detailed description may be omitted as appropriate. ..
 図1は、本実施形態の表示装置DSPの一構成例を示す平面図である。一例では、第1方向X、第2方向Y、及び、第3方向Zは、互いに直交しているが、90度以外の角度で交差していてもよい。第1方向X及び第2方向Yは、表示装置DSPを構成する基板の主面と平行な方向に相当し、第3方向Zは、表示装置DSPの厚さ方向に相当する。本実施形態においては、第1方向X及び第2方向Yで規定されるX-Y平面を見ることを平面視という。 FIG. 1 is a plan view showing a configuration example of the display device DSP of the present embodiment. In one example, the first direction X, the second direction Y, and the third direction Z are orthogonal to each other, but may intersect at an angle other than 90 degrees. The first direction X and the second direction Y correspond to the directions parallel to the main surface of the substrate constituting the display device DSP, and the third direction Z corresponds to the thickness direction of the display device DSP. In the present embodiment, viewing the XY plane defined by the first direction X and the second direction Y is referred to as a plan view.
 本実施形態においては、表示装置DSPの一例として、高分子分散型液晶を適用した液晶表示装置について説明する。表示装置DSPは、表示パネルPNLと、配線基板1と、ICチップ2と、光源装置3と、を備えている。 In the present embodiment, a liquid crystal display device to which a polymer-dispersed liquid crystal is applied will be described as an example of the display device DSP. The display device DSP includes a display panel PNL, a wiring board 1, an IC chip 2, and a light source device 3.
 表示パネルPNLは、第1基板SUB1と、第2基板SUB2と、液晶層LCと、シールSEと、を備えている。第1基板SUB1及び第2基板SUB2は、X-Y平面と平行な平板状に形成されている。第1基板SUB1及び第2基板SUB2は、平面視で、重畳している。第1基板SUB1及び第2基板SUB2は、シールSEによって接着されている。液晶層LCは、第1基板SUB1と第2基板SUB2との間に保持され、シールSEによって封止されている。図1において、液晶層LC及びシールSEは、異なる斜線で示している。 The display panel PNL includes a first substrate SUB1, a second substrate SUB2, a liquid crystal layer LC, and a seal SE. The first substrate SUB1 and the second substrate SUB2 are formed in a flat plate shape parallel to the XY plane. The first substrate SUB1 and the second substrate SUB2 are superimposed in a plan view. The first substrate SUB1 and the second substrate SUB2 are adhered by a seal SE. The liquid crystal layer LC is held between the first substrate SUB1 and the second substrate SUB2, and is sealed by the seal SE. In FIG. 1, the liquid crystal layer LC and the seal SE are shown by different diagonal lines.
 図1において拡大して模式的に示すように、液晶層LCは、ポリマー31と、液晶分子32と、を含む高分子分散型液晶を備えている。一例では、ポリマー31は、液晶性ポリマーである。ポリマー31は、第1方向Xに沿って延出した筋状に形成され、第2方向Yに並んでいる。液晶分子32は、ポリマー31の隙間に分散され、その長軸が第1方向Xに沿うように配向される。ポリマー31及び液晶分子32の各々は、光学異方性あるいは屈折率異方性を有している。ポリマー31の電界に対する応答性は、液晶分子32の電界に対する応答性より低い。 As enlarged and schematically shown in FIG. 1, the liquid crystal layer LC includes a polymer-dispersed liquid crystal containing a polymer 31 and liquid crystal molecules 32. In one example, the polymer 31 is a liquid crystal polymer. The polymer 31 is formed in a streak extending along the first direction X and is aligned in the second direction Y. The liquid crystal molecules 32 are dispersed in the gaps of the polymer 31, and the long axis thereof is oriented along the first direction X. Each of the polymer 31 and the liquid crystal molecule 32 has optical anisotropy or refractive index anisotropy. The responsiveness of the polymer 31 to the electric field is lower than the responsiveness of the liquid crystal molecule 32 to the electric field.
 一例では、ポリマー31の配向方向は、電界の有無にかかわらずほとんど変化しない。一方、液晶分子32の配向方向は、液晶層LCにしきい値以上の高い電圧が印加された状態では、電界に応じて変化する。液晶層LCに電圧が印加されていない状態では、ポリマー31及び液晶分子32のそれぞれの光軸は互いに平行であり、液晶層LCに入射した光は、液晶層LC内でほとんど散乱されることなく透過する(透明状態)。液晶層LCに電圧が印加された状態では、ポリマー31及び液晶分子32のそれぞれの光軸は互いに交差し、液晶層LCに入射した光は、液晶層LC内で散乱される(散乱状態)。 In one example, the orientation direction of the polymer 31 hardly changes regardless of the presence or absence of an electric field. On the other hand, the orientation direction of the liquid crystal molecules 32 changes according to the electric field when a voltage higher than the threshold value is applied to the liquid crystal layer LC. When no voltage is applied to the liquid crystal layer LC, the optical axes of the polymer 31 and the liquid crystal molecules 32 are parallel to each other, and the light incident on the liquid crystal layer LC is hardly scattered in the liquid crystal layer LC. Transparent (transparent state). When a voltage is applied to the liquid crystal layer LC, the optical axes of the polymer 31 and the liquid crystal molecule 32 intersect each other, and the light incident on the liquid crystal layer LC is scattered in the liquid crystal layer LC (scattered state).
 表示パネルPNLは、画像を表示する表示部DAと、表示部DAを囲む額縁状の非表示部NDAと、を備えている。シールSEは、非表示部NDAに位置している。表示部DAは、第1方向X及び第2方向Yにマトリクス状に配列された画素PXを備えている。 
 図1において拡大して示すように、各画素PXは、スイッチング素子SW、画素電極PE、共通電極CE、液晶層LC等を備えている。スイッチング素子SWは、例えば薄膜トランジスタ(TFT)によって構成され、走査線G及び信号線Sと電気的に接続されている。走査線Gは、第1方向Xに並んだ画素PXの各々におけるスイッチング素子SWと電気的に接続されている。信号線Sは、第2方向Yに並んだ画素PXの各々におけるスイッチング素子SWと電気的に接続されている。画素電極PEは、スイッチング素子SWと電気的に接続されている。共通電極CEは、複数の画素電極PEに対して共通に設けられている。画素電極PEの各々は、第3方向Zにおいて共通電極CEと対向している。液晶層LC(特に、液晶分子32)は、画素電極PEと共通電極CEとの間に生じる電界によって駆動される。容量CSは、例えば、共通電極CEと同電位の電極、及び、画素電極PEと同電位の電極の間に形成される。
The display panel PNL includes a display unit DA for displaying an image and a frame-shaped non-display unit NDA that surrounds the display unit DA. The seal SE is located on the non-display portion NDA. The display unit DA includes pixels PX arranged in a matrix in the first direction X and the second direction Y.
As shown enlarged in FIG. 1, each pixel PX includes a switching element SW, a pixel electrode PE, a common electrode CE, a liquid crystal layer LC, and the like. The switching element SW is composed of, for example, a thin film transistor (TFT), and is electrically connected to the scanning line G and the signal line S. The scanning line G is electrically connected to the switching element SW in each of the pixels PX arranged in the first direction X. The signal line S is electrically connected to the switching element SW in each of the pixels PX arranged in the second direction Y. The pixel electrode PE is electrically connected to the switching element SW. The common electrode CE is commonly provided for a plurality of pixel electrode PEs. Each of the pixel electrode PEs faces the common electrode CE in the third direction Z. The liquid crystal layer LC (particularly, the liquid crystal molecule 32) is driven by an electric field generated between the pixel electrode PE and the common electrode CE. The capacitance CS is formed, for example, between an electrode having the same potential as the common electrode CE and an electrode having the same potential as the pixel electrode PE.
 後に説明するが、走査線G、信号線S、スイッチング素子SW、及び、画素電極PEは、第1基板SUB1に設けられ、共通電極CEは、第2基板SUB2に設けられている。第1基板SUB1において、走査線G及び信号線Sは、配線基板1あるいはICチップ2と電気的に接続されている。 As will be described later, the scanning line G, the signal line S, the switching element SW, and the pixel electrode PE are provided on the first substrate SUB1, and the common electrode CE is provided on the second substrate SUB2. In the first substrate SUB1, the scanning line G and the signal line S are electrically connected to the wiring board 1 or the IC chip 2.
 配線基板1及びICチップ2は、第1基板SUB1の延出部Exに実装されている。延出部Exは、第1基板SUB1のうち第2基板SUB2と重畳しない部分に相当する。配線基板1は、例えば折り曲げ可能なフレキシブルプリント回路基板である。ICチップ2は、例えば、画像表示に必要な信号を出力するディスプレイドライバなどを内蔵している。なお、ICチップ2は、配線基板1に実装されてもよい。 The wiring board 1 and the IC chip 2 are mounted on the extension portion Ex of the first board SUB1. The extending portion Ex corresponds to a portion of the first substrate SUB1 that does not overlap with the second substrate SUB2. The wiring board 1 is, for example, a bendable flexible printed circuit board. The IC chip 2 has, for example, a built-in display driver that outputs a signal necessary for displaying an image. The IC chip 2 may be mounted on the wiring board 1.
 光源装置3は、複数の発光素子LDを備えている。複数の発光素子LDは、平面視で延出部Exに重畳している。これらの発光素子LDは、第1方向Xに沿って間隔をおいて並んでいる。発光素子LDは、例えば、発光ダイオードであり、詳述しないが、赤発光部、緑発光部、及び、青発光部を備えている。これらの発光素子LDは、第2基板SUB2の端部E21に沿って配置され、端部E21に向けて光を出射する。端部E21は、平面視において、第1方向Xに沿って延出している。光源装置3は、発光素子LDと端部E21との間に透明な導光体が配置されてもよい。 The light source device 3 includes a plurality of light emitting elements LD. The plurality of light emitting elements LD are superimposed on the extending portion Ex in a plan view. These light emitting elements LD are arranged at intervals along the first direction X. The light emitting element LD is, for example, a light emitting diode, and includes a red light emitting unit, a green light emitting unit, and a blue light emitting unit, although not described in detail. These light emitting elements LD are arranged along the end portion E21 of the second substrate SUB2, and emit light toward the end portion E21. The end portion E21 extends along the first direction X in a plan view. In the light source device 3, a transparent light guide body may be arranged between the light emitting element LD and the end portion E21.
 図2は、図1に示した表示パネルPNLの一構成例を示す断面図である。 
 第1基板SUB1は、透明基板10と、絶縁膜11及び12と、容量電極13と、スイッチング素子SWと、画素電極PEと、配向膜AL1と、を備えている。透明基板10は、外面10Aと、外面10Aの反対側の内面10Bと、を備えている。スイッチング素子SWは、内面10B側に設けられている。絶縁膜11は、内面10Bに設けられ、スイッチング素子SWを覆っている。なお、図1に示した走査線G及び信号線Sは、透明基板10と絶縁膜11との間に設けられているが、ここでは図示を省略している。容量電極13は、絶縁膜11及び12の間に設けられている。画素電極PEは、絶縁膜12と配向膜AL1との間において、画素PX毎に設けられている。つまり、容量電極13は、透明基板10と画素電極PEとの間に設けられている。画素電極PEは、容量電極13の開口部OPを介してスイッチング素子SWと電気的に接続されている。画素電極PEは、絶縁膜12を挟んで、容量電極13と重畳し、画素PXの容量CSを形成している。配向膜AL1は、画素電極PEを覆っている。配向膜AL1は、液晶層LCに接している。
FIG. 2 is a cross-sectional view showing a configuration example of the display panel PNL shown in FIG.
The first substrate SUB1 includes a transparent substrate 10, insulating films 11 and 12, a capacitance electrode 13, a switching element SW, a pixel electrode PE, and an alignment film AL1. The transparent substrate 10 includes an outer surface 10A and an inner surface 10B on the opposite side of the outer surface 10A. The switching element SW is provided on the inner surface 10B side. The insulating film 11 is provided on the inner surface 10B and covers the switching element SW. The scanning line G and the signal line S shown in FIG. 1 are provided between the transparent substrate 10 and the insulating film 11, but are not shown here. The capacitance electrode 13 is provided between the insulating films 11 and 12. The pixel electrode PE is provided for each pixel PX between the insulating film 12 and the alignment film AL1. That is, the capacitance electrode 13 is provided between the transparent substrate 10 and the pixel electrode PE. The pixel electrode PE is electrically connected to the switching element SW via the opening OP of the capacitance electrode 13. The pixel electrode PE sandwiches the insulating film 12 and overlaps with the capacitance electrode 13 to form the capacitance CS of the pixel PX. The alignment film AL1 covers the pixel electrode PE. The alignment film AL1 is in contact with the liquid crystal layer LC.
 第2基板SUB2は、透明基板20と、共通電極CEと、配向膜AL2と、を備えている。透明基板20は、内面20Aと、内面20Aの反対側の外面20Bと、を備えている。透明基板20の内面20Aは、第1透明基板10の内面10Bと向かい合っている。共通電極CEは、内面20Aに設けられている。配向膜AL2は、共通電極CEを覆っている。配向膜AL2は、液晶層LCに接している。なお、第2基板SUB2において、スイッチング素子SW、走査線G、及び、信号線Sの直上にそれぞれ遮光層が設けられてもよい。また、透明基板20と共通電極CEとの間、あるいは、共通電極CEと配向膜AL2との間に、透明な絶縁膜が設けられてもよい。共通電極CEは、複数の画素PXに亘って配置され、第3方向Zにおいて、複数の画素電極PEと対向している。また、共通電極CEは、容量電極13と電気的に接続されており、容量電極13とは同電位である。 
 液晶層LCは、画素電極PEと共通電極CEとの間に位置している。
The second substrate SUB2 includes a transparent substrate 20, a common electrode CE, and an alignment film AL2. The transparent substrate 20 includes an inner surface 20A and an outer surface 20B on the opposite side of the inner surface 20A. The inner surface 20A of the transparent substrate 20 faces the inner surface 10B of the first transparent substrate 10. The common electrode CE is provided on the inner surface 20A. The alignment film AL2 covers the common electrode CE. The alignment film AL2 is in contact with the liquid crystal layer LC. In the second substrate SUB2, a light-shielding layer may be provided directly above the switching element SW, the scanning line G, and the signal line S, respectively. Further, a transparent insulating film may be provided between the transparent substrate 20 and the common electrode CE, or between the common electrode CE and the alignment film AL2. The common electrode CE is arranged over the plurality of pixel PXs and faces the plurality of pixel electrodes PE in the third direction Z. Further, the common electrode CE is electrically connected to the capacitance electrode 13 and has the same potential as the capacitance electrode 13.
The liquid crystal layer LC is located between the pixel electrode PE and the common electrode CE.
 透明基板10及び20は、例えばガラス基板であるが、プラスチック基板などの絶縁基板であってもよい。絶縁膜11は、例えば、シリコン酸化物、シリコン窒化物、シリコン酸窒化物などの透明な無機絶縁膜、及び、アクリル樹脂などの透明な有機絶縁膜を含んでいる。絶縁膜12は、シリコン窒化物などの透明な無機絶縁膜である。容量電極13、画素電極PE、及び、共通電極CEは、インジウム錫酸化物(ITO)やインジウム亜鉛酸化物(IZO)などの透明導電材料によって形成された透明電極である。配向膜AL1及びAL2は、X-Y平面に略平行な配向規制力を有する水平配向膜である。一例では、配向膜AL1及びAL2は、第1方向Xに沿って配向処理されている。なお、配向処理とは、ラビング処理であってもよいし、光配向処理であってもよい。 
 本実施形態において、例えば、透明基板10は第1透明基板に相当し、画素電極PEは第1透明電極に相当し、透明基板20は第2透明基板に相当し、共通電極CEは第2透明電極に相当する。なお、透明基板10が第2透明基板に相当し、透明基板20が第1透明基板に相当する場合もありうる。この場合、画素電極PEが第2透明電極に相当し、共通電極CEが第1透明電極に相当する。
The transparent substrates 10 and 20 are, for example, glass substrates, but may be insulating substrates such as plastic substrates. The insulating film 11 includes, for example, a transparent inorganic insulating film such as silicon oxide, silicon nitride, and silicon oxynitride, and a transparent organic insulating film such as acrylic resin. The insulating film 12 is a transparent inorganic insulating film such as silicon nitride. The capacitive electrode 13, the pixel electrode PE, and the common electrode CE are transparent electrodes formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO). The alignment films AL1 and AL2 are horizontal alignment films having an orientation regulating force substantially parallel to the XY plane. In one example, the alignment films AL1 and AL2 are oriented along the first direction X. The alignment treatment may be a rubbing treatment or a photoalignment treatment.
In the present embodiment, for example, the transparent substrate 10 corresponds to the first transparent substrate, the pixel electrode PE corresponds to the first transparent electrode, the transparent substrate 20 corresponds to the second transparent substrate, and the common electrode CE corresponds to the second transparent substrate. Corresponds to the electrode. The transparent substrate 10 may correspond to the second transparent substrate, and the transparent substrate 20 may correspond to the first transparent substrate. In this case, the pixel electrode PE corresponds to the second transparent electrode, and the common electrode CE corresponds to the first transparent electrode.
  《第1構成例》 
 図3は、表示装置DSPの第1構成例を示す断面図である。なお、表示パネルPNLについては、主要部のみを簡略化して図示している。
<< First configuration example >>
FIG. 3 is a cross-sectional view showing a first configuration example of the display device DSP. As for the display panel PNL, only the main part is simplified and shown.
 表示装置DSPは、上記の表示パネルPNLに加えて、第1紫外線カット層(第1層)51と、第2紫外線カット層(第2層)52と、透明基板(第3透明基板)30と、を備えている。第1紫外線カット層51及び第2紫外線カット層52は、少なくとも液晶層LCと第3方向Zに重畳する領域に設けられている。第1構成例では、第1紫外線カット層51は透明基板10の外面10Aに設けられ、第2紫外線カット層52は透明基板20の外面20Bに設けられている。つまり、液晶層LCは、第1紫外線カット層51と第2紫外線カット層52との間に設けられている。図3に示した例では、第1紫外線カット層51及び第2紫外線カット層52は、液晶層LCに重畳する領域のみならず、液晶層LCを囲むシールSEに重畳する領域まで延在している。例えば、第1紫外線カット層51は外面10Aの全面に設けられ、また、第2紫外線カット層52は外面20Bの全面に設けられることが望ましい。第1紫外線カット層51及び第2紫外線カット層52の分光特性については後述する。 In addition to the display panel PNL described above, the display device DSP includes a first ultraviolet ray cut layer (first layer) 51, a second ultraviolet ray cut layer (second layer) 52, and a transparent substrate (third transparent substrate) 30. , Is equipped. The first ultraviolet ray cut layer 51 and the second ultraviolet ray cut layer 52 are provided at least in a region overlapping the liquid crystal layer LC in the third direction Z. In the first configuration example, the first ultraviolet cut layer 51 is provided on the outer surface 10A of the transparent substrate 10, and the second ultraviolet cut layer 52 is provided on the outer surface 20B of the transparent substrate 20. That is, the liquid crystal layer LC is provided between the first ultraviolet ray cut layer 51 and the second ultraviolet ray cut layer 52. In the example shown in FIG. 3, the first ultraviolet cut layer 51 and the second ultraviolet cut layer 52 extend not only to the region superposed on the liquid crystal layer LC but also to the region superposed on the seal SE surrounding the liquid crystal layer LC. There is. For example, it is desirable that the first ultraviolet cut layer 51 is provided on the entire surface of the outer surface 10A, and the second ultraviolet cut layer 52 is provided on the entire surface of the outer surface 20B. The spectral characteristics of the first ultraviolet cut layer 51 and the second ultraviolet cut layer 52 will be described later.
 透明基板30は、内面30Aと、内面30Aの反対側の外面30Bと、を備えている。第2紫外線カット層52は、透明基板20の外面20Bと透明基板30の内面30Aとの間に介在し、透明基板20と透明基板30とを貼り合わせる粘着層として機能する。 
 透明基板30は、例えばガラス基板であるが、プラスチック基板などの絶縁基板であってもよい。透明基板30は、透明基板10及び20と同等の屈折率を有している。第2紫外線カット層52は、透明基板20及び30の各々と同等の屈折率を有している。なお、ここでの「同等」とは、屈折率差がゼロの場合に限らず、屈折率差が0.03以下の場合を含む。
The transparent substrate 30 includes an inner surface 30A and an outer surface 30B on the opposite side of the inner surface 30A. The second ultraviolet ray cut layer 52 is interposed between the outer surface 20B of the transparent substrate 20 and the inner surface 30A of the transparent substrate 30, and functions as an adhesive layer for bonding the transparent substrate 20 and the transparent substrate 30.
The transparent substrate 30 is, for example, a glass substrate, but may be an insulating substrate such as a plastic substrate. The transparent substrate 30 has a refractive index equivalent to that of the transparent substrates 10 and 20. The second ultraviolet cut layer 52 has a refractive index equivalent to that of each of the transparent substrates 20 and 30. The term "equivalent" here includes not only the case where the refractive index difference is zero but also the case where the refractive index difference is 0.03 or less.
 透明基板20は側面20Cを備え、透明基板30は側面30Cを備えている。側面20Cは、図1に示した第2基板SUB2の端部E21に相当する。側面30Cは、側面20Cの直上に位置している。 The transparent substrate 20 has a side surface 20C, and the transparent substrate 30 has a side surface 30C. The side surface 20C corresponds to the end portion E21 of the second substrate SUB2 shown in FIG. The side surface 30C is located directly above the side surface 20C.
 光源装置3において、発光素子LDは、第2方向Yにおいて、側面20C及び側面30Cと向かい合っている。発光素子LDは、配線基板Fに電気的に接続されている。導光体LGは、発光素子LDと、側面20C及び30Cとの間に設けられ、発光素子LDから出射された光L1を側面20C及び30Cに導くものである。導光体LGは、粘着剤AD1により第1基板SUB1に固定されるとともに、粘着剤AD2により配線基板Fに固定されている。粘着剤AD1及びAD2は、反射層を含んでいる場合がある。 In the light source device 3, the light emitting element LD faces the side surface 20C and the side surface 30C in the second direction Y. The light emitting element LD is electrically connected to the wiring board F. The light guide LG is provided between the light emitting element LD and the side surfaces 20C and 30C, and guides the light L1 emitted from the light emitting element LD to the side surfaces 20C and 30C. The light guide LG is fixed to the first substrate SUB1 by the adhesive AD1 and fixed to the wiring board F by the adhesive AD2. The pressure-sensitive adhesives AD1 and AD2 may include a reflective layer.
 次に、図3を参照しながら、発光素子LDから出射される光L1について説明する。 
 発光素子LDは、導光体LGに向けて光L1を出射する。発光素子LDから出射された光L1は、第2方向Yを示す矢印の向きに沿って進行し、導光体LGを通り、側面20Cから透明基板20に入射するとともに、側面30Cから透明基板30に入射する。透明基板20及び30に入射した光L1は、繰り返し反射されながら、表示パネルPNLの内部を進行する。電圧が印加されていない液晶層LCに入射した光L1は、ほとんど散乱されることなく液晶層LCを透過する。また、電圧が印加された液晶層LCに入射した光L1は、液晶層LCで散乱される。表示装置DSPは、外面10A側から観察可能であるとともに、外面30B側からも観察可能である。また、表示装置DSPが外面10A側から観察された場合であっても、外面30B側から観察された場合であっても、表示装置DSPを介して、表示装置DSPの背景を観察可能である。
Next, the light L1 emitted from the light emitting element LD will be described with reference to FIG.
The light emitting element LD emits light L1 toward the light guide LG. The light L1 emitted from the light emitting element LD travels along the direction of the arrow indicating the second direction Y, passes through the light guide LG, enters the transparent substrate 20 from the side surface 20C, and enters the transparent substrate 20 from the side surface 30C. Incident in. The light L1 incident on the transparent substrates 20 and 30 travels inside the display panel PNL while being repeatedly reflected. The light L1 incident on the liquid crystal layer LC to which no voltage is applied passes through the liquid crystal layer LC with almost no scattering. Further, the light L1 incident on the liquid crystal layer LC to which the voltage is applied is scattered by the liquid crystal layer LC. The display device DSP can be observed from the outer surface 10A side as well as from the outer surface 30B side. Further, the background of the display device DSP can be observed via the display device DSP regardless of whether the display device DSP is observed from the outer surface 10A side or the outer surface 30B side.
 図4は、紫外線カット層の分光特性を示す図である。 
 図4の(A)は、サンプルSPの分光透過率を測定する測定方法を説明するための図である。光源101及び検出器102は、向かい合って設けられている。透明なガラス基板103は、光源101と検出器102との間に設けられている。サンプルSPは、ガラス基板103上に設けられる。光源101は、ガラス基板103を介してサンプルSPに自然光を照射する。検出器102は、サンプルSPを透過した透過光を検出する。光源101から照射される自然光の全光量をLiとし、検出器102で検出されるサンプルSPの透過光量をLtとしたとき、透過率T(%)は、Lt/Liとして定義される。 
 図4の(B)は、分光透過率の測定結果を示す図である。また、図4の(C)は、図4の(B)に示した分光透過率のうち、360nmから420nmまでの波長範囲を拡大したものである。ここに示す分光透過率は、本実施形態で適用可能な紫外線カット層をサンプルSPとして測定した結果に相当する。これによれば、紫外線カット層は、380nm以下の波長範囲の自然光の透過率が10%以下であり、400nm以上700nm以下の波長範囲の自然光の透過率が80%以上の分光特性を有している。また、この紫外線カット層の分光特性では、370nm以下の波長範囲では透過率がほぼゼロ%であり、420nm以上の波長範囲では透過率が90%以上である。あるいは、この紫外線カット層の分光特性では、380nm以下の波長範囲の透過率が420nm以上の波長範囲の透過率の10%以下である。
FIG. 4 is a diagram showing the spectral characteristics of the ultraviolet cut layer.
FIG. 4A is a diagram for explaining a measurement method for measuring the spectral transmittance of the sample SP. The light source 101 and the detector 102 are provided facing each other. The transparent glass substrate 103 is provided between the light source 101 and the detector 102. The sample SP is provided on the glass substrate 103. The light source 101 irradiates the sample SP with natural light via the glass substrate 103. The detector 102 detects the transmitted light transmitted through the sample SP. When the total amount of natural light emitted from the light source 101 is Li and the amount of transmitted light of the sample SP detected by the detector 102 is Lt, the transmittance T (%) is defined as Lt / Li.
FIG. 4B is a diagram showing the measurement result of the spectral transmittance. Further, FIG. 4 (C) is an expansion of the wavelength range from 360 nm to 420 nm in the spectral transmittance shown in FIG. 4 (B). The spectral transmittance shown here corresponds to the result of measuring the ultraviolet cut layer applicable to this embodiment as a sample SP. According to this, the ultraviolet cut layer has a spectral characteristic that the transmittance of natural light in the wavelength range of 380 nm or less is 10% or less and the transmittance of natural light in the wavelength range of 400 nm or more and 700 nm or less is 80% or more. There is. Further, in the spectral characteristics of this ultraviolet cut layer, the transmittance is almost 0% in the wavelength range of 370 nm or less, and the transmittance is 90% or more in the wavelength range of 420 nm or more. Alternatively, in the spectral characteristics of this ultraviolet cut layer, the transmittance in the wavelength range of 380 nm or less is 10% or less of the transmittance in the wavelength range of 420 nm or more.
 つまり、紫外線カット層は、可視光のほとんどを透過し、外観上は透明でありながら、紫外線のほとんどを遮蔽するものである。ここでの遮蔽とは、反射すること、及び、吸収することを含む。本実施形態で適用可能な第1紫外線カット層51及び第2紫外線カット層52としては、図4に示した分光特性を有するものが好適である。 
 また、本明細書において、自然光のうちの380nm以下の波長範囲の透過率を紫外線透過率と称する。本実施形態で適用される紫外線カット層の紫外線透過率は、透明基板10及び20の紫外線透過率より小さい。
That is, the ultraviolet ray blocking layer transmits most of the visible light and is transparent in appearance, but shields most of the ultraviolet rays. Shielding here includes reflecting and absorbing. As the first ultraviolet ray cut layer 51 and the second ultraviolet ray cut layer 52 applicable in the present embodiment, those having the spectral characteristics shown in FIG. 4 are suitable.
Further, in the present specification, the transmittance of natural light in the wavelength range of 380 nm or less is referred to as ultraviolet transmittance. The ultraviolet transmittance of the ultraviolet cut layer applied in the present embodiment is smaller than the ultraviolet transmittance of the transparent substrates 10 and 20.
 本実施形態によれば、液晶層LCは、第1紫外線カット層51及び第2紫外線カット層52の間に設けられている。第1紫外線カット層51及び第2紫外線カット層52は、表示装置DSPの外部から液晶層LCに向かって照射される紫外線を遮蔽する。このため、液晶層LCの紫外線による破壊あるいは劣化を抑制することができる。また、液晶層LCに電圧を印加した散乱状態において、液晶層LCの劣化に起因した散乱輝度の低下を抑制することができる。また、液晶層LCの印加電圧がしきい値電圧未満の透明状態において、液晶層LCの劣化に起因した透過率の低下を抑制することができる。 According to the present embodiment, the liquid crystal layer LC is provided between the first ultraviolet ray cut layer 51 and the second ultraviolet ray cut layer 52. The first ultraviolet ray cut layer 51 and the second ultraviolet ray cut layer 52 shield the ultraviolet rays emitted from the outside of the display device DSP toward the liquid crystal layer LC. Therefore, destruction or deterioration of the liquid crystal layer LC due to ultraviolet rays can be suppressed. Further, in a scattered state in which a voltage is applied to the liquid crystal layer LC, it is possible to suppress a decrease in scattering brightness due to deterioration of the liquid crystal layer LC. Further, in a transparent state in which the applied voltage of the liquid crystal layer LC is less than the threshold voltage, it is possible to suppress a decrease in the transmittance due to deterioration of the liquid crystal layer LC.
 加えて、第1構成例によれば、第2紫外線カット層52は、透明基板20及び30を貼り合わせる粘着層としての機能を兼ね備えている。このため、粘着層の他に、別途第2紫外線カット層を設ける場合と比較して、部品点数、材料コスト、及び、製造プロセスを削減することができ、また、表示装置DSPの厚さの増大を抑制することができる。 In addition, according to the first configuration example, the second ultraviolet ray cut layer 52 also has a function as an adhesive layer for laminating the transparent substrates 20 and 30. Therefore, the number of parts, the material cost, and the manufacturing process can be reduced as compared with the case where the second ultraviolet ray cut layer is separately provided in addition to the adhesive layer, and the thickness of the display device DSP can be increased. Can be suppressed.
  《第1構成例:変形例》 
 図5は、表示装置DSPの変形例を概略的に示す断面図である。 
 図5の(A)に示す第1変形例では、透明基板30の外面30Bに光学層OLが設けられている。光学層OLは、例えば、反射防止層、防指紋(anti-fingerprint)コーティング、保護層などである。第1紫外線カット層51は、外面10Aに直接形成されたものである。 
 図5の(B)に示す第2変形例では、第1紫外線カット層51は、フィルム部材として形成されたものであり、透明な粘着層53により外面10Aに貼り合わされている。 
 図5の(C)に示す第3変形例では、第1紫外線カット層51は、透明基板10の外面10Aと透明基板40の内面40Bとの間に介在し、透明基板10と透明基板40とを貼り合わせる粘着層として機能するものである。透明基板40は、例えば、透明基板10と同様のガラス基板である。 
 図5の(D)に示す第4変形例では、第1紫外線カット層51は、透明基板10の外面10Aと透明な樹脂フィルム41の内面41Bとの間に介在し、透明基板10と樹脂フィルム41とを貼り合わせる粘着層として機能するものである。
<< First configuration example: Modification example >>
FIG. 5 is a cross-sectional view schematically showing a modified example of the display device DSP.
In the first modification shown in FIG. 5A, the optical layer OL is provided on the outer surface 30B of the transparent substrate 30. The optical layer OL is, for example, an antireflection layer, an anti-fingerprint coating, a protective layer, and the like. The first ultraviolet ray cut layer 51 is formed directly on the outer surface 10A.
In the second modification shown in FIG. 5B, the first ultraviolet ray cut layer 51 is formed as a film member, and is bonded to the outer surface 10A by a transparent adhesive layer 53.
In the third modification shown in FIG. 5C, the first ultraviolet cut layer 51 is interposed between the outer surface 10A of the transparent substrate 10 and the inner surface 40B of the transparent substrate 40, and the transparent substrate 10 and the transparent substrate 40 It functions as an adhesive layer for laminating. The transparent substrate 40 is, for example, a glass substrate similar to the transparent substrate 10.
In the fourth modification shown in FIG. 5D, the first ultraviolet cut layer 51 is interposed between the outer surface 10A of the transparent substrate 10 and the inner surface 41B of the transparent resin film 41, and is interposed between the transparent substrate 10 and the resin film. It functions as an adhesive layer for laminating 41 and.
 このような各変形例においても、上記したのと同様の効果が得られる。加えて、例えば、第1変形例によれば、外面30Bの側から観察した際に、背景の視認性、あるいは、表示画像の視認性が向上する。また、第3変形例によれば、表示パネルPNLの剛性が向上する。また、第4変形例によれば、ガラス基板である透明基板10などが破損した際に、ガラスの飛散が樹脂フィルム41によって防止される。 In each of these modified examples, the same effect as described above can be obtained. In addition, for example, according to the first modification, the visibility of the background or the visibility of the displayed image is improved when observed from the side of the outer surface 30B. Further, according to the third modification, the rigidity of the display panel PNL is improved. Further, according to the fourth modification, when the transparent substrate 10 or the like which is a glass substrate is damaged, the resin film 41 prevents the glass from scattering.
  《第2構成例》 
 図6は、表示装置DSPの第2構成例を示す断面図である。 
 図6に示す第2構成例は、図3に示す第1構成例と比較して、第2紫外線カット層52が透明基板30の外面30Bに設けられた点で相違している。透明基板20及び30は、透明な粘着層54により貼り合わされている。粘着層54は、透明基板20及び30の各々と同等の屈折率を有している。液晶層LCについては図示を省略しているが、第1構成例と同様に、透明基板10及び20の間に設けられている。つまり、第2構成例においても、第1構成例と同様に、液晶層LCは、第1紫外線カット層51及び第2紫外線カット層52の間に設けられている。したがって、第2構成例によれば、第1構成例と同様の効果が得られる。
<< Second configuration example >>
FIG. 6 is a cross-sectional view showing a second configuration example of the display device DSP.
The second configuration example shown in FIG. 6 is different from the first configuration example shown in FIG. 3 in that the second ultraviolet cut layer 52 is provided on the outer surface 30B of the transparent substrate 30. The transparent substrates 20 and 30 are bonded by a transparent adhesive layer 54. The adhesive layer 54 has a refractive index equivalent to that of each of the transparent substrates 20 and 30. Although the liquid crystal layer LC is not shown, it is provided between the transparent substrates 10 and 20 as in the first configuration example. That is, in the second configuration example as well, the liquid crystal layer LC is provided between the first ultraviolet cut layer 51 and the second ultraviolet cut layer 52, as in the first configuration example. Therefore, according to the second configuration example, the same effect as that of the first configuration example can be obtained.
  《第3構成例》 
 図7は、表示装置DSPの第3構成例を示す断面図である。 
 図7に示す第3構成例は、図3に示す第1構成例と比較して、第1紫外線カット層51が透明基板10より小さい屈折率を有している点で相違している。例えば、透明基板10の屈折率n1は1.51であり、第1紫外線カット層51の屈折率n2は1.43である(n1>n2)。なお、上記の通り、透明基板20及び30、及び、第2紫外線カット層52のそれぞれの屈折率は、屈折率n1と同等である。 
 図7に示す例では、表示装置DSPは、透明な保護部材61を備えている。第1紫外線カット層51は、透明基板10と保護部材61とを貼り合わせる粘着層として機能する。
<< Third configuration example >>
FIG. 7 is a cross-sectional view showing a third configuration example of the display device DSP.
The third configuration example shown in FIG. 7 is different from the first configuration example shown in FIG. 3 in that the first ultraviolet cut layer 51 has a refractive index smaller than that of the transparent substrate 10. For example, the refractive index n1 of the transparent substrate 10 is 1.51, and the refractive index n2 of the first ultraviolet cut layer 51 is 1.43 (n1> n2). As described above, the refractive indexes of the transparent substrates 20 and 30 and the second ultraviolet cut layer 52 are equivalent to the refractive index n1.
In the example shown in FIG. 7, the display device DSP includes a transparent protective member 61. The first ultraviolet ray cut layer 51 functions as an adhesive layer for bonding the transparent substrate 10 and the protective member 61.
 このような第3構成例によれば、第1構成例と同様の効果が得られる。加えて、発光素子LDから出射された光L1のうち、透明基板10に入射した光L1は、透明基板10と第1紫外線カット層51との界面で反射される。このため、光L1のうち、保護部材61に導かれる光、あるいは、表示装置DSPの外部に導かれる光を低減することができる。このため、光L1の漏れ出しに起因した光の減衰を抑制することができる。また、たとえ保護部材61に微小な傷が形成された場合や、保護部材61に指紋等の汚れが付着した場合であっても、これらの部位での不所望な散乱を抑制することができる。 According to such a third configuration example, the same effect as that of the first configuration example can be obtained. In addition, of the light L1 emitted from the light emitting element LD, the light L1 incident on the transparent substrate 10 is reflected at the interface between the transparent substrate 10 and the first ultraviolet ray cut layer 51. Therefore, among the light L1, the light guided to the protective member 61 or the light guided to the outside of the display device DSP can be reduced. Therefore, it is possible to suppress the attenuation of light due to the leakage of light L1. Further, even when minute scratches are formed on the protective member 61 or when stains such as fingerprints are attached to the protective member 61, undesired scattering at these sites can be suppressed.
  《第4構成例》 
 図8は、表示装置DSPの第4構成例を示す断面図である。 
 図8に示す第4構成例は、図6に示す第2構成例と比較して、第1紫外線カット層51が透明基板10より小さい屈折率を有し、第2紫外線カット層52が透明基板30より小さい屈折率を有している点で相違している。例えば、透明基板10の屈折率n1及び透明基板30の屈折率n3は1.51であり、第1紫外線カット層51の屈折率n2及び第2紫外線カット層52の屈折率n4は1.43である(n1>n2、n3>n4)。なお、上記の通り、透明基板20及び粘着層54のそれぞれの屈折率は、屈折率n1と同等である。 
 図8に示す例では、表示装置DSPは、透明な保護部材61及び62を備えている。第1紫外線カット層51は、透明基板10と保護部材61とを貼り合わせる粘着層として機能する。第2紫外線カット層52は、透明基板30と保護部材62とを貼り合わせる粘着層として機能する。
<< Fourth configuration example >>
FIG. 8 is a cross-sectional view showing a fourth configuration example of the display device DSP.
In the fourth configuration example shown in FIG. 8, the first ultraviolet cut layer 51 has a refractive index smaller than that of the transparent substrate 10 and the second ultraviolet cut layer 52 is a transparent substrate as compared with the second configuration example shown in FIG. It differs in that it has a refractive index less than 30. For example, the refractive index n1 of the transparent substrate 10 and the refractive index n3 of the transparent substrate 30 are 1.51, and the refractive index n2 of the first ultraviolet ray cut layer 51 and the refractive index n4 of the second ultraviolet ray cut layer 52 are 1.43. There are (n1> n2, n3> n4). As described above, the refractive indexes of the transparent substrate 20 and the adhesive layer 54 are equivalent to the refractive index n1.
In the example shown in FIG. 8, the display device DSP includes transparent protective members 61 and 62. The first ultraviolet ray cut layer 51 functions as an adhesive layer for bonding the transparent substrate 10 and the protective member 61. The second ultraviolet ray cut layer 52 functions as an adhesive layer for bonding the transparent substrate 30 and the protective member 62.
 このような第4構成例によれば、第1構成例と同様の効果が得られる。加えて、発光素子LDから出射された光L1のうち、透明基板10に入射した光L1は透明基板10と第1紫外線カット層51との界面で反射され、透明基板30に入射した光L1は透明基板30と第2紫外線カット層52との界面で反射される。このため、第3構成例と同様に、光L1の漏れ出しに起因した光の減衰を抑制することができる。また、たとえ保護部材61及び62における不所望な散乱を抑制することができる。 According to such a fourth configuration example, the same effect as that of the first configuration example can be obtained. In addition, of the light L1 emitted from the light emitting element LD, the light L1 incident on the transparent substrate 10 is reflected at the interface between the transparent substrate 10 and the first ultraviolet ray cut layer 51, and the light L1 incident on the transparent substrate 30 is It is reflected at the interface between the transparent substrate 30 and the second UV cut layer 52. Therefore, as in the third configuration example, it is possible to suppress the attenuation of light due to the leakage of light L1. Moreover, even if undesired scattering in the protective members 61 and 62 can be suppressed.
  《第5構成例》 
 図9は、表示装置DSPの第5構成例を示す断面図である。 
 図9に示す第5構成例は、図3に示す第1構成例と比較して、第1紫外線カット層51と透明基板10との間に空気層70が設けられている点で相違している。図9に示す例では、第1紫外線カット層51は、タッチセンサ80に設けられている。タッチセンサ80は、簡略化して図示しているが、透明な支持基材81と、支持基材81に設けられた透明なセンサ電極82と、を備えている。支持基材81は、フィルム部材であってもよいしガラス基板であってもよい。センサ電極82は、上記の透明導電材料によって形成された透明電極である。配線基板83は、センサ電極82と電気的に接続され、センサ電極82を駆動するための信号やセンサ電極82からの検出信号等の伝送路を形成している。このようなタッチセンサ80は、透明な保護部材84と透明基板10との間に設けられている。
<< Fifth configuration example >>
FIG. 9 is a cross-sectional view showing a fifth configuration example of the display device DSP.
The fifth configuration example shown in FIG. 9 is different from the first configuration example shown in FIG. 3 in that an air layer 70 is provided between the first ultraviolet cut layer 51 and the transparent substrate 10. There is. In the example shown in FIG. 9, the first ultraviolet ray cut layer 51 is provided on the touch sensor 80. Although the touch sensor 80 is shown in a simplified manner, the touch sensor 80 includes a transparent support base material 81 and a transparent sensor electrode 82 provided on the support base material 81. The support base material 81 may be a film member or a glass substrate. The sensor electrode 82 is a transparent electrode formed of the above-mentioned transparent conductive material. The wiring board 83 is electrically connected to the sensor electrode 82, and forms a transmission path for a signal for driving the sensor electrode 82 and a detection signal from the sensor electrode 82. Such a touch sensor 80 is provided between the transparent protective member 84 and the transparent substrate 10.
 第1紫外線カット層51は、保護部材84とタッチパネル80とを貼り合わせる粘着層として機能する。スペーサ85は、タッチパネル80と透明基板10との間に設けられている。図9に示す例では、スペーサ85は、透明基板10と支持基材81との間に設けられている。スペーサ85は、表示部DAの外側、あるいは、シールSEと重畳する領域に設けられている。例えば、スペーサ85は、平面視において図1に示すシールSEと同様の枠状に形成されている。スペーサ85は、表示部DAと重畳する領域において透明基板10と支持基材81との間に空気層70を形成するとともに、表示部DAの外側で透明基板10と支持基材81とを貼り合わせる粘着層として機能する。 The first ultraviolet ray cut layer 51 functions as an adhesive layer for bonding the protective member 84 and the touch panel 80. The spacer 85 is provided between the touch panel 80 and the transparent substrate 10. In the example shown in FIG. 9, the spacer 85 is provided between the transparent substrate 10 and the supporting substrate 81. The spacer 85 is provided on the outside of the display unit DA or in a region that overlaps with the seal SE. For example, the spacer 85 is formed in a frame shape similar to the seal SE shown in FIG. 1 in a plan view. The spacer 85 forms an air layer 70 between the transparent substrate 10 and the support base material 81 in a region overlapping the display unit DA, and attaches the transparent substrate 10 and the support base material 81 to the outside of the display unit DA. Functions as an adhesive layer.
 このような第5構成例によれば、第1構成例と同様の効果が得られる。加えて、発光素子LDから出射された光L1のうち、透明基板10に入射した光L1は透明基板10と空気層70との界面で反射される。このため、第3構成例と同様に、光L1の漏れ出しに起因した光の減衰を抑制することができる。また、タッチパネル80を操作する指等が保護部材84に触れた際、たとえ、保護部材84に指紋等の汚れが付着した場合であっても、これらの部位での不所望な散乱を抑制することができる。また、たとえ保護部材84に微小な傷が形成された場合であっても、これらの部位での不所望な散乱を抑制することができる。 According to such a fifth configuration example, the same effect as that of the first configuration example can be obtained. In addition, of the light L1 emitted from the light emitting element LD, the light L1 incident on the transparent substrate 10 is reflected at the interface between the transparent substrate 10 and the air layer 70. Therefore, as in the third configuration example, it is possible to suppress the attenuation of light due to the leakage of light L1. Further, when a finger or the like operating the touch panel 80 touches the protective member 84, even if stains such as fingerprints adhere to the protective member 84, undesired scattering at these parts is suppressed. Can be done. Further, even when minute scratches are formed on the protective member 84, undesired scattering at these sites can be suppressed.
 なお、透明基板10の外面10A、及び、透明基板30の外面30Bの少なくとも一方に、透明な保護部材や、反射防止層等の光学層が設けられてもよい。 An optical layer such as a transparent protective member or an antireflection layer may be provided on at least one of the outer surface 10A of the transparent substrate 10 and the outer surface 30B of the transparent substrate 30.
  《第6構成例》 
 図10は、表示装置DSPの第6構成例を示す断面図である。 
 図10に示す第6構成例は、図6に示す第2構成例と比較して、第2紫外線カット層52が液晶層LCと透明基板20との間に設けられた点で相違している。図10に示す例では、第1紫外線カット層51は透明基板10の外面10Aに設けられ、第2紫外線カット層52は透明基板20の内面20Aに設けられている。換言すると、第2紫外線カット層52は、透明基板20と共通電極CEとの間に位置している。但し、第2紫外線カット層52は、内面20Aに直接形成される例に限らず、液晶層LCと透明基板20との間のどこに設けられてもよい。例えば、第2紫外線カット層52は、配向膜AL2と置換されてもよいし、配向膜AL2とは異なる他の薄膜であってもよい。換言すると、第2紫外線カット層52は、液晶層LCと共通電極CEとの間に位置していてもよい。第2紫外線カット層52は、透明基板20と同等の屈折率を有している。また、第1紫外線カット層51は、外面10Aに直接形成される例に限らず、例えば、図9に示す第5構成例の如く、第1紫外線カット層51と透明基板10との間に空気層70が設けられてもよい。 
 このような第6構成例によれば、第1構成例と同様の効果が得られる。
<< 6th configuration example >>
FIG. 10 is a cross-sectional view showing a sixth configuration example of the display device DSP.
The sixth configuration example shown in FIG. 10 is different from the second configuration example shown in FIG. 6 in that the second ultraviolet cut layer 52 is provided between the liquid crystal layer LC and the transparent substrate 20. .. In the example shown in FIG. 10, the first ultraviolet cut layer 51 is provided on the outer surface 10A of the transparent substrate 10, and the second ultraviolet cut layer 52 is provided on the inner surface 20A of the transparent substrate 20. In other words, the second UV cut layer 52 is located between the transparent substrate 20 and the common electrode CE. However, the second ultraviolet cut layer 52 is not limited to the example of being directly formed on the inner surface 20A, and may be provided anywhere between the liquid crystal layer LC and the transparent substrate 20. For example, the second UV cut layer 52 may be replaced with the alignment film AL2, or may be another thin film different from the alignment film AL2. In other words, the second ultraviolet ray cut layer 52 may be located between the liquid crystal layer LC and the common electrode CE. The second ultraviolet cut layer 52 has a refractive index equivalent to that of the transparent substrate 20. Further, the first ultraviolet cut layer 51 is not limited to the example of being directly formed on the outer surface 10A, and for example, as in the fifth configuration example shown in FIG. 9, air is provided between the first ultraviolet cut layer 51 and the transparent substrate 10. The layer 70 may be provided.
According to such a sixth configuration example, the same effect as that of the first configuration example can be obtained.
  《第7構成例》 
 図11は、表示装置DSPの第7構成例を示す断面図である。 
 図11に示す第7構成例は、図3に示す第1構成例と比較して、第1紫外線カット層51が透明基板10と液晶層LCとの間に設けられた点で相違している。図11に示す例では、第1紫外線カット層51は透明基板10の内面10Bに設けられ、第2紫外線カット層52は透明基板20及び30の間に設けられている。換言すると、第1紫外線カット層51は、透明基板10と画素電極PEとの間に位置している。但し、第1紫外線カット層51は、内面10Bに直接形成される例に限らず、透明基板10と液晶層LCとの間のどこに設けられてもよい。例えば、第1紫外線カット層51は、配向膜AL1と置換されてもよいし、配向膜AL1とは異なる他の薄膜であってもよい。換言すると、第1紫外線カット層51は、液晶層LCと画素電極PEとの間に位置していてもよい。第1紫外線カット層51は、透明基板10と同等の屈折率を有している。また、第2紫外線カット層52は、例えば、図6に示す第2構成例の如く、透明基板30の外面30Bに設けられてもよい。 
 このような第7構成例によれば、第1構成例と同様の効果が得られる。
<< 7th configuration example >>
FIG. 11 is a cross-sectional view showing a seventh configuration example of the display device DSP.
The seventh configuration example shown in FIG. 11 is different from the first configuration example shown in FIG. 3 in that the first ultraviolet cut layer 51 is provided between the transparent substrate 10 and the liquid crystal layer LC. .. In the example shown in FIG. 11, the first ultraviolet cut layer 51 is provided on the inner surface 10B of the transparent substrate 10, and the second ultraviolet cut layer 52 is provided between the transparent substrates 20 and 30. In other words, the first ultraviolet cut layer 51 is located between the transparent substrate 10 and the pixel electrode PE. However, the first ultraviolet cut layer 51 is not limited to the example of being directly formed on the inner surface 10B, and may be provided anywhere between the transparent substrate 10 and the liquid crystal layer LC. For example, the first ultraviolet cut layer 51 may be replaced with the alignment film AL1 or may be another thin film different from the alignment film AL1. In other words, the first ultraviolet ray cut layer 51 may be located between the liquid crystal layer LC and the pixel electrode PE. The first ultraviolet cut layer 51 has a refractive index equivalent to that of the transparent substrate 10. Further, the second ultraviolet ray cut layer 52 may be provided on the outer surface 30B of the transparent substrate 30, for example, as in the second configuration example shown in FIG.
According to such a seventh configuration example, the same effect as that of the first configuration example can be obtained.
  《第8構成例》 
 図12は、表示装置DSPの第8構成例を示す断面図である。 
 図12に示す第8構成例は、図10に示す第6構成例及び図11に示す第7構成例の組み合わせに相当する。すなわち、第1紫外線カット層51は透明基板10と液晶層LCとの間に設けられ、第2紫外線カット層52は液晶層LCと透明基板20との間に設けられている。なお、図12に示す例では、透明基板30を省略しているが、図10に示す第6構成例の如く、粘着層54を介して透明基板20及び30が貼り合わされてもよい。 
 このような第8構成例によれば、第1構成例と同様の効果が得られる。
<< Eighth configuration example >>
FIG. 12 is a cross-sectional view showing an eighth configuration example of the display device DSP.
The eighth configuration example shown in FIG. 12 corresponds to a combination of the sixth configuration example shown in FIG. 10 and the seventh configuration example shown in FIG. That is, the first ultraviolet cut layer 51 is provided between the transparent substrate 10 and the liquid crystal layer LC, and the second ultraviolet cut layer 52 is provided between the liquid crystal layer LC and the transparent substrate 20. Although the transparent substrate 30 is omitted in the example shown in FIG. 12, the transparent substrates 20 and 30 may be bonded to each other via the adhesive layer 54 as in the sixth configuration example shown in FIG.
According to such an eighth configuration example, the same effect as that of the first configuration example can be obtained.
 上記の第1乃至第8構成例は、適宜組み合わせることができる。 The above first to eighth configuration examples can be combined as appropriate.
  《第9構成例》 
 図13は、表示装置DSPの第9構成例を示す分解斜視図である。ここでは、配線基板1、ICチップ2、及び、光源装置3の図示を省略している。
<< 9th configuration example >>
FIG. 13 is an exploded perspective view showing a ninth configuration example of the display device DSP. Here, the wiring board 1, the IC chip 2, and the light source device 3 are not shown.
 透明基板20は、図3を参照して説明した側面(第1側面)20Cの他に、側面(第2側面)20D、20E、及び、20Fを備えている。透明基板10も同様に、側面10D、10E、及び、10Fを備えている。透明基板30も同様に、側面30D、30E、及び、30Fを備えている。 
 表示装置DSPは、第3紫外線カット層91乃至93を備えている。第3紫外線カット層91は、側面10D、20D、30Dに設けられている。第3紫外線カット層92は、側面10E、20E、30Eに設けられている。第3紫外線カット層93は、側面10F、20F、30Fに設けられている。なお、第3紫外線カット層91乃至93は、互いに繋がっていてもよい。第3紫外線カット層91乃至93は、第1紫外線カット層51等と同様に透明であってもよいし、着色されていてもよい。第3紫外線カット層91乃至93は、少なくとも380nm以下の波長範囲の自然光の透過率が10%以下である分光特性を有している。
The transparent substrate 20 includes side surfaces (second side surface) 20D, 20E, and 20F in addition to the side surface (first side surface) 20C described with reference to FIG. Similarly, the transparent substrate 10 also includes side surfaces 10D, 10E, and 10F. Similarly, the transparent substrate 30 also includes side surfaces 30D, 30E, and 30F.
The display device DSP includes a third ultraviolet ray cut layer 91 to 93. The third ultraviolet ray cut layer 91 is provided on the side surfaces 10D, 20D, and 30D. The third ultraviolet ray cut layer 92 is provided on the side surfaces 10E, 20E, and 30E. The third ultraviolet ray cut layer 93 is provided on the side surfaces 10F, 20F, and 30F. The third ultraviolet cut layers 91 to 93 may be connected to each other. The third UV cut layers 91 to 93 may be transparent or colored like the first UV cut layer 51 and the like. The third ultraviolet cut layers 91 to 93 have a spectral characteristic in which the transmittance of natural light in a wavelength range of at least 380 nm or less is 10% or less.
 図14は、図13に示した表示装置DSPの平面図である。第3紫外線カット層91乃至93は、表示装置DSPの外部から照射される紫外線(UV)を遮蔽する。たとえ液晶層LCを囲むシールSEが紫外線を透過する分光特性を有していたとしても、シールSEの外側に設けられた第3紫外線カット層91乃至93により、液晶層LCへの紫外線の到達が抑制される。 FIG. 14 is a plan view of the display device DSP shown in FIG. The third ultraviolet cut layers 91 to 93 shield ultraviolet rays (UV) emitted from the outside of the display device DSP. Even if the seal SE surrounding the liquid crystal layer LC has a spectral characteristic of transmitting ultraviolet rays, the third ultraviolet cut layers 91 to 93 provided on the outside of the seal SE allow the ultraviolet rays to reach the liquid crystal layer LC. It is suppressed.
 このような第9構成例は、上記の第1乃至第8構成例と適宜組み合わせることができる。つまり、表示装置DSPにおいて、透明基板10の外面10A側からの紫外線は第1紫外線カット層51によって遮蔽され、透明基板20の外面20B側(あるいは透明基板30の外面30B側)からの紫外線は第2紫外線カット層52によって遮蔽され、透明基板10乃至30の側面からの紫外線は、第3紫外線カット層91乃至93によって遮蔽される。これにより、液晶層LCの紫外線による破壊あるいは劣化を抑制することができ、長寿命化が可能となる。 Such a ninth configuration example can be appropriately combined with the above-mentioned first to eighth configuration examples. That is, in the display device DSP, the ultraviolet rays from the outer surface 10A side of the transparent substrate 10 are shielded by the first ultraviolet ray cut layer 51, and the ultraviolet rays from the outer surface 20B side of the transparent substrate 20 (or the outer surface 30B side of the transparent substrate 30) are the first. 2 The ultraviolet rays cut layer 52 are shielded, and the ultraviolet rays from the side surfaces of the transparent substrates 10 to 30 are shielded by the third ultraviolet ray cut layers 91 to 93. As a result, destruction or deterioration of the liquid crystal layer LC due to ultraviolet rays can be suppressed, and the life of the liquid crystal layer LC can be extended.
  《第9構成例;第1変形例》 
 図15は、第9構成例における表示装置DSPの第1変形例を示す平面図である。図15に示す第1変形例は、第3紫外線カット層91乃至93が不透明であり、反射層を含むものである。すなわち、第3紫外線カット層91乃至93は、外部からの紫外線を遮蔽するとともに、発光素子LDからの光L1を反射する。つまり、表示部DAを経てシールSEを透過した光L1は、再び表示部DAに向けて反射される。これにより、表示部DAのうち、発光素子LDから遠く離れた領域においても、第3紫外線カット層91乃至93からの反射光が表示に寄与するため、輝度の低下(あるいは発光素子LDに近接する領域との輝度差)が緩和される。
<< 9th configuration example; 1st modification >>
FIG. 15 is a plan view showing a first modification of the display device DSP in the ninth configuration example. In the first modification shown in FIG. 15, the third ultraviolet cut layers 91 to 93 are opaque and include a reflective layer. That is, the third ultraviolet cut layers 91 to 93 shield the ultraviolet rays from the outside and reflect the light L1 from the light emitting element LD. That is, the light L1 that has passed through the display unit DA and passed through the seal SE is reflected again toward the display unit DA. As a result, even in a region of the display unit DA far away from the light emitting element LD, the reflected light from the third ultraviolet cut layers 91 to 93 contributes to the display, so that the brightness is lowered (or the light emitting element LD is close to the light emitting element LD). The difference in brightness from the area) is alleviated.
  《第9構成例;第2変形例》 
 図16は、第9構成例における表示装置DSPの第1変形例を示す平面図である。図16に示す第2変形例は、表示パネルPNLの周縁部PNLEが筐体100によって囲まれた点で相違している。図16に示す例では、枠状の筐体100が第3紫外線カット層として機能し、筐体100は、周縁部PNLEの全周に亘って囲んでいる。また、配線基板1、ICチップ2、及び、光源装置3は、筐体100に収容されている。 
 このような第10構成例は、上記の第1乃至第8構成例と適宜組み合わせることができる。したがって、第10構成例によれば、第9構成例と同様の効果が得られる。
<< 9th configuration example; 2nd modification >>
FIG. 16 is a plan view showing a first modification of the display device DSP in the ninth configuration example. The second modification shown in FIG. 16 is different in that the peripheral edge portion PNLE of the display panel PNL is surrounded by the housing 100. In the example shown in FIG. 16, the frame-shaped housing 100 functions as a third ultraviolet ray blocking layer, and the housing 100 surrounds the peripheral portion PNLE over the entire circumference. Further, the wiring board 1, the IC chip 2, and the light source device 3 are housed in the housing 100.
Such a tenth configuration example can be appropriately combined with the above-mentioned first to eighth configuration examples. Therefore, according to the tenth configuration example, the same effect as that of the ninth configuration example can be obtained.
 以上説明したように、本実施形態によれば、表示品位の低下を抑制することが可能な表示装置を提供することができる。 As described above, according to the present embodiment, it is possible to provide a display device capable of suppressing deterioration of display quality.
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 本明細書にて開示した構成から得られる表示装置の一例を以下に付記する。 
(1)
 発光素子と、
 第1透明基板と、
 前記第1透明基板に設けられた第1透明電極と、
 前記発光素子と向かい合う第1側面を備えた第2透明基板と、
 前記第2透明基板に設けられた第2透明電極と、
 前記第1透明電極と前記第2透明電極との間に位置し、ポリマー及び液晶分子を含む液晶層と、
 第1紫外線カット層と、
 第2紫外線カット層と、を備え、
 前記液晶層は、前記第1紫外線カット層と前記第2紫外線カット層との間に設けられている、表示装置。
(2)
 前記第1紫外線カット層及び前記第2紫外線カット層の各々は、380nm以下の波長範囲の自然光の透過率が10%以下であり、400nm以上700nm以下の波長範囲の自然光の透過率が80%以上の分光特性を有している、(1)に記載の表示装置。
(3)
 第3透明基板を備え、
 前記第2紫外線カット層は、前記第2透明基板と前記第3透明基板とを貼り合わせる粘着層である、(1)または(2)に記載の表示装置。
(4)
 前記第2紫外線カット層は、前記第2透明基板及び前記第3透明基板の各々と同等の屈折率を有している、(3)に記載の表示装置。
(5)
 第3透明基板と、
 前記第2透明基板と前記第3透明基板とを貼り合わせる粘着層と、を備え、
 前記第2紫外線カット層は、前記第3透明基板の外面に設けられている、(1)または(2)に記載の表示装置。
(6)
 前記第2紫外線カット層は、前記第3透明基板より小さい屈折率を有している、(5)に記載の表示装置。
(7)
 前記第2紫外線カット層は、前記液晶層と前記第2透明基板との間に設けられている、(1)または(2)に記載の表示装置。
(8)
 前記第1紫外線カット層は、前記第1透明基板の外面に設けられている、(1)乃至(7)のいずれか1項に記載の表示装置。
(9)
 前記第1紫外線カット層は、前記第1透明基板より小さい屈折率を有している、(8)に記載の表示装置。
(10)
 前記第1紫外線カット層と前記第1透明基板との間に空気層が設けられている、(1)乃至(7)のいずれか1項に記載の表示装置。
(11)
 前記第1紫外線カット層は、前記第1透明基板と前記液晶層との間に設けられている、(1)乃至(7)のいずれか1項に記載の表示装置。
(12)
 前記第2透明基板は、前記第1側面とは異なる第2側面を備え、
 前記第2側面に設けられた第3紫外線カット層を備えている、(1)乃至(11)のいずれか1項に記載の表示装置。
(13)
 発光素子と、
 第1透明基板と、
 前記第1透明基板に設けられた第1透明電極と、
 前記発光素子と向かい合う第1側面を備えた第2透明基板と、
 前記第2透明基板に設けられた第2透明電極と、
 前記第1透明電極と前記第2透明電極との間に位置し、ポリマー及び液晶分子を含む液晶層と、
 第3透明基板と、
 前記第1透明基板の外面に設けられた第1紫外線カット層と、
 前記第2透明基板と前記第3透明基板とを貼り合わせる第2紫外線カット層と、
 を備えている、表示装置。
(14)
 発光素子と、
 第1透明基板と、
 前記第1透明基板に設けられた第1透明電極と、
 前記発光素子と向かい合う第1側面を備えた第2透明基板と、
 前記第2透明基板に設けられた第2透明電極と、
 前記第1透明電極と前記第2透明電極との間に位置し、ポリマー及び液晶分子を含む液晶層と、
 第3透明基板と、
 保護部材と、
 前記保護部材と前記第1透明基板とを貼り合わせる第1紫外線カット層と、
 前記第2透明基板と前記第3透明基板とを貼り合わせる第2紫外線カット層と、
 を備え、
 前記第1紫外線カット層は、前記第1透明基板より小さい屈折率を有している、表示装置。
(15)
 発光素子と、
 第1透明基板と、
 前記第1透明基板に設けられた第1透明電極と、
 前記発光素子と向かい合う第1側面を備えた第2透明基板と、
 前記第2透明基板に設けられた第2透明電極と、
 前記第1透明電極と前記第2透明電極との間に位置し、ポリマー及び液晶分子を含む液晶層と、
 第3透明基板と、
 第1紫外線カット層と、
 前記第2透明基板と前記第3透明基板とを貼り合わせる第2紫外線カット層と、を備え、
 前記第1紫外線カット層と前記第1透明基板との間に空気層が設けられている、表示装置。
(16)
 発光素子と、
 第1透明基板と、
 前記第1透明基板に設けられた第1透明電極と、
 前記発光素子と向かい合う第1側面を備えた第2透明基板と、
 前記第2透明基板に設けられた第2透明電極と、
 前記第1透明電極と前記第2透明電極との間に位置し、ポリマー及び液晶分子を含む液晶層と、
 前記第1透明基板の外面に設けられた第1紫外線カット層と、
 前記液晶層と前記第2透明基板との間に設けられた第2紫外線カット層と、
を備えている、表示装置。
(17)
 発光素子と、
 第1透明基板と、
 前記第1透明基板に設けられた第1透明電極と、
 第2透明基板と、
 前記第2透明基板に設けられた第2透明電極と、
 前記第1透明電極と前記第2透明電極との間に位置し、ポリマー及び液晶分子を含む液晶層と、
 第1紫外線カット層と、
 第2紫外線カット層と、
 第3紫外線カット層と、を備え、
 前記液晶層は、前記第1紫外線カット層と前記第2紫外線カット層との間に設けられ、
 前記第2透明基板は、前記発光素子と向かい合う第1側面と、前記第1側面とは異なる第2側面と、を備え、
 前記第3紫外線カット層は、前記第2側面に設けられている、表示装置。
An example of a display device obtained from the configuration disclosed in the present specification is added below.
(1)
Light emitting element and
With the first transparent substrate
The first transparent electrode provided on the first transparent substrate and
A second transparent substrate having a first side surface facing the light emitting element,
The second transparent electrode provided on the second transparent substrate and
A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules,
The first UV cut layer and
With a second UV cut layer,
The liquid crystal layer is a display device provided between the first ultraviolet ray cut layer and the second ultraviolet ray cut layer.
(2)
Each of the first ultraviolet ray cut layer and the second ultraviolet ray cut layer has a transmittance of natural light in a wavelength range of 380 nm or less of 10% or less, and a transmittance of natural light in a wavelength range of 400 nm or more and 700 nm or less of 80% or more. The display device according to (1), which has the spectral characteristics of.
(3)
Equipped with a third transparent substrate
The display device according to (1) or (2), wherein the second ultraviolet ray cut layer is an adhesive layer for laminating the second transparent substrate and the third transparent substrate.
(4)
The display device according to (3), wherein the second ultraviolet ray cut layer has a refractive index equivalent to that of each of the second transparent substrate and the third transparent substrate.
(5)
With the third transparent substrate
An adhesive layer for bonding the second transparent substrate and the third transparent substrate is provided.
The display device according to (1) or (2), wherein the second ultraviolet ray cut layer is provided on an outer surface of the third transparent substrate.
(6)
The display device according to (5), wherein the second ultraviolet ray cut layer has a refractive index smaller than that of the third transparent substrate.
(7)
The display device according to (1) or (2), wherein the second ultraviolet ray cut layer is provided between the liquid crystal layer and the second transparent substrate.
(8)
The display device according to any one of (1) to (7), wherein the first ultraviolet ray cut layer is provided on an outer surface of the first transparent substrate.
(9)
The display device according to (8), wherein the first ultraviolet ray-cutting layer has a refractive index smaller than that of the first transparent substrate.
(10)
The display device according to any one of (1) to (7), wherein an air layer is provided between the first ultraviolet ray cut layer and the first transparent substrate.
(11)
The display device according to any one of (1) to (7), wherein the first ultraviolet ray cut layer is provided between the first transparent substrate and the liquid crystal layer.
(12)
The second transparent substrate includes a second side surface different from the first side surface.
The display device according to any one of (1) to (11), comprising a third ultraviolet ray blocking layer provided on the second side surface.
(13)
Light emitting element and
With the first transparent substrate
The first transparent electrode provided on the first transparent substrate and
A second transparent substrate having a first side surface facing the light emitting element,
The second transparent electrode provided on the second transparent substrate and
A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules,
With the third transparent substrate
The first ultraviolet ray blocking layer provided on the outer surface of the first transparent substrate and
A second ultraviolet ray-cutting layer for bonding the second transparent substrate and the third transparent substrate,
The display device is equipped with.
(14)
Light emitting element and
With the first transparent substrate
The first transparent electrode provided on the first transparent substrate and
A second transparent substrate having a first side surface facing the light emitting element,
The second transparent electrode provided on the second transparent substrate and
A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules,
With the third transparent substrate
Protective material and
A first ultraviolet ray blocking layer for bonding the protective member and the first transparent substrate,
A second ultraviolet ray-cutting layer for bonding the second transparent substrate and the third transparent substrate,
With
A display device in which the first ultraviolet ray cut layer has a refractive index smaller than that of the first transparent substrate.
(15)
Light emitting element and
With the first transparent substrate
The first transparent electrode provided on the first transparent substrate and
A second transparent substrate having a first side surface facing the light emitting element,
The second transparent electrode provided on the second transparent substrate and
A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules,
With the third transparent substrate
The first UV cut layer and
A second ultraviolet ray-cutting layer for bonding the second transparent substrate and the third transparent substrate is provided.
A display device in which an air layer is provided between the first ultraviolet ray cut layer and the first transparent substrate.
(16)
Light emitting element and
With the first transparent substrate
The first transparent electrode provided on the first transparent substrate and
A second transparent substrate having a first side surface facing the light emitting element,
The second transparent electrode provided on the second transparent substrate and
A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules,
The first ultraviolet ray blocking layer provided on the outer surface of the first transparent substrate and
A second ultraviolet ray blocking layer provided between the liquid crystal layer and the second transparent substrate,
The display device is equipped with.
(17)
Light emitting element and
With the first transparent substrate
The first transparent electrode provided on the first transparent substrate and
With the second transparent substrate
The second transparent electrode provided on the second transparent substrate and
A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules,
The first UV cut layer and
The second UV cut layer and
With a third UV cut layer,
The liquid crystal layer is provided between the first ultraviolet ray cut layer and the second ultraviolet ray cut layer, and is provided.
The second transparent substrate includes a first side surface facing the light emitting element and a second side surface different from the first side surface.
The third ultraviolet ray cut layer is a display device provided on the second side surface.
 DSP…表示装置 PNL…表示パネル LD…発光素子
 SUB1…第1基板 10…透明基板 SW…スイッチング素子 PE…画素電極
 SUB2…第2基板 20…透明基板 CE…共通電極
 LC…液晶層 31…ポリマー 32…液晶分子
 30…透明基板
 51…第1紫外線カット層 52…第2紫外線カット層 53…第3紫外線カット層
DSP ... Display device PNL ... Display panel LD ... Light emitting element SUB1 ... First substrate 10 ... Transparent substrate SW ... Switching element PE ... Pixel electrode SUB2 ... Second substrate 20 ... Transparent substrate CE ... Common electrode LC ... Liquid crystal layer 31 ... Polymer 32 ... Liquid crystal molecule 30 ... Transparent substrate 51 ... First UV cut layer 52 ... Second UV cut layer 53 ... Third UV cut layer

Claims (18)

  1.  発光素子と、
     第1透明基板と、
     前記第1透明基板に設けられた第1透明電極と、
     前記発光素子と向かい合う第1側面を備えた第2透明基板と、
     前記第2透明基板に設けられた第2透明電極と、
     前記第1透明電極と前記第2透明電極との間に位置し、ポリマー及び液晶分子を含む液晶層と、
     第1紫外線カット層と、
     第2紫外線カット層と、を備え、
     前記液晶層は、前記第1紫外線カット層と前記第2紫外線カット層との間に設けられている、表示装置。
    Light emitting element and
    With the first transparent substrate
    The first transparent electrode provided on the first transparent substrate and
    A second transparent substrate having a first side surface facing the light emitting element,
    The second transparent electrode provided on the second transparent substrate and
    A liquid crystal layer located between the first transparent electrode and the second transparent electrode and containing a polymer and liquid crystal molecules,
    The first UV cut layer and
    With a second UV cut layer,
    The liquid crystal layer is a display device provided between the first ultraviolet ray cut layer and the second ultraviolet ray cut layer.
  2.  前記第1紫外線カット層及び前記第2紫外線カット層の各々は、380nm以下の波長範囲の自然光の透過率が10%以下であり、400nm以上700nm以下の波長範囲の自然光の透過率が80%以上の分光特性を有している、請求項1に記載の表示装置。 Each of the first ultraviolet ray cut layer and the second ultraviolet ray cut layer has a transmittance of natural light in a wavelength range of 380 nm or less of 10% or less, and a transmittance of natural light in a wavelength range of 400 nm or more and 700 nm or less of 80% or more. The display device according to claim 1, which has the spectral characteristics of.
  3.  第3透明基板を備え、
     前記第2紫外線カット層は、前記第2透明基板と前記第3透明基板とを貼り合わせる粘着層である、請求項1に記載の表示装置。
    Equipped with a third transparent substrate
    The display device according to claim 1, wherein the second ultraviolet ray cut layer is an adhesive layer for laminating the second transparent substrate and the third transparent substrate.
  4.  前記第2紫外線カット層は、前記第2透明基板及び前記第3透明基板の各々と同等の屈折率を有している、請求項3に記載の表示装置。 The display device according to claim 3, wherein the second ultraviolet ray cut layer has a refractive index equivalent to that of each of the second transparent substrate and the third transparent substrate.
  5.  第3透明基板と、
     前記第2透明基板と前記第3透明基板とを貼り合わせる粘着層と、を備え、
     前記第2紫外線カット層は、前記第3透明基板の外面に設けられている、請求項1に記載の表示装置。
    With the third transparent substrate
    An adhesive layer for bonding the second transparent substrate and the third transparent substrate is provided.
    The display device according to claim 1, wherein the second ultraviolet ray cut layer is provided on an outer surface of the third transparent substrate.
  6.  前記第2紫外線カット層は、前記第3透明基板より小さい屈折率を有している、請求項5に記載の表示装置。 The display device according to claim 5, wherein the second ultraviolet ray cut layer has a refractive index smaller than that of the third transparent substrate.
  7.  前記第2紫外線カット層は、前記液晶層と前記第2透明基板との間に設けられている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the second ultraviolet ray cut layer is provided between the liquid crystal layer and the second transparent substrate.
  8.  前記第1紫外線カット層は、前記第1透明基板の外面に設けられている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the first ultraviolet ray cut layer is provided on an outer surface of the first transparent substrate.
  9.  前記第1紫外線カット層は、前記第1透明基板より小さい屈折率を有している、請求項8に記載の表示装置。 The display device according to claim 8, wherein the first ultraviolet ray cut layer has a refractive index smaller than that of the first transparent substrate.
  10.  前記第1紫外線カット層と前記第1透明基板との間に空気層が設けられている、請求項1に記載の表示装置。 The display device according to claim 1, wherein an air layer is provided between the first ultraviolet ray cut layer and the first transparent substrate.
  11.  前記第1紫外線カット層は、前記第1透明基板と前記液晶層との間に設けられている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the first ultraviolet ray cut layer is provided between the first transparent substrate and the liquid crystal layer.
  12.  前記第2透明基板は、前記第1側面とは異なる第2側面を備え、
     前記第2側面に設けられた第3紫外線カット層を備えている、請求項1に記載の表示装置。
    The second transparent substrate includes a second side surface different from the first side surface.
    The display device according to claim 1, further comprising a third ultraviolet ray blocking layer provided on the second side surface.
  13.  発光素子と、
     第1透明基板と、
     前記第1透明基板に設けられた第1透明電極と、
     前記発光素子と向かい合う第1側面を備えた第2透明基板と、
     前記第2透明基板に設けられた第2透明電極と、
     前記第1透明電極と前記第2透明電極との間に位置する液晶層と、
     前記液晶層の前記第1透明基板の側に位置し、前記第1透明基板の紫外線透過率よりも小さい紫外線透過率を有する第1層と、
     前記液晶層の前記第2透明基板の側に位置し、前記第2透明基板の紫外線透過率よりも小さい紫外線透過率を有する第2層と、を備え、
     前記第1層と前記第2層との少なくとも一方は、前記第1透明基板と前記第2透明基板との対応する一方と、前記液晶層との間に位置する表示装置。
    Light emitting element and
    With the first transparent substrate
    The first transparent electrode provided on the first transparent substrate and
    A second transparent substrate having a first side surface facing the light emitting element,
    The second transparent electrode provided on the second transparent substrate and
    A liquid crystal layer located between the first transparent electrode and the second transparent electrode,
    A first layer of the liquid crystal layer located on the side of the first transparent substrate and having an ultraviolet transmittance smaller than that of the first transparent substrate.
    A second layer located on the side of the second transparent substrate of the liquid crystal layer and having an ultraviolet transmittance smaller than the ultraviolet transmittance of the second transparent substrate is provided.
    At least one of the first layer and the second layer is a display device located between the corresponding one of the first transparent substrate and the second transparent substrate and the liquid crystal layer.
  14.  前記第1層は、前記液晶層と前記第1透明基板との間に位置し、
     前記第2層は、前記液晶層と前記第2透明基板との間に位置する、請求項13に記載の表示装置。
    The first layer is located between the liquid crystal layer and the first transparent substrate.
    The display device according to claim 13, wherein the second layer is located between the liquid crystal layer and the second transparent substrate.
  15.  前記第1層は、前記第1透明基板と前記第1透明電極との間に位置する、請求項13に記載の表示装置。 The display device according to claim 13, wherein the first layer is located between the first transparent substrate and the first transparent electrode.
  16.  前記第1層は、前記液晶層と前記第1透明電極との間に位置する、請求項13に記載の表示装置。 The display device according to claim 13, wherein the first layer is located between the liquid crystal layer and the first transparent electrode.
  17.  前記第2層は、前記第2透明基板と前記第2透明電極との間に位置する、請求項13に記載の表示装置。 The display device according to claim 13, wherein the second layer is located between the second transparent substrate and the second transparent electrode.
  18.  前記第2層は、前記液晶層と前記第2透明電極との間に位置する、請求項13に記載の表示装置。 The display device according to claim 13, wherein the second layer is located between the liquid crystal layer and the second transparent electrode.
PCT/JP2020/001705 2019-04-24 2020-01-20 Display device WO2020217608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-083046 2019-04-24
JP2019083046A JP2020181050A (en) 2019-04-24 2019-04-24 Display device

Publications (1)

Publication Number Publication Date
WO2020217608A1 true WO2020217608A1 (en) 2020-10-29

Family

ID=72942429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001705 WO2020217608A1 (en) 2019-04-24 2020-01-20 Display device

Country Status (2)

Country Link
JP (1) JP2020181050A (en)
WO (1) WO2020217608A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070648A1 (en) * 2022-09-28 2024-04-04 日東電工株式会社 Polymer dispersed liquid crystal film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045612A (en) * 2017-08-31 2019-03-22 凸版印刷株式会社 Lighting control film and lighting control device using the same
JP2019053186A (en) * 2017-09-14 2019-04-04 株式会社ジャパンディスプレイ Display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045612A (en) * 2017-08-31 2019-03-22 凸版印刷株式会社 Lighting control film and lighting control device using the same
JP2019053186A (en) * 2017-09-14 2019-04-04 株式会社ジャパンディスプレイ Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070648A1 (en) * 2022-09-28 2024-04-04 日東電工株式会社 Polymer dispersed liquid crystal film

Also Published As

Publication number Publication date
JP2020181050A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
US7969539B2 (en) Electro-optical device, input device, and electronic apparatus
WO2020075547A1 (en) Display device
JP7160334B2 (en) Display device
WO2020022113A1 (en) Display device
US20220091459A1 (en) Display device
CN112368634B (en) Display device
US11181784B2 (en) Display device
WO2020217608A1 (en) Display device
US11988917B2 (en) Display device and illumination device
WO2021065189A1 (en) Display device
WO2020022112A1 (en) Display device
WO2012002019A1 (en) Display device
US11275284B2 (en) Display device
JP2020177731A (en) Cover glass and display device
JP7326558B2 (en) Display device
US12001107B2 (en) Display device
US11614668B2 (en) Display device
JP7289675B2 (en) Display device
CN112955815B (en) display device
WO2020213218A1 (en) Display device
JP2021184052A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795682

Country of ref document: EP

Kind code of ref document: A1