WO2020217188A1 - Process for controlling in situ groundwater pollution from seepage of tailings tank water - Google Patents

Process for controlling in situ groundwater pollution from seepage of tailings tank water Download PDF

Info

Publication number
WO2020217188A1
WO2020217188A1 PCT/IB2020/053811 IB2020053811W WO2020217188A1 WO 2020217188 A1 WO2020217188 A1 WO 2020217188A1 IB 2020053811 W IB2020053811 W IB 2020053811W WO 2020217188 A1 WO2020217188 A1 WO 2020217188A1
Authority
WO
WIPO (PCT)
Prior art keywords
aquifer
sulfate
culture
microorganisms
groundwater
Prior art date
Application number
PCT/IB2020/053811
Other languages
Spanish (es)
French (fr)
Inventor
Davor COTORAS TADIC
Pabla Leticia VIEDMA ELICER
Cristian Alejandro HURTADO CARRASCO
Darlyng Rossío PONTIGO GALLARDO
Sebastián Nicolás GUTIERREZ ARDURA
Jorge Eugenio MENDOZA CRISOSTO
Original Assignee
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67106737&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020217188(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Universidad De Chile filed Critical Universidad De Chile
Priority to PE2021001758A priority Critical patent/PE20220210A1/en
Publication of WO2020217188A1 publication Critical patent/WO2020217188A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Definitions

  • the present invention refers to a process for the "in situ" control of groundwater contamination by infiltration of mining tailings dam waters.
  • tailings correspond to a fine suspension of solids in liquid. These are fundamentally constituted by the same material present in-situ in the deposit, in addition to reagents and chemical elements used in the mineral obtaining processes.
  • the tailings contain high concentrations of chemicals and elements that alter the environment, so they must be transported and stored in "dams or tailings deposits", where the contaminants slowly settle to the bottom and the water is recovered or evaporated. Due to the decrease in the ore grades of the deposits, it will be necessary to extract more and more tonnages of material to maintain their production levels, which will mean a proportional increase in the amount of waste that must be disposed of in the form of tailings.
  • Tailings dams Long-term failure mechanisms in tailings dams include cumulative damage (eg, erosion or earthquakes), geological hazards (eg, landslides), liquefaction, and changing weather patterns (Chambers, DM, & Higman, B. (2011) . Long term risks of tailings dam failure. Center for Science in Public Participation, Bozeman, Montana) Although it has been described that the majority of tailings dam failures are due to combined causes (39%) (Rico , M., et al.
  • tailings dams It is important to take into consideration that it has been estimated that the risk of failure in tailings dams is increasing, where it is directly related to the number of tailings accumulation dams greater than 5,000,000 cubic meters of capacity, necessary for allow the economic extraction of low grade minerals. Additionally, at least 11 catastrophic failures are expected worldwide between 2010 and 2019, with a total cost of approximately USD $ 6 billion (Mining (2015). Catastrophic mine waste spills increasing in frequency, severity and cost world-wide. Http: //www.mining.com/web/catastrophic- mine-waste-spills-increasing-in-frequency-severity-and-cost-world-wide /).
  • tailings dams consider in their design and operation different monitoring and control measures of possible leaks or seeps to prevent them from contaminating groundwater.
  • monitoring measures the use of monitoring wells downstream of drainage collecting pools, a system for measuring flows, groundwater levels and monitoring of surface waters can be considered.
  • seepage collection wells installed downslope from the reservoir (Duda, R. (2014). The Influence of Drainage Wells Barrier on Reducing the Amount of Major Contaminants Migrating from a Very Large Mine Tailings Disposal Site. Archives of Environmental Protection, 40 (4), 87-99).
  • This well is equipped with hydraulic pumps that send the seepage back to the tailings dam. These units can be used in conjunction with shear walls or trenches to minimize seepage downhill.
  • the quality of the effluent is monitored to determine the possibility of leaks, since any leakage that occurs in the underground layers can cause complications in the operation of the mining site with the consequent associated economic loss. It is important to mention that depending on the quality of the effluent, the operation of the hydraulic pump can continue indefinitely (EPA, 1994). Consequently, the current treatment with the hydraulic pump does not completely solve the problem.
  • the water that filters through the wall is recovered through drains and the channeling of the flow.
  • the water from the wall can be returned to the dam, or it can be collected in a common pond with the water recovered from the lagoon for its recirculation to the beneficiation plant (SERNAGEOMIN (2003) Guide of good environmental practices for small mining; Levenick JL et al. (2009). Hydrogeological assessment of seepage through the Antamina tailings dam - Antamina copper / zinc mine, Peru, South America, International Mine Water Conference 19th - 23rd October 2009, Pretoria, South Africa).
  • the water that infiltrates at the subsoil level is recirculated from a series of catchment wells located downstream and is monitored by independent drilling.
  • a zone of low hydraulic conductivity is generated in the contaminated underground aquifer.
  • the process occurs even in the absence of oxygen •
  • the process is designed to operate at low temperature (for example at 19 ° C)
  • the microbial consortium is adapted to groundwater contaminated with seepage from a tailings dam.
  • the process allows additionally to reduce the sulfate concentration.
  • the main object of the present invention is a method to reduce the hydraulic conductivity and generate the precipitation of insoluble minerals in an underground aquifer, which comprises at least the steps of:
  • a) provide a culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated
  • the underground aquifer is affected by surface water seepage.
  • a particular embodiment refers to an underground aquifer that is affected by water seepage from a mining tailings dam.
  • the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is produced with a method that comprises at least the steps: a) inoculate a culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated in a fixed-bed anaerobic bioreactor with a support material,
  • the bioreactor support material is selected from the group of sand, silica, glass and ceramics.
  • the injection of the underground aquifer with an enriched culture of microorganisms and the injection of the underground aquifer with an electron donor and nutrients suitable for the culture of microorganisms enriched in reducing bacteria, and one or more metal cations that favor the Insoluble mineral precipitation is done by one or more injection wells.
  • the electron donor suitable for microorganism culture enriched in reducing bacteria is selected from the group of formate, formic acid, acetate and acetic acid.
  • said nutrients suitable for the culture of microorganisms enriched in reducing bacteria comprise at least ammonium and phosphate.
  • the nutrients suitable for the culture of microorganisms enriched in reducing bacteria further comprise a Complex nutrient, rich in vitamins, selected from the group of yeast extract and strained corn water.
  • the insoluble mineral that precipitates in the solid material of the underground aquifer is calcium carbonate.
  • the insoluble mineral that precipitates in the solid material of the underground aquifer is iron sulfide.
  • the method for reducing the hydraulic conductivity and generating the precipitation of insoluble minerals in an underground aquifer also allows the removal of sulfate from the underground waters of said aquifer.
  • the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is constituted, at least by bacteria of the Phylum Proteobacteria, Firmicutes and Bacteroidetes.
  • the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is constituted, at least by bacteria from the Phylum Proteobacteria or Firmicutes.
  • the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is constituted, at least by bacteria of the Gammaproteobacteria, Clostridia, Deltaproteobacteria and Bacteroidia Classes.
  • the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is constituted, at least by bacteria of the Clostridia or Deltaproteobacteria Class.
  • the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated contains, at least, bacteria of the Desulfovibrionales Order.
  • the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated contains, at least, bacteria of the Order Desulfobacterales.
  • the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated contains at least bacteria of the Desulfuromonadal Order.
  • the culture of microorganisms enriched in sulfate reducing bacteria and adapted to the groundwater of the aquifer to be treated contains, at least, bacteria of the Order Clostridiales.
  • the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated contains at least one genus of sulfate-reducing bacteria selected from the group consisting of Desulfomicrobium, Desulfovibrio, Desulfonema , Desulfuromonas, Desufutomaculum and Desulfosporosinus.
  • the culture of microorganisms, enriched in sulfate-reducing bacteria adapted to the groundwater of the aquifer to be treated is obtained from samples taken from live microbialites from lagoons or saline lakes. Samples of these live microbialites are found, for example, in live thrombolites from Lake Sarmiento, or in live stromatolites from Website Amarga, both in Torres del Paine National Park, Chile, in live microbialites from Website from Madison Interna and La Website.
  • the culture of microorganisms, enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is obtained with a method that comprises at least the steps:
  • the living microbialite is a living stromatolite. In another embodiment of the invention, the live microbialite is a live thrombolyte.
  • Microbialites in this invention, the concept of microbialites is understood as the "organo-sedimentary deposits that have increased as a result of a benthic microbial community trapped and attached to detrital sediments and / or forming the site of mineral precipitation such as calcium carbonate
  • the structures of microbialites can range from well-structured laminated stromatolites to coagulated thrombolites. Microbialites have been found in different environments, for example, hot springs, dolomitic ponds, hypersaline and / or alkaline lakes, rivers and lakes, environments open marine and hypersaline marine environments.
  • Stromatolites they are microbialites that are characterized by being laminated organo-sedimentary structures (typically CaCÜ3) that grow attached to the substrate and emerge vertically from it, producing structures of great morphological, volumetric and biogeographic variety. Thrombolites: these are microbialites related to stromatolites, but they lack lamination and are characterized by macroscopic coagulated tissue.
  • Living microbialites, stromatolites or thrombolites they are organo-sedimentary structures that are currently found in lake or marine systems and that present an active microbial community, whose metabolism participates in the mineralization process of these structures.
  • Microbial consortium in this invention, the concept of microbial consortium is understood as a group of different microorganisms that act together. In a microbial consortium, microorganisms with different metabolic capacities can be found. In the particular case of the sulfate-reducing microbial consortium, it is composed, for example, of fermentative, acetogenic and sulfate-reducing anaerobic microorganisms.
  • Bio-clogging is defined as the reduction in hydraulic conductivity and porosity of a saturated porous medium due to microbial growth.
  • Biologically Induced Mineralization is the process in which the metabolic activity of microorganisms (for example, bacteria) produces favorable chemical conditions for the formation of minerals (for example, the precipitation of calcium carbonates induced by increased alkalinity).
  • FIGURE 1 is a diagrammatic representation of FIG. 1 :
  • This figure shows a schematic diagram of the sand-filled bioreactor.
  • the bioreactors (1) were made of glass.
  • an outer glass jacket (2) was used, fed with water from a thermoregulated bath.
  • the bioreactor was filled with sterilized sand (3).
  • a pair of glass piezometers located one in the lower part (4) and another in the upper part (5) of the bioreactor. The feeding was done by peristaltic pumps from the lower part (6) to the upper part (7) of the bioreactor.
  • FIGURE 2 is a diagrammatic representation of FIGURE 1
  • FIGURE 3 shows the parameters in bioreactor effluent inoculated with microorganisms from a live thrombolite from Lake Sarmiento.
  • A pH values
  • B sulfate concentrations (filled squares) and calcium concentrations (open squares).
  • FIGURE 3 shows the parameters in bioreactor effluent inoculated with microorganisms from a live thrombolite from Lake Sarmiento.
  • A pH values
  • B sulfate concentrations (filled squares) and calcium concentrations (open squares).
  • This figure shows the parameters in the effluent of a bioreactor inoculated with microorganisms from a live stromatolite from Website from Website Amarga.
  • A pH values and oxidation-reduction potential
  • B sulfate concentrations (filled squares) and hydrogen sulfide concentrations (open squares)
  • C calcium concentration.
  • FIGURE 4
  • This figure shows schematically the design of the steel columns of 1.40 meters high and 25 centimeters in diameter, with lateral outlets at 8, 50, 90 and 130 centimeters from the base for the installation of pressure measuring instruments, used to measure the reduction of hydraulic conductivity in the sand bed by the enriched microbial consortia.
  • FIGURE 5
  • FIGURE 6 This figure shows the parameters in the effluent from column A inoculated with the microbial consortium enriched from the sample of the microbialite from Lake Sarmiento.
  • A Microbial ATP in the effluent (open squares) and oxidation-reduction potential (solid squares),
  • B sulfate concentrations (open diamonds) and hydrogen sulfide in the effluent (solid diamonds).
  • the line indicates the sulfate concentration in the added culture medium.
  • FIGURE 6 This figure shows the parameters in the effluent from column B inoculated with the microbial consortium enriched from the stromatolites sample from Website.
  • A Microbial ATP in the effluent (open squares) and oxidation-reduction potential (solid squares),
  • B sulfate concentrations (open diamonds) and hydrogen sulfide in the effluent (solid diamonds).
  • the line indicates the sulfate concentration in the added culture medium.
  • FIGURE 7 is a diagrammatic representation of FIGURE 7
  • This figure shows the parameters in the effluent from column C with biocide.
  • A Microbial ATP in the effluent (open squares) and oxidation-reduction potential (solid squares)
  • the line indicates the sulfate concentration in the added culture medium.
  • FIGURE 8
  • This figure shows the pH measurements in bioreactors B1, B2 and B3.
  • Bioreactors B1 and B3 were fed with culture medium A, but bioreactor B1 was switched to culture medium B on day 170.
  • Bioreactor B2 was permanently fed with culture medium B.
  • FIGURE 9 is a diagrammatic representation of FIGURE 9
  • Bioreactors B1, B2 and B3 were fed with culture medium A, but bioreactor B1 was switched to culture medium B on day 170. Bioreactor B2 was permanently fed with culture medium B.
  • FIGURE 10 is a diagrammatic representation of FIGURE 10
  • This figure shows the sulfur (hydrogen sulfide) measurements in bioreactors B1, B2, and B3.
  • Bioreactors B1 and B3 were fed with culture medium A, but bioreactor B1 was switched to culture medium B on day 170.
  • Bioreactor B2 was permanently fed with culture medium B.
  • FIGURE 11 This figure shows the remaining sulfate measurements in bioreactors B1, B2, and B3. Bioreactors B1 and B3 were fed with culture medium A, but bioreactor B1 was switched to culture medium B on day 170. Bioreactor B2 was permanently fed with culture medium B.
  • FIGURE 12 This figure shows the remaining sulfate measurements in bioreactors B1, B2, and B3. Bioreactors B1 and B3 were fed with culture medium A, but bioreactor B1 was switched to culture medium B on day 170. Bioreactor B2 was permanently fed with culture medium B.
  • FIGURE 12 This figure shows the remaining sulfate measurements in bioreactors B1, B2, and B3. Bioreactors B1 and B3 were fed with culture medium A, but bioreactor B1 was switched to culture medium B on day 170. Bioreactor B2 was permanently fed with culture medium B.
  • FIGURE 12 This figure shows the remaining sulfate measurements in bioreactors B1, B2, and B3. Bioreactors B1
  • This figure shows an example of the aquifer model design built on the basis of acrylic chambers. Shown is an acrylic chamber with a removable lid packed with quartz sand. In the figure you can distinguish the ports for inoculation and stimulation of microorganisms, and for taking samples. At their ends, a pipe was installed internally for the flow water inlet and another for the effluent outlet.
  • FIGURE 13 is a diagrammatic representation of FIGURE 13
  • FIGURE 15
  • This figure shows the relative retention times of the aquifer models during the experimentation time.
  • the retention times relative to the initial retention time of the aquifer models are shown.
  • FIGURE 16 is a diagrammatic representation of FIGURE 16
  • FIGURE 17 shows the change in tracer flow around a zone of lower permeability in the porous medium of the aquifer models.
  • An example of the tracer passage in one of the aquifer models is shown on day 55 of operation. Tracer deviation is observed when meeting the blackened area of the porous medium (o): inoculation point.
  • FIGURE 17 shows the change in tracer flow around a zone of lower permeability in the porous medium of the aquifer models.
  • An example of the tracer passage in one of the aquifer models is shown on day 55 of operation. Tracer deviation is observed when meeting the blackened area of the porous medium (o): inoculation point.
  • FIGURE 17 shows the change in tracer flow around a zone of lower permeability in the porous medium of the aquifer models.
  • This figure schematically shows a pH map in the sand of the inoculated aquifer models at the end of the experiment (60 days).
  • a zone of pH 8 is observed that is distributed from the inoculation zone and reaches the end where the effluent exits, as well as specific zones of pH 8.5 in one of the duplicates.
  • a pH 7.5 was observed in all areas of the model.
  • the circle represents the point of inoculation and stimulation with culture medium.
  • FIGURE 18 is a diagrammatic representation of FIGURE 18
  • This figure schematically shows the microbial ATP maps in the sand from the aquifer models at the end of the experiment.
  • the black arrows indicate the direction of the hydraulic flow inside the aquifer models.
  • the circle represents the point of inoculation and stimulation with culture medium.
  • FIGURE 19 is a diagrammatic representation of FIGURE 19
  • FIGURE 20 This figure is a photograph illustrating the biomineralization of quartz sand at the inoculation point of the aquifer models. A portion of biomineralized quartz sand that was located at the inoculation point of the inoculated models is shown. In areas more distant from the inoculation point, the formation of sand agglomerates similar to the one in the image was not observed.
  • FIGURE 20
  • This figure shows the microbial sulfate reduction (SCU 2- and H2S) and physicochemical parameters (pH and oxide-reduction potential) in the aquifer models stimulated with the different formate concentrations.
  • SCU 2- and H2S microbial sulfate reduction
  • physicochemical parameters pH and oxide-reduction potential
  • FIGURE 21 is a diagrammatic representation of FIGURE 21.
  • This figure shows the remaining formate concentration in the aquifer models stimulated with the different concentrations of the electron donor.
  • FIGURE 22
  • This figure shows the retention times relative to the initial time in the aquifer models stimulated with the different formate concentrations.
  • FIGURE 23 is a diagrammatic representation of FIGURE 23
  • FIGURE 24 This figure schematically shows the pH maps in the sand of the aquifer models stimulated with the different formate concentrations at the end of the experiment (60 days).
  • the pH values in sand tend to increase as the concentration of formate in the growing medium is increased.
  • specific areas of pH 8.5 were observed.
  • the black arrows indicate the direction of the hydraulic flow inside the aquifer models.
  • the circle (o) represents the point of inoculation and stimulation with culture medium.
  • This figure schematically shows the microbial ATP maps in the sand from the aquifer models stimulated with the different formate concentrations at the end of the experiment.
  • the ATP value (in URL / g of sand) is shown in the three zones of the sand of the aquifer models stimulated with the different formate concentrations.
  • the black arrows indicate the direction of the hydraulic flow inside the aquifer models.
  • FIGURE 25
  • This figure shows the biologically induced mineralization of the quartz sand from the aquifer models inoculated with the different formate concentrations at the end of the experiment.
  • Aquifer models uncovered at the end of the experiment are shown.
  • the red line delimits the mineralized zone (of greater hardness compared to other zones) of the porous medium of the aquifer models. All the models (duplicates) used are shown (central column).
  • the bioreactor on the right shows the percentage of the area occupied by the mineralized zone with respect to the total surface of the upper face of the models (Calculated using the ImageJ program).
  • FIGURE 26 is a diagrammatic representation of FIGURE 26.
  • FIGURE 27 shows the surface area of biomineralized sand in the aquifer models as a function of the formate concentration in the culture medium. A direct dependence of
  • This figure shows the images obtained by scanning electron microscopy of the quartz sand from the aquifer models stimulated with the lowest and highest concentrations of formate (3 and 18 g / L) at the end of the experiment.
  • A Crystalline CaCÜ3 mineral and bacterial clumps in a quartz sand sample from one of the models stimulated with 3 g / L formate.
  • B CaCÜ3 crystalline mineral and bacterial clusters in a quartz sand sample from one of the models stimulated with 18 g / L of formate.
  • ac quartz sand carb: carbonate. Arrows: bacterial clusters.
  • FIGURE 29 is a diagrammatic representation of FIGURE 29.
  • This figure illustrates the flow diagram of a particular application of the process to reduce hydraulic permeability and generate precipitation of insoluble minerals in situ from a sulfate-contaminated underground aquifer.
  • Lake Sarmiento de Gamboa 51 ° 03O0 "S, 72 ° 45'0 W), Torres del Paine National Park, XII Region, Chile.
  • Sarmiento Lake has a maximum depth of 312 m and an approximate area between 83 and 84 km 2.
  • Lake Sarmiento de Gamboa is an alkaline lake with an average salinity of 1.9 mg / L, a pH between 8.3 and 8.7, and an average surface temperature of 6.2 ° C in winter and 12.2 ° C in summer.
  • Lake Sarmiento has live microbialites, which have a non-laminated structure made up of carbonate clots which classifies them as thrombolites.
  • the sampling process consisted of the manual extraction of live thrombolites located underwater on the shore of the Northeast sector of the lake, which were placed at 6 ° C in sterile plastic jars. Because it is a State Protected Wild Area, permission was obtained from the National Forestry Corporation (CONAF Authorization N ° 012/2014) to carry out the sampling.
  • the bioreactors (1) were made of glass and had 173 mL capacity, 18 cm in length and 3.5 cm in internal diameter.
  • an outer glass jacket (2) was used, fed with water from a thermoregulated bath at 18 ° C.
  • the bioreactor was filled with sand (3).
  • a filter was installed at the bottom of the bioreactor to prevent sand from running into the feed hoses. This filter consisted of a PVC tube covered with a plastic mesh, through the lower opening.
  • the bioreactor was filled with sterile distilled water, taking care to remove all trapped air.
  • the sand was sterilized and dried in an oven at 180 ° C for 2 hours.
  • a pair of piezometers of glass located one at the bottom (4) and one at the top (5) of the bioreactor. The difference in the water height of the piezometers allowed determining the hydraulic conductivity.
  • the feeding was done by peristaltic pumps (Cole-Palmer, model 7557-14, 1-100 rpm, USA) from the bottom (6) to the top (7) of the bioreactor, with an upward flow of 0.2 mL. / min.
  • the external jacket of the bioreactor was connected to the thermoregulated bath with silicone hoses, while the other connections were made as follows: with silicone hoses, the inlets, outlets and installation of the piezometers; with Tygon hoses (impermeable to gaseous exchange) the feeding, recirculation and effluent outlet routes. All the hoses of the system, and their connectors, were previously sterilized in an autoclave. To generate the feed flow, a peristaltic pump (Cole-Palmer, model 7557-14, 1-100 rpm, USA) was used. To prevent changes in the internal temperature of the system, along with preventing the passage of light to the interior (simulating the conditions of the underground layer), the bioreactors were wrapped with a thermal insulator.
  • the medium was adjusted to pH 7.9.
  • the culture medium was prepared in water extracted groundwater hydraulic barrier of a tailings dam, whose main components are HCO3 ⁇ 217.7 mg / L, Ca 2+ 302 mg / L, Mg 2+ 76.6 mg / L and SCL 2- 1192.3 mg / L.
  • Groundwater extracted from a contaminated aquifer was used to prepare the culture medium to enrich a microbial consortium adapted to the environmental conditions of the site to be treated.
  • barium sulfate that is formed by adding the soluble salt of barium chloride (BaCh) in excess was used (American Public Health Association, American Water Works Association and Water Environment Federation. 1998a. "4500-S04-2 E”. In: "Standard methods for the examination of water and wastewater”. Ed. 20).
  • the barium sulfate formed was determined by turbidimetry using a spectrophotometer at 450 nm (Dynamica spectrophotometer, model HALO RB-10, Great Britain).
  • the concentration of calcium in solution was performed by absorption spectrometry, using the following protocol: 1 mL of effluent was centrifuged for 10 minutes at 11,600 g (Microcentaur MSB010.Cx2.5 centrifuge; Sanyo, Great Britain), 500 pL of supernatant was diluted in distilled water, to bring the determination within the measurable range. From the mentioned solution, 1 mL of solution was taken and added to a test tube with 8 mL of distilled water and 1 mL of a 4,000 mg / L Sr 2+ solution with 0.8N HCIO4. Finally the solution is measured using a Perkin Elmer atomic absorption spectrophotometer, model 3110, USA (American Public Health Association, 1992a; American Public Health Association, 1992b).
  • the reduction in calcium concentration is explained by the mineralization of calcium carbonate inside the bioreactor (biologically induced mineralization).
  • the effluent from this column which contains the sulfate-reducing microbial consortium from thrombolites from Lake Sarmiento, Torres del Paine, is used as an inoculum for a process that reduces hydraulic permeability and generates the precipitation of insoluble minerals in a contaminated aquifer. .
  • this effluent is used to inoculate a new bioreactor of equal or greater size.
  • Live stromatolites were sampled from Georgia Amarga (50 ° 58'27 "S, 72 ° 44'55” W), Torres del Paine, XII Region, Chile.
  • Website Amarga is a shallow endorheic mesosaline lagoon (maximum depth 4 m) with an approximate area of 1. 9 km 2 .
  • the average pH of the lake is 9.1, while the average salinity and temperature is 26.1 mg / L and 11.7 ° C, respectively.
  • La Website Amarga presents live laminar microbialites or stromatolites, with bulbous, domed and elongated shapes (Solari et al.
  • bioreactors filled with sand were used, according to what was previously described in Example 1.
  • the inoculation of the bioreactors with a sample of stromatolite from the Website Amarga and the subsequent colonization of the sand was also carried out. as already described in Example 1.
  • the culture medium was then fed to the bioreactor, without recirculation, with a flow rate of 30-90 mL / week.
  • the determination of the sulfate and calcium concentrations in solution were carried out according to Example 1.
  • Figure 3A shows the result of the enrichment of the microbial consortium.
  • Figure 3B shows a significant reduction in the sulfate concentration in the bioreactor effluent, compared to the concentration added with the culture medium. In this case, it was reached sulfate concentrations less than 1500 mg / L.
  • Figure 3B shows that from day 100 the hydrogen sulfide concentration increases significantly. This shows the activity of the sulfate reducing microorganisms in the enriched microbial pool.
  • Figure 3C shows a progressive decrease in the concentration of calcium in the effluent compared to what is added in the culture medium.
  • the effluent from this bioreactor which contains the sulfate-reducing microbial consortium enriched from stromatolites from the Website Amarga, is used as inoculum for a process that allows reducing hydraulic permeability and generating the precipitation of insoluble minerals in a contaminated aquifer.
  • this effluent is used to inoculate a new bioreactor of equal or greater size.
  • the column cover was placed and the hose connections made using Tygon hoses. Then a hose connected to a thermoregulated bath was wound along the columns and the structure was surrounded with a thermal insulator, in order to keep the interior of the columns at 18 ° C.
  • the following culture medium was used: K2SO4 4.6 g / L; MgSO4 * 7H 2 0 0.06 g / L; NaHCOs 0.035 g / L; CaCl 2 * 2H 2 0 3.4; NhUCI 1 g / L; Na 2 (Si0 3 ) 0.009 g / L; KH 2 R0 4 0.05 g / L; 0.279 g / L sodium citrate; sodium acetate 4.5 g / L; yeast extract 1 g / L; sodium thioglycolate 0.099 g / L.
  • the culture medium was prepared with groundwater extracted from the hydraulic barrier of a tailings dam, whose main components are HCO3 ⁇ 217.7 mg / L, Ca 2+ 302 mg / L, Mg 2+ 76.6 mg / L and 1192.3 mg SCL 2- / L.
  • thioglycollate was also added, a reducing compound that gives the culture medium a suitable oxide reduction potential for the development of sulfate reducing bacteria.
  • Example 2 The determination of sulfate and calcium concentrations was carried out according to Example 1 and the measurement of hydrogen sulfide (or sulfides) in solution, according to Example 2.
  • the ATP concentration in the effluents was determined with the commercial ATP measurement system LixKit ® , Biohidrica, Chile, which is based on the reaction of ATP-dependent oxidation of luciferin catalyzed by the enzyme luciferase.
  • the amount of light produced by the reaction was determined using a Kikkoman luminometer, model Lumitester PD-20, Japan. For this, 5 mL of effluent from the models were taken, from which the microorganisms were concentrated by filtration on nitrocellulose membranes (0.22 pm).
  • the filtered microorganisms were collected with the torula provided in the system, which is inserted into the reaction rod containing the cell lysis liquid and the other lyophilized components for ATP-dependent oxidation of luciferin.
  • the luminescence value obtained (in Relative Light Units, URL), was divided by 5 to obtain the value of URL / mL.
  • Figure 6A shows high values of intracellular ATP in the effluent of the column at the beginning of the experiment, which decrease over time.
  • the sulfate measurements from the effluent, shown in Figure 6B indicate that from the beginning of the experiment there was a decrease in the sulfate values in the effluent from column B compared to the sulfate concentration fed with the medium. cultivation.
  • Figure 6B shows an active production of hydrogen sulfide from day 60, increasing its concentration in the effluent, to reach values of 450 mg / L on day 140.
  • Hydraulic conductivity was determined at the end of the experiment in the columns, performing pressure measurements with pressure transmitters (flush diaphragm pressure transmitters model C9000156, Veto, Chile). Hydraulic conductivity was calculated using Darcy's equation, presented below:
  • Hsat is the saturation hydraulic conductivity
  • Q is the flow rate (feed rate of the column)
  • L is the distance between the measuring stations
  • A is the diameter area of the column
  • DH is the difference between the heights of the measured water columns.
  • bioreactors filled with sand of 250 ml of internal volume were mounted according to Example 1 and were named: B1, B2 and B3.
  • Each of the bioreactors contains quartz sand as internal support material (particle size 297-841 pm) and are maintained under anaerobic conditions at a temperature of 18 ° C and periodically fed with culture media A and B described in the Table 3.
  • the media differ because medium A contains formate, while medium B has acetate as major electron donor. Furthermore, medium A lacks citrate and has a lower concentration of yeast extract.
  • These culture media were prepared in water from the tailings dam, which had a pH of 7.9 and a sulfate concentration of 1500 mg / L.
  • the three bioreactors were inoculated with the effluent from the bioreactor of Example 1, which contains the sulfate-reducing microbial consortium enriched from Lake Sarmiento thrombolites.
  • bioreactor B1 Two bioreactors were fed with culture medium A (B1 and B3), however, bioreactor B1 was switched to culture medium B on day 170. On the other hand, bioreactor B2 was permanently fed with culture medium B To each of the bioreactors, periodic measurements of physical-chemical parameters (pH, sulfate, sulfur,) and biological parameters (bacterial count, ATP) were carried out, in order to determine and establish possible conditions that occur in the assembled systems.
  • physical-chemical parameters pH, sulfate, sulfur,
  • biological parameters bacterial count, ATP
  • Example 2 The determination of the concentrations of sulfate, calcium, according to Example 1, ATP according to Example 3 and hydrogen sulfide (or sulfides) in solution were carried out according to Example 2.
  • the pH shows a clear increase (> 8.2) in the bioreactor B2, which contains formate as a carbon source (culture medium A).
  • the B1 bioreactor when supplied with formate (from day 170 of operation), the pH increases considerably from 7.2 and exceeding 8.5.
  • Bioreactor B3 maintains a constant pH, varying slightly between 7.1 and 7.6 ( Figure 8).
  • the bacterial count ( Figure 9), maintains a variable rhythm until day 125, however, then reaches a steady state until day 170, maintaining a count of the 3 bioreactors between 1, 8 and 3.0 x 10 8 bacteria / mL. The same is observed in intracellular ATP measurements. A significant increase in the bacterial count (5.0 x 10 8 bacteria / mL) is observed in bioreactor B1 when switching from electron donor to formate on day 200 (culture medium A).
  • an aquifer model or (sandbox) was designed in which the water flows horizontally through a sand bed.
  • East Aquifer model has an inlet (infiltration well) for the injection of nutrients and microbial consortium and sampling ports.
  • transparent acrylic chambers Panexiglas
  • Figure 12 transparent acrylic chambers with internal dimensions of 32 x 12 x 1 cm were used; length, width and height respectively ( Figure 12). These were provided with a removable lid, which had holes where ports were installed for the inoculation and stimulation of microorganisms, and a sampling port located downstream with respect to the previous ones.
  • an internal pipe was installed at one end, which spanned the entire width of the model, built with Tygon hose (MasterFlex) perforated every 1 cm, It was used for the water inlet that simulates the underground aquifer hydraulic flow.
  • Tygon hose was installed for the effluent outlet of the models.
  • the internal volume of the model (384 mL) was packed with 545 g of quartz sand with a particle size between 200-800 pm, which was previously washed with 10% HCl (v / v), rinsed with distilled water.
  • a brilliant blue (AB) solution (as a tracer) at a concentration of 100 mg / L was passed through the water inlet of the models flow, and samples were taken from the sampling port every 30 minutes since its entry into the models was observed. This procedure was performed until the The concentration of the tracer in the sample port reached half the concentration in the initial solution (i.e., 50 mg / L), and that time was recorded as the time required for the tracer to travel through that model section (or time retention).
  • the AB concentration was determined in a spectrophotometer at 630 nm (Dynamica spectrophotometer, model HALO RB-10, Great Britain).
  • the effluent volume was collected during 5 min in a test tube previously tared. The value obtained was divided by 5 to obtain the effluent volume in mL per minute.
  • the aquifer models were inoculated with the sulfate-reducing microbial consortium using the effluent from the bioreactor B1 of Example 4.
  • the microbial composition of this consortium is detailed below in Example 6 (see Tables 4, 5, 6, 7 and 8).
  • each inoculum pulse contained T10 9 microorganisms as calculated by microbial count.
  • culture medium was supplied continuously at a rate of 0.2 mL / min.
  • the composition of the culture medium per liter was: 0.035 g of NaHCC> 3, 0.03 g of MgSO7H 2 0, 2.4 g of K2SO4, 0.007 g FeSC> 4-7H 2 0.1 g of NH 4 CI, with 4.95 g of sodium formate, 0.01 g of KH 2 PC> 4, 1.72 g of CaCl 2 -2H 2 0, 0.1 g of yeast extract and 0.099 g of thioglycolic acid.
  • the culture medium was prepared with groundwater extracted from the hydraulic barrier of a tailings dam, whose main components are HCO3 ⁇ 217.7 mg / L, Ca 2+ 302 g / L, 76.6 mg Mg 2+ / L and S04 2 to 1192.3 mg / L
  • the effluent from the models was used to make the determinations of pH, potential, formate, microbial count and ATP.
  • Example 1 ATP according to Example 3 and hydrogen sulphide (or sulphides) in solution were carried out according to Example 2. Microbial counting was carried out using the methodology described in Example 4.
  • a protocol was used to determine the amount of ATP of the microorganisms adhering to the quartz sand of the aquifer models. For this, 200 mg of a sand sample was taken, which was washed with distilled water to remove the bacteria present in the pore volume, after which 1 mL of the cell lysis solution contained in the system was added. determination of ATP. Subsequently, the lysis supernatant was reacted with the other lyophilized components (luciferin-luciferase) to determine the amount of ATP by means of a Kikkoman luminometer, model Lumitester PD-20, Japan. The luminescence value obtained was expressed as URL / g of sand.
  • Determination of pH in pore water Once the aquifer models were opened, the pH in the sand pore water was immediately determined in different areas of the models, wetting pH indicator strips. The colors of the strips were compared to the standard provided on the product package. The pH readings were used to make a pH map corresponding to the upper plane of the porous medium of the models.
  • X-ray diffraction The sand samples were ground in a mortar to obtain a sample with adequate granulometry to perform X-ray diffraction (XRD). They were then analyzed using a D8 Advance X-ray diffraction machine, Bruker, Germany. The diffractogram obtained was compared with those corresponding to standard mineral samples with CaCC> 3.
  • the analyzes of the experiments with the tracer on day 55 show that the blackened feathers represent an area of lower permeability compared to other areas of the porous medium, since it is observed that the dye deviates when it encounters this area, causing most of the hydraulic flow occurs through the non-blackened areas (Figure 16).
  • the blackened areas of the plume are due to the formation of iron sulphide precipitates from the hydrogen sulphide generated in the inoculated models and the presence of traces of iron in the infiltrated culture medium.
  • the aquifer models were disassembled to determine the pH, the microbial intracellular ATP, the relative abundance of the microorganisms and the carbonate minerals formed in the sand.
  • the pH value in the sand pore water was determined by means of pH indicator rods. This allowed making a map of this parameter (Figure 17). Three zones were distinguished in the sand of the models: a) zone 1: first third located in the vicinity of the flow water inlet zone, b) zone 2: second third located in the central zone, and c) zone 3: third third located towards the effluent outlet zone. In all the inoculated aquifer models, a pH 8 zone was observed in zones 2 and 3. Point zones of pH 8.5 were also observed in one of the duplicates, which are located within the pH 8 zones. A lower pH value (close to 7.5) was observed in zone 1. High local pH values are of great importance to induce the precipitation of carbonates. Instead, in the No alkalinization was observed in the control model, since a pH of 7.5 was detected in all areas.
  • the control model (not inoculated), showed considerably lower values in all zones compared to the inoculated ones ( Figure 18).
  • This example shows that it is possible to establish an active sulfate reducing microbial consortium in the porous medium of a continuous hydraulic flow model aquifer, which consists of hydraulic barrier water from a sulfate-containing tailings dam.
  • the microbial reduction of sulfate which is the product of the inoculation and stimulation of the microbial consortium, was able to biomineralize a portion of the quartz sand (porous medium), due to the accumulation of CaCÜ3 minerals, which according to the experiments carried out with the tracer corresponds to an area of less permeability to hydraulic flow.
  • the massive sequencing of the 16S rRNA gene was used.
  • the microorganisms of the inoculum were concentrated by centrifugation from a sample of the effluent of the bioreactor B1 of Example 4, used for the production of the inoculum.
  • a sand sample was taken from the central zone (zone 2) of one of the inoculated duplicates. From these samples, the total genomic DNA of the microorganisms adhered to the sand was extracted for subsequent massive sequencing of the 16S rRNA gene by Illumin technology.
  • Tables 4, 5, 6, 7 and 8 show the relative abundance of the 16S rRNA gene sequences in the DNA extracts of the microorganisms of the inoculum used, at the level of Phylum, Order, Class, Family and genus. respectively.
  • the sequencing results showed that the main Phyla present in the inoculum microbial community were classified as Proteobacteria, Firmicutes and Bacteroidetes (Table 4).
  • the inoculum microbial community was composed mainly of Gammaproteobacteria, Clostridia, Deltaproteobacteria, Betaproteobacteria, Alphaproteobacteria and Bacteroidia (Table 5).
  • the predominant Orders corresponded to Oceanospirillales, Clostridiales, Enterobacteriales, Desulfovibrionales, Burkholderiales, Pseudomonadales, Bacteroidales y Caulobacterales (Table 6).
  • the main microorganisms present were: Oceanospirillaceae, Peptococcaceae, Enterobacteriaceae, Desulfomicrobiaceae, Pseudomonadaceae, Comamonadaceae, Porphyromonadaceae, Clostridiaceae, Caulobacteraceae and [Tissierellaceae] (Table 7).
  • the sequencing results showed that the main genera of the microbial community of the inoculum were classified into: Family Oceanospirillaceae, Desulfosporosinus, Desulfomicrobium, Pseudomonas, Citrobacter, Family
  • the results of the sequencing showed that the main Phyla present in the microbial community adhered to the quartz sand were classified as Proteobacteria, Firmicutes and Bacteroidetes (Table 4).
  • the microbial community of the sand was composed mainly of Gammaproteobacteria, Clostridia, Deltaproteobacteria and Bacteroidia (Table 5).
  • the predominant Orders corresponded to Clostridiales, Desulfovibrionales, Pseudomonadales and Bacteroidales (Table 6).
  • the main microorganisms present were: Desulfomicrobiaceae,
  • the sequencing results showed that the main genera of the sand microbial community were classified into: Desulfomicrobium, Pseudomonas, Family Porphyromonadaceae, Family Clostridiaceae, Sedimentibacter, Tissierella_Soehngenia and Order Bacteroidales (Table 8).
  • the microorganisms that showed the highest relative abundance were Desulfomicrobium (58.37%), Family Porphyromonadaceae (19.04%) and Pseudomonas (4.53%).
  • Desulfomicrobium stands out among them for its ability to reduce sulfate biologically.
  • Desulfomicrobium increased considerably with respect to the percentage composition of the inoculum community (Table 8). A significant increase in sequences corresponding to a genus of the Porphyromonadaceae family was also found. These differences can be attributed to the particular microenvironmental conditions of the sand.
  • the analyzes of this example show that the enriched microbial consortium used as inoculum in Example 5 exhibits high bacterial diversity, among which some classes can be found that include sulfate-reducing bacteria, such as the Deltaproteobacteria. Among them, the Desulfosporosinus and Desulfomicrobium genera stand out for their ability to reduce sulfate biologically. When studying the microbial community adhered to the quartz sand at the end of the experiment in the aquifer model, it was found that this was qualitatively similar to that of the inoculum used, with some microorganisms that significantly increased their proportion. This is the case of the genus Desulfomicrobium.
  • the aquifer models were disassembled to determine the pH, the microbial intracellular ATP, the relative abundance of the microorganisms and the carbonate minerals formed in the sand.
  • the pH value in the sand pore water was determined by means of pH indicator rods. This allowed making a map of this parameter (Figure 23). Three zones were distinguished in the sand of the models: a) zone 1: first third located in the vicinity of the flow water inlet zone, b) zone 2: second third located in the central zone, and c) zone 3: third third located towards the effluent outlet zone.
  • the pH values in sand tended to increase as the concentration of formate in the culture medium increased (Figure 23).
  • ATP values in sand were higher in zones 2 and 3 of the models, while zone 1 (upstream to the inoculation point) was lower with respect to the other zones ( Figure 24).
  • zones 2 and 3 a dependent increase of formate concentration in the culture medium of this parameter was observed, within the range between 3 and 12 g / L.
  • a maximum value of ATP / g of sand is reached, since in the models with the highest amount of formate (18 g / L), these decrease to values similar to those of the test carried out with 6 g / L of formate.
  • the increase in the concentration of formate in the culture medium produced an enrichment of the sequences corresponding to the sulfate reducing genus Desulfomicrobium, which predominated in all samples (Table 10), reaching 35, 48, 52 and 57% in the sand from the aquifer models stimulated with 3, 6, 12 and 18 g / L of formate, respectively.
  • the increase in the electron donor also produced the notorious enrichment of the sequences corresponding to the genus Pseudomonas.
  • the opposite effect on other components of the microbial community was also observed, since the sequences of the predominantly aerobic family were reduced.
  • the process consists of a system to reduce hydraulic permeability and generate the precipitation of insoluble minerals in an aquifer with groundwater contaminated with sulfate and / or with sulfate and metals.
  • the process consists of at least the steps of: a) providing a culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated, b) injecting the aquifer with an enriched culture of microorganisms, c) injecting the aquifer with an electron donor and nutrients suitable for the culture of microorganisms enriched in sulfate-reducing bacteria and one or more metal cations that favor the precipitation of insoluble minerals, and d) allow the microorganisms to multiply and colonize the solid material of the aquifer, reducing the hydraulic permeability of the aquifer and generating the precipitation of insoluble minerals in the solid material of the aquifer.
  • the process begins with the extraction of groundwater contaminated with sulfate and / or with sulfate and metals (1), from an underground aquifer, whose flow direction is indicated by arrows (2).
  • One well or more wells are used to extract groundwater extraction (3), which are installed from the surface level of the ground (4) to extend below the water table (5).
  • the well (s) In the water table sector, the well (s) have grooves, perforations or other permeable sections (6), which allow the extraction of groundwater.
  • the extracted groundwater enters through the conduit (7) to the pond (8).
  • conduit (9) an electron donor and nutrients suitable for the cultivation of microorganisms enriched in sulfate-reducing bacteria and one or more metal cations that favor the precipitation of insoluble minerals are added.
  • the added compounds are stirred in the pond to obtain a solution
  • the solution is entered into the fixed-bed anaerobic bioreactor (11), which has been previously inoculated with an enriched sulfate reducing microbial consortium, of according to the previous Examples.
  • the well (s) In the water table sector, the well (s) have grooves, perforations or other permeable sections (14), which allow the injection of microorganisms and nutritive solutions into the groundwater.
  • the solution from the pond (8) is also added directly, through the conduit (15) to one well or more injection wells (13), said solution is injected to groundwater through slots, perforations, or other permeable sections (14).
  • Microorganisms proliferate in the pores and on the surface of the particulate matter in the underground aquifer, impeding the flow of water. Furthermore, the metabolic activity of microorganisms, especially the biological reduction of sulfate, produces the partial removal of sulfate and the alkalization of the solution. As a result of the above, it is possible to generate a zone of reduction of hydraulic permeability and of precipitation of insoluble minerals in situ (16) in an area downstream of the injection point in an underground aquifer contaminated with sulfates. Insoluble minerals are primarily metallic carbonates and sulfides.
  • Carbonates such as calcite, aragonite, or vaterite, are formed in the environment alkaline, from bicarbonate produced by the anaerobic microbial degradation of organic matter and calcium added and / or present in groundwater.
  • metallic sulphides particularly FeS, precipitate by the reaction between the biologically formed H2S and iron oxides, such as maghemite, magnetite, hematite or goethite commonly present in soils and in particulate matter of underground aquifers.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Paleontology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mining & Mineral Resources (AREA)
  • Biochemistry (AREA)
  • Civil Engineering (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses an in-situ method for reducing hydraulic conductivity and generating the precipitation of insoluble minerals in an underground aquifer which is affected by seepage of surface water or by seepage of water from a mining tailings tank, comprising at least the following steps: (a) providing a sulphate-reducing bacteria-enriched microbial culture adapted to the underground water of the aquifer to be treated, (b) injecting an enriched microbial culture into the underground aquifer, (c) injecting an electron and nutrient donor for reducing bacteria-enriched microbal culture and one or more metal cations that favour the precipitation of insoluble minerals, and (d) allowing the microorganims to multiply and colonise the solid material of the underground aquifer, reducing the hydraulic permeability of the underground aquifer and causing the precipitation of insoluble minerals in the solid material of the underground aquifer.

Description

PROCESO PARA EL CONTROL IN SITU DE LA CONTAMINACIÓN DE AGUAS SUBTERRÁNEAS POR INFILTRACIÓN DE AGUAS DE TRANQUES DE RELAVE PROCESS FOR IN-SITU CONTROL OF THE POLLUTION OF GROUNDWATER BY INFILTRATION OF TAILING TRANQUES WATERS
MEMORIA DESCRIPTIVA DESCRIPTIVE MEMORY
CAMPO DE APLICACIÓN DE LA INVENCIÓN FIELD OF APPLICATION OF THE INVENTION
La presente invención se refiere a un proceso para el control “in situ” de la contaminación de aguas subterráneas por infiltración de aguas de tranques de relave de la minería. The present invention refers to a process for the "in situ" control of groundwater contamination by infiltration of mining tailings dam waters.
DESCRIPCIÓN DE LO CONOCIDO EN LA MATERIA DESCRIPTION OF WHAT IS KNOWN IN THE SUBJECT
Todas las actividades mineras generan residuos, como rocas de desecho (rocas excavadas que no son minerales) y relaves (el residuo del proceso de extracción o refinamiento de mineral). En el desarrollo de la minería, el diseño, operación y cierre de una instalación de gestión de relaves es una parte clave del proceso minero. La gestión ambiental efectiva de la eliminación de relaves durante la vida de la mina y después del cierre es un factor importante en el manejo de impactos ambientales a largo plazo. All mining activities generate waste, such as waste rock (excavated rocks that are not minerals) and tailings (the residue from the mineral extraction or refining process). In mining development, the design, operation and closure of a tailings management facility is a key part of the mining process. Effective environmental management of tailings disposal during the life of the mine and after closure is an important factor in managing long-term environmental impacts.
Los problemas asociados con el almacenamiento de relaves son cada vez mayores. Los avances en tecnología, permiten que minerales de baja ley, puedan ser explotados, lo que genera un mayor volumen de residuos que requieren un almacenamiento seguro. Las regulaciones ambientales también están avanzando, generando requisitos más rigurosos a la industria minera, en particular con respecto a las prácticas de almacenamiento de relaves. A pesar de los rigurosos estudios que se realizan para decidir su ubicación, siempre se presenta el problema de la filtración de las aguas del tranque a las napas freáticas. Es por ello, que es de gran importancia contar con tecnologías que permitan controlar efectiva y económicamente la contaminación de las napas freáticas, evitando que las soluciones generadas por la minería afecten negativamente. The problems associated with tailings storage are increasing. Advances in technology allow low-grade minerals to be exploited, generating a greater volume of waste that requires safe storage. Environmental regulations are also advancing, placing more stringent requirements on the mining industry, particularly with regard to tailings storage practices. Despite the rigorous studies that are carried out to decide its location, there is always the problem of the seepage of the dam waters into the groundwater table. It is for this reason that it is of great importance to have technologies that allow to control effectively and economically the contamination of the water tables, avoiding that the solutions generated by mining have a negative effect.
i Dentro de los materiales de residuo generados por la industria minera, los relaves corresponden a una suspensión fina de sólidos en líquido. Estos están constituidos fundamentalmente por el mismo material presente in-situ en el yacimiento, además de reactivos y elementos químicos utilizados en los procesos de obtención del mineral. El relave contiene altas concentraciones de químicos y elementos que alteran el medio ambiente, por lo que deben ser transportados y almacenados en "tranques o depósitos de relaves", donde lentamente los contaminantes se van decantando en el fondo y el agua es recuperada o evaporada. Debido a la disminución de las leyes de mineral de los yacimientos, será necesario extraer cada vez mayores tonelajes de material para mantener sus niveles de producción, lo que significará un aumento proporcional de la cantidad de desechos que deben ser dispuestos en la forma de relaves. i Within the waste materials generated by the mining industry, tailings correspond to a fine suspension of solids in liquid. These are fundamentally constituted by the same material present in-situ in the deposit, in addition to reagents and chemical elements used in the mineral obtaining processes. The tailings contain high concentrations of chemicals and elements that alter the environment, so they must be transported and stored in "dams or tailings deposits", where the contaminants slowly settle to the bottom and the water is recovered or evaporated. Due to the decrease in the ore grades of the deposits, it will be necessary to extract more and more tonnages of material to maintain their production levels, which will mean a proportional increase in the amount of waste that must be disposed of in the form of tailings.
Actualmente, los tranques de relaves activos e inactivos se encuentran expuestos a posibles fallas que pueden generar importantes incidentes en el medio ambiente, correspondientes a 5 millones de m3 de relave liberados al medioambiente (Azam, S., & Li, Q. (2010). Tailings dam failures: a review of the last one hundred years. Geotechnical news, 28(4), 50-54). Lamentablemente, los incidentes reportados indican que las fallas se han generado en tranques de relaves tanto activos como no activos (Venegas F. (2011), lo que implica que el cierre de una faena minera, no significa el término del problema. Algunos de los mecanismos de fallo a largo plazo en los tranques de relaves, incluyen daño acumulativo (ej. erosión o terremotos), peligros geológicos (ej. deslizamientos), licuefacción y los patrones climáticos cambiantes (Chambers, D. M., & Higman, B. (2011). Long term risks of tailings dam failure. Center for Science in Public Participation, Bozeman, Montana). A pesar que se ha descrito que la mayor parte de las fallas de los tranques de relaves se deben a causas combinadas (39%) (Rico, M., et al. (2008) "Reported tailings dam failures: a review of the European incidents in the worldwide context." Journal of hazardous materials 152.2: 846-852), estudios que han diferenciado las causas de los incidentes de fallas a nivel mundial, han mostrado que entre el 8% y el 20% de los incidentes (1990-2009) tienen como causa a las filtraciones y los canales generados por ellas. Esto es consistente con que la falta de control del régimen hidrológico del tranque es una de las causas más comunes de falla. Es importante mencionar que este tipo de fallas son las más evidentes o más fácilmente detectables, ya que han provocado incidentes importantes que han sido registrados a través del tiempo. Es importante tener en consideración que se ha estimado que el riesgo de fallos en los tranques de relaves se encuentra en aumento, donde éste se ve directamente relacionado al número de tranques de acumulación de relaves mayores que 5.000.000 metros cúbicos de capacidad, necesarios para permitir la extracción económica de minerales de baja ley. Adicionalmente, se prevé por lo menos 11 fallas catastróficas a nivel mundial entre 2010 y 2019, con un costo total aproximado USD$6 mil millones (Mining (2015). Catastrophic mine waste spills increasing in frequency, severity and cost world-wide. http://www.mining.com/web/catastrophic- mine-waste-spills-increasing-in-frequency-severity-and-cost-world-wide/). Otro tipo de filtraciones, que no son evidentes o fácilmente detectables, corresponden a las que se generan desde las aguas de la cubeta del tranque hacia las napas freáticas impactadas por el tranque de relaves, lo cual deriva en la contaminación de las aguas subterráneas. En este caso, no se trata de fallas o desastres de gran violencia y notoriedad. Por el contrario, estas infiltraciones a las aguas subterráneas son un problema que ocurre de manera permanente e invisible, pero que puede causar un daño de gran magnitud, impactando negativamente la salud de las personas y el medioambiente con dosis tóxicas de determinados elementos. Es conocido que el flujo de filtraciones desde un embalse superficial de relaves es inevitable y se señala que el vertido cero de la filtración de una instalación de residuos sigue siendo un objetivo difícil de alcanzar, incluso con sistemas de revestimiento complejos (Tailingsinfo (2013). Water Management Considerations for Conventional Storage. http://www.tailings.info/technical/water.htm). Currently, active and inactive tailings dams are exposed to possible failures that can generate important incidents in the environment, corresponding to 5 million m 3 of tailings released to the environment (Azam, S., & Li, Q. (2010 Tailings dam failures: a review of the last one hundred years. Geotechnical news, 28 (4), 50-54). Unfortunately, the reported incidents indicate that the failures have been generated in both active and non-active tailings dams (Venegas F. (2011), which implies that the closure of a mining site does not mean the end of the problem. Long-term failure mechanisms in tailings dams include cumulative damage (eg, erosion or earthquakes), geological hazards (eg, landslides), liquefaction, and changing weather patterns (Chambers, DM, & Higman, B. (2011) . Long term risks of tailings dam failure. Center for Science in Public Participation, Bozeman, Montana) Although it has been described that the majority of tailings dam failures are due to combined causes (39%) (Rico , M., et al. (2008) "Reported tailings dam failures: a review of the European incidents in the worldwide context." Journal of hazardous materials 152.2: 846-852), studies that have differentiated the causes of failure incidents worldwide, have shown that e Between 8% and 20% of incidents (1990-2009) are caused by leaks and the channels generated by them. This is consistent with the lack of control of the hydrological regime of the jam is one of the most common causes of failure. It is important to mention that these types of failures are the most obvious or most easily detectable, since they have caused important incidents that have been recorded over time. It is important to take into consideration that it has been estimated that the risk of failure in tailings dams is increasing, where it is directly related to the number of tailings accumulation dams greater than 5,000,000 cubic meters of capacity, necessary for allow the economic extraction of low grade minerals. Additionally, at least 11 catastrophic failures are expected worldwide between 2010 and 2019, with a total cost of approximately USD $ 6 billion (Mining (2015). Catastrophic mine waste spills increasing in frequency, severity and cost world-wide. Http: //www.mining.com/web/catastrophic- mine-waste-spills-increasing-in-frequency-severity-and-cost-world-wide /). Another type of seepage, which is not evident or easily detectable, corresponds to that which is generated from the waters of the dam basin towards the groundwater tables impacted by the tailings dam, which leads to the contamination of groundwater. In this case, it is not a question of failures or disasters of great violence and notoriety. On the contrary, these infiltrations into groundwater are a problem that occurs permanently and invisibly, but which can cause great damage, negatively impacting the health of people and the environment with toxic doses of certain elements. The flow of seepage from a surface tailings impoundment is known to be unavoidable and zero discharge from seepage from a waste facility is noted to remain an elusive goal, even with complex liner systems (Tailingsinfo (2013). Water Management Considerations for Conventional Storage. Http://www.tailings.info/technical/water.htm).
Existen innumerables estudios que reportan filtraciones hacia las napas freáticas que se encuentran impactadas por la infiltración de tranque de relaves, y que dan cuenta que efectivamente este fenómeno está ocurriendo a nivel mundial (Duda, R. (2014). The Influence of Drainage Wells Barrier on Reducing the Amount of Major Contaminants Migrating from a Very Large Mine Tailings Disposal Site. Archives of Environmental Protection, 40(4), 87-99; Brindha K, Elango L. 2014. Geochemical Modelling of the Effects of a Proposed Uranium Tailings Pond on Groundwater Quality. Mine Water Environ. Vol. 33:110-120; Huang, X. et al. (2016). Hydrogeochemical signatures and evolution of groundwater impacted by the Bayan Obo tailing pond in northwest China. Science of the Total Environment, 543, 357- 372; Martín-Crespo, T. et al. (2018). Geoenvironmental characterization of unstable abandoned mine tailings combining geophysical and geochemical methods (Cartagena-La Union district, Spain). Engineering Geology, 232, 135-146). Estos estudios se realizan con mediciones inherentes a cada tranque y permiten evidenciar la existencia de este tipo de filtraciones. There are innumerable studies that report leaks into the water tables that are impacted by the infiltration of the tailings dam, and that show that this phenomenon is indeed occurring worldwide (Duda, R. (2014). The Influence of Drainage Wells Barrier on Reducing the Amount of Major Contaminants Migrating from a Very Large Mine Tailings Disposal Site. Archives of Environmental Protection, 40 (4), 87-99; Brindha K, Elango L. 2014. Geochemical Modeling of the Effects of a Proposed Uranium Tailings Pond on Groundwater Quality. Mine Water Environ. Vol. 33: 110-120; Huang, X. et al. (2016). Hydrogeochemical signatures and evolution of groundwater impacted by the Bayan Obo tailing pond in northwest China. Science of the Total Environment, 543, 357-372; Martín-Crespo, T. et al. (2018). Geoenvironmental characterization of unstable abandoned mine tailings combining geophysical and geochemical methods (Cartagena-La Union district, Spain). Engineering Geology, 232, 135-146). These studies are carried out with measurements inherent to each dam and allow evidence of the existence of this type of leakage.
En la actualidad los tranques de relaves consideran en su diseño y operación diferentes medidas de monitoreo y control de las posibles fugas o filtraciones para evitar que puedan llegar a contaminar aguas subterráneas. Entre las medidas de monitoreo se puede considerar la utilización de pozos de monitoreo aguas abajo de piscinas colectoras de drenes, sistema de medición de caudales, niveles freáticos y monitoreo de aguas superficiales. Actualmente, el tratamiento de las infiltraciones en napas subterráneas impactadas por los tranques de relaves se realiza mediante pozos de recolección de filtraciones instalados cuesta abajo del embalse (Duda, R. (2014). The Influence of Drainage Wells Barrier on Reducing the Amount of Major Contaminants Migrating from a Very Large Mine Tailings Disposal Site. Archives of Environmental Protection, 40(4), 87- 99). Este pozo se equipa con bombas hidráulicas que envían las filtraciones de nuevo al tranque de relaves. Estas unidades se pueden utilizar en conjunto con muros o zanjas de corte para minimizar filtraciones cuesta abajo. En estos pozos la calidad del efluente es monitoreado para dimensionar la posibilidad de filtraciones, ya que cualquier filtración que se produzca en las napas subterráneas, puede ocasionar complicaciones de la operación de la faena minera con la consecuente pérdida económica asociada. Es importante mencionar, que dependiendo de la calidad del efluente, la operación de la bomba hidráulica puede continuar indefinidamente (EPA, 1994). En consecuencia, el tratamiento actual, con la bomba hidráulica no resuelve por completo el problema. At present, tailings dams consider in their design and operation different monitoring and control measures of possible leaks or seeps to prevent them from contaminating groundwater. Among the monitoring measures, the use of monitoring wells downstream of drainage collecting pools, a system for measuring flows, groundwater levels and monitoring of surface waters can be considered. Currently, the treatment of infiltrations in subterranean layers impacted by tailings dams is carried out using seepage collection wells installed downslope from the reservoir (Duda, R. (2014). The Influence of Drainage Wells Barrier on Reducing the Amount of Major Contaminants Migrating from a Very Large Mine Tailings Disposal Site. Archives of Environmental Protection, 40 (4), 87-99). This well is equipped with hydraulic pumps that send the seepage back to the tailings dam. These units can be used in conjunction with shear walls or trenches to minimize seepage downhill. In these wells, the quality of the effluent is monitored to determine the possibility of leaks, since any leakage that occurs in the underground layers can cause complications in the operation of the mining site with the consequent associated economic loss. It is important to mention that depending on the quality of the effluent, the operation of the hydraulic pump can continue indefinitely (EPA, 1994). Consequently, the current treatment with the hydraulic pump does not completely solve the problem.
Respecto a las medidas de control, el agua que filtra por el muro se recupera a través de drenes y de la canalización del flujo. El agua del muro se puede devolver al tranque, o se puede juntar en un estanque común con el agua recuperada de la laguna para su recirculación a la planta de beneficio (SERNAGEOMIN (2003) Guía de buenas prácticas ambientales para la pequeña minería; Levenick J.L. et al. (2009). Hydrogeological assessment of seepage through the Antamina tailings dam - Antamina copper/zinc mine, Perú, South America, International Mine Water Conference 19th - 23rd October 2009, Pretoria, South Africa). El agua que se infiltra a nivel del subsuelo se recircula desde una serie de pozos de captación ubicados aguas abajo y se monitorea mediante sondajes independientes. Sin embargo, de acuerdo a la información disponible, no existe una tecnología que permita controlar el total de las fugas o perdidas que ocurren a nivel del subsuelo del tranque. Regarding the control measures, the water that filters through the wall is recovered through drains and the channeling of the flow. The water from the wall can be returned to the dam, or it can be collected in a common pond with the water recovered from the lagoon for its recirculation to the beneficiation plant (SERNAGEOMIN (2003) Guide of good environmental practices for small mining; Levenick JL et al. (2009). Hydrogeological assessment of seepage through the Antamina tailings dam - Antamina copper / zinc mine, Peru, South America, International Mine Water Conference 19th - 23rd October 2009, Pretoria, South Africa). The water that infiltrates at the subsoil level is recirculated from a series of catchment wells located downstream and is monitored by independent drilling. However, according to the information available, there is no technology that allows to control the total of the leaks or losses that occur at the subsoil level of the dam.
El problema que se presenta es que la identificación de la ubicación de la fuga es complicada, la accesibilidad de la fuga es pobre y los costos de tratamiento son muy altos. Los métodos tradicionales para reparar la fuga in situ, tales como la inyección de compuestos químicos (ej. silicatos, acrilatos, acrilamidas, poliuretanos o biopolímeros) son caros y tienen efectos negativos en la salud y el medio ambiente (Ivanov, V., & Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Bio/Technology, 7(2), 139-153). Además, se hace necesario inyectar en el subsuelo una gran cantidad de estos compuestos para poder reducir la permeabilidad global, ya que a menudo no se conoce la ubicación exacta de la fuga. The problem that arises is that identifying the location of the leak is complicated, the accessibility of the leak is poor, and the treatment costs are very high. Traditional methods to repair the leak in situ, such as the injection of chemical compounds (e.g. silicates, acrylates, acrylamides, polyurethanes or biopolymers) are expensive and have negative effects on health and the environment (Ivanov, V., & Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Bio / Technology, 7 (2), 139-153). In addition, it is necessary to inject a large quantity of these compounds underground in order to reduce the overall permeability, since the exact location of the leak is often not known.
Considerando el problema expuesto, se hace necesario el desarrollo de una alternativa que sea lo suficientemente rentable y eficiente para el control de la contaminación de las aguas subterráneas con filtraciones de tranques de relaves. Este tipo de filtraciones podrían ser controladas mediante un sistema de tratamiento que permita reducir la permeabilidad hidráulica a nivel de los acuíferos subterráneos contaminados con altos niveles de sulfato. Teniendo en cuenta que la inyección de compuestos químicos es de alto costo y tiene efectos negativos en la salud y el medio ambiente, se podría pensar en la infiltración de microorganismos en las aguas subterráneas contaminadas para promover su crecimiento in situ y reducir la permeabilidad del acuífero. Del análisis del estado de la técnica, se desprende que actualmente no existe ningún desarrollo biotecnológico que permita solucionar el problema de las filtraciones de los tranques de relave a las aguas subterráneas. Sin embargo, se ha descrito el empleo de bacterias ureolíticas para reducir la permeabilidad hidráulica mediante la precipitación de carbonato de calcio (Eryürük et al. "Reducing hydraulic conductivity of porous media using CaCÜ3 precipitation induced by Sporosarcina pasteurii." Journal of bioscience and bioengineering 119.3 (2015): 331-336). La mayor parte de las investigaciones se han realizado con la bacteria ureolítica Sporosarcina pasteurii en un medio que contiene urea y cloruro de calcio (Whiffin et al., 2007; van Paassen et al., 2010; Al-Thawadi, 2011 ; Al Qabany et al., 2012; Ng et al., 2012; Keykha et al., 2012; Ivanov, et al. 2015). Debido a esta reacción enzimática, aumenta el pH y se produce bicarbonato. Se inicia la precipitación de carbonato de calcio, que se une las partículas del suelo (Ca2+ + CC>32 CaC03j). Desde el punto de vista tecnológico la mayor parte de las aplicaciones que utilizan bacterias ureolíticas, especialmente Sporosarcina pasteurii, como agentes precipitante de carbonato de calcio, se han orientado a procesos de cementación microbiana (Solicitud de EP1974031 , Solicitud de Patente WO 2008120979, Solicitud de Patente WO 2009133312, Patente US 8.182.604, Patente US 8.210.776 y Patente US 9.199.880, US 8.951.786, US 8.728.365, Solicitud de Patente US 20130196419, Solicitud de Patente US 20180119185A1 , Solicitud de Patente US. 20180072632, Solicitud de Patente US No. 15/066,692, Solicitud de Patente US No. 15/066,692). Considering the exposed problem, it is necessary to develop an alternative that is profitable and efficient enough to control groundwater contamination with tailings dam seepage. This type of leakage could be controlled by a treatment system that allows reducing the hydraulic permeability at the level of underground aquifers contaminated with high levels of sulfate. Taking into account that the injection of chemical compounds is high cost and has negative effects on health and the environment, one could consider the infiltration of microorganisms into contaminated groundwater to promote their growth in situ and reduce the permeability of the aquifer. . From the analysis of the state of the art, it can be deduced that currently there is no biotechnological development that allows solving the problem of leaks from tailings dams to groundwater. However, the use of ureolytic bacteria to reduce hydraulic permeability by precipitation of calcium carbonate has been described (Eryürük et al. "Reducing hydraulic conductivity of porous media using CaCÜ3 precipitation induced by Sporosarcina pasteurii." Journal of bioscience and bioengineering 119.3 (2015): 331-336). Most of the research has been carried out with the ureolytic bacteria Sporosarcina pasteurii in a medium containing urea and calcium chloride (Whiffin et al., 2007; van Paassen et al., 2010; Al-Thawadi, 2011; Al Qabany et al., 2012; Ng et al., 2012; Keykha et al., 2012; Ivanov, et al. 2015). Due to this enzymatic reaction, the pH increases and bicarbonate is produced. The precipitation of calcium carbonate begins, which binds the soil particles (Ca 2+ + CC> 3 2 CaC03j). From the technological point of view, most of the applications that use ureolytic bacteria, especially Sporosarcina pasteurii, as precipitating agents of calcium carbonate, have been oriented to microbial cementation processes (EP1974031 application, WO 2008120979 patent application, WO patent 2009133312, US patent 8,182,604, US patent 8,210,776 and US patent 9,199,880, US 8,951,786, US 8,728,365, US patent application 20130196419, US patent application 20180119185A1, US patent application 20180072632 , US Patent Application No. 15 / 066,692, US Patent Application No. 15 / 066,692).
Las alternativas disponibles actualmente para un tratamiento biológico presentan diferentes inconvenientes, por lo que no son aplicables a acuífero subterráneos contaminados con filtraciones de tranques de relaves. Por ejemplo, Sporosarcina pasteurii no es capaz de crecer y su actividad ureolítica se inhibe bajo la ausencia de oxígeno (Martin et al., Inhibition of Sporosarcina pasteurii under Anoxic Conditions: Implications for Subsurface Carbonate Precipitation and Remediation vía Ureolysis. Environmental Science & technology, 46(15), 8351-8355, 2012). Esto se debe a que la biosíntesis de novo de su enzima ureasa, fundamental para el proceso, se reprime en condiciones de anoxia. Por esta razón, no es factible la aplicación de este proceso en un acuífero subterráneo que presenta bajos niveles de oxígeno y que presenta condiciones de anoxia cuando se inyectan nutrientes para estimular el crecimiento de bacterias. La temperatura en las aguas subterráneas se caracteriza por ser baja, lo que dificulta la actividad enzimática de las bacterias ureolíticas que tienen su óptimo a 30°C (Kimet al. "Effect of Temperature, pH, and Reaction Duration on Microbially Induced Calcite Precipitation." Applied Sciences 8.8: 1277, 2018). Otra desventaja importante es que las bacterias ureolíticas no son capaces de remover el ión sulfato que es un contaminante que se encuentra en altas concentraciones en el acuífero a tratar. A todo esto, se debe agregar las características químicas especiales del agua subterránea contaminada con infiltraciones de tranques de relave, que contiene altas concentraciones de sulfato y otras sales minerales y, especialmente, la presencia de diferentes metales tóxicos, que dificultan el crecimiento de muchos grupos de microorganismos. En ambientes naturales, tales como sedimentos marinos y en tapetes microbianos, se ha sugerido la participación de bacterias reductoras de sulfato en la precipitación de carbonatos de calcio. Sin embargo, el estado de la técnica es desalentador respecto al verdadero rol de estos microorganismos y su posible aplicación. Así, por ejemplo, Meiter en tu trabajo titulado "Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments" (Geology 41.4: 499-502, 2013) concluye que la reducción biológica de sulfato causa una disminución en el pH, que favorece la disolución más que la precipitación de carbonatos. La contribución exacta de las bacterias reductoras de sulfato a la mineralización de carbonatos sigue siendo muy controvertida en la literatura científica (Gallagher et al. "Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments: COMMENT." Geology 42.1 : e313-e314, 2014; Meister, "Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments: REPLY." Geology 42.1: e315-e315, 2014). El empleo de la precipitación de carbonatos mediante bacterias reductoras de sulfato en un proceso industrial tampoco aparece promisoria en el estado de la técnica. Es así como Zhu y Dittrich ("Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review." Frontiers in bioengineering and biotechnology 4: 4, 2016) concluyeron que“la ureolisis es la tecnología más desarrollada entre otros metabolismos, seguida de la fotosíntesis. Aunque la "reducción de sulfato" ha sido estudiada ampliamente, es menos probable que sea aprovechada en proyectos de ingeniería”. The alternatives currently available for a biological treatment have different drawbacks, which is why they are not applicable to underground aquifers contaminated with seepage from tailings dams. For example, Sporosarcina pasteurii is unable to grow and its ureolytic activity is inhibited in the absence of oxygen (Martin et al., Inhibition of Sporosarcina pasteurii under Anoxic Conditions: Implications for Subsurface Carbonate Precipitation and Remediation via Ureolysis. Environmental Science & technology, 46 (15), 8351-8355, 2012). This is because the de novo biosynthesis of its urease enzyme, essential for the process, is repressed under anoxic conditions. For this reason, it is not feasible to apply this process in an underground aquifer that has low oxygen levels and that presents anoxic conditions when nutrients are injected to stimulate the growth of bacteria. The temperature in groundwater is characterized by being low, which hinders the enzymatic activity of ureolytic bacteria that have their optimum at 30 ° C (Kimet al. "Effect of Temperature, pH, and Reaction Duration on Microbially Induced Calcite Precipitation. "Applied Sciences 8.8: 1277, 2018). Another important disadvantage is that ureolytic bacteria are not capable of removing the sulfate ion, which is a pollutant found in high concentrations in the aquifer to be treated. To all this, one must add the special chemical characteristics of groundwater contaminated with infiltrations from tailings dams, which contains high concentrations of sulfate and other mineral salts and, especially, the presence of different toxic metals, which hinder the growth of many groups. of microorganisms. In natural environments, such as marine sediments and on microbial mats, the participation of sulfate-reducing bacteria in the precipitation of calcium carbonates has been suggested. However, the state of the art is discouraging regarding the true role of these microorganisms and their possible application. Thus, for example, Meiter in your work entitled "Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments" (Geology 41.4: 499-502, 2013) concludes that the biological reduction of sulfate causes a decrease in pH, which favors dissolution more than carbonate precipitation. The exact contribution of sulfate-reducing bacteria to carbonate mineralization remains highly controversial in the scientific literature (Gallagher et al. "Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments: COMMENT." Geology 42.1: e313-e314, 2014; Meister, "Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments: REPLY. "Geology 42.1: e315-e315, 2014). The use of carbonate precipitation by sulfate-reducing bacteria in an industrial process does not appear promising in the state of This is how Zhu and Dittrich ("Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review." Frontiers in bioengineering and biotechnology 4: 4, 2016) concluded that “ureolysis is the most developed technology among other metabolisms, followed by photosynthesis. Although "sulfate reduction" has been studied extensively, it is less likely to be exploited in engineering projects. "
La solución descrita en la presente solicitud de patente muestra que es técnicamente posible la bioprecipitación bajo condiciones anóxicas, mediante bacterias reductoras de sulfato. Esta invención resuelve los problemas del estado de la técnica utilizando un proceso biológico para la reducción de la permeabilidad de sectores del acuífero afectado por las fugas de las aguas del tranque de relave, basado en la inyección en un subsuelo con un solución de nutrientes y la inoculación de un consorcio microbiano que presenta una alta capacidad de biomineralizar“in situ” (procesos simultáneos de biocolmatación y bioprecipitación). Este consorcio tiene la capacidad de crecer condiciones anóxicas, a baja temperatura y en aguas subterránea contaminadas con filtraciones de un tranque se relave. Por la capacidad de reducir sulfato del consorcio microbiano utilizado, este proceso permite adicionalmente reducir la concentración de este contaminante. The solution described in the present patent application shows that bioprecipitation is technically possible under anoxic conditions, by sulfate reducing bacteria. This invention solves the problems of the state of the art by using a biological process to reduce the permeability of sectors of the aquifer affected by the leaks of the tailings dam waters, based on the injection into a subsoil with a nutrient solution and the inoculation of a microbial consortium that has a high capacity to biomineralize "in situ" (simultaneous processes of biocolmatación and bioprecipitation). This consortium has the ability to grow anoxic conditions, at low temperatures and in contaminated groundwater with seepage from a tailings dam. Due to the ability to reduce sulfate of the microbial consortium used, this process also allows to reduce the concentration of this contaminant.
Por lo tanto, la solución propuesta tiene las siguientes ventajas sobre el estado de la técnica: Therefore, the proposed solution has the following advantages over the state of the art:
• Se genera una zona de baja conductividad hidráulica en el acuífero subterráneo contaminado. • A zone of low hydraulic conductivity is generated in the contaminated underground aquifer.
• La zona tratada es de gran estabilidad por la organomineralización de precipitación de carbonatos de calcio. • The treated area is highly stable due to the organomineralization of calcium carbonate precipitation.
El proceso ocurre aun en ausencia de oxígeno • El proceso está diseñado para operar a baja temperatura (por ejemplo a 19°C) The process occurs even in the absence of oxygen • The process is designed to operate at low temperature (for example at 19 ° C)
• El consorcio microbiano está adaptado a aguas subterránea contaminadas con filtraciones de un tranque se relave. • The microbial consortium is adapted to groundwater contaminated with seepage from a tailings dam.
El proceso permite adicionalmente reducir la concentración de sulfato. The process allows additionally to reduce the sulfate concentration.
DEFINICIÓN DE LA INVENCIÓN DEFINITION OF THE INVENTION
El principal objeto de la presente invención es un método para reducir la conductividad hidráulica y generar la precipitación de minerales insolubles en un acuífero subterráneo, que comprende al menos los pasos de: The main object of the present invention is a method to reduce the hydraulic conductivity and generate the precipitation of insoluble minerals in an underground aquifer, which comprises at least the steps of:
a) proveer un cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar, a) provide a culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated,
b) inyectar el acuífero subterráneo con un cultivo de microorganismos enriquecido, c) inyectar el acuífero subterráneo con un donador de electrones y nutrientes adecuados para cultivo de microorganismos enriquecido en bacterias reductoras y uno o más cationes metálicos que favorezcan la precipitación de minerales insolubles, y b) inject the underground aquifer with an enriched culture of microorganisms, c) inject the underground aquifer with an electron donor and nutrients suitable for the culture of microorganisms enriched in reducing bacteria and one or more metal cations that favor the precipitation of insoluble minerals, and
d) permitir que los microorganismos se multipliquen y colonicen el material del sólido del acuífero subterráneo, reduciendo la permeabilidad hidráulica del acuífero subterráneo y generando la precipitación de minerales insolubles en el material sólido del acuífero subterráneo. d) allow microorganisms to multiply and colonize the solid material of the underground aquifer, reducing the hydraulic permeability of the underground aquifer and generating the precipitation of insoluble minerals in the solid material of the underground aquifer.
En una realización de la invención, el acuífero subterráneo está afectado por filtraciones de agua superficiales. Una realización particular se refiere a un acuífero subterráneo que está afectado por filtraciones de agua de un tranque de relave minero. In one embodiment of the invention, the underground aquifer is affected by surface water seepage. A particular embodiment refers to an underground aquifer that is affected by water seepage from a mining tailings dam.
En una realización de la invención, el cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar, se produce con un método que comprende al menos los pasos: a) inocular un cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar en un biorreactor anaerobio de lecho fijo con un material de soporte, In one embodiment of the invention, the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated, is produced with a method that comprises at least the steps: a) inoculate a culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated in a fixed-bed anaerobic bioreactor with a support material,
b) alimentar en forma continua con agua extraída del acuífero subterráneo, un donador de electrones y nutrientes adecuados para el cultivo de bacterias reductoras de sulfato, b) continuously feed with water extracted from the underground aquifer, an electron donor and adequate nutrients for the cultivation of sulfate-reducing bacteria,
c) permitir que los microorganismos se multipliquen, colonicen el material de soporte del biorreactor, y c) allow microorganisms to multiply, colonize the bioreactor support material, and
d) producir un efluente del biorreactor que contiene un cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar para ser inyectado a dicho acuífero. d) producing an effluent from the bioreactor containing a culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated to be injected into said aquifer.
En otra realización de la invención, el material de soporte del biorreactor se selecciona del grupo de la arena, la piedra silícica, el vidrio y la cerámica. In another embodiment of the invention, the bioreactor support material is selected from the group of sand, silica, glass and ceramics.
En otra realización preferida de la invención, la inyección del acuífero subterráneo con un cultivo de microorganismos enriquecido y la inyección del acuífero subterráneo con un donador electrones y nutrientes adecuados para cultivo de microorganismos enriquecido en bacterias reductoras, y uno o más cationes metálicos que favorezcan la precipitación de minerales insolubles se realiza mediante uno o más pozos de inyección. In another preferred embodiment of the invention, the injection of the underground aquifer with an enriched culture of microorganisms and the injection of the underground aquifer with an electron donor and nutrients suitable for the culture of microorganisms enriched in reducing bacteria, and one or more metal cations that favor the Insoluble mineral precipitation is done by one or more injection wells.
En otra realización adicional de la invención, el donador electrones adecuado para cultivo de microorganismos enriquecido en bacterias reductoras se selecciona del grupo del formiato, ácido fórmico, acetato y ácido acético. In yet another embodiment of the invention, the electron donor suitable for microorganism culture enriched in reducing bacteria is selected from the group of formate, formic acid, acetate and acetic acid.
En otra realización adicional de la invención, los dichos nutrientes adecuados para cultivo de microorganismos enriquecido en bacterias reductoras, comprende, al menos, amonio y fosfato. In a further embodiment of the invention, said nutrients suitable for the culture of microorganisms enriched in reducing bacteria, comprise at least ammonium and phosphate.
En otra realización de la invención, los nutrientes adecuados para cultivo de microorganismos enriquecido en bacterias reductoras, comprende además un nutriente complejo, rico en vitaminas, seleccionado del grupo del extracto de levadura y el agua colada de maíz. In another embodiment of the invention, the nutrients suitable for the culture of microorganisms enriched in reducing bacteria, further comprise a Complex nutrient, rich in vitamins, selected from the group of yeast extract and strained corn water.
En una realización de la invención, el mineral insoluble que precipita en el material sólido del acuífero subterráneo es carbonato de calcio. In one embodiment of the invention, the insoluble mineral that precipitates in the solid material of the underground aquifer is calcium carbonate.
En otra realización de la invención, el mineral insoluble que precipita en el material sólido del acuífero subterráneo es sulfuro de hierro. In another embodiment of the invention, the insoluble mineral that precipitates in the solid material of the underground aquifer is iron sulfide.
En una realización de la invención, el método para reducir la conductividad hidráulica y generar la precipitación de minerales insolubles en un acuífero subterráneo permite, además, remover sulfato de las aguas subterránea de dicho acuífero. In one embodiment of the invention, the method for reducing the hydraulic conductivity and generating the precipitation of insoluble minerals in an underground aquifer also allows the removal of sulfate from the underground waters of said aquifer.
En una realización de la invención, el cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar está constituido, al menos por bacterias de los Filos Proteobacteria, Firmicutes y Bacteroidetes. In one embodiment of the invention, the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is constituted, at least by bacteria of the Phylum Proteobacteria, Firmicutes and Bacteroidetes.
En otra realización de la invención, el cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar está constituido, al menos por bacterias del Filo Proteobacteria o Firmicutes. In another embodiment of the invention, the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is constituted, at least by bacteria from the Phylum Proteobacteria or Firmicutes.
En otra realización de la invención, el cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar está constituido, al menos por bacterias de las Clases Gammaproteobacteria, Clostridia, Deltaproteobacteria y Bacteroidia. In another embodiment of the invention, the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is constituted, at least by bacteria of the Gammaproteobacteria, Clostridia, Deltaproteobacteria and Bacteroidia Classes.
En otra realización de la invención, el cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar está constituido, al menos por bacterias de la Clase Clostridia o Deltaproteobacteria. En otra realización de la invención, el cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar contiene, al menos bacterias del Orden Desulfovibrionales. In another embodiment of the invention, the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is constituted, at least by bacteria of the Clostridia or Deltaproteobacteria Class. In another embodiment of the invention, the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated contains, at least, bacteria of the Desulfovibrionales Order.
En otra realización de la invención, el cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar contiene, al menos bacterias del Orden Desulfobacterales. In another embodiment of the invention, the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated contains, at least, bacteria of the Order Desulfobacterales.
En una realización de la invención, el cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar contiene, al menos bacterias del Orden Desulfuromonadales. In one embodiment of the invention, the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated contains at least bacteria of the Desulfuromonadal Order.
En otra realización de la invención, el cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar contiene, al menos bacterias del Orden Clostridiales. In another embodiment of the invention, the culture of microorganisms enriched in sulfate reducing bacteria and adapted to the groundwater of the aquifer to be treated contains, at least, bacteria of the Order Clostridiales.
En una realización preferida de la invención, el cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar contiene, al menos un género de bacterias reductoras de sulfato de seleccionados del grupo constituido por Desulfomicrobium, Desulfovibrio, Desulfonema, Desulfuromonas, Desufutomaculum y Desulfosporosinus. In a preferred embodiment of the invention, the culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated contains at least one genus of sulfate-reducing bacteria selected from the group consisting of Desulfomicrobium, Desulfovibrio, Desulfonema , Desulfuromonas, Desufutomaculum and Desulfosporosinus.
En otra realización preferida de la invención, el cultivo de microorganismos, enriquecido en bacterias reductoras de sulfato adaptado a las aguas subterráneas del acuífero a tratar, se obtiene a partir de muestras extraídas de microbialitos vivos de lagunas o lagos salinos. Las muestras de estos microbialitos vivos se encuentran, por ejemplo, en los trombolitos vivos del Lago Sarmiento, o en los estromatolitos vivos de la Laguna Amarga, ambos en Parque Nacional Torres del Paine, Chile, en los microbialitos vivos de la Laguna Interna y la Laguna La Brava en el Salar de Atacama, Chile, en la laguna Socompa, Salta, Argentina, en la Lagoa Salgada zona de Río de Janeiro, Brasil, en la Laguna Bacalar y en la Laguna Alchichica, México o en el lago Clifton, Australia. En una realización de la invención, el cultivo de microorganismos, enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar, se obtiene con un método que comprende al menos los pasos: In another preferred embodiment of the invention, the culture of microorganisms, enriched in sulfate-reducing bacteria adapted to the groundwater of the aquifer to be treated, is obtained from samples taken from live microbialites from lagoons or saline lakes. Samples of these live microbialites are found, for example, in live thrombolites from Lake Sarmiento, or in live stromatolites from Laguna Amarga, both in Torres del Paine National Park, Chile, in live microbialites from Laguna Interna and La Laguna. Laguna La Brava in the Salar de Atacama, Chile, in the Socompa lagoon, Salta, Argentina, in the Lagoa Salgada area of Rio de Janeiro, Brazil, in the Bacalar Lagoon and in the Alchichica Lagoon, Mexico or in the Clifton lake, Australia . In one embodiment of the invention, the culture of microorganisms, enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated, is obtained with a method that comprises at least the steps:
a) inocular una muestra de dicho microbialito vivo de un lago salino o laguna salina en una columna rellena con arena, a) inoculate a sample of said live microbialite from a saline lake or saline lagoon into a column filled with sand,
b) alimentar en forma continua con agua extraída del acuífero subterráneo, un donador de electrones y nutrientes adecuados para el cultivo de bacterias reductoras de sulfato, b) continuously feed with water extracted from the underground aquifer, an electron donor and adequate nutrients for the cultivation of sulfate-reducing bacteria,
c) permitir que los microorganismos se multipliquen, colonicen la arena del biorreactor y se enriquezca el cultivo en bacterias reductoras de sulfato, y c) allow microorganisms to multiply, colonize the bioreactor sand, and enrich the culture in sulfate-reducing bacteria, and
d) producir un cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar. d) produce a culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated.
En una realización de la invención, el microbialito vivo es un estromatolito vivo. En otra realización de la invención, el microbialito vivo es un trombolito vivo. In one embodiment of the invention, the living microbialite is a living stromatolite. In another embodiment of the invention, the live microbialite is a live thrombolyte.
Definiciones: Definitions:
Microbialitos: en ésta invención, el concepto de microbialitos se entiende como los "depósitos organo-sedimentarios que se han acrecentado como resultado de una comunidad microbiana bentónica atrapada y unida a sedimentos detríticos y / o formando el lugar de la precipitación minerales tales como carbonato cálcico. Las estructuras de los microbialitos pueden ir desde los estromatolitos laminados bien estructurados hasta los trombolitos coagulados. Los microbialitos se han encontrado en distintos ambientes, por ejemplo, fuentes termales, lagunas dolomíticas, lagos hipersalinos y / o alcalinos, ríos y los lagos, ambientes marinos abiertos y ambientes marinos hipersalinos. Microbialites: in this invention, the concept of microbialites is understood as the "organo-sedimentary deposits that have increased as a result of a benthic microbial community trapped and attached to detrital sediments and / or forming the site of mineral precipitation such as calcium carbonate The structures of microbialites can range from well-structured laminated stromatolites to coagulated thrombolites. Microbialites have been found in different environments, for example, hot springs, dolomitic ponds, hypersaline and / or alkaline lakes, rivers and lakes, environments open marine and hypersaline marine environments.
Estromatolitos: son microbialitos que se caracterizan por ser estructuras organo- sedimentarias laminadas (típicamente de CaCÜ3) que crecen adheridas al sustrato y emergen verticalmente del mismo, produciendo estructuras de gran variedad morfológica, volumétrica y biogeográfica. Trombolitos: son microbialitos relacionados con los estromatolitos, pero carecen de laminación y se caracterizan por un tejido coagulado macroscópico. Stromatolites: they are microbialites that are characterized by being laminated organo-sedimentary structures (typically CaCÜ3) that grow attached to the substrate and emerge vertically from it, producing structures of great morphological, volumetric and biogeographic variety. Thrombolites: these are microbialites related to stromatolites, but they lack lamination and are characterized by macroscopic coagulated tissue.
Microbialitos, estromatolitos o trombolitos vivos: son estructuras organo- sedimentarias que actualmente se encuentran en sistemas lacustres o marinos y que presentan una comunidad microbiana activa, cuyo metabolismo participa en el proceso mineralización de estas estructuras. Living microbialites, stromatolites or thrombolites: they are organo-sedimentary structures that are currently found in lake or marine systems and that present an active microbial community, whose metabolism participates in the mineralization process of these structures.
Consorcio microbiano: en ésta invención, el concepto de consorcio microbiano se entiende como un grupo de diferentes microorganismos que actúan en conjunto. En un consorcio microbiano se pueden encontrar microorganismos con diferentes capacidades metabólicas. En el caso particular del consorcio microbiano reductor de sulfato, éste está compuesto, por ejemplo, por microorganismos anaeróbicos fermentativos, acetogénicos y reductores de sulfato. Microbial consortium: in this invention, the concept of microbial consortium is understood as a group of different microorganisms that act together. In a microbial consortium, microorganisms with different metabolic capacities can be found. In the particular case of the sulfate-reducing microbial consortium, it is composed, for example, of fermentative, acetogenic and sulfate-reducing anaerobic microorganisms.
Biocolmatación: La biocolmatación se define como la reducción de la conductividad hidráulica y la porosidad de un medio poroso saturado debido al crecimiento microbiano. Bio-clogging: Bio-clogging is defined as the reduction in hydraulic conductivity and porosity of a saturated porous medium due to microbial growth.
Mineralización inducida biológicamente: La mineralización inducida biológicamente es el proceso en el cual la actividad metabólica de los microorganismos (por ejemplo, las bacterias) produce condiciones químicas favorables para la formación de minerales (por ejemplo, la precipitación de carbonatos de calcio inducida por el aumento de la alcalinidad). Biologically Induced Mineralization: Biologically Induced Mineralization is the process in which the metabolic activity of microorganisms (for example, bacteria) produces favorable chemical conditions for the formation of minerals (for example, the precipitation of calcium carbonates induced by increased alkalinity).
Descripción de las Figuras Description of Figures
FIGURA 1 : FIGURE 1 :
Esta figura muestra un diagrama esquemático del biorreactor relleno con arena. Los biorreactores (1) fueron fabricados de vidrio. Para el control de temperatura se utilizó una camisa de vidrio exterior (2), alimentada con agua proveniente de un baño termorregulado. El biorreactor se rellenó con arena (3) esterilizada. Para controlar la presión interna del sistema, se utilizó un par de piezómetros de vidrio ubicados uno en la parte inferior (4) y otro en la parte superior (5) del biorreactor. La alimentación se hizo mediante bombas peristálticas desde la parte inferior (6) hasta la parte superior (7) del biorreactor. This figure shows a schematic diagram of the sand-filled bioreactor. The bioreactors (1) were made of glass. For temperature control, an outer glass jacket (2) was used, fed with water from a thermoregulated bath. The bioreactor was filled with sterilized sand (3). To control the internal pressure of the system, a pair of glass piezometers located one in the lower part (4) and another in the upper part (5) of the bioreactor. The feeding was done by peristaltic pumps from the lower part (6) to the upper part (7) of the bioreactor.
FIGURA 2: FIGURE 2:
Esta figura muestra los parámetros en efluente de biorreactor inoculado con microorganismos de un trombolito vivo del Lago Sarmiento. (A) valores de pH, (B) concentraciones de sulfato (cuadrados rellenos) y concentraciones de calcio (cuadrados vacíos). FIGURA 3: This figure shows the parameters in bioreactor effluent inoculated with microorganisms from a live thrombolite from Lake Sarmiento. (A) pH values, (B) sulfate concentrations (filled squares) and calcium concentrations (open squares). FIGURE 3:
Esta figura muestra los parámetros en el efluente de un biorreactor inoculado con microorganismos de un estromatolito vivo de la Laguna Amarga. (A) valores de pH y potencial de óxido-reducción, (B) concentraciones de sulfato (cuadrados rellenos) y concentraciones de ácido sulfhídrico (cuadrados vacíos), (C) concentración de calcio. This figure shows the parameters in the effluent of a bioreactor inoculated with microorganisms from a live stromatolite from Laguna Amarga. (A) pH values and oxidation-reduction potential, (B) sulfate concentrations (filled squares) and hydrogen sulfide concentrations (open squares), (C) calcium concentration.
FIGURA 4: FIGURE 4:
Esta figura muestra esquemáticamente el diseño de las columnas de acero de 1 ,40 metros de altura y 25 centímetros de diámetro, con salidas laterales a los 8, 50, 90 y 130 centímetros desde la base para la instalación de instrumentos de medición de presión, utilizadas para medir la reducción de la conductividad hidráulica en el lecho de arena por los consorcios microbianos enriquecidos. This figure shows schematically the design of the steel columns of 1.40 meters high and 25 centimeters in diameter, with lateral outlets at 8, 50, 90 and 130 centimeters from the base for the installation of pressure measuring instruments, used to measure the reduction of hydraulic conductivity in the sand bed by the enriched microbial consortia.
FIGURA 5: FIGURE 5:
Esta figura muestra los parámetros en el efluente de la columna A inoculada con el consorcio microbiano enriquecido a partir de la muestra del microbialito del Lago Sarmiento. (A) ATP microbiano en el efluente (cuadrados vacíos) y potencial de óxido- reducción (cuadrados rellenos), (B) concentraciones de sulfato (rombos vacíos) y ácido sulfhídrico en el efluente (rombos rellenos). La línea indica la concentración de sulfato en el medio de cultivo agregado. FIGURA 6: Esta figura muestra los parámetros en el efluente de la columna B inoculada con el consorcio microbiano enriquecido a partir de la muestra estromatolitos de la Laguna Amarga. (A) ATP microbiano en el efluente (cuadrados vacíos) y potencial de óxido- reducción (cuadrados rellenos), (B) concentraciones de sulfato (rombos vacíos) y ácido sulfhídrico en el efluente (rombos rellenos). La línea indica la concentración de sulfato en el medio de cultivo agregado. This figure shows the parameters in the effluent from column A inoculated with the microbial consortium enriched from the sample of the microbialite from Lake Sarmiento. (A) Microbial ATP in the effluent (open squares) and oxidation-reduction potential (solid squares), (B) sulfate concentrations (open diamonds) and hydrogen sulfide in the effluent (solid diamonds). The line indicates the sulfate concentration in the added culture medium. FIGURE 6: This figure shows the parameters in the effluent from column B inoculated with the microbial consortium enriched from the stromatolites sample from Laguna Amarga. (A) Microbial ATP in the effluent (open squares) and oxidation-reduction potential (solid squares), (B) sulfate concentrations (open diamonds) and hydrogen sulfide in the effluent (solid diamonds). The line indicates the sulfate concentration in the added culture medium.
FIGURA 7: FIGURE 7:
Esta figura muestra los parámetros en el efluente de la columna C con biocida. (A) ATP microbiano en el efluente (cuadrados vacíos) y potencial de óxido- reducción (cuadrados rellenos), (B) concentraciones de sulfato (rombos vacíos) y ácido sulfhídrico en el efluente (rombos rellenos). La línea indica la concentración de sulfato en el medio de cultivo agregado. This figure shows the parameters in the effluent from column C with biocide. (A) Microbial ATP in the effluent (open squares) and oxidation-reduction potential (solid squares), (B) sulfate concentrations (open diamonds) and hydrogen sulfide in the effluent (solid diamonds). The line indicates the sulfate concentration in the added culture medium.
FIGURA 8: FIGURE 8:
Esta figura muestra las mediciones de pH en los biorreactores B1 , B2 y B3. Los biorreactores B1 y B3 se alimentaron con el medio de cultivo A, pero el biorreactor B1 se cambió al medio de cultivo B en el día 170. El biorreactor B2 se alimentó permanentemente con el medio de cultivo B. This figure shows the pH measurements in bioreactors B1, B2 and B3. Bioreactors B1 and B3 were fed with culture medium A, but bioreactor B1 was switched to culture medium B on day 170. Bioreactor B2 was permanently fed with culture medium B.
FIGURA 9: FIGURE 9:
Esta figura muestra la determinación del ATP intracelular y el recuento bacteriano en los biorreactores B1 , B2 y B3. Los biorreactores B1 y B3 se alimentaron con el medio de cultivo A, pero el biorreactor B1 se cambió al medio de cultivo B en el día 170. El biorreactor B2 se alimentó permanentemente con el medio de cultivo B. This figure shows the determination of intracellular ATP and the bacterial count in bioreactors B1, B2 and B3. Bioreactors B1 and B3 were fed with culture medium A, but bioreactor B1 was switched to culture medium B on day 170. Bioreactor B2 was permanently fed with culture medium B.
FIGURA 10: FIGURE 10:
Esta figura muestra las mediciones de sulfuro (ácido sulfhídrico) en los biorreactores B1 , B2 y B3. Los biorreactores B1 y B3 se alimentaron con el medio de cultivo A, pero el biorreactor B1 se cambió al medio de cultivo B en el día 170. El biorreactor B2 se alimentó permanentemente con el medio de cultivo B. This figure shows the sulfur (hydrogen sulfide) measurements in bioreactors B1, B2, and B3. Bioreactors B1 and B3 were fed with culture medium A, but bioreactor B1 was switched to culture medium B on day 170. Bioreactor B2 was permanently fed with culture medium B.
FIGURA 11 : Esta figura muestra las mediciones de sulfato remanente en los biorreactores B1 , B2 y B3. Los biorreactores B1 y B3 se alimentaron con el medio de cultivo A, pero el biorreactor B1 se cambió al medio de cultivo B en el día 170. El biorreactor B2 se alimentó permanentemente con el medio de cultivo B. FIGURA 12: FIGURE 11: This figure shows the remaining sulfate measurements in bioreactors B1, B2, and B3. Bioreactors B1 and B3 were fed with culture medium A, but bioreactor B1 was switched to culture medium B on day 170. Bioreactor B2 was permanently fed with culture medium B. FIGURE 12:
Esta figura muestra un ejemplo del diseño del modelo de acuífero construido en base a cámaras de acrílico. Se muestra una cámara de acrílico con tapa removible empacada con arena de cuarzo. En la figura se pueden distinguir los puertos para la inoculación y estimulación de microorganismos, y para la toma de muestras. En sus extremos, se les instaló internamente una tubería para la entrada de agua del flujo y otra para la salida de efluente. This figure shows an example of the aquifer model design built on the basis of acrylic chambers. Shown is an acrylic chamber with a removable lid packed with quartz sand. In the figure you can distinguish the ports for inoculation and stimulation of microorganisms, and for taking samples. At their ends, a pipe was installed internally for the flow water inlet and another for the effluent outlet.
FIGURA 13: FIGURE 13:
Esta figura muestra los parámetros de reducción microbiana de sulfato (S042- y H2S) y fisicoquímicos (pH y potencial de óxido-reducción) en los modelos de acuífero inoculados. Se muestran las mediciones de ácido sulfhídrico (A), sulfato (B), pH (C) y potencial de óxido-reducción (D). Los valores corresponden al promedio de duplicados (n=2) para los modelos inoculados (círculos rellenos), y a un solo valor (n=1) en el caso del control no inoculado (círculos vacíos). This figure shows the microbial sulfate reduction (S04 2- and H2S) and physicochemical (pH and oxide-reduction potential) parameters in the inoculated aquifer models. Measurements for hydrogen sulfide (A), sulfate (B), pH (C), and oxide reduction potential (D) are shown. The values correspond to the average of duplicates (n = 2) for the inoculated models (filled circles), and to a single value (n = 1) in the case of the non-inoculated control (empty circles).
FIGURA 14: Esta figura muestra los valores de ATP intracelular en el efluente de los modelos de acuífero. Los valores corresponden al promedio de duplicados (n=2) para los modelos inoculados (círculos rellenos), y a un solo valor (n=1) en el caso del control no inoculado (círculos vacíos). FIGURE 14: This figure shows the intracellular ATP values in the effluent of the aquifer models. The values correspond to the average of duplicates (n = 2) for the inoculated models (filled circles), and to a single value (n = 1) in the case of the non-inoculated control (empty circles).
FIGURA 15: FIGURE 15:
Esta figura muestra los tiempos de retención relativos de los modelos de acuífero durante del tiempo de experimentación. Se muestran los tiempos de retención relativos al tiempo de retención inicial de los modelos de acuífero. Los valores corresponden al promedio de duplicados (n=2) para los modelos inoculados (círculos rellenos), y a un solo valor (n=1) en el caso del control no inoculado (círculos vacíos). This figure shows the relative retention times of the aquifer models during the experimentation time. The retention times relative to the initial retention time of the aquifer models are shown. The values correspond to the average of duplicates (n = 2) for the inoculated models (circles filled), and to a single value (n = 1) in the case of the non-inoculated control (empty circles).
FIGURA 16: FIGURE 16:
Esta figura muestra el cambio del flujo del trazador alrededor de una zona de menor permeabilidad en el medio poroso de los modelos de acuífero. Se muestra un ejemplo del paso del trazador en uno de los modelos de acuífero en el día 55 de funcionamiento. Se observa el desvío del trazador al encontrarse con la zona ennegrecida del medio poroso (o): punto de inoculación. FIGURA 17: This figure shows the change in tracer flow around a zone of lower permeability in the porous medium of the aquifer models. An example of the tracer passage in one of the aquifer models is shown on day 55 of operation. Tracer deviation is observed when meeting the blackened area of the porous medium (o): inoculation point. FIGURE 17:
Esta figura muestra esquemáticamente un mapa del pH en el la arena de los modelos de acuífero inoculados al finalizar el experimento (60 días). En todos los modelos inoculados, se observa una zona de pH 8 que se distribuye a partir de la zona de inoculación y alcanza el extremo por donde sale el efluente, así como zonas puntuales de pH 8,5 en uno de los duplicados. En cambio, en el modelo control se observó un pH 7,5 en todas las zonas del modelo. El círculo representa el punto de inoculación y estimulación con medio de cultivo. This figure schematically shows a pH map in the sand of the inoculated aquifer models at the end of the experiment (60 days). In all inoculated models, a zone of pH 8 is observed that is distributed from the inoculation zone and reaches the end where the effluent exits, as well as specific zones of pH 8.5 in one of the duplicates. In contrast, in the control model a pH 7.5 was observed in all areas of the model. The circle represents the point of inoculation and stimulation with culture medium.
FIGURA 18: FIGURE 18:
Esta figura muestra esquemáticamente los mapas del ATP microbiano en la arena de los modelos de acuífero al final del experimento. Se muestra el valor de ATP (en URL/g de arena) en las tres zonas de la arena de los modelos de acuífero inoculados (n=2) y el modelo control (n=1). Las flechas negras indican el sentido del flujo hidráulico en el interior de los modelos de acuífero. El círculo representa el punto de inoculación y estimulación con medio de cultivo. This figure schematically shows the microbial ATP maps in the sand from the aquifer models at the end of the experiment. The ATP value (in URL / g of sand) in the three zones of the sand of the inoculated aquifer models (n = 2) and the control model (n = 1) is shown. The black arrows indicate the direction of the hydraulic flow inside the aquifer models. The circle represents the point of inoculation and stimulation with culture medium.
FIGURA 19: FIGURE 19:
Esta figura es una fotografía que ilustra la biomineralización de la arena de cuarzo en el punto de inoculación de los modelos de acuífero. Se muestra una porción de arena de cuarzo biomineralizada que se ubicó en el punto de inoculación de los modelos inoculados. En zonas más distantes al punto de inoculación, no se observó la formación de aglomerados de arena similares al de la imagen. FIGURA 20: This figure is a photograph illustrating the biomineralization of quartz sand at the inoculation point of the aquifer models. A portion of biomineralized quartz sand that was located at the inoculation point of the inoculated models is shown. In areas more distant from the inoculation point, the formation of sand agglomerates similar to the one in the image was not observed. FIGURE 20:
Esta figura muestra los parámetros de reducción microbiana de sulfato (SCU2- y H2S) y fisicoquímicos (pH y potencial de óxido-reducción) en los modelos de acuífero estimulados con las distintas concentraciones de formiato. Se muestran las mediciones de sulfato (A), ácido sulfhídrico (B), potencial de óxido-reducción (C) y pH (D) de los modelos de acuífero estimulados con las distintas concentraciones de formiato (3, 6 12 y 18 g/L). Los valores corresponden al promedio de duplicados (n=2). This figure shows the microbial sulfate reduction (SCU 2- and H2S) and physicochemical parameters (pH and oxide-reduction potential) in the aquifer models stimulated with the different formate concentrations. The measurements of sulfate (A), hydrogen sulfide (B), oxidation-reduction potential (C) and pH (D) of the aquifer models stimulated with the different formate concentrations (3, 6, 12 and 18 g / L). The values correspond to the average of duplicates (n = 2).
FIGURA 21 : FIGURE 21:
Esta figura muestra la concentración remanente de formiato en los modelos de acuífero estimulados con las distintas concentraciones del dador de electrones. Las líneas continuas representan la cantidad de formiato agregada en los modelos considerando la cantidad de formiato en el medio de cultivo y su dilución en los modelos. Los valores corresponden al promedio de duplicados (n=2). This figure shows the remaining formate concentration in the aquifer models stimulated with the different concentrations of the electron donor. The solid lines represent the amount of formate added in the models considering the amount of formate in the culture medium and its dilution in the models. The values correspond to the average of duplicates (n = 2).
FIGURA 22: FIGURE 22:
Esta figura muestra los tiempos de retención relativos al tiempo inicial en los modelos de acuífero estimulados con las distintas concentraciones de formiato. Los valores corresponden al promedio de duplicados (n=2). This figure shows the retention times relative to the initial time in the aquifer models stimulated with the different formate concentrations. The values correspond to the average of duplicates (n = 2).
FIGURA 23: FIGURE 23:
Esta figura muestra esquemáticamente los mapas de pH en la arena de los modelos de acuífero estimulados con las distintas concentraciones de formiato al finalizar el experimento (60 días). En general, los valores de pH en arena tienden a aumentar a medida que se aumenta la concentración de formiato en el medio de cultivo. En los modelos estimulados con 12 y 18 g/L de formiato, se observaron zonas puntuales de pH 8,5. Las flechas negras indican el sentido del flujo hidráulico en el interior de los modelos de acuífero. El círculo (o) representa el punto de inoculación y estimulación con medio de cultivo. FIGURA 24: This figure schematically shows the pH maps in the sand of the aquifer models stimulated with the different formate concentrations at the end of the experiment (60 days). In general, the pH values in sand tend to increase as the concentration of formate in the growing medium is increased. In the models stimulated with 12 and 18 g / L of formate, specific areas of pH 8.5 were observed. The black arrows indicate the direction of the hydraulic flow inside the aquifer models. The circle (o) represents the point of inoculation and stimulation with culture medium. FIGURE 24:
Esta figura muestra esquemáticamente los mapas de ATP microbiano en la arena de los modelos de acuífero estimulados con las distintas concentraciones de formiato al finalizar el experimento. Se muestra el valor de ATP (en URL/g de arena) en las tres zonas de la arena de los modelos de acuífero estimulados con las distintas concentraciones de formiato. Las flechas negras indican el sentido del flujo hidráulico en el interior de los modelos de acuífero. El círculo blanco (o) representa el punto de inoculación y estimulación con medio de cultivo. Los valores corresponden al promedio de duplicados (n=2). This figure schematically shows the microbial ATP maps in the sand from the aquifer models stimulated with the different formate concentrations at the end of the experiment. The ATP value (in URL / g of sand) is shown in the three zones of the sand of the aquifer models stimulated with the different formate concentrations. The black arrows indicate the direction of the hydraulic flow inside the aquifer models. The white circle (o) represents the point of inoculation and stimulation with culture medium. The values correspond to the average of duplicates (n = 2).
FIGURA 25: FIGURE 25:
Esta figura muestra la mineralización inducida biológicamente de la arena de cuarzo de los modelos de acuífero inoculados con las distintas concentraciones de formiato al final del experimento. Se muestran los modelos de acuíferos destapados al final del experimento. La línea roja delimita la zona mineralizada (de mayor dureza respecto a otras zonas) del medio poroso de los modelos de acuífero. Se muestra la totalidad de los modelos (duplicados) utilizados (columna central). En el biorreactor de la derecha se muestra el porcentaje del área ocupada por la zona mineralizada respecto a la superficie total de la cara superior de los modelos (Calculado utilizando el programa ImageJ). This figure shows the biologically induced mineralization of the quartz sand from the aquifer models inoculated with the different formate concentrations at the end of the experiment. Aquifer models uncovered at the end of the experiment are shown. The red line delimits the mineralized zone (of greater hardness compared to other zones) of the porous medium of the aquifer models. All the models (duplicates) used are shown (central column). The bioreactor on the right shows the percentage of the area occupied by the mineralized zone with respect to the total surface of the upper face of the models (Calculated using the ImageJ program).
FIGURA 26: FIGURE 26:
Esta figura muestra el área de la superficie de arena biomineralizada en los modelos de acuífero en función de la concentración de formiato en el medio de cultivo. Se observa una dependencia directa de la concentración de formiato y el área de la arena biomineralizada en los modelos de acuífero, la cual alcanza un valor máximo en las mayores concentraciones ensayadas (12 y 18 g de formiato/L). Los valores corresponden al promedio de duplicados (n=2). FIGURA 27: This figure shows the surface area of biomineralized sand in the aquifer models as a function of the formate concentration in the culture medium. A direct dependence of the formate concentration and the area of the biomineralized sand is observed in the aquifer models, which reaches a maximum value at the highest concentrations tested (12 and 18 g of formate / L). The values correspond to the average of duplicates (n = 2). FIGURE 27:
Esta figura muestra los porcentajes de carbonatos totales determinados por titulación ácido base en el medio poroso de los modelos de acuífero estimulados con las distintas concentraciones de formiato en el punto de inoculación y río abajo al finalizar el experimento. Las barras representan el valor promedio de duplicados (n=2). FIGURA 28: This figure shows the percentages of total carbonates determined by acid-base titration in the porous medium of the aquifer models stimulated with the different formate concentrations at the inoculation point and downstream at the end of the experiment. Bars represent the mean value of duplicates (n = 2). FIGURE 28:
Esta figura muestra las imágenes obtenidas por microscopía electrónica de barrido de la arena de cuarzo de los modelos de acuífero estimulados con la menor y mayor concentración de formiato (3 y 18 g/L) al final del experimento. A: Mineral cristalino de CaCÜ3 y cúmulos bacterianos en una muestra de arena de cuarzo de uno de los modelos estimulados con 3 g/L de formiato. B: Mineral cristalino de CaCÜ3 y cúmulos bacterianos en una muestra de arena de cuarzo de uno de los modelos estimulados con 18 g/L de formiato. ac: arena de cuarzo carb: carbonato. Flechas: cúmulos bacterianos. This figure shows the images obtained by scanning electron microscopy of the quartz sand from the aquifer models stimulated with the lowest and highest concentrations of formate (3 and 18 g / L) at the end of the experiment. A: Crystalline CaCÜ3 mineral and bacterial clumps in a quartz sand sample from one of the models stimulated with 3 g / L formate. B: CaCÜ3 crystalline mineral and bacterial clusters in a quartz sand sample from one of the models stimulated with 18 g / L of formate. ac: quartz sand carb: carbonate. Arrows: bacterial clusters.
FIGURA 29: FIGURE 29:
Esta figura ilustra el diagrama del flujo de una aplicación particular del proceso para reducir la permeabilidad hidráulica y generar la precipitación de minerales insolubles in situ de un acuífero subterráneo contaminados con sulfatos. This figure illustrates the flow diagram of a particular application of the process to reduce hydraulic permeability and generate precipitation of insoluble minerals in situ from a sulfate-contaminated underground aquifer.
Los siguientes ejemplos ilustran algunas aplicaciones concretas de la invención, pero no pretenden limitar el marco ni los alcances de la presente invención. The following examples illustrate some specific applications of the invention, but are not intended to limit the scope or scope of the present invention.
EJEMPLOS EXAMPLES
Ejemplo 1 Example 1
Enriquecimiento de un consorcio microbiano reductor de sulfato a partir de trombolitos vivos. Enrichment of a sulfate-reducing microbial consortium from live thrombolites.
Se tomó muestras de trombolitos vivos del Lago Sarmiento de Gamboa (51°03O0"S, 72°45'0 W), Parque Nacional Torres del Paine, XII Región, Chile. Lago Sarmiento posee una profundidad máxima de 312 m y un área aproximada entre 83 y 84 km2. El Lago Sarmiento de Gamboa es un lago alcalino con una salinidad promedio de 1 ,9 mg/L, un pH entre 8,3 y 8,7, y una temperatura media superficial de 6,2°C en invierno y 12,2°C en verano. El Lago Sarmiento presenta microbialitos vivos, que poseen una estructura no laminada constituida por coágulos de carbonatos la cual los clasifica como trombolitos. Estos trombolitos vivos se encuentran bajo la superficie del espejo de agua (Solari et al. Paleoclimatic significance of lacustrine microbialites: A stable isotope case study of two lakes at Torres del Paine, Southern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(1), 70-82, 2010). Samples of live thrombolites were taken from Lake Sarmiento de Gamboa (51 ° 03O0 "S, 72 ° 45'0 W), Torres del Paine National Park, XII Region, Chile. Sarmiento Lake has a maximum depth of 312 m and an approximate area between 83 and 84 km 2. Lake Sarmiento de Gamboa is an alkaline lake with an average salinity of 1.9 mg / L, a pH between 8.3 and 8.7, and an average surface temperature of 6.2 ° C in winter and 12.2 ° C in summer. Lake Sarmiento has live microbialites, which have a non-laminated structure made up of carbonate clots which classifies them as thrombolites. These living thrombolites are found under the surface of the water mirror (Solari et al. Paleoclimatic significance of lacustrine microbialites: A stable isotope case study of two lakes at Torres del Paine, Southern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology, 297 (1), 70-82, 2010).
El proceso de muestreo consistió en la extracción manual de trombolitos vivos situados bajo el agua en la orilla del sector Noreste del lago, los cuales fueron colocados a 6 °C en frascos de plástico estériles. Por ser un Área Silvestre Protegida del Estado, se obtuvo el permiso de la Corporación Nacional Forestal (CONAF Autorización N° 012/2014) para realizar el muestreo. The sampling process consisted of the manual extraction of live thrombolites located underwater on the shore of the Northeast sector of the lake, which were placed at 6 ° C in sterile plastic jars. Because it is a State Protected Wild Area, permission was obtained from the National Forestry Corporation (CONAF Authorization N ° 012/2014) to carry out the sampling.
Mediante difracción de rayos X (equipo de difracción de rayos X D8 Advance, Bruker, Alemania), se determinó que la mineralogía de los trombolitos vivos del Lago Sarmiento está representada principalmente por magnesio calcita (Mgo,o6Cao,94CC>3). By means of X-ray diffraction (D8 Advance X-ray diffraction equipment, Bruker, Germany), it was determined that the mineralogy of living thrombolites from Lake Sarmiento is mainly represented by magnesium calcite (Mgo, o6Cao, 94CC> 3).
Para realizar el enriquecimiento del consorcio se utilizó biorreactores rellenos de arena (Figura 1). Los biorreactores (1) fueron fabricadas de vidrio y tenían 173 mL de capacidad, 18 cm de longitud y 3,5 cm de diámetro interno. Para el control de temperatura se utilizó una camisa de vidrio exterior (2), alimentada con agua proveniente de un baño termorregulado a 18 °C. El biorreactor se rellenó con arena (3). Para ello, se instaló en la parte inferior del biorreactor un filtro para impedir que la arena escurra hacia las mangueras de alimentación. Este filtro consistió en un tubo de PVC cubierto con una malla de plástico, por la apertura inferior. El biorreactor se llenó con agua destilada estéril, cuidando de sacar todo el aire atrapado. Posteriormente, se agregó una capa de 40 g de arena gruesa (aproximadamente 850 pm), sobre la cual se colocó 120 g de una capa de arena fina (de 300 a 500 pm). Ambos tipos de arena fueron lavadas previamente con HCI al 10%, el que se enjuagó con agua destilada hasta que el enjuague alcanzó pH 6.Sand-filled bioreactors were used to enrich the consortium (Figure 1). The bioreactors (1) were made of glass and had 173 mL capacity, 18 cm in length and 3.5 cm in internal diameter. For temperature control an outer glass jacket (2) was used, fed with water from a thermoregulated bath at 18 ° C. The bioreactor was filled with sand (3). To do this, a filter was installed at the bottom of the bioreactor to prevent sand from running into the feed hoses. This filter consisted of a PVC tube covered with a plastic mesh, through the lower opening. The bioreactor was filled with sterile distilled water, taking care to remove all trapped air. Subsequently, a layer of 40 g of coarse sand (approximately 850 pm) was added, on which 120 g of a layer of fine sand (300 to 500 pm) was placed. Both types of sand were previously washed with 10% HCl, which was rinsed with distilled water until the rinse reached pH 6.
Posterior al lavado, la arena se esterilizó y secó en un horno a 180 °C por 2 horas. Para controlar la presión interna del sistema, se utilizó un par de piezómetros de vidrio ubicados uno en la parte inferior (4) y otro en la parte superior (5) del biorreactor. La diferencia en la altura de agua de los piezómetros permitió determinar la conductividad hidráulica. La alimentación se hizo mediante bombas peristálticas (Cole-Palmer, modelo 7557-14, 1-100 rpm, EEUU) desde la parte inferior (6) hasta la parte superior (7) del biorreactor, con un flujo ascendente de 0,2 mL/min. After washing, the sand was sterilized and dried in an oven at 180 ° C for 2 hours. To control the internal pressure of the system, a pair of piezometers of glass located one at the bottom (4) and one at the top (5) of the bioreactor. The difference in the water height of the piezometers allowed determining the hydraulic conductivity. The feeding was done by peristaltic pumps (Cole-Palmer, model 7557-14, 1-100 rpm, USA) from the bottom (6) to the top (7) of the bioreactor, with an upward flow of 0.2 mL. / min.
Se conectó con mangueras de silicona la camisa externa del biorreactor al baño termorregulado, mientras las otras conexiones se efectuaron de la siguiente forma: con mangueras de silicona, las entradas, salidas e instalación de los piezómetros; con mangueras de Tygon (impermeables a intercambio gaseoso) las vías de alimentación, recirculación y salida de efluentes. Todas las mangueras del sistema, y sus conectores, fueron previamente esterilizados en autoclave. Para generar el flujo de alimentación se empleó una bomba peristáltica (Cole-Palmer, modelo 7557-14, 1- 100 rpm, EEUU). Para impedir cambios en la temperatura interna del sistema, junto con impedir el paso de luz al interior (simulando las condiciones de la napa subterránea), se envolvió a los biorreactores con un aislante térmico. The external jacket of the bioreactor was connected to the thermoregulated bath with silicone hoses, while the other connections were made as follows: with silicone hoses, the inlets, outlets and installation of the piezometers; with Tygon hoses (impermeable to gaseous exchange) the feeding, recirculation and effluent outlet routes. All the hoses of the system, and their connectors, were previously sterilized in an autoclave. To generate the feed flow, a peristaltic pump (Cole-Palmer, model 7557-14, 1-100 rpm, USA) was used. To prevent changes in the internal temperature of the system, along with preventing the passage of light to the interior (simulating the conditions of the underground layer), the bioreactors were wrapped with a thermal insulator.
Una vez montado el biorreactor, se realizó un lavado bombeando agua destilada, hasta que no se vio turbidez en el efluente. Por último, se alimentó el biorreactor con aproximadamente 1 L de medio de cultivo PCM estéril, cuya composición se indica a continuación: K2SO4 2,4 g/L; MgS04*7H20 0,061 g/L; NaHCOs 0,35 g/L; CaCI2 1 ,3 g/L; K2HPC>4 0,01 g/L; Na2(Si03) 0,009 g/L; citrato de sodio 0,28 g/L; NhUCI 1 g/L; extracto de levadura 1 g/L; acetato de sodio 1 ,3 g/L. El medio se ajunto a pH 7,9. El medio de cultivo se preparó en agua de subterránea extraída de la barrera hidráulica de un tranque de relaves, cuyos principales componentes son HCO3· 217,7 mg/L, Ca2+ 302 mg/L, Mg2+ 76,6 mg/L y SCL2- 1192,3 mg/L. Se utilizó agua subterránea extraída de un acuífero contaminado para preparar el medio de cultivo para enriquecer un consorcio microbiano adaptado a las condiciones ambientales del sitio a tratar. Once the bioreactor was assembled, a washing was carried out by pumping distilled water, until no turbidity was seen in the effluent. Finally, the bioreactor was fed with approximately 1 L of sterile PCM culture medium, the composition of which is indicated below: K2SO4 2.4 g / L; MgSO4 * 7H 2 0 0.061 g / L; NaHCOs 0.35 g / L; CaCl 2 1.3 g / L; K 2 HPC> 4 0.01 g / L; Na 2 (Si0 3 ) 0.009 g / L; 0.28 g / L sodium citrate; NhUCI 1 g / L; yeast extract 1 g / L; sodium acetate 1.3 g / L. The medium was adjusted to pH 7.9. The culture medium was prepared in water extracted groundwater hydraulic barrier of a tailings dam, whose main components are HCO3 · 217.7 mg / L, Ca 2+ 302 mg / L, Mg 2+ 76.6 mg / L and SCL 2- 1192.3 mg / L. Groundwater extracted from a contaminated aquifer was used to prepare the culture medium to enrich a microbial consortium adapted to the environmental conditions of the site to be treated.
Una vez que todo el sistema se rellenó con el medio PCM, se procedió inmediatamente a inocularlo. Este proceso involucró una etapa de introducción de una muestra de microbialito vivo al biorreactor y posteriormente de un periodo de colonización, que consistió en una recirculación a 10 rpm (con un caudal nominal 2,1 ml/min) por 24 horas, se alimentó con medio de cultivo la columna, sin recirculación, a un caudal promedio de 173 mL/día por 68 días, después a 80 mL/día por 26 y finalmente a 18 mL/día hasta el final del experimento. Once the entire system was filled with PCM medium, it was immediately inoculated. This process involved a stage of introduction of a live microbialite sample to the bioreactor and after a colonization period, which consisted of recirculation at 10 rpm (with a nominal flow rate 2.1 ml / min) for 24 hours, the column was fed with culture medium, without recirculation , at an average flow rate of 173 mL / day for 68 days, then at 80 mL / day for 26 and finally at 18 mL / day until the end of the experiment.
Para determinar la concentración de sulfato en solución se utilizó el método estándar basado en la precipitación del sulfato contenido en las muestras como sulfato de bario (BaSCL) que se forma al agregar la sal soluble cloruro de bario (BaCh) en exceso (American Public Health Association, American Water Works Association y Water Environment Federation. 1998a. "4500-S04-2 E". En: "Standard methods for the examination of water and wastewater". Ed. 20). El sulfato de bario formado fue determinado por turbidimetría mediante un espectrofotómetro a 450 nm (Espectrofotómetro Dynamica, modelo HALO RB-10, Gran Bretaña). To determine the sulfate concentration in solution, the standard method based on the precipitation of the sulfate contained in the samples as barium sulfate (BaSCL) that is formed by adding the soluble salt of barium chloride (BaCh) in excess was used (American Public Health Association, American Water Works Association and Water Environment Federation. 1998a. "4500-S04-2 E". In: "Standard methods for the examination of water and wastewater". Ed. 20). The barium sulfate formed was determined by turbidimetry using a spectrophotometer at 450 nm (Dynamica spectrophotometer, model HALO RB-10, Great Britain).
La concentración de calcio en solución se realizó mediante espectrometría de absorción, usando el siguiente protocolo: se centrifugó 1 mL de efluente por 10 minutos a 11.600 g (centrífuga Microcentaur MSB010.Cx2,5; Sanyo, Gran Bretaña), 500 pL de sobrenadante se diluyó en agua destilada, para situar la determinación dentro del rango medible. De la solución mencionada se tomó 1 mL de solución y se agregó a un tubo de ensayo con 8 mL de agua destilada y 1 mL de una solución de Sr2+ de 4.000 mg/L con HCIO4 0,8N. Finalmente la solución se mide usando un espectrofotómetro de absorción atómica Perkin Elmer, modelo 3110, EEUU (American Public Health Association, 1992a; American Public Health Association, 1992b). The concentration of calcium in solution was performed by absorption spectrometry, using the following protocol: 1 mL of effluent was centrifuged for 10 minutes at 11,600 g (Microcentaur MSB010.Cx2.5 centrifuge; Sanyo, Great Britain), 500 pL of supernatant was diluted in distilled water, to bring the determination within the measurable range. From the mentioned solution, 1 mL of solution was taken and added to a test tube with 8 mL of distilled water and 1 mL of a 4,000 mg / L Sr 2+ solution with 0.8N HCIO4. Finally the solution is measured using a Perkin Elmer atomic absorption spectrophotometer, model 3110, USA (American Public Health Association, 1992a; American Public Health Association, 1992b).
El resultado del enriquecimiento del consorcio microbiano se muestra en la Figura 2. En la parte (A) se observa que los valores de pH en el efluente, alcanzan valores iguales a 8,5. La alcalinización generada por este consorcio es una condición muy importante para la mineralización inducida biológicamente. Este aumento se hace más evidente a medida que se disminuye el volumen de alimentación. Por su parte, las concentraciones de sulfato, graficadas en la parte (B), indican una tendencia al descenso asociado a la disminución de los volúmenes de alimentación. En este caso, se alcanzó concentraciones de sulfato menores a 2500 mg/L. Esto sugiere la acción de bacterias reductoras de sulfato en este consorcio. Para las concentraciones de calcio se observa una disminución progresiva a partir del punto en el cual se redujo el volumen de alimentación, cabe destacar que incluso se registraron concentraciones de calcio por debajo de los 200 mg/L. La reducción en la concentración de calcio se explica por la mineralización de carbonato de calcio al interior del biorreactor (mineralización inducida biológicamente). El efluente de esta columna, que contiene el consorcio microbiano reductor de sulfato a partir de trombolitos del Lago Sarmiento, Torres del Paine, se utiliza como inoculo para un proceso que permita reducir la permeabilidad hidráulica y generar la precipitación de minerales insolubles en un acuífero contaminado. Además, este efluente se emplea para inocular un nuevo biorreactor de igual o mayor tamaño. Ejemplo 2 The result of the enrichment of the microbial consortium is shown in Figure 2. In part (A) it is observed that the pH values in the effluent reach values equal to 8.5. The alkalinization generated by this consortium is a very important condition for biologically induced mineralization. This increase becomes more apparent as the feed volume decreases. For their part, sulfate concentrations, plotted in part (B), indicate a tendency to decrease associated with decreased feeding volumes. In this case, sulfate concentrations lower than 2500 mg / L were reached. This suggests the action of sulfate reducing bacteria in this consortium. For calcium concentrations, a progressive decrease is observed from the point at which the feeding volume was reduced, it should be noted that calcium concentrations were even registered below 200 mg / L. The reduction in calcium concentration is explained by the mineralization of calcium carbonate inside the bioreactor (biologically induced mineralization). The effluent from this column, which contains the sulfate-reducing microbial consortium from thrombolites from Lake Sarmiento, Torres del Paine, is used as an inoculum for a process that reduces hydraulic permeability and generates the precipitation of insoluble minerals in a contaminated aquifer. . In addition, this effluent is used to inoculate a new bioreactor of equal or greater size. Example 2
Enriquecimiento de un consorcio microbiano reductor de sulfato a partir estromatolitos vivos. Enrichment of a sulfate-reducing microbial consortium from live stromatolites.
Se tomó muestras de estromatolitos vivos de la Laguna Amarga (50°58'27"S, 72°44'55"W), Torres del Paine, XII Región, Chile. Laguna Amarga es una laguna mesosalina, endorreica, somera (profundidad máxima 4 m) con un área aproximada de 1 ,9 km2. El pH promedio del lago es de 9,1 , mientras que la salinidad y la temperatura promedio es de 26,1 mg/L y 11 ,7 °C, respectivamente. La Laguna Amarga presenta microbialitos laminares o estromatolitos vivos, con formas de bulbos, domos y alargados (Solari et al. Paleoclimatic significance of lacustrine microbialites: A stable isotope case study of two lakes at Torres del Paine, Southern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(1), 70-82, 2010). Los estromatolitos vivos con forma de domo están compuestos por una secuencia de láminas blancas y grises. El proceso de muestreo consistió en la extracción manual de estromatolitos situados cerca de la orilla del extremo Este de la laguna, los cuales fueron colocados a 6 °C en frascos de plástico estériles. Mediante difracción de rayos X (equipo de difracción de rayos X D8 Advance, Bruker, Alemania), se determinó que los estromatolitos vivos presentan minerales de carbonato, particularmente aragonita (Ca(CC>3), además de halita (NaCI), cuarzo (SiOz), albita calciana ((Nao,84Cao,i6)Ali,i6S¡2,8408) y anortita (Nao,25Cao,7i(AÍ2S¡208)). Live stromatolites were sampled from Laguna Amarga (50 ° 58'27 "S, 72 ° 44'55" W), Torres del Paine, XII Region, Chile. Laguna Amarga is a shallow endorheic mesosaline lagoon (maximum depth 4 m) with an approximate area of 1. 9 km 2 . The average pH of the lake is 9.1, while the average salinity and temperature is 26.1 mg / L and 11.7 ° C, respectively. La Laguna Amarga presents live laminar microbialites or stromatolites, with bulbous, domed and elongated shapes (Solari et al. Paleoclimatic significance of lacustrine microbialites: A stable isotope case study of two lakes at Torres del Paine, Southern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology , 297 (1), 70-82, 2010). Living dome-shaped stromatolites are composed of a sequence of white and gray sheets. The sampling process consisted in the manual extraction of stromatolites located near the eastern edge of the lagoon, which were placed at 6 ° C in sterile plastic jars. By means of X-ray diffraction (X-ray diffraction equipment D8 Advance, Bruker, Germany), it was determined that living stromatolites present carbonate minerals, particularly aragonite (Ca (CC> 3), in addition to halite (NaCl), quartz ( SiOz), Calcian albite ((Nao, 84Cao, i6) Ali, i6S¡2,8408) and anorthite (Nao, 25Cao, 7i (AÍ2S¡208)).
Para realizar el enriquecimiento del consorcio se utilizó biorreactores rellenos de arena, de acuerdo a lo descrito anteriormente en el Ejemplo 1. La inoculación de los biorreactores con una muestrea de estromatolito de la Laguna Amarga y la posterior colonización de la arena se realizó, también, según lo ya descrito en el Ejemplo 1. A continuación se alimentó medio de cultivo al biorreactor, sin recirculación, con un caudal de 30-90 mL/semana. La determinación de las concentraciones de sulfato y calcio en solución se realizaron de acuerdo al Ejemplo 1. To carry out the enrichment of the consortium, bioreactors filled with sand were used, according to what was previously described in Example 1. The inoculation of the bioreactors with a sample of stromatolite from the Laguna Amarga and the subsequent colonization of the sand was also carried out. as already described in Example 1. The culture medium was then fed to the bioreactor, without recirculation, with a flow rate of 30-90 mL / week. The determination of the sulfate and calcium concentrations in solution were carried out according to Example 1.
Las mediciones de ácido sulfhídrico (o sulfuras) se realizaron de acuerdo a lo indicado en "Standard Methods for the Examination of Water and Wastewater" (American Public Health Association, American Water Works Association y Water Environment Federation. 1998b. "4500-S-2 D". En: "Standard methods for the examination of water and wastewater". Ed. 20.), cuyo fundamento es la medición de la absorbancia producida por la formación de azul de metileno al reaccionar el compuesto N,N-dimetil-1 ,4-fenildiamino oxalato y el sulfuro presente en la muestra. The measurements of hydrogen sulfide (or sulfides) were carried out according to what is indicated in "Standard Methods for the Examination of Water and Wastewater" (American Public Health Association, American Water Works Association and Water Environment Federation. 1998b. "4500-S- 2 D ". In:" Standard methods for the examination of water and wastewater ". Ed. 20.), whose foundation is the measurement of the absorbance produced by the formation of methylene blue when the compound N, N-dimethyl- 1,4-phenyldiamino oxalate and the sulfur present in the sample.
El resultado del enriquecimiento del consorcio microbiano se muestra en la Figura 3. En la Figura 3A se observa que los valores de pH en el efluente, alcanzan valores cercanos a 8,5 a los 120 días y que el potencial de óxido reducción tiende a disminuir en el tiempo, lo que es adecuado para el establecimiento de un consorcio microbiano reductor de sulfato. Por su parte, la Figura 3B muestra una importante reducción de la concentración de sulfato en el efluente del biorreactor, comparado con la concentración agregada con el medio de cultivo. En este caso, se alcanzó concentraciones de sulfato menores a 1500 mg/L. En la Figura 3B también se puede ver que a partir del día 100 aumenta en forma importante la concentración de ácido sulfhídrico. Esto muestra la actividad de los microorganismos reductores de sulfato del consorcio microbiano enriquecido. Al igual que en el ejemplo 1 , la Figura 3C muestra un progresivo descenso de la concentración de calcio en el efluente en comparación con lo que se agrega en el medio de cultivo. The result of the enrichment of the microbial consortium is shown in Figure 3. In Figure 3A it is observed that the pH values in the effluent reach values close to 8.5 at 120 days and that the potential for oxide reduction tends to decrease. in time, which is suitable for the establishment of a sulfate reducing microbial consortium. For its part, Figure 3B shows a significant reduction in the sulfate concentration in the bioreactor effluent, compared to the concentration added with the culture medium. In this case, it was reached sulfate concentrations less than 1500 mg / L. In Figure 3B it can also be seen that from day 100 the hydrogen sulfide concentration increases significantly. This shows the activity of the sulfate reducing microorganisms in the enriched microbial pool. As in example 1, Figure 3C shows a progressive decrease in the concentration of calcium in the effluent compared to what is added in the culture medium.
El efluente de este biorreactor, que contiene el consorcio microbiano reductor de sulfato enriquecido a partir de estromatolitos de la Laguna Amarga, se utiliza como inoculo para un proceso que permita reducir la permeabilidad hidráulica y generar la precipitación de minerales insolubles en un acuífero contaminado. Además, este efluente se emplea para inocular un nuevo biorreactor de igual o mayor tamaño. The effluent from this bioreactor, which contains the sulfate-reducing microbial consortium enriched from stromatolites from the Laguna Amarga, is used as inoculum for a process that allows reducing hydraulic permeability and generating the precipitation of insoluble minerals in a contaminated aquifer. In addition, this effluent is used to inoculate a new bioreactor of equal or greater size.
Ejemplo 3 Example 3
Disminución de la conductividad hidráulica en columnas Decrease in hydraulic conductivity in columns
Para demostrar la disminución de la conductividad hidráulica debida al crecimiento del consorcio microbiano en un lecho de arena, se diseñó y construyó un prototipo de laboratorio, constituido por una columna de acero inoxidable AISI 304. La Figura 4 muestra esquemáticamente el diseño de las columnas. Se utilizó 3 columnas de 1 ,40 metros de altura y 25 centímetros de diámetro, con salidas laterales a los 8, 50, To demonstrate the decrease in hydraulic conductivity due to the growth of the microbial consortium in a sand bed, a laboratory prototype was designed and built, consisting of an AISI 304 stainless steel column. Figure 4 schematically shows the design of the columns. 3 columns of 1.40 meters high and 25 centimeters in diameter were used, with lateral exits at 8, 50,
90 y 130 centímetros desde la base para la instalación de instrumentos de medición de presión. Se instaló filtros de malla de PVC y malla de acero inoxidable con poros de 0,3 mm de diámetro en la base de la columna. Además, se colocó filtros de malla de acero inoxidable al costado de las columnas, para proteger las salidas de medición de presión. 90 and 130 centimeters from the base for the installation of pressure measuring instruments. Filters made of PVC mesh and stainless steel mesh with pores of 0.3 mm diameter were installed at the base of the column. In addition, stainless steel mesh filters were placed alongside the columns to protect the pressure measurement outlets.
Para las columnas se usó 70 kilogramos de arena de cuarzo 35-50 mallas, la que no fue tamizada nuevamente para empacar las columnas. Sin embargo, se caracterizó su tamaño de partícula por, tamizado (tamizador Erweka AR 400, Alemania) y posteriormente pesando la arena que quedaba en cada tamiz (Tabla 1). La arena utilizada en todas las columnas se lavó con agua, posteriormente se trató con ácido clorhídrico al 20% para remover carbonatos, se neutralizó mediante lavados con agua destilada y finalmente se secó y esterilizó en un horno Pasteur a 180 °C por dos horas. For the columns, 70 kilograms of 35-50 mesh quartz sand was used, which was not sieved again to pack the columns. However, its particle size was characterized by sieving (Erweka AR 400 sieve, Germany) and subsequently weighing the sand that remained in each sieve (Table 1). The sand used in all the columns was washed with water, later it was treated with 20% hydrochloric acid to remove carbonates, it was neutralized by washing with distilled water and finally it was dried and sterilized in a Pasteur oven at 180 ° C for two hours.
Tabla 1. Caracterización de la arena utilizada en el empaque de las columnas. Table 1. Characterization of the sand used in packing the columns.
Figure imgf000030_0001
Se empacó todas las columnas llenándolas con agua hasta alcanzar 30 centímetros de altura, para luego agregar la arena de forma uniforme hasta que decantara. Las columnas se empacaron sobre una malla de acero inoxidable ubicada encima de un lecho piedras de cuarzo entre 0,64 cm y 2,5 cm de diámetro. Esto último con el fin de evitar el descenso de la arena empacada hacia las mangueras de alimentación.
Figure imgf000030_0001
All the columns were packed filling them with water until reaching 30 centimeters in height, and then adding the sand evenly until it decanted. The columns were packed on a stainless steel mesh placed on a bed of quartz stones between 0.64 cm and 2.5 cm in diameter. The latter in order to avoid the descent of the packed sand towards the feed hoses.
Una vez que se terminó de agregar la arena a la columna se colocó la tapa de la columna y se realizó las conexiones de mangueras usando mangueras Tygon. Luego se enrolló a lo largo de la columnas una manguera conectada a un baño termorregulado y se rodeó la estructura con un aislante térmico, con el fin de mantener el interior de las columnas a 18°C. Once the sand was finished adding to the column, the column cover was placed and the hose connections made using Tygon hoses. Then a hose connected to a thermoregulated bath was wound along the columns and the structure was surrounded with a thermal insulator, in order to keep the interior of the columns at 18 ° C.
Se utilizó el siguiente medio de cultivo: K2SO4 4,6 g/L; MgS04*7H20 0,06 g/L; NaHCOs 0,035 g/L; CaCI2 *2H20 3,4; NhUCI 1 g/L; Na2(Si03) 0,009 g/L; KH2R04 0,05 g/L; citrato de sodio 0,279 g/L; acetato de sodio 4,5 g/L; extracto de levadura 1 g/L; tioglicolato de sodio 0,099 g/L. El medio de cultivo se preparó con agua subterránea extraída del de la barrera hidráulica de un tranque de relaves, cuyos principales componentes son HCO3· 217,7 mg/L, Ca2+ 302 mg/L, Mg2+ 76,6 mg/L y SCL2- 1192,3 mg/L. Además, también se agregó tioglicolato, compuesto reductor que le otorga al medio de cultivo un potencial de óxido reducción adecuado para el desarrollo de bacterias reductoras de sulfato. The following culture medium was used: K2SO4 4.6 g / L; MgSO4 * 7H 2 0 0.06 g / L; NaHCOs 0.035 g / L; CaCl 2 * 2H 2 0 3.4; NhUCI 1 g / L; Na 2 (Si0 3 ) 0.009 g / L; KH 2 R0 4 0.05 g / L; 0.279 g / L sodium citrate; sodium acetate 4.5 g / L; yeast extract 1 g / L; sodium thioglycolate 0.099 g / L. The culture medium was prepared with groundwater extracted from the hydraulic barrier of a tailings dam, whose main components are HCO3 · 217.7 mg / L, Ca 2+ 302 mg / L, Mg 2+ 76.6 mg / L and 1192.3 mg SCL 2- / L. In addition, thioglycollate was also added, a reducing compound that gives the culture medium a suitable oxide reduction potential for the development of sulfate reducing bacteria.
La columna A fue inoculada con el efluente del biorreactor del Ejemplo 1. La columna B fue inoculada con el efluente del biorreactor del Ejemplo 2. La columna C (control sin microorganismos) no fue inoculada y se le agregó un biocida. Para la inoculación se hizo pasar 50 litros de medio de cultivo a través de cada columna de acero inoxidable, posteriormente las columnas A y B se inocularon 450 mL del efluente del biorreactor del Ejemplo 1 y de Ejemplo 2, respectivamente. La columna C no fue inoculada y se le agregó 920 mg/L de sulfato de cadmio al medio de cultivo que la alimentó para inhibir el desarrollo microbiano. Column A was inoculated with the effluent from the bioreactor of Example 1. Column B was inoculated with the effluent from the bioreactor of Example 2. Column C (control without microorganisms) was not inoculated and a biocide was added. For the inoculation, 50 liters of culture medium were passed through each stainless steel column, later columns A and B were inoculated with 450 mL of the effluent from the bioreactor of Example 1 and Example 2, respectively. Column C was not inoculated and 920 mg / L of cadmium sulfate was added to the culture medium that was fed to it to inhibit microbial development.
Todas las columnas se iniciaron con una recirculación del medio durante 15 días, para favorecer la adherencia de los microorganismos sobre las partículas de arena del relleno. Posteriormente se agregó medio de cultivo, en forma continua, de acuerdo al siguiente régimen de alimentación para cada una de las columnas: All the columns were started with a recirculation of the medium for 15 days, to favor the adherence of the microorganisms on the sand particles of the filling. Subsequently, culture medium was added, continuously, according to the following feeding regime for each of the columns:
- Columna A: 816 mL/día 16 al 29, 302 mL/día del día 30 al 106, 907 mL/día del día- Column A: 816 mL / day 16 to 29, 302 mL / day from day 30 to 106, 907 mL / day of day
107 al 138, 302 mL/día del día 139 al 168 y 907 mL/día del día 169 al 182. 107 to 138, 302 mL / day from day 139 to 168 and 907 mL / day from day 169 to 182.
- Columna B: 816 mL/día 16 al 29, 302 mL/día del día 30 al 126, 907 mL/día del día 127 al 172. - Column B: 816 mL / day 16 to 29, 302 mL / day from day 30 to 126, 907 mL / day from day 127 to 172.
- Columna C: 816 mL/día 16 al 29, 302 mL/día del día 30 al 126, 907 mL/día del día 127 al 172. - Column C: 816 mL / day 16 to 29, 302 mL / day from day 30 to 126, 907 mL / day from day 127 to 172.
La determinación de las concentraciones de sulfato y calcio se realizó de acuerdo al ejemplo 1 y la medición de ácido sulfhídrico (o sulfuros) en solución, de acuerdo al Ejemplo 2. The determination of sulfate and calcium concentrations was carried out according to Example 1 and the measurement of hydrogen sulfide (or sulfides) in solution, according to Example 2.
La concentración de ATP en los efluentes se determinó con el sistema comercial de medición de ATP LixKit®, Biohidrica, Chile, el que se basa en la reacción de oxidación de luciferina dependiente de ATP catalizada por la enzima luciferasa. La cantidad de luz producida por la reacción se determinó mediante un luminómetro Kikkoman, modelo Lumitester PD-20, Japón. Para esto, se tomaron 5 mL de efluente de los modelos, del cual se concentraron los microorganismos por filtración en membranas de nitrocelulosa (0,22 pm). Posteriormente, los microorganismos filtrados fueron recolectados con la tórula provista en el sistema, la que se inserta en la varilla de reacción que contiene el líquido de lisis celular y los demás componentes liofilizados para la oxidación de luciferina dependiente de ATP. El valor de luminiscencia obtenido (en Unidades Relativas de Luz, URL), fue dividido por 5 para obtener el valor de URL/mL. The ATP concentration in the effluents was determined with the commercial ATP measurement system LixKit ® , Biohidrica, Chile, which is based on the reaction of ATP-dependent oxidation of luciferin catalyzed by the enzyme luciferase. The amount of light produced by the reaction was determined using a Kikkoman luminometer, model Lumitester PD-20, Japan. For this, 5 mL of effluent from the models were taken, from which the microorganisms were concentrated by filtration on nitrocellulose membranes (0.22 pm). Subsequently, the filtered microorganisms were collected with the torula provided in the system, which is inserted into the reaction rod containing the cell lysis liquid and the other lyophilized components for ATP-dependent oxidation of luciferin. The luminescence value obtained (in Relative Light Units, URL), was divided by 5 to obtain the value of URL / mL.
En al caso de la columna A, en la Figura 5A, se observa una disminución en el potencial de óxido-reducción a lo largo del experimento, lo que favorece el establecimiento del metabolismo reductor de sulfato en la columna, dado que este metabolismo se asocia a bajos niveles de potencial. La Figura 5A muestra que la medición de ATP intracelular en el efluente de la columna, se relaciona directamente con la actividad microbiana presente, se mantiene alta durante todo el experimento, aunque con una tendencia a la baja al final de éste. La Figura 5B muestra que durante un periodo de 175 días de operación la columna inoculada con el consorcio enriquecido fue capaz de reducir sulfato. En cuanto a la producción de ácido sulfhídrico en esta columna (Figura 5B), se puede observar una tendencia al aumento en los valores de las mediciones de sulfuros a lo largo del tiempo, con una pendiente mayor a partir del día de operación número 120, cuando aumenta la reducción de sulfato al interior de la columna, llegando a valores cercanos a 180 mg/L hacia el final del experimento. In the case of column A, in Figure 5A, a decrease in the oxidation-reduction potential is observed throughout the experiment, which favors the establishment of the reducing sulfate metabolism in the column, since this metabolism is associated at low potential levels. Figure 5A shows that the intracellular ATP measurement in the column effluent is directly related to the microbial activity present, it remains high throughout the experiment, although with a downward trend at the end of the experiment. Figure 5B shows that during a period of 175 days of operation the column inoculated with the enriched consortium was able to reduce sulfate. Regarding the production of hydrogen sulfide in this column (Figure 5B), a tendency to increase in the values of the sulfide measurements can be observed over time, with a greater slope from the 120th operating day, when the sulfate reduction inside the column increases, reaching values close to 180 mg / L towards the end of the experiment.
Para la columna B se observó que el potencial de óxido-reducción tiene un comportamiento similar a la columna A (Figura 6A), alcanzando valores negativos y manteniéndose al fin del experimento alrededor de los -350 mV. Esto da indicios del desarrollo de un metabolismo reductor de sulfato al interior de la columna inoculada. La Figura 6A muestra altos valores de ATP intracelular en el efluente de la columna al inicio del experimento, los que se reducen a lo largo del tiempo. Las mediciones de sulfato a partir del efluente, que se muestran en la Figura 6B, indican que desde el inicio del experimento hubo una disminución en los valores de sulfato en el efluente de la columna B en comparación con la concentración de sulfato alimentada con el medio de cultivo. La Figura 6B muestra una activa producción de ácido sulfhídrico a partir del día 60, incrementándose su concentración en el efluente, para llegar a valores de 450 mg/L en el día 140. For column B it was observed that the oxidation-reduction potential has a similar behavior to column A (Figure 6A), reaching negative values and remaining at the end of the experiment around -350 mV. This indicates the development of a sulfate reducing metabolism within the inoculated column. Figure 6A shows high values of intracellular ATP in the effluent of the column at the beginning of the experiment, which decrease over time. The sulfate measurements from the effluent, shown in Figure 6B, indicate that from the beginning of the experiment there was a decrease in the sulfate values in the effluent from column B compared to the sulfate concentration fed with the medium. cultivation. Figure 6B shows an active production of hydrogen sulfide from day 60, increasing its concentration in the effluent, to reach values of 450 mg / L on day 140.
Como control comparativo, en la Figura 7A se puede observar que a diferencia de lo ocurrido en las columnas A y B, la columna C con biocida no hay reducción en el potencial de óxido reducción, manteniéndose la condiciones oxidativas con un valor promedio de + 200 mV. La medición de ATP intracelular en el efluente mostró bajos niveles de actividad microbiana. De la misma manera, esta columna no mostro cambios respecto a la concentración de sulfato del medio de cultivo (Figura 7B). Tampoco fue posible detectar la producción de ácido sulfhídrico en esta columna, lo que confirma la ausencia de actividad microbiana reductora de sulfato (Figura 7B). As a comparative control, in Figure 7A it can be seen that unlike what happened in columns A and B, column C with biocide there is no reduction in the reduction oxide potential, maintaining the oxidative conditions with an average value of + 200 mV. Measurement of intracellular ATP in the effluent showed low levels of microbial activity. In the same way, this column did not show changes with respect to the sulfate concentration of the culture medium (Figure 7B). It was also not possible to detect the production of hydrogen sulfide in this column, which confirms the absence of sulfate-reducing microbial activity (Figure 7B).
Para evaluar si el crecimiento y la actividad del consorcio microbiano reducen el flujo de un líquido a través de la arena, se empleó la conductividad hidráulica. Este parámetro mide la facilidad con que un acuífero transmite agua. A mayor dificultad para el flujo es menor la conductividad hidráulica. La conductividad hidráulica se determinó al terminar el experimento en las columnas, realizando mediciones de presión con transmisores de presión (transmisores de presión de diafragma rasante modelo C9000156, Veto, Chile). La conductividad hidráulica se calculó usando la ecuación de Darcy, presentada a continuación:
Figure imgf000033_0001
To assess whether the growth and activity of the microbial consortium reduce the flow of a liquid through the sand, hydraulic conductivity was used. This parameter measures the ease with which an aquifer transmits water. The more difficult it is for the flow, the lower the hydraulic conductivity. Hydraulic conductivity was determined at the end of the experiment in the columns, performing pressure measurements with pressure transmitters (flush diaphragm pressure transmitters model C9000156, Veto, Chile). Hydraulic conductivity was calculated using Darcy's equation, presented below:
Figure imgf000033_0001
Donde "Hsat" es la conductividad hidráulica de saturación, "Q" es el caudal (velocidad de alimentación de la columna), "L" la distancia entre las estaciones de medición, "A" el área de diámetro de la columna y "DH" es la diferencia entre las alturas de las columnas de agua medidas. Posteriormente, el valor obtenido se normalizó con una medición de Hsat a tiempo cero, con lo que se obtuvo un valor adimencional, siendo ambas mediciones realizadas a la misma velocidad. Where "Hsat" is the saturation hydraulic conductivity, "Q" is the flow rate (feed rate of the column), "L" is the distance between the measuring stations, "A" is the diameter area of the column and "DH "is the difference between the heights of the measured water columns. Subsequently, the value obtained was normalized with a measurement of Hsat at time zero, with which a dimensional value was obtained, both measurements being made at the same speed.
Tabla 2. Conductividad hidráulica en las columnas. Valores obtenidos en el cálculo de la conductividad hidráulica (Hsat) adimensional. Table 2. Hydraulic conductivity in the columns. Values obtained in the calculation of the dimensionless hydraulic conductivity (Hsat).
Figure imgf000034_0001
Figure imgf000034_0001
Se encontró que la conductividad hidráulica generada durante la prueba fue menor en las columnas A y B inoculadas con los consorcios enriquecidos en el Ejemplo 1 y el Ejemplo 2, en comparación con la conductividad hidráulica de la columna C, en la cual se evitó el crecimiento de microorganismos mediante la adición del biocida. La mayor reducción en la conductividad hidráulica se produjo en la columna B, inoculada con el consorcio microbiano reductor de sulfato enriquecido a partir de trombolitos del Lago Sarmiento. It was found that the hydraulic conductivity generated during the test was lower in columns A and B inoculated with the enriched consortia in Example 1 and Example 2, compared to the hydraulic conductivity of column C, in which growth was prevented. of microorganisms by adding the biocide. The greatest reduction in hydraulic conductivity occurred in column B, inoculated with the sulfate-reducing microbial consortium enriched from thrombolites from Lake Sarmiento.
Ejemplo 4 Example 4
Efecto del medio de cultivo sobre la mineralización inducida biológicamente y biocolmatación en biorreactores Effect of culture medium on biologically induced mineralization and bio-clogging in bioreactors
Con el objeto de mostrar el efecto del medio de cultivo sobre la mineralización inducida biológicamente y biocolmatación, se montaron tres biorreactores rellenos de arena de 250 mi de volumen interno de acuerdo al Ejemplo 1 y se denominaron: B1 , B2 y B3. Cada uno de los biorreactores contiene como material de soporte interno arena de cuarzo (tamaño de partícula de 297-841 pm) y son mantenidos bajo condiciones anaeróbicas a una temperatura de 18°C y alimentados periódicamente con medios de cultivo A y B descritos en la Tabla 3. Los medios se diferencian porque el medio A contiene formiato, en cambio el medio B tiene acetato como donador principal de electrones. Además, el medio A carece de citrato y tiene una menor concentración de extracto de levadura. Estos medios de cultivos fueron preparados en agua proveniente del tranque de relave, la cual tenía un pH de 7,9 y concentración de sulfato de 1500 mg/L. Los tres biorreactores fueron inoculados con el efluente del biorreactor del Ejemplo 1 , que contiene el consorcio microbiano reductor de sulfato enriquecido a partir de trombolitos del Lago Sarmiento. In order to show the effect of the culture medium on the biologically induced mineralization and bio-clogging, three bioreactors filled with sand of 250 ml of internal volume were mounted according to Example 1 and were named: B1, B2 and B3. Each of the bioreactors contains quartz sand as internal support material (particle size 297-841 pm) and are maintained under anaerobic conditions at a temperature of 18 ° C and periodically fed with culture media A and B described in the Table 3. The media differ because medium A contains formate, while medium B has acetate as major electron donor. Furthermore, medium A lacks citrate and has a lower concentration of yeast extract. These culture media were prepared in water from the tailings dam, which had a pH of 7.9 and a sulfate concentration of 1500 mg / L. The three bioreactors were inoculated with the effluent from the bioreactor of Example 1, which contains the sulfate-reducing microbial consortium enriched from Lake Sarmiento thrombolites.
Dos biorreactores fueron alimentados con el medio de cultivo A (B1 y B3), sin embargo, el biorreactor B1 se cambió al medio de cultivo B en el día 170. Por otra parte, el biorreactor B2 se alimentó permanentemente con el medio de cultivo B. A cada uno de los biorreactores, se realizó mediciones periódicas de parámetros físico-químicos (pH, sulfato, sulfuro,) y biológicos (recuento bacteriano, ATP), con el fin de determinar y establecer posibles condiciones que ocurren en los sistemas montados. Two bioreactors were fed with culture medium A (B1 and B3), however, bioreactor B1 was switched to culture medium B on day 170. On the other hand, bioreactor B2 was permanently fed with culture medium B To each of the bioreactors, periodic measurements of physical-chemical parameters (pH, sulfate, sulfur,) and biological parameters (bacterial count, ATP) were carried out, in order to determine and establish possible conditions that occur in the assembled systems.
Tabla 3: Composición de los medios de cultivo Table 3: Composition of culture media
Figure imgf000035_0001
La determinación de las concentraciones de sulfato, calcio, de acuerdo al Ejemplo 1 , ATP según el Ejemplo 3 y ácido sulfhídrico (o sulfuras) en solución se realizaron de acuerdo al Ejemplo 2. El recuento microbiano se realizó utilizando una cámara de Petroff Hausser en un microscopio de contraste de fases (Zeiss, modelo Standard 20, Alemania).
Figure imgf000035_0001
The determination of the concentrations of sulfate, calcium, according to Example 1, ATP according to Example 3 and hydrogen sulfide (or sulfides) in solution were carried out according to Example 2. The microbial count was carried out using a Petroff Hausser chamber in a phase contrast microscope (Zeiss, Standard model 20, Germany).
Con respecto a los parámetros físico-químicos, el pH demuestra un claro aumento (>8,2) en el biorreactor B2, que contiene formiato como fuente de carbono (medio de cultivo A). Del mismo modo, el biorreactor B1 , al ser suministrado con formiato (a partir del día 170 de operación), el pH aumenta considerablemente desde 7,2 y sobrepasando los 8,5. El biorreactor B3, mantiene un pH constante, variando levemente entre 7,1 y 7,6 (Figura 8). With respect to the physicochemical parameters, the pH shows a clear increase (> 8.2) in the bioreactor B2, which contains formate as a carbon source (culture medium A). In the same way, the B1 bioreactor, when supplied with formate (from day 170 of operation), the pH increases considerably from 7.2 and exceeding 8.5. Bioreactor B3 maintains a constant pH, varying slightly between 7.1 and 7.6 (Figure 8).
El recuento bacteriano (Figura 9), mantiene un ritmo variable hasta el día 125, sin embargo, luego consigue un estado estacionario hasta el día 170, manteniendo un recuento de los 3 biorreactores entre 1 ,8 y 3,0 x 108 bacterias/mL. Lo mismo se observa en las mediciones de ATP intracelular. Se observa un aumento significativo del recuento bacteriano (5,0 x 108 bacterias/mL) en el biorreactor B1 al realizar el cambio de donador de electrones a formiato en el día 200 (medio de cultivo A). The bacterial count (Figure 9), maintains a variable rhythm until day 125, however, then reaches a steady state until day 170, maintaining a count of the 3 bioreactors between 1, 8 and 3.0 x 10 8 bacteria / mL. The same is observed in intracellular ATP measurements. A significant increase in the bacterial count (5.0 x 10 8 bacteria / mL) is observed in bioreactor B1 when switching from electron donor to formate on day 200 (culture medium A).
Un aumento también ocurre con los valores de sulfuro (Figura 10), que ascienden a casi 700 mg/L en el biorreactor B1 al cambiar a formiato y por consecuencia una disminución de los valores de sulfato (Figura 11). An increase also occurs with the sulfide values (Figure 10), which amount to almost 700 mg / L in the B1 bioreactor when changing to formate and consequently a decrease in the sulfate values (Figure 11).
Los resultados de este ejemplo muestran la importancia del medio de cultivo en la generación de un ambiente alcalino, propicio para inducir la precipitación de carbonato de calcio. Se concluye que formiato es un donador de electrones adecuado para lograr incrementar el pH al interior del biorreactor. The results of this example show the importance of the culture medium in the generation of an alkaline environment, conducive to inducing the precipitation of calcium carbonate. It is concluded that formate is a suitable electron donor to increase the pH inside the bioreactor.
Ejemplo 5 Example 5
Mineralización inducida biológicamente y biocolmatación en acuíferos modelo Biologically induced mineralization and bio-clogging in model aquifers
Para mostrar el efecto de la inyección de nutrientes y el consorcio microbiano en un acuífero subterráneo contaminado se diseñó un modelo de acuífero o (caja de arena) en el que fluye horizontalmente el agua a través de un lecho de arena. Este modelo de acuífero cuenta con una entrada (pozo de infiltración) para la inyección de nutrientes y el consorcio microbiano y puertos de toma de muestra. Para la construcción de los modelos de acuífero se utilizaron cámaras de acrílico transparente (Plexiglás) de dimensiones internas de 32 x 12 x 1 cm; largo, ancho y alto respectivamente (Figura 12). Estas estaban provistas por una tapa removible, la cual contaba con orificios donde se instalaron puertos para la inoculación y estimulación de microorganismos, y un puerto de toma de muestras situado rio abajo respecto a los anteriores. Para establecer un frente del flujo hidráulico homogéneo a través de toda la sección de los modelos, en uno de sus extremos se instaló una tubería interna, que abarcó todo el ancho del modelo, construido con manguera de Tygon (MasterFlex) perforada cada 1 cm, que se utilizó para la entrada del agua que simula el flujo hidráulico acuífero subterráneo. En el otro extremo, se instaló una manguera de Tygon para la salida del efluente de los modelos. Luego, el volumen interno del modelo (384 mL) fue empacado con 545 g de arena de cuarzo de tamaño de partícula entre 200-800 pm, la que fue previamente lavada con HCI al 10% (v/v), enjuagada con agua destilada, y secada a 180°C por 4 horas para eliminar carbonatos y microorganismos que puedan encontrarse antes de los experimentos. Una vez armados los sistemas, se les pasó agua destilada utilizando bombas peristálticas, fijando el flujo de salida de la bomba a 0,6 m/L. La estandarización de los parámetros hidráulicos básales de los modelos se llevó a cabo usando agua destilada, la cual fue reemplazada por agua de barrera hidráulica un día antes del comienzo de la infiltración de los microorganismos. To show the effect of the injection of nutrients and the microbial consortium in a contaminated underground aquifer, an aquifer model or (sandbox) was designed in which the water flows horizontally through a sand bed. East Aquifer model has an inlet (infiltration well) for the injection of nutrients and microbial consortium and sampling ports. For the construction of the aquifer models, transparent acrylic chambers (Plexiglas) with internal dimensions of 32 x 12 x 1 cm were used; length, width and height respectively (Figure 12). These were provided with a removable lid, which had holes where ports were installed for the inoculation and stimulation of microorganisms, and a sampling port located downstream with respect to the previous ones. To establish a homogeneous hydraulic flow front through the entire section of the models, an internal pipe was installed at one end, which spanned the entire width of the model, built with Tygon hose (MasterFlex) perforated every 1 cm, It was used for the water inlet that simulates the underground aquifer hydraulic flow. At the other end, a Tygon hose was installed for the effluent outlet of the models. Then, the internal volume of the model (384 mL) was packed with 545 g of quartz sand with a particle size between 200-800 pm, which was previously washed with 10% HCl (v / v), rinsed with distilled water. , and dried at 180 ° C for 4 hours to eliminate carbonates and microorganisms that may be found before the experiments. Once the systems were armed, distilled water was passed through them using peristaltic pumps, setting the pump outlet flow at 0.6 m / L. The standardization of the basic hydraulic parameters of the models was carried out using distilled water, which was replaced by hydraulic barrier water one day before the beginning of the infiltration of the microorganisms.
Una vez construidos los modelos de acuífero, se estableció el flujo hidráulico utilizando agua destilada, a la velocidad mencionada previamente. Para alcanzar una velocidad del flujo constante en el interior de los modelos, éstos funcionaron por 48 horas sólo con agua, luego de lo cual se determinó los siguientes parámetros hidráulicos previos a la inoculación de los modelos: Once the aquifer models were built, the hydraulic flow was established using distilled water, at the previously mentioned speed. To achieve a constant flow speed inside the models, they worked for 48 hours only with water, after which the following hydraulic parameters were determined prior to inoculation of the models:
Para determinar el tiempo de retención del acuífero modelo, se hizo pasar 250 mL de una solución de azul brillante (AB) (como trazador) a una concentración de 100 mg/L, a través de la entrada del agua del flujo de los modelos, y se tomó muestras desde el puerto de toma de muestra cada 30 minutos desde que se observó su entrada en los modelos. Se realizó este procedimiento hasta que la concentración del trazador en el puerto de muestras alcanzó la mitad de la concentración en la solución inicial (es decir, 50 mg/L), y se registró aquel tiempo como el necesario para que el trazador se desplazara por esa sección de modelo (o tiempo de retención). La concentración de AB fue determinada en un espectrofotómetro a 630 nm (es pectrof otó metro Dynamica, modelo HALO RB-10, Gran Bretaña). To determine the retention time of the model aquifer, 250 mL of a brilliant blue (AB) solution (as a tracer) at a concentration of 100 mg / L was passed through the water inlet of the models flow, and samples were taken from the sampling port every 30 minutes since its entry into the models was observed. This procedure was performed until the The concentration of the tracer in the sample port reached half the concentration in the initial solution (i.e., 50 mg / L), and that time was recorded as the time required for the tracer to travel through that model section (or time retention). The AB concentration was determined in a spectrophotometer at 630 nm (Dynamica spectrophotometer, model HALO RB-10, Great Britain).
Para el flujo del líquido en los modelos de acuífero, se recolectó el volumen de efluente durante 5 min en un tubo de ensayo previamente tarado. El valor obtenido fue dividido por 5 para obtener el volumen de efluente en mL por minutos. For the flow of the liquid in the aquifer models, the effluent volume was collected during 5 min in a test tube previously tared. The value obtained was divided by 5 to obtain the effluent volume in mL per minute.
El valor del flujo de efluente medidos en 13 modelos de acuíferos (sin inocular con microorganismos) fue de 0,61 ± 0,04 mL/min (media ± desviación estándar) reflejando el valor establecido en las bombas peristálticas (cercano a 0,6 mL/min). El tiempo de retención determinado en todos los modelos de acuífero fue 228 ± 27 min. La variabilidad observada en los tiempos de retención, se debe a diferencias menores en el empacado. The effluent flow value measured in 13 aquifer models (without inoculating with microorganisms) was 0.61 ± 0.04 mL / min (mean ± standard deviation) reflecting the value established in the peristaltic pumps (close to 0.6 mL / min). The retention time determined in all the aquifer models was 228 ± 27 min. The variability observed in retention times is due to minor differences in packaging.
Una vez determinados los parámetros hidráulicos, se realizó la inoculación de los modelos de acuífero con el consorcio microbiano reductor de sulfato utilizando el efluente del biorreactor B1 del Ejemplo 4. La composición microbiana de este consorcio se detalla más adelante en el Ejemplo 6 (ver Tablas 4, 5, 6, 7 y 8). Para este experimento, se utilizaros 3 modelos de acuíferos y se infiltraron a 0,2 mL/min, (n=2 modelos). En todos los experimentos, cada pulso de inoculo contenía T109 microorganismos según lo calculado por recuento microbiano. Además, se utilizó un modelo como control no inoculado (n=1 modelo), en el cual se infiltró agua de barrera hidráulica con el fin de simular la inoculación. Luego de las inoculaciones, se suministró medio de cultivo continuamente a una velocidad de 0,2 mL/min. La composición del medio de cultivo por litro fue: 0,035 g de NaHCC>3, 0,03 g de MgSO7H20, 2,4 g de K2SO4, 0,007 g FeSC>4-7H20, 1 g de NH4CI, con 4,95 g de formiato de sodio, 0,01 g de KH2PC>4, 1 ,72 g de CaCI2-2H20, 0,1 g de extracto de levadura y 0,099 g de ácido tioglicólico. El medio de cultivo se preparó con agua subterránea extraída de la barrera hidráulica de un tranque de relaves, cuyos principales componentes son HCO3· 217,7 mg/L, Ca2+ 302 g/L, Mg2+ 76,6 mg/L y S042- 1192,3 mg/L Once the hydraulic parameters were determined, the aquifer models were inoculated with the sulfate-reducing microbial consortium using the effluent from the bioreactor B1 of Example 4. The microbial composition of this consortium is detailed below in Example 6 (see Tables 4, 5, 6, 7 and 8). For this experiment, 3 aquifer models were used and they were infiltrated at 0.2 mL / min, (n = 2 models). In all experiments, each inoculum pulse contained T10 9 microorganisms as calculated by microbial count. In addition, a non-inoculated control model was used (n = 1 model), in which hydraulic barrier water was infiltrated in order to simulate inoculation. After the inoculations, culture medium was supplied continuously at a rate of 0.2 mL / min. The composition of the culture medium per liter was: 0.035 g of NaHCC> 3, 0.03 g of MgSO7H 2 0, 2.4 g of K2SO4, 0.007 g FeSC> 4-7H 2 0.1 g of NH 4 CI, with 4.95 g of sodium formate, 0.01 g of KH 2 PC> 4, 1.72 g of CaCl 2 -2H 2 0, 0.1 g of yeast extract and 0.099 g of thioglycolic acid. The culture medium was prepared with groundwater extracted from the hydraulic barrier of a tailings dam, whose main components are HCO3 · 217.7 mg / L, Ca 2+ 302 g / L, 76.6 mg Mg 2+ / L and S04 2 to 1192.3 mg / L
En el caso del control no inoculado, luego de la infiltración de agua se inyectó continuamente agua de barrera hidráulica a 0,2 mL/min. Los modelos inoculados fueron re-inoculados, a la velocidad correspondiente, los días 15, 30, 45, 48, 52, 55 y 58, contados a partir de la primera inoculación. In the case of the non-inoculated control, after water infiltration, hydraulic barrier water was continuously injected at 0.2 mL / min. The inoculated models were re-inoculated, at the corresponding speed, on days 15, 30, 45, 48, 52, 55 and 58, counted from the first inoculation.
Se obtuvo entre 20-350 pL (dependiendo del parámetro a determinar) de solución desde el puerto de toma de muestra de los modelos utilizando jeringas estériles, cuidando de no extraer el volumen rápidamente, con el fin de evitar cambios bruscos en el flujo que resultan de la disminución de presión local producto de la extracción. Estas muestras fueron utilizadas para la determinación de sulfato, ácido sulfhídrico y tiempo de retención (cuando se utilizó el trazador). Between 20-350 pL (depending on the parameter to be determined) of solution was obtained from the sampling port of the models using sterile syringes, taking care not to extract the volume quickly, in order to avoid sudden changes in the flow that result of the local pressure decrease as a result of the extraction. These samples were used for the determination of sulfate, hydrogen sulfide and retention time (when the tracer was used).
El efluente de los modelos fue utilizado para realizar las determinaciones de pH, potencial, formiato, recuento microbiano y ATP. The effluent from the models was used to make the determinations of pH, potential, formate, microbial count and ATP.
La determinación de las concentraciones de sulfato, calcio, de acuerdo al The determination of the concentrations of sulfate, calcium, according to
Ejemplo 1 , ATP según el Ejemplo 3 y ácido sulfhídrico (o sulfuros) en solución se realizaron de acuerdo al Ejemplo 2. Recuento microbiano se realizó utilizando la metodología descrita en el Ejemplo 4. Example 1, ATP according to Example 3 and hydrogen sulphide (or sulphides) in solution were carried out according to Example 2. Microbial counting was carried out using the methodology described in Example 4.
Una vez terminado el experimento en los modelos de acuífero, se procedió a su apertura y a la toma de muestras de arena para los siguientes análisis: Once the experiment in the aquifer models was finished, they were opened and sand samples were taken for the following analyzes:
Se utilizó un protocolo para determinar la cantidad de ATP de los microorganismos adheridos a la arena de cuarzo de los modelos de acuífero. Para esto, se tomaron 200 mg de una muestra de arena, la que fue lavada con agua destilada para remover las bacterias presentes en el volumen de poro, luego de lo cual se agregó 1 mL de la solución de lisis celular contenida en el sistema de determinación de ATP. Posteriormente, el sobrenadante de la lisis se hizo reaccionar con los demás componentes liofilizados (luciferina-luciferasa) para determinar la cantidad de ATP mediante un luminómetro Kikkoman, modelo Lumitester PD-20, Japón. El valor de luminiscencia obtenido se expresó como URL/g de arena. Determinación de pH en el agua de poro: Una vez abiertos los modelos de acuífero, inmediatamente se determinó el pH en el agua de poro de la arena en distintas zonas de los modelos, humedeciendo tiras indicadoras de pH. Se compararon los colores de las tiras con el patrón provisto en el envase del producto. Las lecturas de pH fueron utilizadas para realizar un mapa de pH correspondiente al plano superior del medio poroso de los modelos. A protocol was used to determine the amount of ATP of the microorganisms adhering to the quartz sand of the aquifer models. For this, 200 mg of a sand sample was taken, which was washed with distilled water to remove the bacteria present in the pore volume, after which 1 mL of the cell lysis solution contained in the system was added. determination of ATP. Subsequently, the lysis supernatant was reacted with the other lyophilized components (luciferin-luciferase) to determine the amount of ATP by means of a Kikkoman luminometer, model Lumitester PD-20, Japan. The luminescence value obtained was expressed as URL / g of sand. Determination of pH in pore water: Once the aquifer models were opened, the pH in the sand pore water was immediately determined in different areas of the models, wetting pH indicator strips. The colors of the strips were compared to the standard provided on the product package. The pH readings were used to make a pH map corresponding to the upper plane of the porous medium of the models.
Determinación de carbonatos totales en muestras de arena: Se obtuvo pequeñas muestras de arena (aprox. 300 mg) desde distintas zonas de los modelos, las cuales se pusieron bajo una lupa y se les agregó gotas de HCI concentrado (1 M) con el fin de observar burbujeos que dan cuenta de la posible presencia de carbonatos. Las muestras que resultaron positivas a esta prueba, se enviaron al laboratorio de Química y Bioquímica de Suelos de la Facultad de Ciencias Químicas y Farmacéuticas, donde se determinó los carbonatos totales por titulación acido- base. Determination of total carbonates in sand samples: Small sand samples (approx. 300 mg) were obtained from different areas of the models, which were placed under a magnifying glass and drops of concentrated HCI (1 M) were added in order to to observe bubbles that account for the possible presence of carbonates. The samples that were positive in this test were sent to the Soil Chemistry and Biochemistry laboratory of the Faculty of Chemical and Pharmaceutical Sciences, where total carbonates were determined by acid-base titration.
Difracción de rayos X: Las muestras de arena fueron molidas en un mortero para obtener una muestra con granulometría adecuada para realizar la difracción de rayos X (DRX). Luego fueron analizadas utilizando un equipo de difracción de rayos X D8 Advance, Bruker, Alemania. El difractograma obtenido se comparó con los correspondientes a muestras estándar de minerales de CaCC>3. X-ray diffraction: The sand samples were ground in a mortar to obtain a sample with adequate granulometry to perform X-ray diffraction (XRD). They were then analyzed using a D8 Advance X-ray diffraction machine, Bruker, Germany. The diffractogram obtained was compared with those corresponding to standard mineral samples with CaCC> 3.
Al finalizar el experimento con el modelo de acuífero y para cuantificar el porcentaje de la superficie de la arena de cuarzo que presento formación de carbonato (formación de agregados de arena cementados), se realizó el análisis de las imágenes fotográficas utilizando el programa ImageJ. Para calcular un área biomineralizada se empleó la siguiente la ecuación: At the end of the experiment with the aquifer model and to quantify the percentage of the surface of the quartz sand that presented carbonate formation (formation of cemented sand aggregates), the analysis of the photographic images was carried out using the ImageJ program. To calculate a biomineralized area, the following equation was used:
Area biomineralizadaBiomineralized area
Figure imgf000040_0001
donde el área del medio poroso biomineralizado y el área total del medio poroso corresponden al número de pixeles que resultaron de selecciones a mano alzada sobre las fotografías al finalizar el experimento. Los resultados de los modelos de acuíferos dieron cuenta de la actividad reductora de sulfato del consorcio microbiano inoculado y los cambios en el flujo hidráulico del medio poroso durante 60 días.
Figure imgf000040_0001
where the area of the biomineralized porous medium and the total area of the porous medium correspond to the number of pixels that resulted from freehand selections on the photographs at the end of the experiment. The results of the aquifer models showed the sulfate-reducing activity of the inoculated microbial consortium and the changes in the hydraulic flow of the porous medium during 60 days.
A partir del día 10, se detectó la presencia de ácido sulfhídrico en los modelos de acuífero inoculados con el consorcio enriquecido en bacterias reductoras de sulfato (Figura 13A). Esto coincide con el tiempo en que se observó una reducción en la concentración de sulfato en el efluente de los modelos (Figura 13B). Los valores de sulfato descendieron a 1500 mg/L en promedio después del día 14, fluctuando entre 1400-2000 mg/L hasta el final del experimento, mientras que la concentración de ácido sulfhídrico aumentó a valores entre 60-80 mg/L, alcanzando entre 130-200 mg/L en los días finales del experimento (Figura 13A). As of day 10, the presence of hydrogen sulfide was detected in the aquifer models inoculated with the consortium enriched in sulfate-reducing bacteria (Figure 13A). This coincides with the time in which a reduction in the sulfate concentration was observed in the effluent of the models (Figure 13B). Sulfate values decreased to 1500 mg / L on average after day 14, fluctuating between 1400-2000 mg / L until the end of the experiment, while the hydrogen sulfide concentration increased to values between 60-80 mg / L, reaching between 130-200 mg / L on the final days of the experiment (Figure 13A).
A su vez, se observó acidificación del efluente en los experimentos inoculados en comparación con el control no inoculado. Este parámetro fluctuó en el rango 7,4- 7,6 en los modelos inoculados a partir del día 20, mientras que el control se mantuvo en el rango de 7, 7-8,0 durante todo el experimento (Figura 13C). En los modelos inoculados se presentó un importante descenso del potencial de óxido-reducción, ya que a partir del día 5 el valor de este parámetro alcanzó entre -170 a -190 mV, disminuyendo gradualmente hasta valores menores a -250 mV en los días finales del experimento. Estas condiciones anóxicas son adecuadas para las bacterias reductoras de sulfato. En cambio, el modelo control mostró un menor descenso de este parámetro, promediando solo -70 mV durante todo el transcurso del experimento (Figura 13D). In turn, acidification of the effluent was observed in the inoculated experiments compared to the non-inoculated control. This parameter fluctuated in the range 7.4- 7.6 in the inoculated models from day 20, while the control remained in the range of 7, 7-8.0 throughout the experiment (Figure 13C). In the inoculated models, there was a significant decrease in the oxidation-reduction potential, since from day 5 the value of this parameter reached between -170 to -190 mV, gradually decreasing to values lower than -250 mV in the final days of the experiment. These anoxic conditions are suitable for sulfate reducing bacteria. In contrast, the control model showed a lesser decrease in this parameter, averaging only -70 mV throughout the experiment (Figure 13D).
En el efluente de los modelos inoculados y control se determinó periódicamente la cantidad de ATP intracelular, encontrando altos valores de ATP, los que variaron entre 800-2500 URL/mL, lo que mostró la colonización microbiana al interior de los modelos de acuífero inoculados (Figura 14). En cambio, los valores de ATP intracelular en el control no inoculado, permanecieron bajos durante todo el experimento. In the effluent of the inoculated and control models, the amount of intracellular ATP was periodically determined, finding high ATP values, which varied between 800-2500 URL / mL, which showed the microbial colonization inside the inoculated aquifer models ( Figure 14). In contrast, the intracellular ATP values in the non-inoculated control remained low throughout the experiment.
La disminución de la permeabilidad del medio poroso de los modelos de acuífero debido a la reducción del tamaño de poro provocada por la biocolmatación por biomasa microbiana y precipitación de minerales carbonatados se demostró mediante el cambio del tiempo de retención del trazador. A partir del día 22, se observaron aumentos en el tiempo de retención del trazador en los modelos inoculados, lo que no fue observado en el modelo control, a excepción de un leve aumento de este parámetro en el día 55 de experimentación (Figura 15). En los modelos inoculados se observó una región de menor permeabilidad ubicada en la zona central, la que ralentiza la llegada del trazador al puerto de toma de muestra. En efecto, con el transcurso del experimento, en los modelos inoculados se observa una pluma oscura, que emerge en los puertos de inoculación y estimulación, y que se extiende hacia la salida del efluente, siguiendo la dirección del flujo del agua. The decrease in the permeability of the porous medium of the aquifer models due to the reduction of the pore size caused by the bioclogging by microbial biomass and precipitation of carbonate minerals was demonstrated by changing the retention time of the tracer. From day 22, increases in the retention time of the tracer were observed in the inoculated models, which was not observed in the control model, except for a slight increase in this parameter on day 55 of experimentation (Figure 15) . In the inoculated models, a region of lower permeability located in the central zone was observed, which slows down the arrival of the tracer to the sampling port. Indeed, over the course of the experiment, a dark plume is observed in the inoculated models, emerging at the inoculation and stimulation ports, and extending towards the effluent outlet, following the direction of the water flow.
Los análisis de los experimentos con el trazador en el día 55 dan cuenta que las plumas ennegrecidas representan una zona de menor permeabilidad respecto a otras zonas del medio poroso, puesto que se observa que el colorante se desvía cuando se encuentra con esta zona, provocando que la mayor parte del flujo hidráulico ocurra por las zonas no ennegrecidas (Figura 16). Las zonas ennegrecidas de la pluma se deben a la formación de precipitados de sulfuras de hierro a partir del ácido sulfhídrico generado en los modelos inoculados y la presencia de trazas de hierro en el medio de cultivo infiltrado. The analyzes of the experiments with the tracer on day 55 show that the blackened feathers represent an area of lower permeability compared to other areas of the porous medium, since it is observed that the dye deviates when it encounters this area, causing most of the hydraulic flow occurs through the non-blackened areas (Figure 16). The blackened areas of the plume are due to the formation of iron sulphide precipitates from the hydrogen sulphide generated in the inoculated models and the presence of traces of iron in the infiltrated culture medium.
Después de 60 días de prueba, se desarmó los modelos de acuífero para determinar en la arena el pH, el ATP intracelular microbiano, la abundancia relativa de los microorganismos y los minerales de carbonato formados. After 60 days of testing, the aquifer models were disassembled to determine the pH, the microbial intracellular ATP, the relative abundance of the microorganisms and the carbonate minerals formed in the sand.
El valor del pH en el agua de poro de la arena se determinó mediante varillas indicadoras de pH. Esto permitió hacer un mapa de este parámetro (Figura 17). Se distinguieron tres zonas en la arena de los modelos: a) zona 1 : primer tercio ubicado en las cercanías de la zona de entrada del agua del flujo, b) zona 2: segundo tercio ubicado en la zona central, y c) zona 3: tercer tercio ubicado hacia la zona de salida de efluente. En todos los modelos de acuífero inoculados, se observó una zona de pH 8 en las zonas 2 y 3. También se observaron zonas puntuales de pH 8,5 en uno de los duplicados, los que se ubican dentro de las zonas de pH 8. Se observó un menor valor de pH (cercano a 7,5) en la zona 1. Los altos valores locales de pH son de gran importancia para inducir la precipitación de carbonatos. En cambio, en el modelo control no se observó alcalinización, ya que en todas las zonas se detectó un pH de 7,5. The pH value in the sand pore water was determined by means of pH indicator rods. This allowed making a map of this parameter (Figure 17). Three zones were distinguished in the sand of the models: a) zone 1: first third located in the vicinity of the flow water inlet zone, b) zone 2: second third located in the central zone, and c) zone 3: third third located towards the effluent outlet zone. In all the inoculated aquifer models, a pH 8 zone was observed in zones 2 and 3. Point zones of pH 8.5 were also observed in one of the duplicates, which are located within the pH 8 zones. A lower pH value (close to 7.5) was observed in zone 1. High local pH values are of great importance to induce the precipitation of carbonates. Instead, in the No alkalinization was observed in the control model, since a pH of 7.5 was detected in all areas.
Se realizó mediciones de ATP intracelular correspondientes a los microorganismos adheridos a la arena de los modelos de acuífero. En los modelos inoculados, se observó la mayor cantidad de ATP en arena en la zona 2. Tanto en las zonas 1 y 3, se encontraron cantidades similares de ATP en ambos experimentos. Estos resultados confirman la colonización microbiana de la arena y demuestran además que los microorganismos adheridos están metabólicamente activos. El modelo control (no inoculado), mostró valores considerablemente menores en todas las zonas en comparación a los inoculados (Figura 18). Intracellular ATP measurements corresponding to the microorganisms adhered to the sand of the aquifer models were carried out. In the inoculated models, the highest amount of ATP was observed in sand in zone 2. In both zones 1 and 3, similar amounts of ATP were found in both experiments. These results confirm the microbial colonization of the sand and also demonstrate that the adhered microorganisms are metabolically active. The control model (not inoculated), showed considerably lower values in all zones compared to the inoculated ones (Figure 18).
Al momento de la toma de muestras de arena desde los modelos inoculados, se encontró una fracción de arena de cuarzo altamente biomineralizada, cuyas partículas de arena se encontraron aglomeradas, producto de la mineralización inducida biológicamente. Esta zona se centró en el punto de inoculación y estimulación de microorganismos, en forma de círculo irregular de unos 3 cm de diámetro y ocupando todo el alto interno del modelo (Figura 19). At the time of taking sand samples from the inoculated models, a highly biomineralized quartz sand fraction was found, whose sand particles were found agglomerated, a product of biologically induced mineralization. This area was centered on the point of inoculation and stimulation of microorganisms, in the shape of an irregular circle of about 3 cm in diameter and occupying the entire internal height of the model (Figure 19).
Para detectar la formación de carbonatos en la arena, se tomaron muestras de arena, desde distintas zonas de los modelos inoculados, a las cuales se les agregó gotas de HCI concentrado, con el fin de observar efervescencia que revela la posible presencia de carbonatos. De los modelos cuyas muestras se generó efervescencia, se extrajo dos muestras para la cuantificación de carbonatos totales por titulación ácido-base: a) desde la zona ubicada en el punto de inoculación, y b) desde un punto ubicado río abajo (12 cm) al punto de inoculación. La mayor cantidad de carbonatos se generaron en la zona de inoculación (5,8% de carbonatos totales en la arena), donde se encontraron valores hasta 7 veces mayores respecto a la zona rio abajo (0,8% de carbonatos totales en la arena). En la prueba de carbonatos con HCI de las muestras de arena del modelo control no se observó la producción de gas. To detect the formation of carbonates in the sand, sand samples were taken from different areas of the inoculated models, to which drops of concentrated HCl were added, in order to observe effervescence that reveals the possible presence of carbonates. From the models whose samples were generated effervescence, two samples were extracted for the quantification of total carbonates by acid-base titration: a) from the area located at the inoculation point, and b) from a point located downstream (12 cm) to the inoculation point. The highest amount of carbonates were generated in the inoculation zone (5.8% of total carbonates in the sand), where values up to 7 times higher were found compared to the downstream zone (0.8% of total carbonates in the sand ). In the carbonate test with HCl of the sand samples of the control model, no gas production was observed.
Los análisis de DRX para la evaluación de la composición mineralógica de las muestras de arena de los modelos inoculados, confirmaron la presencia de los minerales calcita, vaterita y aragonita en distintas proporciones dependiendo de la muestra (Tabla 9). The XRD analyzes for the evaluation of the mineralogical composition of the sand samples of the inoculated models, confirmed the presence of the calcite, vaterite and aragonite minerals in different proportions depending on the sample (Table 9).
Tabla 9. Cantidad de CaCC>3 (vaterita, aragonita y calcita) determinados por DRX en arena de los modelos de acuífero en el experimento de evaluación de las velocidades de inoculación. Se muestran los porcentajes de CaCÜ3 en el punto de inoculación y río abajo en uno de los duplicados de los modelos de acuífero inoculados a distintas velocidades. N.D.: no detectado. Table 9. Amount of CaCC> 3 (vaterite, aragonite and calcite) determined by XRD in sand from the aquifer models in the inoculation velocity evaluation experiment. The percentages of CaCÜ3 are shown at the inoculation point and downstream in one of the duplicates of the aquifer models inoculated at different speeds. N.D .: not detected.
Figure imgf000044_0001
Figure imgf000044_0001
Este ejemplo muestra que es posible establecer un consorcio microbiano reductor de sulfato activo en el medio poroso de un modelo de acuífero con flujo hidráulico continuo, el que consiste en agua de barrera hidráulica de un tranque de relave que contiene sulfato. La reducción microbiana de sulfato, que es producto de la inoculación y estimulación del consorcio microbiano, fue capaz de biomineralizar una porción de la arena de cuarzo (medio poroso), debido a la acumulación de minerales de CaCÜ3, la que según los experimentos realizados con el trazador, corresponde a una zona de menor permeabilidad al flujo hidráulico. This example shows that it is possible to establish an active sulfate reducing microbial consortium in the porous medium of a continuous hydraulic flow model aquifer, which consists of hydraulic barrier water from a sulfate-containing tailings dam. The microbial reduction of sulfate, which is the product of the inoculation and stimulation of the microbial consortium, was able to biomineralize a portion of the quartz sand (porous medium), due to the accumulation of CaCÜ3 minerals, which according to the experiments carried out with the tracer corresponds to an area of less permeability to hydraulic flow.
Ejemplo 6 Example 6
Abundancia relativa de los microorganismos del inoculo y de los microorganismos adheridos a la arena en los modelos de acuífero Relative abundance of inoculum microorganisms and sand-adhering microorganisms in aquifer models
Con el objeto de determinar la composición microbiana del inoculo y de los microorganismos adheridos a la arena en los acuíferos se utilizó la secuenciación masiva del gen del ARNr 16S. Los microorganismos del inoculo se concentraron por centrifugación a partir de una muestra del efluente del biorreactor B1 del Ejemplo 4, utilizado para la producción del inoculo. Para realizar el análisis de la comunidad microbiana establecida en la arena de los modelos de acuífero inoculados, se tomó una muestra de arena de los acuíferos modelo inoculados en el Ejemplo 5. A partir de estas muestras centrifugadas del inoculo o las muestras de arena, se extrajo el ADN genómico total utilizando un sistema comercial de extracción de ADN (PowerSoil DNA Isolation Kit, MOBIO, EEUU). La PCR y secuenciación de las amplificaciones de la región hipervariable V4 del gen del ARNr 16S se realizó de acuerdo al protocolo utilizado por el servicio de secuenciación del Centro de Genómica y Bioinformática de la Facultad de Ciencias de la Universidad Mayor. Las secuencias obtenidas fueron procesadas y comparadas para su identificación con la base de datos SILVA de 2018. In order to determine the microbial composition of the inoculum and the microorganisms adhered to the sand in the aquifers, the massive sequencing of the 16S rRNA gene was used. The microorganisms of the inoculum were concentrated by centrifugation from a sample of the effluent of the bioreactor B1 of Example 4, used for the production of the inoculum. To perform the analysis of the microbial community established in the sand of the inoculated aquifer models, it was taken a sand sample from the model aquifers inoculated in Example 5. From these centrifuged samples of the inoculum or sand samples, total genomic DNA was extracted using a commercial DNA extraction system (PowerSoil DNA Isolation Kit, MOBIO, USA). The PCR and sequencing of the amplifications of the V4 hypervariable region of the 16S rRNA gene was performed according to the protocol used by the sequencing service of the Center for Genomics and Bioinformatics of the Faculty of Sciences of the Universidad Mayor. The sequences obtained were processed and compared for identification with the SILVA database from 2018.
Para realizar el análisis de la comunidad microbiana establecida en la arena de los modelos de acuífero inoculados, se tomó una muestra de arena de la zona central (zona 2) de uno de los duplicados inoculados. A partir de estas muestras se extrajo el ADN genómico total de los microorganismos adheridos a la arena para su posterior secuenciación masiva del gen del ARNr 16S por tecnología lllumina. To perform the analysis of the microbial community established in the sand of the inoculated aquifer models, a sand sample was taken from the central zone (zone 2) of one of the inoculated duplicates. From these samples, the total genomic DNA of the microorganisms adhered to the sand was extracted for subsequent massive sequencing of the 16S rRNA gene by Illumin technology.
En las Tablas 4, 5, 6, 7 y 8 se presenta la abundancia relativa de las secuencias del gen del ARNr 16S en los extractos de ADN de los microorganismos del inóculo utilizado, a nivel de Filo, Orden, Clase, Familia y género, respectivamente. Tables 4, 5, 6, 7 and 8 show the relative abundance of the 16S rRNA gene sequences in the DNA extracts of the microorganisms of the inoculum used, at the level of Phylum, Order, Class, Family and genus. respectively.
Los resultados de la secuenciación mostraron que los principales Filos presentes en la comunidad microbiana de inóculo se clasificaron como Proteobacteria, Firmicutes y Bacteroidetes (Tabla 4). A nivel taxonómico de Clases, la comunidad microbiana de inoculo estaba compuesta principalmente de Gammaproteobacteria, Clostridia, Deltaproteobacteria, Betaproteobacteria, Alphaproteobacteria y Bacteroidia (Tabla 5). Los Ordenes predominante correspondieron a Oceanospirillales, Clostridiales, Enterobacteriales, Desulfovibrionales, Burkholderiales, Pseudomonadales, Bacteroidales y Caulobacterales (Tabla 6). A nivel taxonómico de Familias, los principales microorganismos presentes fueron: Oceanospirillaceae, Peptococcaceae, Enterobacteriaceae, Desulfomicrobiaceae, Pseudomonadaceae, Comamonadaceae, Porphyromonadaceae, Clostridiaceae, Caulobacteraceae y [Tissierellaceae] (Tabla 7). Los resultados de la secuenciación mostraron que los principales Géneros de la comunidad microbiana del inoculo se clasificaron en: Familia Oceanospirillaceae, Desulfosporosinus, Desulfomicrobium, Pseudomonas, Citrobacter, FamiliaThe sequencing results showed that the main Phyla present in the inoculum microbial community were classified as Proteobacteria, Firmicutes and Bacteroidetes (Table 4). At the taxonomic Class level, the inoculum microbial community was composed mainly of Gammaproteobacteria, Clostridia, Deltaproteobacteria, Betaproteobacteria, Alphaproteobacteria and Bacteroidia (Table 5). The predominant Orders corresponded to Oceanospirillales, Clostridiales, Enterobacteriales, Desulfovibrionales, Burkholderiales, Pseudomonadales, Bacteroidales y Caulobacterales (Table 6). At the taxonomic level of Families, the main microorganisms present were: Oceanospirillaceae, Peptococcaceae, Enterobacteriaceae, Desulfomicrobiaceae, Pseudomonadaceae, Comamonadaceae, Porphyromonadaceae, Clostridiaceae, Caulobacteraceae and [Tissierellaceae] (Table 7). The sequencing results showed that the main genera of the microbial community of the inoculum were classified into: Family Oceanospirillaceae, Desulfosporosinus, Desulfomicrobium, Pseudomonas, Citrobacter, Family
Comamonadaceae, Familia Porphyromonadaceae, Brevundimonas, Familia Clostridiaceae, Familia Enterobacteriaceae, Sedimentibacter, Familia Rhodobacteraceae, Tissierella_Soehngenia y Stenotrophomonas (Tabla 8). Los microorganismos que mostraron mayor abundancia relativa fueron Fam. Oceanospirillaceae (29,74%), Desulfosporosinus (14,42%) y Desulfomicrobium (8,36%). Entre ellos se destacan Desulfosporosinus y Desulfomicrobium por su capacidad de reducción biológica de sulfato. Comamonadaceae, Family Porphyromonadaceae, Brevundimonas, Family Clostridiaceae, Family Enterobacteriaceae, Sedimentibacter, Family Rhodobacteraceae, Tissierella_Soehngenia and Stenotrophomonas (Table 8). The microorganisms that showed the highest relative abundance were Fam. Oceanospirillaceae (29.74%), Desulfosporosinus (14.42%) and Desulfomicrobium (8.36%). Desulfosporosinus and Desulfomicrobium stand out for their ability to reduce sulfate biologically.
Tabla 4. Abundancia relativa de las secuencias del gen del ARNr 16S a nivel de Filos en los extractos de ADN de los microorganismos del inoculo utilizado y de los microorganismos adheridos a la arena de los modelos de acuífero al final del experimento. Table 4. Relative abundance of the sequences of the 16S rRNA gene at the level of Filos in the DNA extracts of the microorganisms of the inoculum used and of the microorganisms adhered to the sand of the aquifer models at the end of the experiment.
Figure imgf000046_0001
Figure imgf000046_0001
Tabla 5. Abundancia relativa de las secuencias del gen del ARNr 16S a nivel de Clases en los extractos de ADN de los microorganismos del inoculo utilizado y de los microorganismos adheridos a la arena de los modelos de acuífero al final del experimento. Table 5. Relative abundance of the 16S rRNA gene sequences at the Class level in the DNA extracts of the microorganisms of the inoculum used and of the microorganisms adhered to the sand of the aquifer models at the end of the experiment.
Figure imgf000047_0001
Figure imgf000047_0001
Tabla 6. Abundancia relativa de las secuencias del gen del ARNr 16S a nivel de Ordenes en los extractos de ADN de los microorganismos del inoculo utilizado y de los microorganismos adheridos a la arena de los modelos de acuífero al final del experimento. Table 6. Relative abundance of the sequences of the 16S rRNA gene at the Order level in the DNA extracts of the microorganisms of the inoculum used and of the microorganisms adhered to the sand of the aquifer models at the end of the experiment.
Figure imgf000047_0002
Tabla 7. Abundancia relativa de las secuencias del gen del ARNr 16S a nivel de Familias en los extractos de ADN de los microorganismos del inoculo utilizado y de los microorganismos adheridos a la arena de los modelos de acuífero al final del experimento.
Figure imgf000047_0002
Table 7. Relative abundance of the sequences of the 16S rRNA gene at the Family level in the DNA extracts of the microorganisms of the inoculum used and of the microorganisms adhered to the sand of the aquifer models at the end of the experiment.
Figure imgf000048_0001
Figure imgf000048_0001
Tabla 8. Abundancia relativa de las secuencias del gen del ARNr 16S a nivel de Géneros en los extractos de ADN de los microorganismos del inóculo utilizado y de los microorganismos adheridos a la arena de los modelos de acuífero al final del experimento. Table 8. Relative abundance of the 16S rRNA gene sequences at the Genus level in the DNA extracts of the microorganisms of the inoculum used and of the microorganisms adhered to the sand of the aquifer models at the end of the experiment.
Figure imgf000049_0001
Figure imgf000049_0001
En los modelos inoculados, se encontró que la comunidad microbiana similar adherida a la arena de cuarzo al final del experimento es cualitativamente similar a la del inoculo utilizado (Tablas 4, 5, 6, 7 y 8). In the inoculated models, it was found that the similar microbial community adhered to the quartz sand at the end of the experiment is qualitatively similar to that of the inoculum used (Tables 4, 5, 6, 7 and 8).
Los resultados de la secuenciación mostraron que los principales Filos presentes en la comunidad microbiana adherida a la arena de cuarzo se clasificaron como Proteobacteria, Firmicutes y Bacteroidetes (Tabla 4). A nivel taxonómico de Clases, la comunidad microbiana de la arena estaba compuesta principalmente de Gammaproteobacteria, Clostridia, Deltaproteobacteria y Bacteroidia (Tabla 5). Los Ordenes predominante correspondieron a Clostridiales, Desulfovibrionales, Pseudomonadales y Bacteroidales (Tabla 6). A nivel taxonómico de Familias, los principales microorganismos presentes fueron: Desulfomicrobiaceae,The results of the sequencing showed that the main Phyla present in the microbial community adhered to the quartz sand were classified as Proteobacteria, Firmicutes and Bacteroidetes (Table 4). At the taxonomic level of Classes, the microbial community of the sand was composed mainly of Gammaproteobacteria, Clostridia, Deltaproteobacteria and Bacteroidia (Table 5). The predominant Orders corresponded to Clostridiales, Desulfovibrionales, Pseudomonadales and Bacteroidales (Table 6). At the taxonomic level of Families, the main microorganisms present were: Desulfomicrobiaceae,
Pseudomonadaceae, Porphyromonadaceae y [Tissierellaceae] (Tabla 7). Pseudomonadaceae, Porphyromonadaceae and [Tissierellaceae] (Table 7).
Los resultados de la secuenciación mostraron que los principales Géneros de la comunidad microbiana de la arena se clasificaron en: Desulfomicrobium, Pseudomonas, Familia Porphyromonadaceae, Familia Clostridiaceae, Sedimentibacter, Tissierella_Soehngenia y Orden Bacteroidales (Tabla 8). Los microorganismos que mostraron mayor abundancia relativa fueron Desulfomicrobium (58,37%), Familia Porphyromonadaceae (19,04%) y Pseudomonas (4,53%). Entre ellos se destaca Desulfomicrobium por su capacidad de reducción biológica de sulfato. The sequencing results showed that the main genera of the sand microbial community were classified into: Desulfomicrobium, Pseudomonas, Family Porphyromonadaceae, Family Clostridiaceae, Sedimentibacter, Tissierella_Soehngenia and Order Bacteroidales (Table 8). The microorganisms that showed the highest relative abundance were Desulfomicrobium (58.37%), Family Porphyromonadaceae (19.04%) and Pseudomonas (4.53%). Desulfomicrobium stands out among them for its ability to reduce sulfate biologically.
Las secuencias correspondientes al género reductor de sulfato Sequences corresponding to the sulfate reducing genus
Desulfomicrobium aumentaron considerablemente respecto a la composición porcentual de la comunidad del inoculo (Tabla 8). También se encontró un aumento importante de secuencias correspondientes un género de la familia Porphyromonadaceae. Estas diferencias pueden ser atribuidas a las condiciones microambientales particulares de la arena. Desulfomicrobium increased considerably with respect to the percentage composition of the inoculum community (Table 8). A significant increase in sequences corresponding to a genus of the Porphyromonadaceae family was also found. These differences can be attributed to the particular microenvironmental conditions of the sand.
Los análisis de este ejemplo muestran que el consorcio microbiano enriquecido utilizado como inoculo en el Ejemplo 5 presenta una alta diversidad bacteriana, entre las que se puede encontrar algunas clases que incluyen bacterias reductoras de sulfato, como es el caso de las Deltaproteobacteria. Entre ellos se destacan los géneros Desulfosporosinus y Desulfomicrobium por su capacidad de reducción biológica de sulfato. Al estudiar comunidad microbiana adherida a la arena de cuarzo al final de experimento en el modelo de acuífero, se encontró que esta era cualitativamente similar a la del inoculo utilizado, con algunos microorganismos que aumentan su proporción de manera importante. Este es el caso del género Desulfomicrobium. Ejemplo 7 The analyzes of this example show that the enriched microbial consortium used as inoculum in Example 5 exhibits high bacterial diversity, among which some classes can be found that include sulfate-reducing bacteria, such as the Deltaproteobacteria. Among them, the Desulfosporosinus and Desulfomicrobium genera stand out for their ability to reduce sulfate biologically. When studying the microbial community adhered to the quartz sand at the end of the experiment in the aquifer model, it was found that this was qualitatively similar to that of the inoculum used, with some microorganisms that significantly increased their proportion. This is the case of the genus Desulfomicrobium. Example 7
Efecto de la concentración de formiato en la mineralización inducida biológicamente y biocolmatación en acuíferos modelo Effect of formate concentration on biologically induced mineralization and bio-clogging in model aquifers
Para mostrar el efecto del cambio de la concentración de formiato en el medio de cultivo, se construyeron 8 modelos de acuífero, los que se operaron y monitorearon bajo las mismas condiciones y metodologías que en el Ejemplo 6. Las concentraciones de formiato fueron 3, 6, 12 y 18 g/L. En este caso, los modelos fueron inoculados con la misma cantidad de microorganismos que en Ejemplo 6, y re-inoculados el día 15 de funcionamiento. La velocidad de inoculación fue de 0,2 mL/min en todos los modelos. Luego, en experimentos independientes (n=2 modelos), los modelos fueron estimulados con los medios de cultivo conteniendo las distintas concentraciones de formiato durante 60 días. To show the effect of the change in the formate concentration in the culture medium, 8 aquifer models were built, which were operated and monitored under the same conditions and methodologies as in Example 6. The formate concentrations were 3, 6 , 12 and 18 g / L. In this case, the models were inoculated with the same amount of microorganisms as in Example 6, and re-inoculated on day 15 of operation. The inoculation speed was 0.2 mL / min in all models. Then, in independent experiments (n = 2 models), the models were stimulated with the culture media containing the different concentrations of formate for 60 days.
Para determinar la concentración del formiato remanente en el efluente de los acuíferos, se utilizó un método colorimétrico previamente descrito por Sleat y Mah (Quantitative Method for Colorimetric Determination of Fórmate in Fermentation Media. Applied and Environmental Microbiology. 47 (4): 884-885, 1984). La reacción entre los componentes del método y la muestra fue incubada a temperatura ambiente por 2,5 hrs, luego de lo cual se cuantificó el producto de la reacción en un espectrofotómetro a 510 nm (espectrofotómetro Dynamica, modelo HALO RB-10, Gran Bretaña). To determine the concentration of the remaining formate in the effluent from the aquifers, a colorimetric method previously described by Sleat and Mah (Quantitative Method for Colorimetric Determination of Form in Fermentation Media. Applied and Environmental Microbiology. 47 (4): 884-885 was used. , 1984). The reaction between the components of the method and the sample was incubated at room temperature for 2.5 hrs, after which the reaction product was quantified in a spectrophotometer at 510 nm (Dynamica spectrophotometer, model HALO RB-10, Great Britain ).
Durante el tiempo de experimentación (60 días), en todos los ensayos se observó reducción en la concentración de sulfato en los modelos a partir del día 15 (Figura 20A). A su vez, se verificó la producción de ácido sulfhídrico en todos los modelos. Sin embargo, puede apreciarse un retardo en el alza de este parámetro en los experimentos realizados a mayores concentraciones de formiato (12 y 18 g/L) (Figura 20B). En los modelos estimulados con menor concentración de formiato (3 y 6 g/L) (Figura 20C), se alcanzó más rápidamente disminución del potencial de óxido reducción en comparación con los de mayor concentración. También, puede apreciarse que los valores de pH en el efluente de los modelos estimulados con la menor cantidad de formiato (3 g/L) sigue una tendencia a la baja respecto a los valores de los demás experimentos (Figura 20D). During the experimentation time (60 days), in all the tests a reduction in the sulfate concentration was observed in the models from day 15 (Figure 20A). In turn, the production of hydrogen sulfide was verified in all models. However, a delay in the rise of this parameter can be seen in experiments carried out at higher concentrations of formate (12 and 18 g / L) (Figure 20B). In the models stimulated with a lower concentration of formate (3 and 6 g / L) (Figure 20C), a decrease in the potential for oxide reduction was achieved more rapidly compared to those with a higher concentration. Also can It can be seen that the pH values in the effluent of the models stimulated with the least amount of formate (3 g / L) follow a downward trend with respect to the values of the other experiments (Figure 20D).
En el efluente de los modelos estimulados con las mayores concentraciones de formiato (12 y 18 g/L) se observó una apreciable disminución de la concentración de este sustrato respecto de la concentración de formiato agregada durante el tiempo de experimentación (Figura 21). Sin embargo, en los ensayos realizados con las menores concentraciones de formiato (3 y 6 g/L), no se observó la misma tendencia de consumo de formiato. In the effluent of the models stimulated with the highest concentrations of formate (12 and 18 g / L), an appreciable decrease in the concentration of this substrate was observed compared to the concentration of formate added during the experimentation time (Figure 21). However, in the tests carried out with the lowest formate concentrations (3 and 6 g / L), the same trend of formate consumption was not observed.
En todas las concentraciones de formiato ensayadas, se logró aumentar el tiempo de retención del trazador hasta un valor similar en todos los modelos (Figura 22). In all the formate concentrations tested, the retention time of the tracer was increased to a similar value in all models (Figure 22).
Después de 60 días de prueba, se desarmó los modelos de acuífero para determinar en la arena el pH, el ATP intracelular microbiano, la abundancia relativa de los microorganismos y los minerales de carbonato formados. After 60 days of testing, the aquifer models were disassembled to determine the pH, the microbial intracellular ATP, the relative abundance of the microorganisms and the carbonate minerals formed in the sand.
El valor del pH en el agua de poro de la arena se determinó mediante varillas indicadoras de pH. Esto permitió hacer un mapa de este parámetro (Figura 23). Se distinguieron tres zonas en la arena de los modelos: a) zona 1 : primer tercio ubicado en las cercanías de la zona de entrada del agua del flujo, b) zona 2: segundo tercio ubicado en la zona central, y c) zona 3: tercer tercio ubicado hacia la zona de salida de efluente. Los valores de pH en arena tendieron a aumentar a medida que se aumentó la concentración de formiato en el medio de cultivo (Figura 23). En promedio, en los modelos estimulados con las mayores concentraciones de formiato (12 y 18 g/L), este parámetro alcanzó valores sobre 8 en la zona 2 y 3, mientras que se registró un valor menor a 8 en las mismas zonas de los modelos estimulados con las menores concentraciones de formiato (3 y 6 g/L). The pH value in the sand pore water was determined by means of pH indicator rods. This allowed making a map of this parameter (Figure 23). Three zones were distinguished in the sand of the models: a) zone 1: first third located in the vicinity of the flow water inlet zone, b) zone 2: second third located in the central zone, and c) zone 3: third third located towards the effluent outlet zone. The pH values in sand tended to increase as the concentration of formate in the culture medium increased (Figure 23). On average, in the models stimulated with the highest concentrations of formate (12 and 18 g / L), this parameter reached values above 8 in zone 2 and 3, while a value lower than 8 was recorded in the same zones of the models stimulated with the lowest formate concentrations (3 and 6 g / L).
Se realizó mediciones de ATP intracelular correspondientes a los microorganismos adheridos a la arena de los modelos de acuífero. En todos los ensayos, los valores de ATP en arena fueron mayores en las zonas 2 y 3 de los modelos, mientras que la zona 1 (rio arriba al punto de inoculación) fue menor respecto a las otras zonas (Figura 24). Especialmente en las zonas 2 y 3, se observó un aumento dependiente de la concentración de formiato en el medio de cultivo de este parámetro, dentro del rango entre 3 y 12 g/L. En este último, se alcanza un valor máximo de ATP/g de arena, ya que en los modelos con la mayor cantidad de formiato (18 g/L), estos disminuyen hasta valores similares a los del ensayo realizado con 6 g/L de formiato. Intracellular ATP measurements corresponding to the microorganisms adhered to the sand of the aquifer models were carried out. In all the trials, ATP values in sand were higher in zones 2 and 3 of the models, while zone 1 (upstream to the inoculation point) was lower with respect to the other zones (Figure 24). Especially in zones 2 and 3, a dependent increase of formate concentration in the culture medium of this parameter was observed, within the range between 3 and 12 g / L. In the latter, a maximum value of ATP / g of sand is reached, since in the models with the highest amount of formate (18 g / L), these decrease to values similar to those of the test carried out with 6 g / L of formate.
El aumento de la concentración de formiato en el medio de cultivo produjo un enriquecimiento de las secuencias correspondientes al género reductor de sulfato Desulfomicrobium, las cuales predominaron en todas las muestras (Tabla 10), alcanzando el 35, 48, 52 y 57% en la arena de los modelos de acuífero estimulados con 3, 6, 12 y 18 g/L de formiato, respectivamente. El aumento del dador de electrones también produjo el notorio enriquecimiento de las secuencias correspondientes al género Pseudomonas. También se observó el efecto contrario sobre otros componentes de la comunidad microbiana, ya que se observó la disminución de las secuencias de la familia predominantemente aeróbicaThe increase in the concentration of formate in the culture medium produced an enrichment of the sequences corresponding to the sulfate reducing genus Desulfomicrobium, which predominated in all samples (Table 10), reaching 35, 48, 52 and 57% in the sand from the aquifer models stimulated with 3, 6, 12 and 18 g / L of formate, respectively. The increase in the electron donor also produced the notorious enrichment of the sequences corresponding to the genus Pseudomonas. The opposite effect on other components of the microbial community was also observed, since the sequences of the predominantly aerobic family were reduced.
Comamonadaceae y del género anaeróbico obligado Proteiniclasticum. Comamonadaceae and of the obligate anaerobic genus Proteiniclasticum.
Los resultados anteriores demuestran que existe un efecto de la concentración de formiato en el medio de cultivo sobre el alcance de la mineralización inducida biológicamente del medio poroso en el modelo de acuífero utilizado, ya que se observó un aumento de los carbonatos totales rio abajo y del área biomineralizada en los modelos en función del aumento del dador de electrones. Esto se relaciona con los valores de formiato medidos en efluente, pues el dador de electrones fue utilizado en mayor medida en los experimentos que contenían las mayores cantidades de formiato, mientras que en los modelos estimulados con las menores concentraciones de éste, no hubo utilización considerable del dador. Tabla 10. Abundancia relativa de las secuencias del gen del ARNr 16S en los extractos de ADN de los microorganismos adheridos a la arena de los modelos de acuífero al final del experimento de evaluación de las concentraciones de formiato. The previous results show that there is an effect of the formate concentration in the culture medium on the extent of the biologically induced mineralization of the porous medium in the aquifer model used, since an increase in total carbonates downstream and in the biomineralized area in the models as a function of the increase of the electron donor. This is related to the formate values measured in the effluent, since the electron donor was used to a greater extent in the experiments that contained the highest amounts of formate, while in the models stimulated with the lowest concentrations of this, there was no considerable use. of the giver. Table 10. Relative abundance of the 16S rRNA gene sequences in the DNA extracts of the microorganisms adhered to the sand of the aquifer models at the end of the experiment evaluating formate concentrations.
Figure imgf000054_0001
Figure imgf000054_0001
Se comprobó la presencia de una porción de arena biomineralizada en todos los modelos de acuífero (Figura 25). El cálculo del área comprendida por la arena biomineralizada, en base al análisis de imágenes utilizando el programa ImageJ, reveló una directa relación entre el área del arena aglomerada y la cantidad de formiato en el medio de cultivo (Figura 26). Esta relación es lineal en el rango de concentraciones de formiato comprendido entre los 3-12 g/L, luego de lo cual el área biomineralizada tiende a no aumentar a mayores concentraciones de formiato. The presence of a portion of biomineralized sand was verified in all the aquifer models (Figure 25). The calculation of the area comprised by the biomineralized sand, based on the image analysis using the ImageJ program, revealed a direct relationship between the area of the agglomerated sand and the amount of formate in the culture medium (Figure 26). This relationship is linear in the range of formate concentrations between 3-12 g / L, after which the biomineralized area tends not to increase at higher formate concentrations.
El análisis cuantitativo de carbonatos totales en las zonas definidas en el experimento anterior (punto de inoculación y punto río abajo) confirman el aumento de la cantidad de carbonatos precipitados en el punto río abajo producto del aumento de la concentración de formiato (Figura 27). También, resulta interesante que la cantidad de carbonatos en el punto de inoculación disminuye con el aumento del formiato en el medio de cultivo The quantitative analysis of total carbonates in the zones defined in the previous experiment (inoculation point and downstream point) confirm the increase in the amount of precipitated carbonates at the downstream point as a result of the increase in the concentration of formate (Figure 27). Also, it is interesting that the amount of carbonates at the inoculation point decreases with the increase of formate in the culture medium
Mediante análisis por DRX se encontró la formación de calcita en los acuíferos modelo a todas las concentraciones de formiato. Los análisis cuantitativos del contenido de calcita presentaron la misma tendencia que la determinada por el análisis cuantitativo de carbonatos por titulación ácido-base, es decir, el aumento de la cantidad de carbonatos precipitados en el punto río abajo de los modelos (Tabla 11). Through XRD analysis, calcite formation was found in the model aquifers at all formate concentrations. The quantitative analyzes of the calcite content showed the same trend as that determined by the quantitative analysis of carbonates by acid-base titration, that is, the increase in the amount of precipitated carbonates at the downstream point of the models (Table 11).
Tabla 11. Cantidad de CaCC>3 (calcita) determinados por DRX en la arena de los modelos de acuífero estimulados con las distintas concentraciones de formiato. Se muestran los porcentajes de CaCÜ3 en el punto de inoculación y río abajo de uno de los duplicados de los modelos de acuífero estimulados con distintas concentraciones de formiato. Table 11. Amount of CaCC> 3 (calcite) determined by XRD in the sand of the aquifer models stimulated with the different concentrations of formate. The percentages of CaCÜ3 at the inoculation point and downstream of one of the duplicates of the aquifer models stimulated with different formate concentrations are shown.
Figure imgf000055_0001
Figure imgf000055_0001
Al final del experimento, se realizó observaciones por microscopía electrónica de barrido (MEB), de la arena mineralizada. Para ello se tomó aproximadamente 100 mg de muestra de arena de cuarzo del punto de inoculación de uno de los modelos estimulados con la menor y mayor concentración de formiato y se les añadió una solución fijadora de cacodilato-glutaraldehído 2,5%. Luego de esto, se realizó el secado de las muestras en un secador de punto crítico y el recubrimiento con oro (recubridor oro/carbono Dentón Desk V, EEUU y secador de punto crítico Autosamdri - 815, EEUU). Posteriormente, las muestras fueron observadas en un microscopio electrónico de barrido de alta resolución (HR-SEM), modelo INSPECT- F50, Holanda. At the end of the experiment, observations were made by scanning electron microscopy (SEM) of the mineralized sand. For this, approximately 100 mg of quartz sand sample was taken from the inoculation point of one of the models stimulated with the lowest and highest concentration of formate and a 2.5% cacodylate-glutaraldehyde fixing solution was added. After this, the samples were dried in a critical point dryer and coated with gold (Dentón Desk V gold / carbon coater, USA and Autosamdri - 815 critical point dryer, USA). Subsequently, the samples were observed in a High resolution scanning electron microscope (HR-SEM), model INSPECT-F50, The Netherlands.
En las Figura 28A y 28B, correspondientes a muestras de arena de cuarzo de los modelos estimulados con la menor y mayor concentración de formiato, respectivamente, se pueden ver cúmulos bacterianos compuestos en su gran mayoría por microorganismos con forma de bacilo, adheridas sobre la superficie de la arena de cuarzo y adyacentes a minerales cristalinos, posiblemente calcita, según lo determinado previamente por DRX. Ejemplo 8 In Figures 28A and 28B, corresponding to samples of quartz sand from the models stimulated with the lowest and highest concentration of formate, respectively, bacterial clusters can be seen composed mostly of bacillus-shaped microorganisms, adhered to the surface. from quartz sand and adjacent to crystalline minerals, possibly calcite, as previously determined by XRD. Example 8
Proceso para la reducir la permeabilidad hidráulica y generar la precipitación de minerales insolubles in situ de un acuífero subterráneo contaminados con sulfatos Process to reduce hydraulic permeability and generate the precipitation of insoluble minerals in situ from an underground aquifer contaminated with sulfates
El proceso consiste en un sistema para reducir la permeabilidad hidráulica y generar la precipitación de minerales insolubles en un acuífero con agua subterránea contaminada con sulfato y/o con sulfato y metales. El proceso se compone de al menos los pasos de: a) proveer un cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar, b) inyectar el acuífero con un cultivo de microorganismos enriquecido, c) inyectar el acuífero con un donador electrones y nutrientes adecuados para cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y uno o más cationes metálicos que favorezcan la precipitación de minerales insolubles, y d) permitir que los microorganismos se multipliquen y colonicen el material del sólido del acuífero, reduciendo la permeabilidad hidráulica del acuífero y generando la precipitación de minerales insolubles en el material sólido del acuífero. The process consists of a system to reduce hydraulic permeability and generate the precipitation of insoluble minerals in an aquifer with groundwater contaminated with sulfate and / or with sulfate and metals. The process consists of at least the steps of: a) providing a culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated, b) injecting the aquifer with an enriched culture of microorganisms, c) injecting the aquifer with an electron donor and nutrients suitable for the culture of microorganisms enriched in sulfate-reducing bacteria and one or more metal cations that favor the precipitation of insoluble minerals, and d) allow the microorganisms to multiply and colonize the solid material of the aquifer, reducing the hydraulic permeability of the aquifer and generating the precipitation of insoluble minerals in the solid material of the aquifer.
Como se muestra en la Figura 29, el proceso se inicia con la extracción de agua subterránea contaminada con sulfato y/o con sulfato y metales (1), desde un acuífero subterráneo, cuya dirección del flujo está indicada con las flechas (2). Para realizar la extracción del agua subterránea se emplea uno pozo o más pozos de extracción (3), que se instalan desde el nivel superficial del suelo (4) para extenderse por debajo del nivel freático (5). En el sector del nivel freático el o los pozos tienen ranuras, perforaciones u otras secciones permeables (6), que permiten la extracción del agua subterránea. El agua subterránea extraída ingresa por medio del conducto (7) al estanque (8). A éste último, por medio del conducto (9), se le agrega un donador de electrones y nutrientes adecuados para cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y uno o más cationes metálicos que favorezcan la precipitación de minerales insolubles. Los compuestos agregados se agitan en el estanque para obtener una solución Por medio del conducto (10) se ingresa la solución en el biorreactor anaerobio de lecho fijo (11), el cual ha sido previamente inoculado con un consorcio microbiano reductor de sulfato enriquecido, de acuerdo a los Ejemplos anteriores. El efluente del biorreactor (11), que contiene los microorganismos del consorcio reductor de sulfato, por medio del conducto (12), se ingresa a uno pozo o más pozos de inyección (13), que se instalan desde el nivel superficial del suelo (4) para extenderse por debajo del nivel freático (5). En el sector del nivel freático el o los pozos tienen ranuras, perforaciones u otras secciones permeables (14), que permiten la inyección de microorganismos y soluciones nutritivas al agua subterránea. Para estimular el crecimiento y la actividad metabólica del consorcio microbiano reductor de sulfato, también se agrega la solución del estanque (8) directamente, por medio del conducto (15) a uno pozo o más pozos de inyección (13), dicha solución se inyecta al agua subterránea mediante las ranuras, perforaciones u otras secciones permeables (14). Los microorganismos proliferan en los poros y en la superficie del material particulado del acuífero subterráneo, obstaculizando el flujo del agua. Además, la actividad metabólica de los microorganismos, especialmente la reducción biológica de sulfato, produce la remoción parcial del sulfato y la alcalinización de la solución. Como resultado de lo anterior se logra generar una zona de reducción de la permeabilidad hidráulica y de precipitación de minerales insolubles in situ (16) en una zona aguas abajo del punto de inyección en un acuífero subterráneo contaminado con sulfatos. Los minerales insolubles son principalmente carbonatos y sulfuras metálicos. Los carbonatos, tales como calcita, aragonita o vaterita, se forman en el ambiente alcalino, a partir del bicarbonato producido por la degradación microbiana anaerobia de materia orgánica y el calcio agregado y/o presente en el agua subterránea. Adicionalmente, precipitan sulfuras metálicos, particularmente FeS, por la reacción entre el H2S formado biológicamente y los óxidos de hierro, tales como maghemita, magnetita, hematita o goetita comúnmente presente en suelos y en material particulado de los acuíferos subterráneos. As shown in Figure 29, the process begins with the extraction of groundwater contaminated with sulfate and / or with sulfate and metals (1), from an underground aquifer, whose flow direction is indicated by arrows (2). One well or more wells are used to extract groundwater extraction (3), which are installed from the surface level of the ground (4) to extend below the water table (5). In the water table sector, the well (s) have grooves, perforations or other permeable sections (6), which allow the extraction of groundwater. The extracted groundwater enters through the conduit (7) to the pond (8). To the latter, through conduit (9), an electron donor and nutrients suitable for the cultivation of microorganisms enriched in sulfate-reducing bacteria and one or more metal cations that favor the precipitation of insoluble minerals are added. The added compounds are stirred in the pond to obtain a solution Through conduit (10) the solution is entered into the fixed-bed anaerobic bioreactor (11), which has been previously inoculated with an enriched sulfate reducing microbial consortium, of according to the previous Examples. The effluent from the bioreactor (11), which contains the microorganisms of the sulfate-reducing consortium, through the conduit (12), enters one well or more injection wells (13), which are installed from the surface level of the soil ( 4) to extend below the water table (5). In the water table sector, the well (s) have grooves, perforations or other permeable sections (14), which allow the injection of microorganisms and nutritive solutions into the groundwater. To stimulate the growth and metabolic activity of the sulfate reducing microbial consortium, the solution from the pond (8) is also added directly, through the conduit (15) to one well or more injection wells (13), said solution is injected to groundwater through slots, perforations, or other permeable sections (14). Microorganisms proliferate in the pores and on the surface of the particulate matter in the underground aquifer, impeding the flow of water. Furthermore, the metabolic activity of microorganisms, especially the biological reduction of sulfate, produces the partial removal of sulfate and the alkalization of the solution. As a result of the above, it is possible to generate a zone of reduction of hydraulic permeability and of precipitation of insoluble minerals in situ (16) in an area downstream of the injection point in an underground aquifer contaminated with sulfates. Insoluble minerals are primarily metallic carbonates and sulfides. Carbonates, such as calcite, aragonite, or vaterite, are formed in the environment alkaline, from bicarbonate produced by the anaerobic microbial degradation of organic matter and calcium added and / or present in groundwater. Additionally, metallic sulphides, particularly FeS, precipitate by the reaction between the biologically formed H2S and iron oxides, such as maghemite, magnetite, hematite or goethite commonly present in soils and in particulate matter of underground aquifers.

Claims

REIVINDICACIONES
1. Un método in situ para reducir la conductividad hidráulica y generar la precipitación de minerales insolubles en un acuífero subterráneo que está afectado por filtraciones de agua superficiales o por filtraciones de agua de un tranque de relave minero, CARACTERIZADO porque comprende al menos los pasos de: a) proveer un cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar, b) inyectar el acuífero subterráneo con un cultivo de microorganismos enriquecido, c) inyectar el acuífero subterráneo con un donador de electrones y nutrientes para cultivo de microorganismos enriquecido en bacterias reductoras y uno o más cationes metálicos que favorezcan la precipitación de minerales insolubles, y d) permitir que los microorganismos se multipliquen y colonicen el material del sólido del acuífero subterráneo, reduciendo la permeabilidad hidráulica del acuífero subterráneo y generando la precipitación de minerales insolubles en el material sólido del acuífero subterráneo. 1. An in situ method to reduce the hydraulic conductivity and generate the precipitation of insoluble minerals in an underground aquifer that is affected by superficial water seepage or by water seepage from a mining tailings dam, CHARACTERIZED because it comprises at least the steps of : a) provide a culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated, b) inject the groundwater aquifer with an enriched microorganism culture, c) inject the groundwater aquifer with an electron donor and nutrients for the culture of microorganisms enriched in reducing bacteria and one or more metal cations that favor the precipitation of insoluble minerals, and d) allow microorganisms to multiply and colonize the solid material of the underground aquifer, reducing the hydraulic permeability of the underground aquifer and generating insol mineral precipitation ubles in the solid material of the underground aquifer.
2. El método de acuerdo a la reivindicación 1 , CARACTERIZADO porque dicho cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar, se produce con un método que comprende al menos los pasos: a) inocular un cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar en un biorreactor anaerobio de lecho fijo con un material de soporte, b) alimentar en forma continua con agua extraída del acuífero subterráneo, un donador de electrones y nutrientes adecuados para el cultivo de bacterias reductoras de sulfato, c) permitir que los microorganismos se multipliquen, colonicen el material de soporte del biorreactor, y d) producir un efluente del biorreactor que contiene un cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar para ser inyectado a dicho acuífero. 2. The method according to claim 1, CHARACTERIZED in that said culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated, is produced with a method that comprises at least the steps: a) inoculating a culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated in a fixed-bed anaerobic bioreactor with a support material, b) continuously feed with water extracted from the groundwater aquifer, an electron donor and suitable nutrients for the cultivation of sulfate reducing bacteria, c) allow the microorganisms to multiply, colonize the bioreactor support material, and d) produce an effluent from the bioreactor containing a culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated to be injected into said aquifer.
3. El método de acuerdo a la reivindicación 2, CARACTERIZADO porque dicho material de soporte se selecciona del grupo de la arena, la piedra silícica, el vidrio y la cerámica. 3. The method according to claim 2, CHARACTERIZED in that said support material is selected from the group of sand, silicic stone, glass and ceramic.
4. El método de acuerdo a las reivindicaciones 1 - 3, CARACTERIZADO porque dicha inyección del acuífero subterráneo con un cultivo de microorganismos enriquecido y dicha inyección del acuífero subterráneo con un donador electrones y nutrientes adecuados para cultivo de microorganismos enriquecido en bacterias reductoras, y uno o más cationes metálicos que favorezcas la precipitación de minerales insolubles se realiza mediante uno o más pozos de inyección. 4. The method according to claims 1 - 3, CHARACTERIZED in that said injection of the underground aquifer with an enriched microorganism culture and said injection of the underground aquifer with an electron donor and nutrients suitable for the culture of microorganisms enriched in reducing bacteria, and one or more metal cations that favor the precipitation of insoluble minerals is carried out through one or more injection wells.
5. El método de acuerdo a las reivindicaciones 1 - 4, CARACTERIZADO porque dicho un donador electrones adecuado para cultivo de microorganismos enriquecido en bacterias reductoras se selecciona del grupo del formiato, ácido fórmico, acetato y ácido acético. The method according to claims 1-4, CHARACTERIZED in that said an electron donor suitable for the culture of microorganisms enriched in reducing bacteria is selected from the group of formate, formic acid, acetate and acetic acid.
6. El método de acuerdo a las reivindicaciones 1 - 5 CARACTERIZADO porque dichos nutrientes adecuados para cultivo de microorganismos enriquecido en bacterias reductoras, comprende, al menos, amonio y fosfato. 6. The method according to claims 1 - 5 CHARACTERIZED in that said nutrients suitable for the culture of microorganisms enriched in reducing bacteria, comprise, at least, ammonium and phosphate.
7. El método de acuerdo a las reivindicaciones 1 - 6, CARACTERIZADO porque dichos nutrientes adecuados para cultivo de microorganismos enriquecido en bacterias reductoras, comprende además un nutriente complejo, rico en vitaminas, seleccionado del grupo del extracto de levadura y el agua colada de maíz. 7. The method according to claims 1-6, CHARACTERIZED in that said nutrients suitable for the cultivation of microorganisms enriched in reducing bacteria, also comprise a complex nutrient, rich in vitamins, selected from the group of yeast extract and corn strained water .
8. El método de acuerdo a las reivindicaciones 1 - 7, CARACTERIZADO porque dicho mineral insoluble que precipita en el material sólido del acuífero subterráneo es carbonato de calcio. The method according to claims 1-7, CHARACTERIZED in that said insoluble mineral that precipitates in the solid material of the underground aquifer is calcium carbonate.
9. El método de acuerdo a las reivindicaciones 1 - 8, CARACTERIZADO porque dicho mineral insoluble que precipita en el material sólido del acuífero subterráneo es sulfuro de hierro. The method according to claims 1-8, CHARACTERIZED in that said insoluble mineral that precipitates in the solid material of the underground aquifer is iron sulfide.
10. El método de acuerdo a las reivindicaciones 1 a 9, CARACTERIZADO porque dicho método permite, además, remover sulfato de las aguas subterránea de dicho acuífero. 10. The method according to claims 1 to 9, CHARACTERIZED in that said method also allows to remove sulfate from the groundwater of said aquifer.
11. El método de acuerdo a las reivindicaciones 1 - 10, CARACTERIZADO porque dicho cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar está constituido, al menos por bacterias de los Filos Proteobacteria, Firmicutes y Bacteroidetes. 11. The method according to claims 1-10, CHARACTERIZED in that said culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is constituted, at least by bacteria of the Phylum Proteobacteria, Firmicutes and Bacteroidetes .
12. El método de acuerdo a las reivindicaciones 1 - 11 , CARACTERIZADO porque dicho cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar está constituido, al menos por bacterias del Filo Proteobacteria o Firmicutes. The method according to claims 1-11, CHARACTERIZED in that said culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is constituted, at least by bacteria from the Phylum Proteobacteria or Firmicutes.
13. El método de acuerdo a las reivindicaciones 1 - 12, CARACTERIZADO porque dicho cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar está constituido, al menos por bacterias de las Clases Gammaproteobacteria, Clostridia, Deltaproteobacteria y Bacteroidia. The method according to claims 1-12, CHARACTERIZED in that said culture of microorganisms enriched in sulfate reducing bacteria and adapted to the groundwater of the aquifer to be treated is constituted, at least by bacteria of the Classes Gammaproteobacteria, Clostridia, Deltaproteobacteria and Bacteroidia.
14. El método de acuerdo a las reivindicaciones 1 - 12, CARACTERIZADO porque dicho cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar está constituido, al menos por bacterias de la Clase Clostridia o Deltaproteobacteria. The method according to claims 1-12, CHARACTERIZED in that said culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated is constituted, at least by bacteria of the Clostridia or Deltaproteobacteria Class.
15. El método de acuerdo a las reivindicaciones 1 - 14, CARACTERIZADO porque dicho cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar contiene, al menos bacterias del Orden Desulfovibrionales. The method according to claims 1-14, CHARACTERIZED in that said culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated contains at least bacteria of the Order Desulfovibrionales.
16. El método de acuerdo a las reivindicaciones 1 - 14, CARACTERIZADO porque dicho cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar contiene, al menos bacterias del Orden Desulfobacterales. 16. The method according to claims 1-14, CHARACTERIZED in that said culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated contains, at least, bacteria of the Desulfobacterales Order.
17. El método de acuerdo a las reivindicaciones 1 - 14, CARACTERIZADO porque dicho cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar contiene, al menos bacterias del Orden Desulfuromonadales. The method according to claims 1-14, CHARACTERIZED in that said culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated contains, at least, bacteria of the Desulfuromonadal Order.
18. El método de acuerdo a las reivindicaciones 1 - 14, CARACTERIZADO porque dicho cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar contiene, al menos bacterias del Orden Clostridiales. 18. The method according to claims 1-14, CHARACTERIZED in that said culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated contains, at least, bacteria of the Order Clostridiales.
19. El método de acuerdo a las reivindicaciones 1 a 14, CARACTERIZADO porque dicho cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar contiene, al menos un género de bacterias reductoras de sulfato de seleccionados del grupo constituido por Desulfomicrobium, Desulf ovibrio, Desulfonema, Desulfuromonas, Desufutomaculum y Desulfosporosinus. 19. The method according to claims 1 to 14, CHARACTERIZED in that said culture of microorganisms enriched in sulfate reducing bacteria and adapted to the groundwater of the aquifer to be treated contains, at least one genus of sulfate reducing bacteria selected from the group consisting of Desulfomicrobium, Desulf ovibrio, Desulfonema, Desulfuromonas, Desufutomaculum and Desulfosporosinus.
20. El método de acuerdo a las reivindicaciones 1 - 19, CARACTERIZADO porque dicho cultivo de microorganismos, enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar, se obtiene a partir de muestras extraídas de microbialitos vivos de lagunas o lagos salinos. 20. The method according to claims 1-19, CHARACTERIZED in that said culture of microorganisms, enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated, is obtained from samples taken from live microbialites from lagoons or saline lakes.
21. El método de acuerdo a las reivindicaciones 1 - 20, CARACTERIZADO porque dicho cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar, se obtiene con un método que comprende al menos los pasos: a) inocular una muestra de dicho microbialito vivo de un lago salino o laguna salina en una columna rellena con arena, b) alimentar en forma continua con agua extraída del acuífero subterráneo, un donador de electrones y nutrientes adecuados para el cultivo de bacterias reductoras de sulfato, c) permitir que los microorganismos se multipliquen, colonicen la arena del biorreactor y se enriquezca el cultivo en bacterias reductoras de sulfato, y d) producir un cultivo de microorganismos enriquecido en bacterias reductoras de sulfato y adaptado a las aguas subterráneas del acuífero a tratar. 21. The method according to claims 1-20, CHARACTERIZED in that said culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated, is obtained with a method that comprises at least the steps: a) inoculate a sample of said live microbialite from a saline lake or saline lagoon into a column filled with sand, b) feed continuously with water extracted from the underground aquifer, an electron donor and nutrients suitable for the culture of reducing bacteria of sulfate, c) allow the microorganisms to multiply, colonize the bioreactor sand and enrich the culture in sulfate-reducing bacteria, and d) produce a culture of microorganisms enriched in sulfate-reducing bacteria and adapted to the groundwater of the aquifer to be treated .
22. El método de acuerdo a las reivindicaciones 1 - 21 , CARACTERIZADO porque dicho microbialito vivo es un estromatolito vivo. The method according to claims 1-21, CHARACTERIZED in that said living microbialite is a living stromatolite.
23. El método de acuerdo a las reivindicaciones 1 - 22, CARACTERIZADO porque dicho microbialito vivo es un trombolito vivo. 23. The method according to claims 1-22, CHARACTERIZED in that said living microbialite is a living thrombolyte.
PCT/IB2020/053811 2019-04-23 2020-04-22 Process for controlling in situ groundwater pollution from seepage of tailings tank water WO2020217188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PE2021001758A PE20220210A1 (en) 2019-04-23 2020-04-22 PROCESS FOR IN SITU CONTROL OF GROUNDWATER POLLUTION DUE TO INFILTRATION OF WATER FROM TAILING TANKS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2019001099A CL2019001099A1 (en) 2019-04-23 2019-04-23 Process for on-site control of groundwater contamination by infiltration of tailings from tailings dams
CL1099-2019 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020217188A1 true WO2020217188A1 (en) 2020-10-29

Family

ID=67106737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/053811 WO2020217188A1 (en) 2019-04-23 2020-04-22 Process for controlling in situ groundwater pollution from seepage of tailings tank water

Country Status (4)

Country Link
AR (1) AR118765A1 (en)
CL (1) CL2019001099A1 (en)
PE (1) PE20220210A1 (en)
WO (1) WO2020217188A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113617827A (en) * 2021-06-30 2021-11-09 中冶成都勘察研究总院有限公司 Method for improving mine restoration soil layer structure
EP4023353A1 (en) * 2020-12-31 2022-07-06 Groundwater Technology B.V. Method of microbial mineral precipitation in a porous medium having hydraulic conductivity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020166813A1 (en) * 2001-05-14 2002-11-14 Bartlett Robert W. In situ anaerobic bioremediation of earth and sold waste contaminants using organic/water emulsions
US20090324344A1 (en) * 2006-05-09 2009-12-31 Van Der Zon Wilhelmus Hendrikus Biosealing
US20170232490A1 (en) * 2007-03-16 2017-08-17 Jrw Bioremediation, Llc Bioremediation enhancing agents and methods of use
AU2018236858A1 (en) * 2018-05-04 2019-11-21 Korea Advanced Institute Of Science And Technology Reinforcement method for water leaking of water facilities using soil microbes biostimulation and microparticles injection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020166813A1 (en) * 2001-05-14 2002-11-14 Bartlett Robert W. In situ anaerobic bioremediation of earth and sold waste contaminants using organic/water emulsions
US20090324344A1 (en) * 2006-05-09 2009-12-31 Van Der Zon Wilhelmus Hendrikus Biosealing
US20170232490A1 (en) * 2007-03-16 2017-08-17 Jrw Bioremediation, Llc Bioremediation enhancing agents and methods of use
AU2018236858A1 (en) * 2018-05-04 2019-11-21 Korea Advanced Institute Of Science And Technology Reinforcement method for water leaking of water facilities using soil microbes biostimulation and microparticles injection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
COTORAS TADIC, D., PROYECTO FONDEF DE INVESTIGACION Y DESARROLLO: BIOMINERALIZACION APLICADA EN MINERIA , CODIGO DEL PROYECTO CA 13110019, 4 April 2018 (2018-04-04), XP055752865, Retrieved from the Internet <URL:http://repositorio.conicyt.cl/bitstream/handle/10533/209771/CA13110019.pdf?sequence=1&isAllowed=y>> [retrieved on 20200616] *
SINGH, R. ET AL.: "Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study", BIORESOURCE TECHNOLOGY, vol. 102, 2011, pages 677 - 682, XP027581361, DOI: 1 0.1 016/j.biortech.201 0.08.041 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4023353A1 (en) * 2020-12-31 2022-07-06 Groundwater Technology B.V. Method of microbial mineral precipitation in a porous medium having hydraulic conductivity
NL2027257B1 (en) * 2020-12-31 2022-07-21 Groundwater Tech B V Method of microbial mineral precipitation in a porous medium having hydraulic conductivity
CN113617827A (en) * 2021-06-30 2021-11-09 中冶成都勘察研究总院有限公司 Method for improving mine restoration soil layer structure

Also Published As

Publication number Publication date
AR118765A1 (en) 2021-10-27
CL2019001099A1 (en) 2019-06-28
PE20220210A1 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
Dejong et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges
Lottermoser et al. Mine water
Siddique et al. Effect of ureolytic bacteria on concrete properties
Majzlan et al. Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy, geochemistry, microbiology, and environmental implications
Fitzpatrick et al. Acid sulfate soils
Moser et al. Biogeochemical processes and microbial characteristics across groundwater− surface water boundaries of the Hanford Reach of the Columbia River
Atinkpahoun et al. Rare earth elements (REE) in the urban wastewater of Cotonou (Benin, West Africa)
Fortin et al. Seasonal cycling of Fe and S in a constructed wetland: the role of sulfate-reducing bacteria
WO2020217188A1 (en) Process for controlling in situ groundwater pollution from seepage of tailings tank water
Zhu et al. Integrating hydrochemical and biological approaches to investigate the surface water and groundwater interactions in the hyporheic zone of the Liuxi River basin, southern China
Overmann et al. Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake
Zouhri et al. Bacteriological and geochemical features of the groundwater resources: Kettara abandoned mine (Morocco)
McCauley Assessment of passive treatment and biogeochemical reactors for ameliorating acid mine drainage at Stockton coal mine
Das et al. Acid mine drainage
Freikowski et al. Effect of carbon sources and of sulfate on microbial arsenic mobilization in sediments of West Bengal, India
Zuo et al. Spatiotemporal variations of redox conditions and microbial responses in a typical river bank filtration system with high Fe2+ and Mn2+ contents
Parker et al. Biogeochemical and microbial seasonal dynamics between water column and sediment processes in a productive mountain lake: Georgetown Lake, MT, USA
Guo et al. Biological sulfate reduction in an epigene karst aquifer and its impact on cave environment
Kandoli et al. Assessment of cemetery effect on groundwater quality using GIS
Silva et al. Seasonal influence of surface and underground continental runoff over a reef system in a tropical marine protected area
Ding et al. Bioreduction of U (VI) in groundwater under anoxic conditions from a decommissioned in situ leaching uranium mine
Vincent et al. Sediments and microbiomes
Samuels et al. Evidence for in vitro and in situ pyrite weathering by microbial communities inhabiting weathered shale
Sasowsky et al. Breakthroughs in karst geomicrobiology and redox geochemistry
Wei et al. Mine drainage: research and development

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795266

Country of ref document: EP

Kind code of ref document: A1