WO2020215994A1 - 通信方法、设备及系统 - Google Patents

通信方法、设备及系统 Download PDF

Info

Publication number
WO2020215994A1
WO2020215994A1 PCT/CN2020/081859 CN2020081859W WO2020215994A1 WO 2020215994 A1 WO2020215994 A1 WO 2020215994A1 CN 2020081859 W CN2020081859 W CN 2020081859W WO 2020215994 A1 WO2020215994 A1 WO 2020215994A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
downlink data
data channel
terminal device
resources
Prior art date
Application number
PCT/CN2020/081859
Other languages
English (en)
French (fr)
Inventor
花梦
吴海
龙毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910760333.7A external-priority patent/CN111867096B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20794450.5A priority Critical patent/EP3952538A4/en
Publication of WO2020215994A1 publication Critical patent/WO2020215994A1/zh
Priority to US17/509,569 priority patent/US20220046680A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communication technology, and in particular to communication methods, equipment and systems.
  • the minimum scheduling granularity in the frequency domain of the physical downlink shared channel (PDSCH) is multiple resource blocks (RB).
  • RB resource block group
  • the NR system also defines some time-frequency resources that cannot be used to transmit PDSCH. If these time-frequency resources and the time-frequency resource blocks determined by the terminal device according to downlink control information (DCI) have an intersection, they will be intersected. Time-frequency resources are not used to transmit PDSCH.
  • the protocol stipulates that terminal equipment does not expect the PDSCH demodulation reference signal (DMRS) and the resources that cannot be used to transmit PDSCH overlap, or even partially overlap (a UE is not expected to handle the case where PDSCH DMRS REs are overlapping, even partially, with any REs not available for PDSCH).
  • DMRS demodulation reference signal
  • N RB resources defined by the NR system that cannot transmit PDSCH in an RBG if there are N RB resources defined by the NR system that cannot transmit PDSCH in an RBG, if the entire RBG is not scheduled, it will waste other RBG resources except these N RB resources. RB resources. If the RBG is scheduled, the network device needs to configure the resources of the entire RBG to the terminal device through the DCI, and at the same time indicate the resources of the N RBs that cannot be used to transmit the PDSCH. In this case, the terminal device can learn the resources of N RBs that cannot be used to transmit PDSCH according to the indication information.
  • the terminal device does not expect the PDSCH DMRS and the resources that cannot be used to transmit PDSCH to overlap, so the terminal device It is still considered that there is a DMRS in the position used to transmit the DMRS, which will obviously affect the channel estimation and noise estimation, and affect the reception performance of the PDSCH.
  • the embodiments of the present application provide communication methods, devices, and systems, which can improve resource utilization without affecting the reception performance of the downlink data channel.
  • a communication method includes: a terminal device receives configuration information from a network device; the terminal device receives downlink control information from the network device; the terminal device determines a first resource according to the configuration information, and the first resource A resource is a resource that cannot transmit a downlink data channel and a demodulation reference signal of the downlink data channel; the terminal device determines a second resource according to the downlink control information, and the second resource includes a resource for transmitting the downlink data channel and the downlink data channel The demodulation reference signal resource; the terminal device determines the third resource according to the first resource and the second resource, and the third resource is the demodulation of the second resource for transmitting the downlink data channel and the downlink data channel Reference signal resource; the terminal device receives the downlink data channel and the demodulation reference signal of the downlink data channel from the network device on the third resource.
  • the second resource since the first resource in the solution is a resource that cannot transmit the downlink data channel and the demodulation reference signal of the downlink data channel, the second resource includes the downlink data channel and the demodulation of the downlink data channel used to transmit DCI scheduling
  • the resource of the reference signal the third resource is the resource used to transmit the demodulation reference signal of the downlink data channel and the downlink data channel in the second resource. Therefore, when the minimum scheduling granularity of the downlink data channel in the frequency domain is multiple RBs, These multiple RBs can be scheduled, and only the second resource is used to transmit the downlink data channel and the demodulation reference signal of the downlink data channel (that is, the third resource) to receive or send the solution of the downlink data channel and the downlink data channel. By adjusting the reference signal, the utilization of resources can be improved without affecting the reception performance of the downlink data channel.
  • the terminal device determining the first resource according to the configuration information includes: the terminal device determining the first resource according to the configuration information and the downlink control information. That is to say, in the embodiment of the present application, when the terminal device determines the first resource according to the configuration information, it can be determined in combination with the downlink control information, so as to better meet the scheduling requirements of the downlink data channel.
  • a communication method includes: a network device sends configuration information to a terminal device, the configuration information is used to determine a first resource, and the first resource is a device that cannot transmit a downlink data channel and the downlink data channel.
  • the network device sends downlink control information to the terminal device, the downlink control information is used to determine a second resource, and the second resource includes a demodulation reference used to transmit the downlink data channel and the downlink data channel Signal resource; the network device determines a third resource according to the first resource and the second resource, and the third resource is the second resource used to transmit the downlink data channel and the demodulation reference signal of the downlink data channel Resource; the network device sends the downlink data channel and the demodulation reference signal of the downlink data channel to the terminal device on the third resource.
  • the second resource since the first resource in the solution is a resource that cannot transmit the downlink data channel and the demodulation reference signal of the downlink data channel, the second resource includes the downlink data channel and the demodulation of the downlink data channel used to transmit DCI scheduling
  • the resource of the reference signal the third resource is the resource used to transmit the demodulation reference signal of the downlink data channel and the downlink data channel in the second resource. Therefore, when the minimum scheduling granularity of the downlink data channel in the frequency domain is multiple RBs, These multiple RBs can be scheduled, and only the second resource is used to transmit the downlink data channel and the demodulation reference signal of the downlink data channel (that is, the third resource) to receive or send the solution of the downlink data channel and the downlink data channel. By adjusting the reference signal, the utilization of resources can be improved without affecting the reception performance of the downlink data channel.
  • the downlink control information is also used to determine the first resource. That is to say, in the embodiment of the present application, when the terminal device determines the first resource according to the configuration information, it can be determined in combination with the downlink control information, so as to better meet the scheduling requirements of the downlink data channel.
  • the configuration information includes indication information of the frequency domain resource in the first resource; wherein, the time domain resource in the first resource includes the validity period of the first resource All time domain resources within. That is, in the embodiment of the present application, only the frequency domain resources in the first resource may be configured, and the time domain resources in the first resource are all time domain resources within the validity period of the first resource by default (for example, as stipulated in the agreement).
  • the configuration information includes indication information of a frequency domain resource in the first resource and indication information of a time domain resource in the first resource, wherein the time domain
  • the indication information of the resource is used to indicate that the time domain resource in the first resource includes all the time domain resources within the validity period of the first resource. That is, in the embodiment of the present application, frequency domain resources and time domain resources in the first resource can be configured at the same time, where the time domain resources in the first resource are configured as all time domain resources within the validity period of the first resource.
  • the configuration information is characterized by M rate matching patterns, and M is a positive integer less than or equal to the first set value.
  • the configuration information is characterized by one rate matching pattern, or the configuration information is characterized by a limited number of rate matching patterns.
  • the first rate matching pattern in the M rate matching patterns includes S frequency domain resources, and S is less than or equal to the second set value Positive integer.
  • the first rate matching pattern in the M rate matching patterns includes one frequency domain resource, or the first rate matching pattern in the M rate matching patterns includes a limited number of frequency domain resources.
  • the frequency domain resources in the first resource are N frequency domain resources, and N is a positive integer less than or equal to the third preset value.
  • the frequency domain resource in the first resource is a segment of frequency domain resources; or, the frequency domain resource in the first resource is a segment of frequency domain resources.
  • the first resource is a resource other than resources corresponding to at least one set of rate matching patterns, wherein the resources corresponding to the at least one set of rate matching patterns are The resources indicated by the downlink control information that the downlink data channel cannot be transmitted.
  • the downlink data channel belongs to a downlink data channel whose mapping type is Type A.
  • the demodulation reference signal of the downlink data channel whose mapping type is type A may overlap with the resources that cannot be used to transmit the downlink data channel, and the demodulation reference signal of the downlink data channel whose mapping type is type B cannot and cannot The resources used to transmit downlink data channels overlap.
  • the processing of the downlink data channel whose mapping type is Type B can refer to the solution of the existing protocol, which will not be repeated here.
  • the downlink data channel belongs to a downlink data channel with a mapping type of type B and a sustained time domain resource length of a fourth set value. That is, only the demodulation reference signal of the downlink data channel whose mapping type is Type B and the duration time domain resource length is the fourth set value may overlap with the resources that cannot be used to transmit the downlink data channel; the mapping type is Type B.
  • the demodulation reference signal of the downlink data channel whose duration time domain resource length is a value other than the fourth set value cannot overlap with the resources that cannot be used to transmit the downlink data channel.
  • the mapping type is Type B
  • the processing of the downlink data channel whose duration time domain resource length is a value other than the fourth preset value can refer to the solution of the existing protocol, and will not be repeated here.
  • the demodulation reference signal of the dual symbol mode when the demodulation reference signal of the downlink data channel is in the dual symbol mode, the demodulation reference signal of the dual symbol mode includes at least one set of dual symbol modes. Symbol demodulation reference signal. If the fourth resource includes the first demodulation reference signal symbol corresponding to a group of dual-symbol demodulation reference signals on a resource block, it does not include the second demodulation reference signal corresponding to the group of dual-symbol demodulation reference signals on the resource block Reference signal symbol, the second demodulation reference signal symbol cannot be used to transmit the demodulation reference signal of the downlink data channel. Wherein, the fourth resource is the intersection of the first resource and the second resource. Optionally, the second demodulation reference signal symbol cannot be used to transmit a downlink data channel.
  • the first resource includes all resource blocks on a symbol in the time domain and a bandwidth part BWP in the frequency domain or all resource blocks on a carrier, or
  • the first resource includes a resource block in the frequency domain and all symbols in the time domain.
  • the first resource includes a resource block in the frequency domain and a symbol in the time domain, it is determined that the first resource includes this symbol in the time domain and all resource blocks or one resource block on a bandwidth part BWP in the frequency domain. All resource blocks on the carrier or the first resource include this resource block in the frequency domain and all symbols in the time domain.
  • the terminal device or the network device may It is determined that within the frequency domain range of the overlapping resource, the duration of the second resource cannot be used to transmit the demodulation reference signal of the downlink data channel.
  • the duration of the second resource cannot be used to transmit the downlink data channel.
  • the terminal device or the network device may It is determined that the overlapping resource is within the time domain range and the second resource within the frequency domain range, which cannot be used to transmit the demodulation reference signal of the downlink data channel.
  • the time domain range of the overlapping resource and within the frequency domain range of the second resource, it cannot be used to transmit the downlink data channel.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be the terminal device in the first aspect described above or a chip system that implements the functions of the terminal device; or, the communication device may be the network device in the second aspect described above or a chip system that implements the functions of the network device.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware execution of corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in any of the above aspects.
  • the communication device may be the terminal device in the first aspect described above or a chip system that implements the functions of the terminal device; or, the communication device may be the network device in the second aspect described above or a chip system that implements the functions of the network device.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the communication device may be the terminal device in the first aspect described above or a chip system that implements the functions of the terminal device; or, the communication device may be the network device in the second aspect described above or a chip system that implements the functions of the network device.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the method described in any of the above aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the method described in any of the above aspects.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any of the foregoing aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of chips, or may include chips and other discrete devices.
  • the technical effects brought by any one of the design methods of the third aspect to the eighth aspect can be referred to the technical effects brought about by the different design methods in the first aspect or the second aspect, which will not be repeated here.
  • a communication system which includes the terminal device described in the foregoing aspect and the network device described in the foregoing aspect.
  • Figure 1a is a schematic diagram of existing PDSCH scheduling
  • Figure 1b is a schematic diagram of an existing rate matching pattern
  • Fig. 1c is a schematic diagram 1 of the existing PDSCH mapping
  • Figure 1d is a second schematic diagram of existing PDSCH mapping
  • Figure 1e is a third schematic diagram of the existing PDSCH mapping
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a terminal device and a network device provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of another structure of a terminal device provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 6a is a schematic diagram of the location of RB resources provided by an embodiment of this application.
  • FIG. 6b is a schematic diagram 1 of the position of the frequency domain resource in the first resource provided by an embodiment of this application;
  • FIG. 6c is a second schematic diagram of the position of the frequency domain resource in the first resource provided by an embodiment of this application.
  • FIG. 6d is a third schematic diagram of the position of the frequency domain resource in the first resource provided by an embodiment of this application.
  • FIG. 6e is a fourth schematic diagram of the location of the frequency domain resource in the first resource provided by an embodiment of this application.
  • FIG. 6f is a fifth schematic diagram of the position of the frequency domain resource in the first resource provided by an embodiment of this application.
  • FIG. 7a is a schematic diagram 1 of the location of the first resource provided by an embodiment of this application.
  • FIG. 7b is a second schematic diagram of the location of the first resource provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of the location of a second resource provided by an embodiment of this application.
  • FIG. 9a is a schematic diagram 1 of the location of the third resource provided by an embodiment of this application.
  • FIG. 9b is a second schematic diagram of the location of the third resource provided by the embodiment of this application.
  • FIG. 10a is a third schematic diagram of the location of the first resource provided by an embodiment of this application.
  • 10b is a fourth schematic diagram of the location of the first resource provided by an embodiment of this application.
  • FIG. 11a is a fifth schematic diagram of the location of the first resource provided by an embodiment of this application.
  • FIG. 11b is a sixth schematic diagram of the location of the first resource provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of PDSCH scheduling provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of another structure of a terminal device provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of another structure of a network device provided by an embodiment of this application.
  • the physical downlink control channel (PDCCH) used to schedule the PDSCH carries DCI.
  • the DCI includes a frequency domain resource configuration (frequency domain resource assignment) information domain, a time domain resource configuration (time domain resource assignment) information domain, and a rate matching indication domain.
  • the frequency domain resource assignment (frequency domain resource assignment) information field is used to indicate the location of the frequency domain resource.
  • the time domain resource assignment information field is used to indicate the start symbol (symbol) and the number of continuous symbols in the PDSCH time domain, the mapping type of the PDSCH, and the DMRS position of the PDSCH.
  • the terminal device can determine a time-frequency resource block for transmitting the DMRS of PDSCH and PDSCH according to the frequency domain resource assignment information and the time domain resource assignment information, and can also learn the DCI scheduled PDSCH mapping type and DMRS position of PDSCH.
  • the relevant description of the PDSCH mapping type can refer to the content in the following embodiments, which will not be repeated here.
  • the rate matching indication field is used to indicate whether the resources in the rate matching pattern group can be used to transmit PDSCH. For example, if the bit corresponding to a rate matching pattern group is 1, the resources in the rate matching pattern group cannot be used to transmit PDSCH.
  • the rate matching pattern group please refer to the content in the following embodiments. Do not repeat it.
  • the DCI may also include other fields, which are not specifically limited in the embodiment of the present application.
  • the symbols in the embodiments of the present application may also be referred to as time-domain symbols, and the symbol may be, for example, a long term evolution (LTE) system or orthogonal frequency division multiplexing in an NR system. (orthogonal frequency division multiplexing) symbols or other symbols in the future system, etc., are explained here in a unified manner, and will not be repeated here.
  • LTE long term evolution
  • NR NR-term evolution
  • the resources defined by the NR system that cannot be used to transmit PDSCH are divided into three categories, including: resource block (RB) symbol level resources, resource element (RE) level resources and synchronization signals (synchronization signal, SS)/physical broadcast channel (physical broadcast channel, PBCH) (SS/PBCH block, SSB) resources.
  • resource block (RB) symbol level resources resource element (RE) level resources
  • synchronization signals synchronization signal, SS)/physical broadcast channel (physical broadcast channel, PBCH) (SS/PBCH block, SSB) resources.
  • SS resource block
  • PBCH physical broadcast channel
  • SSB SS/PBCH block
  • each bandwidth part (BWP) of a terminal device can be configured with at most 4 rate matching patterns at the BWP level, and each serving cell can be configured with at most 4 rate matching patterns at the cell level.
  • a rate matching pattern can include:
  • a pair of reserved resources configured by the network device includes a 1RB granularity RB-level bitmap, and a symbol-level bitmap on a time unit containing 12 or 14 OFDM symbols.
  • the bit value of the RB-level bitmap and the symbol-level bitmap is 1, it means that the corresponding resource cannot be used to transmit PDSCH.
  • a period and pattern can be configured, and each bit in the periodicity and pattern corresponds to a symbol-level bitmap.
  • the bit value in the periodicity and pattern is 1, it means that there is a reserved resource pair for this unit.
  • the RB-level bitmap is 00110...11
  • the symbol-level bitmap is 10...11 01...10
  • the corresponding resource locations that cannot be used to transmit PDSCH can be as shown in Figure 1b .
  • a time unit containing 12 OFDM symbols or 14 OFDM symbols is called a subframe in the LTE system, and corresponds to 2 slots; in the NR system, it corresponds to 1 time. Slot.
  • the slots in the following embodiments of the present application are all described by taking the slots of the NR system as an example, and the description is unified here, and the details are not repeated below.
  • a configured rate match pattern group (such as rate match pattern group1 or rate matchpattern group2) includes a set of resource sets corresponding to the rate match pattern.
  • Each rate match pattern group corresponds to 1 bit in the rate match indication field in the DCI carried on the PDCCH that schedules this PDSCH. If the bit corresponding to a rate match pattern group is 1, this part of resources cannot be used to transmit PDSCH.
  • the rate match pattern resource not included in any rate match pattern group is not used to send PDSCH.
  • PDSCH has two frequency domain resource scheduling methods, namely type 0 (type 0) and type 1 (type 1).
  • a BWP is grouped according to RBG granularity, and then a bitmap is used to indicate whether the resources of a certain RBG group are allocated to a certain terminal device.
  • the size of the RBG can be determined by combining the following table, BWP bandwidth (bandwidth part size), and high-level parameter RBG-size, where RBG-size indicates whether the terminal device uses configuration 1 (configuration 1) or configuration 2 (configuration 2).
  • a continuous virtual resource block (VRB) of a downlink BWP is allocated to a terminal device, and there are two modes of interleaving and non-interleaving.
  • VRB virtual resource block
  • non-interleaved mode VRB is directly mapped to (physical RB, PRB).
  • interleaving mode 2-based row and column interleaving is performed from VRB to PRB, and the interleaving unit is 2RB or 4RB.
  • mapping type A mapping type A
  • mapping type B mapping type B
  • the start symbol S of the two types of PDSCH the first symbol number of the slot is marked as 0, and so on
  • the number of continuous symbols L counting from the symbol S
  • Table 2 shows the difference between S and L of the two types.
  • the start symbol of type A can be the first 4 symbols ⁇ 0, 1, 2, 3 ⁇ , and the start symbol of type B can be the first 13 symbols ⁇ 0,..., 12 ⁇ ;
  • the number of persistent symbols of type A can be ⁇ 3,...,, 14 ⁇ , and the number of persistent symbols of type B can be ⁇ 2, 4, 7 ⁇ .
  • the PDSCH can be mapped to the symbols ⁇ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ⁇ , as shown in Figure 1c.
  • the PDSCH can be mapped to the symbol ⁇ 4, 5 ⁇ , as shown in Figure 1d.
  • the PDSCH can be mapped to the symbols ⁇ 8, 9, 10, 11 ⁇ , as shown in FIG. 1e.
  • mapping type A according to the high-level parameter dmrs-TypeA-Position, the position of the first DMRS symbol can be determined, which may be at symbol 2 or symbol 3.
  • mapping type B the first DMRS symbol The symbol is on the first symbol of the PDSCH.
  • the scheduling of the two mapping types may also have additional DMRS symbols, which are explained here in a unified manner, and will not be repeated in the following.
  • the DMRS of PDSCH has two modes: single symbol and dual symbol.
  • DMRS can be sent on one or more symbols, and the symbols for sending DMRS are not connected.
  • DMRS can be sent on one or more groups of symbols. Each group of symbols sends a group of DMRS, and each group of DMRS is transmitted on two consecutive OFDM symbols, and the groups are not connected.
  • the DMRS of a group of 2 symbols is received by the terminal-side device, and then this group of DMRS is used for channel estimation. Only the DMRS on a certain symbol is received, and the channel estimation cannot be performed.
  • the index of symbols starts from 0, but the number of symbols starts from the first. That is, the symbol with index 0 is the first symbol, the symbol with index 1 is the second symbol, and so on.
  • the symbol duration l d of DMRS is defined as: for PDSCH mapping type A, l d is the duration from the first symbol of the slot to the last symbol of the scheduled PDSCH resource; for PDSCH mapping type B, l d is the scheduled PDSCH resource The number of OFDM symbols.
  • high-level parameters dmrs-AdditionalPosition and PDSCH duration l d can determine the position of the DMRS symbol (group)
  • DMRS is placed in On the symbol.
  • the results of multiple channel estimations can be filtered (such as Wiener filtering) to obtain the channel estimation on the PDSCH RE; in the dual-symbol mode, each group of DMRS is used After channel estimation is performed, filtering operations can be performed on the results of multiple channel estimations to obtain the channel estimation on the RE of the PDSCH.
  • the number of DMRS and the corresponding filtering parameters for different positions may be different.
  • l 1 in Table 3 above is 11 or 12, which is determined by high-level parameters.
  • a BWP is introduced under NR.
  • a BWP is a continuous segment of RB in a carrier.
  • a carrier can be configured with multiple downlink BWPs and multiple uplink BWPs, but at a certain moment, there can only be 1 downlink BWP and 1 uplink BWP.
  • the downlink signal currently received by the terminal device is in the downlink active BWP, and the uplink signal currently sent is in the uplink active BWP.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same function and effect.
  • words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • the embodiments of this application can be applied to the LTE system or the NR system (also referred to as the 5th generation (5G) system), and can also be applied to other new future-oriented systems, etc.
  • the embodiments of this application do not make specifics about this limited.
  • the term "system” can be replaced with "network”.
  • the communication system 20 includes a network device 30 and one or more terminal devices 40 connected to the network device 30.
  • different terminal devices 40 can communicate with each other.
  • the network device 30 is configured to send DCI and configuration information to the terminal device 40.
  • the network device 30 is further configured to determine a third resource based on the first resource and the second resource, and send demodulation reference signals of the downlink data channel and the downlink data channel to the terminal device 40 on the third resource.
  • the terminal device 40 is further configured to receive DCI and configuration information from the network device 30, and determine the second resource according to the DCI; and determine the first resource according to the configuration information.
  • the terminal device 40 is further configured to determine a third resource according to the first resource and the second resource, and receive the downlink data channel and the demodulation reference signal of the downlink data channel from the network device 30 on the third resource.
  • the first resource is a resource that cannot transmit demodulation reference signals of the downlink data channel and the downlink data channel
  • the second resource includes resources used to transmit the demodulation reference signal of the downlink data channel and the downlink data channel
  • the third resource is the resource used for transmitting the demodulation reference signal of the downlink data channel and the downlink data channel in the second resource.
  • the second resource includes the downlink data channel and the demodulation of the downlink data channel used to transmit DCI scheduling
  • the resource of the reference signal the third resource is the resource used to transmit the demodulation reference signal of the downlink data channel and the downlink data channel in the second resource.
  • the minimum scheduling granularity of the downlink data channel in the frequency domain is multiple RBs
  • These multiple RBs can be scheduled, and only the second resource is used to transmit the downlink data channel and the demodulation reference signal of the downlink data channel (that is, the third resource) to receive or send the downlink data channel and the downlink data channel solution
  • the second resource is used to transmit the downlink data channel and the demodulation reference signal of the downlink data channel (that is, the third resource) to receive or send the downlink data channel and the downlink data channel solution
  • the network device 30 in the embodiment of the present application is a device that connects the terminal device 40 to a wireless network, and may be an evolved base station (evolutional Node B, eNB or eNodeB) in the LTE system; or It is the base station in the NR system or the public land mobile network (PLMN) that will evolve in the future, the broadband network gateway (BNG), the convergence switch or the non-third generation partnership project (3rd generation partnership project) , 3GPP) access equipment, etc.
  • BNG broadband network gateway
  • 3rd generation partnership project 3rd generation partnership project
  • 3GPP 3rd generation partnership project
  • the base stations in the embodiments of the present application may include various forms of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, access points, etc., which are not specifically limited in the embodiments of the present application .
  • the terminal device 40 in the embodiment of the present application may be a device for implementing wireless communication functions, such as a terminal or a chip that can be used in a terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, and a mobile device in the LTE system, the NR system, or the future evolution of the PLMN. , Wireless communication equipment, terminal agents or terminal devices, etc.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the terminal can be mobile or fixed.
  • the network device 30 and the terminal device 40 in the embodiment of the present application may also be referred to as a communication device, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application.
  • FIG. 3 it is a schematic structural diagram of the network device 30 and the terminal device 40 provided in this embodiment of the application.
  • the terminal device 40 includes at least one processor (in FIG. 3 exemplarily includes a processor 401 as an example for illustration) and at least one transceiver (in FIG. 3 exemplarily includes a transceiver 403 as an example for illustration) ).
  • the terminal device 40 may further include at least one memory (in FIG. 3 exemplarily includes a memory 402 as an example for illustration), at least one output device (in FIG. 3 exemplarily, an output device 404 is included as an example.
  • at least one input device in FIG. 3, one input device 405 is exemplarily described as an example).
  • the processor 401, the memory 402, and the transceiver 403 are connected through a communication line.
  • the communication line may include a path to transmit information between the aforementioned components.
  • the processor 401 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the application Circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the processor 401 may also include multiple CPUs, and the processor 401 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 402 may be a device having a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory 402 may exist independently and is connected to the processor 401 through a communication line.
  • the memory 402 may also be integrated with the processor 401.
  • the memory 402 is used to store computer execution instructions for executing the solution of the present application, and the processor 401 controls the execution.
  • the processor 401 is configured to execute computer-executable instructions stored in the memory 402, so as to implement the communication method described in the embodiment of the present application.
  • the processor 401 may also perform processing-related functions in the communication method provided in the following embodiments of the application, and the transceiver 403 is responsible for communicating with other devices or communication networks.
  • the embodiment does not specifically limit this.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes or computer program codes, which are not specifically limited in the embodiments of the present application.
  • the transceiver 403 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), or wireless local area networks (WLAN) Wait.
  • the transceiver 403 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 404 communicates with the processor 401 and can display information in a variety of ways.
  • the output device 404 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • the input device 405 communicates with the processor 401 and can accept user input in a variety of ways.
  • the input device 405 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the network device 30 includes at least one processor (in FIG. 3 exemplarily includes a processor 301 as an example for illustration), at least one transceiver (in FIG. 3 exemplarily includes a transceiver 303 as an example for illustration), and At least one network interface (in FIG. 3, one network interface 304 is included as an example for illustration).
  • the network device 30 may further include at least one memory (in FIG. 3, one memory 302 is included as an example for illustration).
  • the processor 301, the memory 302, the transceiver 303, and the network interface 304 are connected through a communication line.
  • the network interface 304 is used to connect to the core network device through a link (for example, the S1 interface), or to connect with the network interface of other network equipment (not shown in FIG. 3) through a wired or wireless link (for example, the X2 interface).
  • a link for example, the S1 interface
  • the network interface of other network equipment not shown in FIG. 3
  • a wired or wireless link for example, the X2 interface.
  • the application embodiment does not specifically limit this.
  • FIG. 4 is a specific structural form of the terminal device 40 provided in an embodiment of the application.
  • the functions of the processor 401 in FIG. 3 may be implemented by the processor 110 in FIG. 4.
  • the function of the transceiver 403 in FIG. 3 may be implemented by the antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, etc. in FIG. 4.
  • antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal device 40 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide a solution including 2G/3G/4G/5G and other wireless communication technologies applied to the terminal device 40.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the wireless communication module 160 can provide applications on the terminal device 40 including WLAN (such as Wi-Fi network), Bluetooth (bluetooth, BT), global navigation satellite system (GNSS), frequency modulation (frequency modulation, FM ), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, perform frequency modulation, amplify it, and convert it into electromagnetic wave radiation via the antenna 2.
  • the wireless communication module 160 may provide an NFC wireless communication solution applied to the terminal device 40, which means that the first device includes an NFC chip.
  • the NFC chip can improve the NFC wireless communication function.
  • the wireless communication module 160 can provide a NFC wireless communication solution applied to the terminal device 40, which means that the first device includes an electronic tag (such as radio frequency identification (RFID) tags). ).
  • RFID radio frequency identification
  • the antenna 1 of the terminal device 40 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 40 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include long term evolution (LTE), BT, GNSS, WLAN, NFC, FM, or IR technology.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the function of the memory 402 in FIG. 3 may be implemented by an external memory (such as a Micro SD card) connected to the internal memory 121 or the external memory interface 120 in FIG. 4.
  • an external memory such as a Micro SD card
  • the function of the output device 404 in FIG. 3 may be implemented through the display screen 194 in FIG. 4.
  • the display screen 194 is used to display images, videos, and so on.
  • the display screen 194 includes a display panel.
  • the function of the input device 405 in FIG. 3 may be implemented by a mouse, a keyboard, a touch screen device, or the sensor module 180 in FIG. 4.
  • the sensor module 180 may include, for example, a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, and a fingerprint sensor 180H.
  • a pressure sensor 180A a pressure sensor 180A
  • a gyroscope sensor 180B an air pressure sensor 180C
  • a magnetic sensor 180D e.g., a MEMS acceleration sensor 180E
  • a distance sensor 180F e.g., a distance sensor 180F
  • a proximity light sensor 180G e.g., a a proximity light sensor 180G
  • a fingerprint sensor 180H e.g., a fingerprint sensor 180H.
  • the terminal device 40 may also include an audio module 170, a camera 193, an indicator 192, a motor 191, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, One or more of the power management module 141 and the battery 142, where the audio module 170 can be connected to a speaker 170A (also called a “speaker”), a receiver 170B (also called a “handset”), a microphone 170C (also called a “microphone”, “Microphone”) or the earphone interface 170D, etc., which are not specifically limited in the embodiment of the present application.
  • a speaker 170A also called a “speaker”
  • a receiver 170B also called a “handset”
  • a microphone 170C also called a “microphone”, "Microphone”
  • the earphone interface 170D etc.
  • the structure shown in FIG. 4 does not constitute a specific limitation on the terminal device 40.
  • the terminal device 40 may include more or fewer components than shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the downlink data channel is the PDSCH
  • the demodulation reference signal of the downlink data channel is the DMRS of the PDSCH as an example, as shown in FIG. 5, a communication method provided by this embodiment of the application , The communication method includes the following steps S501-S507:
  • S501 The network device sends configuration information to the terminal device.
  • the terminal device receives the configuration information from the network device.
  • the configuration information is used to determine the first resource, and the first resource is a resource that cannot transmit PDSCH and PDSCH DMRS.
  • S502 The network device sends DCI to the terminal device.
  • the terminal device receives the DCI from the network device.
  • the DCI is used to determine a second resource
  • the second resource includes resources used to transmit PDSCH and DMRS of PDSCH.
  • the network device determines a third resource according to the first resource and the second resource.
  • the third resource is a resource used for transmitting PDSCH and DMRS of PDSCH in the second resource.
  • S504 The terminal device determines the first resource according to the configuration information.
  • S505 The terminal device determines the second resource according to the DCI.
  • S506 The terminal device determines the third resource according to the first resource and the second resource.
  • the network device sends the PDSCH and the DMRS of the PDSCH to the terminal device on the third resource.
  • the terminal device receives the PDSCH and PDSCH DMRS from the network device on the third resource.
  • the network device usually first determines the first resource, and then sends configuration information for determining the first resource to the terminal device; the network device usually first determines the second resource before sending it to the terminal device
  • the DCI used to determine the second resource is described here in a unified manner, and will not be repeated here.
  • step S501 there is no inevitable order of execution between step S501, step S502, and step S503 in the embodiment of the present application.
  • Any step may be executed first, and then the remaining steps may be executed, or two of the steps may be executed first, and then The remaining one step may also be executed at the same time, which is not specifically limited in the embodiment of the present application.
  • Step S504 can be executed first, and then step S505; or step S505 can be executed first, and then step S504; Step S504 and step S505 may be performed simultaneously, which is not specifically limited in the embodiment of the present application.
  • the frequency domain resources in the first resource are N frequency domain resources, and N is a positive integer less than or equal to the third set value.
  • the third setting value can be 2, and the value of N can be 1 or 2.
  • the value of N is 1, it means that the frequency domain resource in the first resource is 1 segment of frequency domain resources; or, if the value of N is 2, it means that the frequency domain resource in the first resource is 2 segments. Frequency domain resources.
  • each frequency domain resource may include one or more (including 2) RB resources, where the multiple RB resources here are continuous RB resources.
  • continuous RB resources refer to frequency domain resources with continuous RB resource numbers.
  • the RB1 resource, the RB2 resource to the RB3 resource can be regarded as three continuous RB resources, and the RB1 resource and the RB3 resource can be mutually discontinuous RB resources.
  • the schematic diagram of the location of the frequency domain resource in the first resource may be as shown in FIG. 6b or FIG. 6c.
  • Fig. 6b takes the frequency domain resource in the first resource including 1 RB resource as an example for description
  • Fig. 6c takes the frequency domain resource in the first resource including multiple consecutive RB resources as an example for description.
  • the schematic diagram of the location of the frequency domain resource in the first resource may be as shown in FIG. 6d or FIG. 6e or FIG. 6f.
  • Fig. 6d takes each frequency domain resource including 1 RB resource as an example
  • Fig. 6e takes 1 frequency domain resource including 1 RB resource
  • 1 frequency domain resource includes multiple consecutive RB resources as an example.
  • FIG. 6f uses an example in which each frequency domain resource includes multiple consecutive RB resources.
  • the time domain resource in the first resource includes all time domain resources (for example, time domain symbols) within the validity period of the first resource, and when the first resource is determined according to configuration information, the configuration information is configured After that, the first resource can be deemed to be within the validity period; when the configuration information is deleted, it can be deemed that the first resource is not within the validity period.
  • the first resource is determined according to the configuration information and the DCI, it can be considered that within the time domain of the PDSCH, the first resource is within the validity period, which is described here in a unified manner, and will not be repeated here.
  • the schematic diagram of the location of the first resource may be as shown in FIG. 7a or FIG. 7b.
  • the frequency domain resources in the first resource in FIG. 7a are 1 frequency domain resources
  • the frequency domain resources in the first resource in FIG. 7b are 2 frequency domain resources.
  • the second resource in the embodiment of the present application may include multiple RB resources.
  • the frequency domain scheduling granularity of the PDSCH may be the RBG corresponding to the frequency domain resource scheduling mode type 0 of the PDSCH; or the frequency domain scheduling granularity of the PDSCH may be a continuous VRB of the downlink BWP corresponding to the frequency domain resource scheduling mode type 1 of the PDSCH.
  • the real-time example of this application does not specifically limit this.
  • the third resource is a resource other than the intersection of the first resource and the second resource in the second resource.
  • mapping type A mapping type A
  • two frequency-domain resource scheduling modes of PDSCH as type 0 (i.e. RBG granularity) as an example
  • start symbol 2
  • number of sustained symbols 11
  • the corresponding schematic diagram of the location of the second resource is shown in FIG. 8.
  • the schematic diagram of the location of the first resource is shown in FIG. 7a
  • the schematic diagram of the location of the third resource may be as shown in FIG. 9a; or, assuming the location of the first resource
  • the schematic diagram is shown in Figure 7b, and the schematic diagram of the location of the third resource can be as shown in Figure 9b.
  • determining the second resource by the terminal device may include: the terminal device determines the second resource according to frequency domain resource assignment information and time domain resource assignment information in DCI. Two resources.
  • the terminal device determining the first resource may include: the terminal device determining the first resource according to configuration information.
  • the terminal device determining the first resource may include: the terminal device determining the first resource according to the configuration information and the DCI.
  • the terminal device determines the first resource according to the configuration information and the rate matching indication field in the DCI.
  • the rate matching indication field in the DCI indicates whether the resources in the rate match pattern group can be used to transmit PDSCH and PDSCH DMRS.
  • One or more rate matching patterns may be included in the rate match pattern group. For example, if the bit corresponding to a rate matching pattern group is 1, the resources in the rate matching pattern group cannot be used to transmit PDSCH and PDSCH DMRS.
  • the rate matching pattern in the embodiment of the present application, reference may be made to the following content, which is not repeated here.
  • the configuration information in the embodiments of the present application may be configured to the terminal device through high-level signaling.
  • the high-level signaling may be, for example, radio resource control (radio resource control, RRC) signaling or media access control control unit (media Access control-control element, MAC-CE) signaling, etc., which are not specifically limited in the embodiment of the present application.
  • the configuration information includes indication information of the frequency domain resource in the first resource.
  • the terminal device or the network device defaults (such as stipulated by the protocol) that the time domain resources in the first resource include all time domain resources (such as time domain symbols) within the validity period of the first resource.
  • the indication information of the frequency domain resource in the first resource may be, for example, an RB-level bitmap.
  • a schematic diagram of the position of the first resource on multiple slots (slots) may be as shown in FIG. 10a.
  • a schematic diagram of the location of the first resource on multiple slots (slots) may be as shown in FIG. 10b.
  • the configuration information includes indication information of the frequency domain resource in the first resource and indication information of the time domain resource in the first resource, where the indication information of the time domain resource is used to indicate
  • the time domain resources include all time domain resources within the validity period of the first resource.
  • the indication information of the frequency domain resource in the first resource may be, for example, an RB-level bitmap.
  • the indication information of the time domain resource in the first resource may be, for example, a symbol-level bitmap, where the bit values in the symbol-level bitmap are all 1, and the default (such as protocol stipulations) periodicity and pattern are all 1.
  • the indication information of the time domain resource in the first resource may be, for example, a symbol-level bitmap and a periodicity and pattern, where the bit values in the symbol-level bitmap and the periodicity and pattern are all 1.
  • the bit values in the symbol-level bitmap are all 1, and the bit values in the periodicity and pattern are all 1, then the schematic diagram of the location of the first resource on multiple slots can be As shown in Figure 11a.
  • the bit values in the symbol-level bitmap are all 1, and the bit values in the periodicity and pattern are all 1, then the position of the first resource on multiple slots (slots)
  • the schematic diagram can be as shown in Figure 11b.
  • the configuration information is characterized by M rate matching patterns, and M is a positive integer less than or equal to the first set value.
  • the first set value can be 2, and the value of M can be 1 or 2.
  • the value of M is 1, it means that the configuration information is characterized by one rate matching pattern; or, if the value of M is 2, it means that the configuration information is characterized by two rate matching patterns.
  • the frequency domain resources corresponding to the M rate matching patterns may overlap, or may not overlap at all, which is not specifically limited in the embodiment of the present application.
  • the first rate matching pattern in the M rate matching patterns includes S frequency domain resources, and S is a positive integer less than or equal to the second set value.
  • the first set value can be 2, and the value of S can be 1 or 2. Among them, if the value of S is 1, it means that there is a frequency domain resource included in the first rate matching pattern; or, if the value of S is 2, it means that there are 2 frequency domain resources in the first rate matching pattern. Resources.
  • the rate matching pattern in the embodiment of the present application may be as shown in FIG. 10b or FIG. 11b.
  • the rate matching pattern in the embodiment of the present application may be as shown in FIG. 10a or FIG. 11a.
  • each rate matching pattern of the two rate matching patterns may include 1 frequency domain resource; or, each of the 2 rate matching patterns may include 2 frequency domains. Resource; or, one of the two rate matching patterns includes 1 frequency domain resource, and the other rate matching pattern includes 2 frequency domain resources.
  • the two rate matching patterns may be the same or different, which is not specifically limited in the embodiment of the present application.
  • the first resource is a resource other than resources corresponding to at least one set of rate matching patterns, where the resources corresponding to each set of rate matching patterns in the at least one set of rate matching patterns are respectively The resources indicated by DCI that cannot transmit PDSCH.
  • the first resource may be a resource other than at least one set of rate matching patterns indicated by the rate matching indication field in the existing DCI that cannot transmit the PDSCH.
  • the PDSCH in the embodiment of the present application belongs to the PDSCH whose mapping type is Type A.
  • the DMRS mapping the PDSCH of type A may overlap with the resources that cannot be used to transmit PDSCH, and the DMRS mapping the PDSCH of type B cannot overlap with the resources that cannot be used to transmit the PDSCH.
  • the processing of the PDSCH with the mapping type of type B can refer to the solution of the existing protocol, which will not be repeated here.
  • the PDSCH in the embodiment of the present application belongs to the PDSCH whose mapping type is Type B and the persistent time domain resource length is the fourth set value.
  • the mapping type is Type B
  • the duration of time domain resource length is The DMRS of the PDSCH that is a value other than the fourth set value cannot overlap with the resources that cannot be used to transmit the PDSCH.
  • the mapping type is type B
  • the processing of the PDSCH whose duration time domain resource length is a value other than the fourth preset value can refer to the solution of the existing protocol, which will not be repeated here.
  • the length of the persistent time domain resource here may be, for example, 2 time domain symbols.
  • the DMRS of the dual symbol mode when the DMRS of the PDSCH is in the dual symbol mode, the DMRS of the dual symbol mode includes at least one group of dual symbol DMRS. If the fourth resource includes the first DMRS symbol corresponding to a group of dual-symbol DMRS on an RB, but does not include the second DMRS symbol corresponding to the group of dual-symbol DMRS on the RB, the second DMRS symbol cannot be used for DMRS for PDSCH transmission. Wherein, the fourth resource is the intersection of the first resource and the second resource. Optionally, the second DMRS symbol cannot be used to transmit PDSCH.
  • the DMRS on the second DMRS symbol that cannot be used to transmit PDSCH and PDSCH; or, the DMRS that cannot be used to transmit PDSCH on the second DMRS symbol can be used to transmit PDSCH.
  • the first resource includes a symbol in the time domain and all RBs on a BWP in the frequency domain or all RBs on a carrier, or the first resource includes an RB in the frequency domain and the time domain. All symbols on it. Or, if the first resource includes an RB in the frequency domain and a symbol in the time domain, it is determined that the first resource includes this symbol and all RBs of a BWP in the frequency domain or all RBs on a carrier, or the first resource Including this RB and all symbols in the time domain.
  • the terminal device or network device can determine that the overlapped resource is in the frequency domain.
  • the second resource cannot be used to transmit PDSCH and the DMRS of the PDSCH within the duration of the second resource; or within the frequency domain range of the overlapping resource, the second resource cannot be used to transmit the DMRS of the PDSCH within the duration of the second resource, but can be used for transmission PDSCH.
  • the terminal device or network device can determine that the overlapping resource is within the time domain range , Within the frequency domain of the second resource, the PDSCH and the DMRS of the PDSCH cannot be transmitted; or, within the time domain of the overlapping resource, within the frequency domain of the second resource, the DMRS that cannot be used to transmit the PDSCH can be used for transmission PDSCH.
  • the DMRS resource used to transmit the PDSCH in the second resource overlaps with the first resource on one symbol of one RB, then the RB on the entire BWP or the entire carrier on this symbol None of the above RBs can be used for PDSCH DMRS, and the optional ones cannot be used to transmit PDSCH. Or, all symbols on this RB cannot be used to transmit the DMRS of the PDSCH, and optionally cannot be used to transmit the PDSCH.
  • the communication method shown in FIG. 5 is described by taking the communication system shown in FIG. 2 as the NR system, the downlink data channel is the PDSCH, and the demodulation reference signal of the downlink data channel is the DMRS of the PDSCH as an example.
  • the solutions provided in the embodiments of the present application can also be applied to other communication systems. For related descriptions, reference may be made to the embodiment shown in FIG. 5, which is not repeated here.
  • the second resource includes the downlink data channel and the downlink data channel used to transmit DCI scheduling.
  • the third resource is the resource used to transmit the demodulation reference signal of the downlink data channel and the downlink data channel in the second resource.
  • the minimum scheduling granularity in the frequency domain of the downlink data channel is more In the case of two RBs, these multiple RBs can be scheduled, and the downlink data channel can be received or sent only on the resource (that is, the third resource) used to transmit the downlink data channel and the demodulation reference signal of the downlink data channel in the second resource And the demodulation reference signal of the downlink data channel, thereby improving the resource utilization rate without affecting the reception performance of the downlink data channel.
  • the network device can schedule the entire RBG and send the DMRS of PDSCH and PDSCH on other RB resources besides N RB resources.
  • the PDSCH and the DMRS of the PDSCH are received on other RB resources other than the RB resource, so that the resource utilization rate can be improved without affecting the reception performance of the PDSCH.
  • the actions of the network device in the above steps S501 to S507 can be called by the processor 301 in the network device 30 shown in FIG. 3 to call the application code stored in the memory 302 to instruct the network device to execute.
  • the action of the terminal device can be executed by the processor 401 in the terminal device 40 shown in FIG. 3 calling the application code stored in the memory 402 to instruct the network device to execute, and this embodiment does not impose any limitation on this.
  • the methods and/or steps implemented by the terminal device can also be implemented by a chip system that implements the above terminal device functions
  • the methods and/or steps implemented by a network device can also be implemented by The chip system implementation of the above network device functions.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the terminal device in the foregoing method embodiment or a chip system that implements the foregoing terminal device function; or, the communication device may be the network device in the foregoing method embodiment or a chip system that implements the foregoing network device function.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 13 shows a schematic structural diagram of a terminal device 130.
  • the terminal device 130 includes a processing module 1301 and a transceiver module 1302.
  • the transceiver module 1302 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the transceiver module 1302 is used to receive configuration information from the network device; the transceiver module 1302 is also used to receive downlink control information from the network device; the processing module 1301 is used to determine the first resource according to the configuration information, and the first resource is The resources that cannot transmit the demodulation reference signal of the downlink data channel and the downlink data channel; the processing module 1301 is also used to determine the second resource according to the downlink control information, and the second resource includes the demodulation used to transmit the downlink data channel and the downlink data channel The resource of the reference signal; the processing module 1301 is also used to determine the third resource according to the first resource and the second resource, the third resource is the resource used to transmit the demodulation reference signal of the downlink data channel and the downlink data channel in the second resource The transceiver module 1302 is also used to receive the downlink data channel and the demodulation reference signal of the downlink data channel from the network device on the third resource.
  • the terminal device 130 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the terminal device 130 may take the form of the terminal device 40 shown in FIG. 3.
  • the processor 401 in the terminal device 40 shown in FIG. 3 may invoke the computer execution instruction stored in the memory 402 to make the terminal device 40 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 1301 and the transceiver module 1302 in FIG. 13 may be implemented by the processor 401 in the terminal device 40 shown in FIG. 3 calling the computer execution instructions stored in the memory 402.
  • the function/implementation process of the processing module 1301 in FIG. 13 can be implemented by the processor 401 in the terminal device 40 shown in FIG. 3 calling a computer execution instruction stored in the memory 402, and the function of the transceiver module 1302 in FIG. /The realization process can be realized by the transceiver 403 in the terminal device 40 shown in FIG. 3.
  • the terminal device 130 provided in this embodiment can execute the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • FIG. 14 shows a schematic structural diagram of a network device 140.
  • the network device 140 includes a processing module 1401 and a transceiver module 1402.
  • the transceiver module 1402 may also be called a transceiver unit to implement sending and/or receiving functions, for example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the transceiver module 1402 is configured to send configuration information to the terminal device, and the configuration information is used to determine a first resource.
  • the first resource is a resource that cannot transmit the downlink data channel and the demodulation reference signal of the downlink data channel; the transceiver module 1402, It is also used to send downlink control information to a terminal device, where the downlink control information is used to determine a second resource, and the second resource includes a resource used to transmit the downlink data channel and the demodulation reference signal of the downlink data channel; the processing module 1401 is configured to According to the first resource and the second resource, the third resource is determined.
  • the third resource is the resource used for transmitting the demodulation reference signal of the downlink data channel and the downlink data channel in the second resource; the transceiver module 1402 is also used for the third resource The resource sends the downlink data channel and the demodulation reference signal of the downlink data channel to the terminal device.
  • the network device 140 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the network device 140 may take the form of the network device 30 shown in FIG. 3.
  • the processor 301 in the network device 30 shown in FIG. 3 may invoke the computer execution instructions stored in the memory 302 to make the network device 30 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 1401 and the transceiver module 1402 in FIG. 14 may be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling the computer execution instructions stored in the memory 302.
  • the function/implementation process of the processing module 1401 in FIG. 14 can be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling the computer execution instructions stored in the memory 302, and the function of the transceiver module 1402 in FIG. /The implementation process can be implemented by the transceiver 303 in the network device 30 shown in FIG. 3.
  • the network device 140 provided in this embodiment can perform the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供通信方法、设备及系统,可以在不影响下行数据信道的接收性能的前提下提高资源的利用率。方案包括:终端设备接收来自网络设备的配置信息;终端设备接收来自网络设备的下行控制信息;终端设备根据配置信息确定第一资源,第一资源为不能传输下行数据信道和下行数据信道的解调参考信号的资源;终端设备根据下行控制信息确定第二资源,第二资源包括用于传输下行数据信道和下行数据信道的解调参考信号的资源;终端设备根据第一资源和第二资源确定第三资源,第三资源为第二资源中用于传输下行数据信道和下行数据信道的解调参考信号的资源;终端设备在第三资源上接收来自网络设备的下行数据信道和下行数据信道的解调参考信号。

Description

通信方法、设备及系统
本申请要求于2019年04月26日提交国家知识产权局、申请号为201910346044.2、申请名称为“通信方法、设备及系统”,以及于2019年08月16日提交国家知识产权局、申请号为201910760333.7、申请名称为“通信方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及通信方法、设备及系统。
背景技术
现有新无线(new radio,NR)系统中,物理下行数据信道(physical downlink shared channel,PDSCH)的频域最小调度粒度是多个资源块(resource block,RB)。比如,在类型0(type0)中,PDSCH的频域最小调度粒度为资源块组(resource block group,RBG)。
此外,NR系统中还定义了一些不能用于发送PDSCH的时频资源,若这些时频资源和终端设备根据下行控制信息(downlink control information,DCI)确定的时频资源块有交集,则相交的时频资源不用于传输PDSCH。同时,为了避免信道估计的复杂性,协议规定:终端设备不期待PDSCH的解调参考信号(demodulation reference signal,DMRS)和不能用来传输PDSCH的资源有重叠,甚至是部分重叠(a UE is not expected to handle the case where PDSCH DMRS REs are overlapping,even partially,with any REs not available for PDSCH)。
然而,如图1a所示,若一个RBG内,存在NR系统定义的N个RB的资源不能发送PDSCH,则若整个RBG不调度,此时会浪费RBG内除这N个RB资源之外的其他RB资源。而若调度该RBG,则网络设备需要通过DCI将整个RBG的资源配置给终端设备,同时指示不能用来发送PDSCH的N个RB的资源。该情况下,终端设备根据指示信息可以获知不能用来发送PDSCH的N个RB的资源,但是考虑到协议规定,终端设备不期待PDSCH的DMRS和不能用来传输PDSCH的资源有重叠,因此终端设备还是会认为用于传输DMRS的位置存在DMRS,这样显然会影响信道估计和噪声估计,影响PDSCH的接收性能。
发明内容
本申请实施例提供通信方法、设备及系统,可以在不影响下行数据信道的接收性能的前提下提高资源的利用率。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种通信方法,该方法包括:终端设备接收来自网络设备的配置信息;终端设备接收来自该网络设备的下行控制信息;终端设备根据该配置信息确定第一资源,该第一资源为不能传输下行数据信道和该下行数据信道的解调参考信号的资源;终端设备根据该下行控制信息确定第二资源,该第二资源包括用于传输该下行数据信道和该下行数据信道的解调参考信号的资源;终端设备根据该第一资源和该 第二资源确定第三资源,该第三资源为该第二资源中用于传输该下行数据信道和该下行数据信道的解调参考信号的资源;终端设备在该第三资源上接收来自该网络设备的该下行数据信道和该下行数据信道的解调参考信号。基于该方案,由于该方案中的第一资源为不能传输下行数据信道和下行数据信道的解调参考信号的资源,第二资源包括用于传输DCI调度的下行数据信道和下行数据信道的解调参考信号的资源,第三资源为第二资源中用于传输下行数据信道和下行数据信道的解调参考信号的资源,因此在下行数据信道的频域最小调度粒度是多个RB的情况下,可以调度这多个RB,并且仅在第二资源中用于传输下行数据信道和下行数据信道的解调参考信号的资源(即第三资源)上接收或发送下行数据信道和下行数据信道的解调参考信号,从而可以在不影响下行数据信道的接收性能的前提下提高资源的利用率。
在一种可能的设计中,终端设备根据该配置信息确定第一资源,包括:终端设备根据该配置信息和该下行控制信息确定该第一资源。也就是说,本申请实施例中,终端设备在根据配置信息确定第一资源时,可以结合下行控制信息确定,从而更满足下行数据信道的调度需求。
第二方面,提供了一种通信方法,该方法包括:网络设备向终端设备发送配置信息,该配置信息用于确定第一资源,该第一资源为不能传输下行数据信道和该下行数据信道的解调参考信号的资源;网络设备向该终端设备发送下行控制信息,该下行控制信息用于确定第二资源,该第二资源包括用于传输该下行数据信道和该下行数据信道的解调参考信号的资源;网络设备根据该第一资源和该第二资源,确定第三资源,该第三资源为该第二资源中用于传输该下行数据信道和该下行数据信道的解调参考信号的资源;网络设备在该第三资源上向该终端设备发送该下行数据信道和该下行数据信道的解调参考信号。基于该方案,由于该方案中的第一资源为不能传输下行数据信道和下行数据信道的解调参考信号的资源,第二资源包括用于传输DCI调度的下行数据信道和下行数据信道的解调参考信号的资源,第三资源为第二资源中用于传输下行数据信道和下行数据信道的解调参考信号的资源,因此在下行数据信道的频域最小调度粒度是多个RB的情况下,可以调度这多个RB,并且仅在第二资源中用于传输下行数据信道和下行数据信道的解调参考信号的资源(即第三资源)上接收或发送下行数据信道和下行数据信道的解调参考信号,从而可以在不影响下行数据信道的接收性能的前提下提高资源的利用率。
在一种可能的设计中,该下行控制信息还用于确定该第一资源。也就是说,本申请实施例中,终端设备在根据配置信息确定第一资源时,可以结合下行控制信息确定,从而更满足下行数据信道的调度需求。
结合上述第一方面或第二方面,在一种可能的设计中,该配置信息包括该第一资源中频域资源的指示信息;其中,该第一资源中的时域资源包括该第一资源有效期内的所有时域资源。也就是说,本申请实施例中,可以仅配置第一资源中的频域资源,默认(比如协议规定)第一资源中的时域资源为第一资源有效期内的所有时域资源。
结合上述第一方面或第二方面,在一种可能的设计中,该配置信息包括该第一资源中频域资源的指示信息和该第一资源中时域资源的指示信息,其中,该时域资源的指示信息用于指示该第一资源中的时域资源包括该第一资源有效期内的所有时域资源。 也就是说,本申请实施例中,可以同时配置第一资源中的频域资源和时域资源,其中,第一资源中的时域资源被配置为第一资源有效期内的所有时域资源。
结合上述第一方面或第二方面,在一种可能的设计中,该配置信息通过M个速率匹配图案进行表征,M为小于或者等于第一设定值的正整数。比如,该配置信息通过1个速率匹配图案进行表征,或者该配置信息通过受限数量个速率匹配图案进行表征。
结合上述第一方面或第二方面,在一种可能的设计中,该M个速率匹配图案中的第一速率匹配图案中包括S段频域资源,S为小于或者等于第二设定值的正整数。比如,该M个速率匹配图案中的第一速率匹配图案中包括1段频域资源,或者,该M个速率匹配图案中的第一速率匹配图案中包括受限数量段频域资源。
结合上述第一方面或第二方面,在一种可能的设计中,该第一资源中的频域资源为N段频域资源,N为小于或者等于第三设定值的正整数。比如,第一资源中的频域资源为1段频域资源;或者,第一资源中的频域资源为多段频域资源。
结合上述第一方面或第二方面,在一种可能的设计中,该第一资源为至少一组速率匹配图案对应的资源之外的资源,其中,该至少一组速率匹配图案对应的资源为该下行控制信息所指示的不能传输该下行数据信道的资源。
结合上述第一方面或第二方面,在一种可能的设计中,该下行数据信道属于映射类型为类型A的下行数据信道。也就是说,仅映射类型为类型A的下行数据信道的解调参考信号可能和不能用来传输下行数据信道的资源有重叠,映射类型为类型B的下行数据信道的解调参考信号不能和不能用来传输下行数据信道的资源有重叠。该情况下,映射类型为类型B的下行数据信道的处理可参考现有协议的方案,在此不予赘述。
结合上述第一方面或第二方面,在一种可能的设计中,该下行数据信道属于映射类型为类型B,且持续时域资源长度为第四设定值的下行数据信道。也就是说,仅映射类型为类型B,且持续时域资源长度为第四设定值的下行数据信道的解调参考信号可能和不能用来传输下行数据信道的资源有重叠;映射类型为类型B,持续时域资源长度为第四设定值之外的数值的下行数据信道的解调参考信号不能和不能用来传输下行数据信道的资源有重叠。该情况下,映射类型为类型B,持续时域资源长度为第四设定值之外的数值的下行数据信道的处理可参考现有协议的方案,在此不予赘述。
结合上述第一方面或第二方面,在一种可能的设计中,在下行数据信道的解调参考信号为双符号模式的情况下,所述双符号模式的解调参考信号包括至少一组双符号解调参考信号。若第四资源中包含一个资源块上的一组双符号解调参考信号对应的第一解调参考信号符号,不包含该资源块上的该组双符号解调参考信号对应的第二解调参考信号符号,则该第二解调参考信号符号上不能用于传输下行数据信道的解调参考信号。其中,该第四资源为第一资源和第二资源的交集。可选的,该第二解调参考信号符号上不能用于传输下行数据信道。
结合上述第一方面或第二方面,在一种可能的设计中,第一资源包括时域上一个符号和频域上一个带宽部分BWP上的所有资源块或者一个载波上的所有资源块,或者第一资源包括频域上一个资源块和时域上所有符号。或者,若第一资源中包括了频域上一个资源块和时域上的某一个符号,则确定第一资源包括时域上这个符号和频域上一个带宽部分BWP上的所有资源块或者一个载波上的所有资源块,或者第一资源 包括频域上这个资源块和时域上的所有符号。
结合上述第一方面或第二方面,在一种可能的设计中,若第二资源中用于传输下行数据信道的解调参考信号的资源和第一资源有重叠,则终端设备或网络设备可以确定重叠资源的频域范围内,第二资源的持续时间内,不能用于传输下行数据信道的解调参考信号。可选的,该重叠资源的频域范围内,第二资源的持续时间内,不能用于传输下行数据信道。
结合上述第一方面或第二方面,在一种可能的设计中,若第二资源中用于传输下行数据信道的解调参考信号的资源和第一资源有重叠,则终端设备或网络设备可以确定重叠资源的时域范围内,第二资源的频域范围内,不能用于传输下行数据信道的解调参考信号。可选的,重叠资源的时域范围内,第二资源的频域范围内,不能用于传输下行数据信道。
第三方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面中的终端设备或者实现上述终端设备功能的芯片系统;或者,该通信装置可以为上述第二方面中的网络设备或者实现上述网络设备功能的芯片系统。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的终端设备或者实现上述终端设备功能的芯片系统;或者,该通信装置可以为上述第二方面中的网络设备或者实现上述网络设备功能的芯片系统。
第五方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中的终端设备或者实现上述终端设备功能的芯片系统;或者,该通信装置可以为上述第二方面中的网络设备或者实现上述网络设备功能的芯片系统。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第八方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第三方面至第八方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第九方面,提供一种通信系统,该通信系统包括上述方面所述的终端设备和上述方面所述的网络设备。
附图说明
图1a为现有的PDSCH调度示意图;
图1b为现有的速率匹配图案示意图;
图1c为现有的PDSCH的映射示意图一;
图1d为现有的PDSCH的映射示意图二;
图1e为现有的PDSCH的映射示意图三;
图2为本申请实施例提供的一种通信系统的架构示意图;
图3为本申请实施例提供的终端设备和网络设备的结构示意图;
图4为本申请实施例提供的终端设备的另一种结构示意图;
图5为本申请实施例提供的通信方法流程示意图;
图6a为本申请实施例提供的RB资源的位置示意图;
图6b为本申请实施例提供的第一资源中的频域资源的位置示意图一;
图6c为本申请实施例提供的第一资源中的频域资源的位置示意图二;
图6d为本申请实施例提供的第一资源中的频域资源的位置示意图三;
图6e为本申请实施例提供的第一资源中的频域资源的位置示意图四;
图6f为本申请实施例提供的第一资源中的频域资源的位置示意图五;
图7a为本申请实施例提供的第一资源的位置示意图一;
图7b为本申请实施例提供的第一资源的位置示意图二;
图8为本申请实施例提供的第二资源的位置示意图;
图9a为本申请实施例提供的第三资源的位置示意图一;
图9b为本申请实施例提供的第三资源的位置示意图二;
图10a为本申请实施例提供的第一资源的位置示意图三;
图10b为本申请实施例提供的第一资源的位置示意图四;
图11a为本申请实施例提供的第一资源的位置示意图五;
图11b为本申请实施例提供的第一资源的位置示意图六;
图12为本申请实施例提供的PDSCH调度示意图;
图13为本申请实施例提供的终端设备的又一种结构示意图;
图14为本申请实施例提供的网络设备的又一种结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术或名词的简要介绍如下。
第一,DCI:
NR系统中,用于调度PDSCH的物理下行控制信道(Physical downlink control channel,PDCCH)上承载有DCI。该DCI包括频域资源配置(frequency domain resource assignment)信息域、时域资源配置(time domain resource assignment)信息域、以及速率匹配指示域。
其中,频域资源配置(frequency domain resource assignment)信息域用于指示频域资源的位置。时域资源配置(time domain resource assignment)信息域用于指示PDSCH时域上的起始符号(symbol)和持续符号个数、PDSCH的映射类型和PDSCH的DMRS位置。终端设备根据频域资源配置(frequency domain resource assignment) 信息和时域资源配置(time domain resource assignment)信息即可确定一个用于传输PDSCH和PDSCH的DMRS的时频资源块,同时可以获知DCI调度的PDSCH的映射类型和PDSCH的DMRS位置。其中,PDSCH的映射类型的相关描述可参考下述实施例中的内容,在此不予赘述。
其中,速率匹配指示域用于指示速率匹配图案组(rate match pattern group)中的资源是否能用于传输PDSCH。比如,若一个速率匹配图案组对应的bit为1,则该速率匹配图案组中的资源不能用来传输PDSCH,其中,速率匹配图案组的相关描述可参考下述实施例中的内容,在此不予赘述。
当然,DCI中还可能包括其他字段,本申请实施例对此不作具体限定。
需要说明的是,本申请实施例中的符号(symbol)也可以称之为时域符号,该符号例如可以为长期演进(long term evolution,LTE)系统或者NR系统中的正交频分复用(orthogonal frequency division multiplexing)符号或者未来系统中的其他符号等,在此统一说明,以下不再赘述。
第二,不能用来发送PDSCH的资源:
目前,NR系统定义的不能用来发送PDSCH的资源分为三类,包括:资源块(resource block,RB)符号(symbol)级的资源、资源单元(resource element,RE)级的资源和同步信号(synchronization signal,SS)/物理广播信道(physical broadcast channel,PBCH)(SS/PBCH block,SSB)资源。其中,本申请下述实施例中主要涉及RB symbol级的资源,不涉及RE级的资源和SSB资源,在此统一说明,以下不再赘述。
第三,RB symbol级的不能用来发送PDSCH的资源:
其中,一个终端设备的每个带宽部分(bandwidth part,BWP)可以配置BWP级的至多4个速率匹配图案(rate match pattern),每个服务小区可以配置小区级的至多4个速率匹配图案。目前,一个速率匹配图案可以包括:
网络设备配置的一对预留资源,该对预留资源包含一个1RB粒度的RB级位表(bitmap),和一个包含12或14个OFDM符号的时间单元上的symbol级bitmap。其中,RB级bitmap和symbol级bitmap的bit值如果为1,表示对应的资源不能用于发送PDSCH。而对于每对RB级bitmap和symbol级bitmap,可配置一个周期和图案(periodicity and pattern),该periodicity and pattern中的每个bit对应一个symbol级bitmap。其中,若periodicity and pattern中的bit值为1,代表这个单元存在预留资源对。示例性的,假设periodicity and pattern为10,RB级bitmap为00110……11,symbol级bitmap为10……11 01……10,则对应的不能用来发送PDSCH的资源位置可以如图1b所示。
需要说明的是,本申请实施例中,包含12个OFDM符号或14个OFDM符号的时间单元在LTE系统中称为子帧,对应2个时隙(slot);在NR系统中对应1个时隙(slot)。本申请下述实施例中的时隙(slot)均是以NR系统的时隙(slot)为例进行描述,在此统一说明,以下不再赘述。
第四,速率匹配图案组(rate match pattern group):
其中,一个配置的rate match pattern group(如rate match pattern group1或rate  matchpattern group2)包括一组rate match pattern对应的资源集合。每个rate match pattern group对应于调度这个PDSCH的PDCCH上承载的DCI中的速率匹配指示域中的1bit。若一个rate match pattern group对应的bit为1,则这部分资源不能用来传输PDSCH。此外,不包含在任何一个rate match pattern group内的rate match pattern资源不用来发送PDSCH。
第五,PDSCH的频域调度粒度:
目前,PDSCH有两种频域资源调度方式,分别为类型0(type0)和类型1(type1)。
在type0中,将一个BWP按RBG粒度分组,然后用位图(bitmap)方式来指示某个RBG分组的资源是否分配给某个终端设备。这里RBG的大小可以结合下表、BWP带宽(bandwidth part size)和高层参数RBG-size确定,其中RBG-size指示终端设备使用配置1(configuration 1)还是配置2(configuration 2)。
表一
BWP带宽 配置1 配置2
1-36 2 4
37-72 4 8
73-144 8 16
145-275 16 16
在type1中,将一个下行BWP的一段连续的虚拟资源块(virtual resource block,VRB)分配给一个终端设备,有交织和非交织两种模式。非交织模式下,VRB直接映射到(physical RB,PRB)。交织模式下,VRB到PRB进行基于2的行列交织,交织单元为2RB或者4RB。
第六,PDSCH的时域映射方式:
NR系统中,PDSCH有两种映射类型:映射类型A(mapping type A)和映射类型B(mapping type B)。两种类型的PDSCH的起始符号S(该slot的第一个符号序号记为0,以此类推)和持续符号个数L(从符号S开始计数)不同,DMRS的位置也不同。表二给出了两种type的S和L的差异。
表二
Figure PCTCN2020081859-appb-000001
由表二可知,在常规循环前缀(cyclic prefix,CP)(normal CP,NCP)时(扩展CP(expanded CP,ECP)类似):
(1),type A的起始符号可以是前4个符号{0,1,2,3},type B的起始符号可 以是前13个符号{0,…,12};
(2),type A的持续符号个数可以是{3,…,,14},type B的持续符号个数可以是{2,4,7}。
示例性的,以映射类型A为例,假设起始符号为2,持续符号个数为11,则PDSCH可以映射至符号{2,3,4,5,6,7,8,9,10,11,12},如图1c所示。
或者,示例性的,以映射类型B为例,假设起始符号为4,持续符号个数为2,则PDSCH可以映射至符号{4,5},如图1d所示。
或者,示例性的,以映射类型B为例,假设起始符号为8,持续符号个数为4,则PDSCH可以映射至符号{8,9,10,11},如图1e所示。
此外,需要说明的是,对于映射类型A,根据高层参数dmrs-TypeA-Position,可以确定第一个DMRS符号的位置,可能是在符号2或者符号3;而对于映射类型B,第一个DMRS符号在PDSCH的第一个符号上。另外,两种映射类型的调度还可能有附加DMRS符号,在此统一说明,以下不再赘述。
第七,PDSCH的DMRS的时域映射方式:
NR系统中,PDSCH的DMRS有单符号和双符号两种模式。单符号模式下,可以在一个或多个符号上发送DMRS,这些发送DMRS的符号之间不相连。双符号模式下,可以在一组或多组符号上发送DMRS,每组符号发送一组DMRS,每组DMRS在连续的2个OFDM符号上传输,组和组之间不相连。
在双符号模式下,终端侧设备一组的2个符号的DMRS都收到,再利用这组DMRS进行信道估计,只收到某个符号上的DMRS,是无法进行信道估计的。
需要说明的是,符号的索引是从0开始的,但是说第几个符号,是从第1个开始的。也就是索引为0的符号是第1个符号,索引为1的符号是第2个符号,以此类推。
第一个DMRS符号的参考点l和位置l 0取决于PDSCH的映射类型:对于PDSCHmapping type A,l相对于slot的起始符号进行定义,l 0=3或者l 0=2(根据高层参数确定);对于PDSCHmapping type B,l用调度的PDSCH资源的起始符号进行定义,l 0=0。
DMRS的符号持续时间l d定义为:对于PDSCHmapping type A,l d是从slot的第一个符号到调度的PDSCH资源的最后一个符号的持续时间;对于PDSCHmapping type B,l d是调度的PDSCH资源的OFDM符号数。
由以下表三和表四可知,根据PDSCHmapping type,高层参数dmrs-AdditionalPosition和PDSCH持续时间l d可以确定DMRS符号(组)的位置
Figure PCTCN2020081859-appb-000002
其中,DMRS被放置在
Figure PCTCN2020081859-appb-000003
的符号上。其中:单符号模式下,
Figure PCTCN2020081859-appb-000004
为不连续的一个或多个符号,l′为0;双符号模式下,
Figure PCTCN2020081859-appb-000005
为不连续的一个或多个符号,即每组DMRS符号的第一个符号,l′可以为0或1,对应着双符号模式时的2个连续符号。
单符号模式下,利用每个DMRS进行信道估计后,可以对多个信道估计的结果进行滤波操作(例如维纳滤波),获得PDSCH的RE上的信道估计;双符号模式下,利用每组DMRS进行信道估计后,可以对多个信道估计的结果进行滤波操作,获得PDSCH的RE上的信道估计。不同的DMRS个数和不同位置对应的滤波参数可能不同。
表三
Figure PCTCN2020081859-appb-000006
表四
Figure PCTCN2020081859-appb-000007
Figure PCTCN2020081859-appb-000008
其中,上述表三中l 1取值为11或12,由高层参数确定。
第八,带宽部分:
NR下引入了BWP,一个BWP是一个载波中连续的一段RB.一个载波可以配置多个下行BWP和多个上行BWP,但是某个时刻,只能有1个下行激活BWP和1个上行激活BWP.终端设备当前接收的下行信号在下行激活BWP内,当前发送的上行信号在上行激活BWP内。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例可以适用于LTE系统或NR系统(也可以称之为第五代(5th generation,5G)系统),也可以适用于其他面向未来的新系统等,本申请实施例对此不作具体限定。此外,术语“系统”可以和“网络”相互替换。
如图2所示,为本申请实施例提供的一种通信系统20。该通信系统20包括一个网络设备30,以及与该网络设备30连接的一个或多个终端设备40。可选的,不同的 终端设备40之间可以相互通信。
以图2所示的网络设备30与任一终端设备40进行交互为例,本申请实施例中,网络设备30,用于向终端设备40发送DCI和配置信息。网络设备30,还用于确定根据第一资源和第二资源确定第三资源,并在第三资源上向终端设备40发送下行数据信道和下行数据信道的解调参考信号。终端设备40,还用于接收来自网络设备30的DCI和配置信息,并根据DCI确定第二资源;以及根据配置信息确定第一资源。终端设备40,还用于根据第一资源和第二资源,确定第三资源,并在第三资源上接收来自网络设备30的下行数据信道和下行数据信道的解调参考信号。其中,该第一资源为不能传输下行数据信道和下行数据信道的解调参考信号的资源,该第二资源包括用于传输下行数据信道和下行数据信道的解调参考信号的资源,该第三资源为第二资源中用于传输下行数据信道和下行数据信道的解调参考信号的资源。其中,该方案的具体实现将在后续方法实施例中详细描述,在此不予赘述。基于该方案,由于该方案中的第一资源为不能传输下行数据信道和下行数据信道的解调参考信号的资源,第二资源包括用于传输DCI调度的下行数据信道和下行数据信道的解调参考信号的资源,第三资源为第二资源中用于传输下行数据信道和下行数据信道的解调参考信号的资源,因此在下行数据信道的频域最小调度粒度是多个RB的情况下,可以调度这多个RB,并且仅在第二资源中用于传输下行数据信道和下行数据信道的解调参考信号的资源(即第三资源)上接收或发送下行数据信道和下行数据信道的解调参考信号,从而可以在不影响下行数据信道的接收性能的前提下提高资源的利用率。
可选的,本申请实施例中的网络设备30,是一种将终端设备40接入到无线网络的设备,可以是LTE系统中的演进型基站(evolutional Node B,eNB或eNodeB);或者可以是NR系统或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等,本申请实施例对此不作具体限定。可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
可选的,本申请实施例中的终端设备40,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是LTE系统、NR系统或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的 无线终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的网络设备30与终端设备40也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图3所示,为本申请实施例提供的网络设备30和终端设备40的结构示意图。
其中,终端设备40包括至少一个处理器(图3中示例性的以包括一个处理器401为例进行说明)和至少一个收发器(图3中示例性的以包括一个收发器403为例进行说明)。可选的,终端设备40还可以包括至少一个存储器(图3中示例性的以包括一个存储器402为例进行说明)、至少一个输出设备(图3中示例性的以包括一个输出设备404为例进行说明)和至少一个输入设备(图3中示例性的以包括一个输入设备405为例进行说明)。
处理器401、存储器402和收发器403通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器401可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器401也可以包括多个CPU,并且处理器401可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器402可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器402可以是独立存在,通过通信线路与处理器401相连接。存储器402也可以和处理器401集成在一起。
其中,存储器402用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。具体的,处理器401用于执行存储器402中存储的计算机执行指令,从而实现本申请实施例中所述的通信方法。
或者,可选的,本申请实施例中,也可以是处理器401执行本申请下述实施例提供的通信方法中的处理相关的功能,收发器403负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器403可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local  area networks,WLAN)等。收发器403包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备404和处理器401通信,可以以多种方式来显示信息。例如,输出设备404可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备405和处理器401通信,可以以多种方式接受用户的输入。例如,输入设备405可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备30包括至少一个处理器(图3中示例性的以包括一个处理器301为例进行说明)、至少一个收发器(图3中示例性的以包括一个收发器303为例进行说明)和至少一个网络接口(图3中示例性的以包括一个网络接口304为例进行说明)。可选的,网络设备30还可以包括至少一个存储器(图3中示例性的以包括一个存储器302为例进行说明)。其中,处理器301、存储器302、收发器303和网络接口304通过通信线路相连接。网络接口304用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图3中未示出),本申请实施例对此不作具体限定。另外,处理器301、存储器302和收发器303的相关描述可参考终端设备40中处理器401、存储器402和收发器403的描述,在此不再赘述。
结合图3所示的终端设备40的结构示意图,示例性的,图4为本申请实施例提供的终端设备40的一种具体结构形式。
其中,在一些实施例中,图3中的处理器401的功能可以通过图4中的处理器110实现。
在一些实施例中,图3中的收发器403的功能可以通过图4中的天线1,天线2,移动通信模块150,无线通信模块160等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备40中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备40上的包括2G/3G/4G/5G等无线通信技术的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在终端设备40上的包括WLAN(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC), 红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。当终端设备40是第一设备时,无线通信模块160可以提供应用在终端设备40上的NFC无线通信的解决方案,是指第一设备包括NFC芯片。该NFC芯片可以提高NFC无线通信功能。当终端设备40是第二设备时,无线通信模块160可以提供应用在终端设备40上的NFC无线通信的解决方案,是指第一设备包括电子标签(如射频识别(radio frequency identification,RFID)标签)。其他设备的NFC芯片靠近该电子标签可以与第二设备进行NFC无线通信。
在一些实施例中,终端设备40的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备40可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)或星基增强系统(satellite based augmentation systems,SBAS)。
在一些实施例中,图3中的存储器402的功能可以通过图4中的内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图3中的输出设备404的功能可以通过图4中的显示屏194实现。其中,显示屏194用于显示图像,视频等。显示屏194包括显示面板。
在一些实施例中,图3中的输入设备405的功能可以通过鼠标、键盘、触摸屏设备或图4中的传感器模块180来实现。示例性的,如图4所示,该传感器模块180例如可以包括压力传感器180A、陀螺仪传感器180B、气压传感器180C、磁传感器180D、加速度传感器180E、距离传感器180F、接近光传感器180G、指纹传感器180H、温度传感器180J、触摸传感器180K、环境光传感器180L、和骨传导传感器180M中的一个或多个,本申请实施例对此不作具体限定。
在一些实施例中,如图4所示,该终端设备40还可以包括音频模块170、摄像头193、指示器192、马达191、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个,其中,音频模块170可以与扬声器170A(也称“喇叭”)、受话器170B(也称“听筒”)、麦克风170C(也称“话筒”,“传声器”)或耳机接口170D等连接,本申请实施例对此不作具体限定。
可以理解的是,图4所示的结构并不构成对终端设备40的具体限定。比如,在本申请另一些实施例中,终端设备40可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图2至图4,以图2所示的网络设备30与任一终端设备40进行交互为例,对本申请实施例提供的通信方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
以图2所示的通信系统为NR系统,下行数据信道为PDSCH,下行数据信道的解调参考信号为PDSCH的DMRS为例,如图5所示,为本申请实施例提供的一种通信方法,该通信方法包括如下步骤S501-S507:
S501、网络设备向终端设备发送配置信息。终端设备接收来自网络设备的配置信息。
其中,该配置信息用于确定第一资源,该第一资源为不能传输PDSCH和PDSCH的DMRS的资源。
S502、网络设备向终端设备发送DCI。终端设备接收来自网络设备的DCI。
其中,该DCI用于确定第二资源,该第二资源包括用于传输PDSCH和PDSCH的DMRS的资源。
S503、网络设备根据第一资源和第二资源,确定第三资源。
其中,该第三资源为第二资源中用于传输PDSCH和PDSCH的DMRS的资源。
S504、终端设备根据配置信息确定第一资源。
S505、终端设备根据DCI确定第二资源。
S506、终端设备根据第一资源和第二资源,确定第三资源。
S507、网络设备在第三资源上向终端设备发送PDSCH和PDSCH的DMRS。终端设备在第三资源上接收来自网络设备的PDSCH和PDSCH的DMRS。
可选的,本申请实施例中,网络设备通常先确定第一资源之后,再向终端设备发送用于确定第一资源的配置信息;网络设备通常先确定第二资源之后,再向终端设备发送用于确定第二资源的DCI,在此统一说明,以下不再赘述。
可选的,本申请实施例中的步骤S501、步骤S502与步骤S503之间没有必然的执行先后顺序,可以是先执行任一步骤,再执行其余步骤,也可以先执行其中两个步骤,再执行剩余的一个步骤,还可以是同时执行这三个步骤,本申请实施例对此不作具体限定。
可选的,本申请实施例中的步骤S504与步骤S505之间没有必然的执行先后顺序,可以是先执行步骤S504,再执行步骤S505;也可以是先执行步骤S505,再执行步骤S504;还可以是同时执行步骤S504和步骤S505,本申请实施例对此不作具体限定。
其中,在上述步骤S501-S507中:
可选的,本申请实施例中,第一资源中的频域资源为N段频域资源,N为小于或者等于第三设定值的正整数。比如,第三设定值可以为2,N的取值可以为1或者2。其中,若N的取值为1,则表征第一资源中的频域资源为1段频域资源;或者,若N的取值为2,则表征第一资源中的频域资源为2段频域资源。
可选的,本申请实施例中,每段频域资源可以包括一个或多个(包括2个)RB资源,其中,这里的多个RB资源为连续的RB资源。
需要说明的是,本申请实施例中,连续的RB资源是指,RB资源的编号连续的频域资源。比如,如图6a所示,RB1资源、RB2资源至RB3资源可以视为连续的3个 连续的RB资源,RB1资源和RB3资源可以互为不连续的RB资源。
示例性的,假设第一资源中的频域资源为1段频域资源,则第一资源中的频域资源的位置示意图可以如图6b或图6c所示。其中,图6b以第一资源中的频域资源包括1个RB资源为例进行说明;图6c以第一资源中的频域资源包括多个连续的RB资源为例进行说明。
或者,示例性的,假设第一资源中的频域资源为2段频域资源,则第一资源中的频域资源的位置示意图可以如图6d或图6e或图6f所示。其中,图6d以每段频域资源包括1个RB资源为例进行说明;图6e以其中1段频域资源包括1个RB资源,其中1段频域资源包括多个连续的RB资源为例进行说明;图6f以每段频域资源均包括多个连续的RB资源为例进行说明。
可选的,本申请实施例中,第一资源中的时域资源包括第一资源有效期内的所有时域资源(例如时域符号),其中,第一资源根据配置信息确定时,配置信息配置后,可以视为第一资源在有效期内;配置信息被删除时,可以视为第一资源不在有效期内。第一资源根据配置信息和DCI确定时,可以认为PDSCH的时域范围内,第一资源在有效期内,在此统一说明,以下不再赘述。
示例性的,以频域上1个RBG,时域上1个时隙为例,则第一资源的位置示意图可以如图7a或者图7b所示。其中,图7a中第一资源中的频域资源为1段频域资源,图7b中第一资源中的频域资源为2段频域资源。
可选的,本申请实施例中的第二资源中可以包括多个RB资源。比如,PDSCH的频域调度粒度可以是PDSCH的频域资源调度方式type0对应的RBG;或者,PDSCH的频域调度粒度可以是PDSCH的频域资源调度方式type1对应的下行BWP的一段连续的VRB,本申请实时例对此不作具体限定。
可选的,本申请实施例中,第三资源为第二资源中除第一资源和第二资源的交集之外的资源。
示例性的,以PDSCH的时域映射方式为映射类型A,PDSCH有两种频域资源调度方式为类型0(即RBG粒度)为例,假设起始符号为2,持续符号个数为11,对应的第二资源的位置示意图如图8所示,则假设第一资源的位置示意图如图7a所示,则第三资源的位置示意图可以如图9a所示;或者,假设第一资源的位置示意图如图7b所示,则第三资源的位置示意图可以如图9b所示。
可选的,本申请实施例中,终端设备确定第二资源可以包括:终端设备根据DCI中的频域资源配置(frequency domain resource assignment)信息和时域资源配置(time domain resource assignment)信息确定第二资源。
可选的,本申请实施例中,终端设备确定第一资源可以包括:终端设备根据配置信息确定第一资源。
或者,可选的,本申请实施例中,终端设备确定第一资源可以包括:终端设备根据配置信息和DCI确定第一资源。比如,终端设备根据配置信息和DCI中的速率匹配指示域确定第一资源。其中,DCI中的速率匹配指示域指示匹配图案组(rate match pattern group)中的资源是否能用于传输PDSCH和PDSCH的DMRS。匹配图案组(rate match pattern group)中可以包括一个或多个速率匹配图案。比如,若一个速率匹配图 案组对应的bit为1,则该速率匹配图案组中的资源不能用来传输PDSCH和PDSCH的DMRS。其中,本申请实施例中速率匹配图案的相关描述可参考下述内容,在此不予赘述。
可选的,本申请实施例中的配置信息可以通过高层信令配置给终端设备,该高层信令例如可以是无线资源控制(radio resource control,RRC)信令或媒体接入控制控制单元(media access control-control element,MAC-CE)信令等,本申请实施例对此不做具体限定。
示例性的,下面给出配置信息的几种可能实现:
一种可能的实现方式中,配置信息包括第一资源中频域资源的指示信息。终端设备或者网络设备默认(比如协议规定)第一资源中的时域资源包括第一资源有效期内的所有时域资源(如时域符号)。
可选的,该第一资源中频域资源的指示信息例如可以是RB级的位表(bitmap)。
示例性的,假设RB级bitmap为00110……11,则多个时隙(slot)上第一资源的位置示意图可以如图10a所示。
或者,示例性的,假设RB级bitmap为01110……00,则多个时隙(slot)上第一资源的位置示意图可以如图10b所示。
或者,另一种可能的实现方式中,配置信息包括第一资源中频域资源的指示信息和第一资源中时域资源的指示信息,其中,时域资源的指示信息用于指示第一资源中的时域资源包括第一资源有效期内的所有时域资源。
可选的,该第一资源中频域资源的指示信息例如可以是RB级的位表(bitmap)。
可选的,该第一资源中时域资源的指示信息例如可以是symbol级bitmap,其中,symbol级bitmap中的bit值全为1,默认(比如协议规定)periodicity and pattern中的bit值全为1。
或者,可选的,该第一资源中时域资源的指示信息例如可以是symbol级bitmap以及periodicity and pattern,其中,symbol级bitmap以及periodicity and pattern中的bit值全为1。
示例性的,假设RB级bitmap为00110……11,symbol级bitmap中bit值全为1,periodicity and pattern中bit值全为1,则多个时隙(slot)上第一资源的位置示意图可以如图11a所示。
或者,示例性的,假设RB级bitmap为01110……00,symbol级bitmap中bit值全为1,periodicity and pattern中bit值全为1,则多个时隙(slot)上第一资源的位置示意图可以如图11b所示。
可选的,本申请实施例中,配置信息通过M个速率匹配图案进行表征,M为小于或者等于第一设定值的正整数。比如,第一设定值可以为2,M的取值可以为1或者2。其中,若M的取值为1,则表示配置信息通过1个速率匹配图案进行表征;或者,若M的取值为2,则表示配置信息通过2个速率匹配图案进行表征。
可选的,本申请实施例中,若M大于1,则M个速率匹配图案对应的频域资源可能重叠,也可能完全不重叠,本申请实施例对此不作具体限定。
可选的,M个速率匹配图案中的第一速率匹配图案中包括S段频域资源,S为小 于或者等于第二设定值的正整数。比如,第一设定值可以为2,S的取值可以为1或者2。其中,若S的取值为1,则表示存在第一速率匹配图案中包括1段频域资源;或者,若S的取值为2,则表示存在第一速率匹配图案中包括2段频域资源。
示例性的,若M=1,S=1,则本申请实施例中的速率匹配图案可以如图10b或图11b所示。
或者,示例性的,若M=1,S=2,则本申请实施例中的速率匹配图案可以如图10a或图11a所示。
当然,若M=2,则2个速率匹配图案中的每个速率匹配图案可以均包括1段频域资源;或者,2个速率匹配图案中的每个速率匹配图案可以均包括2段频域资源;或者,2个速率匹配图案中的其中一个速率匹配图案包括1段频域资源,另外一个速率匹配图案包括2段频域资源。其中,这2个速率匹配图案可以相同或者不同,本申请实施例对此不作具体限定。
可选的,本申请实施例中,第一资源为至少一组速率匹配图案对应的资源之外的资源,其中,该至少一组速率匹配图案中的每一组速率匹配图案对应的资源分别为DCI所指示的不能传输PDSCH的资源。比如,该第一资源可以是现有DCI中的速率匹配指示域所指示的不能传输PDSCH的至少一组速率匹配图案之外的资源。
可选的,本申请实施例中的PDSCH属于映射类型为类型A的PDSCH。也就是说,仅映射类型为类型A的PDSCH的DMRS可能和不能用来传输PDSCH的资源有重叠,映射类型为类型B的PDSCH的DMRS不能和不能用来传输PDSCH的资源有重叠。该情况下,映射类型为类型B的PDSCH的处理可参考现有协议的方案,在此不予赘述。
或者,可选的,本申请实施例中的PDSCH属于映射类型为类型B,且持续时域资源长度为第四设定值的PDSCH。也就是说,仅映射类型为类型B,且持续时域资源长度为第四设定值的PDSCH的DMRS可能和不能用来传输PDSCH的资源有重叠;映射类型为类型B,持续时域资源长度为第四设定值之外的数值的PDSCH的DMRS不能和不能用来传输PDSCH的资源有重叠。该情况下,映射类型为类型B,持续时域资源长度为第四设定值之外的数值的PDSCH的处理可参考现有协议的方案,在此不予赘述。
示例性的,这里的持续时域资源长度例如可以为2个时域符号。
可选的,本申请实施例中,在PDSCH的DMRS为双符号模式的情况下,所述双符号模式的DMRS包括至少一组双符号DMRS。若第四资源中包含一个RB上的一组双符号DMRS对应的第一DMRS符号,不包含该RB上的该组双符号DMRS对应的第二DMRS符号,则该第二DMRS符号上不能用于传输PDSCH的DMRS。其中,该第四资源为第一资源和第二资源的交集。可选的,该第二DMRS符号上不能用于传输PDSCH。
也就是说,该第二DMRS符号上不能用于传输PDSCH和PDSCH的DMRS;或者,该第二DMRS符号上不能用于传输PDSCH的DMRS,可以用于传输PDSCH。
可选的,本申请实施例中,第一资源包括时域上一个符号和频域上一个BWP上的所有RB或者一个载波上的所有RB,或者第一资源包括频域上一个RB和时域上所 有符号。或者,若第一资源中包含频域上一个RB和时域上某一个符号,则确定第一资源包括这个符号和频域上一个BWP的所有RB或者一个载波上的所有RB,或者第一资源包括这个RB和时域上的所有符号。
一种可能的实现方式中,本申请实施例中,若第二资源中用于传输PDSCH的DMRS的资源和第一资源有重叠,则终端设备或网络设备可以确定重叠资源的频域范围内,第二资源的持续时间内,不能用于传输PDSCH和该PDSCH的DMRS;或者,该重叠资源的频域范围内,第二资源的持续时间内,不能用于传输PDSCH的DMRS,可以用于传输PDSCH。
另一种可能的实现方式中,本申请实施例中,若第二资源中用于传输PDSCH的DMRS的资源和第一资源有重叠,则终端设备或网络设备可以确定重叠资源的时域范围内,第二资源的频域范围内,不能传输PDSCH和该PDSCH的DMRS;或者,重叠资源的时域范围内,第二资源的频域范围内,不能用于传输PDSCH的DMRS,可以用于传输PDSCH。
也就是说,本申请实施例中,若第二资源中用于传输PDSCH的DMRS的资源和第一资源在一个RB的一个符号上有重叠,则这个符号上的整个BWP上的RB或者整个载波上的RB都不能用来PDSCH的DMRS,可选的不能用来传输PDSCH。或者,这个RB上的所有符号都不能用来传输PDSCH的DMRS,可选的不能用来传输PDSCH。
需要说明的是,图5所示的通信方法以图2所示的通信系统为NR系统,下行数据信道为PDSCH,下行数据信道的解调参考信号为PDSCH的DMRS为例进行说明。当然,如上所述,本申请实施例提供的方案也可以应用于其他通信系统,相关描述可参考图5所示的实施例,在此不再赘述。
基于本申请实施例提供的通信方法,由于该方案中的第一资源为不能传输下行数据信道和下行数据信道的解调参考信号的资源,第二资源包括用于传输DCI调度的下行数据信道和下行数据信道的解调参考信号的资源,第三资源为第二资源中用于传输下行数据信道和下行数据信道的解调参考信号的资源,因此在下行数据信道的频域最小调度粒度是多个RB的情况下,可以调度这多个RB,并且仅在第二资源中用于传输下行数据信道和下行数据信道的解调参考信号的资源(即第三资源)上接收或发送下行数据信道和下行数据信道的解调参考信号,从而可以在不影响下行数据信道的接收性能的前提下提高资源的利用率。比如,如图12所示,采用本申请实施例提供的通信方法,网络设备可以调度整个RBG,并在N个RB资源之外的其他RB资源上发送PDSCH和PDSCH的DMRS,终端设备可以在N个RB资源之外的其他RB资源上接收PDSCH和PDSCH的DMRS,从而可以在不影响PDSCH的接收性能的前提下提高资源的利用率。
其中,上述步骤S501至S507中的网络设备的动作可以由图3所示的网络设备30中的处理器301调用存储器302中存储的应用程序代码以指令该网络设备执行,上述步骤S501至S507中的终端设备的动作可以由图3所示的终端设备40中的处理器401调用存储器402中存储的应用程序代码以指令该网络设备执行,本实施例对此不作任何限制。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由 实现上述终端设备功能的芯片系统实现,由网络设备实现的方法和/或步骤,也可以由实现上述网络设备功能的芯片系统实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备或者实现上述终端设备功能的芯片系统;或者,该通信装置可以为上述方法实施例中的网络设备或者实现上述网络设备功能的芯片系统。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的终端设备为例。图13示出了一种终端设备130的结构示意图。该终端设备130包括处理模块1301和收发模块1302。所述收发模块1302,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块1302,用于接收来自网络设备的配置信息;收发模块1302,还用于接收来自网络设备的下行控制信息;处理模块1301,用于根据配置信息确定第一资源,第一资源为不能传输下行数据信道和下行数据信道的解调参考信号的资源;处理模块1301,还用于根据下行控制信息确定第二资源,第二资源包括用于传输下行数据信道和下行数据信道的解调参考信号的资源;处理模块1301,还用于根据第一资源和第二资源确定第三资源,第三资源为第二资源中用于传输下行数据信道和下行数据信道的解调参考信号的资源;收发模块1302,还用于在第三资源上接收来自网络设备的下行数据信道和下行数据信道的解调参考信号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该终端设备130以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该终端设备130可以采用图3所示的终端设备40的形式。
比如,图3所示的终端设备40中的处理器401可以通过调用存储器402中存储的计算机执行指令,使得终端设备40执行上述方法实施例中的通信方法。
具体的,图13中的处理模块1301和收发模块1302的功能/实现过程可以通过图3 所示的终端设备40中的处理器401调用存储器402中存储的计算机执行指令来实现。或者,图13中的处理模块1301的功能/实现过程可以通过图3所示的终端设备40中的处理器401调用存储器402中存储的计算机执行指令来实现,图13中的收发模块1302的功能/实现过程可以通过图3所示的终端设备40中的收发器403来实现。
由于本实施例提供的终端设备130可执行上述的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的网络设备为例。图14示出了一种网络设备140的结构示意图。该网络设备140包括处理模块1401和收发模块1402。所述收发模块1402,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块1402,用于向终端设备发送配置信息,该配置信息用于确定第一资源,第一资源为不能传输下行数据信道和下行数据信道的解调参考信号的资源;收发模块1402,还用于向终端设备发送下行控制信息,该下行控制信息用于确定第二资源,第二资源包括用于传输下行数据信道和下行数据信道的解调参考信号的资源;处理模块1401,用于根据第一资源和第二资源,确定第三资源,第三资源为第二资源中用于传输下行数据信道和下行数据信道的解调参考信号的资源;收发模块1402,还用于在第三资源上向终端设备发送下行数据信道和下行数据信道的解调参考信号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该网络设备140以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该网络设备140可以采用图3所示的网络设备30的形式。
比如,图3所示的网络设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得网络设备30执行上述方法实施例中的通信方法。
具体的,图14中的处理模块1401和收发模块1402的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图14中的处理模块1401的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图14中的收发模块1402的功能/实现过程可以通过图3所示的网络设备30中的收发器303来实现。
由于本实施例提供的网络设备140可执行上述的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的配置信息;
    所述终端设备接收来自所述网络设备的下行控制信息;
    所述终端设备根据所述配置信息确定第一资源,所述第一资源为不能传输下行数据信道和所述下行数据信道的解调参考信号的资源;
    所述终端设备根据所述下行控制信息确定第二资源,所述第二资源包括用于传输所述下行数据信道和所述下行数据信道的解调参考信号的资源;
    所述终端设备根据所述第一资源和所述第二资源确定第三资源,所述第三资源为所述第二资源中用于传输所述下行数据信道和所述下行数据信道的解调参考信号的资源;
    所述终端设备在所述第三资源上接收来自所述网络设备的所述下行数据信道和所述下行数据信道的解调参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述配置信息确定第一资源,包括:
    所述终端设备根据所述配置信息和所述下行控制信息确定所述第一资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述配置信息包括所述第一资源中频域资源的指示信息;
    其中,所述第一资源中的时域资源包括所述第一资源有效期内的所有时域资源。
  4. 根据权利要求1或2所述的方法,其特征在于,所述配置信息包括所述第一资源中频域资源的指示信息和所述第一资源中时域资源的指示信息,其中,所述时域资源的指示信息用于指示所述第一资源中的时域资源包括所述第一资源有效期内的所有时域资源。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述配置信息通过M个速率匹配图案进行表征,M为小于或者等于第一设定值的正整数。
  6. 根据权利要求5所述的方法,其特征在于,所述M个速率匹配图案中的第一速率匹配图案中包括S段频域资源,S为小于或者等于第二设定值的正整数。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一资源中的频域资源为N段频域资源,N为小于或者等于第三设定值的正整数。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一资源为至少一组速率匹配图案对应的资源之外的资源,其中,所述至少一组速率匹配图案对应的资源为所述下行控制信息所指示的不能传输所述下行数据信道的资源。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述下行数据信道属于映射类型为类型A的下行数据信道。
  10. 根据权利要求1-8任一项所述的方法,其特征在于,所述下行数据信道属于映射类型为类型B,且持续时域资源长度为第四设定值的下行数据信道。
  11. 一种通信方法,其特征在于,所述方法包括:
    网络设备向终端设备发送配置信息,所述配置信息用于确定第一资源,所述第一资源为不能传输下行数据信道和所述下行数据信道的解调参考信号的资源;
    所述网络设备向所述终端设备发送下行控制信息,所述下行控制信息用于确定第二资源,所述第二资源包括用于传输所述下行数据信道和所述下行数据信道的解调参考信号的资源;
    所述网络设备根据所述第一资源和所述第二资源,确定第三资源,所述第三资源为所述第二资源中用于传输所述下行数据信道和所述下行数据信道的解调参考信号的资源;
    所述网络设备在所述第三资源上向所述终端设备发送所述下行数据信道和所述下行数据信道的解调参考信号。
  12. 根据权利要求11所述的方法,其特征在于,所述下行控制信息还用于确定所述第一资源。
  13. 根据权利要求11或12所述的方法,其特征在于,所述配置信息包括所述第一资源中频域资源的指示信息;
    其中,所述第一资源中的时域资源包括所述第一资源有效期内的所有时域资源。
  14. 根据权利要求11或12所述的方法,其特征在于,所述配置信息包括所述第一资源中频域资源的指示信息和所述第一资源中时域资源的指示信息,其中,所述时域资源的指示信息用于指示所述第一资源中的时域资源包括所述第一资源有效期内的所有时域资源。
  15. 根据权利要求11-14任一项所述的方法,其特征在于,所述配置信息通过M个速率匹配图案进行表征,M为小于或者等于第一设定值的正整数。
  16. 根据权利要求15所述的方法,其特征在于,所述M个速率匹配图案中的第一速率匹配图案中包括S段频域资源,S为小于或者等于第二设定值的正整数。
  17. 根据权利要求11-16任一项所述的方法,其特征在于,所述第一资源中的频域资源为N段频域资源,N为小于或者等于第三设定值的正整数。
  18. 根据权利要求11-17任一项所述的方法,其特征在于,所述第一资源为至少一组速率匹配图案对应的资源之外的资源,其中,所述至少一组速率匹配图案对应的资源为所述下行控制信息所指示的不能传输所述下行数据信道的资源。
  19. 根据权利要求11-18任一项所述的方法,其特征在于,所述下行数据信道属于映射类型为类型A的下行数据信道。
  20. 根据权利要求11-18任一项所述的方法,其特征在于,所述下行数据信道属于映射类型为类型B,且持续时域资源长度为第四设定值的下行数据信道。
  21. 一种终端设备,其特征在于,所述终端设备包括:处理模块和收发模块;
    所述收发模块,用于接收来自网络设备的配置信息;
    所述收发模块,还用于接收来自所述网络设备的下行控制信息;
    所述处理模块,用于根据所述配置信息确定第一资源,所述第一资源为不能传输下行数据信道和所述下行数据信道的解调参考信号的资源;
    所述处理模块,还用于根据所述下行控制信息确定第二资源,所述第二资源包括用于传输所述下行数据信道和所述下行数据信道的解调参考信号的资源;
    所述处理模块,还用于根据所述第一资源和所述第二资源确定第三资源,所述第三资源为所述第二资源中用于传输所述下行数据信道和所述下行数据信道的解调参考 信号的资源;
    所述收发模块,还用于在所述第三资源上接收来自所述网络设备的所述下行数据信道和所述下行数据信道的解调参考信号。
  22. 根据权利要求21所述的终端设备,其特征在于,所述终端设备还用于执行如权利要求2-10任一项所述的方法。
  23. 一种网络设备,其特征在于,所述网络设备包括:处理模块和收发模块;
    所述收发模块,用于向终端设备发送配置信息,所述配置信息用于确定第一资源,所述第一资源为不能传输下行数据信道和所述下行数据信道的解调参考信号的资源;
    所述收发模块,还用于向所述终端设备发送下行控制信息,所述下行控制信息用于确定第二资源,所述第二资源包括用于传输所述下行数据信道和所述下行数据信道的解调参考信号的资源;
    所述处理模块,用于根据所述第一资源和所述第二资源,确定第三资源,所述第三资源为所述第二资源中用于传输所述下行数据信道和所述下行数据信道的解调参考信号的资源;
    所述收发模块,还用于在所述第三资源上向所述终端设备发送所述下行数据信道和所述下行数据信道的解调参考信号。
  24. 根据权利要求23所述的网络设备,其特征在于,所述网络设备还用于执行如权利要求12-20任一项所述的方法。
PCT/CN2020/081859 2019-04-26 2020-03-27 通信方法、设备及系统 WO2020215994A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20794450.5A EP3952538A4 (en) 2019-04-26 2020-03-27 COMMUNICATION METHOD, DEVICE AND SYSTEM
US17/509,569 US20220046680A1 (en) 2019-04-26 2021-10-25 Communication method, device, and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910346044.2 2019-04-26
CN201910346044 2019-04-26
CN201910760333.7 2019-08-16
CN201910760333.7A CN111867096B (zh) 2019-04-26 2019-08-16 通信方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/509,569 Continuation US20220046680A1 (en) 2019-04-26 2021-10-25 Communication method, device, and system

Publications (1)

Publication Number Publication Date
WO2020215994A1 true WO2020215994A1 (zh) 2020-10-29

Family

ID=72941523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081859 WO2020215994A1 (zh) 2019-04-26 2020-03-27 通信方法、设备及系统

Country Status (3)

Country Link
US (1) US20220046680A1 (zh)
EP (1) EP3952538A4 (zh)
WO (1) WO2020215994A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123383A1 (zh) * 2021-12-31 2023-07-06 Oppo广东移动通信有限公司 一种资源的指示方法及终端设备、网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813468A (zh) * 2012-11-09 2014-05-21 北京三星通信技术研究有限公司 一种传输下行数据的方法和设备
CN104186019A (zh) * 2012-03-16 2014-12-03 株式会社日立制作所 无线通信方法以及无线通信系统
CN105634708A (zh) * 2010-04-22 2016-06-01 Lg电子株式会社 用于基站与中继站之间的无线链路的信道估计的方法和设备
WO2018169320A1 (en) * 2017-03-15 2018-09-20 Samsung Electronics Co., Ltd. Method and apparatus for downlink control information design for network coordination

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110822A1 (zh) * 2013-01-18 2014-07-24 华为技术有限公司 Pdsch的传输方法及装置
WO2016064218A2 (ko) * 2014-10-24 2016-04-28 엘지전자 주식회사 Mtc 기기의 상향링크 채널 및 복조 참조 신호 전송 방법
US10841911B2 (en) * 2015-10-02 2020-11-17 Lg Electronics Inc. Method for transmitting downlink control information in wireless communication system
CN109479209B (zh) * 2016-07-15 2022-08-09 株式会社Ntt都科摩 用户终端以及无线通信方法
US10708942B2 (en) * 2017-02-09 2020-07-07 Qualcomm Incorporated Control resources reuse for data transmission in wireless communication
EP3646519A4 (en) * 2017-06-26 2021-03-10 Apple Inc. COLLISION HANDLING OF REFERENCE SIGNALS
KR20190027705A (ko) * 2017-09-07 2019-03-15 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 방법 및 상기 방법을 이용하는 장치
KR102488966B1 (ko) * 2017-09-08 2023-01-16 삼성전자 주식회사 무선 통신 시스템에서 제어채널 및 데이터채널을 송수신 하는 방법 및 장치
US10972990B2 (en) * 2017-09-11 2021-04-06 Qualcomm Incorporated System information rate matching

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634708A (zh) * 2010-04-22 2016-06-01 Lg电子株式会社 用于基站与中继站之间的无线链路的信道估计的方法和设备
CN104186019A (zh) * 2012-03-16 2014-12-03 株式会社日立制作所 无线通信方法以及无线通信系统
CN103813468A (zh) * 2012-11-09 2014-05-21 北京三星通信技术研究有限公司 一种传输下行数据的方法和设备
WO2018169320A1 (en) * 2017-03-15 2018-09-20 Samsung Electronics Co., Ltd. Method and apparatus for downlink control information design for network coordination

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Maintenance for rate matching", 3GPP TSG-RAN WG1 #96 R1-1903240 ATHENS, GREECE, FEBRUARY 25TH – MARCH 1ST, 2019, 22 February 2019 (2019-02-22), XP051600937, DOI: 20200610155956A *
See also references of EP3952538A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123383A1 (zh) * 2021-12-31 2023-07-06 Oppo广东移动通信有限公司 一种资源的指示方法及终端设备、网络设备

Also Published As

Publication number Publication date
US20220046680A1 (en) 2022-02-10
EP3952538A4 (en) 2022-06-15
EP3952538A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2019091135A1 (zh) 一种通信方法、装置以及系统
WO2019062840A1 (zh) 信息传输方法和装置
WO2020164616A1 (zh) 随机接入的方法、装置及系统
WO2019029348A1 (zh) 数据传输方法、终端和基站
EP3886523A1 (en) Method, device and system for triggering scheduling request
US20190386784A1 (en) Data processing method and apparatus
US10873430B2 (en) Signal sending method and apparatus
CN111601382B (zh) 一种数据传输方法及通信装置
CN111867096B (zh) 通信方法、设备及系统
CN112020145A (zh) 一种通信方法及装置
US11252747B2 (en) Communication method and device
US20220224478A1 (en) Communication method, device, and system
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2021203976A1 (zh) 数据处理方法、装置及系统
WO2020215994A1 (zh) 通信方法、设备及系统
WO2020253597A1 (zh) 调度请求信息的传输方法、装置及系统
WO2023016359A1 (zh) 一种通信方法及通信装置
CN111385891A (zh) 配置方法、设备及系统
WO2020238990A1 (zh) 数据传输方法、装置及系统
WO2020155188A1 (zh) 通信方法、装置及系统
WO2021007809A1 (zh) 信道质量上报方法、装置及系统
WO2020155187A1 (zh) 数据调度方法、装置及系统
WO2022082504A1 (zh) 通信方法和装置
WO2023035251A1 (zh) 无线通信的方法和通信设备
CN113366896B (zh) 参考信号接收与发送方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020794450

Country of ref document: EP

Effective date: 20211103