WO2020216510A1 - Data transmission from and to the rotor of an externally-excited electrical machine - Google Patents

Data transmission from and to the rotor of an externally-excited electrical machine Download PDF

Info

Publication number
WO2020216510A1
WO2020216510A1 PCT/EP2020/055709 EP2020055709W WO2020216510A1 WO 2020216510 A1 WO2020216510 A1 WO 2020216510A1 EP 2020055709 W EP2020055709 W EP 2020055709W WO 2020216510 A1 WO2020216510 A1 WO 2020216510A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
designed
winding
inductive coupling
Prior art date
Application number
PCT/EP2020/055709
Other languages
German (de)
French (fr)
Inventor
Ruben Bärenweiler
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Publication of WO2020216510A1 publication Critical patent/WO2020216510A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/35Devices for recording or transmitting machine parameters, e.g. memory chips or radio transmitters for diagnosis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/302Brushless excitation

Definitions

  • the present invention relates to a rotor for an externally excited electrical machine, a stator for an externally excited electrical machine, and an externally excited electrical machine comprising the rotor and the stator.
  • a rotor temperature of an electrical machine is determined by means of a calculation based on a model.
  • the rotor temperature is an important parameter for regulation and reliability of the machine and reflects the state of the machine.
  • the calculation is much less accurate than a measurement of the rotor temperature.
  • the object of the invention is to provide a rotor for an separately excited electrical machine, a stator for an separately excited electrical machine, and a separately excited electrical cal machine having the rotor and the stator, which are each designed to address the disadvantages of the prior art described above Technology to overcome.
  • the object is achieved by a rotor for an externally excited electrical machine, the rotor being designed for inductive coupling with a stator in order to be supplied with excitation power for energizing an excitation winding without contact.
  • the rotor is also designed to send information to the stator by means of the inductive coupling.
  • the electrical machine is an energy converter that is designed to convert electrical energy into rotational energy or vice versa.
  • the electrical machine is a separately excited electrical machine, preferably one separately excited synchronous machine. Depending on the direction of a power flow, the electrical machine can be a motor or a generator.
  • the rotor can be rotated relative to the stator. More precisely, the excitation winding of the rotor is provided in order to generate a static, electromagnetic field for the energy conversion in the electrical machine. As a result, the rotor can rotate relative to the stator of the electrical machine when the electrical machine is operating. The electromagnetic field generated by the excitation winding is static relative to the rotor.
  • the rotor is designed to be supplied inductively or contactlessly from the stator with excitation power to energize an excitation winding.
  • Induction is understood to mean electromagnetic induction.
  • the information is preferably sent by digital error-detecting signal transmission, the error-detecting signal transmission being based, for example, on a cyclical redundancy check (CRC).
  • CRC cyclical redundancy check
  • the cyclical redundancy check is a method for determining a check value for data in order to be able to detect errors during transmission or storage. The method can preferably correct the received data or information in order to avoid retransmission of the data or information.
  • the rotor can have a secondary winding for inductive coupling.
  • the secondary winding is preferably part of a coil, which in turn has a plurality of windings.
  • the secondary winding is suitable for making changes in an electromagnetic alternating field applied to it from the outside detectable.
  • the rotor can furthermore have a rectifier which is designed to convert an alternating voltage generated in the secondary winding by an electromagnetic alternating field into a direct voltage and to output it to the field winding. More precisely, an alternating voltage is generated in the secondary winding by the electromagnetic alternating field, which inductively supplies the rotor with energy for energizing the excitation winding. This AC voltage becomes an input side output of the rectifier and converted into DC voltage by this. The DC voltage is then output from the rectifier to the field winding. A static electromagnetic field relative to the rotor is thus generated in the excitation winding, so that the rotor can be driven in rotation relative to the stator by a further alternating electromagnetic field of the stator, which can also be referred to as the alternating drive field. A comparatively small part of the total energy transferred from the stator to the rotor can be branched off to supply a sensor and communication unit arranged on the rotor.
  • the rectifier can have voltage regulation.
  • the rotor can also have a transmission unit connected to the secondary winding, which is designed to modulate the information onto the electromagnetic alternating field acting on the secondary winding.
  • the rotor can therefore also be designed to send information by means of modulation of an electromagnetic alternating field which acts on the secondary winding and transmits foreign excitation energy. During the modulation, a useful signal to be transmitted or information to be transmitted changes or modulates the electromagnetic alternating field.
  • the rotor can also be configured to receive information from the stator by means of the inductive coupling. This reception is preferably carried out by performing the sending process inversely, i.e. the rotor is then suitable for bidirectional communication with the stator.
  • the rotor can also have a receiving unit connected to the secondary winding.
  • the receiving unit can be designed to receive the information from the stator based on the electromagnetic alternating field acting on the secondary winding.
  • the transmitting unit described above and the receiving unit can be combined in one unit, a so-called transceiver.
  • the rotor can furthermore have a sensor and be configured to send information detected by the sensor as the information to be transmitted to the stator.
  • the sensor preferably has a temperature sensor.
  • the sensor can have a speed sensor.
  • the sensor can have a magnetic field sensor.
  • Prefers the sensor is connected to the transceiver of the rotor and inputs the values it detects as signals to the transceiver.
  • the transceiver can modulate the information received from the sensor onto the alternating electromagnetic field in order to output it to the stator.
  • stator for an externally excited electrical machine, the stator being designed for inductive coupling with a rotor in order to supply the rotor with excitation power in a contactless manner to energize an excitation winding of the rotor.
  • the stator is designed to receive information from the rotor by means of the inductive coupling.
  • the above embodiments for sending and receiving information by means of the rotor apply equally to the stator.
  • the definitions described above with reference to the rotor and design options for certain components also apply to the stator and can be implemented accordingly in this.
  • the stator can have a primary winding for inductive coupling.
  • the stator can furthermore have an inverter which is designed to convert a DC voltage into an AC voltage and to output it to the primary winding.
  • the primary winding can be designed to generate an electromagnetic alternating field based on the alternating voltage.
  • the inverter is thus designed to convert a DC voltage applied to it on the input side into an AC voltage and output it to the primary winding.
  • the inverter thus performs the rectifier function described above in reverse.
  • the alternating electromagnetic field generated by the stator by means of the primary winding is variable or changes with the alternating voltage applied to it.
  • the alternating electromagnetic field generated in the primary winding can generate the alternating voltage on the rotor side in the secondary winding of the rotor.
  • This AC voltage can then, as described above, output from the secondary winding to an input side of the rectifier of the rotor and converted by this into DC voltage.
  • the stator can also have a receiving unit connected to the primary winding, which is designed to receive the information modulated onto the alternating electromagnetic field generated by the primary winding from the rotor.
  • the stator can also have a control unit which is configured to output control signals for controlling the separately excited electrical machine based on information received from the rotor by means of the inductive coupling.
  • the control unit preferably has a control loop that uses the information received from the rotor as a feedback variable or actual variable.
  • the control unit can operate the electrical machine in a preferred speed and / or temperature range.
  • the control unit can be designed to control the air gap or rotor magnetic field strength.
  • the stator can also be configured to send information to the rotor by means of the inductive coupling.
  • the stator preferably has a transmission unit connected to the primary winding.
  • the transmitting unit can be designed to modulate the information to be sent onto the electromagnetic alternating field generated in the primary winding.
  • the transmitting unit and the receiving unit can be combined in one unit, the so-called transceiver.
  • an externally excited electrical machine having a rotor described above and a stator described above.
  • the rotor is inductively coupled to the stator in order to be supplied without contact with excitation power to energize an excitation winding.
  • the rotor is designed to send information to the stator by means of the inductive coupling.
  • the electrical machine is preferably designed so that the rotor is driven by a further alternating electromagnetic field generated by the stator, which can also be referred to as an alternating drive field, rotates relative to the stator in order to drive the rotor.
  • FIG. 1 is a schematic illustration of an electrical machine according to an embodiment.
  • Figure 2 is a schematic representation of an electrical machine according to a white direct embodiment.
  • Figure 3 is a schematic diagram of a circuit.
  • a separately excited electrical machine 1 is shown approximately according to a first Ausfer.
  • the electrical machine 1 comprises a stator 2, 4 and a rotor 3.
  • the stator 2, 4 is designed in two pieces.
  • a first part 4 of the stator 2, 4 is arranged in the longitudinal direction X of the electrical Ma machine 1, that is to say axially next to and at a distance from the rotor 3.
  • a second part 2 of the stator 2, 4 is arranged so that the second part 2 of the stator 2, 4 partially receives the rotor 3 in the longitudinal direction.
  • the first part 4 of the stator 2, 4 is used to energize the rotor 3.
  • the second part 2 of the stator 2, 4 generates an alternating electromagnetic field when the machine 1 is in operation so that the rotor 3 rotates relative to the stator 2, 4.
  • a separately excited electrical machine 1 is shown approximately according to a further Ausry.
  • the electrical machine 1 shown in FIG. 2 differs from the electrical machine 1 shown in FIG. 1 only in that the first part 4 of the stator 2, 4 is not offset from the rotor 3 in the longitudinal direction X, but rather the rotor 3 encloses radially.
  • the rotor 3 rotates relative to the stator 2, 4 when the electrical machine 1 is in operation.
  • the rotor 3 rotates during the electrical operation Ma machine 1 about an axis parallel to the longitudinal direction X.
  • the rotor 3 is arranged relative to the first part 4 of the stator 2, 4 such that the first part 4 of the stator 2, 4 supplies the rotor 3 inductively with excitation power by means of an electromagnetic alternating field during operation of the electrical machine 1.
  • the rotor 3 generates a static electromagnetic field relative to the rotor 3 by means of the excitation power through an excitation winding.
  • the second part 2 of the stator 2, 4 generates a further alternating electromagnetic field.
  • FIG. 3 schematically shows a circuit which applies both to the embodiment in FIG. 1 and to the embodiment in FIG.
  • the rotor comprises a secondary winding 31 and the excitation winding 32.
  • a rectifier 33 is provided between the secondary winding 31 and the excitation winding 32.
  • the rectifier 33 is connected to both the secondary winding 31 and the field winding 32 in an electrically conductive manner.
  • the rectifier 33 is designed to convert an incoming AC voltage from the secondary winding 31 into a DC voltage. This DC voltage is output to the excitation winding 32.
  • the alternating voltage is generated by an electromagnetic alternating field generated by the first part 4 of the stator 2, 4 by means of induction in the secondary winding 31 of the rotor 3.
  • the rotor 3 comprises a secondary transceiver 34, which is connected to the secondary winding 31 in an electrically conductive manner.
  • the secondary transceiver 34 has a wide ren, not shown rectifier, to convert the AC voltage from the secondary winding 31 into a DC voltage.
  • the secondary transceiver is therefore also supplied with energy by the electromagnetic alternating field generated by the first part 4 of the stator 2, 4.
  • the secondary transceiver 34 is designed to transmit information to the first part 4 of the stator 2 by means of modulation of the from the first Part 4 of the stator 2, 4 to send generated electromagnetic alternating field.
  • the secondary transceiver 34 has a transmission unit 341.
  • the secondary transceiver 34 is also designed to receive information that is modulated onto the electromagnetic alternating field generated by the first part 4 of the stator 2, 4.
  • the secondary transceiver 34 has a receiving unit 342.
  • the secondary transceiver 34 is electrically connected to an output side of a sensor 35 of the rotor 3.
  • the sensor 35 is a temperature, magnetic field and rotational speed sensor which is designed to detect both the temperature, the magnetic field strength and the rotational speed of the rotor 3.
  • the temperature, magnetic field strength and speed detected by sensor 35 are input from sensor 35 to secondary transceiver 34.
  • the secondary transceiver 34 is designed to modulate the information received from the sensor 35 onto the electromagnetic alternating field in such a way that this information is received by the first part 4 of the stator 2, 4.
  • the first part 4 of the stator 2, 4 has a primary winding 41, an inverter 42 and a primary transceiver 43 which is connected to a controller 44.
  • the primary transceiver 43 is also connected to the primary winding 41 in an electrically conductive manner.
  • the inverter 42 is connected to an energy source 45 in an electrically conductive manner.
  • the energy source 45 is a DC voltage source.
  • the DC voltage applied on the input side of the power source 45 at the inverter 42 is converted by the inverter 42 into an AC voltage.
  • the AC voltage is output from the inverter 42 to the primary winding 41.
  • the alternating voltage applied to the primary winding 41 generates the electromagnetic alternating field from the primary winding 41.
  • the alternating electromagnetic field acts on the secondary winding 31.
  • An alternating voltage is thus induced in the secondary winding 31 by means of induction.
  • the information modulated by the secondary transceiver 34 of the rotor 3, which corresponds to the temperature, magnetic field strength and speed of the rotor 3, is received via the primary winding 41 and the primary transceiver 43.
  • the primary transceiver 43 is designed to receive the information that is modulated by the rotor 3 onto the alternating electromagnetic field generated by the primary winding 41.
  • the primary transceiver 43 has a receiving unit 431 for this purpose.
  • Of the Primary transceiver 43 is also designed to send information to the rotor 3 by modulating the electromagnetic alternating field generated by the primary winding 41.
  • the primary transceiver 43 has a transmission unit 432 for this purpose.
  • the primary transceiver 43 also has a further rectifier in order to convert the alternating voltage applied to the primary winding 41 into a direct voltage.
  • the primary transceiver 43 is thus supplied with energy.
  • the primary transceiver 43 is connected to the controller 44 in an electrically conductive manner.
  • the controller 44 is designed to control the electrical machine 1 based on the information transmitted by the primary transceiver 43.
  • the primary transceiver 43 has a rectifier in order to convert the alternating voltage applied to the primary winding 41 into a direct voltage. In the present modified embodiment, for example, no such rectifier is provided.
  • the primary transceiver 43 is supplied with energy from an external DC voltage source 46, which is shown with a dashed line in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)

Abstract

Disclosed is a rotor for an externally-excited electrical machine, the rotor being designed to be inductively coupled to a stator in order to be contactlessly supplied with excitation power for energising an excitation winding. The rotor is also designed to send information to the stator and receive information from said stator by means of the inductive coupling.

Description

Datenübertragung vom und zum Rotor einer fremderregten elektrischen Maschine Data transmission from and to the rotor of an externally excited electrical machine
Technisches Gebiet Technical area
Die vorliegende Erfindung bezieht sich auf einen Rotor für eine fremderregte elektrische Maschine, einen Stator für eine fremderregte elektrische Maschine, und eine fremder regte elektrische Maschine aufweisend den Rotor sowie den Stator. The present invention relates to a rotor for an externally excited electrical machine, a stator for an externally excited electrical machine, and an externally excited electrical machine comprising the rotor and the stator.
Stand der Technik State of the art
Beim Betrieb von elektrischen Maschinen werden für den Status der elektrischen Ma schine relevante Größen meist anhand von Modellen geschätzt. Beispielsweise erfolgt eine Bestimmung einer Rotortemperatur einer elektrischen Maschine mittels einer auf einem Model basierenden Berechnung. Bei einer elektrischen Maschine ist jedoch die Rotortemperatur ein wichtiger Parameter für eine Regelung und Zuverlässigkeit der Ma schine und spiegelt den Zustand der Maschine wieder. Allerdings ist die Berechnung wesentlich ungenauer als eine Messung der Rotortemperatur. When operating electrical machines, variables relevant to the status of the electrical machine are usually estimated using models. For example, a rotor temperature of an electrical machine is determined by means of a calculation based on a model. In the case of an electrical machine, however, the rotor temperature is an important parameter for regulation and reliability of the machine and reflects the state of the machine. However, the calculation is much less accurate than a measurement of the rotor temperature.
Darstellung der Erfindung Presentation of the invention
Aufgabe der Erfindung ist es, einen Rotor für eine fremderregte elektrische Maschine, einen Stator für eine fremderregte elektrische Maschine, und eine fremderregte elektri sche Maschine aufweisend den Rotor sowie den Stator bereitzustellen, die jeweils aus gestaltet sind, um die oben beschriebenen Nachteile des Stands der Technik zu über winden. The object of the invention is to provide a rotor for an separately excited electrical machine, a stator for an separately excited electrical machine, and a separately excited electrical cal machine having the rotor and the stator, which are each designed to address the disadvantages of the prior art described above Technology to overcome.
Gelöst wird die Aufgabe durch einen Rotor für eine fremderregte elektrische Maschine, wobei der Rotor zur induktiven Kopplung mit einem Stator ausgestaltet ist, um kontakt los mit Erregerleistung zur Bestromung einer Erregerwicklung versorgt zu werden . Der Rotor ist ferner ausgestaltet, um mittels der induktiven Kopplung eine Information zum Stator zu senden. Die elektrische Maschine ist dabei ein Energiewandler, der ausgestal tet ist, um elektrische Energie in Rotationsenergie oder umgekehrt umzuwandeln. Hier ist die elektrische Maschine eine fremderregte elektrische Maschine, bevorzugt eine fremderregte Synchronmaschine. Je nach Richtung eines Leistungsflusses kann die elektrische Maschine ein Motor oder ein Generator sein. The object is achieved by a rotor for an externally excited electrical machine, the rotor being designed for inductive coupling with a stator in order to be supplied with excitation power for energizing an excitation winding without contact. The rotor is also designed to send information to the stator by means of the inductive coupling. The electrical machine is an energy converter that is designed to convert electrical energy into rotational energy or vice versa. Here, the electrical machine is a separately excited electrical machine, preferably one separately excited synchronous machine. Depending on the direction of a power flow, the electrical machine can be a motor or a generator.
Der Rotor ist relativ zum Stator drehbar. Genauer gesagt ist die Erregerwicklung des Rotors vorgesehen, um in der elektrischen Maschine ein statisches, elektromagneti sches Feld für die Energiewandlung zu erzeugen. Dadurch kann sich der Rotor im Be trieb der elektrischen Maschine relativ zu dem Stator der elektrischen Maschine drehen. Das von der Erregerwicklung erzeugte elektromagnetische Feld ist relativ zum Rotor statisch. The rotor can be rotated relative to the stator. More precisely, the excitation winding of the rotor is provided in order to generate a static, electromagnetic field for the energy conversion in the electrical machine. As a result, the rotor can rotate relative to the stator of the electrical machine when the electrical machine is operating. The electromagnetic field generated by the excitation winding is static relative to the rotor.
Vorliegend ist der Rotor ausgestaltet, um induktiv bzw. kontaktlos vom Stator mit Erre gerleistung zur Bestromung einer Erregerwicklung versorgt zu werden. Unter Induktion wird eine elektromagnetische Induktion verstanden. In the present case, the rotor is designed to be supplied inductively or contactlessly from the stator with excitation power to energize an excitation winding. Induction is understood to mean electromagnetic induction.
Bevorzugt wird die Information durch digitale fehlererkennende Signalübertragung ge sendet, wobei die fehlererkennende Signalübertragung beispielsweise auf einer zykli schen Redundanzprüfung (CRC) basiert. Die zyklische Redundanzprüfung ist ein Ver fahren zur Bestimmung eines Prüfwerts für Daten, um Fehler bei der Übertragung oder Speicherung erkennen zu können. Bevorzugt kann das Verfahren die empfangenen Da ten bzw. Information korrigieren, um eine erneute Übertragung der Daten bzw. Informa tion zu vermeiden. The information is preferably sent by digital error-detecting signal transmission, the error-detecting signal transmission being based, for example, on a cyclical redundancy check (CRC). The cyclical redundancy check is a method for determining a check value for data in order to be able to detect errors during transmission or storage. The method can preferably correct the received data or information in order to avoid retransmission of the data or information.
Der Rotor kann zur induktiven Kopplung eine Sekundärwicklung aufweisen. Bevorzugt ist die Sekundärwicklung Teil einer Spule, die wiederum mehrere Wicklungen aufweist. Die Sekundärwicklung ist geeignet, um Veränderungen in einem von außen an sie an gelegten elektromagnetischen Wechselfeld erfassbar zu machen. The rotor can have a secondary winding for inductive coupling. The secondary winding is preferably part of a coil, which in turn has a plurality of windings. The secondary winding is suitable for making changes in an electromagnetic alternating field applied to it from the outside detectable.
Der Rotor kann ferner einen Gleichrichter aufweisen, der ausgestaltet ist, um eine in der Sekundärwicklung durch ein elektromagnetisches Wechselfeld erzeugte Wechselspan nung in eine Gleichspannung zu wandeln und zu der Erregerwicklung auszugeben. Ge nauer gesagt wird durch das elektromagnetische Wechselfeld, das den Rotor induktiv mit Energie zur Bestromung der Erregerwicklung versorgt, in der Sekundärwicklung eine Wechselspannung erzeugt. Diese Wechselspannung wird zu einer Eingangsseite des Gleichrichters ausgegeben und von diesem in Gleichspannung gewandelt. Die Gleichspannung wird dann vom Gleichrichter zur Erregerwicklung ausgegeben. Damit wird in der Erregerwicklung ein relativ zum Rotor statisches elektromagnetisches Feld erzeugt, so dass der Rotor durch ein weiteres elektromagnetisches Wechselfeld des Stators, welches auch als Antriebswechselfeld bezeichnet werden kann, relativ zum Stator rotatorisch angetrieben werden kann. Ein vergleichsweise geringer Teil bezogen auf die gesamte vom Stator auf den Rotor übertragene Energie kann zur Versorgung einer am Rotor angeordneten Sensor- und Kommunikationseinheit abgezweigt werden. Der Gleichrichter kann eine Spannungsregelung aufweisen. The rotor can furthermore have a rectifier which is designed to convert an alternating voltage generated in the secondary winding by an electromagnetic alternating field into a direct voltage and to output it to the field winding. More precisely, an alternating voltage is generated in the secondary winding by the electromagnetic alternating field, which inductively supplies the rotor with energy for energizing the excitation winding. This AC voltage becomes an input side output of the rectifier and converted into DC voltage by this. The DC voltage is then output from the rectifier to the field winding. A static electromagnetic field relative to the rotor is thus generated in the excitation winding, so that the rotor can be driven in rotation relative to the stator by a further alternating electromagnetic field of the stator, which can also be referred to as the alternating drive field. A comparatively small part of the total energy transferred from the stator to the rotor can be branched off to supply a sensor and communication unit arranged on the rotor. The rectifier can have voltage regulation.
Der Rotor kann ferner eine mit der Sekundärwicklung verbundene Sendeeinheit aufwei sen, die ausgestaltet ist, um die Information auf das auf die Sekundärwicklung wirkende elektromagnetische Wechselfeld aufzumodulieren. Der Rotor kann also ferner ausge staltet sein, um mittels Modulation eines auf die Sekundärwicklung einwirkenden, Frem derregungsenergie übertragenden, elektromagnetischen Wechselfelds eine Information senden. Bei der Modulation verändert bzw. moduliert ein zu übertragendes Nutzsignal bzw. eine zu übertragende Information das elektromagnetische Wechselfeld. The rotor can also have a transmission unit connected to the secondary winding, which is designed to modulate the information onto the electromagnetic alternating field acting on the secondary winding. The rotor can therefore also be designed to send information by means of modulation of an electromagnetic alternating field which acts on the secondary winding and transmits foreign excitation energy. During the modulation, a useful signal to be transmitted or information to be transmitted changes or modulates the electromagnetic alternating field.
Der Rotor kann ferner ausgestaltet sein, um mittels der induktiven Kopplung eine Infor mation vom Stator zu empfangen. Dieses Empfangen erfolgt dabei bevorzugt durch eine inverse Durchführung des Sendevorgangs, d.h. der Rotor ist dann zur Durchfüh rung bidirektionaler Kommunikation mit dem Stator geeignet. The rotor can also be configured to receive information from the stator by means of the inductive coupling. This reception is preferably carried out by performing the sending process inversely, i.e. the rotor is then suitable for bidirectional communication with the stator.
Der Rotor kann ferner eine mit der Sekundärwicklung verbundene Empfangseinheit auf weisen. Die Empfangseinheit kann ausgestaltet sein, um basierend auf dem auf die Se kundärwicklung wirkenden elektromagnetischen Wechselfeld die Information vom Stator zu empfangen. Die oben beschriebene Sendeeinheit und die Empfangseinheit können in einer Einheit, einem sog. Transceiver, zusammengefasst sein. The rotor can also have a receiving unit connected to the secondary winding. The receiving unit can be designed to receive the information from the stator based on the electromagnetic alternating field acting on the secondary winding. The transmitting unit described above and the receiving unit can be combined in one unit, a so-called transceiver.
Der Rotor kann ferner einen Sensor aufweisen und ausgestaltet sein, um eine vom Sensor erfasste Information als die zu sendende Information an den Stator zu senden. Der Sensor weist bevorzugt einen Temperatursensor auf. Der Sensor kann einen Dreh zahlsensor aufweisen. Der Sensor kann einen Magnetfeldsensor aufweisen. Bevorzugt ist der Sensor mit dem Transceiver des Rotors verbunden und gibt die von ihm erfass ten Größen als Signale zum Transceiver ein. Der Transceiver kann die vom Sensor er haltene Information auf das elektromagnetische Wechselfeld aufmodulieren, um sie zum Stator auszugeben. The rotor can furthermore have a sensor and be configured to send information detected by the sensor as the information to be transmitted to the stator. The sensor preferably has a temperature sensor. The sensor can have a speed sensor. The sensor can have a magnetic field sensor. Prefers the sensor is connected to the transceiver of the rotor and inputs the values it detects as signals to the transceiver. The transceiver can modulate the information received from the sensor onto the alternating electromagnetic field in order to output it to the stator.
Gelöst wird die oben beschriebene Aufgabe auch durch einen Stator für eine fremder regte elektrische Maschine, wobei der Stator zur induktiven Kopplung mit einem Rotor ausgestaltet ist, um den Rotor kontaktlos mit Erregerleistung zur Bestromung einer Er regerwicklung des Rotors zu versorgen. Der Stator ist ausgestaltet ist, um mittels der induktiven Kopplung eine Information vom Rotor zu empfangen. Die obigen Ausführun gen zum Senden und Empfangen von Informationen mittels des Rotors treffen gleicher maßen auch auf den Stator zu. Die oben mit Bezug zum Rotor beschriebenen Definitio nen sowie Ausgestaltungsmöglichkeiten bestimmter Bauteile treffen auch auf den Stator zu und können in diesem entsprechend verwirklicht sein. The above-described object is also achieved by a stator for an externally excited electrical machine, the stator being designed for inductive coupling with a rotor in order to supply the rotor with excitation power in a contactless manner to energize an excitation winding of the rotor. The stator is designed to receive information from the rotor by means of the inductive coupling. The above embodiments for sending and receiving information by means of the rotor apply equally to the stator. The definitions described above with reference to the rotor and design options for certain components also apply to the stator and can be implemented accordingly in this.
Der Stator kann zur induktiven Kopplung eine Primärwicklung aufweisen. Der Stator kann ferner einen Wechselrichter aufweisen, der ausgestaltet ist, um eine Gleichspan nung in eine Wechselspannung zu wandeln und zu der Primärwicklung auszugeben .The stator can have a primary winding for inductive coupling. The stator can furthermore have an inverter which is designed to convert a DC voltage into an AC voltage and to output it to the primary winding.
Die Primärwicklung kann ausgestaltet sein, um basierend auf der Wechselspannung ein elektromagnetisches Wechselfeld zu erzeugen. Der Wechselrichter ist somit ausgestal tet, um eine eingangsseitig an ihn angelegte Gleichspannung in eine Wechselspannung zu wandeln und zu der Primärwicklung auszugeben. Der Wechselrichter führt damit in vers die oben beschriebene Funktion des Gleichrichters aus. Das von dem Stator mit tels der Primärwicklung erzeugte elektromagnetische Wechselfeld ist veränderlich bzw. verändert sich mit der an sie angelegten Wechselspannung. So kann durch das in der Primärwicklung erzeugte elektromagnetische Wechselfeld die rotorseitige Wechsel spannung in der Sekundärwicklung des Rotors erzeugt werden. Diese Wechselspan nung kann dann, wie oben beschrieben, von der Sekundärwicklung zu einer Eingangs seite des Gleichrichters des Rotors ausgegeben und von diesem in Gleichspannung ge wandelt werden. Der Stator kann ferner eine mit der Primärwicklung verbundene Empfangseinheit auf weisen, die ausgestaltet ist, um die auf das von der Primärwicklung erzeugte elektro magnetisches Wechselfeld aufmodulierte Information vom Rotor zu empfangen. The primary winding can be designed to generate an electromagnetic alternating field based on the alternating voltage. The inverter is thus designed to convert a DC voltage applied to it on the input side into an AC voltage and output it to the primary winding. The inverter thus performs the rectifier function described above in reverse. The alternating electromagnetic field generated by the stator by means of the primary winding is variable or changes with the alternating voltage applied to it. The alternating electromagnetic field generated in the primary winding can generate the alternating voltage on the rotor side in the secondary winding of the rotor. This AC voltage can then, as described above, output from the secondary winding to an input side of the rectifier of the rotor and converted by this into DC voltage. The stator can also have a receiving unit connected to the primary winding, which is designed to receive the information modulated onto the alternating electromagnetic field generated by the primary winding from the rotor.
Der Stator kann ferner eine Steuereinheit aufweisen, die ausgestaltet ist, um basierend auf mittels der induktiven Kopplung vom Rotor empfangenen Information Steuersignale zur Steuerung der fremderregten elektrischen Maschine auszugeben. Die Steuereinheit weist dabei bevorzugt einen Regelkreis auf, der die vom Rotor empfangene Information als Rückführgröße bzw. Ist-Größe verwendet. So kann die elektrische Maschine durch die Steuereinheit in einem bevorzugten Drehzahl- und/oder Temperaturbereich betrie ben werden. Ferner kann die Steuereinheit ausgestaltet sein, um die Luftspalt- bzw. Ro tormagnetfeldstärke zu steuern. The stator can also have a control unit which is configured to output control signals for controlling the separately excited electrical machine based on information received from the rotor by means of the inductive coupling. The control unit preferably has a control loop that uses the information received from the rotor as a feedback variable or actual variable. The control unit can operate the electrical machine in a preferred speed and / or temperature range. Furthermore, the control unit can be designed to control the air gap or rotor magnetic field strength.
Der Stator kann ferner ausgestaltet sein, um mittels der induktiven Kopplung eine Infor mation zum Rotor zu senden. Bevorzugt weist der Stator eine mit der Primärwicklung verbundene Sendeeinheit auf. Die Sendeeinheit kann ausgestaltet sein, um die zu sen dende Information auf das in der Primärwicklung erzeugte elektromagnetische Wech selfeld aufzumodulieren. Auch hier können die Sendeeinheit und die Empfangseinheit in einer Einheit, dem sog. Transceiver, zusammengefasst sein. The stator can also be configured to send information to the rotor by means of the inductive coupling. The stator preferably has a transmission unit connected to the primary winding. The transmitting unit can be designed to modulate the information to be sent onto the electromagnetic alternating field generated in the primary winding. Here, too, the transmitting unit and the receiving unit can be combined in one unit, the so-called transceiver.
Gelöst wird die oben beschriebene Aufgabe auch durch eine fremderregte elektrische Maschine aufweisend einen oben beschriebenen Rotor und einen oben beschriebenen Stator. Der Rotor ist induktiv mit dem Stator gekoppelt, um kontaktlos mit Erregerleis tung zur Bestromung einer Erregerwicklung versorgt zu werden. Ferner ist der Rotor ausgestaltet, um mittels der induktiven Kopplung eine Information zum Stator zu sen den. Die elektrische Maschine ist bevorzugt so ausgestaltet, dass sich der Rotor ange trieben durch ein vom Stator erzeugtes weiteres elektromagnetisches Wechselfeld, wel ches auch als Antriebswechselfeld bezeichnet werden kann, relativ zum Stator dreht, um den Rotor anzutreiben. Kurze Beschreibung der Zeichnungen The object described above is also achieved by an externally excited electrical machine having a rotor described above and a stator described above. The rotor is inductively coupled to the stator in order to be supplied without contact with excitation power to energize an excitation winding. Furthermore, the rotor is designed to send information to the stator by means of the inductive coupling. The electrical machine is preferably designed so that the rotor is driven by a further alternating electromagnetic field generated by the stator, which can also be referred to as an alternating drive field, rotates relative to the stator in order to drive the rotor. Brief description of the drawings
Figur 1 ist eine schematische Darstellung einer elektrischen Maschine gemäß einer Ausführungsform. FIG. 1 is a schematic illustration of an electrical machine according to an embodiment.
Figur 2 ist eine schematische Darstellung einer elektrischen Maschine gemäß einer wei teren Ausführungsform. Figure 2 is a schematic representation of an electrical machine according to a white direct embodiment.
Figur 3 ist eine schematische Darstellung einer Schaltung. Figure 3 is a schematic diagram of a circuit.
Detaillierte Beschreibung von Ausführunqsformen Detailed description of embodiments
In Figur 1 ist eine fremderregte elektrische Maschine 1 gemäß einer ersten Ausfüh rungsform dargestellt. Die elektrische Maschine 1 umfasst einen Stator 2, 4 und einen Rotor 3. Bei der ersten Ausführungsform ist der Stator 2, 4 zweistückig ausgeführt. Zum einen ist ein erster Teil 4 des Stators 2, 4 in Längsrichtung X der elektrischen Ma schine 1 , das heißt axial neben und beabstandet von dem Rotor 3, angeordnet. Zum anderen ist ein zweiter Teil 2 des Stators 2, 4 so angeordnet, dass der zweite Teil 2 des Stators 2, 4 den Rotor 3 teilweise in Längsrichtung aufnimmt. Der erste Teil 4 des Sta tors 2, 4 dient zur Bestromung des Rotors 3. Der zweite Teil 2 des Stators 2, 4 erzeugt im Betrieb der Maschine 1 ein elektromagnetisches Wechselfeld so, dass sich der Rotor 3 relativ zum Stator 2, 4 dreht. In Figure 1, a separately excited electrical machine 1 is shown approximately according to a first Ausfüh. The electrical machine 1 comprises a stator 2, 4 and a rotor 3. In the first embodiment, the stator 2, 4 is designed in two pieces. On the one hand, a first part 4 of the stator 2, 4 is arranged in the longitudinal direction X of the electrical Ma machine 1, that is to say axially next to and at a distance from the rotor 3. On the other hand, a second part 2 of the stator 2, 4 is arranged so that the second part 2 of the stator 2, 4 partially receives the rotor 3 in the longitudinal direction. The first part 4 of the stator 2, 4 is used to energize the rotor 3. The second part 2 of the stator 2, 4 generates an alternating electromagnetic field when the machine 1 is in operation so that the rotor 3 rotates relative to the stator 2, 4.
In Figur 2 ist eine fremderregte elektrische Maschine 1 gemäß einer weiteren Ausfüh rungsform dargestellt. Die in Figur 2 gezeigte elektrische Maschine 1 unterscheidet sich lediglich darin von der in Figur 1 gezeigten elektrischen Maschine 1 , dass der erste Teil 4 des Stators 2, 4 nicht in der Längsrichtung X versetzt von dem Rotor 3 angeord net ist, sondern den Rotor 3 radial umschließt. In Figure 2, a separately excited electrical machine 1 is shown approximately according to a further Ausfüh. The electrical machine 1 shown in FIG. 2 differs from the electrical machine 1 shown in FIG. 1 only in that the first part 4 of the stator 2, 4 is not offset from the rotor 3 in the longitudinal direction X, but rather the rotor 3 encloses radially.
In beiden Fällen, das heißt bei der Ausführungsform aus Figur 1 und der Ausführungs form aus Figur 2, rotiert der Rotor 3 im Betrieb der elektrischen Maschine 1 relativ zum Stator 2, 4. Mit anderen Worten, der Rotor 3 dreht sich im Betrieb der elektrischen Ma schine 1 um eine zu der Längsrichtung X parallele Achse. Der Rotor 3 ist relativ zum ersten Teil 4 des Stators 2, 4 so angeordnet, dass der erste Teil 4 des Stators 2, 4 den Rotor 3 mittels eines elektromagnetischen Wechselfelds im Betrieb der elektrischen Maschine 1 induktiv mit Erregerleistung versorgt. Der Rotor 3 erzeugt durch eine Erregerwicklung mittels der Erregerleistung ein relativ zum Rotor 3 statisches elektromagnetisches Feld. Der zweite Teil 2 des Stators 2, 4 erzeugt ein wei teres elektromagnetisches Wechselfeld. Durch Interaktion des relativ zum Rotor 3 stati schen elektromagnetischen Felds und des vom zweiten Teil 2 des Stators 2, 4 erzeug ten elektromagnetischen Wechselfelds rotiert der Rotor 3 relativ zum Stator 2, 4. Durch ein Steuern des vom zweiten Teil 2 des Stators 2, 4 erzeugten elektromagnetischen Wechselfelds wird die Drehzahl des Rotors 3 eingestellt. Dies wird nun genauer mit Be zug zu Figur 3 beschrieben werden. In both cases, that is, in the embodiment from FIG. 1 and the embodiment from FIG. 2, the rotor 3 rotates relative to the stator 2, 4 when the electrical machine 1 is in operation. In other words, the rotor 3 rotates during the electrical operation Ma machine 1 about an axis parallel to the longitudinal direction X. The rotor 3 is arranged relative to the first part 4 of the stator 2, 4 such that the first part 4 of the stator 2, 4 supplies the rotor 3 inductively with excitation power by means of an electromagnetic alternating field during operation of the electrical machine 1. The rotor 3 generates a static electromagnetic field relative to the rotor 3 by means of the excitation power through an excitation winding. The second part 2 of the stator 2, 4 generates a further alternating electromagnetic field. By interaction of the electromagnetic field relative to the rotor 3 and the alternating electromagnetic field generated by the second part 2 of the stator 2, 4, the rotor 3 rotates relative to the stator 2, 4 generated electromagnetic alternating field, the speed of the rotor 3 is set. This will now be described in more detail with reference to FIG.
Figur 3 zeigt schematisch eine Schaltung, die sowohl auf die Ausführungsform in Fi gur 1 als auch auf die Ausführungsform in Figur 2 zutrifft. FIG. 3 schematically shows a circuit which applies both to the embodiment in FIG. 1 and to the embodiment in FIG.
Wie in Figur 3 dargestellt, umfasst der Rotor eine Sekundärwicklung 31 und die Erre gerwicklung 32. Zwischen der Sekundärwicklung 31 und der Erregerwicklung 32 ist ein Gleichrichter 33 vorgesehen. Der Gleichrichter 33 ist sowohl mit der Sekundärwick lung 31 als auch mit der Erregerwicklung 32 elektrisch leitend verbunden. Der Gleich richter 33 ist ausgestaltet, um eine von der Sekundärwicklung 31 eingehende Wechsel spannung in eine Gleichspannung umzuwandeln. Diese Gleichspannung wird zur Erre gerwicklung 32 ausgegeben. Die Wechselspannung wird, wie oben beschrieben, durch ein von dem ersten Teil 4 des Stators 2, 4 erzeugtes elektromagnetisches Wechselfeld mittels Induktion in der Sekundärwicklung 31 des Rotors 3 erzeugt. As shown in FIG. 3, the rotor comprises a secondary winding 31 and the excitation winding 32. A rectifier 33 is provided between the secondary winding 31 and the excitation winding 32. The rectifier 33 is connected to both the secondary winding 31 and the field winding 32 in an electrically conductive manner. The rectifier 33 is designed to convert an incoming AC voltage from the secondary winding 31 into a DC voltage. This DC voltage is output to the excitation winding 32. As described above, the alternating voltage is generated by an electromagnetic alternating field generated by the first part 4 of the stator 2, 4 by means of induction in the secondary winding 31 of the rotor 3.
Ferner umfasst der Rotor 3 einen Sekundärtransceiver 34, welcher elektrisch leitend mit der Sekundärwicklung 31 verbunden ist. Der Sekundärtransceiver 34 weist einen weite ren, nicht dargestellten Gleichrichter auf, um die Wechselspannung von der Sekun därwicklung 31 in eine Gleichspannung umzuwandeln. Der Sekundärtransceiver wird also auch durch das vom ersten Teil 4 des Stators 2, 4 erzeugte elektromagnetische Wechselfeld mit Energie versorgt. Der Sekundärtransceiver 34 ist ausgestaltet, um eine Information an den ersten Teil 4 des Stators 2 mittels Modulation des von dem ersten Teil 4 des Stators 2, 4 erzeugten elektromagnetischen Wechselfelds zu senden. Hierfür weist der Sekundärtransceiver 34 eine Sendeeinheit 341 auf. Der Sekundärtranscei ver 34 ist ferner ausgestaltet, um eine Information, die auf das von dem ersten Teil 4 des Stators 2, 4 erzeugte elektromagnetische Wechselfeld aufmoduliert ist, zu empfan gen. Hierfür weist der Sekundärtransceiver 34 eine Empfangseinheit 342 auf. Der Se kundärtransceiver 34 ist elektrisch leitend mit einer Ausgangsseite eines Sensors 35 des Rotors 3 verbunden. Der Sensor 35 ist ein Temperatur-, Magnetfeld- und Dreh zahlsensor, der ausgestaltet ist, um sowohl die Temperatur, die Magnetfeldstärke und die Drehzahl des Rotors 3 zu erfassen. Die vom Sensor 35 erfasste Temperatur, Mag netfeldstärke und Drehzahl wird vom Sensor 35 zum Sekundärtransceiver 34 eingege ben. Der Sekundärtransceiver 34 ist ausgestaltet, um die vom Sensor 35 empfangene Information auf das elektromagnetische Wechselfeld so aufzumodulieren, dass diese Information von dem ersten Teil 4 des Stators 2, 4 empfangen wird. Furthermore, the rotor 3 comprises a secondary transceiver 34, which is connected to the secondary winding 31 in an electrically conductive manner. The secondary transceiver 34 has a wide ren, not shown rectifier, to convert the AC voltage from the secondary winding 31 into a DC voltage. The secondary transceiver is therefore also supplied with energy by the electromagnetic alternating field generated by the first part 4 of the stator 2, 4. The secondary transceiver 34 is designed to transmit information to the first part 4 of the stator 2 by means of modulation of the from the first Part 4 of the stator 2, 4 to send generated electromagnetic alternating field. For this, the secondary transceiver 34 has a transmission unit 341. The secondary transceiver 34 is also designed to receive information that is modulated onto the electromagnetic alternating field generated by the first part 4 of the stator 2, 4. For this purpose, the secondary transceiver 34 has a receiving unit 342. The secondary transceiver 34 is electrically connected to an output side of a sensor 35 of the rotor 3. The sensor 35 is a temperature, magnetic field and rotational speed sensor which is designed to detect both the temperature, the magnetic field strength and the rotational speed of the rotor 3. The temperature, magnetic field strength and speed detected by sensor 35 are input from sensor 35 to secondary transceiver 34. The secondary transceiver 34 is designed to modulate the information received from the sensor 35 onto the electromagnetic alternating field in such a way that this information is received by the first part 4 of the stator 2, 4.
Der erste Teil 4 des Stators 2, 4 weist eine Primärwicklung 41 , einen Wechselrichter 42 und einen Primärtransceiver 43 auf, der mit einer Steuerung 44 verbunden ist. Der Pri märtransceiver 43 ist auch elektrisch leitend mit der Primärwicklung 41 verbunden. Fer ner ist der Wechselrichter 42 elektrisch leitend mit einer Energiequelle 45 verbunden. Die Energiequelle 45 ist eine Gleichspannungsquelle. Die von der Energiequelle 45 beim Wechselrichter 42 eingangsseitig angelegte Gleichspannung wird vom Wechsel richter 42 in eine Wechselspannung gewandelt. Die Wechselspannung wird vom Wech selrichter 42 zu der Primärwicklung 41 ausgegeben. Durch die an die Primärwick lung 41 angelegte Wechselspannung wird von der Primärwicklung 41 das elektromag netische Wechselfeld erzeugt. The first part 4 of the stator 2, 4 has a primary winding 41, an inverter 42 and a primary transceiver 43 which is connected to a controller 44. The primary transceiver 43 is also connected to the primary winding 41 in an electrically conductive manner. Furthermore, the inverter 42 is connected to an energy source 45 in an electrically conductive manner. The energy source 45 is a DC voltage source. The DC voltage applied on the input side of the power source 45 at the inverter 42 is converted by the inverter 42 into an AC voltage. The AC voltage is output from the inverter 42 to the primary winding 41. The alternating voltage applied to the primary winding 41 generates the electromagnetic alternating field from the primary winding 41.
Das elektromagnetische Wechselfeld wirkt auf die Sekundärwicklung 31 . So wird mittels Induktion eine Wechselspannung in der Sekundärwicklung 31 induziert. Ferner wird die vom Sekundärtransceiver 34 des Rotors 3 aufmodulierte Information, die zur Tempera tur, Magnetfeldstärke und Drehzahl des Rotors 3 korrespondiert, über die Primärwick lung 41 und den Primärtransceiver 43 empfangen. Der Primärtransceiver 43 ist dem nach ausgestaltet, um die Information, die von dem Rotor 3 auf das durch die Pri märwicklung 41 erzeugte elektromagnetische Wechselfeld aufmoduliert wird, zu emp fangen. Hierfür weist der Primärtransceiver 43 eine Empfangseinheit 431 auf. Der Primärtransceiver 43 ist ferner ausgestaltet, um eine Information mittels Modulation des von der Primärwicklung 41 erzeugten elektromagnetischen Wechselfelds an den Ro tor 3 zu senden. Hierfür weist der Primärtransceiver 43 eine Sendeeinheit 432 auf. Der Primärtransceiver 43 weist zudem einen weiteren Gleichrichter auf, um die an der Pri märwicklung 41 anliegende Wechselspannung in eine Gleichspannung umzuwandeln. So wird der Primärtransceiver 43 mit Energie versorgt. The alternating electromagnetic field acts on the secondary winding 31. An alternating voltage is thus induced in the secondary winding 31 by means of induction. Furthermore, the information modulated by the secondary transceiver 34 of the rotor 3, which corresponds to the temperature, magnetic field strength and speed of the rotor 3, is received via the primary winding 41 and the primary transceiver 43. The primary transceiver 43 is designed to receive the information that is modulated by the rotor 3 onto the alternating electromagnetic field generated by the primary winding 41. The primary transceiver 43 has a receiving unit 431 for this purpose. Of the Primary transceiver 43 is also designed to send information to the rotor 3 by modulating the electromagnetic alternating field generated by the primary winding 41. The primary transceiver 43 has a transmission unit 432 for this purpose. The primary transceiver 43 also has a further rectifier in order to convert the alternating voltage applied to the primary winding 41 into a direct voltage. The primary transceiver 43 is thus supplied with energy.
Ferner ist der Primärtransceiver 43 elektrisch leitend mit der Steuerung 44 verbunden. Die Steuerung 44 ist ausgestaltet, um basierend auf der vom Primärtransceiver 43 übermittelten Information die elektrische Maschine 1 zu steuern. Furthermore, the primary transceiver 43 is connected to the controller 44 in an electrically conductive manner. The controller 44 is designed to control the electrical machine 1 based on the information transmitted by the primary transceiver 43.
Nachfolgend wird ein modifiziertes Ausführungsbeispiel zu den obigen Ausführungsfor men beschrieben. Die Beschreibung der obigen Ausführungsformen gilt, abgesehen von dem unten beschriebenen Unterschied, auch für das modifizierte Ausführungsbei spiel. A modified embodiment of the above embodiments is described below. The description of the above embodiments applies, apart from the difference described below, also for the modified Ausführungsbei game.
Gemäß den oben beschriebenen Ausführungsformen weist der Primärtransceiver 43 ei nen Gleichrichter auf, um die an der Primärwicklung 41 anliegende Wechselspannung in eine Gleichspannung umzuwandeln. Beim vorliegenden modifizierten Ausführungs beispiel ist kein solcher Gleichrichter vorgesehen. Der Primärtransceiver 43 wird hinge gen von einer externen Gleichspannungsquelle 46, die mit einer gestrichelten Linie in Figur 3 dargestellt ist, mit Energie versorgt. According to the embodiments described above, the primary transceiver 43 has a rectifier in order to convert the alternating voltage applied to the primary winding 41 into a direct voltage. In the present modified embodiment, for example, no such rectifier is provided. The primary transceiver 43, on the other hand, is supplied with energy from an external DC voltage source 46, which is shown with a dashed line in FIG.
Bezuqszeichen fremderregte elektrische Maschine zweiter Teil des Stators Referring to separately excited electrical machine, second part of the stator
Rotor rotor
Sekundärwicklung Secondary winding
Erregerwicklung Excitation winding
Gleichrichter Rectifier
Sekundärtransceiver Secondary transceiver
Sendeeinheit des Sekundärtransceivers Empfangseinheit des Sekundärtransceivers Temperatursensor Sending unit of the secondary transceiver Receiving unit of the secondary transceiver Temperature sensor
erster Teil des Stators first part of the stator
Primärwicklung Primary winding
Wechselrichter Inverter
Primärtransceiver Primary transceiver
Empfangseinheit des Primärtransceivers Sendeeinheit des Primärtransceiver Steuerung Receiving unit of the primary transceiver Sending unit of the primary transceiver control
Energiequelle (Gleichspannungsquelle) externe Gleichspannungsquelle Energy source (DC voltage source) external DC voltage source

Claims

Patentansprüche Claims
1 . Rotor (3) für eine fremderregte elektrische Maschine (1 ), wobei der Rotor (3) zur in duktiven Kopplung mit einem Stator (2, 4) ausgestaltet ist, um kontaktlos mit Erreger leistung zur Bestromung einer Erregerwicklung (32) versorgt zu werden, dadurch ge kennzeichnet, dass der Rotor (3) ferner ausgestaltet ist, um mittels der induktiven Kopp lung eine Information zum Stator (2, 4) zu senden. 1 . Rotor (3) for an externally excited electrical machine (1), the rotor (3) being designed for inductive coupling with a stator (2, 4) in order to be supplied with excitation power in a contactless manner for energizing an excitation winding (32), characterized in that the rotor (3) is also designed to send information to the stator (2, 4) by means of the inductive coupling.
2. Rotor (3) nach Anspruch 1 , wobei der Rotor (3) zur induktiven Kopplung eine Sekun därwicklung (31 ) aufweist. 2. rotor (3) according to claim 1, wherein the rotor (3) has a secondary winding (31) for inductive coupling.
3. Rotor (3) nach Anspruch 2, wobei der Rotor (3) ferner einen Gleichrichter (33) auf weist, der ausgestaltet ist, um eine in der Sekundärwicklung (31 ) durch ein elektromag netisches Wechselfeld erzeugte Wechselspannung in eine Gleichspannung zu wandeln und zu der Erregerwicklung (32) auszugeben. 3. rotor (3) according to claim 2, wherein the rotor (3) further has a rectifier (33) which is designed to convert an alternating voltage generated in the secondary winding (31) by an electromagnetic alternating field into a direct voltage and to output to the excitation winding (32).
4. Rotor (3) nach Anspruch 3, wobei der Rotor (3) ferner eine mit der Sekundärwicklung (31 ) verbundene Sendeeinheit (341 ) aufweist, die ausgestaltet ist, um die Information auf das auf die Sekundärwicklung (31 ) wirkende elektromagnetische Wechselfeld auf zumodulieren. 4. The rotor (3) according to claim 3, wherein the rotor (3) further comprises a transmission unit (341) connected to the secondary winding (31) and configured to transmit the information to the alternating electromagnetic field acting on the secondary winding (31) modulate.
5. Rotor (3) nach einem der vorherigen Ansprüche, wobei der Rotor (3) ferner ausge staltet ist, um mittels der induktiven Kopplung eine Information vom Stator (2, 4) zu empfangen. 5. rotor (3) according to any one of the preceding claims, wherein the rotor (3) is also out staltet to receive information from the stator (2, 4) by means of the inductive coupling.
6. Rotor (3) nach Anspruch 5, wobei der Rotor (3) ferner eine mit der Sekundärwicklung (31 ) verbundene Empfangseinheit (342) aufweist, die ausgestaltet ist, um basierend auf dem auf die Sekundärwicklung (31 ) wirkenden elektromagnetischen Wechselfeld die In formation vom Stator (2, 4) zu empfangen. 6. The rotor (3) according to claim 5, wherein the rotor (3) further comprises a receiving unit (342) connected to the secondary winding (31) and configured to, based on the electromagnetic alternating field acting on the secondary winding (31), the In formation from the stator (2, 4).
7. Rotor (3) nach einem der vorherigen Ansprüche, wobei der Rotor (3) ferner einen Sensor (35) aufweist und ausgestaltet ist, um eine vom Sensor (35) erfasste Information an den Stator (2, 4) zu senden. 7. rotor (3) according to any one of the preceding claims, wherein the rotor (3) further comprises a sensor (35) and is designed to send information detected by the sensor (35) to the stator (2, 4).
8. Rotor (3) nach Anspruch 7, wobei der Sensor (35) einen Temperatursensor aufweist. 8. rotor (3) according to claim 7, wherein the sensor (35) comprises a temperature sensor.
9. Rotor (3) nach Anspruch 7 oder 8, wobei der Sensor (35) einen Drehzahlsensor auf weist. 9. rotor (3) according to claim 7 or 8, wherein the sensor (35) has a speed sensor.
10. Rotor (3) nach einem der Ansprüche 7 bis 9, wobei der Sensor (35) einen Magnet feldsensor aufweist. 10. rotor (3) according to one of claims 7 to 9, wherein the sensor (35) has a magnetic field sensor.
1 1. Stator (2, 4) für eine fremderregte elektrische Maschine (1 ), wobei der Stator (2, 4) zur induktiven Kopplung mit einem Rotor (3) ausgestaltet ist, um den Rotor (3) kontakt los mit Erregerleistung zur Bestromung einer Erregerwicklung (32) des Rotors (3) zu versorgen, dadurch gekennzeichnet, dass der Stator (2, 4) ferner ausgestaltet ist, um mittels der induktiven Kopplung eine Information vom Rotor (3) zu empfangen. 1 1st stator (2, 4) for an externally excited electrical machine (1), the stator (2, 4) being designed for inductive coupling with a rotor (3) to energize the rotor (3) without contact with excitation power to supply an excitation winding (32) of the rotor (3), characterized in that the stator (2, 4) is also designed to receive information from the rotor (3) by means of the inductive coupling.
12. Stator (2, 4) nach Anspruch 1 1 , wobei der Stator (2, 4) zur induktiven Kopplung eine Primärwicklung (41 ) aufweist. 12. Stator (2, 4) according to claim 1 1, wherein the stator (2, 4) for inductive coupling has a primary winding (41).
13. Stator (2, 4) nach Anspruch 12, wobei der Stator (2, 4) ferner einen Wechselrichter (42) aufweist, der ausgestaltet ist, um eine Gleichspannung in eine Wechselspannung zu wandeln und zu der Primärwicklung (41 ) auszugeben, um in der Primärwicklung (41 ) basierend auf der Wechselspannung ein elektromagnetisches Wechselfeld zu erzeu gen. 13. The stator (2, 4) according to claim 12, wherein the stator (2, 4) further comprises an inverter (42) which is designed to convert a direct voltage into an alternating voltage and to output it to the primary winding (41) To generate an electromagnetic alternating field in the primary winding (41) based on the alternating voltage.
14. Stator (2, 4) nach Anspruch 13, wobei der Stator (2, 4) ferner eine mit der Pri märwicklung (41 ) verbundene Empfangseinheit (431 ) aufweist, die ausgestaltet ist, um eine auf das von der Primärwicklung (41 ) erzeugte elektromagnetische Wechselfeld aufmodulierte Information vom Rotor (3) zu empfangen. 14. The stator (2, 4) according to claim 13, wherein the stator (2, 4) further comprises a receiving unit (431) connected to the primary winding (41) and configured to receive a signal from the primary winding (41) generated electromagnetic alternating field to receive modulated information from the rotor (3).
15. Stator (2, 4) nach Anspruch 1 1 bis 14, wobei der Stator (2, 4) ferner eine Steuerein heit (44) aufweist, die ausgestaltet ist, um basierend auf mittels der induktiven Kopplung vom Rotor (3) empfangenen Information Steuersignale zur Steuerung der fremderreg ten elektrischen Maschine (1 ) auszugeben. 15. The stator (2, 4) according to claim 1 1 to 14, wherein the stator (2, 4) further comprises a control unit (44) which is configured to based on information received from the rotor (3) by means of the inductive coupling Output control signals for controlling the separately excited electrical machine (1).
16. Stator (2, 4) nach einem der Ansprüche 11 bis 15, wobei der Stator (2, 4) ferner ausgestaltet ist, um mittels der induktiven Kopplung eine Information zum Rotor (3) zu senden. 16. Stator (2, 4) according to one of claims 11 to 15, wherein the stator (2, 4) is further designed to send information to the rotor (3) by means of the inductive coupling.
17. Stator (2, 4) nach Anspruch 16, wobei der Stator (2, 4) ferner eine mit der Pri märwicklung (41 ) verbundene Sendeeinheit (432) aufweist, die ausgestaltet ist, um die zu sendende Information auf das in der Primärwicklung (41 ) erzeugte elektromagneti sches Wechselfeld aufzumodulieren. 17. The stator (2, 4) according to claim 16, wherein the stator (2, 4) further comprises a transmission unit (432) connected to the primary winding (41) and configured to transmit the information to be transmitted to that in the primary winding (41) to modulate the alternating electromagnetic field generated.
18. Fremderregte elektrische Maschine (1 ) aufweisend einen Rotor (3) gemäß einem der Ansprüche 1 bis 10 und einen Stator (2, 4) gemäß einem der Ansprüche 11 bis 17, wobei der Rotor (3) induktiv mit dem Stator (2, 4) gekoppelt ist, um kontaktlos mit Erre gerleistung zur Bestromung seiner Erregerwicklung (32) versorgt zu werden, dadurch gekennzeichnet, dass der Rotor (3) ferner ausgestaltet ist, um mittels der induktiven Kopplung eine Information zum Stator (2, 4) zu senden. 18. Separately excited electrical machine (1) comprising a rotor (3) according to one of claims 1 to 10 and a stator (2, 4) according to one of claims 11 to 17, wherein the rotor (3) inductively with the stator (2, 4) is coupled to be supplied contactless with energizing power to energize its field winding (32), characterized in that the rotor (3) is also designed to send information to the stator (2, 4) by means of the inductive coupling .
PCT/EP2020/055709 2019-04-26 2020-03-04 Data transmission from and to the rotor of an externally-excited electrical machine WO2020216510A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019205992.9 2019-04-26
DE102019205992.9A DE102019205992A1 (en) 2019-04-26 2019-04-26 Data transmission from and to the rotor of an externally excited electrical machine

Publications (1)

Publication Number Publication Date
WO2020216510A1 true WO2020216510A1 (en) 2020-10-29

Family

ID=69770893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/055709 WO2020216510A1 (en) 2019-04-26 2020-03-04 Data transmission from and to the rotor of an externally-excited electrical machine

Country Status (2)

Country Link
DE (1) DE102019205992A1 (en)
WO (1) WO2020216510A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021110107A1 (en) 2021-04-21 2022-10-27 Generator.Technik.Systeme Gmbh & Co. Kg Electrical machine with device for the transmission of digital data between its rotor and its stator and method therefor
DE102022201139A1 (en) 2022-02-03 2023-08-03 Mahle International Gmbh Assembly for an electric machine
DE102022116680A1 (en) 2022-07-05 2024-01-11 Audi Aktiengesellschaft Externally excited synchronous machine and motor vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058005A2 (en) * 2000-01-11 2001-08-09 American Superconductor Corporation Exciter assembly telemetry
DE102009014960A1 (en) * 2009-03-30 2010-10-07 Sew-Eurodrive Gmbh & Co. Kg electric machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7454170B2 (en) * 2003-08-08 2008-11-18 Koninklijke Philips Electronics N.V. Unidirectional power and bi-directional data transfer over a single inductive coupling
DE102008032210B4 (en) * 2008-07-09 2020-10-29 Sew-Eurodrive Gmbh & Co Kg Separately excited electrical synchronous machine and method for operating a synchronous machine
DE102009015106A1 (en) * 2009-03-31 2010-10-14 Sew-Eurodrive Gmbh & Co. Kg Method and device for regulating a synchronous machine excited by means of a field winding
DE102017006952A1 (en) * 2017-07-21 2019-01-24 Universität Stuttgart Method for detecting the temperature of the rotor with inductive energy supply of a separately excited synchronous machine and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058005A2 (en) * 2000-01-11 2001-08-09 American Superconductor Corporation Exciter assembly telemetry
DE102009014960A1 (en) * 2009-03-30 2010-10-07 Sew-Eurodrive Gmbh & Co. Kg electric machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIEMENS AG: "Konfigurierbares Verfahren fuer einen Cyclic Redundant Check (CRC) bei der Datenuebertragung", PRIOR ART PUBLISHING GMBH, PRIOR ART PUBLISHING GMBH, MANFRED-VON-RICHTHOFEN-STR. 9, 12101 BERLIN GERMANY, vol. www.priorartregister.com, 28 June 2018 (2018-06-28), pages 1 - 5, XP007020132 *

Also Published As

Publication number Publication date
DE102019205992A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2020216510A1 (en) Data transmission from and to the rotor of an externally-excited electrical machine
DE102007006394B4 (en) Inductive rotary transformer
CN102023276B (en) System for detecting generator winding faults
EP3106043B1 (en) Device for conveying, examining and/or processing a rod-shaped article in the tobacco industry
WO2013023823A2 (en) Rotary transmitter for machine tools
WO2009153133A9 (en) Method and device for monitoring a rotational angle sensor
EP2399510A2 (en) Inductive transmitter for computer tomographs with ripple compensation
WO2005081005A1 (en) Detection method for an electrical polyphase machine
EP2415143A1 (en) Electrical machine
DE102011050645A1 (en) A method and system for detecting errors in a brushless excitation device for a generator
DE19801803A1 (en) Electric rotational machine arrangement e.g. for wind-power generator
WO2011018527A2 (en) Asynchronous generator system and wind turbine having an asynchronous generator system
EP2365601A2 (en) Method for compensating for system tolerances in inductive couplers
DE2607595C2 (en) Safety device for an electrical power generation plant
EP2415162B1 (en) Method and device for controlling a synchronous motor which is separately excited by an excitation winding
CN107925249A (en) The method and system that the network voltage of distributed energy resource is adjusted
WO2009127508A2 (en) Electric drive machine
EP2919380A1 (en) Converter system and method for converting alternating current
DE102016204049B4 (en) A position detecting device and method for transmitting a message signal between relatively movable device components by means of the position detecting device
WO2014180960A2 (en) Drive system
DE102009007623A1 (en) Parameterization of wind turbines
EP3001271B1 (en) Method and device for monitoring a movement of a drive
WO2004055959A1 (en) Double-fed asynchronous machine without a slip ring
DE102005050486B4 (en) energy conversion unit
CN106067745A (en) For running method and the driving means of motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20709541

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20709541

Country of ref document: EP

Kind code of ref document: A1