WO2020217308A1 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
WO2020217308A1
WO2020217308A1 PCT/JP2019/017200 JP2019017200W WO2020217308A1 WO 2020217308 A1 WO2020217308 A1 WO 2020217308A1 JP 2019017200 W JP2019017200 W JP 2019017200W WO 2020217308 A1 WO2020217308 A1 WO 2020217308A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
fluid
axis direction
hole
holes
Prior art date
Application number
PCT/JP2019/017200
Other languages
French (fr)
Japanese (ja)
Inventor
田中 信雄
Original Assignee
株式会社日阪製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日阪製作所 filed Critical 株式会社日阪製作所
Priority to JP2021515349A priority Critical patent/JP7300500B2/en
Priority to EP19925924.3A priority patent/EP3951309A4/en
Priority to PCT/JP2019/017200 priority patent/WO2020217308A1/en
Priority to CN201980091426.3A priority patent/CN113424010B/en
Publication of WO2020217308A1 publication Critical patent/WO2020217308A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels

Definitions

  • the present invention relates to a plate heat exchanger used as an evaporator or a condenser.
  • plate heat exchangers have been widely used as evaporators for evaporating fluids and condensers for condensing fluids (see Japanese Patent Application Laid-Open No. 11-287572).
  • the plate heat exchanger includes a plurality of heat transfer plates 101 as shown in FIGS. 17 to 19.
  • a plurality of heat transfer plates 101 are superposed in the X-axis direction to flow a first fluid A to be evaporated or condensed, and a first flow path Ra and a first fluid A.
  • a second flow path Rb through which a second fluid B (second fluid B to be heat exchanged with the first fluid A) for evaporating or condensing is formed.
  • the first fluid supply path Ra1 communicating with only the first flow path Ra and allowing the first fluid A to flow into the first flow path Ra, and the first flow.
  • the first fluid discharge path Ra2 that communicates only with the path Ra and causes the first fluid A to flow out from the first flow path Ra
  • the second fluid B that communicates only with the second flow path Rb and flows into the second flow path Rb.
  • a second fluid supply path Rb1 and a second fluid discharge path Rb2 that communicates only with the second flow path Rb and allows the second fluid B to flow out from the second flow path Rb are formed.
  • each of the plurality of heat transfer plates 101 has a first surface in the X-axis direction and a second surface on the opposite side of the first surface.
  • a plurality of recesses and ridges are formed on each of the first surface and the second surface of the heat transfer plate 101.
  • Each of the plurality of heat transfer plates 101 has a first hole 102 penetrating in the X-axis direction, a second hole 103 penetrating in the X-axis direction, and a third hole 104 penetrating in the X-axis direction at different positions. It has a fourth hole 105 penetrating in the X-axis direction.
  • the first hole 102 is arranged at one end of the heat transfer plate 101 on the one end side in the Y-axis direction orthogonal to the X-axis direction in the Z-axis direction orthogonal to the X-axis direction and the Y-axis direction.
  • the second hole 103 is arranged at one end in the Z-axis direction in the region on the other end side in the Y-axis direction of the heat transfer plate 101.
  • the third hole 104 is arranged at the other end of the heat transfer plate 101 on the other end side in the Y-axis direction in the Z-axis direction.
  • the fourth hole 105 is arranged at the other end of the heat transfer plate 101 on the one end side in the Y-axis direction in the Z-axis direction (see FIG. 17).
  • the plurality of heat transfer plates 101 are overlapped with each other, so that the ridges of the adjacent heat transfer plates 101 intersect with each other, whereby the first flow path Ra or the first flow path Ra or the first flow path Ra or the first flow path Ra or the second between the adjacent heat transfer plates 101.
  • Two flow paths Rb are formed.
  • the first flow path Ra and the second flow path Rb are alternately formed with the heat transfer plate 101 as a boundary.
  • first holes 102 of the plurality of heat transfer plates 101 are connected in the X-axis direction to form the first fluid supply path Ra1.
  • second holes 103 of the plurality of heat transfer plates 101 are connected in the X-axis direction to form the first fluid discharge path Ra2.
  • third holes 104 of the plurality of heat transfer plates 101 are connected in the X-axis direction to form the second fluid supply path Rb1.
  • fourth holes 105 of the plurality of heat transfer plates 101 are connected in the X-axis direction to form the second fluid discharge path Rb2.
  • the first fluid A supplied to the first fluid supply path Ra1 flows out to the first fluid discharge path Ra2 through the first flow path Ra.
  • the second fluid B supplied to the second fluid supply path Rb1 flows out to the second fluid discharge path Rb2 through the second flow path Rb.
  • the first fluid A and the second fluid B exchange heat via the heat transfer plate 101 that separates the first flow path Ra and the second flow path Rb.
  • the lengths of the first fluid supply path Ra1, the first fluid discharge path Ra2, the second fluid supply path Rb1, and the second fluid discharge path Rb2 in the X-axis direction become longer. , It becomes longer according to the number of heat transfer plates 101 to be overlapped.
  • the first fluid supply path Ra1 is formed by connecting the first holes 102 of the plurality of heat transfer plates 101.
  • the first fluid discharge path Ra2 is formed by connecting the second holes 103 of the plurality of heat transfer plates 101.
  • the second fluid supply path Rb1 is formed by connecting the third holes 104 of the plurality of heat transfer plates 101.
  • the second fluid discharge path Rb2 is formed by connecting the fourth holes 105 of the plurality of heat transfer plates 101. Therefore, each of the flow path lengths of the first fluid supply path Ra1, the first fluid discharge path Ra2, the second fluid supply path Rb1, and the second fluid discharge path Rb2 has a large number of heat transfer plates 101 to be overlapped with each other. If so, it will be longer according to the number.
  • the flow resistance of the first fluid A in the first fluid supply path Ra1 for flowing the first fluid A into the first flow path Ra increases. It becomes difficult for the first fluid A to circulate in the one fluid supply path Ra1. Therefore, in the plate heat exchanger 100, the inflow amount of the first fluid A into the first flow path Ra on the inlet side of the first fluid supply path Ra1 and the inflow amount of the first fluid A into the first flow path Ra on the back side of the first fluid supply path Ra1. The inflow amount of the first fluid A becomes non-uniform.
  • the plate heat exchanger 100 uneven distribution of the first fluid A occurs with respect to a plurality of first flow paths Ra arranged in the X-axis direction.
  • the heat exchange performance evaporation performance or condensation performance
  • the plate heat exchanger according to the present invention
  • a plurality of heat transfer plates having through holes penetrating in a predetermined direction at positions corresponding to each other, and by being overlapped in the predetermined direction, a first flow path through which the first fluid flows and a second flow path through which the second fluid flows.
  • a plurality of heat transfer plates that alternately form a flow path in the predetermined direction with each of the plurality of heat transfer plates as a boundary.
  • a group of flow path forming members extending in a predetermined direction at positions corresponding to the through holes of the plurality of heat transfer plates are provided.
  • the flow path forming member group is composed of a plurality of flow path forming members connected in a predetermined direction.
  • At least two of the plurality of flow path forming members have through holes penetrating the flow path forming member in the predetermined direction.
  • the through holes of the at least two flow path forming members form a first fluid supply path for supplying the first fluid to the first flow path by communicating with each other.
  • the first fluid supply path is An introduction part that extends in the predetermined direction and the first fluid is introduced from the outside, A first branch portion arranged in an intermediate portion of the plurality of heat transfer plates arranged in a predetermined direction and branching the first fluid introduced into the introduction portion into one side and the other side in the predetermined direction.
  • An open portion that directly or indirectly communicates with the one side or the other side of the first branch portion, and a plurality of open portions that open toward the corresponding first flow path at a plurality of locations in the predetermined direction. ,including.
  • Each of the plurality of flow path forming members may be sandwiched around the through hole of two heat transfer plates of the plurality of heat transfer plates.
  • the first fluid supply path is between the first branch portion and the plurality of open portions communicating with the one side of the first branch portion, and the first branch portion and the first branch portion.
  • At least one second branch portion that branches the first fluid into one side and the other side in the predetermined direction may be provided between the plurality of open portions communicating with the other side.
  • FIG. 1 is an overall perspective view of a plate heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is a schematic exploded perspective view of the plate heat exchanger according to the embodiment.
  • FIG. 3 is a schematic view of one of the two types of heat transfer plates of the plate heat exchanger according to the same embodiment as viewed from the front surface side.
  • FIG. 4 is a schematic view of one of the two types of heat transfer plates of the plate heat exchanger according to the same embodiment as viewed from the second surface side.
  • FIG. 5 is a schematic view of the other heat transfer plate of the two types of heat transfer plates of the plate heat exchanger according to the same embodiment as viewed from the second surface side.
  • FIG. 1 is an overall perspective view of a plate heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is a schematic exploded perspective view of the plate heat exchanger according to the embodiment.
  • FIG. 3 is a schematic view of one of the two types of heat transfer plates of the plate heat exchanger according to the same embodiment as
  • FIG. 6 is a schematic view of the heat transfer plate of the other of the two types of heat transfer plates of the plate heat exchanger according to the same embodiment as viewed from the front surface side.
  • FIG. 7 is a perspective view showing a state in which a plurality of flow path forming members included in the plate heat exchanger according to the same embodiment are arranged in the X-axis direction.
  • FIG. 8 is an external front view showing only a common configuration of a plurality of flow path forming members included in the plate heat exchanger according to the embodiment.
  • FIG. 9 is an external side view showing only a common configuration of a plurality of flow path forming members included in the plate heat exchanger according to the embodiment.
  • FIG. 10 is a cross-sectional view taken along the line XX of FIG.
  • FIG. 11 is a cross-sectional view taken along the line XI-XI of FIG. 1 in which a flow of the second fluid is added.
  • FIG. 12 is a perspective view of a state in which a plurality of flow path forming members included in the plate heat exchanger according to the same embodiment are arranged in the X-axis direction, and is a view to which a flow of the first fluid is added.
  • FIG. 13 is a perspective view showing a state in which a plurality of flow path forming members included in the plate heat exchanger according to another embodiment of the present invention are arranged in the X-axis direction.
  • FIG. 14 is an external front view showing only a common configuration of a plurality of flow path forming members included in the plate heat exchanger according to another embodiment.
  • FIG. 15 is a cross-sectional view of the plate heat exchanger according to the other embodiment, in which the flow of the first fluid is added.
  • FIG. 16 is a cross-sectional view of a plate heat exchanger according to another embodiment of the present invention, in which a flow of a first fluid is added.
  • FIG. 17 is a schematic exploded perspective view of a conventional plate heat exchanger.
  • FIG. 18 is a cross-sectional view of a conventional plate heat exchanger with a flow of the first fluid added.
  • FIG. 19 is a cross-sectional view of a conventional plate heat exchanger with a flow of a second fluid added.
  • the plate heat exchanger according to the present embodiment includes a plurality of heat transfer plates 2 and 3 stacked in the X-axis direction (first direction), which is a predetermined direction.
  • the plate heat exchanger 1 according to the present embodiment has a plurality of flow path forming members 4 arranged between adjacent heat transfer plates 2 and 3 in addition to the plurality of heat transfer plates 2 and 3.
  • the plate heat exchanger 1 includes a pair of end plates 5 and 6 sandwiching a plurality of heat transfer plates 2 and 3 stacked in the X-axis direction.
  • each of the plurality of heat transfer plates 2 and 3 has a plate body 20 having a first surface Sa and a second surface Sb on the opposite side of the first surface Sa in the X-axis direction. , 30.
  • the heat transfer plates 2 and 3 have annular fitting portions 21 and 31 connected to the outer periphery of the plate main bodies 20 and 30 and extending in a direction intersecting the plate main bodies 20 and 30. Be prepared.
  • the first surface Sa and the second surface Sb face opposite sides.
  • the first surface Sa of the plate body 20 and the first surface Sa of the plate body 30 face each other, and the plate body 20
  • the second surface Sb and the second surface Sb of the plate body 30 face each other.
  • a plurality of recesses 200, 300 and protrusions 201, 301 are formed on each of the first surface Sa and the second surface Sb of the plate main body portions 20 and 30, respectively.
  • the concave lines 200 and 300 are represented by broken lines
  • the convex lines 201 and 301 are represented by straight lines between the broken lines.
  • Each of the plurality of recesses 200, 300 and ridges 201, 301 extends in a direction inclined with respect to a virtual line (not shown) extending in the Y-axis direction (second direction) orthogonal to the X-axis direction.
  • the plurality of recesses 200, 300 and ridges 201, 301 are alternately arranged in a direction orthogonal to the extending direction thereof.
  • the heat transfer plates 2 and 3 are press-molded metal plates.
  • the recesses 200 and 300 of the first surface Sa are in a front-to-back relationship with the protrusions 201 and 301 of the second surface Sb.
  • the ridges 201 and 301 of the first surface Sa have a front-back relationship with the dents 200 and 300 of the second surface Sb.
  • the plate main bodies 20 and 30 of the heat transfer plates 2 and 3 are formed in a rectangular shape when viewed from the X-axis direction.
  • Each of the plate main bodies 20 and 30 has through holes 202, 203, 204, 205, 302, 303, 304 and 305 at the four corners, respectively.
  • the plate main bodies 20 and 30 have first holes 202 and 302, second holes 203 and 303, third holes 204 and 304, and fourth holes 205 and 305 as through holes.
  • the first holes 202 and 302 are arranged at one end in the Z-axis direction (third direction) orthogonal to the X-axis direction and the Y-axis direction in the region on one end side in the Y-axis direction in the plate main bodies 20 and 30.
  • the second holes 203 and 303 are arranged at one end in the Z-axis direction in the region on the other end side in the Y-axis direction of the plate main bodies 20 and 30.
  • the third holes 204 and 304 are arranged at the other end of the plate body 20 and 30 on the other end side in the Y-axis direction in the Z-axis direction.
  • the fourth holes 205 and 305 are arranged at the other end of the plate main body portions 20 and 30 on the one end side in the Y-axis direction in the Z-axis direction.
  • the first holes 202, 302, the second holes 203, 303, the third holes 204, 304, and the fourth holes 205, 305 are round holes, respectively.
  • the hole diameters of the second holes 203, 303, the third holes 204, 304, and the fourth holes 205, 305 are the same.
  • the hole diameters of the first holes 202 and 302 are larger than the hole diameters of the second holes 203 and 303, the third holes 204 and 304, and the fourth holes 205 and 305.
  • the periphery of the first holes 202 and 302 and the periphery of the second holes 203 and 303 bulge toward the second surface Sb side. That is, the periphery of the first holes 202 and 302 and the periphery of the second holes 203 and 303 are recessed on the first surface Sa side.
  • the periphery of the third holes 204 and 304 and the periphery of the fourth holes 205 and 305 bulge toward the first surface Sa side. That is, the periphery of the third holes 204 and 304 and the periphery of the fourth holes 205 and 305 are recessed on the second surface Sb side.
  • the plurality of heat transfer plates 2 and 3 include two types of heat transfer plates 2 and 3.
  • the two types of heat transfer plates 2 and 3 have different inclination directions of the recesses 200 and 300 and the protrusions 201 and 301 of the plate main bodies 20 and 30, and the extending directions of the annular fitting portions 21 and 31.
  • Other configurations shape and size of contours of plate main bodies 20 and 30 seen from the X-axis direction, first holes 202, 302, second holes 203, 303, third seen from the X-axis direction).
  • the arrangement and size of the holes 204 and 304 and the fourth holes 205 and 305) are common.
  • the concave groove 200 and the convex groove 201 descend from the middle in the Z-axis direction toward both ends in the Z-axis direction. Tilt to. Further, the annular fitting portion 21 extends toward the second surface Sb side of the plate main body portion 20 (see FIGS. 3 and 4).
  • the recesses 300 and the protrusions 301 descend from both ends in the Z-axis direction toward the middle in the Z-axis direction. As it is inclined, the annular fitting portion 31 extends toward the first surface Sa side of the plate main body portion 30 (see FIGS. 5 and 6).
  • the plate heat exchanger 1 As a result, in the plate heat exchanger 1 according to the present embodiment, two types of heat transfer are performed so that the adjacent heat transfer plates 2 and 3 face each other on the first surface Sa and face each other on the second surface Sb.
  • the annular fitting portions 21 and 31 of the adjacent heat transfer plates 2 and 3 are fitted to each other.
  • the ridges 201 and 301 of the first surfaces Sa of the adjacent heat transfer plates 2 and 3 intersect with each other, and the ridges 201 and 301 of the second surfaces Sb of the adjacent heat transfer plates 2 and 3 intersect. They cross each other.
  • some of the flow path forming members 4 among the plurality of flow path forming members 4 have at least one through hole 42 penetrating in the X-axis direction.
  • each of the plurality of flow path forming members 4 (the contour seen from the X-axis direction and the contour seen from the direction orthogonal to the X-axis direction) is common. That is, the plurality of flow path forming members 4 have a common configuration other than the number and arrangement of through holes.
  • each of the plurality of flow path forming members 4 has a first surface (not numbered) in the X-axis direction and a second surface (not numbered) on the opposite side of the first surface. It has a plate-shaped main body 40 having a portion, and a fitting portion 41 connected to at least one of the first surface and the second surface of the main body 40.
  • the thickness T1 of the main body 40 in the X-axis direction corresponds to the distance between adjacent heat transfer plates 2 and 3 (see FIG. 9).
  • the outer peripheral 400 of the main body 40 of the present embodiment includes an arc portion 400a and a straight portion 400b connecting both ends of the arc portion 400a.
  • the radius r1 of the arc portion 400a is larger than the radius of the first holes 202 and 302.
  • the shortest straight line distance L1 from the center CP1 of the arc portion 400a to the straight line portion 400b is shorter than the radius of the first holes 202 and 302.
  • the first hole of the main body 40 is in a state where the center of the holes 202 and 302 and the center CP1 of the arc portion 400a of the main body 40 are aligned with each other.
  • the fitting portion 41 can be fitted into the first holes 202 and 302 of the heat transfer plates 2 and 3. More specifically, in the present embodiment, the outer circumference of the fitting portion 41 includes an arc portion 410a and a straight portion 410b connecting both ends of the arc portion 410a.
  • the center CP2 of the arc portion 410a of the fitting portion 41 coincides with the center CP1 of the arc portion 410a of the main body portion 40. That is, the main body portion 40 and the fitting portion 41 are concentric.
  • the radius r2 of the arc portion 410a of the fitting portion 41 is the same as the radius of the first holes 202 and 302 or slightly smaller than the radius of the first holes 202 and 302.
  • the shortest linear distance L2 from the center CP2 of the arc portion 410a to the straight portion 410b is shorter than the radius of the first holes 202 and 302.
  • the shortest linear distance L2 from the center CP2 of the arc portion 410a of the fitting portion 41 to the straight portion 410b is from the center CP1 of the arc portion 400a of the main body portion 40 to the straight portion 400b of the main body portion 40. It is the same as the shortest straight line distance L1. That is, the straight portion 400b of the main body portion 40 and the straight portion 410b of the fitting portion 41 are continuous in the X-axis direction.
  • the fitting portion 41 is connected only to the first surface of the main body portion 40.
  • the thickness T2 of the fitting portion 41 in the X-axis direction is the total thickness of the two metal plates (press-molded metal plates) constituting the heat transfer plates 2 and 3 (heat transfer overlapping in the X-axis direction).
  • the total thickness around the first holes 202 and 302 of the plates 2 and 3) is the same or substantially the same.
  • the plurality of flow path forming members 4 are connected in the X-axis direction so as to correspond to the arrangement of the first holes 202 and 302 of the heat transfer plates 2 and 3 stacked in the X-axis direction.
  • the flow path forming member group 4A (see FIG. 7) is formed. That is, the flow path forming member group 4A extends in the X-axis direction inside the plate heat exchanger 1 (specifically, at a position corresponding to the first holes 202 and 302 of the plurality of heat transfer plates 2 and 3). ing.
  • the flow path forming member group 4A is configured by arranging a plurality of flow path forming members 4 so as to be aligned in the X-axis direction inside the plate heat exchanger 1.
  • the end plate main body 50 has a through hole (not shown) corresponding to an inner hole of the first through hole 420 of the flow path forming member 4 arranged so as to correspond to the first holes 202 and 302.
  • one end plate 5 has four nozzles 52, 53, 54, 55 provided corresponding to each through hole of the end plate main body 50. These four nozzles 52, 53, 54, 55 have an inner hole and are connected to the end plate main body 50 in a state where the inner hole is communicated with the corresponding through hole.
  • the plurality of flow path forming members 4, that is, the first fluid supply path Ra1 composed of the flow path forming member group 4A is formed by the plurality of heat transfer plates 2 and 3 stacked in the X-axis direction.
  • One region (first region) S1 and the other region (second region) S2 in the X-axis direction based on the positions corresponding to the heat transfer plates 2 and 3 in the middle portion in the X-axis direction.
  • the first fluid A is branched (distributed) to each.
  • the first fluid A flowing through the first fluid supply path Ra1 is sequentially branched in the X-axis direction not only in the upstream system US but also in the downstream system DS and reaches the first flow path Ra. That is, the first fluid A flows into the first flow path Ra at different positions in the X-axis direction, but the distance from the branch portion US2 to reach the first flow path Ra is the same or substantially the same.
  • the first fluid supply path Ra1 for supplying the first fluid A to the first flow path Ra is composed of a plurality of flow path forming members 4, but the configuration is not limited to this.
  • the second fluid supply path Rb1 when the second fluid B is supplied to the second flow path Rb in a state where distribution unevenness is suppressed (approximately evenly), the second fluid supply path Rb1 also forms a plurality of flow paths. It may be composed of members.
  • the plurality of flow path forming members in this case are configured in the same manner as the flow path forming member 4 forming the first fluid supply path Ra1.
  • the first fluid A is branched (distributed) at least once in the X-axis direction, and then flows out from the plurality of open portions DS1 toward the first flow path Ra. Therefore, the circulation distance of the first fluid A is uniform or substantially uniform. Therefore, even in this configuration, the same actions and effects as those in the above embodiment are obtained.
  • the upstream reference member 4 has an even number of second through holes 421 (branch portion US2). Then, the flow path forming member 4 in the region (first region) S1 on one side in the X-axis direction of the upstream reference member 4 is half of the even number of second through holes 421 of the upstream reference member 4.
  • the fourth through hole 423 may be provided at a position corresponding to the second through hole 421 at a position not corresponding to the fourth through hole 423. That is, in the upstream system US, a plurality of pairs of branch flow paths US3 may be provided.
  • the length (tip position) of each pair of branch flow paths US3 in the X-axis direction may be different or the same.
  • the same applies to the most downstream branch portion DS2 and the most downstream branch flow path DS3 of the downstream system DS.
  • the outer peripheral edge portion of the flow path forming member 4 (main body portion 40) is sandwiched around the through holes (first holes 202, 302) of the adjacent heat transfer plates 2 and 3, but this configuration is used. Not limited.
  • the outer diameters of the plurality of flow path forming members 4 are smaller than the hole diameters of the through holes (first holes) 202 and 302 of the heat transfer plates 2 and 3, and the plurality of flow paths connected in the X-axis direction.
  • the forming member 4, that is, the flow path forming member group 4A may be inserted into the through holes (first holes) 202 and 302 of the plurality of heat transfer plates 2 and 3 connected in the X-axis direction.

Abstract

The present invention addresses the problem of providing a plate heat exchanger such that it is possible to suppress the uneven distribution of first fluid to a plurality of first flow paths. The present invention comprises a group of flow path formation members that extend in a predetermined direction at positions corresponding to the through holes of a plurality of heat exchanger plates. The group of flow path formation members is composed of the plurality of flow path formation members that are arranged in a row in the predetermined direction, and the through holes of at least two flow path formation members communicate with each other to form a first fluid supply path that supplies the first fluid to the first flow paths. The first fluid supply path includes: an introduction portion into which the first fluid is introduced from the outside; a first branch portion that is disposed at an intermediate portion of the plurality of heat exchanger plates and separates the first fluid introduced into the introduction portion into one side and the other side in the predetermined direction; and a plurality of opening portions that communicate with one side or the other side of the first branch portion and open into the corresponding first flow path at a plurality of locations in the predetermined direction.

Description

プレート式熱交換器Plate heat exchanger
 本発明は、蒸発器や凝縮器として用いられるプレート式熱交換器に関するものである。 The present invention relates to a plate heat exchanger used as an evaporator or a condenser.
 従来から、プレート式熱交換器は、流体を蒸発させる蒸発器や、流体を凝縮させる凝縮器として多用されている(日本国特開平11-287572号公報参照)。 Conventionally, plate heat exchangers have been widely used as evaporators for evaporating fluids and condensers for condensing fluids (see Japanese Patent Application Laid-Open No. 11-287572).
 プレート式熱交換器は、図17乃至図19に示す如く、複数の伝熱プレート101を備える。このプレート式熱交換器100では、複数の伝熱プレート101がX軸方向に重ね合わされることによって、蒸発又は凝縮の対象となる第一流体Aを流通させる第一流路Raと、第一流体Aを蒸発又は凝縮させる第二流体B(第一流体Aとの熱交換の対象となる第二流体B)を流通させる第二流路Rbと、が形成される。また、複数の伝熱プレート101がX軸方向に重ね合わされることによって、第一流路Raのみに連通し且つ第一流路Raに第一流体Aを流入させる第一流体供給路Ra1と、第一流路Raのみに連通し且つ第一流路Raから第一流体Aを流出させる第一流体排出路Ra2と、第二流路Rbのみに連通し且つ第二流路Rbに第二流体Bを流入させる第二流体供給路Rb1と、第二流路Rbのみに連通し且つ第二流路Rbから第二流体Bを流出させる第二流体排出路Rb2とが形成される。 The plate heat exchanger includes a plurality of heat transfer plates 101 as shown in FIGS. 17 to 19. In this plate heat exchanger 100, a plurality of heat transfer plates 101 are superposed in the X-axis direction to flow a first fluid A to be evaporated or condensed, and a first flow path Ra and a first fluid A. A second flow path Rb through which a second fluid B (second fluid B to be heat exchanged with the first fluid A) for evaporating or condensing is formed. Further, by superimposing the plurality of heat transfer plates 101 in the X-axis direction, the first fluid supply path Ra1 communicating with only the first flow path Ra and allowing the first fluid A to flow into the first flow path Ra, and the first flow. The first fluid discharge path Ra2 that communicates only with the path Ra and causes the first fluid A to flow out from the first flow path Ra, and the second fluid B that communicates only with the second flow path Rb and flows into the second flow path Rb. A second fluid supply path Rb1 and a second fluid discharge path Rb2 that communicates only with the second flow path Rb and allows the second fluid B to flow out from the second flow path Rb are formed.
 より具体的に説明すると、複数の伝熱プレート101のそれぞれは、X軸方向に第一面と該第一面の反対側の第二面とを有する。伝熱プレート101の第一面及び第二面のそれぞれには、複数の凹条及び凸条(採番しない)が形成されている。 More specifically, each of the plurality of heat transfer plates 101 has a first surface in the X-axis direction and a second surface on the opposite side of the first surface. A plurality of recesses and ridges (not numbered) are formed on each of the first surface and the second surface of the heat transfer plate 101.
 複数の伝熱プレート101のそれぞれは、異なる位置に、X軸方向に貫通した第一孔102と、X軸方向に貫通した第二孔103と、X軸方向に貫通した第三孔104と、X軸方向に貫通した第四孔105と、を有する。第一孔102は、伝熱プレート101におけるX軸方向と直交するY軸方向の一端側の領域のうち、X軸方向及びY軸方向と直交するZ軸方向の一端部に配置される。第二孔103は、伝熱プレート101におけるY軸方向の他端側の領域のうちのZ軸方向の一端部に配置される。第三孔104は、伝熱プレート101におけるY軸方向の他端側の領域のうちのZ軸方向の他端部に配置される。第四孔105は、伝熱プレート101におけるY軸方向の一端側の領域のうちのZ軸方向の他端部に配置される(図17参照)。 Each of the plurality of heat transfer plates 101 has a first hole 102 penetrating in the X-axis direction, a second hole 103 penetrating in the X-axis direction, and a third hole 104 penetrating in the X-axis direction at different positions. It has a fourth hole 105 penetrating in the X-axis direction. The first hole 102 is arranged at one end of the heat transfer plate 101 on the one end side in the Y-axis direction orthogonal to the X-axis direction in the Z-axis direction orthogonal to the X-axis direction and the Y-axis direction. The second hole 103 is arranged at one end in the Z-axis direction in the region on the other end side in the Y-axis direction of the heat transfer plate 101. The third hole 104 is arranged at the other end of the heat transfer plate 101 on the other end side in the Y-axis direction in the Z-axis direction. The fourth hole 105 is arranged at the other end of the heat transfer plate 101 on the one end side in the Y-axis direction in the Z-axis direction (see FIG. 17).
 これに伴い、複数の伝熱プレート101が重ね合わされることで、隣り合う伝熱プレート101の凸条同士が交差衝合し、これにより、隣り合う伝熱プレート101間に第一流路Ra又は第二流路Rbが形成される。このプレート式熱交換器100において、第一流路Ra及び第二流路Rbは、伝熱プレート101を境にして交互に形成される。 Along with this, the plurality of heat transfer plates 101 are overlapped with each other, so that the ridges of the adjacent heat transfer plates 101 intersect with each other, whereby the first flow path Ra or the first flow path Ra or the first flow path Ra or the first flow path Ra or the second between the adjacent heat transfer plates 101. Two flow paths Rb are formed. In the plate heat exchanger 100, the first flow path Ra and the second flow path Rb are alternately formed with the heat transfer plate 101 as a boundary.
 さらに、複数の伝熱プレート101の第一孔102がX軸方向に連なって第一流体供給路Ra1が形成される。また、複数の伝熱プレート101の第二孔103がX軸方向に連なって第一流体排出路Ra2が形成される。また、複数の伝熱プレート101の第三孔104がX軸方向に連なって第二流体供給路Rb1が形成される。また、複数の伝熱プレート101の第四孔105がX軸方向に連なって第二流体排出路Rb2が形成される。 Further, the first holes 102 of the plurality of heat transfer plates 101 are connected in the X-axis direction to form the first fluid supply path Ra1. Further, the second holes 103 of the plurality of heat transfer plates 101 are connected in the X-axis direction to form the first fluid discharge path Ra2. Further, the third holes 104 of the plurality of heat transfer plates 101 are connected in the X-axis direction to form the second fluid supply path Rb1. Further, the fourth holes 105 of the plurality of heat transfer plates 101 are connected in the X-axis direction to form the second fluid discharge path Rb2.
 これに伴い、プレート式熱交換器100において、第一流体供給路Ra1に供給された第一流体Aは、第一流路Raを通って第一流体排出路Ra2に流出する。また、第二流体供給路Rb1に供給された第二流体Bは、第二流路Rbを通って第二流体排出路Rb2に流出する。これにより、第一流路Raと第二流路Rbとを仕切る伝熱プレート101を介して第一流体Aと第二流体Bとが熱交換する。 Along with this, in the plate heat exchanger 100, the first fluid A supplied to the first fluid supply path Ra1 flows out to the first fluid discharge path Ra2 through the first flow path Ra. Further, the second fluid B supplied to the second fluid supply path Rb1 flows out to the second fluid discharge path Rb2 through the second flow path Rb. As a result, the first fluid A and the second fluid B exchange heat via the heat transfer plate 101 that separates the first flow path Ra and the second flow path Rb.
 ところで、プレート式熱交換器100では、重ね合わされる伝熱プレート101の数が多くなると、熱交換に寄与する伝熱面積が広くなるため、熱交換性能が高くなるとされている。 By the way, in the plate type heat exchanger 100, it is said that as the number of superposed heat transfer plates 101 increases, the heat transfer area that contributes to heat exchange becomes wider, so that the heat exchange performance becomes higher.
 しかしながら、伝熱プレート101の数が多くなると、第一流体供給路Ra1、第一流体排出路Ra2、第二流体供給路Rb1、及び第二流体排出路Rb2のそれぞれのX軸方向の長さが、重ね合わされる伝熱プレート101の数に応じて長くなる。 However, as the number of heat transfer plates 101 increases, the lengths of the first fluid supply path Ra1, the first fluid discharge path Ra2, the second fluid supply path Rb1, and the second fluid discharge path Rb2 in the X-axis direction become longer. , It becomes longer according to the number of heat transfer plates 101 to be overlapped.
 すなわち、複数の伝熱プレート101の第一孔102が連なることによって第一流体供給路Ra1が形成される。また、複数の伝熱プレート101の第二孔103が連なることによって第一流体排出路Ra2が形成される。また、複数の伝熱プレート101の第三孔104が連なることによって第二流体供給路Rb1が形成される。また、複数の伝熱プレート101の第四孔105が連なることによって第二流体排出路Rb2が形成される。このため、第一流体供給路Ra1、第一流体排出路Ra2、第二流体供給路Rb1、及び第二流体排出路Rb2のそれぞれの流路長は、重ね合わされる伝熱プレート101の数が多くなれば、その数に応じて長くなる。 That is, the first fluid supply path Ra1 is formed by connecting the first holes 102 of the plurality of heat transfer plates 101. Further, the first fluid discharge path Ra2 is formed by connecting the second holes 103 of the plurality of heat transfer plates 101. Further, the second fluid supply path Rb1 is formed by connecting the third holes 104 of the plurality of heat transfer plates 101. Further, the second fluid discharge path Rb2 is formed by connecting the fourth holes 105 of the plurality of heat transfer plates 101. Therefore, each of the flow path lengths of the first fluid supply path Ra1, the first fluid discharge path Ra2, the second fluid supply path Rb1, and the second fluid discharge path Rb2 has a large number of heat transfer plates 101 to be overlapped with each other. If so, it will be longer according to the number.
 その結果、重ね合わされる伝熱プレート101…の数が多くなると、第一流路Raに第一流体Aを流入させる第一流体供給路Ra1での第一流体Aの流通抵抗が大きくなるため、第一流体供給路Ra1において第一流体Aが流通し難くなる。従って、プレート式熱交換器100では、第一流体供給路Ra1の入口側における第一流路Raへの第一流体Aの流入量と、第一流体供給路Ra1の奥側における第一流路Raへの第一流体Aの流入量とが不均一になる。 As a result, when the number of the heat transfer plates 101 ... To be overlapped increases, the flow resistance of the first fluid A in the first fluid supply path Ra1 for flowing the first fluid A into the first flow path Ra increases. It becomes difficult for the first fluid A to circulate in the one fluid supply path Ra1. Therefore, in the plate heat exchanger 100, the inflow amount of the first fluid A into the first flow path Ra on the inlet side of the first fluid supply path Ra1 and the inflow amount of the first fluid A into the first flow path Ra on the back side of the first fluid supply path Ra1. The inflow amount of the first fluid A becomes non-uniform.
 すなわち、プレート式熱交換器100では、X軸方向に並ぶ複数の第一流路Raに対する第一流体Aの分配ムラが生じる。その結果、プレート式熱交換器100では、伝熱プレート101の数を多くしても(第一流路Raの数を多くしても)、熱交換性能(蒸発性能或いは凝縮性能)を高めるのに限界がある。 That is, in the plate heat exchanger 100, uneven distribution of the first fluid A occurs with respect to a plurality of first flow paths Ra arranged in the X-axis direction. As a result, in the plate heat exchanger 100, even if the number of heat transfer plates 101 is increased (even if the number of first flow paths Ra is increased), the heat exchange performance (evaporation performance or condensation performance) can be improved. There is a limit.
日本国特開平11-287572号公報Japanese Patent Application Laid-Open No. 11-287572
 そこで、本発明は、複数の第一流路に対する第一流体の分配ムラを抑えることのできるプレート式熱交換器を提供することを課題とする。 Therefore, it is an object of the present invention to provide a plate heat exchanger capable of suppressing uneven distribution of the first fluid with respect to a plurality of first flow paths.
 本発明に係るプレート式熱交換器は、
 所定方向に貫通した貫通孔を互いに対応した位置に有する複数の伝熱プレートであって、前記所定方向に重ね合わされることで第一流体を流通させる第一流路と第二流体を流通させる第二流路とを前記複数の伝熱プレートのそれぞれを境に前記所定方向に交互に形成する複数の伝熱プレートと、
 前記複数の伝熱プレートの各貫通孔と対応する位置において前記所定方向に延びる流路形成部材群と、を備え、
 前記流路形成部材群は、前記所定方向に連なる複数の流路形成部材によって構成され、
 前記複数の流路形成部材のうちの少なくとも二つの流路形成部材は、該流路形成部材を前記所定方向に貫通する貫通孔を有し、
 前記少なくとも二つの流路形成部材の貫通孔は、互いに連通することによって前記第一流体を前記第一流路に供給する第一流体供給路を構成し、
 前記第一流体供給路は、
  前記所定方向に延び且つ前記第一流体が外部から導入される導入部と、
  前記所定方向に並ぶ前記複数の伝熱プレートの中間部に配置され且つ前記導入部に導入された前記第一流体を前記所定方向の一方側と他方側とに分岐する第一分岐部と、
  前記第一分岐部の前記一方側又は前記他方側と直接的又は間接的に連通する開放部であって、前記所定方向の複数箇所で対応する第一流路に向かって開放した複数の開放部と、を含む。
The plate heat exchanger according to the present invention
A plurality of heat transfer plates having through holes penetrating in a predetermined direction at positions corresponding to each other, and by being overlapped in the predetermined direction, a first flow path through which the first fluid flows and a second flow path through which the second fluid flows. A plurality of heat transfer plates that alternately form a flow path in the predetermined direction with each of the plurality of heat transfer plates as a boundary.
A group of flow path forming members extending in a predetermined direction at positions corresponding to the through holes of the plurality of heat transfer plates are provided.
The flow path forming member group is composed of a plurality of flow path forming members connected in a predetermined direction.
At least two of the plurality of flow path forming members have through holes penetrating the flow path forming member in the predetermined direction.
The through holes of the at least two flow path forming members form a first fluid supply path for supplying the first fluid to the first flow path by communicating with each other.
The first fluid supply path is
An introduction part that extends in the predetermined direction and the first fluid is introduced from the outside,
A first branch portion arranged in an intermediate portion of the plurality of heat transfer plates arranged in a predetermined direction and branching the first fluid introduced into the introduction portion into one side and the other side in the predetermined direction.
An open portion that directly or indirectly communicates with the one side or the other side of the first branch portion, and a plurality of open portions that open toward the corresponding first flow path at a plurality of locations in the predetermined direction. ,including.
 前記プレート式熱交換器では、
 前記複数の流路形成部材のそれぞれは、前記複数の伝熱プレートのうちの二つの伝熱プレートの前記貫通孔の周囲に挟まれていてもよい。
In the plate heat exchanger,
Each of the plurality of flow path forming members may be sandwiched around the through hole of two heat transfer plates of the plurality of heat transfer plates.
 また、前記プレート式熱交換器では、
 前記第一流体供給路は、前記第一分岐部と該第一分岐部の前記一方側に連通する前記複数の開放部との間、及び、前記第一分岐部と該第一分岐部の前記他方側に連通する前記複数の開放部との間に、前記第一流体を前記所定方向の一方側と他方側とに分岐する少なくとも一つの第二分岐部をそれぞれ有してもよい。
Further, in the plate heat exchanger,
The first fluid supply path is between the first branch portion and the plurality of open portions communicating with the one side of the first branch portion, and the first branch portion and the first branch portion. At least one second branch portion that branches the first fluid into one side and the other side in the predetermined direction may be provided between the plurality of open portions communicating with the other side.
図1は、本発明の一実施形態に係るプレート式熱交換器の全体斜視図である。FIG. 1 is an overall perspective view of a plate heat exchanger according to an embodiment of the present invention. 図2は、同実施形態に係るプレート式熱交換器の概略分解斜視図である。FIG. 2 is a schematic exploded perspective view of the plate heat exchanger according to the embodiment. 図3は、同実施形態に係るプレート式熱交換器の二種類の伝熱プレートのうちの一方の伝熱プレートを第一面側から見た概略図である。FIG. 3 is a schematic view of one of the two types of heat transfer plates of the plate heat exchanger according to the same embodiment as viewed from the front surface side. 図4は、同実施形態に係るプレート式熱交換器の二種類の伝熱プレートのうちの一方の伝熱プレートを第二面側から見た概略図である。FIG. 4 is a schematic view of one of the two types of heat transfer plates of the plate heat exchanger according to the same embodiment as viewed from the second surface side. 図5は、同実施形態に係るプレート式熱交換器の二種類の伝熱プレートのうちの他方の伝熱プレートを第二面側から見た概略図である。FIG. 5 is a schematic view of the other heat transfer plate of the two types of heat transfer plates of the plate heat exchanger according to the same embodiment as viewed from the second surface side. 図6は、同実施形態に係るプレート式熱交換器の二種類の伝熱プレートのうちの他方の伝熱プレートを第一面側から見た概略図である。FIG. 6 is a schematic view of the heat transfer plate of the other of the two types of heat transfer plates of the plate heat exchanger according to the same embodiment as viewed from the front surface side. 図7は、同実施形態に係るプレート式熱交換器が備える複数の流路形成部材をX軸方向に配列した状態の斜視図である。FIG. 7 is a perspective view showing a state in which a plurality of flow path forming members included in the plate heat exchanger according to the same embodiment are arranged in the X-axis direction. 図8は、同実施形態に係るプレート式熱交換器が備える複数の流路形成部材の共通構成のみを図示した外観正面図である。FIG. 8 is an external front view showing only a common configuration of a plurality of flow path forming members included in the plate heat exchanger according to the embodiment. 図9は、同実施形態に係るプレート式熱交換器が備える複数の流路形成部材の共通構成のみを図示した外観側面図である。FIG. 9 is an external side view showing only a common configuration of a plurality of flow path forming members included in the plate heat exchanger according to the embodiment. 図10は、図1のX-X断面図であって、第一流体の流れを付加した図である。FIG. 10 is a cross-sectional view taken along the line XX of FIG. 1 with a flow of the first fluid added. 図11は、図1のXI-XI断面図であって、第二流体の流れを付加した図である。FIG. 11 is a cross-sectional view taken along the line XI-XI of FIG. 1 in which a flow of the second fluid is added. 図12は、同実施形態に係るプレート式熱交換器が備える複数の流路形成部材をX軸方向に配列した状態の斜視図であって、第一流体の流れを付加した図である。FIG. 12 is a perspective view of a state in which a plurality of flow path forming members included in the plate heat exchanger according to the same embodiment are arranged in the X-axis direction, and is a view to which a flow of the first fluid is added. 図13は、本発明の他実施形態に係るプレート式熱交換器が備える複数の流路形成部材をX軸方向に配列した状態の斜視図である。FIG. 13 is a perspective view showing a state in which a plurality of flow path forming members included in the plate heat exchanger according to another embodiment of the present invention are arranged in the X-axis direction. 図14は、他実施形態に係るプレート式熱交換器が備える複数の流路形成部材の共通構成のみを図示した外観正面図である。FIG. 14 is an external front view showing only a common configuration of a plurality of flow path forming members included in the plate heat exchanger according to another embodiment. 図15は、他実施形態に係るプレート式熱交換器の断面図であって、第一流体の流れを付加した図である。FIG. 15 is a cross-sectional view of the plate heat exchanger according to the other embodiment, in which the flow of the first fluid is added. 図16は、本発明の別の実施形態に係るプレート式熱交換器の断面図であって、第一流体の流れを付加した図である。FIG. 16 is a cross-sectional view of a plate heat exchanger according to another embodiment of the present invention, in which a flow of a first fluid is added. 図17は、従来のプレート式熱交換器の概略分解斜視図である。FIG. 17 is a schematic exploded perspective view of a conventional plate heat exchanger. 図18は、従来のプレート式熱交換器の断面図であって、第一流体の流れを付加した図である。FIG. 18 is a cross-sectional view of a conventional plate heat exchanger with a flow of the first fluid added. 図19は、従来のプレート式熱交換器の断面図であって、第二流体の流れを付加した図である。FIG. 19 is a cross-sectional view of a conventional plate heat exchanger with a flow of a second fluid added.
 以下、本発明の一実施形態について、添付図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
 本実施形態に係るプレート式熱交換器は、図1及び図2に示す如く、所定の方向であるX軸方向(第一方向)に重ね合わされた複数の伝熱プレート2,3を備える。本実施形態に係るプレート式熱交換器1は、図2に示す如く、複数の伝熱プレート2,3に加え、隣り合う伝熱プレート2,3間に配置される複数の流路形成部材4を備える。また、プレート式熱交換器1は、X軸方向に重ね合わされた複数の伝熱プレート2,3を挟む一対のエンドプレート5,6を備える。 As shown in FIGS. 1 and 2, the plate heat exchanger according to the present embodiment includes a plurality of heat transfer plates 2 and 3 stacked in the X-axis direction (first direction), which is a predetermined direction. As shown in FIG. 2, the plate heat exchanger 1 according to the present embodiment has a plurality of flow path forming members 4 arranged between adjacent heat transfer plates 2 and 3 in addition to the plurality of heat transfer plates 2 and 3. To be equipped. Further, the plate heat exchanger 1 includes a pair of end plates 5 and 6 sandwiching a plurality of heat transfer plates 2 and 3 stacked in the X-axis direction.
 複数の伝熱プレート2,3のそれぞれは、図3乃至図6に示す如く、X軸方向に第一面Saと該第一面Saの反対側の第二面Sbとを有するプレート本体部20,30を有する。本実施形態において、伝熱プレート2,3は、プレート本体部20,30の外周に接続され且つプレート本体部20,30に対して面交差する方向に延出した環状嵌合部21,31を備える。尚、本実施形態の伝熱プレート2,3のプレート本体部20,30において、第一面Saと第二面Sbとは、反対側を向いている。すなわち、複数の伝熱プレート2,3がX軸方向に重ね合わされた状態では、プレート本体部20の第一面Saとプレート本体部30の第一面Saとが対向し、プレート本体部20の第二面Sbとプレート本体部30の第二面Sbとが対向する。 As shown in FIGS. 3 to 6, each of the plurality of heat transfer plates 2 and 3 has a plate body 20 having a first surface Sa and a second surface Sb on the opposite side of the first surface Sa in the X-axis direction. , 30. In the present embodiment, the heat transfer plates 2 and 3 have annular fitting portions 21 and 31 connected to the outer periphery of the plate main bodies 20 and 30 and extending in a direction intersecting the plate main bodies 20 and 30. Be prepared. In the plate main bodies 20 and 30 of the heat transfer plates 2 and 3 of the present embodiment, the first surface Sa and the second surface Sb face opposite sides. That is, in a state where the plurality of heat transfer plates 2 and 3 are overlapped in the X-axis direction, the first surface Sa of the plate body 20 and the first surface Sa of the plate body 30 face each other, and the plate body 20 The second surface Sb and the second surface Sb of the plate body 30 face each other.
 プレート本体部20,30の第一面Sa及び第二面Sbのそれぞれには、複数の凹条200,300及び凸条201,301が形成されている。なお、図3乃至図6において、凹条200,300を破線で表現し、凸条201,301を破線間にある直線で表現している。 A plurality of recesses 200, 300 and protrusions 201, 301 are formed on each of the first surface Sa and the second surface Sb of the plate main body portions 20 and 30, respectively. In FIGS. 3 to 6, the concave lines 200 and 300 are represented by broken lines, and the convex lines 201 and 301 are represented by straight lines between the broken lines.
 複数の凹条200,300及び凸条201,301のそれぞれは、X軸方向と直交するY軸方向(第二方向)に延びる仮想線(図示しない)に対して傾斜する方向に延びている。複数の凹条200,300及び凸条201,301は、自身の延びる方向と直交する方向に交互に配置されている。伝熱プレート2,3は、金属プレートをプレス成型したものである。第一面Saの凹条200,300は、第二面Sbの凸条201,301と表裏の関係にある。第一面Saの凸条201,301は、第二面Sbの凹条200,300と表裏の関係にある。 Each of the plurality of recesses 200, 300 and ridges 201, 301 extends in a direction inclined with respect to a virtual line (not shown) extending in the Y-axis direction (second direction) orthogonal to the X-axis direction. The plurality of recesses 200, 300 and ridges 201, 301 are alternately arranged in a direction orthogonal to the extending direction thereof. The heat transfer plates 2 and 3 are press-molded metal plates. The recesses 200 and 300 of the first surface Sa are in a front-to-back relationship with the protrusions 201 and 301 of the second surface Sb. The ridges 201 and 301 of the first surface Sa have a front-back relationship with the dents 200 and 300 of the second surface Sb.
 伝熱プレート2,3のそれぞれのプレート本体部20,30は、X軸方向から見て矩形状に形成される。各プレート本体部20,30は、四隅のそれぞれに貫通孔202,203,204,205,302,303,304,305を有する。 The plate main bodies 20 and 30 of the heat transfer plates 2 and 3 are formed in a rectangular shape when viewed from the X-axis direction. Each of the plate main bodies 20 and 30 has through holes 202, 203, 204, 205, 302, 303, 304 and 305 at the four corners, respectively.
 より具体的には、プレート本体部20,30は、貫通孔として、第一孔202,302と、第二孔203,303と、第三孔204,304と、第四孔205,305と、を有する。第一孔202,302は、プレート本体部20,30におけるY軸方向の一端側の領域のうち、X軸方向及びY軸方向と直交するZ軸方向(第三方向)の一端部に配置される。第二孔203,303は、プレート本体部20,30におけるY軸方向の他端側の領域のうちのZ軸方向の一端部に配置される。第三孔204,304は、プレート本体部20,30におけるY軸方向の他端側の領域のうちのZ軸方向の他端部に配置される。第四孔205,305は、プレート本体部20,30におけるY軸方向の一端側の領域のうちのZ軸方向の他端部に配置される。 More specifically, the plate main bodies 20 and 30 have first holes 202 and 302, second holes 203 and 303, third holes 204 and 304, and fourth holes 205 and 305 as through holes. Have. The first holes 202 and 302 are arranged at one end in the Z-axis direction (third direction) orthogonal to the X-axis direction and the Y-axis direction in the region on one end side in the Y-axis direction in the plate main bodies 20 and 30. Orthogonal. The second holes 203 and 303 are arranged at one end in the Z-axis direction in the region on the other end side in the Y-axis direction of the plate main bodies 20 and 30. The third holes 204 and 304 are arranged at the other end of the plate body 20 and 30 on the other end side in the Y-axis direction in the Z-axis direction. The fourth holes 205 and 305 are arranged at the other end of the plate main body portions 20 and 30 on the one end side in the Y-axis direction in the Z-axis direction.
 本実施形態において、第一孔202,302、第二孔203,303、第三孔204,304、及び第四孔205,305のそれぞれは、丸孔である。本実施形態において、第二孔203,303、第三孔204,304、及び第四孔205,305の孔径は、同径である。これに対し、第一孔202,302の孔径は、第二孔203,303、第三孔204,304、及び第四孔205,305の孔径よりも大径である。 In the present embodiment, the first holes 202, 302, the second holes 203, 303, the third holes 204, 304, and the fourth holes 205, 305 are round holes, respectively. In the present embodiment, the hole diameters of the second holes 203, 303, the third holes 204, 304, and the fourth holes 205, 305 are the same. On the other hand, the hole diameters of the first holes 202 and 302 are larger than the hole diameters of the second holes 203 and 303, the third holes 204 and 304, and the fourth holes 205 and 305.
 本実施形態において、第一孔202,302の周囲、及び第二孔203,303の周囲は、第二面Sb側に膨出している。すなわち、第一孔202,302の周囲、及び第二孔203,303の周囲は、第一面Sa側で窪んでいる。これに対し、第三孔204,304の周囲及び第四孔205,305の周囲は、第一面Sa側に膨出している。すなわち、第三孔204,304の周囲及び第四孔205,305の周囲は、第二面Sb側で窪んでいる。 In the present embodiment, the periphery of the first holes 202 and 302 and the periphery of the second holes 203 and 303 bulge toward the second surface Sb side. That is, the periphery of the first holes 202 and 302 and the periphery of the second holes 203 and 303 are recessed on the first surface Sa side. On the other hand, the periphery of the third holes 204 and 304 and the periphery of the fourth holes 205 and 305 bulge toward the first surface Sa side. That is, the periphery of the third holes 204 and 304 and the periphery of the fourth holes 205 and 305 are recessed on the second surface Sb side.
 本実施形態において、複数の伝熱プレート2,3には、二種類の伝熱プレート2,3が含まれる。二種類の伝熱プレート2,3は、プレート本体部20,30の凹条200,300及び凸条201,301の傾斜方向を異にするとともに、環状嵌合部21,31の延出する方向を異にし、それ以外の構成(プレート本体部20,30のX軸方向から見た輪郭の形状及びサイズ、X軸方向から見た第一孔202,302、第二孔203,303、第三孔204,304、及び第四孔205,305の配置及びサイズ)は共通している。 In the present embodiment, the plurality of heat transfer plates 2 and 3 include two types of heat transfer plates 2 and 3. The two types of heat transfer plates 2 and 3 have different inclination directions of the recesses 200 and 300 and the protrusions 201 and 301 of the plate main bodies 20 and 30, and the extending directions of the annular fitting portions 21 and 31. Other configurations (shape and size of contours of plate main bodies 20 and 30 seen from the X-axis direction, first holes 202, 302, second holes 203, 303, third seen from the X-axis direction). The arrangement and size of the holes 204 and 304 and the fourth holes 205 and 305) are common.
 具体的には、二種類の伝熱プレート2,3のうちの一方の伝熱プレート2において、凹条200及び凸条201は、Z軸方向の中間からZ軸方向の両端に向けて先下りに傾斜する。また、環状嵌合部21がプレート本体部20の第二面Sb側に延出している(図3及び図4参照)。これに対し、二種類の伝熱プレート2,3のうちの他方の伝熱プレート3において、凹条300及び凸条301は、Z軸方向の両端からZ軸方向の中間に向けて先下りに傾斜するとともに、環状嵌合部31がプレート本体部30の第一面Sa側に延出している(図5及び図6参照)。 Specifically, in the heat transfer plate 2 of one of the two types of heat transfer plates 2 and 3, the concave groove 200 and the convex groove 201 descend from the middle in the Z-axis direction toward both ends in the Z-axis direction. Tilt to. Further, the annular fitting portion 21 extends toward the second surface Sb side of the plate main body portion 20 (see FIGS. 3 and 4). On the other hand, in the heat transfer plate 3 of the other of the two types of heat transfer plates 2 and 3, the recesses 300 and the protrusions 301 descend from both ends in the Z-axis direction toward the middle in the Z-axis direction. As it is inclined, the annular fitting portion 31 extends toward the first surface Sa side of the plate main body portion 30 (see FIGS. 5 and 6).
 これにより、本実施形態に係るプレート式熱交換器1において、隣り合う伝熱プレート2,3が第一面Sa同士を対向させるとともに第二面Sb同士を対向させるように、二種類の伝熱プレート2,3がX軸方向において交互に配置されることで、隣り合う伝熱プレート2,3の環状嵌合部21,31同士が嵌合する。これに併せ、隣り合う伝熱プレート2,3の第一面Saの凸条201,301同士が交差衝合するとともに、隣り合う伝熱プレート2,3の第二面Sbの凸条201,301同士が交差衝合する。 As a result, in the plate heat exchanger 1 according to the present embodiment, two types of heat transfer are performed so that the adjacent heat transfer plates 2 and 3 face each other on the first surface Sa and face each other on the second surface Sb. By alternately arranging the plates 2 and 3 in the X-axis direction, the annular fitting portions 21 and 31 of the adjacent heat transfer plates 2 and 3 are fitted to each other. At the same time, the ridges 201 and 301 of the first surfaces Sa of the adjacent heat transfer plates 2 and 3 intersect with each other, and the ridges 201 and 301 of the second surfaces Sb of the adjacent heat transfer plates 2 and 3 intersect. They cross each other.
 図7に示す如く、複数の流路形成部材4のうちのいくつかの流路形成部材4は、X軸方向に貫通した少なくとも一つの貫通孔42を有する。 As shown in FIG. 7, some of the flow path forming members 4 among the plurality of flow path forming members 4 have at least one through hole 42 penetrating in the X-axis direction.
 複数の流路形成部材4のそれぞれの外形(X軸方向から見た輪郭及びX軸方向と直交する方向から見た輪郭)は共通している。すなわち、複数の流路形成部材4において、貫通孔の数、配置以外の構成は共通している。 The outer shape of each of the plurality of flow path forming members 4 (the contour seen from the X-axis direction and the contour seen from the direction orthogonal to the X-axis direction) is common. That is, the plurality of flow path forming members 4 have a common configuration other than the number and arrangement of through holes.
 より具体的に説明する。複数の流路形成部材4のそれぞれは、図8及び図9に示す如く、X軸方向に第一面(採番しない)と該第一面の反対側の第二面(採番しない)とを有するプレート状の本体部40と、本体部40の第一面及び第二面の少なくとも何れか一方の面に接続された嵌合部41と、を有する。 I will explain more specifically. As shown in FIGS. 8 and 9, each of the plurality of flow path forming members 4 has a first surface (not numbered) in the X-axis direction and a second surface (not numbered) on the opposite side of the first surface. It has a plate-shaped main body 40 having a portion, and a fitting portion 41 connected to at least one of the first surface and the second surface of the main body 40.
 本体部40のX軸方向における厚みT1は、隣り合う伝熱プレート2,3の間隔と対応している(図9参照)。図8に示す如く、本実施形態の本体部40における外周400は、円弧部400aと、円弧部400aの両端を繋ぐ直線部400bとを含む。円弧部400aの半径r1は、第一孔202,302の半径より大きい。本実施形態の本体部40では、円弧部400aの中心CP1から直線部400bまでの最短の直線距離L1は、第一孔202,302の半径より短い。 The thickness T1 of the main body 40 in the X-axis direction corresponds to the distance between adjacent heat transfer plates 2 and 3 (see FIG. 9). As shown in FIG. 8, the outer peripheral 400 of the main body 40 of the present embodiment includes an arc portion 400a and a straight portion 400b connecting both ends of the arc portion 400a. The radius r1 of the arc portion 400a is larger than the radius of the first holes 202 and 302. In the main body portion 40 of the present embodiment, the shortest straight line distance L1 from the center CP1 of the arc portion 400a to the straight line portion 400b is shorter than the radius of the first holes 202 and 302.
 これに伴い、本実施形態のプレート式熱交換器1では、第一孔202,302の孔中心と本体部40の円弧部400aの中心CP1とを一致させた状態で、本体部40の第一面及び第二面のそれぞれの周縁部(円弧部400aに沿った部分)が、X軸方向から見て伝熱プレート2,3の第一孔202,302の周囲と重なっている。 Along with this, in the plate heat exchanger 1 of the present embodiment, the first hole of the main body 40 is in a state where the center of the holes 202 and 302 and the center CP1 of the arc portion 400a of the main body 40 are aligned with each other. The peripheral edges of the surface and the second surface (portions along the arc portion 400a) overlap with the periphery of the first holes 202 and 302 of the heat transfer plates 2 and 3 when viewed from the X-axis direction.
 嵌合部41は、伝熱プレート2,3の第一孔202,302に嵌合可能である。より具体的に説明すると、本実施形態において、嵌合部41の外周は、円弧部410aと、円弧部410aの両端を繋ぐ直線部410bとを含む。嵌合部41の円弧部410aの中心CP2は、本体部40の円弧部410aの中心CP1と一致している。すなわち、本体部40と嵌合部41とは、同心である。 The fitting portion 41 can be fitted into the first holes 202 and 302 of the heat transfer plates 2 and 3. More specifically, in the present embodiment, the outer circumference of the fitting portion 41 includes an arc portion 410a and a straight portion 410b connecting both ends of the arc portion 410a. The center CP2 of the arc portion 410a of the fitting portion 41 coincides with the center CP1 of the arc portion 410a of the main body portion 40. That is, the main body portion 40 and the fitting portion 41 are concentric.
 嵌合部41の円弧部410aの半径r2は、第一孔202,302の半径と同一又は第一孔202,302の半径より僅かに小さい。嵌合部41において、円弧部410aの中心CP2から直線部410bまでの最短の直線距離L2は、第一孔202,302の半径より短い。本実施形態において、嵌合部41の円弧部410aの中心CP2から直線部410bまでの最短の直線距離L2は、本体部40の円弧部400aの中心CP1から該本体部40の直線部400bまでの最短の直線距離L1と同一である。すなわち、本体部40の直線部400bと嵌合部41の直線部410bとは、X軸方向において連続している。 The radius r2 of the arc portion 410a of the fitting portion 41 is the same as the radius of the first holes 202 and 302 or slightly smaller than the radius of the first holes 202 and 302. In the fitting portion 41, the shortest linear distance L2 from the center CP2 of the arc portion 410a to the straight portion 410b is shorter than the radius of the first holes 202 and 302. In the present embodiment, the shortest linear distance L2 from the center CP2 of the arc portion 410a of the fitting portion 41 to the straight portion 410b is from the center CP1 of the arc portion 400a of the main body portion 40 to the straight portion 400b of the main body portion 40. It is the same as the shortest straight line distance L1. That is, the straight portion 400b of the main body portion 40 and the straight portion 410b of the fitting portion 41 are continuous in the X-axis direction.
 本実施形態の流路形成部材4において、図9に示す如く、嵌合部41は、本体部40の第一面のみに接続されている。これに伴い、嵌合部41のX軸方向の厚みT2は、伝熱プレート2,3を構成する金属プレート(プレス成型される金属プレート)の二枚の合計厚み(X軸方向に重なる伝熱プレート2,3の第一孔202,302の周囲の合計厚み)と一致又は略一致している。 In the flow path forming member 4 of the present embodiment, as shown in FIG. 9, the fitting portion 41 is connected only to the first surface of the main body portion 40. Along with this, the thickness T2 of the fitting portion 41 in the X-axis direction is the total thickness of the two metal plates (press-molded metal plates) constituting the heat transfer plates 2 and 3 (heat transfer overlapping in the X-axis direction). The total thickness around the first holes 202 and 302 of the plates 2 and 3) is the same or substantially the same.
 複数の流路形成部材4の共通構成は、以上の通りである。これら複数の流路形成部材4は、図7に示す如く、X軸方向に整列した状態で配置される。これを前提に、複数の流路形成部材4のうちのいくつかの流路形成部材4は、自身の配置位置に応じ、X軸方向に貫通した少なくとも一つ貫通孔42を有する。本実施形態に係るプレート式熱交換器1は、X軸方向に整列した複数の流路形成部材4のX軸方向の一方の端にある流路形成部材4側から他方の端にある流路形成部材4側に向けて第一流体Aを供給することを前提としている。本実施形態において、複数の流路形成部材4には、X軸方向の他方の端側に配置される流路形成部材4として、貫通孔を有していない流路形成部材4が含まれる。 The common configuration of the plurality of flow path forming members 4 is as described above. As shown in FIG. 7, these plurality of flow path forming members 4 are arranged in a state of being aligned in the X-axis direction. On the premise of this, some of the flow path forming members 4 among the plurality of flow path forming members 4 have at least one through hole 42 penetrating in the X-axis direction according to their own arrangement position. In the plate heat exchanger 1 according to the present embodiment, the flow paths from the flow path forming member 4 side at one end in the X-axis direction of the plurality of flow path forming members 4 aligned in the X-axis direction to the other end. It is assumed that the first fluid A is supplied toward the forming member 4 side. In the present embodiment, the plurality of flow path forming members 4 include a flow path forming member 4 having no through hole as the flow path forming member 4 arranged on the other end side in the X-axis direction.
 ここで具体的に説明すると、複数の流路形成部材4は、X軸方向に重ね合わされた伝熱プレート2,3の第一孔202,302の配置に対応するように、X軸方向に連なって配置される(図2参照)ことで、流路形成部材群4A(図7参照)を構成する。すなわち、流路形成部材群4Aは、プレート式熱交換器1の内部(詳しくは、複数の伝熱プレート2,3の各第一孔202,302と対応する位置)において、X軸方向に延びている。そして、流路形成部材群4Aは、複数の流路形成部材4がプレート式熱交換器1の内部においてX軸方向に整列して配置されることにより構成される。 More specifically, the plurality of flow path forming members 4 are connected in the X-axis direction so as to correspond to the arrangement of the first holes 202 and 302 of the heat transfer plates 2 and 3 stacked in the X-axis direction. (See FIG. 2), the flow path forming member group 4A (see FIG. 7) is formed. That is, the flow path forming member group 4A extends in the X-axis direction inside the plate heat exchanger 1 (specifically, at a position corresponding to the first holes 202 and 302 of the plurality of heat transfer plates 2 and 3). ing. The flow path forming member group 4A is configured by arranging a plurality of flow path forming members 4 so as to be aligned in the X-axis direction inside the plate heat exchanger 1.
 これを前提に、X軸方向に整列する複数の流路形成部材4が配置される部材配置領域Sのうち、X軸方向の一方側の半分又は略半分の領域S1に配置される複数の流路形成部材4のそれぞれは、貫通孔42として、互いに対応した位置に配置された第一貫通孔420を有する。すなわち、部材配置領域SのX軸方向の中間又は略中間を境界E1とした第一領域S1及び第二領域S2のうち、X軸方向の一方の端を含む第一領域S1内にある複数の流路形成部材4のそれぞれには、第一貫通孔420が設けられる。本実施形態において、第一貫通孔420の中心は、本体部40の円弧部400a及び嵌合部41の円弧部410aの中心CP1,CP2と一致している。 On the premise of this, among the member arrangement areas S in which the plurality of flow path forming members 4 aligned in the X-axis direction are arranged, a plurality of flows arranged in one half or substantially half of the area S1 in the X-axis direction. Each of the path forming members 4 has a first through hole 420 arranged at a position corresponding to each other as a through hole 42. That is, among the first region S1 and the second region S2 whose boundary E1 is the middle or substantially the middle of the member arrangement region S in the X-axis direction, a plurality of members in the first region S1 including one end in the X-axis direction. A first through hole 420 is provided in each of the flow path forming members 4. In the present embodiment, the center of the first through hole 420 coincides with the centers CP1 and CP2 of the arc portion 400a of the main body portion 40 and the arc portion 410a of the fitting portion 41.
 複数の流路形成部材4のうち、第一領域S1と第二領域S2との境界E1上にある流路形成部材4は、貫通孔42として、第一貫通孔420に対してX軸方向と直交する方向にずれた位置においてX軸方向に貫通した第二貫通孔421と、X軸方向に貫通した第三貫通孔422であって、第一貫通孔420と第二貫通孔421とを連通させた第三貫通孔422と、を有する。すなわち、複数の伝熱プレート2,3のX軸方向の中間部にある単一の流路形成部材(以下、上流側基準部材という)4は、貫通孔42として、第一貫通孔420、第二貫通孔421及び第三貫通孔422を有する。 Of the plurality of flow path forming members 4, the flow path forming member 4 on the boundary E1 between the first region S1 and the second region S2 serves as a through hole 42 in the X-axis direction with respect to the first through hole 420. The second through hole 421 penetrating in the X-axis direction at a position deviated in the orthogonal direction and the third through hole 422 penetrating in the X-axis direction, and communicate the first through hole 420 and the second through hole 421. It has a third through hole 422 and the like. That is, the single flow path forming member (hereinafter referred to as the upstream reference member) 4 located in the intermediate portion of the plurality of heat transfer plates 2 and 3 in the X-axis direction has the first through hole 420 and the first through hole 420 as the through hole 42. It has two through holes 421 and a third through hole 422.
 上流側基準部材4に対してX軸方向の両側のそれぞれにある少なくとも一つの流路形成部材4は、上流側基準部材4の第二貫通孔421と対応した位置においてX軸方向に貫通した第四貫通孔423を有する。 At least one flow path forming member 4 on each side of the upstream reference member 4 on both sides in the X-axis direction penetrates in the X-axis direction at a position corresponding to the second through hole 421 of the upstream reference member 4. It has four through holes 423.
 本実施形態において、第一領域S1及び第二領域S2のそれぞれにある複数の流路形成部材4のうち、上流側基準部材4と隣り合う流路形成部材4を含む複数の流路形成部材4であって、境界E1から第一領域S1のX軸方向の中間部にまで並ぶ複数の流路形成部材4、及び、境界E1から第二領域S2のX軸方向の中間部にまで並ぶ複数の流路形成部材4のそれぞれが、第四貫通孔423を有する。 In the present embodiment, among the plurality of flow path forming members 4 in each of the first region S1 and the second region S2, the plurality of flow path forming members 4 including the flow path forming member 4 adjacent to the upstream reference member 4 A plurality of flow path forming members 4 arranged from the boundary E1 to the intermediate portion in the X-axis direction of the first region S1 and a plurality of flow path forming members 4 arranged from the boundary E1 to the intermediate portion in the X-axis direction of the second region S2. Each of the flow path forming members 4 has a fourth through hole 423.
 すなわち、第一領域S1及び第二領域S2のそれぞれにおいて、当該領域S1,S2のX軸方向の中間を境界E2とした第三領域S3及び第四領域S4のうち、部材配置領域Sの境界E1と隣接する第三領域S3にある複数の流路形成部材4…が第四貫通孔423を有する。 That is, in each of the first region S1 and the second region S2, the boundary E1 of the member arrangement region S among the third region S3 and the fourth region S4 whose boundary E2 is the middle of the regions S1 and S2 in the X-axis direction. A plurality of flow path forming members 4 ... In the third region S3 adjacent to the above have a fourth through hole 423.
 そして、第一領域S1及び第二領域S2のそれぞれにおいて、境界E2に位置する流路形成部材4は、貫通孔42として、第一貫通孔420及び第四貫通孔423のそれぞれに対してX軸方向と直交する方向にずれた位置においてX軸方向に貫通した第五貫通孔424と、X軸方向に貫通した長穴状の第六貫通孔425であって、第四貫通孔423と第五貫通孔424とを連通させた第六貫通孔425と、を有する。 Then, in each of the first region S1 and the second region S2, the flow path forming member 4 located at the boundary E2 serves as a through hole 42 and is X-axis with respect to each of the first through hole 420 and the fourth through hole 423. A fifth through hole 424 penetrating in the X-axis direction at a position deviated in the direction orthogonal to the direction, and a long hole-shaped sixth through hole 425 penetrating in the X-axis direction, the fourth through hole 423 and the fifth through hole. It has a sixth through hole 425, which communicates with the through hole 424.
 すなわち、第一領域S1及び第二領域S2のそれぞれの境界E2にある単一の流路形成部材(以下、下流側基準部材という)4は、貫通孔42として、第四貫通孔423、第五貫通孔424及び第六貫通孔425を有する。なお、第一領域S1及び第二領域S2のうちの一方の領域(本実施形態の例では、第一領域S1)にある下流側基準部材4は、貫通孔42として、第四貫通孔423、第五貫通孔424及び第六貫通孔425の他に、第一貫通孔420も有する。 That is, the single flow path forming member (hereinafter referred to as the downstream reference member) 4 at the boundary E2 of each of the first region S1 and the second region S2 serves as the through hole 42, and the fourth through hole 423 and the fifth through hole 423 and the fifth. It has a through hole 424 and a sixth through hole 425. The downstream reference member 4 in one of the first region S1 and the second region S2 (the first region S1 in the example of the present embodiment) has the fourth through hole 423 as the through hole 42. In addition to the fifth through hole 424 and the sixth through hole 425, the first through hole 420 is also provided.
 そして、第三領域S3及び第四領域S4のそれぞれにおいて、下流側基準部材4に対してX軸方向の両側のそれぞれにある少なくとも一つの流路形成部材4は、下流側基準部材4の第五貫通孔424と対応した位置においてX軸方向に貫通した第七貫通孔426を有する。 Then, in each of the third region S3 and the fourth region S4, at least one flow path forming member 4 on both sides in the X-axis direction with respect to the downstream reference member 4 is the fifth of the downstream reference member 4. It has a seventh through hole 426 that penetrates in the X-axis direction at a position corresponding to the through hole 424.
 本実施形態において、下流側基準部材4と隣り合う流路形成部材4を含む複数の流路形成部材4、詳しくは、下流側基準部材4(境界E2)から該下流側基準部材4を挟む第三領域S3及び第四領域S4のX軸方向の中間部にまで並ぶ複数の流路形成部材4のそれぞれは、第七貫通孔426を有する。 In the present embodiment, a plurality of flow path forming members 4, including the flow path forming member 4 adjacent to the downstream reference member 4, specifically, the downstream reference member 4 sandwiching the downstream reference member 4 from the downstream reference member 4 (boundary E2). Each of the plurality of flow path forming members 4 arranged up to the intermediate portion in the X-axis direction of the three regions S3 and the fourth region S4 has a seventh through hole 426.
 そして、第三領域S3及び第四領域S4のX軸方向の中間部に位置する流路形成部材4は、貫通孔42として、X軸方向に貫通した第八貫通孔427であって、第七貫通孔426と連通するとともに当該流路形成部材4の外周上で開放した第八貫通孔427を有する。本実施形態において、第八貫通孔427は、本体部40及び嵌合部41の外周400,410を構成する直線部400b,410bにおいて開放している。 The flow path forming member 4 located at the intermediate portion of the third region S3 and the fourth region S4 in the X-axis direction is the eighth through hole 427 penetrating in the X-axis direction as the through hole 42, and is the seventh. It has an eighth through hole 427 that communicates with the through hole 426 and is open on the outer periphery of the flow path forming member 4. In the present embodiment, the eighth through hole 427 is opened at the straight portions 400b and 410b forming the outer circumferences 400 and 410 of the main body portion 40 and the fitting portion 41.
 図2に戻り、一対のエンドプレート5,6のそれぞれは、伝熱プレート2,3のプレート本体部20,30と重なるプレート状のエンドプレート本体50,60と、エンドプレート本体50,60の外周全周から延出した環状嵌合部51,61と、を有する。この環状嵌合部51,61は、伝熱プレート2,3の環状嵌合部21,31と嵌合可能である。 Returning to FIG. 2, each of the pair of end plates 5 and 6 has a plate-shaped end plate bodies 50 and 60 that overlap with the plate bodies 20 and 30 of the heat transfer plates 2 and 3, and the outer circumferences of the end plate bodies 50 and 60. It has annular fitting portions 51 and 61 extending from the entire circumference. The annular fitting portions 51 and 61 can be fitted with the annular fitting portions 21 and 31 of the heat transfer plates 2 and 3.
 一対のエンドプレート5,6のうちの一方のエンドプレート5のエンドプレート本体50は、伝熱プレート2,3の第二孔203,303、第三孔204,304、第四孔205,305)と対応する貫通孔(図示しない)を有する。 The end plate main body 50 of one end plate 5 of the pair of end plates 5 and 6 has the second holes 203, 303, the third holes 204, 304, and the fourth holes 205, 305 of the heat transfer plates 2 and 3). It has a through hole (not shown) corresponding to.
 また、このエンドプレート本体50は、第一孔202,302と対応して配置される流路形成部材4の第一貫通孔420の内孔と対応する貫通孔(図示しない)を有する。これに伴い、一方のエンドプレート5は、エンドプレート本体50の各貫通孔に対応して設けられた四つのノズル52,53,54,55を有する。これら四つのノズル52,53,54,55は、内孔を有し且つ該内孔を対応する貫通孔に連通させた状態で該エンドプレート本体50に接続された筒状である。 Further, the end plate main body 50 has a through hole (not shown) corresponding to an inner hole of the first through hole 420 of the flow path forming member 4 arranged so as to correspond to the first holes 202 and 302. Along with this, one end plate 5 has four nozzles 52, 53, 54, 55 provided corresponding to each through hole of the end plate main body 50. These four nozzles 52, 53, 54, 55 have an inner hole and are connected to the end plate main body 50 in a state where the inner hole is communicated with the corresponding through hole.
 本実施形態に係るプレート式熱交換器1では、図10に示す如く、複数の伝熱プレート2,3がX軸方向に重ね合わされる。これに併せ、複数の流路形成部材4のそれぞれの配列が守られた状態で、各流路形成部材4の本体部40が隣り合う伝熱プレート2,3の第一面Sa,Sa間にそれぞれ配置されるとともに、各流路形成部材4の嵌合部41が第一孔202,302にそれぞれ嵌合される。 In the plate heat exchanger 1 according to the present embodiment, as shown in FIG. 10, a plurality of heat transfer plates 2 and 3 are superposed in the X-axis direction. At the same time, while the arrangement of the plurality of flow path forming members 4 is maintained, the main body 40 of each flow path forming member 4 is between the first surfaces Sa and Sa of the adjacent heat transfer plates 2 and 3. The fitting portions 41 of the flow path forming members 4 are fitted into the first holes 202 and 302, respectively.
 この状態において、複数の流路形成部材4のそれぞれは、自身の嵌合部41を隣り合う流路形成部材4に密接させる。なお、本実施形態の複数の流路形成部材4のそれぞれは、本体部40及び嵌合部41の外周400,410に含まれる直線部400b,410bが伝熱プレート2,3の内側(Y軸方向における中間側)に向くように配置される。そして、一対のエンドプレート5,6が複数の伝熱プレート2,3を挟んだ状態で配置され、各部材2,3,4の密接する部分が液密に接合される。 In this state, each of the plurality of flow path forming members 4 brings its own fitting portion 41 into close contact with the adjacent flow path forming members 4. In each of the plurality of flow path forming members 4 of the present embodiment, the straight portions 400b and 410b included in the outer circumferences 400 and 410 of the main body portion 40 and the fitting portion 41 are inside the heat transfer plates 2 and 3 (Y-axis). It is arranged so as to face the middle side in the direction). Then, the pair of end plates 5 and 6 are arranged so as to sandwich the plurality of heat transfer plates 2 and 3, and the close portions of the members 2, 3 and 4 are liquid-tightly joined.
 本実施形態においては、隣り合う伝熱プレート2,3の凸条201,301の交差衝合した交差点、互いに嵌合した環状嵌合部21,31同士、第一孔202,302の周囲同士、第二孔203,303の周囲同士、第三孔204,304の周囲同士、第四孔205,305の周囲同士等がロウ付けされる。また、隣り合う流路形成部材4同士がロウ付けされるとともに、流路形成部材4の本体部40の外周縁部と第一孔202,302の周囲とがロウ付けされる。 In the present embodiment, the intersections of the protrusions 201 and 301 of the adjacent heat transfer plates 2 and 3 intersect with each other, the annular fitting portions 21 and 31 fitted to each other, and the perimeters of the first holes 202 and 302. The perimeters of the second holes 203 and 303, the perimeters of the third holes 204 and 304, the perimeters of the fourth holes 205 and 305, and the like are brazed. Further, the adjacent flow path forming members 4 are brazed to each other, and the outer peripheral edge portion of the main body portion 40 of the flow path forming member 4 and the periphery of the first holes 202 and 302 are brazed.
 これにより、本実施形態に係るプレート式熱交換器1において、図10及び図11に示す如く、第一流体AをY軸方向に流通させる第一流路Raと、第二流体BをY軸方向に流通させる第二流路Rbとが、伝熱プレート2,3を境にしてX軸方向において交互に形成される。 As a result, in the plate heat exchanger 1 according to the present embodiment, as shown in FIGS. 10 and 11, the first flow path Ra that allows the first fluid A to flow in the Y-axis direction and the second fluid B to flow in the Y-axis direction. The second flow path Rb to be circulated in the water is alternately formed in the X-axis direction with the heat transfer plates 2 and 3 as boundaries.
 また、複数の伝熱プレート2,3の第二孔203,303がX軸方向に連なることで、第一流路Raのみに連通し且つ第一流路Raから第一流体Aを流出させる第一流体排出路Ra2が形成される(図10参照)。さらに、複数の伝熱プレート2,3の第三孔204,304がX軸方向に連なることで、第二流路Rbのみに連通し且つ第二流路Rbに第二流体Bを流入させる第二流体供給路Rb1が形成される。さらに、複数の伝熱プレート2,3の第四孔205,305がX軸方向に連なることで、第二流路Rbのみに連通し且つ第二流路Rbから第二流体Bを流出させる第二流体排出路Rb2が形成される(図11参照)。 Further, by connecting the second holes 203 and 303 of the plurality of heat transfer plates 2 and 3 in the X-axis direction, the first fluid communicates only with the first flow path Ra and causes the first fluid A to flow out from the first flow path Ra. The discharge path Ra2 is formed (see FIG. 10). Further, by connecting the third holes 204 and 304 of the plurality of heat transfer plates 2 and 3 in the X-axis direction, the second fluid B communicates only with the second flow path Rb and the second fluid B flows into the second flow path Rb. Two fluid supply paths Rb1 are formed. Further, by connecting the fourth holes 205 and 305 of the plurality of heat transfer plates 2 and 3 in the X-axis direction, the second fluid B communicates only with the second flow path Rb and the second fluid B flows out from the second flow path Rb. Two fluid discharge paths Rb2 are formed (see FIG. 11).
 本実施形態のプレート式熱交換器1では、図10及び図12に示す如く、複数の流路形成部材4の貫通孔(第一貫通孔420、第二貫通孔421、第三貫通孔422、第四貫通孔423、第五貫通孔424、第六貫通孔425、第七貫通孔426、第八貫通孔427)が連通することで、第一流路Raのみに連通した第一流体供給路Ra1が形成される。この第一流体供給路Ra1は、各第一流路Raに対して第一流体Aを流入させる。 In the plate heat exchanger 1 of the present embodiment, as shown in FIGS. 10 and 12, through holes (first through hole 420, second through hole 421, third through hole 422, etc.) of the plurality of flow path forming members 4 The first fluid supply path Ra1 communicating only with the first flow path Ra by communicating the fourth through hole 423, the fifth through hole 424, the sixth through hole 425, the seventh through hole 426, and the eighth through hole 427). Is formed. The first fluid supply path Ra1 causes the first fluid A to flow into each first flow path Ra.
 本実施形態において、各流路形成部材4の貫通孔(第一貫通孔420、第二貫通孔421、第三貫通孔422、第四貫通孔423、第五貫通孔424、第六貫通孔425、第七貫通孔426、第八貫通孔427)の配置及び数は、複数の流路形成部材4の配置に対応して異なる。第一流体供給路Ra1は、下流側に向かうほど第一流体AをX軸方向に分配する経路となる。 In the present embodiment, through holes (first through hole 420, second through hole 421, third through hole 422, fourth through hole 423, fifth through hole 424, sixth through hole 425) of each flow path forming member 4 , The arrangement and the number of the seventh through hole 426 and the eighth through hole 427) differ depending on the arrangement of the plurality of flow path forming members 4. The first fluid supply path Ra1 becomes a path for distributing the first fluid A in the X-axis direction toward the downstream side.
 具体的には、第一流体供給路Ra1は、第一流体Aの供給源に直接的又は間接的に接続される上流系統USと、上流系統USと流体的に接続される下流系統DSと、を含む。 Specifically, the first fluid supply path Ra1 includes an upstream system US that is directly or indirectly connected to the supply source of the first fluid A, and a downstream system DS that is fluidly connected to the upstream system US. including.
 上流系統USは、導入部US1と、導入部US1と連通する分岐部(第一分岐部)US2と、分岐部US2に連通する一対の分岐流路US3と、を含む。導入部US1は、X軸方向に延び且つ第一流体Aの供給源に繋がる配管(図示しない)に直接的又は間接的に連通する。分岐部US2は、複数の伝熱プレート2,3のうちのX軸方向の中間部に配置され且つ導入部US1に導入された第一流体AをX軸方向の一方側と他方側とに分岐する。本実施形態の分岐部US2は、複数の伝熱プレート2,3のうちのX軸方向の中間部にある伝熱プレート2,3間と対応した位置に配置され且つX軸方向と直交する方向における導入部US1と異なる位置においてX軸方向に貫通する。一対の分岐流路US3は、分岐部US2と連通する基端と該基端の反対側の先端とを有する。この一対の分岐流路US3は、X軸方向における分岐部US2を境にした一方側の領域(第一領域)S1及び他方側の領域(第二領域)S2のそれぞれにおいてX軸方向に延びる。 The upstream system US includes an introduction portion US1, a branch portion (first branch portion) US2 communicating with the introduction portion US1, and a pair of branch flow paths US3 communicating with the branch portion US2. The introduction portion US1 directly or indirectly communicates with a pipe (not shown) extending in the X-axis direction and connecting to the supply source of the first fluid A. The branch portion US2 is arranged in the middle portion in the X-axis direction of the plurality of heat transfer plates 2 and 3, and branches the first fluid A introduced into the introduction portion US1 into one side and the other side in the X-axis direction. To do. The branch portion US2 of the present embodiment is arranged at a position corresponding to between the heat transfer plates 2 and 3 in the middle portion in the X-axis direction of the plurality of heat transfer plates 2 and 3, and is in a direction orthogonal to the X-axis direction. It penetrates in the X-axis direction at a position different from the introduction portion US1 in. The pair of branch flow paths US3 has a base end communicating with the branch portion US2 and a tip opposite to the base end. The pair of branch flow paths US3 extend in the X-axis direction in each of a region (first region) S1 on one side and a region (second region) S2 on the other side of the branch portion US2 in the X-axis direction.
 本実施形態の上流系統USにおいては、複数の流路形成部材4の第一貫通孔420が連なって導入部US1が形成される。また、複数の流路形成部材4の第四貫通孔423が連なって分岐流路US3が形成される。これに伴い、X軸方向の中間部にある流路形成部材(上流側基準部材)4の第二貫通孔421が分岐部US2を構成する。また、上流側基準部材4の第三貫通孔422が、導入部US1と分岐部US2とを連通させる連通部US4を構成する。 In the upstream system US of the present embodiment, the introduction portion US1 is formed by connecting the first through holes 420 of the plurality of flow path forming members 4. Further, the branch flow path US3 is formed by connecting the fourth through holes 423 of the plurality of flow path forming members 4. Along with this, the second through hole 421 of the flow path forming member (upstream side reference member) 4 in the intermediate portion in the X-axis direction constitutes the branch portion US2. Further, the third through hole 422 of the upstream reference member 4 constitutes a communication portion US4 that communicates the introduction portion US1 and the branch portion US2.
 下流系統DSは、分岐部US2のX軸方向における一方側又は他方側と直接的又は間接的に連通する複数の開放部DS1を含む。これら複数の開放部DS1は、上流系統USの分岐流路US3の先端と直接的又は間接的に連通し、X軸方向の複数箇所で対応する第一流路Raに向かって開放する。本実施形態の下流系統DSは、上流系統USの分岐流路US3の先端と直接的又は間接的に連通する最下流分岐部(第二分岐部)DS2を含む。また、この下流系統DSは、X軸方向における最下流分岐部DS2を境にした一方側の領域(第三領域)S3及び他方側の領域(第四領域)S4のそれぞれにおいてX軸方向に延びる一対の最下流分岐流路DS3も含む。最下流分岐部DS2は、Y軸方向において、導入部US1及び分岐流路US3と異なる位置においてX軸方向に流路形成部材4を貫通する。一対の最下流分岐流路DS3のそれぞれは、最下流分岐部DS2と連通する基端と、該基端の反対側の先端であって、開放部DS1と連通する先端とを有する。 The downstream system DS includes a plurality of open portions DS1 that directly or indirectly communicate with one side or the other side of the branch portion US2 in the X-axis direction. These plurality of open portions DS1 directly or indirectly communicate with the tip of the branch flow path US3 of the upstream system US and open toward the corresponding first flow path Ra at a plurality of points in the X-axis direction. The downstream system DS of the present embodiment includes the most downstream branch (second branch) DS2 that directly or indirectly communicates with the tip of the branch flow path US3 of the upstream system US. Further, this downstream system DS extends in the X-axis direction in each of one side region (third region) S3 and the other side region (fourth region) S4 with the most downstream branch portion DS2 in the X-axis direction as a boundary. It also includes a pair of most downstream branch flow paths DS3. The most downstream branch portion DS2 penetrates the flow path forming member 4 in the X-axis direction at a position different from the introduction portion US1 and the branch flow path US3 in the Y-axis direction. Each of the pair of most downstream branch flow paths DS3 has a base end communicating with the most downstream branch portion DS2 and a tip opposite to the base end and communicating with the open portion DS1.
 本実施形態の下流系統DSにおいては、下流側基準部材4の第五貫通孔424が最下流分岐部DS2を構成する。これに伴い、下流側基準部材4の第六貫通孔425が、分岐流路US3と最下流分岐部DS2とを連通させる連通部DS4を構成する。 In the downstream system DS of the present embodiment, the fifth through hole 424 of the downstream reference member 4 constitutes the most downstream branch portion DS2. Along with this, the sixth through hole 425 of the downstream reference member 4 constitutes a communication portion DS4 that communicates the branch flow path US3 and the most downstream branch portion DS2.
 そして、X軸方向における最下流分岐部DS2を境にした一方側の領域(第三領域)S3及び他方側の領域(第四領域)S4のそれぞれにある流路形成部材4の第七貫通孔426が連なり、最下流分岐部DS2と連通した最下流分岐流路DS3が形成される。また、第三領域S3及び第四領域S4のそれぞれのX軸方向の中間部にある流路形成部材4の第八貫通孔427が、第一流路Raに向けて開放した開放部DS1を構成する。 Then, the seventh through hole of the flow path forming member 4 in each of the one side region (third region) S3 and the other side region (fourth region) S4 with the most downstream branch portion DS2 in the X-axis direction as a boundary. The most downstream branch flow path DS3 is formed by connecting the 426s and communicating with the most downstream branch DS2. Further, the eighth through hole 427 of the flow path forming member 4 in the intermediate portion in the X-axis direction of each of the third region S3 and the fourth region S4 constitutes an open portion DS1 opened toward the first flow path Ra. ..
 本実施形態に係るプレート式熱交換器1は、以上の通りである。このプレート式熱交換器1において、ノズル52に接続された配管(図示しない)から第一流体供給路Ra1に第一流体Aが供給されると、第一流体Aは、導入部US1をX軸方向に流通する。そして、第一流体Aは、部材配置領域SのX軸方向の中間部(略中間)に到達すると、連通部US4を通って分岐部US2に到達する。分岐部US2には、X軸方向において、当該分岐部US2の両側に延びる一対の分岐流路US3が連通している。このため、第一流体Aは、分岐部US2から一対の分岐流路US3を流通する。すなわち、第一流体Aは、分岐部US2を起点にしてX軸方向の両側に分配される。そして、第一流体Aは、分岐流路US3を流通し、第一領域S1及び第二領域S2のそれぞれの中間部に到達すると、その中間部にある流路形成部材(下流側基準部材)4の連通部DS4を通って最下流分岐部DS2に到達する。 The plate heat exchanger 1 according to the present embodiment is as described above. In this plate heat exchanger 1, when the first fluid A is supplied to the first fluid supply path Ra1 from a pipe (not shown) connected to the nozzle 52, the first fluid A axes the introduction portion US1 on the X axis. Distribute in the direction. Then, when the first fluid A reaches the intermediate portion (substantially intermediate) of the member arrangement region S in the X-axis direction, it reaches the branch portion US2 through the communication portion US4. A pair of branch flow paths US3 extending on both sides of the branch portion US2 communicate with the branch portion US2 in the X-axis direction. Therefore, the first fluid A flows from the branch portion US2 through the pair of branch flow paths US3. That is, the first fluid A is distributed to both sides in the X-axis direction starting from the branch portion US2. Then, when the first fluid A flows through the branch flow path US3 and reaches the intermediate portion of each of the first region S1 and the second region S2, the flow path forming member (downstream side reference member) 4 in the intermediate portion thereof. It reaches the most downstream branching part DS2 through the communication part DS4 of.
 最下流分岐部DS2には、X軸方向において、当該最下流分岐部DS2の両側に延びる一対の最下流分岐流路DS3が連通している。このため、第一流体Aは、最下流分岐部DS2から一対の最下流分岐流路DS3を流通する。すなわち、第一流体Aは、最下流分岐部DS2を起点にしてX軸方向の両側に分配される。 A pair of most downstream branch flow paths DS3 extending on both sides of the most downstream branch DS2 communicate with the most downstream branch DS2 in the X-axis direction. Therefore, the first fluid A flows from the most downstream branch portion DS2 through the pair of most downstream branch flow paths DS3. That is, the first fluid A is distributed to both sides in the X-axis direction starting from the most downstream branch portion DS2.
 そして、第一流体Aは、最下流分岐流路DS3を流通し、下流側基準部材4を境界とする一方側の領域及び他方側の領域のX軸方向の中間部に到達すると、その中間部にある流路形成部材4の開放部DS1から第一流路Raに向けて流出する。 Then, when the first fluid A flows through the most downstream branch flow path DS3 and reaches the intermediate portion in the X-axis direction of the region on one side and the region on the other side with the downstream reference member 4 as a boundary, the intermediate portion thereof. It flows out from the open portion DS1 of the flow path forming member 4 in the above toward the first flow path Ra.
 本実施形態の流路形成部材4において、本体部40及び嵌合部41のそれぞれの外周400,410は、直線部400b,410bを有する。また、該外周400,410に含まれる円弧部400a,410aの中心CP1,CP2から直線部400b,410bまでの最短の直線距離L1,L2は、第一孔202,302の半径よりも短い。このため、複数箇所にある開放部DS1のそれぞれから流出した第一流体Aは、X軸方向に連なった第一孔202,302と流路形成部材4の直線部400b,410bとの間の空間をX軸方向に広がりつつ、直近にある少なくとも一つ(本実施形態においては複数)の第一流路Raに流入する。すなわち、供給された第一流体Aは、同一距離又は略同一距離の経路を通ってX軸方向における複数箇所に均等又は略均等に分配され、複数の第一流路Raのそれぞれ(分配された箇所に近い第一流路Ra)に流れ込む。 In the flow path forming member 4 of the present embodiment, the outer circumferences 400 and 410 of the main body portion 40 and the fitting portion 41 have linear portions 400b and 410b, respectively. Further, the shortest linear distances L1 and L2 from the centers CP1 and CP2 of the arc portions 400a and 410a included in the outer circumferences 400 and 410 to the straight portions 400b and 410b are shorter than the radii of the first holes 202 and 302. Therefore, the first fluid A flowing out from each of the open portions DS1 at a plurality of locations is a space between the first holes 202 and 302 connected in the X-axis direction and the straight portions 400b and 410b of the flow path forming member 4. Inflows into at least one (plurality in this embodiment) first flow path Ra in the immediate vicinity while spreading in the X-axis direction. That is, the supplied first fluid A is evenly or substantially evenly distributed to a plurality of locations in the X-axis direction through a path of the same distance or substantially the same distance, and each of the plurality of first flow paths Ra (distributed locations). It flows into the first flow path Ra) near.
 そして、第一流体Aは、第一流路RaをY軸方向に流通した上で、第一流体排出路Ra2及びこれに繋がるノズル53を通って外部に流出する。 Then, the first fluid A flows through the first flow path Ra in the Y-axis direction, and then flows out to the outside through the first fluid discharge path Ra 2 and the nozzle 53 connected to the first fluid discharge path Ra 2.
 これに対し、図11に示す如く、ノズル54に接続された配管(図示しない)から第二流体供給路Rb1に第二流体Bが供給されると、第二流体Bは、第二流体供給路Rb1を通って複数の第二流路Rbに流入する。そして、第二流体Bは、第二流路RbをY軸方向に流通した上で、第二流体排出路Rb2及びこれに繋がるノズル55を通って外部に流出する。 On the other hand, as shown in FIG. 11, when the second fluid B is supplied to the second fluid supply path Rb1 from a pipe (not shown) connected to the nozzle 54, the second fluid B becomes the second fluid supply path. It flows into a plurality of second flow paths Rb through Rb1. Then, the second fluid B flows through the second flow path Rb in the Y-axis direction, and then flows out to the outside through the second fluid discharge path Rb2 and the nozzle 55 connected to the second fluid discharge path Rb2.
 このように、第一流体Aが第一流路Raを流通するのに併せ、第二流体Bが第二流路Rbを流通することにより、第一流体A及び第二流体Bは、第一流路Raと第二流路Rbとを区画する伝熱プレート2,3を介して熱交換を行う。 In this way, the first fluid A and the second fluid B flow through the first flow path Ra as the first fluid A flows through the first flow path Ra, and the second fluid B flows through the second flow path Rb. Heat exchange is performed via the heat transfer plates 2 and 3 that partition Ra and the second flow path Rb.
 以上のように、プレート式熱交換器1は、X軸方向(所定方向)に貫通した第一孔(貫通孔)202,302を互いに対応した位置に有する複数の伝熱プレート2,3であって、X軸方向に重ね合わされることで第一流体Aを流通させる第一流路Raと第二流体Bを流通させる第二流路Rbとを複数の伝熱プレート2,3のそれぞれを境にX軸方向に交互に形成する複数の伝熱プレート2,3と、複数の伝熱プレート2,3の各第一孔(各貫通孔)202,302と対応する位置においてX軸方向に延びる流路形成部材群4Aと、を備える。流路形成部材群4Aは、X軸方向に連なる複数の流路形成部材4によって構成される。複数の流路形成部材4のうちの少なくとも二つの流路形成部材4は、該流路形成部材4をX軸方向に貫通する貫通孔42(第一貫通孔420、第二貫通孔421、第三貫通孔422、第四貫通孔423、第五貫通孔424、第六貫通孔425、第七貫通孔426、第八貫通孔427)を有し、前記少なくとも二つの流路形成部材4は、互いに連通することによって第一流体Aを第一流路Raに供給する第一流体供給路Ra1を構成する。第一流体供給路Ra1は、X軸方向に延び且つ第一流体Aが外部から導入される導入部US1と、X軸方向に並ぶ複数の伝熱プレート2,3の中間部に配置され且つ導入部US1に導入された第一流体AをX軸方向の一方側と他方側とに分岐する分岐部(第一分岐部)US2と、分岐部US2のX軸方向の一方側又は他方側と直接的又は間接的に連通する開放部DS1であって、X軸方向の複数箇所で対応する第一流路Raに向かって開放した複数の開放部DS1と、を含む。 As described above, the plate heat exchanger 1 is a plurality of heat transfer plates 2 and 3 having first holes (through holes) 202 and 302 penetrating in the X-axis direction (predetermined direction) at positions corresponding to each other. The first flow path Ra that allows the first fluid A to flow and the second flow path Rb that allows the second fluid B to flow by being overlapped in the X-axis direction are separated by each of the plurality of heat transfer plates 2 and 3. Flows extending in the X-axis direction at positions corresponding to the plurality of heat transfer plates 2 and 3 alternately formed in the X-axis direction and the first holes (each through holes) 202 and 302 of the plurality of heat transfer plates 2 and 3. The road forming member group 4A is provided. The flow path forming member group 4A is composed of a plurality of flow path forming members 4 connected in the X-axis direction. At least two of the plurality of flow path forming members 4 are through holes 42 (first through hole 420, second through hole 421, first through hole 42, first through hole 42, second through hole 421, which penetrate the flow path forming member 4 in the X-axis direction. It has three through holes 422, a fourth through hole 423, a fifth through hole 424, a sixth through hole 425, a seventh through hole 426, and an eighth through hole 427), and the at least two flow path forming members 4 are The first fluid supply path Ra1 that supplies the first fluid A to the first flow path Ra by communicating with each other is formed. The first fluid supply path Ra1 is arranged and introduced in the intermediate portion between the introduction portion US1 extending in the X-axis direction and the first fluid A being introduced from the outside and a plurality of heat transfer plates 2 and 3 arranged in the X-axis direction. A branch portion (first branch portion) US2 that branches the first fluid A introduced into the portion US1 into one side and the other side in the X-axis direction, and one side or the other side of the branch portion US2 in the X-axis direction directly. It is an open portion DS1 that communicates targetly or indirectly, and includes a plurality of open portions DS1 that are open toward the corresponding first flow path Ra at a plurality of locations in the X-axis direction.
 上記構成によれば、複数の流路形成部材4、即ち、流路形成部材群4Aによって構成される第一流体供給路Ra1は、X軸方向に重ね合わされた複数の伝熱プレート2,3のうちのX軸方向の中間部にある伝熱プレート2,3と対応する位置を基準としたX軸方向の一方側の領域(第一領域)S1及び他方側の領域(第二領域)S2のそれぞれに第一流体Aを分岐(分配)する。 According to the above configuration, the plurality of flow path forming members 4, that is, the first fluid supply path Ra1 composed of the flow path forming member group 4A is formed by the plurality of heat transfer plates 2 and 3 stacked in the X-axis direction. One region (first region) S1 and the other region (second region) S2 in the X-axis direction based on the positions corresponding to the heat transfer plates 2 and 3 in the middle portion in the X-axis direction. The first fluid A is branched (distributed) to each.
 これにより、第一流体供給路Ra1を流通する第一流体Aは、X軸方向の少なくとも二か所に分配された状態で第一流路Raに到達する。すなわち、分岐部US2から第一流路Raに到達するまでの第一流体Aの流通距離が同一又は略同一の状態で、第一流体AがX軸方向の異なる位置にある複数の開放部DS1…から流出する。 As a result, the first fluid A flowing through the first fluid supply path Ra 1 reaches the first flow path Ra in a state of being distributed to at least two places in the X-axis direction. That is, in a state where the flow distance of the first fluid A from the branch portion US2 to the first flow path Ra is the same or substantially the same, the first fluid A is located at different positions in the X-axis direction. Outflow from.
 従って、第一流体Aは、X軸方向の複数箇所に分配され、複数の第一流路Raのそれぞれに対して略等しい状態(流量)で流入する。よって、本実施形態に係るプレート式熱交換器1は、複数の第一流路Raに対して蒸発又は凝縮の対象となる第一流体Aを分配ムラが抑えられた状態で(略均等に)供給できる。これにより、熱交換性能を高めることができる。 Therefore, the first fluid A is distributed to a plurality of locations in the X-axis direction, and flows into each of the plurality of first flow paths Ra in a substantially equal state (flow rate). Therefore, the plate heat exchanger 1 according to the present embodiment supplies the first fluid A, which is the target of evaporation or condensation, to the plurality of first flow paths Ra in a state where distribution unevenness is suppressed (substantially evenly). it can. As a result, the heat exchange performance can be improved.
 本実施形態において、複数の流路形成部材4のそれぞれは、複数の伝熱プレート2,3のうちの二つの伝熱プレート2,3の貫通孔(第一孔)202,302の周囲に挟まれている。詳しくは、複数の流路形成部材4のそれぞれは、第二流路Rbを挟んでX軸方向に並ぶ第一流路Raに対応して配置され、隣り合う伝熱プレート2,3の貫通孔(第一孔)202,302の周囲に挟まれている。このようにすれば、複数の流路形成部材4のそれぞれが、伝熱プレート2,3によって拘束される。従って、複数の流路形成部材4の位置ズレが防止され、その結果、複数の流路形成部材4の貫通孔によって形成される第一流体供給路Ra1の連通性が確実に確保される。 In the present embodiment, each of the plurality of flow path forming members 4 is sandwiched around the through holes (first holes) 202 and 302 of the two heat transfer plates 2 and 3 of the plurality of heat transfer plates 2 and 3. It has been. Specifically, each of the plurality of flow path forming members 4 is arranged corresponding to the first flow path Ra arranged in the X-axis direction with the second flow path Rb interposed therebetween, and through holes (through holes) of adjacent heat transfer plates 2 and 3 ( First hole) It is sandwiched around 202 and 302. In this way, each of the plurality of flow path forming members 4 is constrained by the heat transfer plates 2 and 3. Therefore, the positional deviation of the plurality of flow path forming members 4 is prevented, and as a result, the communicability of the first fluid supply path Ra1 formed by the through holes of the plurality of flow path forming members 4 is surely secured.
 本実施形態において、第一流体供給路Ra1は、分岐部(第一分岐部)US2と該分岐部US2のX軸方向の一方側に連通する複数の開放部DS1との間、及び、分岐部US2と該分岐部US2のX軸方向の他方側に連通する複数の開放部DS1との間に、第一流体AをX軸方向の一方側と他方側とに分岐する少なくとも一つの最下流分岐部(第二分岐部)DS2をそれぞれ有する。 In the present embodiment, the first fluid supply path Ra1 is between a branch portion (first branch portion) US2 and a plurality of open portions DS1 communicating with one side of the branch portion US2 in the X-axis direction, and a branch portion. At least one most downstream branch that branches the first fluid A into one side and the other side in the X-axis direction between the US2 and the plurality of open portions DS1 communicating with the other side of the branch portion US2 in the X-axis direction. Each has a part (second branch part) DS2.
 上記構成によれば、第一流体供給路Ra1は、部材配置領域Sにおける第一領域S1及び第二領域S2のそれぞれを更にX軸方向に細分化した二つの領域(最下流分岐部DS2を境にした一方側の領域(第三領域)S3及び他方側の領域(第四領域)S4)のそれぞれに第一流体Aを順々に分岐する。 According to the above configuration, the first fluid supply path Ra1 has two regions (the most downstream branch portion DS2 as a boundary) in which each of the first region S1 and the second region S2 in the member arrangement region S is further subdivided in the X-axis direction. The first fluid A is sequentially branched into each of the one-sided region (third region) S3 and the other-side region (fourth region) S4).
 これにより、第一流体供給路Ra1を流通する第一流体Aは、上流系統USだけでなく、下流系統DSにおいてもX軸方向に順々に分岐されて第一流路Raに到達する。すなわち、第一流体Aは、X軸方向において異なる位置にある第一流路Raに流入するが、分岐部US2から第一流路Raに到達するまでの距離が同一又は略同一になる。 As a result, the first fluid A flowing through the first fluid supply path Ra1 is sequentially branched in the X-axis direction not only in the upstream system US but also in the downstream system DS and reaches the first flow path Ra. That is, the first fluid A flows into the first flow path Ra at different positions in the X-axis direction, but the distance from the branch portion US2 to reach the first flow path Ra is the same or substantially the same.
 従って、第一流体Aは、X軸方向の複数箇所に分配され、複数の第一流路Raのそれぞれに対して略等しい状態(流量)で流入する。よって、本実施形態に係るプレート式熱交換器1は、複数の第一流路Raに対して蒸発又は凝縮の対象となる第一流体Aを分配ムラが抑えられた状態で(略均等に)供給できる。これにより、熱交換性能を高めることができる。 Therefore, the first fluid A is distributed to a plurality of locations in the X-axis direction, and flows into each of the plurality of first flow paths Ra in a substantially equal state (flow rate). Therefore, the plate heat exchanger 1 according to the present embodiment supplies the first fluid A, which is the target of evaporation or condensation, to the plurality of first flow paths Ra in a state where distribution unevenness is suppressed (substantially evenly). it can. As a result, the heat exchange performance can be improved.
 なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で、適宜変更を加え得ることは勿論である。 It should be noted that the present invention is not limited to the above embodiment, and it goes without saying that modifications can be made as appropriate without departing from the gist of the present invention.
 上記実施形態において、第一流路Raに第一流体Aを供給する第一流体供給路Ra1が複数の流路形成部材4によって構成されたが、この構成に限定されない。例えば、第二流路Rbに対して第二流体Bが分配ムラを抑えられた状態で(略均等に)供給されるような場合には、第二流体供給路Rb1も、複数の流路形成部材によって構成されてもよい。この場合の複数の流路形成部材は、第一流体供給路Ra1を形成する流路形成部材4と同様に構成される。 In the above embodiment, the first fluid supply path Ra1 for supplying the first fluid A to the first flow path Ra is composed of a plurality of flow path forming members 4, but the configuration is not limited to this. For example, when the second fluid B is supplied to the second flow path Rb in a state where distribution unevenness is suppressed (approximately evenly), the second fluid supply path Rb1 also forms a plurality of flow paths. It may be composed of members. The plurality of flow path forming members in this case are configured in the same manner as the flow path forming member 4 forming the first fluid supply path Ra1.
 上記実施形態において、第一流体供給路Ra1の下流系統DSが最下流分岐部DS2及び一対の最下流分岐流路DS3を備えたが、この構成に限定されない。例えば、下流系統DSの開放部DS1が上流系統USの分岐流路US3のそれぞれの先端に接続され、第一流体供給路Ra1が一か所(分岐部US2)でX軸方向に分岐し、第一流体Aが二か所の開放部DS1から第一流路Raに向けて流出してもよい。 In the above embodiment, the downstream system DS of the first fluid supply path Ra1 includes the most downstream branch DS2 and the pair of most downstream branch flow paths DS3, but the configuration is not limited to this. For example, the open portion DS1 of the downstream system DS is connected to each tip of the branch flow path US3 of the upstream system US, and the first fluid supply path Ra1 branches in the X-axis direction at one place (branch portion US2). One fluid A may flow out from the two open portions DS1 toward the first flow path Ra.
 また、第一流体供給路Ra1の下流系統DSが、上流系統USの分岐流路US3と最下流分岐部DS2とを流体的に接続する中間の分岐系統であって、第一流体AをX軸方向に分配する少なくとも一つの分岐系統(第二分岐部)をさらに備えてもよい。 Further, the downstream system DS of the first fluid supply path Ra1 is an intermediate branch system that fluidly connects the branch flow path US3 of the upstream system US and the most downstream branch portion DS2, and the first fluid A is the X-axis. At least one branch system (second branch) that distributes in the direction may be further provided.
 この場合、中間の分岐系統は、上流側の流路(例えば、上流系統USの分岐流路US3)に接続される中間分岐部と、中間分岐部と連通し且つ中間分岐部を境にしたX軸方向の一方側の領域及び他方の領域のそれぞれにおいてX軸方向に延びる一対の中間分岐流路と、を備えてもよい。この一対の中間分岐流路のそれぞれは、自身の延びる前記一方側の領域及び前記他方の領域のX軸方向の中間部に先端(終端)を有し、下流系統DS内の下流側の部位(例えば、開放部DS1)に該先端を接続される。なお、複数の流路形成部材4のそれぞれにおいて、分岐系統の数に応じた数の貫通孔が異なる位置に配置される。 In this case, the intermediate branch system is an X that communicates with the intermediate branch portion connected to the upstream flow path (for example, the branch flow path US3 of the upstream system US) and the intermediate branch portion as a boundary. A pair of intermediate branch flow paths extending in the X-axis direction may be provided in each of the region on one side in the axial direction and the region on the other side. Each of the pair of intermediate branch flow paths has a tip (termination) at the intermediate portion in the X-axis direction of the one-sided region and the other-side region extending by itself, and has a downstream portion (end) in the downstream system DS. For example, the tip is connected to the open portion DS1). In each of the plurality of flow path forming members 4, a number of through holes corresponding to the number of branch systems are arranged at different positions.
 上記実施形態において、流路形成部材4の本体部40及び嵌合部41の外周400,410が円弧部400a,410a及び直線部400b,410bを含み、該外周400,410の円弧部400a,410aの中心CP1,CP2から直線部400b,410bまでの最短の直線距離L1,L2が第一孔202,302の半径より小さいことで、開放部DS1から流出した第一流体Aが、X軸方向に広がりつつ、該開放部DS1の直近にある複数の第一流路Raに流入する(第一流体供給路Ra1において分配された第一流体Aが複数の第一流路Raの全てに流入する)が、この構成に限定されない。 In the above embodiment, the outer circumferences 400 and 410 of the main body 40 and the fitting portion 41 of the flow path forming member 4 include the arc portions 400a and 410a and the straight portions 400b and 410b, and the arc portions 400a and 410a of the outer circumferences 400 and 410. Since the shortest linear distances L1 and L2 from the center CP1 and CP2 to the straight portions 400b and 410b are smaller than the radius of the first holes 202 and 302, the first fluid A flowing out from the opening portion DS1 flows in the X-axis direction. While expanding, it flows into a plurality of first flow paths Ra in the immediate vicinity of the open portion DS1 (the first fluid A distributed in the first fluid supply path Ra1 flows into all of the plurality of first flow paths Ra). It is not limited to this configuration.
 例えば、図13及び図14に示す如く、複数の流路形成部材4は、本体部40の外周縁部が隣り合う伝熱プレート2,3に挟まれる構成でもよい。即ち、複数の流路形成部材4のそれぞれにおいて、本体部40の中心CP1から外周400までの直線距離(円形の場合には、半径)r1が全周の何れの箇所においても第一孔202,302の半径より長くてもよい。この場合において、複数の流路形成部材4の輪郭が第一孔202,302の孔形状と相似形状であることが好ましい。 For example, as shown in FIGS. 13 and 14, the plurality of flow path forming members 4 may be configured such that the outer peripheral edges of the main body 40 are sandwiched between adjacent heat transfer plates 2 and 3. That is, in each of the plurality of flow path forming members 4, the first hole 202, where the linear distance (radius in the case of a circle) r1 from the center CP1 of the main body 40 to the outer circumference 400 is anywhere on the entire circumference. It may be longer than the radius of 302. In this case, it is preferable that the contours of the plurality of flow path forming members 4 have a shape similar to the hole shapes of the first holes 202 and 302.
 この場合、図15に示す如く、X軸方向に連なる複数の流路形成部材4のうちのいくつかの流路形成部材4は、上記実施形態と同様に、貫通孔(第一貫通孔420、第二貫通孔421、第三貫通孔422、第四貫通孔423、第五貫通孔424、第六貫通孔425、第七貫通孔426、第八貫通孔427の少なくとも何れか一つ)を有することで、X軸方向に間隔をあけて配置される特定の流路形成部材4の開放部DS1のみが対応する単一の第一流路Raと連通する。 In this case, as shown in FIG. 15, some of the flow path forming members 4 among the plurality of flow path forming members 4 connected in the X-axis direction have through holes (first through holes 420, first through holes 420, as in the above embodiment. It has at least one of a second through hole 421, a third through hole 422, a fourth through hole 423, a fifth through hole 424, a sixth through hole 425, a seventh through hole 426, and an eighth through hole 427). As a result, only the open portion DS1 of the specific flow path forming member 4 arranged at intervals in the X-axis direction communicates with the corresponding single first flow path Ra.
 この場合、他の第一流路Ra(開放部DS1を有していない流路形成部材4と対応する複数の第一流路Ra)は、伝熱プレート2,3に設けられた貫通孔(採番しない)であって、第一孔202,302からY軸方向において離れた位置でX軸方向に貫通した貫通孔を介して互いに連通される。そして、その貫通孔によって連通する複数の第一流路Raによって構成される流路が少なくとも二回ターンし、最下流にある第一流路Raが第一流体排出路Ra2に接続されればよい。 In this case, the other first flow path Ra (a plurality of first flow path Ra corresponding to the flow path forming member 4 having no open portion DS1) is a through hole (numbering) provided in the heat transfer plates 2 and 3. (Not), and they communicate with each other through through holes penetrating in the X-axis direction at positions separated from the first holes 202 and 302 in the Y-axis direction. Then, the flow path formed by the plurality of first flow paths Ra communicating with the through holes may be turned at least twice, and the first flow path Ra located at the most downstream may be connected to the first fluid discharge path Ra2.
 このようにしても、第一流体供給路Ra1において、第一流体AがX軸方向に少なくとも一回分岐(分配)された上で、複数の開放部DS1から第一流路Raに向け流出する。このため、第一流体Aの流通距離は、均一又は略均一となる。従って、この構成においても、上記実施形態と同様の作用及び効果を奏する。 Even in this way, in the first fluid supply path Ra1, the first fluid A is branched (distributed) at least once in the X-axis direction, and then flows out from the plurality of open portions DS1 toward the first flow path Ra. Therefore, the circulation distance of the first fluid A is uniform or substantially uniform. Therefore, even in this configuration, the same actions and effects as those in the above embodiment are obtained.
 上記実施形態において、部材配置領域SのX軸方向の中間部にある流路形成部材(上流側基準部材)4が単一の第二貫通孔421を有するとともに、上流側基準部材4の両側にある流路形成部材4が単一の第二貫通孔421と対応する位置に第四貫通孔423を有したが、この構成に限定されない。 In the above embodiment, the flow path forming member (upstream reference member) 4 in the intermediate portion of the member arrangement region S in the X-axis direction has a single second through hole 421 and is provided on both sides of the upstream reference member 4. A flow path forming member 4 has a fourth through hole 423 at a position corresponding to a single second through hole 421, but is not limited to this configuration.
 例えば、図16に示す如く、部材配置領域SのX軸方向の中間部にある流路形成部材(上流側基準部材)4が、異なる位置に二つの第二貫通孔421を有する。そして、上流側基準部材4のX軸方向の一方側の領域(第一領域)S1にある流路形成部材4が二つの第二貫通孔421のうちの一方の第二貫通孔421と対応する位置に第四貫通孔423を有するとともに、上流側基準部材4のX軸方向の他方側の領域(第二領域)S2にある流路形成部材4が二つの第二貫通孔421のうちの他方の第二貫通孔421と対応する位置に第四貫通孔423を有してもよい。 For example, as shown in FIG. 16, the flow path forming member (upstream reference member) 4 located in the middle portion of the member arrangement region S in the X-axis direction has two second through holes 421 at different positions. Then, the flow path forming member 4 in the region (first region) S1 on one side in the X-axis direction of the upstream reference member 4 corresponds to the second through hole 421 of one of the two second through holes 421. The flow path forming member 4 in the region (second region) S2 on the other side in the X-axis direction of the upstream reference member 4 has the fourth through hole 423 at the position, and is the other of the two second through holes 421. A fourth through hole 423 may be provided at a position corresponding to the second through hole 421 of the above.
 すなわち、上流系統USは、単一の第二貫通孔421によって構成される分岐部US2に対して一対の分岐流路US3が接続された態様に限定されるものではない。例えば、分岐部US2が二つの第二貫通孔421によって構成され、該分岐部US2の異なる位置に一対の分岐流路US3のそれぞれが接続されてもよい。 That is, the upstream system US is not limited to a mode in which a pair of branch flow paths US3 are connected to a branch portion US2 composed of a single second through hole 421. For example, the branch portion US2 may be composed of two second through holes 421, and each of the pair of branch flow paths US3 may be connected to different positions of the branch portion US2.
 また、上流側基準部材4が偶数個の第二貫通孔421(分岐部US2)有する。そして、上流側基準部材4のX軸方向の一方側の領域(第一領域)S1にある流路形成部材4が上流側基準部材4の有する偶数個の第二貫通孔421のうちの半分の数の第二貫通孔421のそれぞれと対応する位置に第四貫通孔423を有するとともに、上流側基準部材4のX軸方向の他方側の領域(第二領域)S2にある流路形成部材4が、上流側基準部材4の有する偶数個の第二貫通孔421のうちの半分の数の第二貫通孔421であって、一方側の領域(第一領域S1)の流路形成部材4の第四貫通孔423と対応しない位置にある第二貫通孔421と対応する位置に第四貫通孔423を有してもよい。すなわち、上流系統USにおいて、複数対の分岐流路US3が設けられてもよい。 Further, the upstream reference member 4 has an even number of second through holes 421 (branch portion US2). Then, the flow path forming member 4 in the region (first region) S1 on one side in the X-axis direction of the upstream reference member 4 is half of the even number of second through holes 421 of the upstream reference member 4. A flow path forming member 4 having a fourth through hole 423 at a position corresponding to each of the second through holes 421 and in a region (second region) S2 on the other side in the X-axis direction of the upstream reference member 4. Is the second through hole 421, which is half the number of the even number of second through holes 421 of the upstream reference member 4, and is the flow path forming member 4 of the one side region (first region S1). The fourth through hole 423 may be provided at a position corresponding to the second through hole 421 at a position not corresponding to the fourth through hole 423. That is, in the upstream system US, a plurality of pairs of branch flow paths US3 may be provided.
 この場合、各対の分岐流路US3のX軸方向の長さ(先端の位置)が異なっていてもよいし、同じであってもよい。この点、下流系統DSの最下流分岐部DS2及び最下流分岐流路DS3も同様である。 In this case, the length (tip position) of each pair of branch flow paths US3 in the X-axis direction may be different or the same. In this respect, the same applies to the most downstream branch portion DS2 and the most downstream branch flow path DS3 of the downstream system DS.
 上記実施形態の流路形成部材4において、本体部40の第一面のみに嵌合部41が接続されたが、この構成に限定されない。例えば、本体部40の第一面及び第二面のそれぞれに嵌合部41が接続されてもよい。この場合、X軸方向における嵌合部41の厚みは、一つの伝熱プレート2,3の厚みに対応していればよい。 In the flow path forming member 4 of the above embodiment, the fitting portion 41 is connected only to the first surface of the main body portion 40, but the configuration is not limited to this. For example, the fitting portion 41 may be connected to each of the first surface and the second surface of the main body portion 40. In this case, the thickness of the fitting portion 41 in the X-axis direction may correspond to the thickness of one heat transfer plate 2 or 3.
 上記実施形態において、流路形成部材4(本体部40)の外周縁部が隣り合う伝熱プレート2,3の貫通孔(第一孔202,302)の周囲に挟まれたが、この構成に限定されない。例えば、複数の流路形成部材4…のそれぞれの外径が、伝熱プレート2,3の貫通孔(第一孔)202,302の孔径よりも小さく、X軸方向に連なった複数の流路形成部材4、即ち、流路形成部材群4Aが、X軸方向に連なる複数の伝熱プレート2,3の貫通孔(第一孔)202,302内に挿入されてもよい。 In the above embodiment, the outer peripheral edge portion of the flow path forming member 4 (main body portion 40) is sandwiched around the through holes (first holes 202, 302) of the adjacent heat transfer plates 2 and 3, but this configuration is used. Not limited. For example, the outer diameters of the plurality of flow path forming members 4 ... Are smaller than the hole diameters of the through holes (first holes) 202 and 302 of the heat transfer plates 2 and 3, and the plurality of flow paths connected in the X-axis direction. The forming member 4, that is, the flow path forming member group 4A may be inserted into the through holes (first holes) 202 and 302 of the plurality of heat transfer plates 2 and 3 connected in the X-axis direction.
 この場合、X軸方向において隣り合う流路形成部材4同士が機械的に接続されることが好ましい。例えば、隣り合う流路形成部材4同士が凹凸嵌合によって接続されてもよい。 In this case, it is preferable that the flow path forming members 4 adjacent to each other in the X-axis direction are mechanically connected to each other. For example, adjacent flow path forming members 4 may be connected to each other by uneven fitting.
 また、X軸方向に連なった複数の流路形成部材4(一体化した複数の流路形成部材4:流路形成部材群4A)のうちの両端にある流路形成部材4は、最も端にある伝熱プレート2,3或いはエンドプレート5,6に支持されてもよい。但し、導入部US1のみに第一流体Aが供給されるように、最も端にある流路形成部材4は、最も端にある伝熱プレート2或いはエンドプレート5と液密に接続され、これらの貫通孔は、導入部US1と対応したサイズに設定されることは勿論である。 Further, the flow path forming members 4 at both ends of the plurality of flow path forming members 4 (integrated plurality of flow path forming members 4: flow path forming member group 4A) connected in the X-axis direction are at the most ends. It may be supported by certain heat transfer plates 2, 3 or end plates 5, 6. However, the flow path forming member 4 at the end is liquid-tightly connected to the heat transfer plate 2 or the end plate 5 at the end so that the first fluid A is supplied only to the introduction portion US1. Needless to say, the through hole is set to a size corresponding to the introduction portion US1.
 上記実施形態において、複数の流路形成部材4のそれぞれは、第二流路Rbを挟んでX軸方向に並ぶ第一流路Raと対応するように配置されたが、これに限定されない。すなわち、単一の流路形成部材4と、単一の第一流路Raとが一対一の関係にあったが、これに限定されない。例えば、複数の流路形成部材4のそれぞれ、或いは、複数の流路形成部材4の少なくとも何れか一つが、二つ以上の第一流路Raと対応するように配置(形成)されてもよい。すなわち、流路形成部材4は、少なくとも二つの第一流路Raに跨るように配置されてもよい。但し、複数の流路形成部材4の貫通孔は、上記実施形態と同様に、第一流体AをX軸方向に分配する第一流体供給路Ra1を形成可能に配置される。 In the above embodiment, each of the plurality of flow path forming members 4 is arranged so as to correspond to the first flow path Ra arranged in the X-axis direction with the second flow path Rb interposed therebetween, but is not limited thereto. That is, the single flow path forming member 4 and the single first flow path Ra have a one-to-one relationship, but the present invention is not limited to this. For example, each of the plurality of flow path forming members 4 or at least one of the plurality of flow path forming members 4 may be arranged (formed) so as to correspond to two or more first flow path Ras. That is, the flow path forming member 4 may be arranged so as to straddle at least two first flow paths Ra. However, the through holes of the plurality of flow path forming members 4 are arranged so as to form the first fluid supply path Ra1 that distributes the first fluid A in the X-axis direction, as in the above embodiment.
 1…プレート式熱交換器、2,3…伝熱プレート、4…流路形成部材、4A…流路形成部材群、5,6…エンドプレート、20,30…プレート本体部、21,31…環状嵌合部、40…本体部、41…嵌合部、42…貫通孔、50,60…エンドプレート本体、51,61…環状嵌合部、52,53,54,55…ノズル、200,300…凹条、201,301…凸条、202,302…第一孔(貫通孔)、203,303…第二孔(貫通孔)、204,304…第三孔(貫通孔)、205,305…第四孔(貫通孔)、400,410…外周、400a,410a…円弧部、400b,410b…直線部、420…第一貫通孔(貫通孔)、421…第二貫通孔(貫通孔)、422…第三貫通孔(貫通孔)、423…第四貫通孔(貫通孔)、424…第五貫通孔(貫通孔)、425…第六貫通孔(貫通孔)、426…第七貫通孔(貫通孔)、427…第八貫通孔(貫通孔)、A…第一流体、B…第二流体、CP1,CP2…中心、DS…下流系統、DS1…開放部、DS2…最下流分岐部、DS3…最下流分岐流路、DS4…連通部、E1…境界、E2…境界、L1,L2…直線距離、r1…半径、r2…半径、Ra…第一流路、Ra1…第一流体供給路、Ra2…第一流体排出路、Rb…第二流路、Rb1…第二流体供給路、Rb2…第二流体排出路、S…部材配置領域、S1…第一領域、S2…第二領域、S3…第三領域、S4…第四領域、Sa…第一面、Sb…第二面、US…上流系統、US1…導入部、US2…分岐部、US3…分岐流路、US4…連通部 1 ... Plate heat exchanger, 2, 3 ... Heat transfer plate, 4 ... Flow path forming member, 4A ... Flow path forming member group, 5, 6 ... End plate, 20, 30 ... Plate body, 21, 31 ... Ancillary fitting part, 40 ... Main body part, 41 ... Fitting part, 42 ... Through hole, 50, 60 ... End plate main body, 51, 61 ... Circular fitting part, 52, 53, 54, 55 ... Nozzle, 200, 300 ... Concave, 201, 301 ... Convex, 202, 302 ... First hole (through hole), 203, 303 ... Second hole (through hole), 204, 304 ... Third hole (through hole), 205, 305 ... Fourth hole (through hole), 400, 410 ... Outer circumference, 400a, 410a ... Arc portion, 400b, 410b ... Straight part, 420 ... First through hole (through hole), 421 ... Second through hole (through hole) ), 422 ... Third through hole (through hole), 423 ... Fourth through hole (through hole), 424 ... Fifth through hole (through hole), 425 ... Sixth through hole (through hole), 426 ... Seventh Through hole (through hole), 427 ... 8th through hole (through hole), A ... first fluid, B ... second fluid, CP1, CP2 ... center, DS ... downstream system, DS1 ... open part, DS2 ... most downstream Branch part, DS3 ... most downstream branch flow path, DS4 ... communication part, E1 ... boundary, E2 ... boundary, L1, L2 ... linear distance, r1 ... radius, r2 ... radius, Ra ... first flow path, Ra1 ... first fluid Supply path, Ra2 ... first fluid discharge path, Rb ... second flow path, Rb1 ... second fluid supply path, Rb2 ... second fluid discharge path, S ... member arrangement area, S1 ... first area, S2 ... second Region, S3 ... Third region, S4 ... Fourth region, Sa ... First surface, Sb ... Second surface, US ... Upstream system, US1 ... Introduction section, US2 ... Branch section, US3 ... Branch flow path, US4 ... Communication Department

Claims (3)

  1.  所定方向に貫通した貫通孔を互いに対応した位置に有する複数の伝熱プレートであって、前記所定方向に重ね合わされることで第一流体を流通させる第一流路と第二流体を流通させる第二流路とを前記複数の伝熱プレートのそれぞれを境に前記所定方向に交互に形成する複数の伝熱プレートと、
     前記複数の伝熱プレートの各貫通孔と対応する位置において前記所定方向に延びる流路形成部材群と、を備え、
     前記流路形成部材群は、前記所定方向に連なる複数の流路形成部材によって構成され、
     前記複数の流路形成部材のうちの少なくとも二つの流路形成部材は、該流路形成部材を前記所定方向に貫通する貫通孔を有し、
     前記少なくとも二つの流路形成部材の貫通孔は、互いに連通することによって前記第一流体を前記第一流路に供給する第一流体供給路を構成し、
     前記第一流体供給路は、
      前記所定方向に延び且つ前記第一流体が外部から導入される導入部と、
      前記所定方向に並ぶ前記複数の伝熱プレートの中間部に配置され且つ前記導入部に導入された前記第一流体を前記所定方向の一方側と他方側とに分岐する第一分岐部と、
      前記第一分岐部の前記一方側又は前記他方側と直接的又は間接的に連通する開放部であって、前記所定方向の複数箇所で対応する第一流路に向かって開放した複数の開放部と、を含む、ことを特徴とするプレート式熱交換器。
    A plurality of heat transfer plates having through holes penetrating in a predetermined direction at positions corresponding to each other, and by being overlapped in the predetermined direction, a first flow path through which the first fluid flows and a second flow path through which the second fluid flows. A plurality of heat transfer plates that alternately form a flow path in the predetermined direction with each of the plurality of heat transfer plates as a boundary.
    A group of flow path forming members extending in a predetermined direction at positions corresponding to the through holes of the plurality of heat transfer plates are provided.
    The flow path forming member group is composed of a plurality of flow path forming members connected in a predetermined direction.
    At least two of the plurality of flow path forming members have through holes penetrating the flow path forming member in the predetermined direction.
    The through holes of the at least two flow path forming members form a first fluid supply path for supplying the first fluid to the first flow path by communicating with each other.
    The first fluid supply path is
    An introduction part that extends in the predetermined direction and the first fluid is introduced from the outside,
    A first branch portion arranged in an intermediate portion of the plurality of heat transfer plates arranged in a predetermined direction and branching the first fluid introduced into the introduction portion into one side and the other side in the predetermined direction.
    An open portion that directly or indirectly communicates with the one side or the other side of the first branch portion, and a plurality of open portions that open toward the corresponding first flow path at a plurality of locations in the predetermined direction. A plate heat exchanger characterized by, including.
  2.  前記複数の流路形成部材のそれぞれは、前記複数の伝熱プレートのうちの二つの伝熱プレートの前記貫通孔の周囲に挟まれている、請求項1に記載のプレート式熱交換器。 The plate-type heat exchanger according to claim 1, wherein each of the plurality of flow path forming members is sandwiched around the through holes of two heat transfer plates among the plurality of heat transfer plates.
  3.  前記第一流体供給路は、前記第一分岐部と該第一分岐部の前記一方側に連通する前記複数の開放部との間、及び、前記第一分岐部と該第一分岐部の前記他方側に連通する前記複数の開放部との間に、前記第一流体を前記所定方向の一方側と他方側とに分岐する少なくとも一つの第二分岐部をそれぞれ有する、請求項2に記載のプレート式熱交換器。 The first fluid supply path is between the first branch portion and the plurality of open portions communicating with the one side of the first branch portion, and the first branch portion and the first branch portion. The second aspect of claim 2, wherein each of the plurality of open portions communicating with the other side has at least one second branch portion for branching the first fluid into one side and the other side in the predetermined direction. Plate heat exchanger.
PCT/JP2019/017200 2019-04-23 2019-04-23 Plate heat exchanger WO2020217308A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021515349A JP7300500B2 (en) 2019-04-23 2019-04-23 plate heat exchanger
EP19925924.3A EP3951309A4 (en) 2019-04-23 2019-04-23 Plate heat exchanger
PCT/JP2019/017200 WO2020217308A1 (en) 2019-04-23 2019-04-23 Plate heat exchanger
CN201980091426.3A CN113424010B (en) 2019-04-23 2019-04-23 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017200 WO2020217308A1 (en) 2019-04-23 2019-04-23 Plate heat exchanger

Publications (1)

Publication Number Publication Date
WO2020217308A1 true WO2020217308A1 (en) 2020-10-29

Family

ID=72941136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017200 WO2020217308A1 (en) 2019-04-23 2019-04-23 Plate heat exchanger

Country Status (4)

Country Link
EP (1) EP3951309A4 (en)
JP (1) JP7300500B2 (en)
CN (1) CN113424010B (en)
WO (1) WO2020217308A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137844A (en) * 2014-01-24 2015-07-30 株式会社日阪製作所 plate heat exchanger
JP2017020694A (en) * 2015-07-09 2017-01-26 株式会社日阪製作所 Plate type heat exchanger
WO2018061185A1 (en) * 2016-09-30 2018-04-05 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE502984C2 (en) * 1993-06-17 1996-03-04 Alfa Laval Thermal Ab Flat heat exchanger with specially designed door sections
CN102980328B (en) * 2012-12-10 2015-04-22 丹佛斯(杭州)板式换热器有限公司 Plate type heat exchanger
JP5818397B2 (en) * 2013-03-29 2015-11-18 株式会社日阪製作所 Plate heat exchanger
US20190011193A1 (en) * 2016-01-13 2019-01-10 Hisaka Works, Ltd. Plate heat exchanger
KR102142997B1 (en) 2018-09-05 2020-08-10 엘지전자 주식회사 Plate type heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137844A (en) * 2014-01-24 2015-07-30 株式会社日阪製作所 plate heat exchanger
JP2017020694A (en) * 2015-07-09 2017-01-26 株式会社日阪製作所 Plate type heat exchanger
WO2018061185A1 (en) * 2016-09-30 2018-04-05 三菱電機株式会社 Refrigeration cycle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951309A4 *

Also Published As

Publication number Publication date
CN113424010B (en) 2023-07-18
JP7300500B2 (en) 2023-06-29
EP3951309A4 (en) 2022-11-09
CN113424010A (en) 2021-09-21
EP3951309A1 (en) 2022-02-09
JPWO2020217308A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP3818544B2 (en) Plate heat exchanger
JP4127859B2 (en) Plate heat exchanger for three heat exchange fluids
ES2749507T3 (en) A plate heat exchanger with injection means
US9879922B2 (en) Plate heat exchanger
US20190011193A1 (en) Plate heat exchanger
WO2020217308A1 (en) Plate heat exchanger
JP5818397B2 (en) Plate heat exchanger
JP4568973B2 (en) Plate type heat exchanger
JP6196908B2 (en) Plate heat exchanger
JP2019100686A (en) Plate type heat exchanger
JP5085723B2 (en) Plate heat exchanger
CN113924454B (en) Plate heat exchanger and distributor for plate heat exchanger
JP7100074B2 (en) Plate heat exchanger
EP3647710B1 (en) Plate type heat exchanger
EP3627087B1 (en) Plate type heat exchanger
JP6857113B2 (en) Plate heat exchanger
JP5933605B2 (en) Plate heat exchanger
JP5918904B2 (en) Plate heat exchanger
JP5818396B2 (en) Plate heat exchanger
JP6934399B2 (en) Plate heat exchanger
JP2000266495A (en) Plate type heat exchanger
JP3995571B2 (en) Solution spray structure of multi-plate heat exchanger
JPWO2014155837A1 (en) Plate heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515349

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019925924

Country of ref document: EP

Effective date: 20211105