WO2020217455A1 - Terminal device, base station device, and wireless communication method - Google Patents

Terminal device, base station device, and wireless communication method Download PDF

Info

Publication number
WO2020217455A1
WO2020217455A1 PCT/JP2019/017924 JP2019017924W WO2020217455A1 WO 2020217455 A1 WO2020217455 A1 WO 2020217455A1 JP 2019017924 W JP2019017924 W JP 2019017924W WO 2020217455 A1 WO2020217455 A1 WO 2020217455A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal device
station device
beam control
request information
Prior art date
Application number
PCT/JP2019/017924
Other languages
French (fr)
Japanese (ja)
Inventor
雅 伏木
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to PCT/JP2019/017924 priority Critical patent/WO2020217455A1/en
Publication of WO2020217455A1 publication Critical patent/WO2020217455A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a terminal device, a base station device, and a wireless communication method.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • eMBB enhanced Mobile Broad Band
  • URLLC Ultra-Reliable and Low Latency Communication
  • IoT Internet of Things
  • the base station device has adopted beamforming in order to secure the communicable distance and area between the base station device and the terminal device.
  • the base station device transmits beam setting information including beam identification information and the like to the terminal device (process 1).
  • the terminal device receives the beam setting information, it transmits measurement result information such as reception quality of the signal transmitted from the base station device using the beam to the base station device (process 2).
  • the base station device controls the beam (updates the beam setting information) and transmits the updated beam setting information to the terminal device (process S3).
  • the amount of communication between the base station device and the terminal device increases, so that the terminal device performs wireless communication with the base station device. Power consumption may also increase.
  • the amount of communication between the base station device and the IoT device is reduced, and the power consumption when wirelessly communicating with the base station device in the IoT device is performed. Is desired to be reduced.
  • the present invention has been made in view of such circumstances, and by being able to respond to a demand for cost reduction for a terminal device and reducing the amount of communication required for beam control, the base station in the terminal device
  • An object of the present invention is to provide a wireless communication technology capable of reducing power consumption when performing wireless communication with an apparatus.
  • the terminal device is a terminal device that executes wireless communication with the base station device, and is a beam control request that requests control of a beam for transmitting a signal from the base station device to the terminal device. It includes a recording unit that records information and a transmission unit that transmits beam control request information to the base station device after establishing a communication connection with the base station device.
  • the wireless communication method is a wireless communication method used for a terminal device that executes wireless communication with a base station device, and is a beam for transmitting a signal from the base station device to the terminal device. It includes a step of recording information requesting control and a step of transmitting beam control request information to the base station device after establishing a communication connection with the base station device.
  • the base station device is a base station device that executes wireless communication with the terminal device, and is transmitted from the base station device to the terminal device after the communication connection with the terminal device is established.
  • the receiver includes a receiving unit that receives beam control request information that requests control of the beam for transmitting a signal, and a beam control unit that controls the beam based on the beam control request information.
  • the wireless communication method is a wireless communication method used for a base station device that executes wireless communication with a terminal device, and is a base transmitted by the terminal device after establishing a communication connection with the terminal device. It includes a step of receiving beam control request information requesting control of a beam for transmitting a signal from a station device to a terminal device, and a step of controlling a beam based on the beam control request information.
  • the present invention it is possible to respond to a demand for cost reduction for a terminal device, and by reducing the amount of communication required for beam control, the power consumption of the terminal device for wireless communication with the base station device is achieved. Can be reduced.
  • FIG. 1 is a schematic configuration diagram showing an example of a configuration of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram showing an example of the configuration of the terminal device according to the embodiment of the present invention.
  • FIG. 3 is a schematic configuration diagram showing an example of the configuration of the base station apparatus according to the embodiment of the present invention.
  • FIG. 4 is a flowchart showing an example of the beam control process according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing an example of the beam control process according to the second embodiment of the present invention.
  • FIG. 6 is a flowchart showing an example of the beam control process according to the third embodiment of the present invention.
  • the wireless communication system and the wireless network according to the embodiment of the present invention will be described.
  • the wireless communication system according to the embodiment of the present invention targets, but is not limited to, a wireless communication standard related to NR (5G: Fifth Generation).
  • NR Fifth Generation
  • the present invention is also applicable to wireless communication standards related to LTE and LTE-Advanced. It can also be applied to a wireless communication system that uses NR as a part of the wireless communication system.
  • the present invention is applicable to any wireless communication system including at least a terminal device and a base station device, and is also applicable to future wireless communication systems.
  • LTE and LTE-Advanced are also referred to as E-UTRA (Evolved Universal Terrestrial Radio Access), but their meanings are the same.
  • the area (cover area) formed by the base station device is referred to as a cell, and E-UTRA and 5G are cellular communication systems constructed by a plurality of cells.
  • E-UTRA and 5G are cellular communication systems constructed by a plurality of cells.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • FIG. 1 is a schematic configuration diagram showing an example of the configuration of the wireless communication system according to the embodiment of the present invention.
  • the terminal device 1a or the terminal device 1n is wirelessly connected to the base station device 2a or the base station device 2n. Further, each of the terminal device 1a or the terminal device 1n may be wirelessly connected at the same time as the base station device 2a and the base station device 2n.
  • E-UTRA or 5G can be used as the base station apparatus 2 may use 5G and the base station apparatus 2n may use E-UTRA, or vice versa.
  • the base station device in E-UTRA is called eNB (evolved NodeB), and the base station device in NR is called gNB (g-NodeB).
  • the term "base station device” includes both the meanings of eNB and gNB.
  • the terminal device in E-UTRA and NR is called a UE (User Equipment).
  • the base station device gNB in the NR may be connected to the terminal device by using a part of the frequency band (BWP: Carrier bandwidth part) used.
  • BWP Carrier bandwidth part
  • terminal device 1a and the terminal device 1n are shown as n terminal devices 1.
  • some reference numerals are omitted and the term "terminal device 1" is simply referred to.
  • base station device 2a and the base station device 2n are shown as n base station devices 2.
  • base station device 2 when these n base station devices 2 are described without distinction, some reference numerals are omitted and they are simply referred to as "base station device 2".
  • the terminal device 1 may be connected to the base station device 2 in cell units, and may be connected using a plurality of cells (carrier aggregation).
  • the initially connected base station device is the master node (MN: MasterNode)
  • the additionally connected base station device is the secondary node (dual connectivity).
  • SN Secondary Node
  • the base station devices are connected by a base station interface.
  • the base station device 2 and the core device 4 are connected by a core interface.
  • the base station interface is used for exchanging control signals necessary for handover and cooperative operation between base station devices.
  • the core device 4 has, for example, a base station device 2 under its control, and mainly handles load control between base station devices, call (paging) of the terminal device 1, and movement control such as location registration.
  • the terminal device 1 and the base station device 2 send and receive RRC messages in the radio resource control (RRC: Radio Resource Control) layer. Further, the terminal device 1 and the base station device 2 transmit and receive a MAC control element (MAC CE: MAC Control Element) in the medium access control (MAC: Medium Access Control) layer.
  • the RRC message is transmitted as an RRC PDU (Protocol Data Unit), and as the mapped logical channels, a common control channel (CCCH: Common Control Channel), an individual control channel (DCCH: Dedicated Control Channel), and a paging control channel (PCCH:).
  • a Paging Control Channel a Broadcast Control Channel (BCCH: Broadcast Control Channel), or a Multicast Control Channel (MCCH: Multicast Control Channel) is used.
  • the MAC CE is transmitted as a MAC PDU (or MAC SUBPDU).
  • a MAC subPDU is equivalent to a service data unit (SDU: Service Data Unit) in the MAC layer plus, for example, an 8-bit header, and a MAC PDU includes one or more MAC subPDUs.
  • SDU Service Data Unit
  • the physical channels and physical signals related to this embodiment will be described.
  • the physical broadcast channel (PBCH: Physical Broadcast Channel)
  • the physical downlink control channel (PDCCH: Physical Downlink Control Channel)
  • the physical uplink shared channel (PUSCH: Physical Uplink Shared). Channel)
  • a physical random access channel PRACH: Physical Random Access Channel
  • a synchronization signal PrimarySynchronizationSignal, SecondarySynchronizationSignal
  • a physical uplink control channel PUCCH: PhysicalUplinkControl) Channel
  • PDSCH Physical Downlink Shared Channel
  • SRS Scheduling Reference Signal
  • DMRS Demodulation Reference Signal
  • the physical broadcast channel PBCH is transmitted from the base station apparatus to the terminal apparatus and is used to notify common parameters (notification information, system information) in cells under the base station apparatus.
  • System information is further classified into a master information block (MIB) and a system information block (System Information Block, SIB).
  • SIB System Information Block
  • the system information block is further subdivided into SIB1, SIB2, ..., And transmitted.
  • the system information includes information necessary for connecting to the cell.
  • the MIB includes information such as a system frame number and information indicating whether or not to camp in the cell.
  • SIB1 contains parameters for calculating cell quality (cell selection parameters), cell-common channel information (random access control information, PUCCH control information, PUSCH control information), scheduling information for other system information, and the like. include.
  • the physical downlink control channel PDCCH is transmitted from the base station apparatus to notify the terminal apparatus of downlink control information (DCI).
  • the downlink control information includes uplink radio resource information (uplink grant (UL grant)) that can be used by the terminal device, or downlink radio resource information (downlink grant (DL grant)).
  • the downlink grant is information indicating the scheduling of the physical downlink shared channel PDSCH.
  • the uplink grant is information indicating the scheduling of the physical uplink shared channel PUSCH.
  • the PRACH indicated by the PDCCH is a random access response, and includes index information of the random access preamble, transmission timing adjustment information, uplink grant, and the like.
  • the physical uplink shared channel PUSCH is transmitted from the terminal device in order to notify the base station device of the uplink data (user data) and the uplink control data (RRC message).
  • the PUSCH can also include downlink reception quality and physical layer control signals such as ACK / NACK. Further, when the terminal device transmits the PUSCH corresponding to the uplink grant included in the random access response, the PUSCH includes the information (message 3) of the terminal device related to the random access.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the base station device 2 according to the embodiment of the present invention.
  • the base station apparatus 2 includes, for example, an antenna 21, a transmitting unit 22, a receiving unit 23, a recording unit 24, and a control unit 25. Further, the base station apparatus 2 further includes a bus 29 configured to transmit signals and data between the respective parts of the base station apparatus 2.
  • the antenna 21 is configured to be able to radiate (radiate) and receive radio waves (electromagnetic waves) in one or a plurality of predetermined frequency bands.
  • the antenna 21 may be a directional antenna.
  • the gain of the directional antenna 21 differs depending on the orientation of the antenna.
  • the antenna 21 may have no directivity, that is, one having omnidirectionality.
  • the omnidirectional antenna 21 has approximately the same gain from all 360 degrees directions in the horizontal plane, in the vertical plane, or both in the horizontal plane and in the non-horizontal plane and in the vertical plane.
  • the number of antennas 21 included in the base station device 2 is not limited to one.
  • the base station device 2 may include a plurality of antennas. When the base station device 2 includes a plurality of antennas, it may be divided into, for example, a transmitting antenna and a receiving antenna. Further, when a plurality of antennas are divided into a transmitting antenna and a receiving antenna, at least one of them may include a plurality of antennas. When the base station device 2 is provided with a plurality of transmission / reception antennas or transmission antennas, a beamforming technique described later can be used.
  • the transmission unit 22 is connected to the antenna 21.
  • the transmission unit 22 is configured to generate a signal by encoding, modulating, multiplexing, and the like with respect to various information input from the control unit 25, and transmit the signal via the antenna 21.
  • the transmission unit 22 generates a downlink reference signal from information on the communication bandwidth used in the physical downlink specified by the control unit 25, and transmits the downlink reference signal to the terminal device 1 via the antenna 21.
  • the receiving unit 23 is connected to the antenna 21. After establishing the communication connection (RRC connection) with the terminal device 1, the receiving unit 23 receives the beam control request information requesting the control of the beam for transmitting the signal from the base station device 2 to the terminal device 1. ..
  • the receiving unit 23 is configured to restore information by performing separation, demodulation, decoding, etc. of various signals received via the antenna 21, and output the information to the control unit 25. For example, the receiving unit 23 measures the state of the uplink channel from the uplink signal received via the antenna 21, and outputs the information of the measurement result to the control unit 25.
  • the recording unit 24 is configured to record programs, data, and the like.
  • the recording unit 24 includes, for example, a hard disk drive, a solid state drive, and the like.
  • the recording unit 24 records in advance various programs executed by the control unit 25, data necessary for executing the programs, and the like.
  • the recording unit 24 may record beam setting information including beam identification information set at the time of beamforming, which is a control result of the beam control unit 251 described later, for each target terminal device 1.
  • the control unit 25 is configured to control the operation of each unit of the base station device 2, such as the antenna 21, the transmission unit 22, the reception unit 23, and the recording unit 24. Further, the control unit 25 is configured to realize each function described later by executing a program recorded in the recording unit 24 or the like.
  • the control unit 25 is, for example, a processor such as a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), a memory such as a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. And a buffer recording device such as a buffer.
  • the control unit 25 functionally includes, for example, a beam control unit 251 that controls the beam.
  • the beam control unit 251 controls the beam based on the beam control request information transmitted from the terminal device 1.
  • Beam control includes, but is not limited to, reducing the beam control frequency, for example. For example, it may include increasing the beam control frequency within a range in which the amount of wireless communication between the terminal device 1 and the base station device 2 does not increase significantly.
  • the control of the beam may include controlling the signal intensity by, for example, controlling the amplitude and phase.
  • the beam sweeping executed by the beam control unit 251 will be described.
  • the base station apparatus 2 employs beamforming in order to secure the communicable distance and area between the base station apparatus 2 and the terminal apparatus 1.
  • Beamforming is a technique for forming a directional pattern or a directional beam by controlling the amplitude and phase of each of a plurality of antennas 21 to increase or decrease the gain of the antenna in a specific direction.
  • Beamforming it is possible to concentrate the signal strength of the transmission signal (transmission beam) in a specific direction and extend the communication distance.
  • the signal strength is lowered in a direction other than the specific direction, the reachable range of the transmitted signal is narrowed.
  • NR supports beam sweeping in which the directions of transmission signals are sequentially switched and a plurality of transmission signals (transmission beams) are transmitted.
  • the base station device 2 is not limited in the number of directions in which the beam is switched, but for example, the base station device 2 switches in eight directions to transmit a transmission signal.
  • Each function of the control unit 25 can be realized by a program executed by a computer (microprocessor). Therefore, each function included in the control unit 40 can be realized by hardware, software, or a combination of hardware and software, and is not limited to any case. Further, when each function of the control unit 25 is realized by software or a combination of hardware and software, the processing can be executed by multitasking, multithreading, or both multitasking and multithreading. It is not limited to such a case.
  • FIG. 3 is a block diagram illustrating a schematic configuration of the terminal device 1 according to the embodiment of the present invention.
  • the terminal device 1 includes, for example, an antenna 11, a transmitting unit 12, a receiving unit 13, a recording unit 14, a control unit 15, and a sensor 17. Further, the terminal device 1 further includes a bus 19 configured to transmit signals and data between each part of the terminal device 1.
  • the antenna 11 is configured to be able to radiate (radiate) and receive radio waves (electromagnetic waves) in one or a plurality of predetermined frequency bands.
  • the antenna 11 may be non-directional, that is, omnidirectional.
  • the omnidirectional antenna 11 has approximately the same gain from all 360 degrees directions in the horizontal plane, in the vertical plane, or both in the horizontal plane and in the vertical plane.
  • the antenna 11 may be an antenna having directivity. The gain of the directional antenna 11 differs depending on the orientation of the antenna.
  • the number of antennas 11 included in the terminal device 1 is not limited to one.
  • the terminal device 1 may include a plurality of antennas. When the terminal device 1 includes a plurality of antennas, it may be divided into, for example, a transmitting antenna and a receiving antenna. Further, when a plurality of antennas are divided into a transmitting antenna and a receiving antenna, at least one of them may include a plurality of antennas.
  • the transmitting unit 12 is connected to the antenna 11. After establishing a communication connection (RRC connection) with the base station device 2, the transmission unit 12 transmits beam control request information requesting control of the beam for transmitting a signal from the base station device 2 to the terminal device 1. To do. The details of the beam control request information will be described later.
  • the transmission unit 12 spontaneously transmits the beam control request information as the spontaneous transmission information to the base station device 2.
  • “Spontaneously ... transmitting” includes executing a transmission process regardless of a request or command from another device.
  • “Spontaneously ... transmitting” means at least the conventional transmission processing, for example, the processing of transmitting the measurement result of the communication status based on the information such as the beam setting information transmitted from the base station device 2. Not included.
  • the spontaneous transmission information may be transmitted spontaneously, and may be at the timing when the terminal device 1 is started, or at the timing when the terminal device 1 is temporarily stopped and restarted.
  • “Spontaneously ... transmitting” includes a case where a signal is transmitted regardless of a request or a command from the base station apparatus 2 even after the beamforming is once started.
  • the transmission unit 12 generates a signal by, for example, encoding, modulating, multiplexing, etc. various information input from the control unit 15 or the recording unit 14, and transmits the signal via the antenna 11. It is configured in. For example, the transmission unit 12 generates a physical uplink signal from the information regarding the communication bandwidth used in the physical uplink specified by the control unit 15 and transmits it to the base station apparatus 2 via the antenna 11.
  • the receiving unit 13 is connected to the antenna 11.
  • the receiving unit 13 is configured to restore information by performing separation, demodulation, decoding, etc. of various signals received via the antenna 11, and output the information to the control unit 15.
  • the recording unit 14 is configured to record programs, data, and the like.
  • the recording unit 14 records information regarding beam control for transmitting a signal from the base station device 2 to the terminal device 1.
  • the recording unit 14 records the cell ID of the base station apparatus 1.
  • the cell ID of the base station device 2 includes, for example, a cell ID acquired when the terminal device 1 makes an RRC connection with a specific base station device.
  • the recording unit 14 includes, for example, a hard disk drive, a solid state drive, and the like.
  • the recording unit 14 records in advance various programs executed by the control unit 15, data necessary for executing the programs, and the like.
  • the sensor 17 includes a sensor that detects the position, direction, and acceleration of the terminal device 1.
  • the sensor includes, for example, at least one sensor such as a GPS (Global Positioning System) sensor, a gyro sensor, and an acceleration sensor.
  • the sensor 17 outputs the detected information to the control unit 15.
  • the control unit 15 is configured to control the operation of each unit of the terminal device 1, such as the antenna 11, the transmission unit 12, the reception unit 13, the recording unit 14, and the sensor 17. Further, the control unit 15 is configured to realize each function described later by executing a program recorded in the recording unit 14 or the like.
  • the control unit 15 includes, for example, a CPU, a processor such as an ASIC and an FPGA, a memory such as a ROM and a RAM, and a buffer recording device such as a buffer.
  • the control unit 15 functionally includes, for example, a number measurement unit 151, a switching frequency measurement unit 153, a movement status measurement unit 155, a communication frequency measurement unit 157, and a reception status measurement unit 159.
  • the number measurement unit 151 measures the number of times a signal transmitted from the base station device 2 using a beam is received in a predetermined period, and outputs it as reception number information.
  • the predetermined period may be set in seconds, minutes or hours, or in larger units such as days.
  • the number of receptions includes the number of times the signal is actually received.
  • the number measurement unit 151 may measure the number of times a signal having a strength exceeding the threshold value is received as the number of receptions.
  • the threshold value may be preset in the terminal device 1 or may be acquired in advance as broadcast information from the base station device 2. Only one threshold value may be set, or a plurality of threshold values may be set.
  • the switching frequency measuring unit 153 measures the switching frequency of the beam in a predetermined period and outputs it as switching frequency information.
  • the predetermined period may be set in seconds, minutes or hours, or in larger units such as days.
  • the frequency of beam switching may be the number of times the beam is actually switched.
  • the frequency of beam switching may be measured based on how much the beam of maximum intensity has switched, or may be measured based on how much the beam transmitting a signal having an intensity exceeding a predetermined threshold has switched. ..
  • the threshold value may be preset in the terminal device 1 or may be acquired in advance as broadcast information from the base station device 2. Only one threshold value may be set, or a plurality of threshold values may be set.
  • the switching frequency information may be information indicating the presence or absence of beam switching (binary value), or information indicating the beam switching frequency with three or more values such as "large”, "medium", and "small". It may be.
  • the movement status measurement unit 155 measures the movement status of the terminal device 1. For example, the movement status measurement unit 155 acquires the detection information of the sensor 17 shown in FIG. 3, measures the movement status of the terminal device 1, and outputs it as the movement status information.
  • the movement status information may be information indicating the presence / absence (binary value) of movement of the terminal device 1.
  • the movement status information may be, for example, information including the movement speed information of the terminal device 1 and indicating the movement speed of the terminal device 1 as three or more values such as "high speed”, "medium speed", and "low speed”. However, it may be information such as the actual moving speed (m / s) of the terminal device 1.
  • the movement status measuring unit 155 acquires the switching frequency information output by the switching frequency measuring unit 153, and measures the presence / absence of movement of the terminal device 1 or the moving speed of the terminal device 1 based on the acquired switching frequency information. You may.
  • the communication frequency measuring unit 157 measures the beam control frequency that the terminal device 1 can handle.
  • the communication frequency measuring unit 157 measures the beam control frequency that the terminal device 1 can handle, for example, based on the beam control capability of the terminal device 1.
  • the communication frequency measuring unit 157 measures, for example, whether the terminal device 1 can support beam control one or more times, or whether the terminal device 1 does not support beam control.
  • the control of the beam includes, for example, the following processes 1 to 3.
  • the base station apparatus 2 transmits beam setting information including beam identification information and the like set at the time of beamforming to the terminal apparatus 1 (process 1).
  • the terminal device 1 When the terminal device 1 receives the beam setting information, it transmits measurement result information such as reception quality of the signal transmitted from the base station device 2 using the beam to the base station device 2 (process 2).
  • the base station device 2 controls the beam (updates the beam setting information) and transmits the updated beam setting information to the terminal device (process 3).
  • the communication frequency measuring unit 157 executes the beam control once when the terminal device 1 can execute the above process 2 once. Judge as possible.
  • the communication frequency measuring unit 157 controls the beam when the terminal device 1 cannot execute the above process 2 even once (for example, when the terminal device 1 does not have a function of measuring the communication status). Judge that it is impossible to execute.
  • the reception status measurement unit 159 measures the reception status of the signal transmitted by the base station device 2 using the beam at one or more antennas 11 of the terminal device 1.
  • the reception status measurement unit 159 measures the reception status of the signal based on a predetermined physical quantity, for example, the level of the received signal level (reception intensity).
  • the received signal level refer to at least one of RSRP (R eference S ignal R eceived P ower) and RSSI (R eceived S ignal S trength I ndicator).
  • RSRP is a basic parameter for evaluating the received signal level of radio waves from a base station.
  • RSRP is measured based on the beamforming situation of the base station apparatus 2.
  • RSRP determines the installation conditions of the base station device 2, including the transmission power of the base station device 2, the direction and height of the antenna of the base station device 2, the distance from the base station device 2, the presence or absence of obstacles, and the like. Determined based on the measurement environment involved.
  • RSSI is a basic parameter for evaluating the received signal level of radio waves from the base station device 2.
  • RSSI is a parameter that can change not only depending on the installation conditions and measurement environment of the base station apparatus 2, but also on the traffic volume of the base station to be measured and the peripheral base stations.
  • Reception state measuring unit 159 a physical quantity further determine the reception conditions, with additional reference to at least one of RSRQ (R eference S ignal R eceived Q uality) and SINR (S ignal to I nterference plus N oise power R atio) , The signal reception status may be determined.
  • RSRQ is one of the indexes showing the reception quality of radio waves from the base station, and is a parameter calculated by the ratio of RSRP and RSSI.
  • SINR is a parameter indicating the received signal power to interference and noise power ratio in consideration of interference from surrounding base stations and other relay devices.
  • the reception status measurement unit 159 includes, for example, beam control capability information indicating that the beam is not capable of controlling the beam, that is, when the terminal device 1 does not have the ability to control the beam.
  • the terminal device 1 does not have to include the reception status measuring unit 159.
  • Each function of the control unit 15 can be realized by a program executed by a computer (microprocessor). Therefore, each function included in the control unit 15 can be realized by hardware, software, or a combination of hardware and software, and is not limited to any case.
  • the processing can be executed by multitasking, multithreading, or both multitasking and multithreading, and any of them can be executed. It is not limited to the case.
  • FIG. 4 is a flowchart showing an example of the beam control process according to the first embodiment of the present invention. As shown in FIG. 4, an RRC connection is established between the terminal device 1 and the base station device 2 (step S1).
  • the recording unit 14 of the terminal device 1 shown in FIG. 3 records the beam control capability information regarding the beam control capability of the terminal device 1 in advance (step S3).
  • the beam control capability information may be recorded in the recording unit 14 by input from the user of the terminal device 1, or may be recorded in the recording unit 14 by the terminal device 1 determining its own capability.
  • step S3 is described as being executed after step S1, but may be executed before step S1.
  • the beam control capability information is, for example, when the terminal device 1 cannot execute the above process 2 even once as described above (for example, when the terminal device 1 does not have a function of measuring the communication status), the terminal The device 1 contains information indicating that there is no beam control capability.
  • the beam control capability information includes information indicating that the terminal device 1 has beam control capability when the beam control can be executed one or more times.
  • the beam control capability information may be information indicating the presence / absence (binary value) of the beam control capability, and the height of the beam control capability is three or more values such as "high”, “medium”, and "low”. It may be the information indicated by.
  • the terminal device 1 spontaneously transmits beam control request information including beam control capability information to the base station device 2 (step S5).
  • the base station device 2 executes beam control (step S7).
  • the base station apparatus 2 transmits beam setting information to the terminal apparatus 1 using the controlled beam (step S9).
  • the base station device 2 reduces the frequency of beam control when the terminal device 1 determines that the beam control capability is low based on the beam control request information.
  • the base station apparatus 2 may be configured so that, for example, the beam can be controlled only once.
  • the terminal device 1 receives the beam setting information, it transmits measurement result information such as reception quality of the signal transmitted from the base station device 2 using the beam to the base station device 2 (step S11).
  • the base station device 2 When the base station device 2 receives the measurement result information from the terminal device 1, it controls the beam and transmits the updated beam setting information to the terminal device (step S13). As described above, since beam control is not allowed thereafter, transmission of a signal using the most recently formed beam is continued.
  • the number of times of game control is not particularly limited, and may be two or more as long as it does not cause an increase in communication volume.
  • step S7 if the base station device 2 determines that the terminal device 1 does not have the beam control capability based on the beam control request information, the base station device 2 does not execute the beam control thereafter. That is, the processes of steps S11 and S13 described above are not executed. In this way, the base station device 2 controls so as to reduce the number or frequency of beam control based on the beam control request information from the terminal device 1.
  • the base station device 2 transmits the beam setting information to the terminal device 1 (process 1).
  • the terminal device 1 receives the beam setting information, it transmits measurement result information such as reception quality of the signal transmitted from the base station device 2 using the beam to the base station device 2 (process 2).
  • the base station device 2 controls the beam (updates the beam setting information) and transmits the updated beam setting information to the terminal device 1 (process 3).
  • the optimum beam for communication between the base station device and the terminal device is formed by repeating the cycles of the above processes 1 to 3 many times.
  • the cycles of the above processes 1 to 3 for beam control are repeated many times, the amount of communication between the base station device 2 and the terminal device 1 increases, so that the terminal device 1 and the base station device 2 Power consumption during wireless communication may also increase. Further, in the terminal device 1 for which there is a request for cost reduction, the amount of communication between the base station device 2 and the terminal device 1 is reduced, and the power consumption when the terminal device 1 performs wireless communication with the base station device 2 is reduced. It is desired to let.
  • the terminal device 1 voluntarily sends beam control request information from the terminal device 1 to the base station device 2 regardless of a request or command from another device such as the base station device 2.
  • the base station device 2 controls the beam based on the received beam control request information. Therefore, it is not necessary to repeat the conventional cycles of steps 1 to 3 as described above. Therefore, it is possible to meet the demand for cost reduction for the terminal device 1, and by reducing the amount of communication required for beam control, the power consumption of the terminal device 1 when performing wireless communication with the base station device 2 can be reduced. It can be reduced.
  • the second embodiment is a terminal device in that the terminal device 1 voluntarily measures the number of times a beam is received, the frequency of beam switching, and the like, and voluntarily transmits beam control request information based on the measurement results to the base station device 2.
  • This is different from the first embodiment in which the information regarding the beam control recorded in advance in 1 is spontaneously transmitted to the base station apparatus 2.
  • Embodiments 2-1 to 2-4 will be described with reference to FIG. Hereinafter, the points different from the first embodiment will be particularly described.
  • FIG. 5 is a flowchart showing an example of the beam control process according to the second embodiment of the present invention.
  • the terminal device 1 measures information regarding beam control (step S23).
  • the number measurement unit 151 shown in FIG. 3 measures the number of times a signal transmitted from the base station device 2 using a beam is received in a predetermined period.
  • the terminal device 1 records the measurement result as reception number information in the recording unit 14 (step S25).
  • the terminal device 1 spontaneously transmits the beam control request information including the reception number information to the base station device 2 (step S27).
  • the base station apparatus 2 executes beam control based on the received beam control request information (step S29).
  • the base station device 2 determines that the necessity of beam control is low, and reduces the frequency of beam control. Further, when the number of times the terminal device 1 receives the signal in a predetermined period is small, the base station device 2 may determine that the need for beam control is high and increase the frequency of beam control. When increasing the beam control frequency, it is necessary to limit the amount of wireless communication between the terminal device 1 and the base station device 2 to a range that does not significantly increase.
  • the switching frequency measuring unit 153 shown in FIG. 3 measures the switching frequency of the beam in a predetermined period (step S23).
  • the terminal device 1 records the measurement result as switching frequency information in the recording unit 14 (step S25).
  • the terminal device 1 spontaneously transmits beam control request information including switching frequency information to the base station device 2 (step S27).
  • the base station apparatus 2 executes beam control based on the received beam control request information (step S29). For example, when the switching frequency of the beam in a predetermined period is low, the base station apparatus 2 determines that the necessity of controlling the beam is low, and reduces the frequency of beam control.
  • the base station apparatus 2 may determine that the necessity of controlling the beam is high and increase the frequency of beam control.
  • the movement status measurement unit 155 shown in FIG. 3 measures the movement status of the terminal device 1 (step S23).
  • the terminal device 1 records the measurement result as movement status information in the recording unit 14 (step S25).
  • the terminal device 1 spontaneously transmits the beam control request information including the movement status information to the base station device 2 (step S27).
  • the base station apparatus 2 executes beam control based on the received beam control request information (step S29). For example, when the terminal device 1 is stationary or hardly moving, the base station device 2 determines that the need for beam control is low, and reduces the frequency of beam control. Further, when the terminal device 1 is frequently moving, the base station device 2 may determine that the need for beam control is high and increase the frequency of beam control. When increasing the beam control frequency, it is necessary to limit the amount of wireless communication between the terminal device 1 and the base station device 2 to a range that does not significantly increase.
  • the communication frequency measuring unit 157 shown in FIG. 3 measures the beam control frequency that the terminal device 1 can handle (step S23).
  • the terminal device 1 records the measurement result in the recording unit 14 (step S25).
  • the terminal device 1 spontaneously transmits the request information for requesting the base station device 2 regarding the control frequency of the beam to the base station device 2 (step S27).
  • the base station apparatus 2 executes beam control based on the received request information (step S29). For example, when the beam control frequency that the terminal device 1 can handle is low, the base station device 2 reduces the beam control frequency. Further, when the beam control frequency that the terminal device 1 can handle is high, the base station device 2 may increase the beam control frequency. When increasing the beam control frequency, it is necessary to limit the amount of wireless communication between the terminal device 1 and the base station device 2 to a range that does not significantly increase.
  • the terminal device 1 spontaneously measures the number of beam receptions, the beam switching frequency, and the like, and spontaneously transmits the spontaneous transmission information based on the measurement results to the base station device 2. Therefore, in the second embodiment, in addition to the effect of the first embodiment, a request regarding beam control can be voluntarily made to the base station device 2 based on the measurement result spontaneously measured by the terminal device 1. ..
  • the terminal device 1 spontaneously transmits the beam control request information to the base station device 2 in that the terminal device 1 transmits the beam control request information to the base station device 2 based on the request signal from the base station device 2. It is different from the first embodiment and the second embodiment that are transmitted to the base station apparatus 2. The third embodiment will be described with reference to FIG. Hereinafter, the points different from those of the first embodiment and the second embodiment will be particularly described.
  • the base station device 2 transmits a request signal for requesting transmission of beam control request information to the terminal device 1 (step S45).
  • the terminal device 1 transmits beam control request information to the base station device 2 based on the request signal from the base station device 2 (step S47).
  • the beam control request information relates to the beam control capability information described in the first embodiment, the reception frequency information, the switching frequency information, the movement status information, and the beam control frequency described in the second embodiment. At least one of the request information for requesting the base station device 2 may be included.
  • the base station device 2 executes beam control (step S49). The beam control process is executed based on various information included in the beam control request information.
  • the terminal device 1 transmits beam control request information to the base station device 2 based on the request signal from the base station device 2. That is, the terminal device 1 issues a request to the base station device 2 regarding the control content of the beam. Therefore, since the base station device 2 can appropriately control the beam in response to the request from the terminal device 1, it is not necessary to repeat the conventional cycles of steps 1 to 3 many times. Therefore, it is possible to meet the demand for cost reduction for the terminal device 1, and by reducing the amount of communication required for beam control, the power consumption of the terminal device 1 when performing wireless communication with the base station device 2 can be reduced. It can be reduced.
  • Terminal device 1 ... Terminal device, 2 ... Base station device, 4 ... Core device, 11,21 ... Antenna, 12, 22 ... Transmitter, 13, 23 ... Receiver, 14, 24 ... Recording, 15, 25 ... Control, 17 ... Sensor, 19, 29 ... Bus, 151 ... Number measurement unit, 153 ... Switching frequency measurement unit, 155 ... Movement status measurement unit, 157 ... Communication frequency measurement unit, 159 ... Reception status measurement unit, 251 ... Beam control unit

Abstract

The present invention provides a terminal device (1) that performs wireless communication with a base station device (2). The terminal device (1) is provided with: a recording unit (14) that records beam control request information for requesting the control of a beam for transmitting a signal from the base station device (2) to the terminal device (1); and a transmission unit (12) that transmits the beam control request information to the base station device (2) after establishing a communication connection with the base station device (2). This makes it possible to meet a demand for cost reduction with respect to the terminal device (1), and also makes it possible to reduce a communication amount required for beam control, thereby reducing the power consumption of the terminal device (1) when performing the wireless communication with the base station device (2).

Description

端末装置、基地局装置、及び無線通信方法Terminal equipment, base station equipment, and wireless communication methods
 本発明は、端末装置、基地局装置、及び無線通信方法に関する。 The present invention relates to a terminal device, a base station device, and a wireless communication method.
 国際標準化団体である3GPP(Third Generation Partnership Project)において、第5世代(5G:Fifth Generation)のセルラー通信システムに向けた新しい無線アクセス技術であるNR(New Radio)の検討が行われている。NRは、第4世代のセルラー通信システムであるLTE(Long Term Evolution)-Advancedよりも、多種多様なサービスを実現可能とするための技術が検討されている。例えば、NRでは高速・大容量通信を実現するeMBB(enhanced Mobile Broad Band)、超高信頼・低遅延通信を実現するURLLC(Ultra-Reliable and Low Latency Communication)、及びIoT(Internet of Things)デバイスの多数同時接続を実現するmMTC(massive Machine Type Communication)といった、用途の異なる利用シナリオが実現要件として定められている。 The 3GPP (Third Generation Partnership Project), an international standardization organization, is studying NR (New Radio), which is a new wireless access technology for 5th generation (5G: Fifth Generation) cellular communication systems. For NR, a technology for realizing a wider variety of services than LTE (Long Term Evolution) -Advanced, which is a fourth-generation cellular communication system, is being studied. For example, in NR, eMBB (enhanced Mobile Broad Band) that realizes high-speed and large-capacity communication, URLLC (Ultra-Reliable and Low Latency Communication) that realizes ultra-high reliability and low latency communication, and IoT (Internet of Things) devices Usage scenarios for different purposes, such as mMTC (massive Machine Type Communication) that realizes multiple simultaneous connections, are defined as realization requirements.
 従来、基地局装置と端末装置との間の通信可能距離及びエリア等を確保するために、基地局装置はビームフォーミングを採用している。基地局装置は、ビーム識別情報等を含むビーム設定情報を端末装置に対して送信する(処理1)。端末装置はビーム設定情報を受信すると、基地局装置からビームを用いて送信された信号の受信品質等の測定結果情報を基地局装置に送信する(処理2)。基地局装置は、端末装置から測定結果情報を受信すると、ビームを制御(ビーム設定情報を更新)して、更新後のビーム設定情報を端末装置に送信する(処理S3)。上記処理1~3を多数回繰り返すことで、基地局装置と端末装置との間の通信にとって最適なビームを形成することができる(非特許文献1及び2を参照)。 Conventionally, the base station device has adopted beamforming in order to secure the communicable distance and area between the base station device and the terminal device. The base station device transmits beam setting information including beam identification information and the like to the terminal device (process 1). When the terminal device receives the beam setting information, it transmits measurement result information such as reception quality of the signal transmitted from the base station device using the beam to the base station device (process 2). When the base station device receives the measurement result information from the terminal device, it controls the beam (updates the beam setting information) and transmits the updated beam setting information to the terminal device (process S3). By repeating the above processes 1 to 3 many times, an optimum beam for communication between the base station device and the terminal device can be formed (see Non-Patent Documents 1 and 2).
 従来のように、ビーム制御のための処理ステップを多数回繰り返すと、基地局装置と端末装置との間の通信量が増大することにより、端末装置において、基地局装置と無線通信を行う際の消費電力も増大するおそれがある。 When the processing step for beam control is repeated many times as in the conventional case, the amount of communication between the base station device and the terminal device increases, so that the terminal device performs wireless communication with the base station device. Power consumption may also increase.
 ここで、IoTデバイスとして用いられる端末装置ではコストダウンの要請が大きいため、基地局装置とIoTデバイスとの間の通信量を削減し、IoTデバイスにおいて基地局装置と無線通信を行う際の消費電力を低減させることが望まれている。 Here, since there is a great demand for cost reduction in the terminal device used as the IoT device, the amount of communication between the base station device and the IoT device is reduced, and the power consumption when wirelessly communicating with the base station device in the IoT device is performed. Is desired to be reduced.
 本発明はこのような事情に鑑みてなされたものであり、端末装置に対するコストダウンの要請に応えることができ、且つ、ビーム制御に必要な通信量を削減することにより、端末装置において、基地局装置と無線通信を行う際の消費電力を低減させることができる無線通信技術を提供することを目的とする。 The present invention has been made in view of such circumstances, and by being able to respond to a demand for cost reduction for a terminal device and reducing the amount of communication required for beam control, the base station in the terminal device An object of the present invention is to provide a wireless communication technology capable of reducing power consumption when performing wireless communication with an apparatus.
 本発明の一側面に係る端末装置は、基地局装置と無線通信を実行する端末装置であって、基地局装置から端末装置に対して信号を送信するためのビームの制御を要求するビーム制御要求情報を記録する記録部と、基地局装置との通信接続の確立後、ビーム制御要求情報を基地局装置に対して送信する送信部と、を備える。 The terminal device according to one aspect of the present invention is a terminal device that executes wireless communication with the base station device, and is a beam control request that requests control of a beam for transmitting a signal from the base station device to the terminal device. It includes a recording unit that records information and a transmission unit that transmits beam control request information to the base station device after establishing a communication connection with the base station device.
 本発明の一側面に係る無線通信方法は、基地局装置と無線通信を実行する端末装置に用いられる無線通信方法であって、基地局装置から端末装置に対して信号を送信するためのビームの制御を要求する情報を記録するステップと、基地局装置との通信接続の確立後、ビーム制御要求情報を基地局装置に対して送信するステップと、を含む。 The wireless communication method according to one aspect of the present invention is a wireless communication method used for a terminal device that executes wireless communication with a base station device, and is a beam for transmitting a signal from the base station device to the terminal device. It includes a step of recording information requesting control and a step of transmitting beam control request information to the base station device after establishing a communication connection with the base station device.
 本発明の一側面に係る基地局装置は、端末装置と無線通信を実行する基地局装置であって、端末装置との通信接続の確立後、端末装置が送信した、基地局装置から端末装置に対して信号を送信するためのビームの制御を要求するビーム制御要求情報を受信する受信部と、ビーム制御要求情報に基づいてビームを制御するビーム制御部と、を備える。 The base station device according to one aspect of the present invention is a base station device that executes wireless communication with the terminal device, and is transmitted from the base station device to the terminal device after the communication connection with the terminal device is established. The receiver includes a receiving unit that receives beam control request information that requests control of the beam for transmitting a signal, and a beam control unit that controls the beam based on the beam control request information.
 本発明の一側面に係る無線通信方法は、端末装置と無線通信を実行する基地局装置に用いられる無線通信方法であって、端末装置との通信接続の確立後、端末装置が送信した、基地局装置から端末装置に対して信号を送信するためのビームの制御を要求するビーム制御要求情報を受信するステップと、ビーム制御要求情報に基づいてビームを制御するステップと、を含む。 The wireless communication method according to one aspect of the present invention is a wireless communication method used for a base station device that executes wireless communication with a terminal device, and is a base transmitted by the terminal device after establishing a communication connection with the terminal device. It includes a step of receiving beam control request information requesting control of a beam for transmitting a signal from a station device to a terminal device, and a step of controlling a beam based on the beam control request information.
 本発明によれば、端末装置に対するコストダウンの要請に応えることができ、且つ、ビーム制御に必要な通信量を削減することにより、端末装置において、基地局装置と無線通信を行う際の消費電力を低減させることができる。 According to the present invention, it is possible to respond to a demand for cost reduction for a terminal device, and by reducing the amount of communication required for beam control, the power consumption of the terminal device for wireless communication with the base station device is achieved. Can be reduced.
図1は、本発明の実施形態に係る無線通信システムの構成の一例を示した概略構成図である。FIG. 1 is a schematic configuration diagram showing an example of a configuration of a wireless communication system according to an embodiment of the present invention. 図2は、本発明の実施形態に係る端末装置の構成の一例を示した概略構成図である。FIG. 2 is a schematic configuration diagram showing an example of the configuration of the terminal device according to the embodiment of the present invention. 図3は、本発明の実施形態に係る基地局装置の構成の一例を示した概略構成図である。FIG. 3 is a schematic configuration diagram showing an example of the configuration of the base station apparatus according to the embodiment of the present invention. 図4は、本発明の実施形態1に係るビーム制御処理の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of the beam control process according to the first embodiment of the present invention. 図5は、本発明の実施形態2に係るビーム制御処理の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the beam control process according to the second embodiment of the present invention. 図6は、本発明の実施形態3に係るビーム制御処理の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of the beam control process according to the third embodiment of the present invention.
 以下、添付図面を参照しながら本発明の実施の形態について説明する。以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではない。また、本発明は、その要旨を逸脱しない限り、様々な変形が可能である。さらに、各図面において同一の構成要素に対しては可能な限り同一の符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The following embodiments are examples for explaining the present invention, and the present invention is not intended to be limited only to the embodiments. Further, the present invention can be modified in various ways as long as it does not deviate from the gist thereof. Further, in each drawing, the same components are designated by the same reference numerals as much as possible, and duplicate description will be omitted.
 本発明の実施形態に係る無線通信システム、及び、無線ネットワークについて説明する。本発明の実施形態に係る無線通信システムは、NR(5G:Fifth Generation)に関する無線通信規格を対象とするが、これに限定されない。例えば、本発明はLTEやLTE-Advancedに関する無線通信規格に対しても適用可能である。また、無線通信システムの一部にNRを用いる無線通信システムにおいても適用可能である。さらに、本発明は、少なくとも端末装置と基地局装置とを備える無線通信システムであれば適用可能であり、将来の無線通信システムにも適用可能である。なお、以降LTEとLTE-AdvancedのことをE-UTRA(Evolved Universal Terrestrial Radio Access)とも呼称するが、その意味は同じである。 The wireless communication system and the wireless network according to the embodiment of the present invention will be described. The wireless communication system according to the embodiment of the present invention targets, but is not limited to, a wireless communication standard related to NR (5G: Fifth Generation). For example, the present invention is also applicable to wireless communication standards related to LTE and LTE-Advanced. It can also be applied to a wireless communication system that uses NR as a part of the wireless communication system. Furthermore, the present invention is applicable to any wireless communication system including at least a terminal device and a base station device, and is also applicable to future wireless communication systems. Hereinafter, LTE and LTE-Advanced are also referred to as E-UTRA (Evolved Universal Terrestrial Radio Access), but their meanings are the same.
 基地局装置が形成するエリア(カバーエリア)をセルと称し、E-UTRA及び5Gは、複数セルにより構築されるセルラー通信システムである。本発明に関わる無線通信システムとして、TDD(Time Division Duplex)とFDD(Frequency Division Duplex)のどちらの方式を適用しても良く、セルごとに異なる方式が適用されてもよい。 The area (cover area) formed by the base station device is referred to as a cell, and E-UTRA and 5G are cellular communication systems constructed by a plurality of cells. As the wireless communication system according to the present invention, either TDD (Time Division Duplex) or FDD (Frequency Division Duplex) method may be applied, and different methods may be applied to each cell.
 図1は、本発明の実施形態に係る無線通信システムの構成の一例を示した概略構成図である。図1に示すように、端末装置1a又は端末装置1nは、基地局装置2a又は基地局装置2nと無線接続される。また、端末装置1a又は端末装置1nのそれぞれは、基地局装置2a及び基地局装置2nと同時に無線接続してもよい。基地局装置2aと基地局装置2nは、E-UTRA、あるいは5Gを用いることができる。例えば、基地局装置2が5Gを使用し、基地局装置2nがE-UTRAを用いてもよいし、その逆でもよい。E-UTRAにおける基地局装置をeNB(evolved NodeB)、NRにおける基地局装置をgNB(g-NodeB)と呼ぶ。以降、基地局装置と記載した場合はeNBとgNBの両方の意味を含む。また、E-UTRA、及びNRにおける端末装置をUE(User Equipment)と呼ぶ。NRにおける基地局装置gNBは、その使用する周波数帯域の一部(BWP: Carrier bandwidth part)を用いて端末装置と接続してもよい。以降、セルと記載した場合はBWPを含むものとする。 FIG. 1 is a schematic configuration diagram showing an example of the configuration of the wireless communication system according to the embodiment of the present invention. As shown in FIG. 1, the terminal device 1a or the terminal device 1n is wirelessly connected to the base station device 2a or the base station device 2n. Further, each of the terminal device 1a or the terminal device 1n may be wirelessly connected at the same time as the base station device 2a and the base station device 2n. As the base station device 2a and the base station device 2n, E-UTRA or 5G can be used. For example, the base station apparatus 2 may use 5G and the base station apparatus 2n may use E-UTRA, or vice versa. The base station device in E-UTRA is called eNB (evolved NodeB), and the base station device in NR is called gNB (g-NodeB). Hereinafter, the term "base station device" includes both the meanings of eNB and gNB. Further, the terminal device in E-UTRA and NR is called a UE (User Equipment). The base station device gNB in the NR may be connected to the terminal device by using a part of the frequency band (BWP: Carrier bandwidth part) used. Hereinafter, when the term "cell" is used, BWP is included.
 なお、図中には、n台の端末装置1として、端末装置1a及び端末装置1nを図示している。ただし、以下の説明において、これらn台の端末装置1を区別することなく説明する場合には、符号を一部省略して、単に「端末装置1」と呼ぶ。また、図中には、n台の基地局装置2として、基地局装置2a及び基地局装置2nを図示している。ただし、以下の説明において、これらn台の基地局装置2を区別することなく説明する場合には、符号を一部省略して、単に「基地局装置2」と呼ぶ。 Note that in the figure, the terminal device 1a and the terminal device 1n are shown as n terminal devices 1. However, in the following description, when these n terminal devices 1 are described without distinction, some reference numerals are omitted and the term "terminal device 1" is simply referred to. Further, in the figure, the base station device 2a and the base station device 2n are shown as n base station devices 2. However, in the following description, when these n base station devices 2 are described without distinction, some reference numerals are omitted and they are simply referred to as "base station device 2".
 端末装置1は、例えば、基地局装置2とセル単位で接続され、複数のセルを用いた接続(キャリアアグリゲーション)されてもよい。端末装置1が複数の基地局装置を介して接続される場合(デュアルコネクティビティ)、初期接続される基地局装置をマスターノード(MN: Master Node)、追加で接続される基地局装置をセカンダリノード(SN: Secondary Node)と呼ぶ。基地局装置間は、基地局インターフェースにより接続されている。また、基地局装置2とコア装置4とは、コアインターフェースにより接続されている。基地局インターフェースは、ハンドオーバーや基地局装置間の連携動作に必要な制御信号をやり取りするためなどに使用される。コア装置4は、例えば、基地局装置2を配下に持ち、基地局装置間の負荷制御や、端末装置1の呼び出し(ページング)、位置登録などの移動制御を主に取り扱う。 The terminal device 1 may be connected to the base station device 2 in cell units, and may be connected using a plurality of cells (carrier aggregation). When the terminal device 1 is connected via a plurality of base station devices (dual connectivity), the initially connected base station device is the master node (MN: MasterNode), and the additionally connected base station device is the secondary node (dual connectivity). SN: Secondary Node). The base station devices are connected by a base station interface. Further, the base station device 2 and the core device 4 are connected by a core interface. The base station interface is used for exchanging control signals necessary for handover and cooperative operation between base station devices. The core device 4 has, for example, a base station device 2 under its control, and mainly handles load control between base station devices, call (paging) of the terminal device 1, and movement control such as location registration.
 端末装置1と基地局装置2は、無線リソース制御(RRC: Radio Resource Control)層において、RRCメッセージを送受信する。また、端末装置1と基地局装置2は、媒体アクセス制御(MAC: Medium Access Control)層において、MAC制御要素(MAC CE: MAC Control Element)を送受信する。RRCメッセージは、RRC PDU(Protocol Data Unit)として送信され、マッピングされる論理チャネルとして、共通制御チャネル(CCCH: Common Control Channel)、個別制御チャネル(DCCH: Dedicated Control Channel)、ページング制御チャネル(PCCH: Paging Control Channel)、ブロードキャスト制御チャネル(BCCH: Broadcast Control Channel)、又は、マルチキャスト制御チャネル(MCCH: Multicast Control Channel)が用いられる。MAC CEは、MAC PDU(又は、MAC subPDU)として送信される。MAC subPDUは、MAC層におけるサービスデータユニット(SDU: Service Data Unit)に、例えば8ビットのヘッダーを加えたものに等しく、MAC PDUは、一つ以上のMAC subPDUを含む。 The terminal device 1 and the base station device 2 send and receive RRC messages in the radio resource control (RRC: Radio Resource Control) layer. Further, the terminal device 1 and the base station device 2 transmit and receive a MAC control element (MAC CE: MAC Control Element) in the medium access control (MAC: Medium Access Control) layer. The RRC message is transmitted as an RRC PDU (Protocol Data Unit), and as the mapped logical channels, a common control channel (CCCH: Common Control Channel), an individual control channel (DCCH: Dedicated Control Channel), and a paging control channel (PCCH:). A Paging Control Channel), a Broadcast Control Channel (BCCH: Broadcast Control Channel), or a Multicast Control Channel (MCCH: Multicast Control Channel) is used. The MAC CE is transmitted as a MAC PDU (or MAC SUBPDU). A MAC subPDU is equivalent to a service data unit (SDU: Service Data Unit) in the MAC layer plus, for example, an 8-bit header, and a MAC PDU includes one or more MAC subPDUs.
 本実施形態に関わる物理チャネル及び物理シグナルについて説明する。本発明の実施形態に関わる物理チャネルのうち、物理報知チャネル(PBCH: Physical Broadcast Channel)、物理下りリンク制御チャネル(PDCCH: Physical Downlink Control Channel)、及び、物理上りリンク共有チャネル(PUSCH: Physical Uplink Shared Channel)について以下に説明する。なお、実施形態に係る無線通信システムにおいて、他に、物理ランダムアクセスチャネル(PRACH: Physical Random Access Channel)、同期信号(Primary Synchronization Signal, Secondary Synchronization Signal)、物理上りリンク制御チャネル(PUCCH: Physical Uplink Control Channel)、物理下りリンク共有チャネル(PDSCH: Physical Downlink Shared Channel)、スケジューリング参照信号(SRS: Scheduling Reference Signal)、及び、復調参照信号(DMRS: Demodulation Reference Signal)が少なくとも存在するが、詳細な説明を略す。 The physical channels and physical signals related to this embodiment will be described. Among the physical channels according to the embodiment of the present invention, the physical broadcast channel (PBCH: Physical Broadcast Channel), the physical downlink control channel (PDCCH: Physical Downlink Control Channel), and the physical uplink shared channel (PUSCH: Physical Uplink Shared). Channel) will be described below. In addition, in the wireless communication system according to the embodiment, in addition, a physical random access channel (PRACH: Physical Random Access Channel), a synchronization signal (PrimarySynchronizationSignal, SecondarySynchronizationSignal), and a physical uplink control channel (PUCCH: PhysicalUplinkControl) Channel), physical downlink shared channel (PDSCH: Physical Downlink Shared Channel), scheduling reference signal (SRS: Scheduling Reference Signal), and demodulation reference signal (DMRS: Demodulation Reference Signal) exist at least, but a detailed explanation will be given. Abbreviated.
 <物理報知チャネルPBCH>
 物理報知チャネルPBCHは、基地局装置から端末装置に対して送信され、基地局装置の配下のセルにおける共通パラメータ(報知情報、システムインフォメーション)を通知するために使用される。システムインフォメーションは、更にマスターインフォメーションブロック(Master Information Block、MIB)とシステムインフォメーションブロック(System Information Block、SIB)に分類される。なお、システムインフォメーションブロックは、更にSIB1、SIB2、・・・のように細分化されて送信される。システムインフォメーションはセルに接続するために必要な情報が含まれており、例えばMIBにはシステムフレーム番号やセルへのキャンプ可否を示す情報などが含まれている。また、SIB1には、セルの品質を計算するためのパラメータ(セル選択パラメータ)、セル共通のチャネル情報(ランダムアクセス制御情報、PUCCH制御情報、PUSCH制御情報)、その他のシステムインフォメーションのスケジューリング情報などが含まれている。
<Physical notification channel PBCH>
The physical broadcast channel PBCH is transmitted from the base station apparatus to the terminal apparatus and is used to notify common parameters (notification information, system information) in cells under the base station apparatus. System information is further classified into a master information block (MIB) and a system information block (System Information Block, SIB). The system information block is further subdivided into SIB1, SIB2, ..., And transmitted. The system information includes information necessary for connecting to the cell. For example, the MIB includes information such as a system frame number and information indicating whether or not to camp in the cell. In addition, SIB1 contains parameters for calculating cell quality (cell selection parameters), cell-common channel information (random access control information, PUCCH control information, PUSCH control information), scheduling information for other system information, and the like. include.
 <物理下りリンク制御チャネルPDCCH>
 物理下りリンク制御チャネルPDCCHは、端末装置に対し、下りリンク制御情報(DCI: Downlink Control Information)を通知するために基地局装置より送信される。下りリンク制御情報は、端末装置が使用可能な上りリンクの無線リソース情報(上りリンクグラント(UL grant))、又は、下りリンクの無線リソース情報(下りリンクグラント(DL grant))を含む。下りリンクグラントは、物理下りリンク共有チャネルPDSCHのスケジューリングを示す情報である。上りリンクグラントは、物理上りリンク共有チャネルPUSCHのスケジューリングを示す情報である。PDCCHがPRACH(ランダムアクセスプリアンブル)の応答として送信される場合、PDCCHによって示されるPRACHはランダムアクセスレスポンスであり、ランダムアクセスプリアンブルのインデックス情報、送信タイミング調整情報、上りリンクグラントなどが含まれる。
<Physical downlink control channel PDCCH>
The physical downlink control channel PDCCH is transmitted from the base station apparatus to notify the terminal apparatus of downlink control information (DCI). The downlink control information includes uplink radio resource information (uplink grant (UL grant)) that can be used by the terminal device, or downlink radio resource information (downlink grant (DL grant)). The downlink grant is information indicating the scheduling of the physical downlink shared channel PDSCH. The uplink grant is information indicating the scheduling of the physical uplink shared channel PUSCH. When the PDCCH is transmitted as a response of the PRACH (random access preamble), the PRACH indicated by the PDCCH is a random access response, and includes index information of the random access preamble, transmission timing adjustment information, uplink grant, and the like.
 <物理上りリンク共有チャネルPUSCH>
 物理上りリンク共有チャネルPUSCHは、上りリンクデータ(ユーザーデータ)や上りリンク制御データ(RRCメッセージ)を基地局装置に通知するため、端末装置より送信される。PUSCHは、下りリンクの受信品質やACK/NACKなどの物理レイヤの制御信号を含めることも可能である。また、端末装置は、ランダムアクセスレスポンスに含まれる上りリンクグラントに対応したPUSCHを送信する場合、該PUSCHはランダムアクセスに関連した端末装置の情報(メッセージ3)を含む。
<Physical uplink shared channel PUSCH>
The physical uplink shared channel PUSCH is transmitted from the terminal device in order to notify the base station device of the uplink data (user data) and the uplink control data (RRC message). The PUSCH can also include downlink reception quality and physical layer control signals such as ACK / NACK. Further, when the terminal device transmits the PUSCH corresponding to the uplink grant included in the random access response, the PUSCH includes the information (message 3) of the terminal device related to the random access.
 図2は、本発明の実施形態に係る基地局装置2の概略構成を例示するブロック図である。図2に示すように、基地局装置2は、例えば、アンテナ21と、送信部22と、受信部23と、記録部24と、制御部25と、を備える。また、基地局装置2は、基地局装置2の各部の間で信号やデータを伝送するように構成されたバス29をさらに備える。 FIG. 2 is a block diagram illustrating a schematic configuration of the base station device 2 according to the embodiment of the present invention. As shown in FIG. 2, the base station apparatus 2 includes, for example, an antenna 21, a transmitting unit 22, a receiving unit 23, a recording unit 24, and a control unit 25. Further, the base station apparatus 2 further includes a bus 29 configured to transmit signals and data between the respective parts of the base station apparatus 2.
 アンテナ21は、1つ又は複数の所定の周波数帯で、電波(電磁波)を放射(輻射)及び受波できるように構成されている。アンテナ21は、指向性を有するアンテナであってもよい。指向性のアンテナ21は、アンテナの向きによって利得が異なる。なお、アンテナ21は、指向性のない、つまり、無指向性を有するものであってもよい。無指向性のアンテナ21は、水平面内、垂直面内、又は水平面ない及び垂直面内の両方において、360度全ての方向からの利得がほぼ同等である。 The antenna 21 is configured to be able to radiate (radiate) and receive radio waves (electromagnetic waves) in one or a plurality of predetermined frequency bands. The antenna 21 may be a directional antenna. The gain of the directional antenna 21 differs depending on the orientation of the antenna. The antenna 21 may have no directivity, that is, one having omnidirectionality. The omnidirectional antenna 21 has approximately the same gain from all 360 degrees directions in the horizontal plane, in the vertical plane, or both in the horizontal plane and in the non-horizontal plane and in the vertical plane.
 基地局装置2が備えるアンテナ21は、1本である場合に限定されるものではない。基地局装置2は複数本のアンテナを備えていてもよい。基地局装置2が複数本のアンテナを備える場合、例えば、送信用アンテナと受信用アンテナとに分けてもよい。また、複数本のアンテナを送信用アンテナと受信用アンテナとに分ける場合、少なくとも一方が複数本のアンテナを含んでいてもよい。なお、基地局装置2が複数本の送受信用アンテナ又は送信用アンテナを備える場合、後述するビームフォーミングの技術を利用することができる。 The number of antennas 21 included in the base station device 2 is not limited to one. The base station device 2 may include a plurality of antennas. When the base station device 2 includes a plurality of antennas, it may be divided into, for example, a transmitting antenna and a receiving antenna. Further, when a plurality of antennas are divided into a transmitting antenna and a receiving antenna, at least one of them may include a plurality of antennas. When the base station device 2 is provided with a plurality of transmission / reception antennas or transmission antennas, a beamforming technique described later can be used.
 送信部22は、アンテナ21に接続されている。送信部22は、制御部25から入力される各種情報について、符号化、変調、多重化等を行うことによって信号を生成し、アンテナ21を介して当該信号を送信するように構成されている。例えば、送信部22は、制御部25によって指定される物理下りリンクで用いられる通信帯域幅に関する情報から、下りリンク参照信号を生成し、アンテナ21を介して端末装置1に送信する。 The transmission unit 22 is connected to the antenna 21. The transmission unit 22 is configured to generate a signal by encoding, modulating, multiplexing, and the like with respect to various information input from the control unit 25, and transmit the signal via the antenna 21. For example, the transmission unit 22 generates a downlink reference signal from information on the communication bandwidth used in the physical downlink specified by the control unit 25, and transmits the downlink reference signal to the terminal device 1 via the antenna 21.
 受信部23は、アンテナ21に接続されている。受信部23は、端末装置1との通信接続(RRC connection)の確立後、基地局装置2から端末装置1に対して信号を送信するためのビームの制御を要求するビーム制御要求情報を受信する。受信部23は、アンテナ21を介して受信した各種信号について、分離、復調、復号等を行うことによって情報を復元し、当該情報を制御部25に出力するように構成されている。例えば、受信部23は、アンテナ21を介して受信した上りリンクの信号から、上りリンクのチャネルの状態を測定し、測定した結果の情報を制御部25に出力する。 The receiving unit 23 is connected to the antenna 21. After establishing the communication connection (RRC connection) with the terminal device 1, the receiving unit 23 receives the beam control request information requesting the control of the beam for transmitting the signal from the base station device 2 to the terminal device 1. .. The receiving unit 23 is configured to restore information by performing separation, demodulation, decoding, etc. of various signals received via the antenna 21, and output the information to the control unit 25. For example, the receiving unit 23 measures the state of the uplink channel from the uplink signal received via the antenna 21, and outputs the information of the measurement result to the control unit 25.
 記録部24は、プログラムやデータ等を記録するように構成されている。記録部24は、例えば、ハードディスクドライブ、ソリッドステートドライブ等を含んで構成される。記録部24は、制御部25が実行する各種プログラムやプログラムの実行に必要なデータ等をあらかじめ記録している。記録部24は、後述するビーム制御部251の制御結果である、ビームフォーミングの際に設定したビーム識別情報等を含むビーム設定情報を対象端末装置1ごとに記録してもよい。 The recording unit 24 is configured to record programs, data, and the like. The recording unit 24 includes, for example, a hard disk drive, a solid state drive, and the like. The recording unit 24 records in advance various programs executed by the control unit 25, data necessary for executing the programs, and the like. The recording unit 24 may record beam setting information including beam identification information set at the time of beamforming, which is a control result of the beam control unit 251 described later, for each target terminal device 1.
 制御部25は、アンテナ21、送信部22、受信部23、及び、記録部24等、基地局装置2の各部の動作を制御するように構成されている。また、制御部25は、記録部24に記録されたプログラムを実行する等によって、後述する各機能を実現するように構成されている。制御部25は、例えば、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等のプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)等のメモリ、及びバッファ等の緩衝記録装置を含んで構成される。 The control unit 25 is configured to control the operation of each unit of the base station device 2, such as the antenna 21, the transmission unit 22, the reception unit 23, and the recording unit 24. Further, the control unit 25 is configured to realize each function described later by executing a program recorded in the recording unit 24 or the like. The control unit 25 is, for example, a processor such as a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), a memory such as a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. And a buffer recording device such as a buffer.
 制御部25は、機能的に、例えば、ビームを制御するビーム制御部251を備える。ビーム制御部251は、端末装置1から送信されるビーム制御要求情報に基づいてビームを制御する。ビームの制御は、例えば、ビームの制御頻度を低減させることを含むが、これに限られない。例えば、端末装置1と基地局装置2との間の無線通信の通信量が大幅に増大しない範囲でビーム制御頻度を増加させることを含んでもよい。また、ビームの制御は、制御頻度の制御の他、例えば、振幅及び位相を制御することによって信号強度を制御することを含んでもよい。ここでビーム制御部251が実行するビームスウィーピングを説明する。NR及びE-UTRAにおいて、基地局装置2と端末装置1との通信可能距離及びエリアを確保するために、基地局装置2はビームフォーミングを採用している。ビームフォーミングは、複数のアンテナ21のそれぞれにおいて、振幅及び位相を制御することによって指向性パターン又は指向性ビームを形成し、特定方向に対するアンテナの利得(ゲイン)を増加又は減少させる技術である。ビームフォーミングを適用することで、送信信号(送信ビーム)の信号強度を特定方向に集中させ、通信距離を伸ばすことが可能となる。その一方、特定方向以外の方向では信号強度が下がるので、送信信号の届く範囲は狭くなる。そこで、NRでは、送信信号の方向を順次切り替え、複数の送信信号(送信ビーム)を送信するビームスウィーピングがサポートされている。基地局装置2は、ビームを切り替える方向の数に限定はないが、例えば8つの方向に切り替えて送信信号を送信する。 The control unit 25 functionally includes, for example, a beam control unit 251 that controls the beam. The beam control unit 251 controls the beam based on the beam control request information transmitted from the terminal device 1. Beam control includes, but is not limited to, reducing the beam control frequency, for example. For example, it may include increasing the beam control frequency within a range in which the amount of wireless communication between the terminal device 1 and the base station device 2 does not increase significantly. In addition to controlling the control frequency, the control of the beam may include controlling the signal intensity by, for example, controlling the amplitude and phase. Here, the beam sweeping executed by the beam control unit 251 will be described. In NR and E-UTRA, the base station apparatus 2 employs beamforming in order to secure the communicable distance and area between the base station apparatus 2 and the terminal apparatus 1. Beamforming is a technique for forming a directional pattern or a directional beam by controlling the amplitude and phase of each of a plurality of antennas 21 to increase or decrease the gain of the antenna in a specific direction. By applying beamforming, it is possible to concentrate the signal strength of the transmission signal (transmission beam) in a specific direction and extend the communication distance. On the other hand, since the signal strength is lowered in a direction other than the specific direction, the reachable range of the transmitted signal is narrowed. Therefore, NR supports beam sweeping in which the directions of transmission signals are sequentially switched and a plurality of transmission signals (transmission beams) are transmitted. The base station device 2 is not limited in the number of directions in which the beam is switched, but for example, the base station device 2 switches in eight directions to transmit a transmission signal.
 制御部25の各機能は、コンピュータ(マイクロプロセッサ)で実行されるプログラムによって実現することが可能である。したがって、制御部40が備える各機能は、ハードウェア、ソフトウェア、若しくはハードウェア及びソフトウェアの組み合わせによって実現可能であり、いずれかの場合に限定されるものではない。また、制御部25の各機能が、ソフトウェア、若しくはハードウェア及びソフトウェアの組み合わせによって実現される場合、その処理は、マルチタスク、マルチスレッド、若しくはマルチタスク及びマルチスレッドの両方で実行可能であり、いずれかの場合に限定されるものではない。 Each function of the control unit 25 can be realized by a program executed by a computer (microprocessor). Therefore, each function included in the control unit 40 can be realized by hardware, software, or a combination of hardware and software, and is not limited to any case. Further, when each function of the control unit 25 is realized by software or a combination of hardware and software, the processing can be executed by multitasking, multithreading, or both multitasking and multithreading. It is not limited to such a case.
 図3は、本発明の実施形態に係る端末装置1の概略構成を例示するブロック図である。図3に示すように、端末装置1は、例示的に、アンテナ11と、送信部12と、受信部13と、記録部14と、制御部15と、センサ17と、を備える。また、端末装置1は、端末装置1の各部の間で信号やデータを伝送するように構成されたバス19をさらに備える。 FIG. 3 is a block diagram illustrating a schematic configuration of the terminal device 1 according to the embodiment of the present invention. As shown in FIG. 3, the terminal device 1 includes, for example, an antenna 11, a transmitting unit 12, a receiving unit 13, a recording unit 14, a control unit 15, and a sensor 17. Further, the terminal device 1 further includes a bus 19 configured to transmit signals and data between each part of the terminal device 1.
 アンテナ11は、1つ又は複数の所定の周波数帯で、電波(電磁波)を放射(輻射)及び受波できるように構成されている。アンテナ11は、指向性のない、つまり、無指向性を有するものであってもよい。無指向性のアンテナ11は、水平面内、垂直面内、又は水平面ない及び垂直面内の両方において、360度全ての方向からの利得がほぼ同等である。なお、アンテナ11は、指向性を有するアンテナであってもよい。指向性のアンテナ11は、アンテナの向きによって利得が異なる。 The antenna 11 is configured to be able to radiate (radiate) and receive radio waves (electromagnetic waves) in one or a plurality of predetermined frequency bands. The antenna 11 may be non-directional, that is, omnidirectional. The omnidirectional antenna 11 has approximately the same gain from all 360 degrees directions in the horizontal plane, in the vertical plane, or both in the horizontal plane and in the vertical plane. The antenna 11 may be an antenna having directivity. The gain of the directional antenna 11 differs depending on the orientation of the antenna.
 端末装置1が備えるアンテナ11は、1本である場合に限定されるものではない。端末装置1は複数本のアンテナを備えていてもよい。端末装置1が複数本のアンテナを備える場合、例えば、送信用アンテナと受信用アンテナとに分けてもよい。また、複数本のアンテナを送信用アンテナと受信用アンテナとに分ける場合、少なくとも一方が複数本のアンテナを含んでいてもよい。 The number of antennas 11 included in the terminal device 1 is not limited to one. The terminal device 1 may include a plurality of antennas. When the terminal device 1 includes a plurality of antennas, it may be divided into, for example, a transmitting antenna and a receiving antenna. Further, when a plurality of antennas are divided into a transmitting antenna and a receiving antenna, at least one of them may include a plurality of antennas.
 送信部12は、アンテナ11に接続されている。送信部12は、基地局装置2との通信接続(RRC connection)の確立後、基地局装置2から端末装置1に対して信号を送信するためのビームの制御を要求するビーム制御要求情報を送信する。ビーム制御要求情報の詳細については後述する。 The transmitting unit 12 is connected to the antenna 11. After establishing a communication connection (RRC connection) with the base station device 2, the transmission unit 12 transmits beam control request information requesting control of the beam for transmitting a signal from the base station device 2 to the terminal device 1. To do. The details of the beam control request information will be described later.
 送信部12は、基地局装置2との通信接続の確立後、自発的に、ビーム制御要求情報を自発送信情報として基地局装置2に送信する。「自発的に…送信する」とは、他の装置からの要請や命令等によらず送信処理を実行することを含む。「自発的に…送信する」とは、少なくとも、従来のような送信処理、例えば、基地局装置2から送信されるビーム設定情報等の情報に基づいて、通信状況の測定結果を送信する処理は含まない。自発送信情報の送信は、自発的であればよく、端末装置1を起動したタイミングであってもよいし、端末装置1を一旦停止し、再起動したタイミングであってもよい。「自発的に…送信する」ことは、一旦、ビームフォーミングが開始された後であっても、基地局装置2からの要求又は命令等によらず、信号を送信する場合も含む。 After establishing the communication connection with the base station device 2, the transmission unit 12 spontaneously transmits the beam control request information as the spontaneous transmission information to the base station device 2. "Spontaneously ... transmitting" includes executing a transmission process regardless of a request or command from another device. "Spontaneously ... transmitting" means at least the conventional transmission processing, for example, the processing of transmitting the measurement result of the communication status based on the information such as the beam setting information transmitted from the base station device 2. Not included. The spontaneous transmission information may be transmitted spontaneously, and may be at the timing when the terminal device 1 is started, or at the timing when the terminal device 1 is temporarily stopped and restarted. "Spontaneously ... transmitting" includes a case where a signal is transmitted regardless of a request or a command from the base station apparatus 2 even after the beamforming is once started.
 送信部12は、例えば、制御部15又は記録部14から入力される各種情報について、符号化、変調、多重化等を行うことによって信号を生成し、アンテナ11を介して当該信号を送信するように構成されている。例えば、送信部12は、制御部15によって指定される物理上りリンクで用いられる通信帯域幅に関する情報から、物理上りリンク信号を生成し、アンテナ11を介して基地局装置2に送信する。 The transmission unit 12 generates a signal by, for example, encoding, modulating, multiplexing, etc. various information input from the control unit 15 or the recording unit 14, and transmits the signal via the antenna 11. It is configured in. For example, the transmission unit 12 generates a physical uplink signal from the information regarding the communication bandwidth used in the physical uplink specified by the control unit 15 and transmits it to the base station apparatus 2 via the antenna 11.
 受信部13は、アンテナ11に接続されている。受信部13は、アンテナ11を介して受信した各種信号について、分離、復調、復号等を行うことによって情報を復元し、当該情報を制御部15に出力するように構成されている。 The receiving unit 13 is connected to the antenna 11. The receiving unit 13 is configured to restore information by performing separation, demodulation, decoding, etc. of various signals received via the antenna 11, and output the information to the control unit 15.
 記録部14は、プログラムやデータ等を記録するように構成されている。記録部14は、基地局装置2から端末装置1に対して信号を送信するためのビームの制御に関する情報を記録する。記録部14は、基地局装置1のセルIDを記録する。基地局装置2のセルIDは、例えば、端末装置1が特定の基地局装置とRRC接続したときに取得したセルIDを含む。記録部14は、例えば、ハードディスクドライブ、ソリッドステートドライブ等を含んで構成される。記録部14は、制御部15が実行する各種プログラムやプログラムの実行に必要なデータ等をあらかじめ記録している。 The recording unit 14 is configured to record programs, data, and the like. The recording unit 14 records information regarding beam control for transmitting a signal from the base station device 2 to the terminal device 1. The recording unit 14 records the cell ID of the base station apparatus 1. The cell ID of the base station device 2 includes, for example, a cell ID acquired when the terminal device 1 makes an RRC connection with a specific base station device. The recording unit 14 includes, for example, a hard disk drive, a solid state drive, and the like. The recording unit 14 records in advance various programs executed by the control unit 15, data necessary for executing the programs, and the like.
 センサ17は、端末装置1の位置、方位、及び加速度を検出するセンサを含む。センサは、例えば、GPS(Global Positioning System)センサ、ジャイロセンサ及び加速度センサの少なくとも一つのセンサを含む。センサ17は検出した情報を制御部15に出力する。 The sensor 17 includes a sensor that detects the position, direction, and acceleration of the terminal device 1. The sensor includes, for example, at least one sensor such as a GPS (Global Positioning System) sensor, a gyro sensor, and an acceleration sensor. The sensor 17 outputs the detected information to the control unit 15.
 制御部15は、アンテナ11、送信部12、受信部13、記録部14、及びセンサ17等、端末装置1の各部の動作を制御するように構成されている。また、制御部15は、記録部14に記録されたプログラムを実行する等によって、後述する各機能を実現するように構成されている。制御部15は、例えば、CPU、ASIC、FPGA等のプロセッサ、ROM、RAM等のメモリ、及びバッファ等の緩衝記録装置を含んで構成される。 The control unit 15 is configured to control the operation of each unit of the terminal device 1, such as the antenna 11, the transmission unit 12, the reception unit 13, the recording unit 14, and the sensor 17. Further, the control unit 15 is configured to realize each function described later by executing a program recorded in the recording unit 14 or the like. The control unit 15 includes, for example, a CPU, a processor such as an ASIC and an FPGA, a memory such as a ROM and a RAM, and a buffer recording device such as a buffer.
 制御部15は、機能的に、例えば、回数測定部151と、切替頻度測定部153と、移動状況測定部155と、通信頻度測定部157と、受信状況測定部159と、を備える。 The control unit 15 functionally includes, for example, a number measurement unit 151, a switching frequency measurement unit 153, a movement status measurement unit 155, a communication frequency measurement unit 157, and a reception status measurement unit 159.
 回数測定部151は、基地局装置2からビームを用いて送信される信号を所定期間において受信する回数を測定し、受信回数情報として出力する。所定期間は、秒単位、分単位又は時間単位で設定されてもよいし、日単位などのより大きな単位で設定されてもよい。受信回数は、実際に信号を受信した回数を含む。回数測定部151は、所定の信号強度を閾値として設定することにより、当該閾値を超える強度の信号を受信した回数を受信回数として測定してもよい。閾値は、端末装置1において予め設定されてもよいし、基地局装置2からの報知情報として予め取得されてもよい。閾値は、一つのみ設定されてもよいし、複数設定されてもよい。 The number measurement unit 151 measures the number of times a signal transmitted from the base station device 2 using a beam is received in a predetermined period, and outputs it as reception number information. The predetermined period may be set in seconds, minutes or hours, or in larger units such as days. The number of receptions includes the number of times the signal is actually received. By setting a predetermined signal strength as a threshold value, the number measurement unit 151 may measure the number of times a signal having a strength exceeding the threshold value is received as the number of receptions. The threshold value may be preset in the terminal device 1 or may be acquired in advance as broadcast information from the base station device 2. Only one threshold value may be set, or a plurality of threshold values may be set.
 切替頻度測定部153は、ビームの所定期間における切り替わり頻度を測定し、切替頻度情報として出力する。所定期間は、秒単位、分単位又は時間単位で設定されてもよいし、日単位などのより大きな単位で設定されてもよい。ビームの切り替わり頻度は、実際にビームが切り替わった回数であってもよい。ビームの切り替わり頻度は、最大強度のビームがどの程度切り替わったかに基づいて測定してもよいし、所定の閾値を超える強度の信号を送信するビームがどの程度切り替わったかに基づいて測定してもよい。閾値は、端末装置1において予め設定されてもよいし、基地局装置2からの報知情報として予め取得されてもよい。閾値は、一つのみ設定されてもよいし、複数設定されてもよい。切替頻度情報は、ビームの切り替わりの有無(2値)を示す情報であってもよいし、ビームの切り替わりの頻度を「大」、「中」、及び「小」等の3値以上で示す情報であってもよい。 The switching frequency measuring unit 153 measures the switching frequency of the beam in a predetermined period and outputs it as switching frequency information. The predetermined period may be set in seconds, minutes or hours, or in larger units such as days. The frequency of beam switching may be the number of times the beam is actually switched. The frequency of beam switching may be measured based on how much the beam of maximum intensity has switched, or may be measured based on how much the beam transmitting a signal having an intensity exceeding a predetermined threshold has switched. .. The threshold value may be preset in the terminal device 1 or may be acquired in advance as broadcast information from the base station device 2. Only one threshold value may be set, or a plurality of threshold values may be set. The switching frequency information may be information indicating the presence or absence of beam switching (binary value), or information indicating the beam switching frequency with three or more values such as "large", "medium", and "small". It may be.
 移動状況測定部155は、端末装置1の移動状況を測定する。移動状況測定部155は、例えば、図3に示すセンサ17の検出情報を取得して端末装置1の移動状況を測定し、移動状況情報として出力する。移動状況情報は、端末装置1の移動の有無(2値)を示す情報であってもよい。移動状況情報は、例えば、端末装置1の移動速度情報を含み、端末装置1の移動速度を「高速」、「中速」、及び「低速」等の3値以上で示す情報であってもよいし、端末装置1の実際の移動速度(m/s)等の情報であってもよい。移動状況測定部155は、切替頻度測定部153が出力する切替頻度情報を取得して、取得した切替頻度情報に基づいて、端末装置1の移動の有無、又は、端末装置1の移動速度を測定してもよい。 The movement status measurement unit 155 measures the movement status of the terminal device 1. For example, the movement status measurement unit 155 acquires the detection information of the sensor 17 shown in FIG. 3, measures the movement status of the terminal device 1, and outputs it as the movement status information. The movement status information may be information indicating the presence / absence (binary value) of movement of the terminal device 1. The movement status information may be, for example, information including the movement speed information of the terminal device 1 and indicating the movement speed of the terminal device 1 as three or more values such as "high speed", "medium speed", and "low speed". However, it may be information such as the actual moving speed (m / s) of the terminal device 1. The movement status measuring unit 155 acquires the switching frequency information output by the switching frequency measuring unit 153, and measures the presence / absence of movement of the terminal device 1 or the moving speed of the terminal device 1 based on the acquired switching frequency information. You may.
 通信頻度測定部157は、端末装置1が対応可能であるビーム制御頻度を測定する。通信頻度測定部157は、例えば、端末装置1のビームの制御能力等に基づいて、端末装置1が対応可能であるビーム制御頻度を測定する。具体的には、通信頻度測定部157は、例えば、端末装置1がビーム制御を1回以上対応可能であるのか、又は、端末装置1がビーム制御に非対応であるのかを測定する。より具体的には、ビームの制御は、例えば、以下の処理1~3を含む。基地局装置2は、ビームフォーミングの際に設定したビーム識別情報等を含むビーム設定情報を端末装置1に対して送信する(処理1)。端末装置1はビーム設定情報を受信すると、基地局装置2からビームを用いて送信された信号の受信品質等の測定結果情報を基地局装置2に送信する(処理2)。基地局装置2は、端末装置1から測定結果情報を受信すると、ビームを制御(ビーム設定情報を更新)して、更新後のビーム設定情報を端末装置に送信する(処理3)。例えば、この処理1~3の一連の処理をビーム制御一回分とする場合、通信頻度測定部157は、端末装置1が上記処理2を一回実行することができるとき、ビーム制御を一回実行可能と判定する。他方で、通信頻度測定部157は、端末装置1が上記処理2を一回も実行することができないとき(例えば、端末装置1が通信状況を測定する機能を備えていないとき)、ビーム制御を実行することは不可能と判定する。 The communication frequency measuring unit 157 measures the beam control frequency that the terminal device 1 can handle. The communication frequency measuring unit 157 measures the beam control frequency that the terminal device 1 can handle, for example, based on the beam control capability of the terminal device 1. Specifically, the communication frequency measuring unit 157 measures, for example, whether the terminal device 1 can support beam control one or more times, or whether the terminal device 1 does not support beam control. More specifically, the control of the beam includes, for example, the following processes 1 to 3. The base station apparatus 2 transmits beam setting information including beam identification information and the like set at the time of beamforming to the terminal apparatus 1 (process 1). When the terminal device 1 receives the beam setting information, it transmits measurement result information such as reception quality of the signal transmitted from the base station device 2 using the beam to the base station device 2 (process 2). When the base station device 2 receives the measurement result information from the terminal device 1, it controls the beam (updates the beam setting information) and transmits the updated beam setting information to the terminal device (process 3). For example, when the series of processes 1 to 3 is regarded as one beam control, the communication frequency measuring unit 157 executes the beam control once when the terminal device 1 can execute the above process 2 once. Judge as possible. On the other hand, the communication frequency measuring unit 157 controls the beam when the terminal device 1 cannot execute the above process 2 even once (for example, when the terminal device 1 does not have a function of measuring the communication status). Judge that it is impossible to execute.
 受信状況測定部159は、基地局装置2がビームを用いて送信した信号の、端末装置1の1又は複数のアンテナ11における受信状況を測定する。受信状況測定部159は、所定の物理量、例えば、受信信号レベル(受信強度)の高低に基づいて信号の受信状況を測定する。具体的には、受信信号レベルとして、RSRP(eference ignal eceived ower)及びRSSI(eceived ignal trength ndicator)の少なくとも一方を参照する。 The reception status measurement unit 159 measures the reception status of the signal transmitted by the base station device 2 using the beam at one or more antennas 11 of the terminal device 1. The reception status measurement unit 159 measures the reception status of the signal based on a predetermined physical quantity, for example, the level of the received signal level (reception intensity). Specifically, as the received signal level, refer to at least one of RSRP (R eference S ignal R eceived P ower) and RSSI (R eceived S ignal S trength I ndicator).
 RSRPは、基地局からの電波の受信信号レベルを評価する基本的なパラメータである。RSRPは、基地局装置2のビームフォーミングの状況に基づいて測定される。また、RSRPは、基地局装置2の送信電力、基地局装置2のアンテナの向きや高さ等を含む基地局装置2の設置条件や、基地局装置2からの距離、障害物の有無等を含む測定環境に基づいて決定される。RSSIは、RSRPと同様に、基地局装置2からの電波の受信信号レベルを評価する基本的なパラメータである。しかしながら、RSSIは、RSRPとは異なり、基地局装置2の設置条件や測定環境だけではなく、測定対象基地局や周辺基地局のトラフィック量によっても変化し得るパラメータである。 RSRP is a basic parameter for evaluating the received signal level of radio waves from a base station. RSRP is measured based on the beamforming situation of the base station apparatus 2. In addition, RSRP determines the installation conditions of the base station device 2, including the transmission power of the base station device 2, the direction and height of the antenna of the base station device 2, the distance from the base station device 2, the presence or absence of obstacles, and the like. Determined based on the measurement environment involved. Like RSRP, RSSI is a basic parameter for evaluating the received signal level of radio waves from the base station device 2. However, unlike RSRP, RSSI is a parameter that can change not only depending on the installation conditions and measurement environment of the base station apparatus 2, but also on the traffic volume of the base station to be measured and the peripheral base stations.
 受信状況測定部159は、さらに受信状況を判断する物理量として、RSRQ(eference ignal eceived uality)及びSINR(ignal to nterference plus oise power atio)の少なくとも一方を更に参照して、信号の受信状況を判断してもよい。 Reception state measuring unit 159, a physical quantity further determine the reception conditions, with additional reference to at least one of RSRQ (R eference S ignal R eceived Q uality) and SINR (S ignal to I nterference plus N oise power R atio) , The signal reception status may be determined.
 RSRQは、基地局からの電波の受信品質を表す指標の1つであり、RSRPとRSSIとの比によって計算されるパラメータである。SINRは、周辺の基地局や他の中継装置からの干渉を考慮した受信信号電力対干渉及び雑音電力比を示すパラメータである。 RSRQ is one of the indexes showing the reception quality of radio waves from the base station, and is a parameter calculated by the ratio of RSRP and RSSI. SINR is a parameter indicating the received signal power to interference and noise power ratio in consideration of interference from surrounding base stations and other relay devices.
 なお、受信状況測定部159は、例えば、ビームの制御に関する情報として、ビームを制御する能力がない旨を示すビーム制御能力情報を含む場合、つまり、端末装置1においてビームを制御する能力がない場合は、端末装置1は、受信状況測定部159を備えなくてもよい。 The reception status measurement unit 159 includes, for example, beam control capability information indicating that the beam is not capable of controlling the beam, that is, when the terminal device 1 does not have the ability to control the beam. The terminal device 1 does not have to include the reception status measuring unit 159.
 制御部15の各機能は、コンピュータ(マイクロプロセッサ)で実行されるプログラムによって実現することが可能である。したがって、制御部15が備える各機能は、ハードウェア、ソフトウェア、若しくはハードウェア及びソフトウェアの組み合わせによって実現可能であり、いずれかの場合に限定されるものではない。制御部15の各機能が、ソフトウェア、若しくはハードウェア及びソフトウェアの組み合わせによって実現される場合、その処理は、マルチタスク、マルチスレッド、若しくはマルチタスク及びマルチスレッドの両方で実行可能であり、いずれかの場合に限定されるものではない。 Each function of the control unit 15 can be realized by a program executed by a computer (microprocessor). Therefore, each function included in the control unit 15 can be realized by hardware, software, or a combination of hardware and software, and is not limited to any case. When each function of the control unit 15 is realized by software or a combination of hardware and software, the processing can be executed by multitasking, multithreading, or both multitasking and multithreading, and any of them can be executed. It is not limited to the case.
 <ビーム制御処理>
 (実施形態1)
 図4は、本発明の実施形態1に係るビーム制御処理の一例を示すフローチャートである。図4に示すように、端末装置1と基地局装置2との間でRRC接続を確立させる(ステップS1)。
<Beam control processing>
(Embodiment 1)
FIG. 4 is a flowchart showing an example of the beam control process according to the first embodiment of the present invention. As shown in FIG. 4, an RRC connection is established between the terminal device 1 and the base station device 2 (step S1).
 図3に示す端末装置1の記録部14は、端末装置1のビームの制御能力に関するビーム制御能力情報を予め記録する(ステップS3)。ビーム制御能力情報は、端末装置1のユーザからの入力によって記録部14に記録されてもよいし、端末装置1が自らの能力を判定することによって記録部14に記録されてもよい。なお、図3の例では、ステップS3は、ステップS1の次に実行するように説明されるが、ステップS1の前に実行されてもよい。ビーム制御能力情報は、例えば、上記したとおり、端末装置1が上記処理2を一回も実行することができないとき(例えば、端末装置1が通信状況を測定する機能を備えていないとき)、端末装置1にはビーム制御能力がないことを示す情報を含む。ビーム制御能力情報は、端末装置1がビーム制御を一回以上実行可能な場合は、ビーム制御能力があることを示す情報を含む。ビーム制御能力情報は、ビーム制御の能力の有無(2値)を示す情報であってもよいし、ビーム制御の能力の高さを「高」、「中」、「低」等の3値以上で示す情報であってもよい。 The recording unit 14 of the terminal device 1 shown in FIG. 3 records the beam control capability information regarding the beam control capability of the terminal device 1 in advance (step S3). The beam control capability information may be recorded in the recording unit 14 by input from the user of the terminal device 1, or may be recorded in the recording unit 14 by the terminal device 1 determining its own capability. In the example of FIG. 3, step S3 is described as being executed after step S1, but may be executed before step S1. The beam control capability information is, for example, when the terminal device 1 cannot execute the above process 2 even once as described above (for example, when the terminal device 1 does not have a function of measuring the communication status), the terminal The device 1 contains information indicating that there is no beam control capability. The beam control capability information includes information indicating that the terminal device 1 has beam control capability when the beam control can be executed one or more times. The beam control capability information may be information indicating the presence / absence (binary value) of the beam control capability, and the height of the beam control capability is three or more values such as "high", "medium", and "low". It may be the information indicated by.
 端末装置1は、自発的に、ビーム制御能力情報を含むビーム制御要求情報を基地局装置2に送信する(ステップS5)。 The terminal device 1 spontaneously transmits beam control request information including beam control capability information to the base station device 2 (step S5).
 基地局装置2は、端末装置1からのビーム制御要求情報を受信すると、ビームの制御を実行する(ステップS7)。基地局装置2は、制御されたビームを用いてビーム設定情報を端末装置1に対して送信する(ステップS9)。ここで、基地局装置2は、ビーム制御要求情報に基づいて、端末装置1がビーム制御の能力が低いと判定する場合、ビーム制御の頻度を低減させる。基地局装置2は、例えば、ビームの制御をあと1回のみ実行可能なように構成されてもよい。端末装置1はビーム設定情報を受信すると、基地局装置2からビームを用いて送信された信号の受信品質等の測定結果情報を基地局装置2に送信する(ステップS11)。基地局装置2は、端末装置1から測定結果情報を受信すると、ビームを制御して、更新後のビーム設定情報を端末装置に送信する(ステップS13)。上記したとおり、以後、ビーム制御は許容されないため、直近に形成されたビームを用いた信号の送信が継続される。なお、ゲーム制御の回数には、特に制限はなく、通信量の増大を引き起こさない限りにおいて二回以上であってもよい。 When the base station device 2 receives the beam control request information from the terminal device 1, the base station device 2 executes beam control (step S7). The base station apparatus 2 transmits beam setting information to the terminal apparatus 1 using the controlled beam (step S9). Here, the base station device 2 reduces the frequency of beam control when the terminal device 1 determines that the beam control capability is low based on the beam control request information. The base station apparatus 2 may be configured so that, for example, the beam can be controlled only once. When the terminal device 1 receives the beam setting information, it transmits measurement result information such as reception quality of the signal transmitted from the base station device 2 using the beam to the base station device 2 (step S11). When the base station device 2 receives the measurement result information from the terminal device 1, it controls the beam and transmits the updated beam setting information to the terminal device (step S13). As described above, since beam control is not allowed thereafter, transmission of a signal using the most recently formed beam is continued. The number of times of game control is not particularly limited, and may be two or more as long as it does not cause an increase in communication volume.
 他方で、ステップS7において、基地局装置2は、ビーム制御要求情報に基づいて、端末装置1がビーム制御の能力がないと判定する場合、以後、ビームの制御を実行しない。つまり、上記したステップS11及びS13の処理は実行されない。このように、基地局装置2は、端末装置1からのビーム制御要求情報に基づいて、ビーム制御の回数、又は、頻度を低減させるように制御する。 On the other hand, in step S7, if the base station device 2 determines that the terminal device 1 does not have the beam control capability based on the beam control request information, the base station device 2 does not execute the beam control thereafter. That is, the processes of steps S11 and S13 described above are not executed. In this way, the base station device 2 controls so as to reduce the number or frequency of beam control based on the beam control request information from the terminal device 1.
 従来の無線通信システムにおいては、上記したとおり、基地局装置2は、ビーム設定情報を端末装置1に対して送信する(処理1)。端末装置1はビーム設定情報を受信すると、基地局装置2からビームを用いて送信された信号の受信品質等の測定結果情報を基地局装置2に送信する(処理2)。基地局装置2は、端末装置1から測定結果情報を受信すると、ビームを制御(ビーム設定情報を更新)して、更新後のビーム設定情報を端末装置1に送信する(処理3)。従来の無線通信システムにおいて、上記処理1~3のサイクルを多数回繰り返すことで、基地局装置と端末装置との間の通信にとって最適なビームを形成する。 In the conventional wireless communication system, as described above, the base station device 2 transmits the beam setting information to the terminal device 1 (process 1). When the terminal device 1 receives the beam setting information, it transmits measurement result information such as reception quality of the signal transmitted from the base station device 2 using the beam to the base station device 2 (process 2). When the base station device 2 receives the measurement result information from the terminal device 1, it controls the beam (updates the beam setting information) and transmits the updated beam setting information to the terminal device 1 (process 3). In the conventional wireless communication system, the optimum beam for communication between the base station device and the terminal device is formed by repeating the cycles of the above processes 1 to 3 many times.
 しかしながら、ビーム制御のための上記処理1~3のサイクルを多数回繰り返すと、基地局装置2と端末装置1との間の通信量が増大することにより、端末装置1において、基地局装置2と無線通信を行う際の消費電力も増大するおそれがある。また、コストダウンの要請がある端末装置1では、基地局装置2と端末装置1との間の通信量を削減し、端末装置1において基地局装置2と無線通信を行う際の消費電力を低減させることが望まれている。 However, when the cycles of the above processes 1 to 3 for beam control are repeated many times, the amount of communication between the base station device 2 and the terminal device 1 increases, so that the terminal device 1 and the base station device 2 Power consumption during wireless communication may also increase. Further, in the terminal device 1 for which there is a request for cost reduction, the amount of communication between the base station device 2 and the terminal device 1 is reduced, and the power consumption when the terminal device 1 performs wireless communication with the base station device 2 is reduced. It is desired to let.
 そこで、実施形態1によれば、端末装置1は、基地局装置2等の他の装置からの要求又は命令等によらず、端末装置1から自発的にビーム制御要求情報を基地局装置2に送信する。基地局装置2は、受信したビーム制御要求情報に基づいてビームを制御する。よって、従来の上記のようなステップ1~3のサイクルを多数繰り返す必要はなくなる。したがって、端末装置1に対するコストダウンの要請に応えることができ、且つ、ビーム制御に必要な通信量を削減することにより、端末装置1において、基地局装置2と無線通信を行う際の消費電力を低減させることができる。 Therefore, according to the first embodiment, the terminal device 1 voluntarily sends beam control request information from the terminal device 1 to the base station device 2 regardless of a request or command from another device such as the base station device 2. Send. The base station device 2 controls the beam based on the received beam control request information. Therefore, it is not necessary to repeat the conventional cycles of steps 1 to 3 as described above. Therefore, it is possible to meet the demand for cost reduction for the terminal device 1, and by reducing the amount of communication required for beam control, the power consumption of the terminal device 1 when performing wireless communication with the base station device 2 can be reduced. It can be reduced.
 (実施形態2)
 実施形態2は、端末装置1においてビームの受信回数、ビームの切り替わり頻度等を自発的に測定し、測定結果に基づくビーム制御要求情報を自発的に基地局装置2に送信する点で、端末装置1に予め記録されたビーム制御に関する情報を自発的に基地局装置2に送信する第1実施形態とは異なる。図5を参照して、実施形態2-1~実施形態2-4を説明する。以下、第1実施形態とは異なる点について特に説明する。
(Embodiment 2)
The second embodiment is a terminal device in that the terminal device 1 voluntarily measures the number of times a beam is received, the frequency of beam switching, and the like, and voluntarily transmits beam control request information based on the measurement results to the base station device 2. This is different from the first embodiment in which the information regarding the beam control recorded in advance in 1 is spontaneously transmitted to the base station apparatus 2. Embodiments 2-1 to 2-4 will be described with reference to FIG. Hereinafter, the points different from the first embodiment will be particularly described.
 (実施形態2-1)
 図5は、本発明の実施形態2に係るビーム制御処理の一例を示すフローチャートである。図5に示すように、端末装置1は、ビームの制御に関する情報を測定する(ステップS23)。例えば、図3に示す回数測定部151は、基地局装置2からビームを用いて送信される信号を所定期間において受信する回数を測定する。端末装置1は、上記測定結果を受信回数情報として記録部14に記録する(ステップS25)。端末装置1は、自発的に、受信回数情報を含むビーム制御要求情報を基地局装置2に送信する(ステップS27)。基地局装置2は、受信したビーム制御要求情報に基づいてビーム制御を実行する(ステップS29)。例えば、端末装置1が信号を所定期間において受信する回数が多い場合は、基地局装置2は、ビームの制御の必要性が低いと判定し、ビーム制御の頻度を低減させる。また、端末装置1が信号を所定期間において受信する回数が少ない場合は、基地局装置2は、ビームの制御の必要性が高いと判定し、ビーム制御の頻度を増加させてもよい。なお、ビーム制御頻度を増加させる場合は、端末装置1と基地局装置2との間の無線通信の通信量が大幅に増大しない範囲に制限する必要がある。
(Embodiment 2-1)
FIG. 5 is a flowchart showing an example of the beam control process according to the second embodiment of the present invention. As shown in FIG. 5, the terminal device 1 measures information regarding beam control (step S23). For example, the number measurement unit 151 shown in FIG. 3 measures the number of times a signal transmitted from the base station device 2 using a beam is received in a predetermined period. The terminal device 1 records the measurement result as reception number information in the recording unit 14 (step S25). The terminal device 1 spontaneously transmits the beam control request information including the reception number information to the base station device 2 (step S27). The base station apparatus 2 executes beam control based on the received beam control request information (step S29). For example, when the terminal device 1 receives a signal a large number of times in a predetermined period, the base station device 2 determines that the necessity of beam control is low, and reduces the frequency of beam control. Further, when the number of times the terminal device 1 receives the signal in a predetermined period is small, the base station device 2 may determine that the need for beam control is high and increase the frequency of beam control. When increasing the beam control frequency, it is necessary to limit the amount of wireless communication between the terminal device 1 and the base station device 2 to a range that does not significantly increase.
 (実施形態2-2)
 図5に示すように、図3に示す切替頻度測定部153は、ビームの所定期間における切り替わり頻度を測定する(ステップS23)。端末装置1は、上記測定結果を切替頻度情報として記録部14に記録する(ステップS25)。端末装置1は、自発的に、切替頻度情報を含むビーム制御要求情報を基地局装置2に送信する(ステップS27)。基地局装置2は、受信したビーム制御要求情報に基づいてビーム制御を実行する(ステップS29)。例えば、ビームの所定期間における切り替わり頻度が低い場合は、基地局装置2は、ビームの制御の必要性が低いと判定し、ビーム制御の頻度を低減させる。また、ビームの所定期間における切り替わり頻度が高い場合は、基地局装置2は、ビームの制御の必要性が高いと判定し、ビーム制御の頻度を増加させてもよい。なお、ビーム制御頻度を増加させる場合は、端末装置1と基地局装置2との間の無線通信の通信量が大幅に増大しない範囲に制限する必要がある。
(Embodiment 2-2)
As shown in FIG. 5, the switching frequency measuring unit 153 shown in FIG. 3 measures the switching frequency of the beam in a predetermined period (step S23). The terminal device 1 records the measurement result as switching frequency information in the recording unit 14 (step S25). The terminal device 1 spontaneously transmits beam control request information including switching frequency information to the base station device 2 (step S27). The base station apparatus 2 executes beam control based on the received beam control request information (step S29). For example, when the switching frequency of the beam in a predetermined period is low, the base station apparatus 2 determines that the necessity of controlling the beam is low, and reduces the frequency of beam control. Further, when the frequency of switching the beam in a predetermined period is high, the base station apparatus 2 may determine that the necessity of controlling the beam is high and increase the frequency of beam control. When increasing the beam control frequency, it is necessary to limit the amount of wireless communication between the terminal device 1 and the base station device 2 to a range that does not significantly increase.
 (実施形態2-3)
 図5に示すように、図3に示す移動状況測定部155は、端末装置1の移動状況を測定する(ステップS23)。端末装置1は、上記測定結果を移動状況情報として記録部14に記録する(ステップS25)。端末装置1は、自発的に、移動状況情報を含むビーム制御要求情報を基地局装置2に送信する(ステップS27)。基地局装置2は、受信したビーム制御要求情報に基づいてビーム制御を実行する(ステップS29)。例えば、端末装置1が静止している、又は、ほぼ移動していない場合は、基地局装置2は、ビームの制御の必要性が低いと判定し、ビーム制御の頻度を低減させる。また、端末装置1が頻繁に移動している場合は、基地局装置2は、ビームの制御の必要性が高いと判定し、ビーム制御の頻度を増加させてもよい。なお、ビーム制御頻度を増加させる場合は、端末装置1と基地局装置2との間の無線通信の通信量が大幅に増大しない範囲に制限する必要がある。
(Embodiment 2-3)
As shown in FIG. 5, the movement status measurement unit 155 shown in FIG. 3 measures the movement status of the terminal device 1 (step S23). The terminal device 1 records the measurement result as movement status information in the recording unit 14 (step S25). The terminal device 1 spontaneously transmits the beam control request information including the movement status information to the base station device 2 (step S27). The base station apparatus 2 executes beam control based on the received beam control request information (step S29). For example, when the terminal device 1 is stationary or hardly moving, the base station device 2 determines that the need for beam control is low, and reduces the frequency of beam control. Further, when the terminal device 1 is frequently moving, the base station device 2 may determine that the need for beam control is high and increase the frequency of beam control. When increasing the beam control frequency, it is necessary to limit the amount of wireless communication between the terminal device 1 and the base station device 2 to a range that does not significantly increase.
 (実施形態2-4)
 図5に示すように、図3に示す通信頻度測定部157は、端末装置1が対応可能であるビーム制御頻度を測定する(ステップS23)。端末装置1は、上記測定結果を記録部14に記録する(ステップS25)。端末装置1は、自発的に、ビームの制御頻度に関して基地局装置2に要求するための要求情報を基地局装置2に送信する(ステップS27)。基地局装置2は、受信した要求情報に基づいてビーム制御を実行する(ステップS29)。例えば、端末装置1が対応可能であるビーム制御頻度が低い場合は、基地局装置2は、ビーム制御の頻度を低減させる。また、端末装置1が対応可能であるビーム制御頻度が高い場合は、基地局装置2は、ビーム制御の頻度を増加させてもよい。なお、ビーム制御頻度を増加させる場合は、端末装置1と基地局装置2との間の無線通信の通信量が大幅に増大しない範囲に制限する必要がある。
(Embodiment 2-4)
As shown in FIG. 5, the communication frequency measuring unit 157 shown in FIG. 3 measures the beam control frequency that the terminal device 1 can handle (step S23). The terminal device 1 records the measurement result in the recording unit 14 (step S25). The terminal device 1 spontaneously transmits the request information for requesting the base station device 2 regarding the control frequency of the beam to the base station device 2 (step S27). The base station apparatus 2 executes beam control based on the received request information (step S29). For example, when the beam control frequency that the terminal device 1 can handle is low, the base station device 2 reduces the beam control frequency. Further, when the beam control frequency that the terminal device 1 can handle is high, the base station device 2 may increase the beam control frequency. When increasing the beam control frequency, it is necessary to limit the amount of wireless communication between the terminal device 1 and the base station device 2 to a range that does not significantly increase.
 以上、実施形態2によれば、端末装置1においてビームの受信回数、ビームの切り替わり頻度等を自発的に測定し、測定結果に基づく自発送信情報を自発的に基地局装置2に送信する。よって、実施形態2は、実施形態1の効果に加えて、端末装置1において自発的に測定した測定結果に基づいてビームの制御に関する要求を基地局装置2に対して自発的に行うことができる。 As described above, according to the second embodiment, the terminal device 1 spontaneously measures the number of beam receptions, the beam switching frequency, and the like, and spontaneously transmits the spontaneous transmission information based on the measurement results to the base station device 2. Therefore, in the second embodiment, in addition to the effect of the first embodiment, a request regarding beam control can be voluntarily made to the base station device 2 based on the measurement result spontaneously measured by the terminal device 1. ..
 (実施形態3)
 実施形態3は、端末装置1が、基地局装置2からの要求信号に基づいてビーム制御要求情報を基地局装置2に送信する点で、端末装置1が、自発的に、ビーム制御要求情報を基地局装置2に送信する実施形態1及び実施形態2とは異なる。図6を参照して、実施形態3を説明する。以下、実施形態1及び実施形態2とは異なる点について特に説明する。
(Embodiment 3)
In the third embodiment, the terminal device 1 spontaneously transmits the beam control request information to the base station device 2 in that the terminal device 1 transmits the beam control request information to the base station device 2 based on the request signal from the base station device 2. It is different from the first embodiment and the second embodiment that are transmitted to the base station apparatus 2. The third embodiment will be described with reference to FIG. Hereinafter, the points different from those of the first embodiment and the second embodiment will be particularly described.
 基地局装置2は、ビーム制御要求情報の送信を要求するための要求信号を端末装置1に送信する(ステップS45)。端末装置1は、基地局装置2からの要求信号に基づいて、ビーム制御要求情報を基地局装置2に送信する(ステップS47)。ここで、ビーム制御要求情報は、実施形態1で説明されたビーム制御能力情報、並びに、実施形態2で説明された、受信回数情報、切替頻度情報、移動状況情報、及び、ビームの制御頻度に関して基地局装置2に要求するための要求情報の少なくとも一つが含まれてもよい。基地局装置2は、端末装置1からのビーム制御要求情報を受信すると、ビームの制御を実行する(ステップS49)。ビームの制御処理については、ビーム制御要求情報に含まれる各種情報に基づいて実行される。 The base station device 2 transmits a request signal for requesting transmission of beam control request information to the terminal device 1 (step S45). The terminal device 1 transmits beam control request information to the base station device 2 based on the request signal from the base station device 2 (step S47). Here, the beam control request information relates to the beam control capability information described in the first embodiment, the reception frequency information, the switching frequency information, the movement status information, and the beam control frequency described in the second embodiment. At least one of the request information for requesting the base station device 2 may be included. Upon receiving the beam control request information from the terminal device 1, the base station device 2 executes beam control (step S49). The beam control process is executed based on various information included in the beam control request information.
 実施形態3によれば、端末装置1は、基地局装置2からの要求信号に基づいてビーム制御要求情報を基地局装置2に送信する。つまり、端末装置1が、基地局装置2に対して、ビームの制御内容に関して要求を出す。よって、基地局装置2は、端末装置1からの要求に応じてビームを適切に制御することができるので、従来の上記のようなステップ1~3のサイクルを多数繰り返す必要はなくなる。したがって、端末装置1に対するコストダウンの要請に応えることができ、且つ、ビーム制御に必要な通信量を削減することにより、端末装置1において、基地局装置2と無線通信を行う際の消費電力を低減させることができる。 According to the third embodiment, the terminal device 1 transmits beam control request information to the base station device 2 based on the request signal from the base station device 2. That is, the terminal device 1 issues a request to the base station device 2 regarding the control content of the beam. Therefore, since the base station device 2 can appropriately control the beam in response to the request from the terminal device 1, it is not necessary to repeat the conventional cycles of steps 1 to 3 many times. Therefore, it is possible to meet the demand for cost reduction for the terminal device 1, and by reducing the amount of communication required for beam control, the power consumption of the terminal device 1 when performing wireless communication with the base station device 2 can be reduced. It can be reduced.
 上記各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するものではない。本発明はその趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。 Each of the above embodiments is for facilitating the understanding of the present invention, and does not limit the interpretation of the present invention. The present invention can be modified / improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof.
 上記各実施形態では、RRC接続後の処理に適用した例を示したが、これに限定されるものでない。例えば、RRC接続後の相対的に長周期の処理、例えば、ハンドオーバー処理等にも適用可能である。 In each of the above embodiments, an example applied to the processing after the RRC connection is shown, but the present invention is not limited to this. For example, it can be applied to relatively long-period processing after RRC connection, for example, handover processing and the like.
 1…端末装置、2…基地局装置、4…コア装置、11,21…アンテナ、12,22…送信部、13,23…受信部、14,24…記録部、15,25…制御部、17…センサ、19,29…バス、151…回数測定部、153…切替頻度測定部、155…移動状況測定部、157…通信頻度測定部、159…受信状況測定部、251…ビーム制御部 1 ... Terminal device, 2 ... Base station device, 4 ... Core device, 11,21 ... Antenna, 12, 22 ... Transmitter, 13, 23 ... Receiver, 14, 24 ... Recording, 15, 25 ... Control, 17 ... Sensor, 19, 29 ... Bus, 151 ... Number measurement unit, 153 ... Switching frequency measurement unit, 155 ... Movement status measurement unit, 157 ... Communication frequency measurement unit, 159 ... Reception status measurement unit, 251 ... Beam control unit

Claims (10)

  1.  基地局装置と無線通信を実行する端末装置であって、
     前記基地局装置から前記端末装置に対して信号を送信するためのビームの制御を要求するビーム制御要求情報を記録する記録部と、
     前記基地局装置との通信接続の確立後、前記ビーム制御要求情報を前記基地局装置に対して送信する送信部と、
    を備える、
     端末装置。
    A terminal device that executes wireless communication with a base station device.
    A recording unit that records beam control request information that requests control of a beam for transmitting a signal from the base station device to the terminal device.
    After establishing a communication connection with the base station device, a transmission unit that transmits the beam control request information to the base station device, and
    To prepare
    Terminal equipment.
  2.  前記ビーム制御要求情報は、前記端末装置の前記ビームの制御能力に関するビーム制御能力情報を含む、
     請求項1に記載の端末装置。
    The beam control request information includes beam control capability information relating to the beam control capability of the terminal device.
    The terminal device according to claim 1.
  3.  前記ビーム制御要求情報は、前記端末装置が、前記基地局装置から前記ビームを用いて送信される前記信号を所定期間において受信する回数に関する受信回数情報を含む、
     請求項1又は2に記載の端末装置。
    The beam control request information includes reception number information regarding the number of times that the terminal device receives the signal transmitted from the base station device using the beam in a predetermined period.
    The terminal device according to claim 1 or 2.
  4.  前記ビーム制御要求情報は、前記ビームの所定期間における切り替わり頻度に関する切替頻度情報を含む、
     請求項1~3のいずれか一項に記載の端末装置。
    The beam control request information includes switching frequency information regarding the switching frequency of the beam in a predetermined period.
    The terminal device according to any one of claims 1 to 3.
  5.  前記ビーム制御要求情報は、前記端末装置の移動状況に関する移動状況情報を含む、
     請求項1~4のいずれか一項に記載の端末装置。
    The beam control request information includes movement status information regarding the movement status of the terminal device.
    The terminal device according to any one of claims 1 to 4.
  6.  前記ビーム制御要求情報は、前記ビームの制御頻度に関して前記基地局装置に要求するための要求情報を含む、
     請求項1~5のいずれか一項に記載の端末装置。
    The beam control request information includes request information for requesting the base station apparatus regarding the control frequency of the beam.
    The terminal device according to any one of claims 1 to 5.
  7.  前記送信部は、前記基地局装置からの要求に基づいて、当該基地局装置に対して前記ビーム制御要求情報を送信する、
     請求項1~6のいずれか一項に記載の端末装置。
    The transmission unit transmits the beam control request information to the base station device based on the request from the base station device.
    The terminal device according to any one of claims 1 to 6.
  8.  基地局装置と無線通信を実行する端末装置に用いられる無線通信方法であって、
     前記基地局装置から前記端末装置に対して信号を送信するためのビームの制御を要求するビーム制御要求情報を記録するステップと、
     前記基地局装置との通信接続の確立後、前記ビーム制御要求情報を前記基地局装置に対して送信するステップと、
    を含む、
    無線通信方法。
    A wireless communication method used for terminal devices that perform wireless communication with base station devices.
    A step of recording beam control request information requesting control of a beam for transmitting a signal from the base station device to the terminal device, and
    After establishing the communication connection with the base station device, the step of transmitting the beam control request information to the base station device, and
    including,
    Wireless communication method.
  9.  端末装置と無線通信を実行する基地局装置であって、
     前記端末装置との通信接続の確立後、前記端末装置が送信した、前記基地局装置から前記端末装置に対して信号を送信するためのビームの制御を要求するビーム制御要求情報を受信する受信部と、
     前記ビーム制御要求情報に基づいて前記ビームを制御するビーム制御部と、
    を備える、
    基地局装置。
    A base station device that executes wireless communication with a terminal device.
    After establishing a communication connection with the terminal device, a receiving unit that receives beam control request information transmitted by the terminal device, which requests control of a beam for transmitting a signal from the base station device to the terminal device. When,
    A beam control unit that controls the beam based on the beam control request information,
    To prepare
    Base station equipment.
  10.  端末装置と無線通信を実行する基地局装置に用いられる無線通信方法であって、
     前記端末装置との通信接続の確立後、前記端末装置が送信した、前記基地局装置から前記端末装置に対して信号を送信するためのビームの制御を要求するビーム制御要求情報を受信するステップと、
     前記ビーム制御要求情報に基づいて前記ビームを制御するステップと、
    を含む、
    無線通信方法。
     
    A wireless communication method used for base station devices that perform wireless communication with terminal devices.
    After establishing a communication connection with the terminal device, a step of receiving beam control request information transmitted by the terminal device requesting control of a beam for transmitting a signal from the base station device to the terminal device. ,
    A step of controlling the beam based on the beam control request information,
    including,
    Wireless communication method.
PCT/JP2019/017924 2019-04-26 2019-04-26 Terminal device, base station device, and wireless communication method WO2020217455A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017924 WO2020217455A1 (en) 2019-04-26 2019-04-26 Terminal device, base station device, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017924 WO2020217455A1 (en) 2019-04-26 2019-04-26 Terminal device, base station device, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2020217455A1 true WO2020217455A1 (en) 2020-10-29

Family

ID=72941575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017924 WO2020217455A1 (en) 2019-04-26 2019-04-26 Terminal device, base station device, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2020217455A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130229307A1 (en) * 2012-03-02 2013-09-05 Samsung Electronics Co. Ltd. Apparatus and method for controlling adaptive beamforming gain in wireless communication system
US20160353510A1 (en) * 2015-02-13 2016-12-01 Mediatek Singapore Pte. Ltd. Handling of Intermittent Disconnection in A Millimeter Wave (MMW) System
JP2018157284A (en) * 2017-03-15 2018-10-04 シャープ株式会社 Communication system, base station device, communication method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130229307A1 (en) * 2012-03-02 2013-09-05 Samsung Electronics Co. Ltd. Apparatus and method for controlling adaptive beamforming gain in wireless communication system
US20160353510A1 (en) * 2015-02-13 2016-12-01 Mediatek Singapore Pte. Ltd. Handling of Intermittent Disconnection in A Millimeter Wave (MMW) System
JP2018157284A (en) * 2017-03-15 2018-10-04 シャープ株式会社 Communication system, base station device, communication method and program

Similar Documents

Publication Publication Date Title
CN111165016B (en) Method and user equipment for performing handover procedure
CN111052630B (en) Beam selection in millimeter wave systems
KR102543782B1 (en) Beam Management for Various Levels of Beam Responsiveness
EP3484230A1 (en) Method and apparatus for performing random access in wireless communication system supporting beamforming
US8897799B2 (en) Wireless communication system, wireless communication apparatus, and wireless communication method
KR102648835B1 (en) Cell selection and reselection method using multiple PMAX parameters
JP6093827B1 (en) User terminal, radio base station, and radio communication method
US10499275B2 (en) Method and device for reporting buffer state during LTE-wireless LAN combining in wireless communication system
US9642165B2 (en) Method and apparatus for system access in system using beamforming
CN109863815B (en) Slotted transmission and directional reception of RTS
US10374679B2 (en) Dynamic overriding of control beam monitoring configuration
CN110870349A (en) Transmission opportunity during measurement gap
KR20230065349A (en) Method and apparatus for communication in wireless communication system
KR102362403B1 (en) Method and apparatus for requesting system information using a preamble in next generation mobile communication system
JP2017038322A (en) User terminal, radio base station, and radio communication method
JPWO2017026435A1 (en) User terminal, radio base station, and radio communication method
US9781666B2 (en) Communication control method, base station and user terminal
CN110089047B (en) Radio network node, wireless device and method for communication performed therein
US20190014535A1 (en) Wireless communication system, wireless equipment, relay node, and base station
US11621823B2 (en) Method and apparatus for performing communication in mobile communication system
WO2016121776A1 (en) User terminal and radio communication method
JPWO2020166411A1 (en) Communication systems, communication terminals and base stations
EP2469931A1 (en) User equipment and mobile communication method
US11272460B2 (en) Communication device and method for indicating a preference based on the device power consumption or on performance of carriers
WO2020217455A1 (en) Terminal device, base station device, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP