WO2020216348A1 - Bispecific antibodies against pd-1 and lag-3 - Google Patents

Bispecific antibodies against pd-1 and lag-3 Download PDF

Info

Publication number
WO2020216348A1
WO2020216348A1 PCT/CN2020/086830 CN2020086830W WO2020216348A1 WO 2020216348 A1 WO2020216348 A1 WO 2020216348A1 CN 2020086830 W CN2020086830 W CN 2020086830W WO 2020216348 A1 WO2020216348 A1 WO 2020216348A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
lag
antigen binding
sequence
cancer
Prior art date
Application number
PCT/CN2020/086830
Other languages
French (fr)
Inventor
Qiong Wu
Yong Zheng
Yunying CHEN
Jing Li
Original Assignee
Wuxi Biologics (Shanghai) Co., Ltd.
WuXi Biologics Ireland Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Biologics (Shanghai) Co., Ltd., WuXi Biologics Ireland Limited filed Critical Wuxi Biologics (Shanghai) Co., Ltd.
Priority to JP2021563664A priority Critical patent/JP2022530496A/en
Priority to CN202080031036.XA priority patent/CN113727731B/en
Priority to KR1020217037851A priority patent/KR20220003567A/en
Priority to US17/606,744 priority patent/US20220213192A1/en
Priority to EP20795665.7A priority patent/EP3958900A4/en
Priority to SG11202111441QA priority patent/SG11202111441QA/en
Publication of WO2020216348A1 publication Critical patent/WO2020216348A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/22Immunoglobulins specific features characterized by taxonomic origin from camelids, e.g. camel, llama or dromedary
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Definitions

  • the present invention relates to bispecific antibodies comprising a first targeting moiety which specifically binds to PD-1 and a second targeting moiety which specifically binds to LAG-3, wherein the first targeting moiety comprises a first VHH domain and the second targeting moiety comprises a second VHH domain.
  • the invention provides a polynucleotide encoding the antibodies, a vector comprising said polynucleotide, a host cell, a process for the production of the antibodies and immunotherapy in the treatment of cancer, infections or other human diseases using the bispecific antibodies.
  • PD-1 one of the immune-checkpoint proteins, is an inhibitory member of CD28 family expressed on activated CD4+ T cells and CD8+ T cells as well as on B cell. PD-1 plays a major role in down-regulating the immune system.
  • PD-1 is a type I transmembrane protein and the structure consists of an immunoglobulin variable-like extracellular domain and a cytoplasmic domain containing an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM) .
  • ITIM immunoreceptor tyrosine-based inhibitory motif
  • ITMS immunoreceptor tyrosine-based switch motif
  • PD-1 has two known ligands, PD-L1 and PD-L2, which are cell surface expressed members of the B7 family. Upon ligation with its physiological ligand, PD-1 suppresses T-cell activation by recruiting SHP-2, which dephosphorylates and inactivates Zap70, a major integrator of T-cell receptor (TCR) -mediated signaling. As a result, PD-1 inhibits T cell proliferation and T cell functions such as cytokine production and cytotoxic activity.
  • TCR T-cell receptor
  • Monoclonal antibodies targeting PD-1 can block PD-1/PD-L1 binding and boost the immune response against cancer cells. These drugs have shown a great deal of promise in treating certain cancers. Multiple approved therapeutic antibodies targeting PD-1 have been developed by several pharmaceutical companies, including Pembrolizumab (Keytruda) , Nivolumab (Opdivo) , Cemiplimab (Libtayo) . These drugs have been shown to be effective in treating various types of cancer, including melanoma of the skin, non-small cell lung cancer, kidney cancer, bladder cancer, head and neck cancers, and Hodgkin lymphoma. They are also being studied for use against many other types of cancer.
  • Lymphocyte-activation gene 3 also known as LAG-3, is a type I transmembrane protein that is a member of the immune-globulin superfamily (IgSF) .
  • LAG-3 is a cell surface molecule expressed on activated T cells, NK cells, B cells and plasmacytoid dendritic cells, but not on resting T cells.
  • LAG-3 shares approximately 20%amino acid sequence homology with CD4, but binds to MHC class II with higher affinity, providing negative regulation of T cell receptor signaling.
  • Blockade of LAG-3 in vitro augments T cell proliferation and cytokine production, and LAG-3-deficient mice have a defect in the downregulation of T cell responses induced by the superantigen staphylococcal enterotoxin B, by peptides or by Sendai virus infection.
  • LAG-3 is expressed on both activated natural Treg (nTreg) and induced CD4+FoxP3+ Treg (iTreg) cells, where expression levels are higher than that observed on activated effector CD4+ T cells.
  • Blockade of LAG-3 on Treg cells abrogates Treg cell suppressor function whereas ectopic expression of LAG-3 in non-Treg CD4+ T cells confers suppressive activity.
  • LAG-3-specific monoclonal antibodies On the basis of the immunomodulatory role of LAG-3 on T cell function in chronic infection and cancer, the predicted mechanism of action for LAG-3-specific monoclonal antibodies is to inhibit the negative regulation of tumor-specific effector T cells. Furthermore, dual blockade of the PD-1 pathway and LAG-3 has been shown in mice and human to be more effective for anti-tumor immunity than blocking either molecule alone.
  • LAG-3 and PD-1 Co-expression of LAG-3 and PD-1 was found on antigen-specific CD8+ T cells, and co-blockade of both lead to improved proliferation and cytokine production.
  • Anti-LAG-3 in combination with anti-PD-1 therapy has entered clinical trials for various types of solid tumors.
  • the present invention provides isolated antibodies, in particular bispecific antibodies.
  • the present invention provides a bispecific antibody or an antigen binding fragment thereof, comprising a first targeting moiety which specifically binds to human PD-1 and a second targeting moiety which binds to human LAG-3, wherein the first targeting moiety comprises a first VHH domain and the second targeting moiety comprises a second VHH domain.
  • the aforesaid antibody or the antigen binding-fragment binds to murine PD-1
  • the second targeting moiety binds to murine LAG-3.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein the first VHH domain comprises H-CDR1, H-CDR2 and H-CDR3; wherein the H-CDR3 comprises a sequence as depicted in SEQ ID NO: 1, and conservative modifications thereof; the H-CDR2 comprises a sequence as depicted in SEQ ID NO: 2, and conservative modifications thereof; the H-CDR1 comprises a sequence as depicted in SEQ ID NO: 3, and conservative modifications thereof.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein the second VHH domain comprises H-CDR1, H-CDR2, H-CDR3; wherein the H-CDR3 comprises a sequence as depicted in SEQ ID NO: 4, and conservative modifications thereof; the H-CDR2 comprises a sequence as depicted in SEQ ID NO: 5, and conservative modifications thereof; the H-CDR1 comprises a sequence as depicted in SEQ ID NO: 6, and conservative modifications thereof.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein the first VHH domain comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 7.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein the second VHH domain comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 8.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein the first VHH domain comprises a sequence of SEQ ID NO: 7, and the second VHH domain comprises a sequence of SEQ ID NO: 8.
  • the first VHH domain and the second VHH domain are linked by a peptide sequence, wherein the peptide sequence comprises
  • the linker comprises a sequence of SEQ ID NO: 9.
  • the present invention provides an antibody or an antigen binding fragment thereof, comprising a sequence of SEQ ID NO: 10.
  • the sequence of said antibody is shown in Table 1 and Sequence Listing.
  • SP is VHH (anti-PD-1) -hinge-CH2-CH3-linker-VHH (anti-LAG-3) , wherein the hinge-CH2-CH3 is a Fc fragment of IgG4.
  • the antibody of the invention can be a chimeric antibody.
  • the antibody of the invention can be a humanized antibody, or a fully human antibody.
  • the antibody of the invention can be a rodent antibody.
  • the invention provides a nucleic acid molecule encoding the antibody, or antigen binding fragment thereof.
  • the invention provides a cloning or expression vector comprising the nucleic acid molecule encoding the antibody, or antigen binding fragment thereof.
  • the invention also provides a host cell comprising one or more cloning or expression vectors.
  • the invention provides a process, comprising culturing the host cell of the invention and isolating the antibody.
  • the invention provides pharmaceutical composition
  • pharmaceutical composition comprising the antibody, or the antigen binding fragment of said antibody in the invention, and one or more of a pharmaceutically acceptable excipient, a diluent or a carrier.
  • the invention provides an immunoconjugate comprising said antibody, or antigen-binding fragment thereof in this invention, linked to a therapeutic agent.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising said immunoconjugate and one or more of a pharmaceutically acceptable excipient, a diluent or a carrier.
  • the invention also provides a method of modulating an immune response in a subject comprising administering to the subject the antibody, or antigen binding fragment of any one of said antibodies in this invention.
  • the invention also provides the use of said antibody or the antigen binding fragment thereof in the manufacture of a medicament for the treatment or prophylaxis of an immune disorder or cancer.
  • the invention also provides a method of inhibiting growth of tumor cells in a subject, comprising administering to the subject a therapeutically effective amount of said antibody, or said antigen-binding fragment to inhibit growth of the tumor cells.
  • the invention provides the method, wherein the tumor cells are of a cancer selected from a group consisting of melanoma, renal cancer, prostate cancer, breast cancer, colon cancer, lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, and rectal cancer.
  • a cancer selected from a group consisting of melanoma, renal cancer, prostate cancer, breast cancer, colon cancer, lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, and rectal cancer.
  • a bispecific antibody against both PD-1 and LAG-3 pathways may provide several benefits in cancer therapy. Compared with anti-PD-1 therapy, the bispecific antibody may increase the response rate on PD-1 and LAG-3 double positive cancers.
  • Figure 1 shows PD-1 ⁇ LAG-3 bispecific antibodies bind to human PD-1 protein.
  • Figure 2 shows PD-1 ⁇ LAG-3 bispecific antibodies to human LAG-3 protein.
  • Figure 3 shows PD-1 ⁇ LAG-3 bispecific antibodies to mouse PD-1 protein.
  • Figure 4 shows PD-1 ⁇ LAG-3 bispecific antibodies to mouse LAG-3 protein.
  • Figure 5 shows PD-1 ⁇ LAG-3 bispecific antibodies to cell surface cynomolgus PD-1.
  • Figure 6 shows PD-1 ⁇ LAG-3 bispecific antibodies to cynomolgus LAG-3 protein.
  • Figure 7 shows the binding of PD-1 ⁇ LAG-3 bispecific antibodies to human CTLA-4, CD28 and CD4 protein.
  • Figure 7A shows PD-1 ⁇ LAG-3 bispecific antibodies do not bind to human CTLA-4 protein;
  • Figure 7B shows PD-1 ⁇ LAG-3 bispecific antibodies do not bind to human CD28 protein;
  • Figure 7C shows PD-1 ⁇ LAG-3 bispecific antibodies do not bind to human CD4 protein
  • Figure 8 shows PD-1 ⁇ LAG-3 bispecific antibodies bind to human PD-1 and LAG-3 protein simultaneously.
  • Figure 9 shows PD-1 ⁇ LAG-3 bispecific antibodies block the binding of PD-1 to PD-L1 expressing cells.
  • Figure 10 shows PD-1 ⁇ LAG-3 bispecific antibodies block the binding of LAG-3 to MHC-II on Raji cells.
  • Figure 11 shows PD-1 ⁇ LAG-3 bispecific antibodies enhance NFAT pathways in PD-1 expressing Jurkat.
  • Figure 12 shows PD-1 ⁇ LAG-3 bispecific antibodies enhance IL-2 pathways in LAG-3 expressing Jurkat.
  • Figure 13 shows PD-1 ⁇ LAG-3 bispecific antibodies enhance NFAT pathways in LAG-3 and PD-1 expressing Jurkat.
  • Figure 14 shows the effects of PD-1 ⁇ LAG-3 bispecific antibodies on human allogeneic mixed lymphocyte reaction (MLR) .
  • Figure 14A shows PD-1 ⁇ LAG-3 bispecific antibodies enhance IL-2 production in MLR assay.
  • Figure 14B shows PD-1 ⁇ LAG-3 bispecific antibodies enhance IFN- ⁇ production in MLR assay.
  • Figure 15 shows PD-1 ⁇ LAG-3 bispecific antibodies enhance IL-2 production of PBMC stimulated with SEB.
  • Figure 16 shows W3659-U14T4. G1-1. uIgG4. SP was stable in fresh human serum for up to 14 days.
  • Figure 17 shows the effect of PD-1 ⁇ LAG-3 bispecific antibodies on tumor in mice.
  • Figure 17A shows PD-1 ⁇ LAG-3 bispecific antibodies inhibit the growth of colon26 tumor in mice.
  • Figure 17B shows Survive curves of treated mice.
  • Figure 17C shows weight changes of treated mice.
  • Programmed Death 1 “Programmed Cell Death 1” , “Protein PD-1” , “PD-1” , “PD1” , “PDCD1” , “hPD-1” , “CD279” and “hPD-F” are used interchangeably, and include variants, isoforms, species homologs of human PD-1, PD-1 of other species, and analogs having at least one common epitope with PD-1.
  • antibody as referred to herein includes whole antibodies and any antigen-binding fragment (i.e., "antigen-binding portion′′ ) or single chains thereof.
  • An “antibody” refers to a protein comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds, or an antigen-binding portion thereof.
  • Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region.
  • the heavy chain constant region is comprised of three domains, CH1, CH2 and CH3.
  • Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region.
  • the light chain constant region is comprised of one domain, CL.
  • VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR) , interspersed with regions that are more conserved, termed framework regions (FR) .
  • CDR complementarity determining regions
  • FR framework regions
  • Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
  • the variable regions of the heavy and light chains contain a binding domain that interacts with an antigen.
  • H-CDRs The CDRs in heavy chain are abbreviated as H-CDRs, for example H-CDR1, H-CDR2, H-CDR3, and the CDRs in light chain are abbreviated as L-CDRs, for example L-CDR1, L-CDR2, L-CDR3.
  • antibody refers to an immunoglobulin or a fragment or a derivative thereof, and encompasses any polypeptide comprising an antigen-binding site, regardless whether it is produced in vitro or in vivo.
  • the term includes, but is not limited to, polyclonal, monoclonal, monospecific, polyspecific, non-specific, humanized, single-chain, chimeric, synthetic, recombinant, hybrid, mutated, and grafted antibodies.
  • antibody also includes antibody fragments such as scFv, dAb, bispecific antibodies comprising a first VHH domain and a second VHH domain, and other antibody fragments that retain antigen-binding function, i.e., the ability to bind PD-1 and LAG-3 specifically. Typically, such fragments would comprise an antigen-binding fragment.
  • An antigen-binding fragment typically comprises an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH) , however, it does not necessarily have to comprise both.
  • VL antibody light chain variable region
  • VH antibody heavy chain variable region
  • Fd antibody fragment consists only of a VH domain and CH1 domain, but still retains some antigen-binding function of the intact antibody.
  • cross-reactivity refers to binding of an antigen fragment described herein to the same target molecule in human, monkey, and/or murine (mouse or rat) .
  • cross-reactivity is to be understood as an interspecies reactivity to the same molecule X expressed in different species, but not to a molecule other than X.
  • Cross-species specificity of a monoclonal antibody recognizing e.g. human PD-1, to monkey, and/or to a murine (mouse or rat) PD-1 can be determined, for instance, by FACS analysis.
  • the term “subject” includes any human or nonhuman animal.
  • nonhuman animal includes all vertebrates, e.g., mammals and non-mammals, such as nonhuman primates, sheep, dogs, cats, horses, cows, chickens, amphibians, reptiles, etc. Except when noted, the terms “patient” or “subject” are used interchangeably.
  • treatment and “therapeutic method” refer to both therapeutic treatment and prophylactic/preventative measures. Those in need of treatment may include individuals already having a particular medical disorder as well as those who may ultimately acquire the disorder.
  • conservative modifications i.e., nucleotide and amino acid sequence modifications which do not significantly affect or alter the binding characteristics of the antibody encoded by the nucleotide sequence or containing the amino acid sequence.
  • conservative sequence modifications include nucleotide and amino acid substitutions, additions and deletions. Modifications can be introduced into the sequence by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis.
  • Conservative amino acid substitutions include ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
  • LAG-3 lymphocyte-activation gene 3
  • CD223 CD223
  • LAG-3 lymphocyte-activation gene 3
  • CD223 CD223
  • single domain antibody refers to an antibody that contains two VH domains and no light chains.
  • Heavy chain antibodies were originally derived from Camelidae (camels, dromedaries, and llamas) . Although devoid of light chains, HCAbs have an authentic antigen-binding repertoire.
  • the variable domain of a heavy chain antibody represents the smallest known antigen-binding unit generated by adaptive immune responses.
  • VHH refers to variable domain of the heavy chain of HCAb.
  • homolog and “homologous” as used herein are interchangeable and refer to nucleic acid sequences (or its complementary strand) or amino acid sequences that have sequence identity of at least 70% (e.g., at least 70%, 75%, 80%, 85%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) to another sequences when optimally aligned.
  • Nucleic acid encoding human PD-1, mouse PD-1, human LAG-3, mouse LAG-3 and cynomolgus LAG-3 ECD (extracellular domain) were synthesized by Sangon Biotech.
  • PD-1 or LAG-3 gene fragments were amplified from the synthesized nucleic acid and inserted into the expression vector pcDNA3.3 (ThermoFisher) .
  • the inserted PD-1 or LAG-3 gene fragment was further confirmed by DNA sequencing.
  • Fusion proteins containing human LAG-3 ECD with various tags, including human Fc, mouse Fc, were obtained by transfection of human PD-1 or LAG-3 gene into 293F cells (ThermoFisher) .
  • the cells were cultured in FreeStyle 293 Expression Medium at 37 °C, 5%CO 2 . After 5 days of culture, supernatants harvested from the culture of transiently transfected cells were used for protein purification.
  • the fusion proteins were purified by protein A and/or SEC column. An untagged LAG-3 ECD protein was generated by cleavage of ECD-hFc fusion protein with a cut site using Factor Xa protease. Purified proteins were used for screening and characterization.
  • Mouse Fc-tagged human PD-L1 ECD, human CTLA-4 ECD and CD28 ECD were generated as above.
  • Sequences of anti-human PD-1 ⁇ LAG-3 benchmark antibodies W365-BMK1, W365-BMK2 and W365-BMK3 were synthesized in based on the information disclosed in patent applications WO2015200119A8 (W365-BMK1 was referred to as “SEQ25 &SEQ27” ) , WO2017087589A2 (W365-BMK2 was referred to as “SEQ110” ) and WO2015200119A8 (W365-BMK3 was referred to as “SEQ 5 and 4” ) , respectively.
  • the synthesized gene sequences were incorporated into plasmids pcDNA3.3.
  • the cells transfected with the plasmids were cultured for 5 days and supernatant was collected for protein purification using Protein A column.
  • the obtained benchmark antibodies were analyzed by SDS-PAGE and SEC, and then stored at -80°C.
  • W3056-AP17R1-2H2-Z1-R1-14A1-Fc-V2 (3056, anti-PD-1) and W3396-P2R2 (L) -1E1-z4-R2-2-Fc (3396, anti-LAG-3) were discovered in TAD department of Wuxi Biologics.
  • Cynomolgus PD-1 transfectant cell line was generated. Briefly, 293F cells were transfected with pcDNA3.3 expression vector containing full-length of human, cynomolgus PD-1 using Lipofectamine transfection kit according to manufacturer’s protocol, respectively. At 48-72 hours post transfection, the transfected cells were cultured in medium containing blasticidin for selection and tested for target expression.
  • Jurkat cell lines were transfected with plasmids containing human full length PD-1/NFAT reporter or LAG-3/IL-2 reporter using Nucleofactor (Lonza) . At 72 hours post transfection, the transfected cells were cultured in medium containing hygromycin for selection and tested for target expression. Jurkat cells expressing human PD-1 or LAG-3 along with stably integrated NFAT or IL-2 luciferase reporter gene were obtained after two months.
  • the method for producing the first VHH binding PD-1 was described in PCT application No. PCT/CN2019/078515, and the method for producing the second VHH binding LAG-3 was described in PCT application No. PCT/CN2019/078315.
  • DNA sequences encoding the anti-PD-1 VHH and anti-LAG-3 VHH were synthesized by GENEWIZ (Suzhou, China) . Then anti-PD-1 VHH and anti-LAG-3 VHH were subcloned at N-terminal and C-terminal of hinge region and IgG4 Fc region in the pYF expression vector respectively.
  • the plasmid of bispecific antibody was transfected into Expi293 cells. Cells were cultured for 5 days and supernatant was collected for protein purification using Protein A column (GE Healthcare) . The obtained antibody was analyzed by SDS-PAGE and HPLC-SEC, and then stored at -80 °C.
  • the purity of antibodies was determined by SEC-HPLC using Agilent 1260 Infinity HPLC.
  • Antibody solution was injected on a TSKgel SuperSW3000 column using 50 mM sodium phosphate, 0.15 M NaCl, pH 7.0 buffer. The running time was 20 min. Peak retention times on the column were monitored at 280 nm. Data was analyzed using ChemStation software (V2.99.2.0) .
  • Plates were coated with of PD-1 ⁇ LAG-3 antibodies overnight at 4 °C. After blocking and washing, various concentrations of mouse Fc-tagged PD-1 protein or LAG-3 protein were added to the plates and incubated at room temperature for 1 hour. The plates were then washed and subsequently incubated with HRP-labeled goat anti-mouse IgG antibody for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
  • W305-BMK1 0.09
  • W365-BMK1 0.15
  • W365-BMK2 0.18
  • W365-BMK3 0.09
  • Antibody EC 50 (nM) W3659-U14T4. G1-1. uIgG4. SP 0.32 W305-BMK1 0.23 W365-BMK1 0.35 W365-BMK2 0.28 W365-BMK3 0.25
  • Plates were coated with of PD-1 ⁇ LAG-3 antibodies overnight at 4 °C. After blocking and washing, various concentrations of His-tagged mouse PD-1 or LAG-3 protein were added to the plates and incubated at room temperature for 1 hour. The plates were then washed and subsequently incubated with HRP-labeled goat anti-His IgG antibody for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
  • cynomolgus PD-1 293F cells expressing cynomolgus PD-1 were incubated with various concentrations of PD-1 ⁇ LAG-3 antibodies, respectively.
  • PE-labeled goat anti-human IgG antibody was used to detect the binding of PD-1 ⁇ LAG-3 antibodies onto the cells.
  • MFI of the cells was measured by flow cytometry and analyzed by FlowJo (version 7.6.1) .
  • cynomolgus LAG-3 plates were coated with of PD-1 ⁇ LAG-3 antibodies overnight at 4 °C. After blocking and washing, various concentrations of His-tagged cynomolgus LAG-3 were added to the plates and incubated at room temperature for 1 hour. The plates were then washed and subsequently incubated with HRP-labeled goat anti-His IgG antibody for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
  • SP for binding to LAG-3 protein is comparable to the BMKs.
  • SP for binding to LAG-3 protein is comparable to the W365-BMK3 and better than W339-BMK1.
  • Cross-reactivity to human CD4, CTLA-4 or CD28 was measured by ELISA. Plates were coated with human CD4, CTLA-4 or CD28 at 1 ⁇ g/mL overnight at 4 °C. After blocking and washing, various concentrations of PD-1 ⁇ LAG-3 antibodies were added to the plates and incubated at room temperature for 1 h. The plates were then washed and subsequently incubated with corresponding secondary antibody for 60 min. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl.
  • Results in Figure 7A, 7B and 7C indicate that PD-1 ⁇ LAG-3 bispecific antibodies did not bind to human CTLA-4, CD28 or CD4 protein.
  • Binding affinity of the bispecific antibodies to the antigen was determined by SPR assay using Biacore 8K.
  • PD-1 x LAG-3 antibodies were captured on an anti-human IgG Fc antibody immobilized CM5 sensor chip (GE) .
  • His tagged human PD-1 protein (MW: 40KD) and cynomolgus PD-1 (MW: 40KD) at different concentrations were injected over the sensor chip at a flow rate of 30 ⁇ L/min for an association phase of 120 s, followed by 800 s dissociation.
  • His tagged mouse LAG-3 protein (MW: 45KD) at different concentrations were injected over the sensor chip at a flow rate of 30 ⁇ L/min for an association phase of 120 s, followed by 3600 s dissociation.
  • His tagged mouse PD-1 protein (MW: 45KD) at different concentrations were injected over the sensor chip at a flow rate of 30 ⁇ L/min for an association phase of 60 s, followed by 90 s dissociation.
  • the chip was regenerated by 10 mM glycine (pH 1.5) after each binding cycle.
  • PD-1xLAG-3 antibodies were immobilized on a CM5 sensor chip.
  • Human LAG-3 without tag at different concentrations were injected over the sensor chip at a flow rate of 30 ⁇ L/min for an association phase of 180 s, followed by 3600 s dissociation using single-cycle kinetics method.
  • the chip was regenerated with 10 mM glycine (pH 1.5) .
  • the sensorgrams of blank surface and buffer channel were subtracted from the test sensorgrams.
  • the experimental data was fitted by 1: 1 model using Langmiur analysis.
  • Plates were coated with mouse Fc-tagged human PD-1 at 1 ⁇ g/mL overnight at 4 °C. After blocking and washing, various concentrations of PD-1 ⁇ LAG-3 antibodies were added to the plates and incubated at room temperature for 1 hour after washing. The plates were then washed and subsequently incubated with His-tagged LAG-3 protein for 1 hour. After washing, HRP anti-His antibody was added to the plate and incubated at room temperature for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
  • SP for binding to LAG-3 protein is comparable to the W365-BMK3 and better than W365-BMK1 and BMK2.
  • Antibodies were serially diluted in 1%BSA-PBS and mixed with mFc-tagged PD-L1 protein at 4°C. The mixture was transferred into the 96-well plates seeded with PD-1 expressing CHO-Scells. Goat anti-mouse IgG Fc-PE antibody was used to detect the binding of PD-L1 protein to PD-1 expressing cells. The MFI was evaluated by flow cytometry and analyzed by the software FlowJo.
  • SP for blocking the binding of PD-1 to PD-L1 expressed cells is comparable to the BMKs.
  • Antibody EC 50 (nM) W3659-U14T4. G1-1. uIgG4. SP 0.58 W305-BMK1 0.59 W365-BMK1 0.72 W365-BMK2 1.36
  • Antibodies were serially diluted in 1%BSA-PBS and incubated with mouse Fc-tagged LAG-3 protein at 4°C. The mixture was transferred into the 96-well plates seeded with Raji cells which express MHC-II on the surface. Goat anti-mouse IgG Fc-PE antibody was used to detect the binding of LAG-3 protein to Raji cells. The MFI was evaluated by flow cytometry and analyzed by the software FlowJo.
  • SP for blocking the binding of LAG-3 to MHC-II expressed Raji cells is comparable to W339-BMK1, W365-BMK3 and better than W365-BMK1 and W365-BMK2.
  • Antibody EC 50 (nM) W3659-U14T4. G1-1. uIgG4. SP 1.39 W339-BMK1 1.68 W365-BMK1 30.0 W365-BMK2 4.90 W365-BMK3 1.88
  • Jurkat cells expressing human PD-1 along with stably integrated NFAT luciferase reporter gene and human PD-L1 expressing artificial APC (antigen presenting cell) cells were seeded in 96-well plates. Testing antibodies were added to the cells. The plates were incubated for 6 hours at 37°C, 5%CO 2 . After incubation, reconstituted luciferase substrate One-Glo was added and the luciferase intensity was measured by a microplate spectrophotometer.
  • Antibody EC 50 (nM) W3659-U14T4. G1-1. uIgG4. SP 0.12 W305-BMK1 0.18 W365-BMK1 1.94 W365-BMK2 0.31 W365-BMK3 0.23
  • Jurkat cells expressing human LAG-3 along with stably integrated IL-2 luciferase reporter gene and Raji cells were seeded in 96-well plates in the presence of SEE (Staphylococcal enterotoxin E) . Testing antibodies were added to the cells. The plates were incubated for overnight at 37°C, 5%CO 2 . After incubation, reconstituted luciferase substrate One-Glo was added and the luciferase intensity was measured by a microplate spectrophotometer.
  • SEE Staphylococcal enterotoxin E
  • Antibody EC 50 (nM) W3659-U14T4. G1-1. uIgG4. SP 0.84 W339-BMK1 0.65 W365-BMK1 14.9 W365-BMK2 29.9 W365-BMK3 0.14
  • Full human LAG-3 plasmid was transiently transfected into Jurkat cells expressing human PD-1 along with stably integrated NFAT luciferase reporter gene. After 48 hours, the cells were seeded in 96-well plates along with PD-L1-expressing Raji cells in the presence of SEE (Staphylococcal enterotoxin E) . Testing antibodies were added to the cells. The plates were incubated for overnight at 37°C, 5%CO 2 . After incubation, reconstituted luciferase substrate One-Glo was added and the luciferase intensity was measured by a microplate spectrophotometer.
  • SEE Staphylococcal enterotoxin E
  • antibodies enhanced NFAT pathway of PD-1 and LAG-3 expressing Jurkat in reporter gene assay.
  • the fold is higher than combination of W305-BMK1 and W339-BMK1 as well as other benchmark antibodies.
  • PBMCs Human peripheral blood mononuclear cells
  • Monocytes were isolated using human monocyte enrichment kit according to the manufacturer’s instructions.
  • Cells were cultured in medium containing GM-CSF and IL-4 for 5 to 7 days to generate dendritic cells (DC) .
  • Human CD4 + T cells were isolated using human CD4 + T cell enrichment kit according to the manufacturer’s protocol.
  • Purified CD4 + T cells were co-cultured with allogeneic immature DCs (iDCs) in the presence of various concentrations of PD-1 ⁇ LAG-3 antibodies in 96-well plates. The plates were incubated at 37°C, 5%CO 2 .
  • PBMCs and various concentrations of PD-1 ⁇ LAG-3 antibodies were co-cultured in 96-well plates in the presence of SEB. The plates were incubated at 37°C, 5%CO 2 for 3 days and supernatants were harvested for IL-2 test. Human IL-2 release was measured by ELISA as described in section 12.
  • Tm of antibodies was investigated using QuantStudioTM 7 Flex Real-Time PCR system (Applied Biosystems) .
  • 19 ⁇ L of antibody solution was mixed with 1 ⁇ L of 62.5 ⁇ SYPRO Orange solution (Invitrogen) and transferred to a 96 well plate.
  • the plate was heated from 26°C to 95°C at a rate of 0.9 °C/min, and the resulting fluorescence data was collected.
  • the negative derivatives of the fluorescence changes with respect to different temperatures were calculated, and the maximal value was defined as melting temperature Tm. If a protein has multiple unfolding transitions, the first two Tm were reported, named as Tm1 and Tm2. Data collection and Tm calculation were conducted automatically by the operation software.
  • the lead antibody was incubated in freshly isolated human serum (serum content > 95%) at 37°C. At indicated time points, aliquot of serum treated samples were removed from the incubator and snap frozen in liquid N2, and then stored at 80°C until ready for test. The samples were quickly thawed immediately prior to the stability test.
  • Plates were coated with mouse Fc-tagged human PD-1 at 1 ⁇ g/mL overnight at 4 °C. After blocking and washing, various concentrations of PD-1 ⁇ LAG-3 antibodies were added to the plates and incubated at room temperature for 1 hour after washing. The plates were then washed and subsequently incubated with His-tagged LAG-3 protein for 1 hour. After washing, HRP labeled mouse anti-His antibody was added to the plate and incubated at room temperature for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
  • mice Balb/c mouse (Shanghai Lingchang Biotech) and Colon26 tumor model were used to evaluate the ability of PD-1 ⁇ LAG-3 antibody to inhibit the growth of tumor cells in vivo.
  • mice were intraperitoneally treated with PD-1 mAb (3056) alone (10 mg/kg) , LAG-3 mAb (3396) alone (10 mg/kg) , PD-1 ⁇ LAG-3 antibody W3659-U14T4. G1-1. uIgG4. SP (13.9 mg/kg) or combination of 3056 mAb (10 mg/kg) and 3396 mAb (10 mg/kg) . Human IgG4 isotype control antibody (10 mg/kg) was given as negative control.
  • Tumor volume and animal weight were measured for over 3 weeks post-injection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

Bispecific antibodies comprising a first targeting moiety which specifically binds to PD-1 and a second targeting moiety which specifically binds to LAG-3, wherein the first targeting moiety comprises a first VHH domain and the second targeting moiety comprises a second VHH domain. Amino acid sequences of the antibodies of the invention, cloning or expression vectors, host cells and methods for expressing or isolating the antibodies. Therapeutic compositions comprising the antibodies of the invention are also provided and methods for treating cancers and other diseases with the bispecific antibodies.

Description

Bispecific antibodies against PD-1 and LAG-3 Technical Field
The present invention relates to bispecific antibodies comprising a first targeting moiety which specifically binds to PD-1 and a second targeting moiety which specifically binds to LAG-3, wherein the first targeting moiety comprises a first VHH domain and the second targeting moiety comprises a second VHH domain. Moreover, the invention provides a polynucleotide encoding the antibodies, a vector comprising said polynucleotide, a host cell, a process for the production of the antibodies and immunotherapy in the treatment of cancer, infections or other human diseases using the bispecific antibodies.
Background of the Invention
Over the last few years, immunotherapy has evolved into a very promising new frontier for fighting some types of cancers. PD-1, one of the immune-checkpoint proteins, is an inhibitory member of CD28 family expressed on activated CD4+ T cells and CD8+ T cells as well as on B cell. PD-1 plays a major role in down-regulating the immune system.
PD-1 is a type I transmembrane protein and the structure consists of an immunoglobulin variable-like extracellular domain and a cytoplasmic domain containing an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM) .
PD-1 has two known ligands, PD-L1 and PD-L2, which are cell surface expressed members of the B7 family. Upon ligation with its physiological ligand, PD-1 suppresses T-cell activation by recruiting SHP-2, which dephosphorylates and inactivates Zap70, a major integrator of T-cell receptor (TCR) -mediated signaling. As a result, PD-1 inhibits T cell proliferation and T cell functions such as cytokine production and cytotoxic activity.
Monoclonal antibodies targeting PD-1 can block PD-1/PD-L1 binding and  boost the immune response against cancer cells. These drugs have shown a great deal of promise in treating certain cancers. Multiple approved therapeutic antibodies targeting PD-1 have been developed by several pharmaceutical companies, including Pembrolizumab (Keytruda) , Nivolumab (Opdivo) , Cemiplimab (Libtayo) . These drugs have been shown to be effective in treating various types of cancer, including melanoma of the skin, non-small cell lung cancer, kidney cancer, bladder cancer, head and neck cancers, and Hodgkin lymphoma. They are also being studied for use against many other types of cancer.
Lymphocyte-activation gene 3, also known as LAG-3, is a type I transmembrane protein that is a member of the immune-globulin superfamily (IgSF) . LAG-3 is a cell surface molecule expressed on activated T cells, NK cells, B cells and plasmacytoid dendritic cells, but not on resting T cells. LAG-3 shares approximately 20%amino acid sequence homology with CD4, but binds to MHC class II with higher affinity, providing negative regulation of T cell receptor signaling.
Blockade of LAG-3 in vitro augments T cell proliferation and cytokine production, and LAG-3-deficient mice have a defect in the downregulation of T cell responses induced by the superantigen staphylococcal enterotoxin B, by peptides or by Sendai virus infection. LAG-3 is expressed on both activated natural Treg (nTreg) and induced CD4+FoxP3+ Treg (iTreg) cells, where expression levels are higher than that observed on activated effector CD4+ T cells. Blockade of LAG-3 on Treg cells abrogates Treg cell suppressor function whereas ectopic expression of LAG-3 in non-Treg CD4+ T cells confers suppressive activity. On the basis of the immunomodulatory role of LAG-3 on T cell function in chronic infection and cancer, the predicted mechanism of action for LAG-3-specific monoclonal antibodies is to inhibit the negative regulation of tumor-specific effector T cells. Furthermore, dual blockade of the PD-1 pathway and LAG-3 has been shown in mice and human to be more effective for anti-tumor immunity than blocking either molecule alone.
Co-expression of LAG-3 and PD-1 was found on antigen-specific CD8+ T cells, and co-blockade of both lead to improved proliferation and cytokine production. Anti-LAG-3 in combination with anti-PD-1 therapy has entered clinical trials for various types of solid tumors.
Summary of the Invention
The present invention provides isolated antibodies, in particular bispecific antibodies.
In one aspect, the present invention provides a bispecific antibody or an antigen binding fragment thereof, comprising a first targeting moiety which specifically binds to human PD-1 and a second targeting moiety which binds to human LAG-3, wherein the first targeting moiety comprises a first VHH domain and the second targeting moiety comprises a second VHH domain.
In one embodiment, the aforesaid antibody or the antigen binding-fragment, the first targeting moiety binds to murine PD-1, the second targeting moiety binds to murine LAG-3.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein the first VHH domain comprises H-CDR1, H-CDR2 and H-CDR3; wherein the H-CDR3 comprises a sequence as depicted in SEQ ID NO: 1, and conservative modifications thereof; the H-CDR2 comprises a sequence as depicted in SEQ ID NO: 2, and conservative modifications thereof; the H-CDR1 comprises a sequence as depicted in SEQ ID NO: 3, and conservative modifications thereof.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein the second VHH domain comprises H-CDR1, H-CDR2, H-CDR3; wherein the H-CDR3 comprises a sequence as depicted in SEQ ID NO: 4, and conservative modifications thereof; the H-CDR2 comprises a sequence as depicted in SEQ ID NO: 5, and conservative modifications thereof; the H-CDR1 comprises a sequence as depicted in SEQ ID NO: 6, and conservative  modifications thereof.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein the first VHH domain comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 7.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein the second VHH domain comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 8.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein the first VHH domain comprises a sequence of SEQ ID NO: 7, and the second VHH domain comprises a sequence of SEQ ID NO: 8.
In one embodiment, the first VHH domain and the second VHH domain are linked by a peptide sequence, wherein the peptide sequence comprises
(a) a IgG Fc fragment comprising hinge region, CH2 and CH3, and/or
(b) a linker.
In one embodiment, the linker comprises a sequence of SEQ ID NO: 9.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, comprising a sequence of SEQ ID NO: 10.
The aforesaid antibody or an antigen binding fragment thereof, wherein the antibody or the antigen binding-fragment
a) binds to human PD-1 with a K D of 2.92E-09 or less; and
b) binds to human LAG-3 with a KD of 3.01E-10 or less.
The sequence of said antibody is shown in Table 1 and Sequence Listing. The format of W3659-U14T4. G1-1. uIgG4. SP is VHH (anti-PD-1) -hinge-CH2-CH3-linker-VHH (anti-LAG-3) , wherein the hinge-CH2-CH3 is a Fc fragment of IgG4.
Table 1 Deduced amino acid sequences of the antibodies
Figure PCTCN2020086830-appb-000001
The CDR sequences of said antibodies are shown in Table 2 and Sequence Listing.
Table 2 The CDR sequences of the antibodies
Figure PCTCN2020086830-appb-000002
The antibody of the invention can be a chimeric antibody.
The antibody of the invention can be a humanized antibody, or a fully human  antibody.
The antibody of the invention can be a rodent antibody.
In a further aspect, the invention provides a nucleic acid molecule encoding the antibody, or antigen binding fragment thereof.
The invention provides a cloning or expression vector comprising the nucleic acid molecule encoding the antibody, or antigen binding fragment thereof.
The invention also provides a host cell comprising one or more cloning or expression vectors.
In yet another aspect, the invention provides a process, comprising culturing the host cell of the invention and isolating the antibody.
In a further aspect, the invention provides pharmaceutical composition comprising the antibody, or the antigen binding fragment of said antibody in the invention, and one or more of a pharmaceutically acceptable excipient, a diluent or a carrier.
The invention provides an immunoconjugate comprising said antibody, or antigen-binding fragment thereof in this invention, linked to a therapeutic agent.
Wherein, the invention provides a pharmaceutical composition comprising said immunoconjugate and one or more of a pharmaceutically acceptable excipient, a diluent or a carrier.
The invention also provides a method of modulating an immune response in a subject comprising administering to the subject the antibody, or antigen binding fragment of any one of said antibodies in this invention.
The invention also provides the use of said antibody or the antigen binding fragment thereof in the manufacture of a medicament for the treatment or prophylaxis of an immune disorder or cancer.
The invention also provides a method of inhibiting growth of tumor cells in a  subject, comprising administering to the subject a therapeutically effective amount of said antibody, or said antigen-binding fragment to inhibit growth of the tumor cells.
Wherein, the invention provides the method, wherein the tumor cells are of a cancer selected from a group consisting of melanoma, renal cancer, prostate cancer, breast cancer, colon cancer, lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, and rectal cancer.
The features and advantages of this invention
A bispecific antibody against both PD-1 and LAG-3 pathways may provide several benefits in cancer therapy. Compared with anti-PD-1 therapy, the bispecific antibody may increase the response rate on PD-1 and LAG-3 double positive cancers.
Brief Description of the Drawings
Figure 1 shows PD-1×LAG-3 bispecific antibodies bind to human PD-1 protein.
Figure 2 shows PD-1×LAG-3 bispecific antibodies to human LAG-3 protein.
Figure 3 shows PD-1×LAG-3 bispecific antibodies to mouse PD-1 protein.
Figure 4 shows PD-1×LAG-3 bispecific antibodies to mouse LAG-3 protein.
Figure 5 shows PD-1×LAG-3 bispecific antibodies to cell surface cynomolgus PD-1.
Figure 6 shows PD-1×LAG-3 bispecific antibodies to cynomolgus LAG-3 protein.
Figure 7 shows the binding of PD-1×LAG-3 bispecific antibodies to human CTLA-4, CD28 and CD4 protein. Figure 7A shows PD-1×LAG-3 bispecific antibodies do not bind to human CTLA-4 protein; Figure 7B shows PD-1×LAG-3 bispecific antibodies do not bind to human CD28 protein; Figure 7C shows PD-1×LAG-3 bispecific antibodies do not bind to human CD4 protein
Figure 8 shows PD-1×LAG-3 bispecific antibodies bind to human PD-1 and LAG-3 protein simultaneously.
Figure 9 shows PD-1×LAG-3 bispecific antibodies block the binding of PD-1 to PD-L1 expressing cells.
Figure 10 shows PD-1×LAG-3 bispecific antibodies block the binding of LAG-3 to MHC-II on Raji cells.
Figure 11 shows PD-1×LAG-3 bispecific antibodies enhance NFAT pathways in PD-1 expressing Jurkat.
Figure 12 shows PD-1×LAG-3 bispecific antibodies enhance IL-2 pathways in LAG-3 expressing Jurkat.
Figure 13 shows PD-1×LAG-3 bispecific antibodies enhance NFAT pathways in LAG-3 and PD-1 expressing Jurkat.
Figure 14 shows the effects of PD-1×LAG-3 bispecific antibodies on human allogeneic mixed lymphocyte reaction (MLR) . Figure 14A shows PD-1×LAG-3 bispecific antibodies enhance IL-2 production in MLR assay. Figure 14B shows PD-1×LAG-3 bispecific antibodies enhance IFN-γ production in MLR assay.
Figure 15 shows PD-1×LAG-3 bispecific antibodies enhance IL-2 production of PBMC stimulated with SEB.
Figure 16 shows W3659-U14T4. G1-1. uIgG4. SP was stable in fresh human serum for up to 14 days.
Figure 17 shows the effect of PD-1×LAG-3 bispecific antibodies on tumor in mice. Figure 17A shows PD-1×LAG-3 bispecific antibodies inhibit the growth of colon26 tumor in mice. Figure 17B shows Survive curves of treated mice. Figure 17C shows weight changes of treated mice.
Detailed description
In order that the present invention may be more readily understood, certain terms are first defined. Additional definitions are set forth throughout the detailed description.
The terms “Programmed Death 1” , “Programmed Cell Death 1” , “Protein PD-1” , “PD-1” , “PD1” , “PDCD1” , “hPD-1” , “CD279” and “hPD-F” are used interchangeably, and include variants, isoforms, species homologs of human PD-1, PD-1 of other species, and analogs having at least one common epitope with PD-1.
The term “antibody” as referred to herein includes whole antibodies and any antigen-binding fragment (i.e., "antigen-binding portion″ ) or single chains thereof. An "antibody" refers to a protein comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds, or an antigen-binding portion thereof. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR) , interspersed with regions that are more conserved, termed framework regions (FR) . Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The CDRs in heavy chain are abbreviated as H-CDRs, for example H-CDR1, H-CDR2, H-CDR3, and the CDRs in light chain are abbreviated as L-CDRs, for example L-CDR1, L-CDR2, L-CDR3.
The term "antibody" as used in this disclosure, refers to an immunoglobulin or a fragment or a derivative thereof, and encompasses any polypeptide comprising an antigen-binding site, regardless whether it is produced in vitro or in vivo. The term includes, but is not limited to, polyclonal, monoclonal, monospecific, polyspecific, non-specific, humanized, single-chain, chimeric, synthetic, recombinant, hybrid, mutated, and grafted antibodies. The term "antibody" also includes antibody fragments such as scFv, dAb, bispecific antibodies comprising a first VHH domain  and a second VHH domain, and other antibody fragments that retain antigen-binding function, i.e., the ability to bind PD-1 and LAG-3 specifically. Typically, such fragments would comprise an antigen-binding fragment.
An antigen-binding fragment typically comprises an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH) , however, it does not necessarily have to comprise both. For example, a so-called Fd antibody fragment consists only of a VH domain and CH1 domain, but still retains some antigen-binding function of the intact antibody.
The term "cross-reactivity" refers to binding of an antigen fragment described herein to the same target molecule in human, monkey, and/or murine (mouse or rat) . Thus, "cross-reactivity" is to be understood as an interspecies reactivity to the same molecule X expressed in different species, but not to a molecule other than X. Cross-species specificity of a monoclonal antibody recognizing e.g. human PD-1, to monkey, and/or to a murine (mouse or rat) PD-1, can be determined, for instance, by FACS analysis.
As used herein, the term "subject" includes any human or nonhuman animal. The term "nonhuman animal" includes all vertebrates, e.g., mammals and non-mammals, such as nonhuman primates, sheep, dogs, cats, horses, cows, chickens, amphibians, reptiles, etc. Except when noted, the terms "patient" or "subject" are used interchangeably.
The terms "treatment" and "therapeutic method" refer to both therapeutic treatment and prophylactic/preventative measures. Those in need of treatment may include individuals already having a particular medical disorder as well as those who may ultimately acquire the disorder.
The terms "conservative modifications" i.e., nucleotide and amino acid sequence modifications which do not significantly affect or alter the binding characteristics of the antibody encoded by the nucleotide sequence or containing the amino acid sequence. Such conservative sequence modifications include nucleotide  and amino acid substitutions, additions and deletions. Modifications can be introduced into the sequence by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions include ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine) , acidic side chains (e.g., aspartic acid, glutamic acid) , uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan) , nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine) , beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine) .
The terms "LAG-3" , "lymphocyte-activation gene 3" , "CD223" are used interchangeably, and include variants, isoforms, species homologs of human LAG-3, LAG-3 of other species, and analogs having at least one common epitope with LAG-3.
The terms "single domain antibody" , "heavy chain antibody" , "HCAb" are used interchangeably, refers to an antibody that contains two VH domains and no light chains. Heavy chain antibodies were originally derived from Camelidae (camels, dromedaries, and llamas) . Although devoid of light chains, HCAbs have an authentic antigen-binding repertoire. The variable domain of a heavy chain antibody (VHH domain) represents the smallest known antigen-binding unit generated by adaptive immune responses. The terms "VHH" refers to variable domain of the heavy chain of HCAb.
The term “homolog” and “homologous” as used herein are interchangeable and refer to nucleic acid sequences (or its complementary strand) or amino acid sequences that have sequence identity of at least 70% (e.g., at least 70%, 75%, 80%, 85%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) to another sequences when optimally aligned.
Examples
Example 1: Research materials preparation
1. Commercial Materials
Figure PCTCN2020086830-appb-000003
2. Antigen and Other Proteins Generation
2.1 Production of antigens
Nucleic acid encoding human PD-1, mouse PD-1, human LAG-3, mouse LAG-3 and cynomolgus LAG-3 ECD (extracellular domain) were synthesized by Sangon Biotech. PD-1 or LAG-3 gene fragments were amplified from the  synthesized nucleic acid and inserted into the expression vector pcDNA3.3 (ThermoFisher) . The inserted PD-1 or LAG-3 gene fragment was further confirmed by DNA sequencing. Fusion proteins containing human LAG-3 ECD with various tags, including human Fc, mouse Fc, were obtained by transfection of human PD-1 or LAG-3 gene into 293F cells (ThermoFisher) . The cells were cultured in FreeStyle 293 Expression Medium at 37 ℃, 5%CO 2. After 5 days of culture, supernatants harvested from the culture of transiently transfected cells were used for protein purification. The fusion proteins were purified by protein A and/or SEC column. An untagged LAG-3 ECD protein was generated by cleavage of ECD-hFc fusion protein with a cut site using Factor Xa protease. Purified proteins were used for screening and characterization.
Mouse Fc-tagged human PD-L1 ECD, human CTLA-4 ECD and CD28 ECD were generated as above.
2.2 Production of Benchmark Antibodies
Gene sequences of anti-human PD-1 or LAG-3 benchmark antibodies (W339-BMK1 and W305-BMK1) were synthesized based on the information disclosed in patent applications US20110150892A1 (W339-BMK1 was referred to as “25F7” ) and WO2006121168 (W305-BMK1 was referred to as “5C4” ) , respectively.
Sequences of anti-human PD-1×LAG-3 benchmark antibodies W365-BMK1, W365-BMK2 and W365-BMK3 were synthesized in based on the information disclosed in patent applications WO2015200119A8 (W365-BMK1 was referred to as “SEQ25 &SEQ27” ) , WO2017087589A2 (W365-BMK2 was referred to as “SEQ110” ) and WO2015200119A8 (W365-BMK3 was referred to as “ SEQ  5 and 4” ) , respectively. The synthesized gene sequences were incorporated into plasmids pcDNA3.3. The cells transfected with the plasmids were cultured for 5 days and supernatant was collected for protein purification using Protein A column. The obtained benchmark antibodies were analyzed by SDS-PAGE and SEC, and then  stored at -80℃.
W3056-AP17R1-2H2-Z1-R1-14A1-Fc-V2 (3056, anti-PD-1) and W3396-P2R2 (L) -1E1-z4-R2-2-Fc (3396, anti-LAG-3) were discovered in TAD department of Wuxi Biologics.
3. Cell Line Generation
Cynomolgus PD-1 transfectant cell line was generated. Briefly, 293F cells were transfected with pcDNA3.3 expression vector containing full-length of human, cynomolgus PD-1 using Lipofectamine transfection kit according to manufacturer’s protocol, respectively. At 48-72 hours post transfection, the transfected cells were cultured in medium containing blasticidin for selection and tested for target expression.
Jurkat cell lines were transfected with plasmids containing human full length PD-1/NFAT reporter or LAG-3/IL-2 reporter using Nucleofactor (Lonza) . At 72 hours post transfection, the transfected cells were cultured in medium containing hygromycin for selection and tested for target expression. Jurkat cells expressing human PD-1 or LAG-3 along with stably integrated NFAT or IL-2 luciferase reporter gene were obtained after two months.
Example 2: Bispecific antibody Generation
1. Construct expression vectors
The method for producing the first VHH binding PD-1 was described in PCT application No. PCT/CN2019/078515, and the method for producing the second VHH binding LAG-3 was described in PCT application No. PCT/CN2019/078315.
DNA sequences encoding the anti-PD-1 VHH and anti-LAG-3 VHH were synthesized by GENEWIZ (Suzhou, China) . Then anti-PD-1 VHH and anti-LAG-3 VHH were subcloned at N-terminal and C-terminal of hinge region and IgG4 Fc region in the pYF expression vector respectively.
2. Small scale Transfection, expression and purification
The plasmid of bispecific antibody was transfected into Expi293 cells. Cells were cultured for 5 days and supernatant was collected for protein purification using Protein A column (GE Healthcare) . The obtained antibody was analyzed by SDS-PAGE and HPLC-SEC, and then stored at -80 ℃.
The purity of antibodies was determined by SEC-HPLC using Agilent 1260 Infinity HPLC. Antibody solution was injected on a TSKgel SuperSW3000 column using 50 mM sodium phosphate, 0.15 M NaCl, pH 7.0 buffer. The running time was 20 min. Peak retention times on the column were monitored at 280 nm. Data was analyzed using ChemStation software (V2.99.2.0) .
3. Results
Sequence of lead candidates
The sequences of antibody leads are listed in the Table 2 and the CDRs are listed in Table 1.
Example 4: In vitro Characterization
1. Binding of PD-1×LAG-3 bispecific antibodies to human PD-1 or LAG-3  protein
Plates were coated with of PD-1×LAG-3 antibodies overnight at 4 ℃. After blocking and washing, various concentrations of mouse Fc-tagged PD-1 protein or LAG-3 protein were added to the plates and incubated at room temperature for 1 hour. The plates were then washed and subsequently incubated with HRP-labeled goat anti-mouse IgG antibody for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
As shown in Figure 1 and table 3, the EC 50 of W3659-U14T4. G1-1. uIgG4. SP for binding to PD-1 protein is comparable to the benchmarks.
Table 3. EC 50 of PD-1×LAG-3 bispecific antibodies bind to human PD-1 protein
Antibody EC 50 (nM)
W3659-U14T4. G1-1. uIgG4. SP 0.07
W305-BMK1 0.09
W365-BMK1 0.15
W365-BMK2 0.18
W365-BMK3 0.09
As shown in Figure 2 and table 4, the EC 50 of W3659-U14T4. G1-1. uIgG4. SP for binding to LAG-3 protein is comparable to the benchmarks.
Table 4. EC 50 of PD-1×LAG-3 bispecific antibodies bind to human LAG-3 protein
Antibody EC 50 (nM)
W3659-U14T4. G1-1. uIgG4. SP 0.32
W305-BMK1 0.23
W365-BMK1 0.35
W365-BMK2 0.28
W365-BMK3 0.25
2. Binding of PD-1×LAG-3 bispecific antibodies to mouse PD-1 or LAG-3
Plates were coated with of PD-1×LAG-3 antibodies overnight at 4 ℃. After blocking and washing, various concentrations of His-tagged mouse PD-1 or LAG-3 protein were added to the plates and incubated at room temperature for 1 hour. The plates were then washed and subsequently incubated with HRP-labeled goat anti-His IgG antibody for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
As shown in Figure 3 and table 5, only W3659-U14T4. G1-1. uIgG4. SP, but not the BMKs, can bind to mouse PD-1 protein.
Table 5. EC 50 of PD-1×LAG-3 bispecific antibodies bind to mouse PD-1 protein
Antibody EC 50 (nM)
W3659-U14T4. G1-1. uIgG4. SP 0.26
W305-BMK1 Not Bind
W365-BMK3 Not Bind
As shown in Figure 4 and table 6, only W3659-U14T4. G1-1. uIgG4. SP, but  not the BMKs, can bind to mouse LAG-3 protein.
Table 6. EC 50 of PD-1×LAG-3 bispecific antibodies bind to mouse PD-1 protein
Antibody EC 50 (nM)
W3659-U14T4. G1-1. uIgG4. SP 0.87
W305-BMK1 Not Bind
W365-BMK3 Not Bind
3. Binding of PD-1×LAG-3 bispecific antibodies to cynomolgus PD-1 or  LAG-3
For cynomolgus PD-1, 293F cells expressing cynomolgus PD-1 were incubated with various concentrations of PD-1×LAG-3 antibodies, respectively. PE-labeled goat anti-human IgG antibody was used to detect the binding of PD-1×LAG-3 antibodies onto the cells. MFI of the cells was measured by flow cytometry and analyzed by FlowJo (version 7.6.1) .
For cynomolgus LAG-3, plates were coated with of PD-1×LAG-3 antibodies overnight at 4 ℃. After blocking and washing, various concentrations of His-tagged cynomolgus LAG-3 were added to the plates and incubated at room temperature for 1 hour. The plates were then washed and subsequently incubated with HRP-labeled goat anti-His IgG antibody for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
As shown in Figure 5 and table 7, the EC 50 of W3659-U14T4. G1-1. uIgG4. SP for binding to LAG-3 protein is comparable to the BMKs.
Table 7. EC 50 of PD-1×LAG-3 bispecific antibodies bind to cell surface cynomolgus PD-1
Antibody EC 50 (nM)
W3659-U14T4. G1-1. uIgG4. SP 0.36
W305-BMK1 0.28
W365-BMK3 0.33
As shown in Figure 6 and table 8, the EC 50 of W3659-U14T4. G1-1. uIgG4. SP  for binding to LAG-3 protein is comparable to the W365-BMK3 and better than W339-BMK1.
Table 8. EC 50 of PD-1×LAG-3 bispecific antibodies bind to cynomolgus LAG-3 protein
Antibody EC 50 (nM)
W3659-U14T4. G1-1. uIgG4. SP 1.21
W339-BMK1 4.27
W365-BMK3 0.87
4. Cross-reactivity to human CD4, CTLA-4 and CD28
Cross-reactivity to human CD4, CTLA-4 or CD28 was measured by ELISA. Plates were coated with human CD4, CTLA-4 or CD28 at 1 μg/mL overnight at 4 ℃. After blocking and washing, various concentrations of PD-1×LAG-3 antibodies were added to the plates and incubated at room temperature for 1 h. The plates were then washed and subsequently incubated with corresponding secondary antibody for 60 min. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. 
Results in Figure 7A, 7B and 7C indicate that PD-1×LAG-3 bispecific antibodies did not bind to human CTLA-4, CD28 or CD4 protein.
5. Affinity test against human, mouse, cynomolgus PD-1 and LAG-3 by SPR
Binding affinity of the bispecific antibodies to the antigen was determined by SPR assay using Biacore 8K. PD-1 x LAG-3 antibodies were captured on an anti-human IgG Fc antibody immobilized CM5 sensor chip (GE) . His tagged human PD-1 protein (MW: 40KD) and cynomolgus PD-1 (MW: 40KD) at different concentrations were injected over the sensor chip at a flow rate of 30 μL/min for an association phase of 120 s, followed by 800 s dissociation. His tagged mouse LAG-3 protein (MW: 45KD) at different concentrations were injected over the sensor chip at a flow rate of 30 μL/min for an association phase of 120 s, followed by 3600 s dissociation. His tagged mouse PD-1 protein (MW: 45KD) at different concentrations were injected over the sensor chip at a flow rate of 30 μL/min for an  association phase of 60 s, followed by 90 s dissociation. The chip was regenerated by 10 mM glycine (pH 1.5) after each binding cycle.
For affinity against human LAG-3, PD-1xLAG-3 antibodies were immobilized on a CM5 sensor chip. Human LAG-3 without tag at different concentrations were injected over the sensor chip at a flow rate of 30 μL/min for an association phase of 180 s, followed by 3600 s dissociation using single-cycle kinetics method. The chip was regenerated with 10 mM glycine (pH 1.5) .
The sensorgrams of blank surface and buffer channel were subtracted from the test sensorgrams. The experimental data was fitted by 1: 1 model using Langmiur analysis.
Table 9. Affinity of PD-1×LAG-3 bispecific antibodies against human, mouse and cynomolgus PD-1
Figure PCTCN2020086830-appb-000004
Table 10. Affinity of PD-1×LAG-3 bispecific antibodies against human and cynomolgus LAG-3
Figure PCTCN2020086830-appb-000005
6. Dual binding of PD-1×LAG-3 bispecific antibodies to human PD-1 and  LAG-3 protein
Plates were coated with mouse Fc-tagged human PD-1 at 1 μg/mL overnight at 4 ℃. After blocking and washing, various concentrations of PD-1×LAG-3 antibodies were added to the plates and incubated at room temperature for 1 hour  after washing. The plates were then washed and subsequently incubated with His-tagged LAG-3 protein for 1 hour. After washing, HRP anti-His antibody was added to the plate and incubated at room temperature for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
As shown in Figure 8 and table 11, the EC 50 of W3659-U14T4. G1-1. uIgG4. SP for binding to LAG-3 protein is comparable to the W365-BMK3 and better than W365-BMK1 and BMK2.
Table 11. EC 50 of PD-1×LAG-3 bispecific antibodies bind to human PD-1 and LAG-3 protein
Antibody EC 50 (nM)
W3659-U14T4. G1-1. uIgG4. SP 0.03
W365-BMK1 2.41
W365-BMK2 0.2
W365-BMK3 0.03
7. Blocking of PD-L1 protein binding to PD-1 expressing cells
Antibodies were serially diluted in 1%BSA-PBS and mixed with mFc-tagged PD-L1 protein at 4℃. The mixture was transferred into the 96-well plates seeded with PD-1 expressing CHO-Scells. Goat anti-mouse IgG Fc-PE antibody was used to detect the binding of PD-L1 protein to PD-1 expressing cells. The MFI was evaluated by flow cytometry and analyzed by the software FlowJo.
As shown in Figure 9 and table 12, the EC 50 of W3659-U14T4. G1-1. uIgG4. SP for blocking the binding of PD-1 to PD-L1 expressed cells is comparable to the BMKs.
Table 12. EC 50 of PD-1×LAG-3 bispecific antibodies block the binding of PD-1 to PD-L1
Antibody EC 50 (nM)
W3659-U14T4. G1-1. uIgG4. SP 0.58
W305-BMK1 0.59
W365-BMK1 0.72
W365-BMK2 1.36
W365-BMK3 0.64
8. Blocking of LAG-3 protein binding to MHC-II expressed on Raji cells
Antibodies were serially diluted in 1%BSA-PBS and incubated with mouse Fc-tagged LAG-3 protein at 4℃. The mixture was transferred into the 96-well plates seeded with Raji cells which express MHC-II on the surface. Goat anti-mouse IgG Fc-PE antibody was used to detect the binding of LAG-3 protein to Raji cells. The MFI was evaluated by flow cytometry and analyzed by the software FlowJo.
As shown in Figure 10 and table 13, the EC 50 of W3659-U14T4. G1-1. uIgG4. SP for blocking the binding of LAG-3 to MHC-II expressed Raji cells is comparable to W339-BMK1, W365-BMK3 and better than W365-BMK1 and W365-BMK2.
Table 13. EC 50 of PD-1×LAG-3 bispecific antibodies block the binding of LAG-3 to MHC-II
Antibody EC 50 (nM)
W3659-U14T4. G1-1. uIgG4. SP 1.39
W339-BMK1 1.68
W365-BMK1 30.0
W365-BMK2 4.90
W365-BMK3 1.88
9. Effects of PD-1×LAG-3 bispecific antibodies on PD-1 expressing Jurkat  with NFAT reporter gene
Jurkat cells expressing human PD-1 along with stably integrated NFAT luciferase reporter gene and human PD-L1 expressing artificial APC (antigen presenting cell) cells were seeded in 96-well plates. Testing antibodies were added to the cells. The plates were incubated for 6 hours at 37℃, 5%CO 2. After incubation, reconstituted luciferase substrate One-Glo was added and the luciferase intensity was measured by a microplate spectrophotometer.
As demonstrated in Figure 11, antibodies enhanced NFAT pathway of Jurkat in reporter gene assay. Further, as shown in table 14, the EC 50 of W3659-U14T4. G1-1. uIgG4. SP in this assay is better than W365-BMK1 and comparable to other benchmark antibodies.
Table 14. EC 50 of NFAT pathways enhancement in PD-1 expressing Jurkat.
Antibody EC 50 (nM)
W3659-U14T4. G1-1. uIgG4. SP 0.12
W305-BMK1 0.18
W365-BMK1 1.94
W365-BMK2 0.31
W365-BMK3 0.23
10. Effects of PD-1×LAG-3 bispecific antibodies on LAG-3 expressing Jurkat  with IL-2 reporter gene
Jurkat cells expressing human LAG-3 along with stably integrated IL-2 luciferase reporter gene and Raji cells were seeded in 96-well plates in the presence of SEE (Staphylococcal enterotoxin E) . Testing antibodies were added to the cells. The plates were incubated for overnight at 37℃, 5%CO 2. After incubation, reconstituted luciferase substrate One-Glo was added and the luciferase intensity was measured by a microplate spectrophotometer.
As demonstrated in Figure 12 and table 15, antibodies enhanced IL-2 pathway of Jurkat in reporter gene assay.
Table 15. EC 50 of IL-2 pathways enhancement in LAG-3 expressing Jurkat.
Antibody EC 50 (nM)
W3659-U14T4. G1-1. uIgG4. SP 0.84
W339-BMK1 0.65
W365-BMK1 14.9
W365-BMK2 29.9
W365-BMK3 0.14
11. Effects of PD-1×LAG-3 bispecific antibodies on PD-1 and LAG-3  expressing Jurkat with NFAT reporter gene
Full human LAG-3 plasmid was transiently transfected into Jurkat cells expressing human PD-1 along with stably integrated NFAT luciferase reporter gene. After 48 hours, the cells were seeded in 96-well plates along with PD-L1-expressing Raji cells in the presence of SEE (Staphylococcal enterotoxin E) . Testing antibodies were added to the cells. The plates were incubated for overnight at 37℃, 5%CO 2. After incubation, reconstituted luciferase substrate One-Glo was added and the luciferase intensity was measured by a microplate spectrophotometer.
As demonstrated in Figure 13, antibodies enhanced NFAT pathway of PD-1 and LAG-3 expressing Jurkat in reporter gene assay. The fold is higher than combination of W305-BMK1 and W339-BMK1 as well as other benchmark antibodies.
12. Effects of PD-1×LAG-3 bispecific antibodies on human allogeneic mixed  lymphocyte reaction (MLR)
Human peripheral blood mononuclear cells (PBMCs) were freshly isolated from healthy donors using Ficoll-Paque PLUS gradient centrifugation. Monocytes were isolated using human monocyte enrichment kit according to the manufacturer’s instructions. Cells were cultured in medium containing GM-CSF and IL-4 for 5 to 7 days to generate dendritic cells (DC) . Human CD4 + T cells were isolated using human CD4 + T cell enrichment kit according to the manufacturer’s protocol. Purified CD4 + T cells were co-cultured with allogeneic immature DCs (iDCs) in the presence of various concentrations of PD-1×LAG-3 antibodies in 96-well plates. The plates were incubated at 37℃, 5%CO 2. Supernatants were harvested for IL-2 and IFN-γ test at day 3 and day 5, respectively. Human IL-2 and IFN-γ release were measured by ELISA using matched antibody pairs. Recombinant human IL-2 and IFN-γ were used as standards, respectively. The  plates were pre-coated with capture antibody specific for human IL-2 or IFN-γ, respectively. After blocking, 50 μL of standards or samples were pipetted into each well and incubated for 2 hours at ambient temperature. Following removal of the unbound substances, the biotin-conjugated detecting antibody specific for corresponding cytokine was added to the wells and incubated for one hour. HRP-streptavidin was then added to the wells for 30 minutes incubation at ambient temperature. The color was developed by dispensing 50 μL of TMB substrate, and then stopped by 50 μL of 2N HCl. The absorbance was read at 450 nM using a Microplate Spectrophotometer.
As demonstrated in Figure 14A and 14B, W3659-U14T4. G1-1. uIgG4. SP enhanced IL-2 and IFN-γ secretion in mixed lymphocyte reaction.
13. Effects of PD-1×LAG-3 bispecific antibodies on human PBMCs activation
PBMCs and various concentrations of PD-1×LAG-3 antibodies were co-cultured in 96-well plates in the presence of SEB. The plates were incubated at 37℃, 5%CO 2 for 3 days and supernatants were harvested for IL-2 test. Human IL-2 release was measured by ELISA as described in section 12.
As demonstrated in Figure 15, W3659-U14T4. G1-1. uIgG4. SP enhanced IL-2 secretion in PBMCs stimulated with SEB.
14. Thermal stability test by differential scanning fluorimetry (DSF)
Tm of antibodies was investigated using QuantStudioTM 7 Flex Real-Time PCR system (Applied Biosystems) . 19 μL of antibody solution was mixed with 1 μL of 62.5×SYPRO Orange solution (Invitrogen) and transferred to a 96 well plate. The plate was heated from 26℃ to 95℃ at a rate of 0.9 ℃/min, and the resulting fluorescence data was collected. The negative derivatives of the fluorescence changes with respect to different temperatures were calculated, and the maximal value was defined as melting temperature Tm. If a protein has multiple unfolding transitions, the first two Tm were reported, named as Tm1 and Tm2. Data  collection and Tm calculation were conducted automatically by the operation software.
Table 16. T m of W3659-U14T4. G1-1. uIgG4. SP in different buffer
Figure PCTCN2020086830-appb-000006
15. Serum stability
The lead antibody was incubated in freshly isolated human serum (serum content > 95%) at 37℃. At indicated time points, aliquot of serum treated samples were removed from the incubator and snap frozen in liquid N2, and then stored at 80℃ until ready for test. The samples were quickly thawed immediately prior to the stability test.
Plates were coated with mouse Fc-tagged human PD-1 at 1 μg/mL overnight at 4 ℃. After blocking and washing, various concentrations of PD-1×LAG-3 antibodies were added to the plates and incubated at room temperature for 1 hour after washing. The plates were then washed and subsequently incubated with His-tagged LAG-3 protein for 1 hour. After washing, HRP labeled mouse anti-His antibody was added to the plate and incubated at room temperature for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
It is demonstrated in Figure 16 that W3659-U14T4. G1-1. uIgG4. SP was stable in fresh human serum for up to 14 days.
Example 5: In vivo Characterization
1. In vivo anti-tumor activity of PD-1 × LAG-3 antibodies
Balb/c mouse (Shanghai Lingchang Biotech) and Colon26 tumor model were  used to evaluate the ability of PD-1×LAG-3 antibody to inhibit the growth of tumor cells in vivo. BALB/C mice were implanted subcutaneously with 5×10 5 mouse colon carcinoma Colon26 cells on day 0 and the mice were grouped (n=8) when the tumor reached 60-70 mm 3.
On day 0, day 3, day 7, day 10 and day 14, the mice were intraperitoneally treated with PD-1 mAb (3056) alone (10 mg/kg) , LAG-3 mAb (3396) alone (10 mg/kg) , PD-1×LAG-3 antibody W3659-U14T4. G1-1. uIgG4. SP (13.9 mg/kg) or combination of 3056 mAb (10 mg/kg) and 3396 mAb (10 mg/kg) . Human IgG4 isotype control antibody (10 mg/kg) was given as negative control.
Tumor volume and animal weight were measured for over 3 weeks post-injection. The tumor volume will be expressed in mm 3 using the formula: V = 0.5ab 2, where a and b are the long and short diameters of the tumor, respectively.
Tumor volume and survival curve of treated mice were shown in Figure 17A and 17B. The results show that the treatment with W3396 and PD-1×LAG-3 antibody W3659-U14T4. G1-1. uIgG4. SP was effective in Colon26 tumor growth inhibition, while the treatment with the antibody W3056 alone had little effect. W3659-U14T4. G1-1. uIgG4. SP led to greater tumor growth inhibition than the parental PD-1 antibody (W3056) alone or the parental LAG-3 antibody (W3396) alone. The efficacy of W3659-U14T4. G1-1. uIgG4. SP was comparable to combination of PD-1 and LAG-3 antibodies. Meanwhile, in Figure 17C, the weight growth of each group indicated good safety without obvious toxicity.

Claims (21)

  1. A bispecific antibody or antigen binding-fragment thereof, comprising a first targeting moiety which specifically binds to PD-1 and a second targeting moiety which specifically binds to LAG-3,
    wherein the first targeting moiety comprises a first VHH domain and the second targeting moiety comprises a second VHH domain;
    the first VHH domain comprises H-CDR1, H-CDR2 and H-CDR3; wherein the H-CDR3 comprises a sequence as depicted in SEQ ID NO: 1, and conservative modifications thereof; the H-CDR2 comprises a sequence as depicted in SEQ ID NO: 2, and conservative modifications thereof; the H-CDR1 comprises a sequence as depicted in SEQ ID NO: 3, and conservative modifications thereof;
    the second VHH domain comprises H-CDR1, H-CDR2, H-CDR3; wherein the H-CDR3 comprises a sequence as depicted in SEQ ID NO: 4, and conservative modifications thereof; the H-CDR2 comprises a sequence as depicted in SEQ ID NO: 5, and conservative modifications thereof; the H-CDR1 comprises a sequence as depicted in SEQ ID NO: 6, and conservative modifications thereof.
  2. The antibody or antigen binding-fragment thereof of claim 1, wherein the first VHH domain comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 7.
  3. The antibody or antigen binding-fragment thereof of claim 1 or 2, wherein the second VHH domain comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 8.
  4. The antibody or antigen binding-fragment thereof of any one of claims 1-3, wherein the first VHH domain comprises a sequence of SEQ ID NO: 7, and the second VHH domain comprises a sequence of SEQ ID NO: 8.
  5. The antibody or antigen binding-fragment thereof of claim 4, wherein the first VHH domain and the second VHH domain are linked by a peptide sequence.
  6. The antibody or antigen binding fragment thereof of claim 5, wherein the peptide sequence comprises
    (a) an IgG Fc fragment comprising hinge region, CH2 and CH3, and/or
    (b) a linker.
  7. The antibody or antigen binding fragment thereof of claim 6, wherein the linker comprises a sequence of SEQ ID NO: 9.
  8. The antibody or antigen binding fragment thereof of any one of claims 1-7, comprising a sequence of SEQ ID NO: 10.
  9. The antibody or antigen binding fragment thereof of any one of claims 1-8, wherein the antibody or the antigen binding-fragment
    a) binds to human PD-1 with a K D of 2.92E-09 or less; and
    b) binds to human LAG-3 with a K D of 3.01E-10 or less.
  10. The antibody or antigen binding fragment thereof of any one of claims 1-9, wherein the antibody is a humanized antibody.
  11. A nucleic acid molecule encoding the antibody or antigen binding fragment thereof of any one of claims 1-10.
  12. A cloning or expression vector comprising the nucleic acid molecule of claim 11.
  13. A host cell comprising one or more cloning or expression vectors of claim 12.
  14. A process for production of the antibody or antigen binding fragment thereof of any one of claims 1-9, comprising culturing the host cell of claim 13 and isolating the antibody.
  15. A pharmaceutical composition comprising the antibody or antigen binding fragment thereof of any one of claims 1-10, and one or more of a pharmaceutically acceptable excipient, a diluent and a carrier.
  16. An immunoconjugate comprising the antibody or antigen binding fragment  thereof of any one of claims 1-10, linked to a therapeutic agent.
  17. A pharmaceutical composition comprising the immunoconjugate of claim 16 and one or more of a pharmaceutically acceptable excipient, a diluent and a carrier.
  18. A method of modulating an immune response in a subject comprising administering to the subject the antibody or antigen binding fragment thereof of any one of claims 1-10.
  19. Use of the antibody or antigen binding fragment thereof of any one of claims 1-10 in the manufacture of a medicament for the treatment or prophylaxis of an immune disorder or cancer.
  20. A method of inhibiting growth of tumor cells in a subject, comprising administering to the subject a therapeutically effective amount of the antibody or antigen-binding fragment thereof of any one of claims 1-10, to inhibit growth of the tumor cells.
  21. The method of claim 20, wherein the tumor cells are of a cancer selected from a group consisting of melanoma, renal cancer, prostate cancer, breast cancer, colon cancer, lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, and rectal cancer.
PCT/CN2020/086830 2019-04-26 2020-04-24 Bispecific antibodies against pd-1 and lag-3 WO2020216348A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021563664A JP2022530496A (en) 2019-04-26 2020-04-24 Bispecific antibodies to PD-1 and LAG-3
CN202080031036.XA CN113727731B (en) 2019-04-26 2020-04-24 Bispecific antibodies targeting PD-1 and LAG-3
KR1020217037851A KR20220003567A (en) 2019-04-26 2020-04-24 Bispecific antibodies to PD-1 and LAG-3
US17/606,744 US20220213192A1 (en) 2019-04-26 2020-04-24 Bispecific antibodies against pd-1 and lag-3
EP20795665.7A EP3958900A4 (en) 2019-04-26 2020-04-24 Bispecific antibodies against pd-1 and lag-3
SG11202111441QA SG11202111441QA (en) 2019-04-26 2020-04-24 Bispecific antibodies against pd-1 and lag-3

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/084471 2019-04-26
CN2019084471 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020216348A1 true WO2020216348A1 (en) 2020-10-29

Family

ID=72940870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086830 WO2020216348A1 (en) 2019-04-26 2020-04-24 Bispecific antibodies against pd-1 and lag-3

Country Status (7)

Country Link
US (1) US20220213192A1 (en)
EP (1) EP3958900A4 (en)
JP (1) JP2022530496A (en)
KR (1) KR20220003567A (en)
CN (1) CN113727731B (en)
SG (1) SG11202111441QA (en)
WO (1) WO2020216348A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024072893A1 (en) * 2022-09-28 2024-04-04 Incyte Corporation Anti-pd-1/lag-3 bispecific antibodies and uses thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3768720A4 (en) * 2018-03-20 2022-01-05 Wuxi Biologics Ireland Limited Novel anti-lag-3 antibody polypeptide

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396481A (en) * 2013-07-18 2013-11-20 华南理工大学 Heavy chain single-domain antibody of type-II dengue fever virus NS1 protein as well as preparation method and application of heavy chain single-domain antibody
CN106103484A (en) * 2014-03-14 2016-11-09 诺华股份有限公司 Antibody molecule for LAG 3 and application thereof
WO2016200782A1 (en) * 2015-06-08 2016-12-15 Macrogenics, Inc. Lag-3-binding molecules and methods of use thereof
CN106279410A (en) * 2016-09-29 2017-01-04 华南理工大学 A kind of two type dengue virus NS1 albumen multivalence nano antibody and preparation methoies
CN106715470A (en) * 2014-06-26 2017-05-24 宏观基因有限公司 Covalently bonded diabodies having immunoreactivity with pd-1 and lag-3, and methods of use thereof
CN107207594A (en) * 2014-12-23 2017-09-26 百时美施贵宝公司 For TIGIT antibody
WO2017214092A1 (en) * 2016-06-07 2017-12-14 Macrogenics, Inc. Combination therapy
CN108025051A (en) * 2015-07-29 2018-05-11 诺华股份有限公司 Include the conjoint therapy of anti-PD-1 antibody molecules
CN108350082A (en) * 2016-06-13 2018-07-31 爱迈博 PD-L1 antibody and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103665165B (en) * 2013-08-28 2016-02-24 江苏匡亚生物医药科技有限公司 Bi-specific antibody of a kind of targeted human CD47-SIRP signal α path and its production and use
WO2016089610A1 (en) * 2014-12-06 2016-06-09 H. Lee Moffitt Cancer Center And Research Institute, Inc. Bispecific antibody for cancer immunotherapy
KR102220275B1 (en) * 2015-11-18 2021-02-26 머크 샤프 앤드 돔 코포레이션 Pd1 and/or lag3 binders
KR102273634B1 (en) * 2016-09-21 2021-07-07 씨스톤 파마슈티컬즈 Novel monoclonal antibody against programmed death 1 (PD-1)
TW201829462A (en) * 2016-11-02 2018-08-16 英商葛蘭素史克智慧財產(第二)有限公司 Binding proteins
JP7183163B2 (en) * 2017-01-06 2022-12-05 クレシェンド・バイオロジックス・リミテッド Single domain antibody against programmed cell death (PD-1)
CA3052532A1 (en) * 2017-04-05 2018-10-11 F. Hoffmann-La Roche Ag Bispecific antibodies specifically binding to pd1 and lag3
CN108948194B (en) * 2017-05-19 2023-02-17 上海药明生物技术有限公司 Novel CTLA-4 monoclonal antibody
EP3630292A2 (en) * 2017-05-24 2020-04-08 Sutro Biopharma, Inc. Pd-1/lag3 bi-specific antibodies, compositions thereof, and methods of making and using the same
EP3649156A1 (en) * 2017-07-06 2020-05-13 Merus N.V. Antibodies that modulate a biological activity expressed by a cell
US20200354460A1 (en) * 2017-09-29 2020-11-12 Wuxi Biologics Ireland Limited. Bispecific antibodies against EGFR and PD-1

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396481A (en) * 2013-07-18 2013-11-20 华南理工大学 Heavy chain single-domain antibody of type-II dengue fever virus NS1 protein as well as preparation method and application of heavy chain single-domain antibody
CN106103484A (en) * 2014-03-14 2016-11-09 诺华股份有限公司 Antibody molecule for LAG 3 and application thereof
CN106715470A (en) * 2014-06-26 2017-05-24 宏观基因有限公司 Covalently bonded diabodies having immunoreactivity with pd-1 and lag-3, and methods of use thereof
CN107207594A (en) * 2014-12-23 2017-09-26 百时美施贵宝公司 For TIGIT antibody
WO2016200782A1 (en) * 2015-06-08 2016-12-15 Macrogenics, Inc. Lag-3-binding molecules and methods of use thereof
CN108025051A (en) * 2015-07-29 2018-05-11 诺华股份有限公司 Include the conjoint therapy of anti-PD-1 antibody molecules
WO2017214092A1 (en) * 2016-06-07 2017-12-14 Macrogenics, Inc. Combination therapy
CN108350082A (en) * 2016-06-13 2018-07-31 爱迈博 PD-L1 antibody and application thereof
CN106279410A (en) * 2016-09-29 2017-01-04 华南理工大学 A kind of two type dengue virus NS1 albumen multivalence nano antibody and preparation methoies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3958900A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024072893A1 (en) * 2022-09-28 2024-04-04 Incyte Corporation Anti-pd-1/lag-3 bispecific antibodies and uses thereof

Also Published As

Publication number Publication date
KR20220003567A (en) 2022-01-10
US20220213192A1 (en) 2022-07-07
EP3958900A1 (en) 2022-03-02
CN113727731B (en) 2023-06-02
CN113727731A (en) 2021-11-30
SG11202111441QA (en) 2021-11-29
JP2022530496A (en) 2022-06-29
EP3958900A4 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
US11214616B2 (en) Anti-TIGIT antibodies and their use as therapeutics and diagnostics
KR102522693B1 (en) Novel monoclonal antibodies to cytotoxic t-lymphocyte-associated protein 4 (ctla-4)
KR102629403B1 (en) VISTA antigen binding molecule
US11873346B2 (en) VISTA antigen-binding molecules
JP2021527441A (en) Antibodies targeting CLDN18.2, bispecific antibodies, ADCs and CARs and their use
KR20190130137A (en) FC-optimized anti-CD25 for tumor specific cell depletion
TW202118788A (en) Proteins comprising kallikrein related peptidase 2 antigen binding domains and their uses
US20200354460A1 (en) Bispecific antibodies against EGFR and PD-1
KR20210049128A (en) Anti-PD-L1/anti-LAG3 bispecific antibodies and uses thereof
US12071466B2 (en) Anti-human kallikrein-2 (hK2) chimeric antigen receptor (CAR) and methods of use thereof
WO2020216348A1 (en) Bispecific antibodies against pd-1 and lag-3
WO2021093849A1 (en) A novel antibody against tigit
TWI835166B (en) Specific binding protein targeting pd-1 and ox40 and application thereof
NZ788333A (en) Novel monoclonal antibodies to cytotoxic t-lymphocyte-associated protein 4 (ctla-4)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217037851

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020795665

Country of ref document: EP

Effective date: 20211126