WO2020217577A1 - Automatic transmission and control method of automatic transmission - Google Patents

Automatic transmission and control method of automatic transmission Download PDF

Info

Publication number
WO2020217577A1
WO2020217577A1 PCT/JP2019/047894 JP2019047894W WO2020217577A1 WO 2020217577 A1 WO2020217577 A1 WO 2020217577A1 JP 2019047894 W JP2019047894 W JP 2019047894W WO 2020217577 A1 WO2020217577 A1 WO 2020217577A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
lockup clutch
smooth
automatic transmission
torque
Prior art date
Application number
PCT/JP2019/047894
Other languages
French (fr)
Japanese (ja)
Inventor
鵬 劉
匡史 諏訪部
隆宏 山田
幸司 古口
一徳 木村
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to JP2021515776A priority Critical patent/JP7202455B2/en
Publication of WO2020217577A1 publication Critical patent/WO2020217577A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches

Definitions

  • the present invention relates to an automatic transmission and a control method for the automatic transmission.
  • JP2016-48100A when the lockup clutch of the torque converter is in the engaged state and it is determined that the running state of the vehicle is in a state where vibration can occur, the lockup clutch is put into the slip engaged state and vibrates.
  • a control device for an automatic transmission that prevents the generation of noise due to vibration is disclosed.
  • the engagement pressure (engagement pressure) of the lockup clutch is gradually reduced to bring the lockup clutch into the first slip engagement state, and then the engagement pressure (engagement pressure) is applied.
  • the combined pressure) is gradually increased to shift the lockup clutch to the second slip engagement state in which the slip amount is smaller than that in the first slip engagement state.
  • the lockup clutch when shifting from the first slip-engaged state to the second slip-engaged state, the lockup clutch may be delayed due to a delay in valve response or the like. The amount of slip may become too large and the engine may be blown up. In this way, when the engine is blown up, the driver may feel uncomfortable or the fuel efficiency may deteriorate.
  • the present invention has been made in view of such technical problems, and an object of the present invention is to suppress engine run-up when slip control is performed on a lockup clutch of a torque converter.
  • the automatic transmission has a transmission mechanism, a torque converter provided on a power transmission path between the engine and the transmission mechanism, and having a lockup clutch, and an output torque of the engine.
  • 1 Smooth-off control that gradually lowers the engagement pressure of the lockup clutch when the torque exceeds a predetermined torque, and slips the lockup clutch by gradually increasing the engagement pressure of the lockup clutch after executing the smooth-off control.
  • a control device for executing the drive slip control to be in a state is provided, and the control device has a first predetermined value of the difference between the rotation speed on the input shaft side of the torque converter and the rotation speed on the output shaft side of the torque converter.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing the flow of slip control according to the embodiment of the present invention.
  • FIG. 3 is a flowchart showing the flow of slip control according to the embodiment of the present invention.
  • FIG. 4 is a map showing slip start conditions according to the embodiment of the present invention.
  • FIG. 5 is a map showing the relationship between the predetermined value D1 and the amount of change in the turbine rotation speed Ntout according to the embodiment of the present invention.
  • FIG. 6 is a slip control timing chart according to the embodiment of the present invention.
  • FIG. 7 is a slip control timing chart according to the embodiment of the present invention.
  • FIG. 8 is a slip control timing chart according to the embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of the vehicle 100.
  • the vehicle 100 includes an engine 1, an automatic transmission 3, an oil pump 5, drive wheels 6, and a controller 10 as a control device.
  • Engine 1 is an internal combustion engine that uses gasoline, light oil, etc. as fuel, and functions as a driving source for traveling.
  • the engine 1 is controlled in rotation speed, torque, and the like based on a command from the controller 10.
  • the automatic transmission 3 includes a torque converter 2, a fastening element 31, a variator 30 as a transmission mechanism, a hydraulic control valve unit 40 (hereinafter, also simply referred to as “valve unit 40”), and oil (hydraulic oil).
  • valve unit 40 hydraulic control valve unit 40
  • oil hydroaulic oil
  • the torque converter 2 is provided on the power transmission path between the engine 1 and the drive wheels 6.
  • the torque converter 2 transmits power via a fluid. Further, the torque converter 2 can improve the power transmission efficiency of the driving force from the engine 1 by engaging the lockup clutch 2a.
  • the fastening element 31 is arranged on the power transmission path between the torque converter 2 and the variator 30.
  • the fastening element 31 includes a forward clutch and a reverse brake (not shown).
  • the fastening element 31 is controlled by the oil adjusted by the valve unit 40 with the discharge pressure of the oil pump 5 as the original pressure based on the command from the controller 10.
  • a wet multi-plate clutch is used as the fastening element 31, for example.
  • the variator 30 is arranged on the power transmission path between the fastening element 31 and the drive wheels 6, and changes the gear ratio steplessly according to the vehicle speed, the accelerator opening, and the like.
  • the variator 30 includes a primary pulley 30a, a secondary pulley 30b, and a belt 30c wound around both pulleys 30a and 30b.
  • the gear ratio is steplessly changed by moving the movable pulley of the primary pulley 30a and the movable pulley of the secondary pulley 30b in the axial direction by the pulley pressure and changing the pulley contact radius of the belt 30c.
  • the pulley pressure acting on the primary pulley 30a and the pulley pressure acting on the secondary pulley 30b are adjusted by the valve unit 40 with the discharge pressure from the oil pump 5 as the original pressure.
  • a differential 12 is connected to the output shaft of the secondary pulley 30b of the variator 30 via a final reduction gear mechanism (not shown).
  • the drive wheels 6 are connected to the differential 12 via the drive shaft 13.
  • the oil pump 5 is driven by transmitting the rotation of the engine 1 via the belt.
  • the oil pump 5 is composed of, for example, a vane pump.
  • the oil pump 5 sucks up the oil stored in the oil pan 32 and supplies the oil to the valve unit 40.
  • the oil supplied to the valve unit 40 is used for driving the lockup clutch 2a, driving the pulleys 30a and 30b, driving the fastening element 31, and lubricating each element of the automatic transmission 3.
  • the controller 10 is composed of a microcomputer provided with a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the controller 10 is composed of a plurality of microcomputers. Specifically, the controller 10 is composed of an ATCU that controls the automatic transmission 3, an SCU that controls the shift range, an ECU that controls the engine 1, and the like.
  • the controller 10 includes a first rotation speed sensor 51 that detects the rotation speed Ne of the engine 1, a second rotation speed sensor 52 that detects the rotation speed of the turbine (turbine rotation speed Ntout) on the output shaft side of the torque converter 2.
  • the inhibitor switch 56 that detects the select range of the fastening element 31 (the state of the select lever or the select switch that switches between forward, reverse, neutral and parking), the accelerator opening sensor 57 that detects the accelerator opening AP, and the pedaling force of the brake. Signals are input from the tread force sensor 58 to detect, the torque sensor 59 to detect the output torque ⁇ of the engine 1, and the like.
  • the controller 10 controls various operations of the engine 1 and the automatic transmission 3 based on these input signals.
  • the fastening pressure Pc of the lockup clutch 2a is gradually lowered.
  • the engagement pressure Pc of the lockup clutch 2a is gradually increased to control the slip amount to reach the target value.
  • step S1 it is determined whether or not the slip control start condition of the lockup clutch 2a is satisfied. Specifically, the controller 10 determines whether or not the output torque ⁇ of the engine 1 detected by the torque sensor 59 is equal to or greater than a predetermined value ⁇ 1 based on the map shown in FIG. If the output torque ⁇ of the engine 1 is equal to or greater than the predetermined value ⁇ 1, the controller 10 determines that the slip control start condition for the lockup clutch 2a is satisfied, and proceeds to step S2. If the output torque ⁇ of the engine 1 is less than the predetermined value ⁇ 1, the lockup clutch 2a is maintained in the completely lockedup state, and the process proceeds to END. In step S1 (map shown in FIG.
  • the slip control start condition is satisfied only by the change in the output torque ⁇ of the engine 1, but the output of the engine 1 is not limited to this.
  • the determination may be made according to changes in turbine rotation speed Ntout, oil temperature, gear ratio, and the like.
  • step S2 smooth-off control is executed.
  • the smooth-off control in the present embodiment is a control for smoothly shifting from a state in which the lockup clutch 2a is completely engaged to a drive slip state in which power transmission is performed while maintaining a predetermined slip amount.
  • the controller 10 controls the valve unit 40 so as to gradually reduce the engagement pressure Pc of the lockup clutch 2a of the torque converter 2.
  • step S3 the correction process of the engagement pressure Pc of the lockup clutch 2a is executed. Specifically, the controller 10 corrects the instruction pressure Pt of the lockup clutch 2a during the execution of the smooth-off control. The content of the correction process will be described in detail later.
  • step S4 drive slip control is executed. Specifically, the controller 10 controls the valve unit 40 so that the lockup clutch 2a maintains a predetermined slip amount after the smooth-off control is completed.
  • step S31 the output torque ⁇ of the engine 1 is stored.
  • the controller 10 stores the output torque ⁇ of the engine 1 detected by the torque sensor 59 at the start of the smooth-off control.
  • the output torque stored at this time is referred to as an output torque ⁇ s.
  • step S32 it is determined whether or not the torque deviation amount ⁇ d is equal to or greater than the predetermined value ⁇ 1.
  • the controller 10 calculates the difference (torque deviation amount ⁇ d) between the stored output torque ⁇ s and the current output torque ⁇ r of the engine 1 detected by the torque sensor 59, and this torque deviation amount ⁇ d. Determines whether or not is equal to or greater than the predetermined value ⁇ 1. If the torque deviation amount ⁇ d is equal to or greater than the predetermined value ⁇ 1, the process proceeds to step S33, and if the torque deviation amount ⁇ d is less than the predetermined value ⁇ 1, the process proceeds to step S38.
  • step S33 the indicated pressure Pt is increased by a predetermined amount P2. Specifically, the controller 10 raises the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a by a predetermined amount P2.
  • step S34 it is determined whether or not the torque deviation amount ⁇ d is equal to or greater than the predetermined value ⁇ 2.
  • the controller 10 calculates the difference (torque deviation amount ⁇ d) between the stored output torque ⁇ s and the current output torque ⁇ r of the engine 1 detected by the torque sensor 59, and this torque deviation amount ⁇ d. Determines whether or not is equal to or greater than the predetermined value ⁇ 2. If the torque deviation amount ⁇ d is equal to or greater than the predetermined value ⁇ 2, the process proceeds to step S35, and if the torque deviation amount ⁇ d is less than the predetermined value ⁇ 2, the process proceeds to step S38.
  • step S35 the indicated pressure Pt is increased by a predetermined amount P3. Specifically, the controller 10 raises the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a by a predetermined amount P3.
  • step S36 it is determined whether or not the torque deviation amount ⁇ d is equal to or greater than the predetermined value ⁇ 3. Specifically, the controller 10 calculates the difference (torque deviation amount ⁇ d) between the stored output torque ⁇ s and the current output torque ⁇ r of the engine 1 detected by the torque sensor 59, and this torque deviation amount ⁇ d. Determines whether or not is equal to or greater than the predetermined value ⁇ 3. If the torque deviation amount ⁇ d is equal to or greater than the predetermined value ⁇ 3, the process proceeds to step S37, and if the torque deviation amount ⁇ d is less than the predetermined value ⁇ 3, the process proceeds to step S38.
  • step S37 the indicated pressure Pt is increased by a predetermined amount P4. Specifically, the controller 10 raises the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a by a predetermined amount P4.
  • the slip amount of the lockup clutch 2a increases even with the same fastening pressure Pc. Therefore, when the torque deviation amount ⁇ d is large, the indicated pressure Pt is increased by a predetermined amount P2, P3, P4 in advance. Thereby, when shifting from the smooth-off control to the drive slip control, it is possible to prevent the engine 1 from being blown up due to a large slip amount.
  • the predetermined amounts P2, P3, and P4 may have the same value or different values.
  • step S38 it is determined whether or not the differential rotation D is equal to or greater than the predetermined value D1.
  • the controller 10 has a rotation speed Ne of the engine 1 detected by the first rotation speed sensor 51 and a rotation speed Ntout of the output shaft of the torque converter 2 detected by the second rotation speed sensor 52.
  • the difference rotation D which is the absolute value of the difference in rotation speeds, is calculated, and it is determined whether or not the difference rotation D is equal to or greater than the predetermined value D1.
  • the rotation speed Ne of the engine 1 corresponds to the rotation speed Ntin on the input shaft side of the torque converter 2.
  • the predetermined value D1 changes according to the amount of change in the turbine rotation speed Ntout, as shown in the map shown in FIG.
  • the amount of change in the turbine rotation speed Ntout is a value corresponding to the rotational acceleration of the output shaft of the torque converter 2.
  • the predetermined value D1 may be a constant value.
  • step S39 If the differential rotation D is greater than or equal to the predetermined value D1, the process proceeds to step S39, and if the differential rotation D is less than the predetermined value D1, the process returns to step S32.
  • step S39 it is determined whether or not the foot return determination condition is satisfied.
  • the controller 10 determines from the accelerator opening degree AP detected by the accelerator opening degree sensor 57 whether or not the accelerator pedal is depressed during the smooth-off control. More specifically, the controller 10 calculates the speed Vap of the accelerator pedal from the accelerator opening AP detected by the accelerator opening sensor 57, and whether or not the accelerator opening AP decreases at a predetermined speed V1 or more. To judge. If the accelerator opening AP decreases at a predetermined speed V1 or higher, it is determined that the foot return determination condition is satisfied, and the process proceeds to step S40. If the accelerator opening AP does not decrease at a predetermined speed V1 or higher, it is determined that the foot return determination condition is not satisfied, and the process proceeds to END.
  • step S40 the indicated pressure Pt is increased by a predetermined amount P1.
  • the controller 10 stepwise increases the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a by a predetermined amount P1.
  • the controller 10 executes the smooth-off control. Specifically, the controller 10 gradually lowers the indicated pressure Pt of the lockup clutch 2a. Further, the controller 10 stores the output torque ⁇ s of the engine 1 at the time t2 detected by the torque sensor 59.
  • the controller 10 calculates the speed Vap of the accelerator pedal from the accelerator opening AP detected by the accelerator opening sensor 57.
  • the lockup clutch 2a slips (time t3).
  • the difference between the rotation speed Ntin on the input shaft side of the torque converter 2 and the rotation speed Ntout on the output shaft side of the torque converter 2 becomes a predetermined value D1 (time t4). ..
  • the controller 10 controls the slip of the lockup clutch 2a. Shifts from smooth-off control to drive-slip control. At this time, the controller 10 steps up the indicated pressure Pt of the lockup clutch 2a by a predetermined amount P1. After that, the controller 10 controls the valve unit 40 to gradually increase the engagement pressure Pc of the lockup clutch 2a.
  • the controller 10 controls the valve unit 40 so that the differential rotation D maintains the differential rotation Dt.
  • the indicated pressure Pt and the dotted line at the rotation speed shown in FIG. 6 indicate the indicated pressure Pt and the engine rotation when the indicated pressure Pt is not increased stepwise when shifting from the smooth-off control to the drive slip control (time t4).
  • the characteristics of velocity Ne are shown. In this case, as is clear from FIG. 6, the rotation speed Ne of the engine 1 is greatly increased.
  • the indicated pressure Pt is stepwise increased to quickly increase the fastening pressure Pc of the lockup clutch 2a. By suppressing the increase in the slip amount, it is possible to prevent the engine 1 from running up.
  • the controller 10 executes the smooth-off control. Specifically, the controller 10 gradually lowers the indicated pressure Pt of the lockup clutch 2a. Further, the controller 10 stores the output torque ⁇ s of the engine 1 at the time t12 detected by the torque sensor 59.
  • the output torque t of the engine 1 rises, and at time t13, the difference (torque deviation amount ⁇ d) between the stored output torque ⁇ s and the current output torque ⁇ r of the engine 1 detected by the torque sensor 59 is a predetermined value.
  • the controller 10 raises the indicated pressure Pt of the lockup clutch 2a by a predetermined amount P2.
  • the output torque t of the engine 1 further increases, and at time t14, the difference (torque deviation amount ⁇ d) between the stored output torque ⁇ s and the current output torque ⁇ r of the engine 1 detected by the torque sensor 59 is predetermined.
  • the controller 10 further raises the indicated pressure Pt of the lockup clutch 2a by a predetermined amount P3.
  • the predetermined value D1 is changed according to the amount of change in the turbine rotation speed Ntout (see FIG. 5). As a result, even if the differential rotation D becomes large due to noise when the amount of change in the turbine rotation speed Ntout is large, the predetermined value D1 rises, so that erroneous determination can be prevented.
  • the lockup clutch 2a slips (time t15).
  • the difference (difference rotation D) between the rotation speed Ntin on the input shaft side of the torque converter 2 and the rotation speed Ntout on the output shaft side of the torque converter 2 becomes a predetermined value D1.
  • the controller 10 shifts the slip control of the lockup clutch 2a from the smooth-off control to the drive slip control.
  • the controller 10 steps up the indicated pressure Pt of the lockup clutch 2a by a predetermined amount P1. After that, the controller 10 controls the valve unit 40 to gradually increase the engagement pressure Pc of the lockup clutch 2a.
  • the controller 10 controls the valve unit 40 so that the differential rotation D maintains the differential rotation Dt.
  • the indicated pressure Pt and the dotted line at the rotation speed shown in FIG. 7 indicate the indicated pressure Pt and the engine when the indicated pressure Pt is not increased even when the torque deviation amount ⁇ d reaches the predetermined values ⁇ 1 and ⁇ 2 (time t13, t14).
  • the characteristics of the rotation speed Ne and the characteristics of the instruction pressure Pt and the engine rotation speed Ne when the instruction pressure Pt is not stepwise increased when shifting from the smooth-off control to the drive slip control (time t16) are shown.
  • the indicated pressure Pt is increased when the torque deviation amount ⁇ d becomes a predetermined value (predetermined value ⁇ 1, ⁇ 2) or more. This prevents the lockup clutch 2a from slipping unintentionally.
  • the slip amount of the lockup clutch 2a becomes large even with the same fastening pressure Pc.
  • the indicated pressure Pt is increased when the torque deviation amount ⁇ d becomes a predetermined value (predetermined value ⁇ 1, ⁇ 2) or more, so that the slip amount when shifting from the smooth-off control to the drive slip control. Can be prevented from increasing and causing the engine 1 to blow up.
  • the indicated pressure Pt is stepwise increased to quickly increase the fastening pressure Pc of the lockup clutch 2a and slip. By suppressing the increase in the amount, it is possible to prevent the engine 1 from running up.
  • the predetermined value D1 is increased, so that erroneous determination due to sensor noise or the like can be prevented and control is performed. Can be done accurately.
  • the controller 10 executes the smooth-off control. Specifically, the controller 10 gradually lowers the indicated pressure Pt of the lockup clutch 2a. Further, the controller 10 stores the output torque ⁇ (output torque ⁇ s) of the engine 1 at the time t22 detected by the torque sensor 59.
  • the output torque t of the engine 1 rises, and at time t23, the difference (torque deviation amount ⁇ d) between the stored output torque ⁇ s and the current output torque ⁇ r of the engine 1 detected by the torque sensor 59 is a predetermined value.
  • the controller 10 raises the indicated pressure Pt of the lockup clutch 2a by a predetermined amount P2.
  • the controller 10 determines that the foot return determination condition is satisfied.
  • the lockup clutch 2a slips (time t25).
  • the difference (difference rotation D) between the rotation speed Ntin on the input shaft side of the torque converter 2 and the rotation speed Ntout on the output shaft side of the torque converter 2 becomes a predetermined value D1.
  • the controller 10 shifts the slip control of the lockup clutch 2a from the smooth-off control to the drive slip control.
  • the controller 10 determines that the foot return determination condition is satisfied at time t24, the controller 10 drives from the smooth-off control without increasing the indicated pressure Pt of the lockup clutch 2a stepwise by a predetermined amount P1. Shift to slip control. Then, the controller 10 controls the valve unit 40 to gradually increase the engagement pressure Pc of the lockup clutch 2a.
  • the controller 10 controls the valve unit 40 so that the differential rotation D maintains the differential rotation Dt.
  • the accelerator opening AP decreases at a predetermined speed V1 or higher, the output torque ⁇ decreases. Therefore, if the indicated pressure Pt is stepwise increased by a predetermined amount P1 in the same manner as when the output torque ⁇ increases, a shock may occur. Therefore, in the present embodiment, when the accelerator opening AP is decreasing at a predetermined speed V1 or more, the instruction pressure Pt of the lockup clutch 2a is not gradually increased by a predetermined amount P1 from the smooth-off control. Shift to drive slip control. As a result, it is possible to suppress the occurrence of a shock when shifting from smooth-off control to drive slip control.
  • the automatic transmission 3 is provided on the power transmission path between the transmission mechanism (variator 30) and the engine 1 and the transmission mechanism (variator 30), and has a torque converter 2 having a lockup clutch 2a and an output of the engine 1. Smooth-off control that gradually lowers the engagement pressure Pc of the lockup clutch 2a when the torque ⁇ becomes the first predetermined torque (predetermined value ⁇ 1) or more, and the engagement pressure Pc of the lockup clutch 2a after the smooth-off control is executed.
  • the control device (controller 10) includes a control device (controller 10) for executing drive slip control for gradually raising the lock-up clutch 2a to a predetermined slip state, and the control device (controller 10) is an input shaft of the torque converter 2.
  • the engagement pressure of the lockup clutch 2a is stepwise increased by a first predetermined amount (predetermined amount P1) to shift from smooth-off control to drive-slip control.
  • the hydraulic pressure supply is delayed by stepwise increasing the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a by the first predetermined amount (predetermined amount P1). Can be suppressed.
  • predetermined amount P1 the first predetermined amount
  • control device changes the first predetermined amount (predetermined amount P1) according to the oil temperature.
  • the viscosity of the oil becomes high and the response tends to be delayed. Therefore, when the oil temperature is low, a delay in response can be suppressed by increasing the first predetermined amount (predetermined amount P1). Therefore, the control can be stabilized by changing the first predetermined amount (predetermined amount P1) according to the oil temperature.
  • control device changes the first predetermined value (predetermined value D1) according to the amount of change in the rotation speed Ntout on the output shaft side.
  • predetermined value D1 when the amount of depression of the accelerator pedal is large, the amount of change in the rotation speed Ntout on the output shaft side becomes large. At this time, noise is likely to occur in the sensor that detects the rotation speed Ntout on the output shaft side, and an erroneous determination may occur. Therefore, by changing the first predetermined value (predetermined value D1) according to the amount of change in the rotation speed Ntout on the output shaft side, erroneous determination can be prevented.
  • the control device determines the difference (torque) between the current output torque ⁇ r of the engine 1 and the output torque ⁇ s of the engine 1 at the time when the smooth-off control is started during the smooth-off control execution.
  • the deviation amount ⁇ d becomes equal to or greater than the second predetermined value (predetermined value ⁇ 1)
  • the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a is increased by the second predetermined amount (predetermined amount P2).
  • the lockup clutch 2a may unintentionally start slipping when the indicated pressure Pt is decreasing, and the engine 1 may blow up. Therefore, in the present embodiment, the indicated pressure Pt is increased when the torque deviation amount ⁇ d becomes the second predetermined value (predetermined value ⁇ 1) or more. This prevents the lockup clutch 2a from slipping unintentionally.
  • the torque deviation amount ⁇ d becomes large, that is, when the output torque ⁇ becomes large, the slip amount of the lockup clutch 2a becomes large even with the same fastening pressure Pc. Therefore, when the torque deviation amount ⁇ d is large, the instruction pressure Pt of the engagement pressure Pc of the lockup clutch 2a is increased by a second predetermined amount (predetermined amount P2) in advance to shift from smooth-off control to drive slip control. At that time, it is possible to prevent the engine 1 from blowing up due to a large slip amount.
  • predetermined amount P2 second predetermined amount
  • the control device (controller 10) has a difference (difference between the rotation speed Ntin on the input shaft side and the rotation speed Ntout on the output shaft side).
  • difference rotation D difference between the rotation speed Ntin on the input shaft side and the rotation speed Ntout on the output shaft side.
  • the difference rotation D becomes equal to or higher than the first predetermined value (predetermined value D1)
  • the indicated pressure Pt of the fastening pressure Pc of the lockup clutch 2a is stepwise increased by the first predetermined amount (predetermined amount P1). It shifts from smooth-off control to drive-slip control without any effort.
  • the accelerator opening AP decreases at a predetermined speed V1 or higher, the output torque ⁇ decreases. Therefore, if the indicated pressure Pt is stepwise increased by the first predetermined amount (predetermined amount P1) as in the case where the output torque ⁇ is increased, a shock may occur. Therefore, when the accelerator opening AP is decreasing at a predetermined speed V1 or higher, the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a is increased stepwise by the first predetermined amount (predetermined amount P1). There is no shift from smooth-off control to drive slip control. As a result, it is possible to suppress the occurrence of a shock during slip control.
  • the above slip control can also be applied to a CVT with an auxiliary transmission and a stepped transmission mechanism.
  • the indicated pressure Pt is increased in three steps (predetermined amount P2, P3, P4) according to the torque deviation amount ⁇ d, but the present invention is not limited to this, and the indicated pressure Pt is not limited to this, but is limited to one step, two steps, or four steps or more. There may be. Further, when the indicated pressure is increased by a predetermined amount P2, P3, P4, it may be increased stepwise.

Abstract

This automatic transmission comprises a controller which executes a smooth-off control for gradually reducing the engagement pressure Pc of a lockup clutch, when the output torque τ of an engine is a predetermined value τ1 or more, and a drive slip control for gradually increasing the engagement pressure Pc of the lock-up clutch after the smooth-off control is executed to bring the lock-up clutch into a predetermined slip state, and when a difference between the rotation speed Ntin on the input shaft side of the torque converter and the rotation speed Ntout on the output shaft side of the torque converter becomes a predetermined value D1 or more, the controller increases stepwise the instruction pressure Pt of the engagement pressure Pc of the lockup clutch by a predetermined amount P1 to shift from the smooth-off control to the drive slip control.

Description

自動変速機及び自動変速機の制御方法Automatic transmission and control method for automatic transmission
 本発明は、自動変速機及び自動変速機の制御方法に関する。 The present invention relates to an automatic transmission and a control method for the automatic transmission.
 JP2016-48100Aには、トルクコンバータのロックアップクラッチが係合状態で、車両の走行状態が振動の発生しうる状態であると判定された場合に、ロックアップクラッチをスリップ係合状態にして、振動による騒音の発生を防止する自動変速機の制御装置が開示されている。 In JP2016-48100A, when the lockup clutch of the torque converter is in the engaged state and it is determined that the running state of the vehicle is in a state where vibration can occur, the lockup clutch is put into the slip engaged state and vibrates. A control device for an automatic transmission that prevents the generation of noise due to vibration is disclosed.
 JP2016-48100Aに記載の自動変速機の制御装置では、ロックアップクラッチの締結圧(係合圧)を徐々に低下させてロックアップクラッチを第1のスリップ係合状態とした後、締結圧(係合圧)を徐々に上昇させて、ロックアップクラッチを第1のスリップ係合状態よりもスリップ量の少ない第2のスリップ係合状態に移行させている。 In the control device for the automatic transmission according to JP2016-48100A, the engagement pressure (engagement pressure) of the lockup clutch is gradually reduced to bring the lockup clutch into the first slip engagement state, and then the engagement pressure (engagement pressure) is applied. The combined pressure) is gradually increased to shift the lockup clutch to the second slip engagement state in which the slip amount is smaller than that in the first slip engagement state.
 しかしながら、JP2016-48100Aに記載された自動変速機の制御装置では、第1のスリップ係合状態から第2のスリップ係合状態に移行させるときに、バルブの応答の遅れなどによって、ロックアップクラッチのスリップ量が大きくなりすぎ、エンジンが吹け上がった状態になるおそれがある。このように、エンジンが吹け上がった状態になると、ドライバーが違和感を覚えたり、燃費が悪化するおそれがある。 However, in the control device of the automatic transmission described in JP2016-48100A, when shifting from the first slip-engaged state to the second slip-engaged state, the lockup clutch may be delayed due to a delay in valve response or the like. The amount of slip may become too large and the engine may be blown up. In this way, when the engine is blown up, the driver may feel uncomfortable or the fuel efficiency may deteriorate.
 本発明は、このような技術的課題に鑑みてなされたもので、トルクコンバータのロックアップクラッチに対してスリップ制御を行う際に、エンジンの吹け上がりを抑制することを目的とする。 The present invention has been made in view of such technical problems, and an object of the present invention is to suppress engine run-up when slip control is performed on a lockup clutch of a torque converter.
 本発明のある態様によれば、自動変速機は、変速機構と、エンジンと前記変速機構との間の動力伝達経路上に設けられ、ロックアップクラッチを有するトルクコンバータと、エンジンの出力トルクが第1所定トルク以上になったときに、ロックアップクラッチの締結圧を徐々に低下させるスムーズオフ制御と、スムーズオフ制御実行後にロックアップクラッチの締結圧を徐々に上昇させてロックアップクラッチを所定のスリップ状態とするドライブスリップ制御と、を実行する制御装置と、を備え、制御装置は、トルクコンバータの入力軸側の回転速度とトルクコンバータの出力軸側の回転速度との差が、第1所定値以上になった場合に、ロックアップクラッチの締結圧の指示圧を第1所定量だけステップ的に上昇させてスムーズオフ制御からドライブスリップ制御に移行する。 According to an aspect of the present invention, the automatic transmission has a transmission mechanism, a torque converter provided on a power transmission path between the engine and the transmission mechanism, and having a lockup clutch, and an output torque of the engine. 1 Smooth-off control that gradually lowers the engagement pressure of the lockup clutch when the torque exceeds a predetermined torque, and slips the lockup clutch by gradually increasing the engagement pressure of the lockup clutch after executing the smooth-off control. A control device for executing the drive slip control to be in a state is provided, and the control device has a first predetermined value of the difference between the rotation speed on the input shaft side of the torque converter and the rotation speed on the output shaft side of the torque converter. When the above is achieved, the indicated pressure of the engagement pressure of the lockup clutch is stepwise increased by the first predetermined amount to shift from the smooth-off control to the drive slip control.
 この態様によれば、トルクコンバータのロックアップクラッチに対してスリップ制御を行う際に、エンジンの吹け上がりを抑制できる。 According to this aspect, it is possible to suppress the engine running up when slip control is performed on the lockup clutch of the torque converter.
図1は、本発明の実施形態に係る車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle according to an embodiment of the present invention. 図2は、本発明の実施形態に係るスリップ制御の流れを示すフローチャートである。FIG. 2 is a flowchart showing the flow of slip control according to the embodiment of the present invention. 図3は、本発明の実施形態に係るスリップ制御の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of slip control according to the embodiment of the present invention. 図4は、本発明の実施形態に係るスリップ開始条件を示すマップである。FIG. 4 is a map showing slip start conditions according to the embodiment of the present invention. 図5は、本発明の実施形態に係る所定値D1とタービン回転速度Ntoutの変化量との関係を示すマップである。FIG. 5 is a map showing the relationship between the predetermined value D1 and the amount of change in the turbine rotation speed Ntout according to the embodiment of the present invention. 図6は、本発明の実施形態に係るスリップ制御のタイミングチャートである。FIG. 6 is a slip control timing chart according to the embodiment of the present invention. 図7は、本発明の実施形態に係るスリップ制御のタイミングチャートである。FIG. 7 is a slip control timing chart according to the embodiment of the present invention. 図8は、本発明の実施形態に係るスリップ制御のタイミングチャートである。FIG. 8 is a slip control timing chart according to the embodiment of the present invention.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、車両100の概略構成図である。車両100は、エンジン1と、自動変速機3と、オイルポンプ5と、駆動輪6と、制御装置としてのコントローラ10と、を備える。 FIG. 1 is a schematic configuration diagram of the vehicle 100. The vehicle 100 includes an engine 1, an automatic transmission 3, an oil pump 5, drive wheels 6, and a controller 10 as a control device.
 エンジン1は、ガソリン、軽油等を燃料とする内燃機関であり、走行用駆動源として機能する。エンジン1は、コントローラ10からの指令に基づいて、回転速度、トルク等が制御される。 Engine 1 is an internal combustion engine that uses gasoline, light oil, etc. as fuel, and functions as a driving source for traveling. The engine 1 is controlled in rotation speed, torque, and the like based on a command from the controller 10.
 自動変速機3は、トルクコンバータ2と、締結要素31と、変速機構としてのバリエータ30と、油圧コントロールバルブユニット40(以下では、単に「バルブユニット40」ともいう。)と、オイル(作動油)を貯留するオイルパン32と、を備える。 The automatic transmission 3 includes a torque converter 2, a fastening element 31, a variator 30 as a transmission mechanism, a hydraulic control valve unit 40 (hereinafter, also simply referred to as “valve unit 40”), and oil (hydraulic oil). An oil pan 32 for storing the oil pressure is provided.
 トルクコンバータ2は、エンジン1と駆動輪6の間の動力伝達経路上に設けられる。トルクコンバータ2は、流体を介して動力を伝達する。また、トルクコンバータ2は、ロックアップクラッチ2aを締結することで、エンジン1からの駆動力の動力伝達効率を高めることができる。 The torque converter 2 is provided on the power transmission path between the engine 1 and the drive wheels 6. The torque converter 2 transmits power via a fluid. Further, the torque converter 2 can improve the power transmission efficiency of the driving force from the engine 1 by engaging the lockup clutch 2a.
 締結要素31は、トルクコンバータ2とバリエータ30の間の動力伝達経路上に配置される。締結要素31は、図示しない前進クラッチ及び後進ブレーキを備える。締結要素31は、コントローラ10からの指令に基づき、オイルポンプ5の吐出圧を元圧としてバルブユニット40によって調圧されたオイルによって制御される。締結要素31としては、例えば、湿式多板クラッチが用いられる。 The fastening element 31 is arranged on the power transmission path between the torque converter 2 and the variator 30. The fastening element 31 includes a forward clutch and a reverse brake (not shown). The fastening element 31 is controlled by the oil adjusted by the valve unit 40 with the discharge pressure of the oil pump 5 as the original pressure based on the command from the controller 10. As the fastening element 31, for example, a wet multi-plate clutch is used.
 バリエータ30は、締結要素31と駆動輪6との間の動力伝達経路上に配置され、車速やアクセル開度等に応じて変速比を無段階に変更する。バリエータ30は、プライマリプーリ30aと、セカンダリプーリ30bと、両プーリ30a,30bに巻き掛けられたベルト30cと、を備える。プーリ圧によりプライマリプーリ30aの可動プーリとセカンダリプーリ30bの可動プーリとを軸方向に動かし、ベルト30cのプーリ接触半径を変化させることで、変速比を無段階に変更する。なお、プライマリプーリ30aに作用するプーリ圧及びセカンダリプーリ30bに作用するプーリ圧は、オイルポンプ5からの吐出圧を元圧としてバルブユニット40によって調圧される。 The variator 30 is arranged on the power transmission path between the fastening element 31 and the drive wheels 6, and changes the gear ratio steplessly according to the vehicle speed, the accelerator opening, and the like. The variator 30 includes a primary pulley 30a, a secondary pulley 30b, and a belt 30c wound around both pulleys 30a and 30b. The gear ratio is steplessly changed by moving the movable pulley of the primary pulley 30a and the movable pulley of the secondary pulley 30b in the axial direction by the pulley pressure and changing the pulley contact radius of the belt 30c. The pulley pressure acting on the primary pulley 30a and the pulley pressure acting on the secondary pulley 30b are adjusted by the valve unit 40 with the discharge pressure from the oil pump 5 as the original pressure.
 バリエータ30のセカンダリプーリ30bの出力軸には、図示しない終減速ギヤ機構を介してディファレンシャル12が接続される。ディファレンシャル12には、ドライブシャフト13を介して駆動輪6が接続される。 A differential 12 is connected to the output shaft of the secondary pulley 30b of the variator 30 via a final reduction gear mechanism (not shown). The drive wheels 6 are connected to the differential 12 via the drive shaft 13.
 オイルポンプ5は、エンジン1の回転がベルトを介して伝達されることによって駆動される。オイルポンプ5は、例えばベーンポンプによって構成される。オイルポンプ5は、オイルパン32に貯留されるオイルを吸い上げ、バルブユニット40にオイルを供給する。バルブユニット40に供給されたオイルは、ロックアップクラッチ2aの駆動、各プーリ30a,30bの駆動や、締結要素31の駆動、自動変速機3の各要素の潤滑などに用いられる。 The oil pump 5 is driven by transmitting the rotation of the engine 1 via the belt. The oil pump 5 is composed of, for example, a vane pump. The oil pump 5 sucks up the oil stored in the oil pan 32 and supplies the oil to the valve unit 40. The oil supplied to the valve unit 40 is used for driving the lockup clutch 2a, driving the pulleys 30a and 30b, driving the fastening element 31, and lubricating each element of the automatic transmission 3.
 コントローラ10は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ10は、複数のマイクロコンピュータで構成される。具体的には、コントローラ10は、自動変速機3を制御するATCU、シフトレンジを制御するSCU、エンジン1の制御を行うECU等によって構成される。 The controller 10 is composed of a microcomputer provided with a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). The controller 10 is composed of a plurality of microcomputers. Specifically, the controller 10 is composed of an ATCU that controls the automatic transmission 3, an SCU that controls the shift range, an ECU that controls the engine 1, and the like.
 コントローラ10には、エンジン1の回転速度Neを検出する第1回転速度センサ51、トルクコンバータ2の出力軸側であるタービンの回転速度(タービン回転速度Ntout)を検出する第2回転速度センサ52、締結要素31の出力回転速度Nout(=プライマリプーリ30aの回転速度)を検出する第3回転速度センサ53、セカンダリプーリ30bの回転速度を検出する第4回転速度センサ54、車速Vを検出する車速センサ55、締結要素31のセレクトレンジ(前進、後進、ニュートラル及びパーキングを切り替えるセレクトレバー又はセレクトスイッチの状態)を検出するインヒビタスイッチ56、アクセル開度APを検出するアクセル開度センサ57、ブレーキの踏力を検出する踏力センサ58、エンジン1の出力トルクτを検出するトルクセンサ59等、からの信号が入力される。コントローラ10は、入力されるこれら信号に基づき、エンジン1及び自動変速機3の各種動作を制御する。 The controller 10 includes a first rotation speed sensor 51 that detects the rotation speed Ne of the engine 1, a second rotation speed sensor 52 that detects the rotation speed of the turbine (turbine rotation speed Ntout) on the output shaft side of the torque converter 2. A third rotation speed sensor 53 that detects the output rotation speed Nout (= rotation speed of the primary pulley 30a) of the fastening element 31, a fourth rotation speed sensor 54 that detects the rotation speed of the secondary pulley 30b, and a vehicle speed sensor that detects the vehicle speed V. 55, the inhibitor switch 56 that detects the select range of the fastening element 31 (the state of the select lever or the select switch that switches between forward, reverse, neutral and parking), the accelerator opening sensor 57 that detects the accelerator opening AP, and the pedaling force of the brake. Signals are input from the tread force sensor 58 to detect, the torque sensor 59 to detect the output torque τ of the engine 1, and the like. The controller 10 controls various operations of the engine 1 and the automatic transmission 3 based on these input signals.
 ところで、ロックアップクラッチ2aを完全に締結した状態で、エンジン1の出力トルクτが所定の領域にあるときに、動力伝達経路上で振動が発生することがある。このため、出力トルクτが振動を発生し得る領域内にあるときには、ロックアップクラッチ2aをスリップさせることで、トルクコンバータ2にこの振動を吸収させている。 By the way, when the output torque τ of the engine 1 is in a predetermined region with the lockup clutch 2a completely engaged, vibration may occur on the power transmission path. Therefore, when the output torque τ is within the region where vibration can be generated, the torque converter 2 absorbs the vibration by slipping the lockup clutch 2a.
 このようなロックアップクラッチ2aをスリップさせるスリップ制御においては、まず、ロックアップクラッチ2aの締結圧Pcを徐々に低下させる。そして、ロックアップクラッチ2aがある程度スリップしたことを検知すると、ロックアップクラッチ2aの締結圧Pcを徐々に上昇させ、スリップ量が目標値になるような制御を行っている。 In the slip control for slipping the lockup clutch 2a, first, the fastening pressure Pc of the lockup clutch 2a is gradually lowered. When it is detected that the lockup clutch 2a has slipped to some extent, the engagement pressure Pc of the lockup clutch 2a is gradually increased to control the slip amount to reach the target value.
 しかしながら、このようなスリップ制御では、ロックアップクラッチ2aの締結圧Pcを低下している状態から上昇させるように制御を切り替えるときに、バルブなどの応答の遅れによって、締結圧Pcがすぐに供給されず、ロックアップクラッチ2aのスリップ量が大きくなることがある。このようにしてスリップ量が大きくなると、エンジン1が吹け上がった状態になり、燃費が悪化する、あるいは、ドライバーが違和感を覚えるおそれがある。 However, in such slip control, when the control is switched so that the engagement pressure Pc of the lockup clutch 2a is increased from the lowered state, the engagement pressure Pc is immediately supplied due to the delay in the response of the valve or the like. However, the slip amount of the lockup clutch 2a may increase. If the slip amount is increased in this way, the engine 1 may be in a state of being blown up, fuel efficiency may be deteriorated, or the driver may feel a sense of discomfort.
 そこで、本実施形態では、ロックアップクラッチ2aのスリップ制御において、エンジン1が吹け上がることを防止するために、補正処理を実行する。以下に、図2及び図3に示すフローチャートを参照しながら、本実施形態におけるロックアップクラッチ2aのスリップ制御について、具体的に説明する。 Therefore, in the present embodiment, in the slip control of the lockup clutch 2a, a correction process is executed in order to prevent the engine 1 from blowing up. The slip control of the lockup clutch 2a according to the present embodiment will be specifically described below with reference to the flowcharts shown in FIGS. 2 and 3.
 ステップS1において、ロックアップクラッチ2aのスリップ制御開始条件が成立したか否かを判定する。具体的には、コントローラ10は、図4に示すマップに基づいて、トルクセンサ59によって検出されたエンジン1の出力トルクτが所定値τ1以上になったか否かを判定する。エンジン1の出力トルクτが所定値τ1以上になっていれば、コントローラ10は、ロックアップクラッチ2aに関するスリップ制御開始条件が成立したと判定して、ステップS2へ進む。エンジン1の出力トルクτが所定値τ1未満であれば、ロックアップクラッチ2aを完全ロックアップ状態に維持し、ENDに進む。なお、ステップS1(図4に示すマップ)では、エンジン1の出力トルクτの変化のみで、スリップ制御開始条件が成立したか否かを判定しているが、これに限らず、エンジン1の出力トルクτの変化に加えて、タービン回転速度Ntout、油温、変速比などの変化に応じて判定するようにしてもよい。 In step S1, it is determined whether or not the slip control start condition of the lockup clutch 2a is satisfied. Specifically, the controller 10 determines whether or not the output torque τ of the engine 1 detected by the torque sensor 59 is equal to or greater than a predetermined value τ1 based on the map shown in FIG. If the output torque τ of the engine 1 is equal to or greater than the predetermined value τ1, the controller 10 determines that the slip control start condition for the lockup clutch 2a is satisfied, and proceeds to step S2. If the output torque τ of the engine 1 is less than the predetermined value τ1, the lockup clutch 2a is maintained in the completely lockedup state, and the process proceeds to END. In step S1 (map shown in FIG. 4), it is determined whether or not the slip control start condition is satisfied only by the change in the output torque τ of the engine 1, but the output of the engine 1 is not limited to this. In addition to the change in torque τ, the determination may be made according to changes in turbine rotation speed Ntout, oil temperature, gear ratio, and the like.
 ステップS2では、スムーズオフ制御を実行する。本実施形態におけるスムーズオフ制御とは、ロックアップクラッチ2aを完全に締結した状態から、所定のスリップ量を保ったまま動力伝達を行うドライブスリップ状態にスムーズに移行するための制御である。スムーズオフ制御では、コントローラ10は、トルクコンバータ2のロックアップクラッチ2aの締結圧Pcを徐々に低下させるよう、バルブユニット40を制御する。 In step S2, smooth-off control is executed. The smooth-off control in the present embodiment is a control for smoothly shifting from a state in which the lockup clutch 2a is completely engaged to a drive slip state in which power transmission is performed while maintaining a predetermined slip amount. In the smooth-off control, the controller 10 controls the valve unit 40 so as to gradually reduce the engagement pressure Pc of the lockup clutch 2a of the torque converter 2.
 ステップS3では、ロックアップクラッチ2aの締結圧Pcの補正処理を実行する。具体的には、コントローラ10は、スムーズオフ制御実行中に、ロックアップクラッチ2aの指示圧Ptの補正処理を行う。補正処理の内容については、後で詳しく説明する。 In step S3, the correction process of the engagement pressure Pc of the lockup clutch 2a is executed. Specifically, the controller 10 corrects the instruction pressure Pt of the lockup clutch 2a during the execution of the smooth-off control. The content of the correction process will be described in detail later.
 ステップS4では、ドライブスリップ制御を実行する。具体的には、コントローラ10は、スムーズオフ制御終了後、ロックアップクラッチ2aが所定のスリップ量を保つように、バルブユニット40を制御する。 In step S4, drive slip control is executed. Specifically, the controller 10 controls the valve unit 40 so that the lockup clutch 2a maintains a predetermined slip amount after the smooth-off control is completed.
 次に、ステップS3におけるロックアップクラッチ2aの指示圧Ptの補正処理について、図3に示すフローチャートを参照しながら説明する。 Next, the correction process of the indicated pressure Pt of the lockup clutch 2a in step S3 will be described with reference to the flowchart shown in FIG.
 ステップS31では、エンジン1の出力トルクτを記憶する。具体的には、コントローラ10は、スムーズオフ制御開始時のトルクセンサ59によって検出されたエンジン1の出力トルクτを記憶する。以下では、このとき記憶された出力トルクを出力トルクτsという。 In step S31, the output torque τ of the engine 1 is stored. Specifically, the controller 10 stores the output torque τ of the engine 1 detected by the torque sensor 59 at the start of the smooth-off control. Hereinafter, the output torque stored at this time is referred to as an output torque τs.
 ステップS32では、トルク偏差量τdが所定値α1以上であるか否かを判定する。具体的には、コントローラ10は、記憶された出力トルクτsと、トルクセンサ59によって検出された現在のエンジン1の出力トルクτrとの差(トルク偏差量τd)を演算し、このトルク偏差量τdが所定値α1以上であるか否かを判定する。トルク偏差量τdが所定値α1以上であればステップS33に進み、トルク偏差量τdが所定値α1未満であれば、ステップS38に進む。 In step S32, it is determined whether or not the torque deviation amount τd is equal to or greater than the predetermined value α1. Specifically, the controller 10 calculates the difference (torque deviation amount τd) between the stored output torque τs and the current output torque τr of the engine 1 detected by the torque sensor 59, and this torque deviation amount τd. Determines whether or not is equal to or greater than the predetermined value α1. If the torque deviation amount τd is equal to or greater than the predetermined value α1, the process proceeds to step S33, and if the torque deviation amount τd is less than the predetermined value α1, the process proceeds to step S38.
 ステップS33では、指示圧Ptを所定量P2だけ上昇させる。具体的には、コントローラ10は、ロックアップクラッチ2aの締結圧Pcの指示圧Ptを所定量P2だけ上昇させる。 In step S33, the indicated pressure Pt is increased by a predetermined amount P2. Specifically, the controller 10 raises the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a by a predetermined amount P2.
 ステップS34では、トルク偏差量τdが所定値α2以上であるか否かを判定する。具体的には、コントローラ10は、記憶された出力トルクτsと、トルクセンサ59によって検出された現在のエンジン1の出力トルクτrとの差(トルク偏差量τd)を演算し、このトルク偏差量τdが所定値α2以上であるか否かを判定する。トルク偏差量τdが所定値α2以上であればステップS35に進み、トルク偏差量τdが所定値α2未満であれば、ステップS38に進む。 In step S34, it is determined whether or not the torque deviation amount τd is equal to or greater than the predetermined value α2. Specifically, the controller 10 calculates the difference (torque deviation amount τd) between the stored output torque τs and the current output torque τr of the engine 1 detected by the torque sensor 59, and this torque deviation amount τd. Determines whether or not is equal to or greater than the predetermined value α2. If the torque deviation amount τd is equal to or greater than the predetermined value α2, the process proceeds to step S35, and if the torque deviation amount τd is less than the predetermined value α2, the process proceeds to step S38.
 ステップS35では、指示圧Ptを所定量P3だけ上昇させる。具体的には、コントローラ10は、ロックアップクラッチ2aの締結圧Pcの指示圧Ptを所定量P3だけ上昇させる。 In step S35, the indicated pressure Pt is increased by a predetermined amount P3. Specifically, the controller 10 raises the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a by a predetermined amount P3.
 ステップS36では、トルク偏差量τdが所定値α3以上であるか否かを判定する。具体的には、コントローラ10は、記憶された出力トルクτsと、トルクセンサ59によって検出された現在のエンジン1の出力トルクτrとの差(トルク偏差量τd)を演算し、このトルク偏差量τdが所定値α3以上であるか否かを判定する。トルク偏差量τdが所定値α3以上であればステップS37に進み、トルク偏差量τdが所定値α3未満であれば、ステップS38に進む。 In step S36, it is determined whether or not the torque deviation amount τd is equal to or greater than the predetermined value α3. Specifically, the controller 10 calculates the difference (torque deviation amount τd) between the stored output torque τs and the current output torque τr of the engine 1 detected by the torque sensor 59, and this torque deviation amount τd. Determines whether or not is equal to or greater than the predetermined value α3. If the torque deviation amount τd is equal to or greater than the predetermined value α3, the process proceeds to step S37, and if the torque deviation amount τd is less than the predetermined value α3, the process proceeds to step S38.
 ステップS37では、指示圧Ptを所定量P4だけ上昇させる。具体的には、コントローラ10は、ロックアップクラッチ2aの締結圧Pcの指示圧Ptを所定量P4だけ上昇させる。 In step S37, the indicated pressure Pt is increased by a predetermined amount P4. Specifically, the controller 10 raises the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a by a predetermined amount P4.
 トルク偏差量τdが大きくなる、つまり出力トルクτが大きくなると、同じ締結圧Pcでもロックアップクラッチ2aのスリップ量が大きくなる。そのため、トルク偏差量τdが大きい場合には、あらかじめ指示圧Ptを所定量P2,P3,P4上昇させておく。これにより、スムーズオフ制御からドライブスリップ制御へ移行するときに、スリップ量が大きくなってエンジン1が吹け上がることを防止することができる。なお、所定量P2,P3,P4は、同じ値であっても異なる値であってもよい。 When the torque deviation amount τd increases, that is, when the output torque τ increases, the slip amount of the lockup clutch 2a increases even with the same fastening pressure Pc. Therefore, when the torque deviation amount τd is large, the indicated pressure Pt is increased by a predetermined amount P2, P3, P4 in advance. Thereby, when shifting from the smooth-off control to the drive slip control, it is possible to prevent the engine 1 from being blown up due to a large slip amount. The predetermined amounts P2, P3, and P4 may have the same value or different values.
 ステップS38では、差回転Dが所定値D1以上であるか否かを判定する。具体的には、コントローラ10は、第1回転速度センサ51によって検出されたエンジン1の回転速度Neと、第2回転速度センサ52によって検出されたトルクコンバータ2の出力軸の回転速度Ntoutと、の回転速度の差の絶対値である差回転Dを演算し、この差回転Dが所定値D1以上であるか否かを判定する。なお、エンジン1の回転速度Neは、トルクコンバータ2の入力軸側の回転速度Ntinに相当する。 In step S38, it is determined whether or not the differential rotation D is equal to or greater than the predetermined value D1. Specifically, the controller 10 has a rotation speed Ne of the engine 1 detected by the first rotation speed sensor 51 and a rotation speed Ntout of the output shaft of the torque converter 2 detected by the second rotation speed sensor 52. The difference rotation D, which is the absolute value of the difference in rotation speeds, is calculated, and it is determined whether or not the difference rotation D is equal to or greater than the predetermined value D1. The rotation speed Ne of the engine 1 corresponds to the rotation speed Ntin on the input shaft side of the torque converter 2.
 本実施形態では、所定値D1は、図5に示すマップのように、タービン回転速度Ntoutの変化量に応じて変化する。タービン回転速度Ntoutの変化量とは、トルクコンバータ2の出力軸の回転加速度に相当する値である。なお、所定値D1は、一定値であってもよい。 In the present embodiment, the predetermined value D1 changes according to the amount of change in the turbine rotation speed Ntout, as shown in the map shown in FIG. The amount of change in the turbine rotation speed Ntout is a value corresponding to the rotational acceleration of the output shaft of the torque converter 2. The predetermined value D1 may be a constant value.
差回転Dが所定値D1以上であればステップS39に進み、差回転Dが所定値D1未満であればステップS32に戻る。 If the differential rotation D is greater than or equal to the predetermined value D1, the process proceeds to step S39, and if the differential rotation D is less than the predetermined value D1, the process returns to step S32.
 ステップS39では、足戻し判定条件が成立したか否かを判定する。具体的には、コントローラ10は、アクセル開度センサ57によって検出されたアクセル開度APから、スムーズオフ制御中にアクセルペダルが踏み戻されたか否かを判定する。より具体的には、コントローラ10は、アクセル開度センサ57によって検出されたアクセル開度APから、アクセルペダルの速度Vapを算出し、アクセル開度APが所定の速度V1以上で減少したか否かを判定する。アクセル開度APが所定の速度V1以上で減少していれば、足戻し判定条件が成立したと判定して、ステップS40に進む。アクセル開度APが所定の速度V1以上で減少していなければ、足戻し判定条件が成立していないと判定して、ENDに進む。 In step S39, it is determined whether or not the foot return determination condition is satisfied. Specifically, the controller 10 determines from the accelerator opening degree AP detected by the accelerator opening degree sensor 57 whether or not the accelerator pedal is depressed during the smooth-off control. More specifically, the controller 10 calculates the speed Vap of the accelerator pedal from the accelerator opening AP detected by the accelerator opening sensor 57, and whether or not the accelerator opening AP decreases at a predetermined speed V1 or more. To judge. If the accelerator opening AP decreases at a predetermined speed V1 or higher, it is determined that the foot return determination condition is satisfied, and the process proceeds to step S40. If the accelerator opening AP does not decrease at a predetermined speed V1 or higher, it is determined that the foot return determination condition is not satisfied, and the process proceeds to END.
 ステップS40では、指示圧Ptを所定量P1だけ上昇させる。具体的には、コントローラ10は、ロックアップクラッチ2aの締結圧Pcの指示圧Ptを所定量P1だけステップ的に上昇させる。 In step S40, the indicated pressure Pt is increased by a predetermined amount P1. Specifically, the controller 10 stepwise increases the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a by a predetermined amount P1.
 次に、本実施形態におけるロックアップクラッチ2aのスリップ制御における指示圧Ptの変化について、図6-図8に示すタイムチャートを参照しながら説明する。 Next, the change in the indicated pressure Pt in the slip control of the lockup clutch 2a in the present embodiment will be described with reference to the time chart shown in FIGS. 6-8.
 まず、図6を参照しながら、アクセルペダルが小さく踏み増された場合について説明する。 First, the case where the accelerator pedal is slightly depressed will be described with reference to FIG.
 時刻t1において、アクセルペダルが踏み増されると、エンジン1の出力トルクτが上昇する。 At time t1, when the accelerator pedal is stepped on, the output torque τ of the engine 1 increases.
 時刻t2において、エンジン1の出力トルクτが所定値τ1以上になると、コントローラ10は、スムーズオフ制御を実行する。具体的には、コントローラ10は、ロックアップクラッチ2aの指示圧Ptを徐々に低下させる。また、コントローラ10は、トルクセンサ59によって検出された時刻t2でのエンジン1の出力トルクτsを記憶する。 At time t2, when the output torque τ of the engine 1 becomes the predetermined value τ1 or more, the controller 10 executes the smooth-off control. Specifically, the controller 10 gradually lowers the indicated pressure Pt of the lockup clutch 2a. Further, the controller 10 stores the output torque τs of the engine 1 at the time t2 detected by the torque sensor 59.
 さらに、時刻t2においてスムーズオフ制御が開始されると、コントローラ10は、アクセル開度センサ57によって検出されたアクセル開度APから、アクセルペダルの速度Vapを算出する。 Further, when the smooth-off control is started at time t2, the controller 10 calculates the speed Vap of the accelerator pedal from the accelerator opening AP detected by the accelerator opening sensor 57.
 ロックアップクラッチ2aの締結圧Pcが低下すると、ロックアップクラッチ2aにスリップが生じる(時刻t3)。ロックアップクラッチ2aの締結圧Pcがさらに低下すると、トルクコンバータ2の入力軸側の回転速度Ntinとトルクコンバータ2の出力軸側の回転速度Ntoutとの差が、所定値D1になる(時刻t4)。トルクコンバータ2の入力軸側の回転速度Ntinとトルクコンバータ2の出力軸側の回転速度Ntoutとの差(差回転D)が、所定値D1になると、コントローラ10は、ロックアップクラッチ2aのスリップ制御をスムーズオフ制御からドライブスリップ制御へ移行する。このとき、コントローラ10は、ロックアップクラッチ2aの指示圧Ptを所定量P1だけステップ的に上昇させる。その後、コントローラ10は、バルブユニット40を制御して、ロックアップクラッチ2aの締結圧Pcを徐々に上昇させる。 When the fastening pressure Pc of the lockup clutch 2a decreases, the lockup clutch 2a slips (time t3). When the fastening pressure Pc of the lockup clutch 2a further decreases, the difference between the rotation speed Ntin on the input shaft side of the torque converter 2 and the rotation speed Ntout on the output shaft side of the torque converter 2 becomes a predetermined value D1 (time t4). .. When the difference (difference rotation D) between the rotation speed Ntin on the input shaft side of the torque converter 2 and the rotation speed Ntout on the output shaft side of the torque converter 2 reaches a predetermined value D1, the controller 10 controls the slip of the lockup clutch 2a. Shifts from smooth-off control to drive-slip control. At this time, the controller 10 steps up the indicated pressure Pt of the lockup clutch 2a by a predetermined amount P1. After that, the controller 10 controls the valve unit 40 to gradually increase the engagement pressure Pc of the lockup clutch 2a.
 時刻t5において、差回転Dが、目標とする回転速度差(差回転Dt)になると、コントローラ10は、差回転Dが差回転Dtを維持するように、バルブユニット40を制御する。 At time t5, when the differential rotation D reaches the target rotation speed difference (differential rotation Dt), the controller 10 controls the valve unit 40 so that the differential rotation D maintains the differential rotation Dt.
 なお、図6に示す指示圧Pt及び回転速度における点線は、スムーズオフ制御からドライブスリップ制御へ移行するとき(時刻t4)に、指示圧Ptをステップ的に上昇させない場合の指示圧Pt及びエンジン回転速度Neの特性を示している。この場合、図6から明らかなように、エンジン1の回転速度Neが大きく上昇する。 The indicated pressure Pt and the dotted line at the rotation speed shown in FIG. 6 indicate the indicated pressure Pt and the engine rotation when the indicated pressure Pt is not increased stepwise when shifting from the smooth-off control to the drive slip control (time t4). The characteristics of velocity Ne are shown. In this case, as is clear from FIG. 6, the rotation speed Ne of the engine 1 is greatly increased.
 したがって、本実施形態のように、スムーズオフ制御からドライブスリップ制御へ移行するとき(時刻t4)に、指示圧Ptをステップ的に上昇させることで、ロックアップクラッチ2aの締結圧Pcを素早く上昇させてスリップ量の増加を抑制することで、エンジン1の吹け上がりを防止することができる。 Therefore, as in the present embodiment, when shifting from the smooth-off control to the drive slip control (time t4), the indicated pressure Pt is stepwise increased to quickly increase the fastening pressure Pc of the lockup clutch 2a. By suppressing the increase in the slip amount, it is possible to prevent the engine 1 from running up.
 次に、図7を参照しながら、アクセルペダルが大きく踏み増された場合について説明する。 Next, with reference to FIG. 7, a case where the accelerator pedal is greatly increased will be described.
 時刻t11において、アクセルペダルが踏み増されると、エンジン1の出力トルクτが上昇する。 At time t11, when the accelerator pedal is stepped on, the output torque τ of the engine 1 increases.
 時刻t12において、エンジン1の出力トルクτが所定値τ1以上になると、コントローラ10は、スムーズオフ制御を実行する。具体的には、コントローラ10は、ロックアップクラッチ2aの指示圧Ptを徐々に低下させる。また、コントローラ10は、トルクセンサ59によって検出された時刻t12でのエンジン1の出力トルクτsを記憶する。 At time t12, when the output torque τ of the engine 1 becomes the predetermined value τ1 or more, the controller 10 executes the smooth-off control. Specifically, the controller 10 gradually lowers the indicated pressure Pt of the lockup clutch 2a. Further, the controller 10 stores the output torque τs of the engine 1 at the time t12 detected by the torque sensor 59.
 エンジン1の出力トルクtが上昇し、時刻t13において、記憶された出力トルクτsと、トルクセンサ59によって検出された現在のエンジン1の出力トルクτrと、の差(トルク偏差量τd)が所定値α1以上になると、コントローラ10は、ロックアップクラッチ2aの指示圧Ptを所定量P2だけ上昇させる。 The output torque t of the engine 1 rises, and at time t13, the difference (torque deviation amount τd) between the stored output torque τs and the current output torque τr of the engine 1 detected by the torque sensor 59 is a predetermined value. When it becomes α1 or more, the controller 10 raises the indicated pressure Pt of the lockup clutch 2a by a predetermined amount P2.
 エンジン1の出力トルクtがさらに上昇し、時刻t14において、記憶された出力トルクτsと、トルクセンサ59によって検出された現在のエンジン1の出力トルクτrと、の差(トルク偏差量τd)が所定値α2以上になると、コントローラ10は、ロックアップクラッチ2aの指示圧Ptを所定量P3だけさらに上昇させる。 The output torque t of the engine 1 further increases, and at time t14, the difference (torque deviation amount τd) between the stored output torque τs and the current output torque τr of the engine 1 detected by the torque sensor 59 is predetermined. When the value becomes α2 or more, the controller 10 further raises the indicated pressure Pt of the lockup clutch 2a by a predetermined amount P3.
 ところで、アクセルペダルが大きく踏み増された場合、タービン回転速度Ntoutの変化量(トルクコンバータ2の出力軸の回転加速度)が大きくなる。このとき、タービン回転速度Ntoutを検出するセンサにノイズが発生しやすく、差回転Dが大きくなってしまい、誤判定が生じる可能性がある。そこで、本実施形態では、上述のように所定値D1をタービン回転速度Ntoutの変化量に応じて変化させている(図5参照)。これにより、タービン回転速度Ntoutの変化量が大きいときにノイズによって差回転Dが大きくなっても、所定値D1が上昇しているので、誤判定を防止できる。 By the way, when the accelerator pedal is greatly increased, the amount of change in the turbine rotation speed Ntout (rotational acceleration of the output shaft of the torque converter 2) becomes large. At this time, noise is likely to be generated in the sensor that detects the turbine rotation speed Ntout, and the differential rotation D becomes large, which may cause an erroneous determination. Therefore, in the present embodiment, as described above, the predetermined value D1 is changed according to the amount of change in the turbine rotation speed Ntout (see FIG. 5). As a result, even if the differential rotation D becomes large due to noise when the amount of change in the turbine rotation speed Ntout is large, the predetermined value D1 rises, so that erroneous determination can be prevented.
 ロックアップクラッチ2aの締結圧Pcが低下すると、ロックアップクラッチ2aにスリップが生じる(時刻t15)。ロックアップクラッチ2aの締結圧Pcがさらに低下すると、トルクコンバータ2の入力軸側の回転速度Ntinとトルクコンバータ2の出力軸側の回転速度Ntoutとの差(差回転D)が、所定値D1になる(時刻t16)。差回転Dが、所定値D1になると、コントローラ10は、ロックアップクラッチ2aのスリップ制御をスムーズオフ制御からドライブスリップ制御へ移行する。このとき、コントローラ10は、ロックアップクラッチ2aの指示圧Ptを所定量P1だけステップ的に上昇させる。その後、コントローラ10は、バルブユニット40を制御して、ロックアップクラッチ2aの締結圧Pcを徐々に上昇させる。 When the fastening pressure Pc of the lockup clutch 2a decreases, the lockup clutch 2a slips (time t15). When the fastening pressure Pc of the lockup clutch 2a further decreases, the difference (difference rotation D) between the rotation speed Ntin on the input shaft side of the torque converter 2 and the rotation speed Ntout on the output shaft side of the torque converter 2 becomes a predetermined value D1. (Time t16). When the differential rotation D reaches the predetermined value D1, the controller 10 shifts the slip control of the lockup clutch 2a from the smooth-off control to the drive slip control. At this time, the controller 10 steps up the indicated pressure Pt of the lockup clutch 2a by a predetermined amount P1. After that, the controller 10 controls the valve unit 40 to gradually increase the engagement pressure Pc of the lockup clutch 2a.
 時刻t17において、差回転Dが、目標とする回転速度差(差回転Dt)になると、コントローラ10は、差回転Dが差回転Dtを維持するように、バルブユニット40を制御する。 At time t17, when the differential rotation D reaches the target rotation speed difference (differential rotation Dt), the controller 10 controls the valve unit 40 so that the differential rotation D maintains the differential rotation Dt.
 なお、図7に示す指示圧Pt及び回転速度における点線は、トルク偏差量τdが所定値α1,α2(時刻t13,t14)になっても、指示圧Ptを上昇させない場合の指示圧Pt及びエンジン回転速度Neの特性、及びスムーズオフ制御からドライブスリップ制御へ移行するとき(時刻t16)に、指示圧Ptをステップ的に上昇させない場合の指示圧Pt及びエンジン回転速度Neの特性を示している。 The indicated pressure Pt and the dotted line at the rotation speed shown in FIG. 7 indicate the indicated pressure Pt and the engine when the indicated pressure Pt is not increased even when the torque deviation amount τd reaches the predetermined values α1 and α2 (time t13, t14). The characteristics of the rotation speed Ne and the characteristics of the instruction pressure Pt and the engine rotation speed Ne when the instruction pressure Pt is not stepwise increased when shifting from the smooth-off control to the drive slip control (time t16) are shown.
 エンジン1の出力トルクτの上昇の度合いが大きいと、指示圧Ptが低下しているときにロックアップクラッチ2aが意図せず滑り始めてしまい、図7の点線で示すように、エンジン1が吹け上がってしまうおそれがある。 If the degree of increase in the output torque τ of the engine 1 is large, the lockup clutch 2a unintentionally starts to slip when the indicated pressure Pt is decreasing, and the engine 1 blows up as shown by the dotted line in FIG. There is a risk of
 そこで、本実施形態では、トルク偏差量τdが所定値(所定値α1,α2)以上になった場合に指示圧Ptを上昇させる。これにより、ロックアップクラッチ2aが意図せずスリップすることを防止する。 Therefore, in the present embodiment, the indicated pressure Pt is increased when the torque deviation amount τd becomes a predetermined value (predetermined value α1, α2) or more. This prevents the lockup clutch 2a from slipping unintentionally.
 また、トルク偏差量τdが大きくなる、つまり出力トルクτが大きくなると、同じ締結圧Pcでもロックアップクラッチ2aのスリップ量が大きくなる。本実施形態では、トルク偏差量τdが所定値(所定値α1,α2)以上になった場合に指示圧Ptを上昇させているので、スムーズオフ制御からドライブスリップ制御へ移行するときに、スリップ量が大きくなってエンジン1が吹け上がることを防止することができる。 Further, when the torque deviation amount τd becomes large, that is, when the output torque τ becomes large, the slip amount of the lockup clutch 2a becomes large even with the same fastening pressure Pc. In the present embodiment, the indicated pressure Pt is increased when the torque deviation amount τd becomes a predetermined value (predetermined value α1, α2) or more, so that the slip amount when shifting from the smooth-off control to the drive slip control. Can be prevented from increasing and causing the engine 1 to blow up.
 さらに、本実施形態では、スムーズオフ制御からドライブスリップ制御へ移行するとき(時刻t16)に、指示圧Ptをステップ的に上昇させることで、ロックアップクラッチ2aの締結圧Pcを素早く上昇させてスリップ量の増加を抑制することで、エンジン1の吹け上がりを防止することができる。 Further, in the present embodiment, when shifting from the smooth-off control to the drive slip control (time t16), the indicated pressure Pt is stepwise increased to quickly increase the fastening pressure Pc of the lockup clutch 2a and slip. By suppressing the increase in the amount, it is possible to prevent the engine 1 from running up.
 また、本実施形態では、アクセルペダルが大きく踏み込まれ、タービン回転速度Ntoutの変化量が大きくなった場合に、所定値D1を大きくしているので、センサのノイズなどによる誤判定を防止でき、制御を正確に行うことができる。 Further, in the present embodiment, when the accelerator pedal is greatly depressed and the amount of change in the turbine rotation speed Ntout becomes large, the predetermined value D1 is increased, so that erroneous determination due to sensor noise or the like can be prevented and control is performed. Can be done accurately.
 次に、図8を参照しながら、アクセルペダルが踏み増された後、アクセルペダルが踏み戻された(足戻しがなされた)場合について説明する。 Next, with reference to FIG. 8, a case where the accelerator pedal is depressed (the foot is returned) after the accelerator pedal is depressed will be described.
 時刻t21において、アクセルペダルが踏み増されると、エンジン1の出力トルクτが上昇する。 At time t21, when the accelerator pedal is stepped on, the output torque τ of the engine 1 increases.
 時刻t22において、エンジン1の出力トルクτが所定値τ1以上になると、コントローラ10は、スムーズオフ制御を実行する。具体的には、コントローラ10は、ロックアップクラッチ2aの指示圧Ptを徐々に低下させる。また、コントローラ10は、トルクセンサ59によって検出された時刻t22でのエンジン1の出力トルクτ(出力トルクτs)を記憶する。 At time t22, when the output torque τ of the engine 1 becomes the predetermined value τ1 or more, the controller 10 executes the smooth-off control. Specifically, the controller 10 gradually lowers the indicated pressure Pt of the lockup clutch 2a. Further, the controller 10 stores the output torque τ (output torque τs) of the engine 1 at the time t22 detected by the torque sensor 59.
 エンジン1の出力トルクtが上昇し、時刻t23において、記憶された出力トルクτsと、トルクセンサ59によって検出された現在のエンジン1の出力トルクτrと、の差(トルク偏差量τd)が所定値α1以上になると、コントローラ10は、ロックアップクラッチ2aの指示圧Ptを所定量P2だけ上昇させる。 The output torque t of the engine 1 rises, and at time t23, the difference (torque deviation amount τd) between the stored output torque τs and the current output torque τr of the engine 1 detected by the torque sensor 59 is a predetermined value. When it becomes α1 or more, the controller 10 raises the indicated pressure Pt of the lockup clutch 2a by a predetermined amount P2.
 時刻t24において、アクセルペダルが踏み戻され、アクセル開度APが所定の速度V1以上で減少すると、コントローラ10は、足戻し判定条件が成立したと判定する。 At time t24, when the accelerator pedal is depressed back and the accelerator opening AP decreases at a predetermined speed V1 or higher, the controller 10 determines that the foot return determination condition is satisfied.
 ロックアップクラッチ2aの締結圧Pcが低下すると、ロックアップクラッチ2aにスリップが生じる(時刻t25)。ロックアップクラッチ2aの締結圧Pcがさらに低下すると、トルクコンバータ2の入力軸側の回転速度Ntinとトルクコンバータ2の出力軸側の回転速度Ntoutとの差(差回転D)が、所定値D1になる(時刻t26)。差回転Dが、所定値D1になると、コントローラ10は、ロックアップクラッチ2aのスリップ制御をスムーズオフ制御からドライブスリップ制御へ移行する。 When the fastening pressure Pc of the lockup clutch 2a decreases, the lockup clutch 2a slips (time t25). When the fastening pressure Pc of the lockup clutch 2a further decreases, the difference (difference rotation D) between the rotation speed Ntin on the input shaft side of the torque converter 2 and the rotation speed Ntout on the output shaft side of the torque converter 2 becomes a predetermined value D1. (Time t26). When the differential rotation D reaches the predetermined value D1, the controller 10 shifts the slip control of the lockup clutch 2a from the smooth-off control to the drive slip control.
 このとき、コントローラ10は、時刻t24において足戻し判定条件が成立したと判定しているので、ロックアップクラッチ2aの指示圧Ptを所定量P1だけステップ的に上昇させることなく、スムーズオフ制御からドライブスリップ制御に移行する。そして、コントローラ10は、バルブユニット40を制御して、ロックアップクラッチ2aの締結圧Pcを徐々に上昇させる。 At this time, since the controller 10 determines that the foot return determination condition is satisfied at time t24, the controller 10 drives from the smooth-off control without increasing the indicated pressure Pt of the lockup clutch 2a stepwise by a predetermined amount P1. Shift to slip control. Then, the controller 10 controls the valve unit 40 to gradually increase the engagement pressure Pc of the lockup clutch 2a.
 時刻t27において、差回転Dが、目標とする回転速度差(差回転Dt)になると、コントローラ10は、差回転Dが差回転Dtを維持するように、バルブユニット40を制御する。 At time t27, when the differential rotation D reaches the target rotation speed difference (differential rotation Dt), the controller 10 controls the valve unit 40 so that the differential rotation D maintains the differential rotation Dt.
 アクセル開度APが所定の速度V1以上で減少していれば、出力トルクτが減少する。このため、出力トルクτが増加する場合と同様に指示圧Ptを所定量P1だけステップ的に上昇させると、ショックが発生するおそれがある。そこで、本実施形態では、アクセル開度APが所定の速度V1以上で減少している場合には、ロックアップクラッチ2aの指示圧Ptを所定量P1だけステップ的に上昇させることなくスムーズオフ制御からドライブスリップ制御に移行する。これにより、スムーズオフ制御からドライブスリップ制御に移行時にショックが発生することを抑制できる。 If the accelerator opening AP decreases at a predetermined speed V1 or higher, the output torque τ decreases. Therefore, if the indicated pressure Pt is stepwise increased by a predetermined amount P1 in the same manner as when the output torque τ increases, a shock may occur. Therefore, in the present embodiment, when the accelerator opening AP is decreasing at a predetermined speed V1 or more, the instruction pressure Pt of the lockup clutch 2a is not gradually increased by a predetermined amount P1 from the smooth-off control. Shift to drive slip control. As a result, it is possible to suppress the occurrence of a shock when shifting from smooth-off control to drive slip control.
 以上のように構成された本発明の実施形態の構成、作用、及び効果をまとめて説明する。 The configuration, action, and effect of the embodiment of the present invention configured as described above will be collectively described.
 自動変速機3は、変速機構(バリエータ30)と、エンジン1と変速機構(バリエータ30)との間の動力伝達経路上に設けられ、ロックアップクラッチ2aを有するトルクコンバータ2と、エンジン1の出力トルクτが第1所定トルク(所定値τ1)以上になったときに、ロックアップクラッチ2aの締結圧Pcを徐々に低下させるスムーズオフ制御と、スムーズオフ制御実行後にロックアップクラッチ2aの締結圧Pcを徐々に上昇させてロックアップクラッチ2aを所定のスリップ状態とするドライブスリップ制御と、を実行する制御装置(コントローラ10)と、を備え、制御装置(コントローラ10)は、トルクコンバータ2の入力軸側の回転速度Ntinとトルクコンバータ2の出力軸側の回転速度Ntoutとの差(差回転D)が、第1所定値(所定値D1)以上になった場合に、ロックアップクラッチ2aの締結圧Pcの指示圧Ptを第1所定量(所定量P1)だけステップ的に上昇させてスムーズオフ制御からドライブスリップ制御に移行する。 The automatic transmission 3 is provided on the power transmission path between the transmission mechanism (variator 30) and the engine 1 and the transmission mechanism (variator 30), and has a torque converter 2 having a lockup clutch 2a and an output of the engine 1. Smooth-off control that gradually lowers the engagement pressure Pc of the lockup clutch 2a when the torque τ becomes the first predetermined torque (predetermined value τ1) or more, and the engagement pressure Pc of the lockup clutch 2a after the smooth-off control is executed. The control device (controller 10) includes a control device (controller 10) for executing drive slip control for gradually raising the lock-up clutch 2a to a predetermined slip state, and the control device (controller 10) is an input shaft of the torque converter 2. When the difference (difference rotation D) between the rotation speed Ntin on the side and the rotation speed Ntout on the output shaft side of the torque converter 2 becomes equal to or greater than the first predetermined value (predetermined value D1), the engagement pressure of the lockup clutch 2a The instruction pressure Pt of Pc is stepwise increased by a first predetermined amount (predetermined amount P1) to shift from smooth-off control to drive-slip control.
 スムーズオフ制御からドライブスリップ制御に移行するときに、ロックアップクラッチ2aの締結圧Pcの指示圧Ptを第1所定量(所定量P1)だけステップ的に上昇させることで、油圧の供給が遅れることを抑制できる。これにより、トルクコンバータ2のロックアップクラッチ2aに対してスリップ制御を行う際に、エンジン1の吹け上がりを抑制できる。 When shifting from smooth-off control to drive-slip control, the hydraulic pressure supply is delayed by stepwise increasing the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a by the first predetermined amount (predetermined amount P1). Can be suppressed. As a result, when slip control is performed on the lockup clutch 2a of the torque converter 2, the engine 1 can be suppressed from running up.
 自動変速機3では、制御装置(コントローラ10)は、第1所定量(所定量P1)を油温に応じて変化させる。 In the automatic transmission 3, the control device (controller 10) changes the first predetermined amount (predetermined amount P1) according to the oil temperature.
 油温が低温である場合には、オイルの粘度が高くなるため応答が遅れやすい。このため、油温が低温である場合には、第1所定量(所定量P1)を大きくすることにより、応答の遅れを抑制できる。したがって、第1所定量(所定量P1)を油温に応じて変化させることで、制御を安定させることができる。 When the oil temperature is low, the viscosity of the oil becomes high and the response tends to be delayed. Therefore, when the oil temperature is low, a delay in response can be suppressed by increasing the first predetermined amount (predetermined amount P1). Therefore, the control can be stabilized by changing the first predetermined amount (predetermined amount P1) according to the oil temperature.
 自動変速機3では、制御装置(コントローラ10)は、第1所定値(所定値D1)を出力軸側の回転速度Ntoutの変化量に応じて変化させる。 In the automatic transmission 3, the control device (controller 10) changes the first predetermined value (predetermined value D1) according to the amount of change in the rotation speed Ntout on the output shaft side.
 例えば、アクセルペダルの踏み増し量が大きい場合には、出力軸側の回転速度Ntoutの変化量が大きくなる。このとき、出力軸側の回転速度Ntoutを検出するセンサにノイズが発生しやすく、誤判定が生じる可能性がある。そこで、第1所定値(所定値D1)を出力軸側の回転速度Ntoutの変化量に応じて変化させることで、誤判定を防止できる。 For example, when the amount of depression of the accelerator pedal is large, the amount of change in the rotation speed Ntout on the output shaft side becomes large. At this time, noise is likely to occur in the sensor that detects the rotation speed Ntout on the output shaft side, and an erroneous determination may occur. Therefore, by changing the first predetermined value (predetermined value D1) according to the amount of change in the rotation speed Ntout on the output shaft side, erroneous determination can be prevented.
 自動変速機3では、制御装置(コントローラ10)は、スムーズオフ制御実行中に、エンジン1の現在の出力トルクτrとスムーズオフ制御を開始した時点でのエンジン1の出力トルクτsとの差(トルク偏差量τd)が第2所定値(所定値α1)以上になった場合には、ロックアップクラッチ2aの締結圧Pcの指示圧Ptを第2所定量(所定量P2)だけ上昇させる。 In the automatic transmission 3, the control device (controller 10) determines the difference (torque) between the current output torque τr of the engine 1 and the output torque τs of the engine 1 at the time when the smooth-off control is started during the smooth-off control execution. When the deviation amount τd) becomes equal to or greater than the second predetermined value (predetermined value α1), the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a is increased by the second predetermined amount (predetermined amount P2).
 エンジン1の出力トルクτの上昇の度合いが大きいと、指示圧Ptが低下しているときにロックアップクラッチ2aが意図せず滑り始めてしまい、エンジン1が吹け上がってしまうおそれがある。そこで、本実施形態では、トルク偏差量τdが第2所定値(所定値α1)以上になった場合に指示圧Ptを上昇させる。これにより、ロックアップクラッチ2aが意図せずスリップすることを防止する。 If the degree of increase in the output torque τ of the engine 1 is large, the lockup clutch 2a may unintentionally start slipping when the indicated pressure Pt is decreasing, and the engine 1 may blow up. Therefore, in the present embodiment, the indicated pressure Pt is increased when the torque deviation amount τd becomes the second predetermined value (predetermined value α1) or more. This prevents the lockup clutch 2a from slipping unintentionally.
 また、トルク偏差量τdが大きくなる、つまり出力トルクτが大きくなると、同じ締結圧Pcでもロックアップクラッチ2aのスリップ量が大きくなる。そのため、トルク偏差量τdが大きい場合には、あらかじめロックアップクラッチ2aの締結圧Pcの指示圧Ptを第2所定量(所定量P2)だけ上昇させることで、スムーズオフ制御からドライブスリップ制御へ移行するときに、スリップ量が大きくなってエンジン1が吹け上がることを防止することができる。 Further, when the torque deviation amount τd becomes large, that is, when the output torque τ becomes large, the slip amount of the lockup clutch 2a becomes large even with the same fastening pressure Pc. Therefore, when the torque deviation amount τd is large, the instruction pressure Pt of the engagement pressure Pc of the lockup clutch 2a is increased by a second predetermined amount (predetermined amount P2) in advance to shift from smooth-off control to drive slip control. At that time, it is possible to prevent the engine 1 from blowing up due to a large slip amount.
 自動変速機3では、制御装置(コントローラ10)は、アクセル開度APが所定の速度V1以上で減少した場合には、入力軸側の回転速度Ntinと出力軸側の回転速度Ntoutとの差(差回転D)が、第1所定値(所定値D1)以上になった場合に、ロックアップクラッチ2aの締結圧Pcの指示圧Ptを第1所定量(所定量P1)だけステップ的に上昇させることなくスムーズオフ制御からドライブスリップ制御に移行する。 In the automatic transmission 3, when the accelerator opening AP decreases at a predetermined speed V1 or more, the control device (controller 10) has a difference (difference between the rotation speed Ntin on the input shaft side and the rotation speed Ntout on the output shaft side). When the difference rotation D) becomes equal to or higher than the first predetermined value (predetermined value D1), the indicated pressure Pt of the fastening pressure Pc of the lockup clutch 2a is stepwise increased by the first predetermined amount (predetermined amount P1). It shifts from smooth-off control to drive-slip control without any effort.
 アクセル開度APが所定の速度V1以上で減少していれば、出力トルクτが減少する。このため、出力トルクτが増加する場合と同様に指示圧Ptを第1所定量(所定量P1)だけステップ的に上昇させると、ショックが発生するおそれがある。そこで、アクセル開度APが所定の速度V1以上で減少している場合には、ロックアップクラッチ2aの締結圧Pcの指示圧Ptを第1所定量(所定量P1)だけステップ的に上昇させることなくスムーズオフ制御からドライブスリップ制御に移行する。これにより、スリップ制御時にショックが発生することを抑制できる。 If the accelerator opening AP decreases at a predetermined speed V1 or higher, the output torque τ decreases. Therefore, if the indicated pressure Pt is stepwise increased by the first predetermined amount (predetermined amount P1) as in the case where the output torque τ is increased, a shock may occur. Therefore, when the accelerator opening AP is decreasing at a predetermined speed V1 or higher, the indicated pressure Pt of the engagement pressure Pc of the lockup clutch 2a is increased stepwise by the first predetermined amount (predetermined amount P1). There is no shift from smooth-off control to drive slip control. As a result, it is possible to suppress the occurrence of a shock during slip control.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments are only a part of the application examples of the present invention, and the purpose of limiting the technical scope of the present invention to the specific configurations of the above embodiments. is not.
 上記スリップ制御は、副変速機付CVTや有段変速機構にも適用できる。 The above slip control can also be applied to a CVT with an auxiliary transmission and a stepped transmission mechanism.
 上記実施形態では、トルク偏差量τdに応じて三段階(所定量P2,P3,P4)で指示圧Ptを上昇させていただが、これに限らず、一段階、二段階、あるいは四段階以上であってもよい。また、指示圧を所定量P2,P3,P4上昇させる時には、ステップ的に上昇させるようにしてもよい。 In the above embodiment, the indicated pressure Pt is increased in three steps (predetermined amount P2, P3, P4) according to the torque deviation amount τd, but the present invention is not limited to this, and the indicated pressure Pt is not limited to this, but is limited to one step, two steps, or four steps or more. There may be. Further, when the indicated pressure is increased by a predetermined amount P2, P3, P4, it may be increased stepwise.
 本願は、2019年4月23日に日本国特許庁に出願された特願2019-82271号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2019-82271 filed with the Japan Patent Office on April 23, 2019, and the entire contents of this application are incorporated herein by reference.

Claims (6)

  1.  変速機構と、
     エンジンと前記変速機構との間の動力伝達経路上に設けられ、ロックアップクラッチを有するトルクコンバータと、
     前記エンジンの出力トルクが第1所定トルク以上になったときに、前記ロックアップクラッチの締結圧を徐々に低下させるスムーズオフ制御と、前記スムーズオフ制御実行後に前記ロックアップクラッチの締結圧を徐々に上昇させて前記ロックアップクラッチを所定のスリップ状態とするドライブスリップ制御と、を実行する制御装置と、を備え、
     前記制御装置は、
     前記トルクコンバータの入力軸側の回転速度と前記トルクコンバータの出力軸側の回転速度との差が、第1所定値以上になった場合に、前記ロックアップクラッチの締結圧の指示圧を第1所定量だけステップ的に上昇させて前記スムーズオフ制御から前記ドライブスリップ制御に移行する自動変速機。
    Transmission mechanism and
    A torque converter provided on the power transmission path between the engine and the transmission mechanism and having a lockup clutch,
    When the output torque of the engine becomes equal to or higher than the first predetermined torque, the smooth-off control that gradually lowers the engagement pressure of the lockup clutch and the engagement pressure of the lockup clutch are gradually reduced after the smooth-off control is executed. It includes a drive slip control that raises the lockup clutch to bring the lockup clutch into a predetermined slip state, and a control device that executes the drive slip control.
    The control device is
    When the difference between the rotation speed on the input shaft side of the torque converter and the rotation speed on the output shaft side of the torque converter becomes equal to or greater than the first predetermined value, the indicated pressure for the engagement pressure of the lockup clutch is first. An automatic transmission that shifts from the smooth-off control to the drive-slip control by stepwise raising a predetermined amount.
  2.  請求項1に記載された自動変速機において、
     前記制御装置は、
     前記第1所定量を油温に応じて変化させる自動変速機。
    In the automatic transmission according to claim 1,
    The control device is
    An automatic transmission that changes the first predetermined amount according to the oil temperature.
  3.  請求項1または2に記載の自動変速機において、
     前記制御装置は、
     前記第1所定値を前記出力軸側の回転速度の変化量に応じて変化させる自動変速機。
    In the automatic transmission according to claim 1 or 2.
    The control device is
    An automatic transmission that changes the first predetermined value according to the amount of change in the rotation speed on the output shaft side.
  4.  請求項1から3のいずれか1つに記載の自動変速機において、
     前記制御装置は、
     前記スムーズオフ制御実行中に、前記エンジンの現在の出力トルクと前記スムーズオフ制御を開始した時点での前記エンジンの出力トルクとの差が第2所定値以上になった場合には、前記ロックアップクラッチの締結圧の指示圧を第2所定量だけ上昇させる自動変速機。
    In the automatic transmission according to any one of claims 1 to 3.
    The control device is
    If the difference between the current output torque of the engine and the output torque of the engine at the time when the smooth-off control is started becomes a second predetermined value or more during the execution of the smooth-off control, the lockup An automatic transmission that raises the indicated pressure of the clutch engagement pressure by a second predetermined amount.
  5.  請求項1から4のいずれか1つに記載の自動変速機において、
     前記制御装置は、
     アクセル開度が所定の速度以上で減少した場合には、前記入力軸側の回転速度と前記出力軸側の回転速度との差が、前記第1所定値以上になった場合に、前記ロックアップクラッチの締結圧の指示圧を前記第1所定量だけステップ的に上昇させることなく前記スムーズオフ制御から前記ドライブスリップ制御に移行する自動変速機。
    In the automatic transmission according to any one of claims 1 to 4.
    The control device is
    When the accelerator opening decreases by a predetermined speed or more, the lockup occurs when the difference between the rotation speed on the input shaft side and the rotation speed on the output shaft side becomes the first predetermined value or more. An automatic transmission that shifts from the smooth-off control to the drive-slip control without gradually increasing the indicated pressure of the clutch engagement pressure by the first predetermined amount.
  6.  変速機構と、
     エンジンと前記変速機構との間の動力伝達経路上に設けられ、ロックアップクラッチを有するトルクコンバータと、
     前記エンジンの出力トルクが第1所定トルク以上になったときに、前記ロックアップクラッチの締結圧を徐々に低下させるスムーズオフ制御と、前記スムーズオフ制御実行後に前記ロックアップクラッチの締結圧を徐々に上昇させて前記ロックアップクラッチを所定のスリップ状態とするドライブスリップ制御と、を実行する制御装置と、を備えた自動変速機を制御する自動変速機の制御方法であって、
     前記トルクコンバータの入力軸側の回転速度と前記トルクコンバータの出力軸側の回転速度との差が、第1所定値以上になった場合に、前記ロックアップクラッチの締結圧の指示圧を第1所定量だけステップ的に上昇させて前記スムーズオフ制御から前記ドライブスリップ制御に移行する自動変速機の制御方法。
    Transmission mechanism and
    A torque converter provided on the power transmission path between the engine and the transmission mechanism and having a lockup clutch,
    When the output torque of the engine becomes equal to or higher than the first predetermined torque, the smooth-off control that gradually reduces the engagement pressure of the lockup clutch and the engagement pressure of the lockup clutch are gradually reduced after the smooth-off control is executed. It is a control method of an automatic transmission for controlling an automatic transmission including a drive slip control for raising the lockup clutch to bring the lockup clutch into a predetermined slip state, and a control device for executing the drive slip control.
    When the difference between the rotation speed on the input shaft side of the torque converter and the rotation speed on the output shaft side of the torque converter becomes equal to or greater than the first predetermined value, the indicated pressure for the engagement pressure of the lockup clutch is first. A control method for an automatic transmission that shifts from the smooth-off control to the drive-slip control by stepwise raising the speed by a predetermined amount.
PCT/JP2019/047894 2019-04-23 2019-12-06 Automatic transmission and control method of automatic transmission WO2020217577A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021515776A JP7202455B2 (en) 2019-04-23 2019-12-06 AUTOMATIC TRANSMISSION AND AUTOMATIC TRANSMISSION CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-082271 2019-04-23
JP2019082271 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020217577A1 true WO2020217577A1 (en) 2020-10-29

Family

ID=72942375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047894 WO2020217577A1 (en) 2019-04-23 2019-12-06 Automatic transmission and control method of automatic transmission

Country Status (2)

Country Link
JP (1) JP7202455B2 (en)
WO (1) WO2020217577A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233098A (en) * 1995-02-27 1996-09-10 Nissan Motor Co Ltd Slip control device for torque convertor
JP2011213252A (en) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd Control device
JP2016048100A (en) * 2014-08-28 2016-04-07 ジヤトコ株式会社 Control device of automatic transmission
WO2016158076A1 (en) * 2015-03-30 2016-10-06 ジヤトコ株式会社 Automatic transmission control device and control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408554B2 (en) * 1992-04-09 2003-05-19 三菱自動車工業株式会社 Control device for torque converter with damper clutch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233098A (en) * 1995-02-27 1996-09-10 Nissan Motor Co Ltd Slip control device for torque convertor
JP2011213252A (en) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd Control device
JP2016048100A (en) * 2014-08-28 2016-04-07 ジヤトコ株式会社 Control device of automatic transmission
WO2016158076A1 (en) * 2015-03-30 2016-10-06 ジヤトコ株式会社 Automatic transmission control device and control method

Also Published As

Publication number Publication date
JPWO2020217577A1 (en) 2021-12-09
JP7202455B2 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
JP4525832B1 (en) Control device for continuously variable transmission for vehicle
JP6268197B2 (en) Control device for continuously variable transmission
JP5790670B2 (en) Vehicle control device
JP6451667B2 (en) Control device for vehicle drive device
JP2006300144A (en) Controller of automatic transmission
JP6176192B2 (en) Vehicle control device
WO2018043052A1 (en) Control method and control apparatus for continuously variable transmission
JP6213502B2 (en) Vehicle control device
US10358138B2 (en) Control apparatus and control method for vehicle
JP2005098522A (en) Vehicular drive control device
JPWO2016013238A1 (en) Hybrid vehicle control device and control method thereof
US10821984B2 (en) Gear shift control device and gear shift control method for continuously variable transmission
EP2833029B1 (en) Automatic transmission and method for controlling same
WO2020217577A1 (en) Automatic transmission and control method of automatic transmission
JP6500115B2 (en) Control device for automatic transmission and control method for automatic transmission
JP2014013088A (en) Vehicle control apparatus
JP7188269B2 (en) vehicle controller
JP3656506B2 (en) Creep force control device for vehicle automatic transmission
JP7029550B2 (en) Vehicle control device and vehicle control method
JP2017032074A (en) Controller of belt type continuously variable transmission
JP7273709B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP5533556B2 (en) Vehicle control device
JP7133034B2 (en) Vehicle and vehicle control method
JP6065578B2 (en) Control device and control method for continuously variable transmission
JP2020197187A (en) Vehicle control device and vehicle control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925561

Country of ref document: EP

Kind code of ref document: A1