WO2020215780A1 - 温度检测装置及电机 - Google Patents

温度检测装置及电机 Download PDF

Info

Publication number
WO2020215780A1
WO2020215780A1 PCT/CN2019/128955 CN2019128955W WO2020215780A1 WO 2020215780 A1 WO2020215780 A1 WO 2020215780A1 CN 2019128955 W CN2019128955 W CN 2019128955W WO 2020215780 A1 WO2020215780 A1 WO 2020215780A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
rotor
temperature sensor
detection device
motor
Prior art date
Application number
PCT/CN2019/128955
Other languages
English (en)
French (fr)
Inventor
梁建东
张小波
李广海
魏琼
彭利明
熊博文
王珊珊
张勐
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020215780A1 publication Critical patent/WO2020215780A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby

Definitions

  • the application belongs to the field of motor technology, and specifically relates to a rotor surface temperature detection device and a motor.
  • High-speed permanent magnet motors have the advantages of small size, high power density and high efficiency. However, due to the small size of high-speed permanent magnet motors, it is difficult to dissipate heat. At the same time, high-frequency electromagnetic waves produce serious eddy current losses on the rotor core and the surface of the magnetic steel, causing the rotor to run at a higher At temperature, the commonly used neodymium magnets, also called neodymium iron boron magnets, are prone to demagnetization under high temperature and armature reaction, and the magnets return to a magnetic neutral state. Therefore, it is necessary to detect and monitor the internal temperature of the motor to control the internal temperature within a reasonable range.
  • the strong electromagnetic environment inside the motor can easily affect the reliability and accuracy of the temperature detection device.
  • the detection device is difficult to be placed on the surface of the rotor running at high speed, which makes it difficult to monitor the surface temperature of the rotor.
  • the accuracy, accuracy, or implementation methods are complex and difficult to actually apply.
  • High-speed permanent magnet motor rotor temperature detection devices usually use optical fiber sensors and infrared sensors, but the installation of the sensor requires slotting in the stator teeth. This structure will damage the structure of the stator, and the slotted sensor is easily affected.
  • the motor vibrates off; there is also the use of thermocouples to measure the temperature of the rotor, and the thermocouple is placed on the yoke of the rotor core. It is also necessary to make holes in the rotor. This structure will also damage the structure of the rotor and reduce the structural strength of the rotor.
  • the technical problem to be solved by this application is that the prior art motor rotor temperature detection device destroys the component structure and reduces the structural strength of the component, thereby providing a temperature detection device and a motor.
  • a temperature detection device for detecting the surface temperature of a motor rotor including:
  • Temperature sensor the temperature sensor is used to detect the surface temperature of the rotor
  • Fixing device the fixing device is installed in the stator slot of the motor stator, and the fixing device is used to fix the temperature sensor at a position facing the motor rotor.
  • the stator slot is provided with a slot, and the slot restricts the fixing device in the stator slot along the stator radial direction.
  • windings are further provided in the stator slots, and a filling layer is provided between the fixing device and the windings.
  • the fixing device is provided with a mounting hole for fixing the temperature sensor, and the temperature sensor is installed in the mounting hole.
  • the cross-sectional shape of the mounting hole is consistent with the overall maximum cross-sectional shape of the temperature sensor. After the temperature sensor is installed in the mounting hole, the orientation of the sensing part of the temperature sensor is fixed.
  • a feature positioning part is further provided in the mounting hole, and the feature positioning part is used to limit the orientation of the temperature sensor sensing part so that the temperature sensor sensing part faces the rotor.
  • the mounting hole is provided with a detection port facing the rotor, and the sensing part of the temperature sensor faces the surface temperature of the rotor through the detection port.
  • the detection port includes at least one of a hole-shaped port and a slot-shaped port.
  • a signal shielding layer for shielding electromagnetic interference is provided on the inner wall of the mounting hole.
  • the fixing device extends along the axial direction of the stator, and the temperature sensor can be fixed at different positions of the fixing device to detect the temperature at different positions of the rotor.
  • the temperature sensor package is fixed on the fixing device.
  • the position of the temperature sensor corresponds to the preset temperature area determined by the temperature indicating paint on the rotor.
  • a plurality of temperature sensors arranged coaxially and spaced apart are fixed on the fixing device, and the plurality of temperature sensors respectively detect the temperature at different positions of the rotor.
  • a motor adopts the above-mentioned temperature detection device.
  • the temperature detection device of the present application simplifies the sensor arrangement method and reduces the difficulty of implementation without destroying the stator and rotor structures, while avoiding the interference of strong electromagnetic on signal transmission, obtaining a more accurate real-time temperature of the rotor surface, and feedback to the controller, thereby Adjust the motor output performance, control further temperature rise, and ensure that the performance of the motor rotor magnet is stable near the operating point.
  • FIG. 1 is a schematic structural diagram of a temperature detection device according to an embodiment of the application.
  • FIG. 2 is a cross-sectional view of a temperature sensor according to an embodiment of the application.
  • Fig. 3 is a schematic structural diagram of a fixing device according to an embodiment of the application.
  • Temperature sensor 2. Fixing device; 3. Motor stator; 4. Stator slot; 5. Filling layer; 6. Mounting hole; 7. Guiding part; 8. Detection port; 9. Signal shielding layer; 10. Winding.
  • a temperature detection device for detecting the surface temperature of a motor rotor includes: temperature sensor 1, temperature sensor 1 for detecting the surface temperature of the rotor; fixing device 2, fixing device 2 installed in the motor In the stator slot 4 of the stator 3, the fixing device 2 is used to fix the temperature sensor 1 at a position facing the motor rotor.
  • the stator slot is the slot-shaped space enclosed by the stator teeth of the motor stator.
  • the cross-sectional shape of the stator slot includes pear shape, sector shape, rectangular shape, etc.
  • the stator slot is used to accommodate the stator winding. After the stator slot accommodates the stator winding, the slot is often There will be some space left.
  • the temperature detection device of the embodiment of the present application installs the temperature sensor 1 in the stator slot without damaging the structure of the motor stator ,
  • the temperature sensor 1 directly collects the heat radiated by the rotor through the slot 4 of the stator.
  • the fixing device 2 with larger volume and easy to fix is installed in the stator slot 4, and then the temperature sensor 1 is installed on the fixing device 2, which is convenient for installation.
  • the temperature sensor 1 preferentially adopts an infrared sensor, which is relatively mature, has a lower cost, and is most commonly used. If the cost permits, the temperature sensor 1 can also use an optical fiber temperature sensor.
  • the optical fiber sensor directly converts the received temperature signal into an optical signal, and transmits it to the external collector of the motor through the optical fiber, which can avoid electromagnetic interference inside the motor. .
  • the stator slot 4 is provided with a slot, and the slot restricts the fixing device 2 in the stator slot 4 along the stator radial direction.
  • the width of the narrowest part of the slot of the stator slot 4 is L1
  • the width of the widest part of the fixing device 2 in the width direction of the stator slot 4 is L2, where L2>L1, the fixing device 2 cannot pass through the stator slot 4 in the radial direction of the stator.
  • the fixing device 2 is arranged at the slot of the stator slot 4, and the fixing device 2 fixes the temperature sensor 1 at the slot.
  • the stator slot 4 is also provided with a winding 10, and a filling layer 5 is provided between the fixing device 2 and the winding 10.
  • the filling layer 5 can be heat-dissipating silica gel.
  • the temperature sensor 1 of this embodiment is particularly suitable for a pear-shaped stator slot 4, and the pear-shaped stator slot 4 has a structural feature of a smaller width as it is closer to the slot.
  • the width L2 of the fixing device 2 is greater than the slot width L1 of the stator slot 4, so that the fixing device 2 cannot be removed from the slot.
  • the two ends of the fixing device 2 in the radial direction of the stator are respectively restricted by the slot and the filling layer 5. Firmly installed, no special fixed structure is required, simple structure and convenient installation.
  • the fixing device 2 is the carrier of the temperature sensor 1. After the fixing device 2 is fixedly installed in the stator slot 4, the temperature sensor 1 needs to be fixedly installed on the fixing device 2. Therefore, the fixing device 2 is provided with The mounting hole 6 of the temperature sensor 1 is fixed, and the temperature sensor 1 is mounted in the mounting hole 6.
  • the temperature sensor 1 due to the operating characteristics of the temperature sensor 1, the temperature sensor 1 must face the rotor to accurately detect the rotor temperature. It is used to fix the position of the stator and the rotor. The orientation of the temperature sensor 1 on the fixing device 2 should also be fixed.
  • the cross-sectional shape of the mounting hole 6 in this embodiment is consistent with the overall maximum cross-sectional shape of the temperature sensor 1, which can achieve temperature After the sensor 1 is installed in the mounting hole 6, the orientation of the sensing part of the temperature sensor 1 is fixed. For example, if the cross-sectional shape of the temperature sensor 1 is rectangular, and the cross-section of the mounting hole 6 is also designed to be rectangular, the temperature sensor 1 can only move along the length of the mounting hole 6, and cannot be reversed or shifted. Therefore, the temperature sensor 1 is effective The orientation of the surface where the sensing part where the radiation is collected is fixed, that is, toward the rotor.
  • the cross-sectional shape of the mounting hole 6 is correspondingly circular. After the temperature sensor 1 is installed in the mounting hole 6, it may also rotate in a circumferential direction. The part cannot face the rotor correctly. Therefore, there is a guide part 7 in the mounting hole 6.
  • the guide part 7 is designed according to the cross-sectional shape of the temperature sensor 1. If the temperature sensor 1 has a protrusion, the guide part 7 is set as a groove ,vice versa. After the corresponding structure on the temperature sensor 1 is matched with the guide part 7, the orientation of the sensing part of the temperature sensor 1 can be limited, so that the sensing part of the temperature sensor 1 faces the rotor.
  • the sensing part of the temperature sensor 1 when the temperature sensor 1 detects the rotor temperature, the sensing part of the temperature sensor 1 needs to directly face the motor rotor to ensure that the temperature sensor 1 can work normally.
  • the mounting hole 6 is provided with a detection port 8 facing the rotor.
  • the sensing part of the temperature sensor 1 faces and collects the heat radiation from the surface of the rotor through the detection port 8. The heat radiated by the rotor enters the detection port 8 and is then received by the sensing part of the temperature sensor 1.
  • the detection port 8 can adopt a hole-shaped opening, a slot-shaped opening, or a combination of a hole-shaped opening and a slot-shaped opening.
  • the detection port 8 adopts a hole-shaped port, which is easy to process, and has a small opening, and the temperature sensor 1 and the signal transmission line suffer less interference.
  • the detection port 8 adopts a slot-shaped opening, which is arranged along the axis of the mounting hole 6.
  • the slot-shaped opening can only cover part of the length of the mounting hole 6, or it can penetrate to both ends of the mounting hole 6.
  • the slot-shaped opening can be a temperature sensor 1 Provides a large detection range.
  • the temperature sensor 1 can detect temperature at any point within the length of the slot, and even multiple temperature sensors can be set in a slot 8 to work at the same time to improve the granularity of temperature detection and analysis .
  • the inner wall of the mounting hole 6 is provided with a signal shielding layer 9 for shielding electromagnetic interference.
  • the signal shielding layer 9 can be made of non-magnetic materials such as braided copper mesh or aluminum foil.
  • the inside of the motor is in a strong electromagnetic environment, and the temperature sensor 1 and the signal transmission line will be electromagnetically interfered and cannot work normally. Therefore, a signal shielding layer 9 is installed on the inner wall of the mounting hole 6 to improve the working reliability of the temperature sensor 1.
  • the signal shielding layer 9 can not only be installed on the inner wall of the mounting hole 6, but also can directly cover the outer surface of the temperature sensor 1 and the signal transmission line.
  • the fixing device 2 extends along the axis of the stator 3, and the fixing device 2 is a rod-shaped structure as a whole, and the temperature sensor 1 can be fixed at different positions of the fixing device 2 to detect the temperature at different positions of the rotor.
  • the temperature sensor 1 in addition to the fixed orientation of the temperature sensor 1, it is also necessary to consider the fixation along the length of the fixing device 2. Therefore, the temperature sensor 1 is fixed on the fixing device 2 in a package manner, especially when the temperature sensor 1 is installed After the mounting hole 6 is filled, the package is filled, and the fixing method is simple, reliable, and easy to implement.
  • the packaging material can be heat-dissipating silicone or epoxy resin.
  • the position of the temperature sensor 1 corresponds to the high temperature area determined by the temperature indicating paint on the rotor. Since the temperature distribution area of the motor rotor is unpredictable, irreversible temperature-indicating paint can be sprayed on the motor rotor in advance, and the preset temperature area of the motor rotor that needs high temperature detection is roughly determined according to the color of the temperature-indicating paint, and then the preset temperature area corresponds to this A temperature sensor 1 is provided in the stator slot 4 of the, to achieve targeted temperature detection.
  • a number of temperature sensors 1 arranged coaxially and spaced apart are fixed on the fixing device 2, and the number of temperature sensors 1 respectively detect the temperature at different positions of the rotor, and the number of temperature sensors 1 work at the same time, so as to establish multiple temperature sensors on the stator. Point monitoring of the rotor surface temperature monitoring network.
  • the temperature sensors 1 can be evenly spaced, or non-uniformly spaced according to the structure of the temperature indicating paint.
  • the temperature detection device of the embodiment of the present application simplifies the sensor arrangement mode without destroying the stator and rotor structures, reduces the difficulty of implementation, avoids interference of strong electromagnetic to signal transmission, and obtains a more accurate real-time temperature of the rotor surface.
  • a motor adopts the above-mentioned temperature detection device to accurately detect the surface temperature of the motor rotor and feed it back to the controller, thereby adjusting the output performance of the motor, controlling further temperature rise, and ensuring that the performance of the motor rotor magnet is stable near the operating point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

一种温度检测装置及电机,用于电机转子表面温度检测,包括温度传感器(1),用于检测转子表面温度;固定装置(2),安装在电机定子(3)的定子槽(4)内,用于将温度传感器(1)固定在朝向电机转子的位置。该温度传感器在不破坏定、转子结构前提下,简化传感器布置方式,降低实施难度,同时避免强电磁对信号传输的干扰,获得较为准确的转子表面实时温度,反馈输入给控制器,从而调节电机输出性能,控制进一步的温升,保证电机转子磁钢性能稳定在工作点附近。

Description

温度检测装置及电机
相关申请
本申请要求2019年04月25日申请的,申请号为201910341144.6,名称为“温度检测装置及电机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请属于电动机技术领域,具体涉及一种转子表面温度检测装置及电机。
背景技术
高速永磁电机具有体积小、功率密度大和效率高等优点,但由于高速永磁电机体积小散热困难,同时高频电磁波在转子铁芯和磁钢表面产生严重的涡流损耗,导致转子运行在较高温度下,目前常用的钕磁铁,又称钕铁硼磁铁,容易在高温和电枢反应下发生退磁,磁体恢复到磁中性状态。因此需要对电机内部温度进行检测监控,从而将其内部温度控制在合理范围。
而电机内部的强电磁环境极易影响温度检测装置的可靠性和准确性,同时检测装置也难以布置于高速运行的转子表面,造成对转子表面温度监测困难,有限的数种检测手段或缺乏实时性、准确性,或实施方法复杂,难以实际应用。
相关技术的高速永磁电机转子温度检测装置,通常采用光纤传感器、红外传感器,但传感器的安装,需要在定子齿部开槽,这种结构会破坏定子的结构,且开槽安装的传感器容易受电机振动脱落;还有采用热电偶测量转子温度,将热电偶放置在转子铁芯的磁轭上,同样需要在转子上开孔,这种结构也会破坏转子的结构,降低转子的结构强度。
发明内容
因此,本申请要解决的技术问题是现有技术的电机转子温度检测装置破坏部件结构,降低部件的结构强度,从而提供一种温度检测装置及电机。
为了解决上述问题,本申请提供一种温度检测装置,用于电机转子表面温度检测,包括:
温度传感器,温度传感器用于检测转子表面温度;
固定装置,固定装置安装在电机定子的定子槽内,固定装置用于将温度传感器固定在朝向电机转子的位置。
本申请的目的及解决其技术问题还可采用以下技术措施进一步实现。
在一个实施例中,定子槽设有槽口,槽口将固定装置沿定子径向限位在定子槽内。
在一个实施例中,定子槽内还设有绕组,固定装置与绕组之间设有填充层。
在一个实施例中,固定装置设有用于固定温度传感器的安装孔,温度传感器安装在安装孔内。
在一个实施例中,安装孔的截面形状与温度传感器的整体最大截面的形状相符,温度传感器安装在安装孔内后,温度传感器感测部位的朝向固定。
在一个实施例中,安装孔内还设有特征定位部,特征定位部用于限定温度传感器感测部位的朝向,使温度传感器感测部位朝向转子。
在一个实施例中,安装孔上设有朝向转子的检测口,温度传感器感测部位通过检测口朝向转子表面温度。
在一个实施例中,检测口包括孔形口、槽形口中的至少一个。
在一个实施例中,安装孔的内壁上设有用于屏蔽电磁干扰的信号屏蔽层。
在一个实施例中,固定装置沿定子的轴线方向延伸,温度传感器能够固定在固定装置的不同位置,检测转子不同位置的温度。
在一个实施例中,温度传感器封装固定在固定装置上。
在一个实施例中,温度传感器的位置对应转子上通过示温涂料确定的预设温度区域。
在一个实施例中,固定装置上固定有若干个同轴间隔设置的温度传感器,若干个温度传感器分别检测转子不同位置的温度。
一种电机,采用上述的温度检测装置。
本申请提供的温度检测装置及电机至少具有下列有益效果:
本申请温度检测装置在不破坏定、转子结构前提下,简化传感器布置方式,降低实施难度,同时避免强电磁对信号传输的干扰,获得较为精准的转子表面实时温度,反馈输入给控制器,从而调节电机输出性能,控制进一步的温升,保证电机转子磁钢性能稳定在工作点附近。
附图说明
图1为本申请实施例的温度检测装置的结构示意图;
图2为本申请实施例的温度传感器的剖视图;
图3为本申请实施例的固定装置的结构示意图。
附图标记表示为:
1、温度传感器;2、固定装置;3、电机定子;4、定子槽;5、填充层;6、安装孔;7、导向部;8、检测口;9、信号屏蔽层;10、绕组。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
结合参见图1至图3所示,一种温度检测装置,用于电机转子表面温度检测,包括:温度传感器1,温度传感器1用于检测转子表面温度;固定装置2,固定装置2安装在电机定子3的定子槽4内,固定装置2用于将温度传感器1固定在朝向电机转子的位置。
定子槽为电机定子的定子齿围成的槽形空间,定子槽的截面形状包括梨形、扇形、矩形等,定子槽用于容纳定子绕组,定子槽在容纳定子绕组后,在槽口处往往会剩余部分空间。
针对现有技术的在定子齿上开槽或开孔,会导致定子结构强度降低的问题,本申请实施例的温度检测装置,将温度传感器1安装在定子槽内,不需要破坏电机定子的结构,温度传感器1直接通过定子槽4槽口采集转子辐射的热量。又考虑温度传感器1的安装需要牢固可靠,借助固定装置2,先将体积较大便于固定的固定装置2安装在定子槽4内,再将温度传感器1安装在固定装置2上,安装方便。
在一个实施例中,温度传感器1优先采用红外传感器,红外传感器较为成熟,成本较低,使用最为普遍。在成本允许的情况下,温度传感器1也可以采用光纤温度传感器,光纤传感器在将接受到的温度信号后直接转换为光信号,通过光纤传输至电机外部采集器中,可以避免电机内部的电磁干扰。
在一个实施例中,定子槽4设有槽口,槽口将固定装置2沿定子径向限位在定子槽4内。定子槽4的槽口的最窄处的宽度为L1,固定装置2沿定子槽4宽度方向的最宽处的宽度为L2,其中L2>L1,固定装置2无法沿定子径向通过定子槽4的槽口。充分利用定子槽4槽口处剩余空间,固定装置2设置在定子槽4的槽口处,固定装置2将温度传感器1固定在槽口处。定子槽4内还设有绕组10,固定装置2与绕组10之间设有填充层5。填充层5可以采用散热硅胶。
本实施例的温度传感器1特别适用于梨形的定子槽4,梨形的定子槽4具有越靠近槽口宽度越小的结构特点。固定装置2的宽度L2大于定子槽4的槽口宽度L1,从而固定装置2无法从槽口脱出,固定装置2沿定子径向的两端分别被槽口和填充层5限制,固定装 置2被牢固安装,不需要特殊的固定结构,结构简单,安装方便。
在一个实施例中,固定装置2是温度传感器1的载体,当固定装置2被固定安装在定子槽4内后,需要将温度传感器1固定安装在固定装置2上,因此,固定装置2设有用于固定温度传感器1的安装孔6,温度传感器1安装在安装孔6内。
在一个实施例中,由于温度传感器1的工作特性,温度传感器1必须朝向转子,才能准确检测转子温度。用于定子与转子的位置固定,温度传感器1在固定装置2上的朝向也应该是固定的,本实施例的安装孔6的截面形状与温度传感器1的整体最大截面的形状相符,可以实现温度传感器1安装在安装孔6内后,温度传感器1感测部位的朝向固定。如,温度传感器1为截面形状为矩形,则安装孔6的截面也设计为矩形,则温度传感器1只能沿安装孔6长度方向移动,不可以翻转或偏移,从而,温度传感器1的有效采集辐射的感测部位所在面的朝向固定,即朝向转子方向。
在一个实施例中,当采用的温度传感器1为柱形,安装孔6的截面形状也相应的为圆形,温度传感器1安装在安装孔6后,还有可能会发生周向转动,感测部位无法正确朝向转子,因此,在安装孔6内还设有导向部7,导向部7是根据温度传感器1的截面形状设计,如温度传感器1上有凸起,则导向部7设为凹槽,反之亦然。在温度传感器1上也相应结构与导向部7配合后,可以限定温度传感器1感测部位的朝向,使温度传感器1感测部位朝向转子。
在一个实施例中,温度传感器1检测转子温度时,需要温度传感器1感测部位直接面对电机转子,以保证温度传感器1能够正常工作,在安装孔6上设有朝向转子的检测口8,温度传感器1感测部位通过检测口8朝向并采集转子表面热辐射,转子辐射的热量进入检测口8,进而被温度传感器1感测部位接收。检测口8可以采用孔形口,也可以采用槽形口,也可以孔形口与槽形口综合采用。检测口8采用孔形口,加工方便,且开口较小,温度传感器1及信号传输线所受干扰较小。检测口8采用槽形口,槽形沿安装孔6轴线方向设置,槽形口可以只覆盖在安装孔6的部分长度,也可以贯穿至安装孔6的两端,槽形口可以为温度传感器1提供的检测范围大,温度传感器1可以在槽形口长度范围内任意点进行温度检测,甚至可以在一个槽形的检测口8内设置多个温度传感器1同时工作,提高温度检测分析的粒度。
在一个实施例中,安装孔6的内壁上设有用于屏蔽电磁干扰的信号屏蔽层9。信号屏蔽层9可以采用编制铜网或铝箔等非磁性材料制成。电机内部是强电磁环境,温度传感器1及信号传输线会受到电磁干扰,无法正常工作,因此,在安装孔6的内壁加装信号屏蔽层9,提高温度传感器1的工作可靠性。信号屏蔽层9除可以安装在安装孔6内壁外,还 可以直接覆盖在温度传感器1及信号传输线的外表面。
目前,由于电机结构必然存在差异性,导致电机转子表面温度分布并不均匀,且缺乏精确的方法进行预测,在无法确定高温区域的情况下,需要同时检测不同位置的电机转子表面温度。因此,在一个实施例中固定装置2沿定子3的轴线方向延伸,固定装置2整体为杆状结构,温度传感器1可以固定在固定装置2的不同位置,从而可以检测转子不同位置的温度。
在一个实施例中,温度传感器1除考虑固定朝向外,还需要考虑沿固定装置2长度方向的固定,因此温度传感器1采用封装的方式固定在固定装置2上,特别是当温度传感器1是安装在安装孔6内后,采用填充封装的方式,固定方式简单可靠,也较为容易实现。封装材料可以采用散热硅胶或环氧树脂。
在一个实施例中,温度传感器1的位置对应转子上通过示温涂料确定的高温区域。由于电机转子的温度分布区域不可预测,可在电机转子上预先喷涂不可逆的示温涂料,根据示温涂料的颜色大体确定电机转子的需要进行高温检测的预设温度区域,进而在此预设温度区域对应的定子槽4中设置温度传感器1,实现进行针对性的温度检测。
在一个实施例中,固定装置2上固定有若干个同轴间隔设置的温度传感器1,若干个温度传感器1分别检测转子不同位置的温度,若干个温度传感器1同时工作,从而在定子上建立多点监控的转子表面温度监控网络。若干温度传感器1可以是均匀间隔,也可以是根据示温涂料的结构采用非均匀间隔。
本申请实施例的温度检测装置在不破坏定、转子结构前提下,简化传感器布置方式,降低实施难度,同时避免强电磁对信号传输的干扰,获得较为精准的转子表面实时温度。
一种电机,采用上述的温度检测装置,精确检测电机转子表面温度,反馈输入给控制器,从而调节电机输出性能,控制进一步的温升,保证电机转子磁钢性能稳定在工作点附近。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。以上仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本申请的保护范围。

Claims (14)

  1. 一种温度检测装置,用于电机转子表面温度检测,其特征在于,包括:
    温度传感器(1),所述温度传感器(1)用于检测转子表面温度;
    固定装置(2),所述固定装置(2)安装在电机定子(3)的定子槽(4)内,所述固定装置(2)用于将所述温度传感器(1)固定在朝向电机转子的位置。
  2. 根据权利要求1所述的温度检测装置,其特征在于,所述定子槽(4)设有槽口,所述槽口将所述固定装置(2)沿定子径向限位在所述定子槽(4)内。
  3. 根据权利要求2所述的温度检测装置,其特征在于,所述定子槽(4)内还设有绕组(10),所述固定装置(2)与所述绕组(10)之间设有填充层(5)。
  4. 根据权利要求1所述的温度检测装置,其特征在于,所述固定装置(2)设有用于固定所述温度传感器(1)的安装孔(6),所述温度传感器(1)安装在所述安装孔(6)内。
  5. 根据权利要求4所述的温度检测装置,其特征在于,所述安装孔(6)的截面形状与所述温度传感器(1)的整体最大截面的形状相符,所述温度传感器(1)安装在所述安装孔(6)内后,所述温度传感器(1)感测部位的朝向固定。
  6. 根据权利要求4所述的温度检测装置,其特征在于,所述安装孔(6)内还设有导向部(7),所述导向部(7)用于限定所述温度传感器(1)的感测部位的朝向,使所述温度传感器(1)感测部位朝向所述转子。
  7. 根据权利要求4任一所述的温度检测装置,其特征在于,所述安装孔(6)上设有朝向所述转子的检测口(8),所述温度传感器(1)感测部位通过所述检测口(8)朝向所述转子表面温度。
  8. 根据权利要求7所述的温度检测装置,其特征在于,所述检测口(8)包括孔形口、槽形口中的至少一个。
  9. 根据权利要求4任一所述的温度检测装置,其特征在于,所述安装孔(6)的内壁上设有用于屏蔽电磁干扰的信号屏蔽层(9)。
  10. 根据权利要求1-8任一所述的温度检测装置,其特征在于,所述固定装置(2)沿所述定子的轴线方向延伸,所述温度传感器(1)能够固定在所述固定装置(2)的不同位置,检测所述转子不同位置的温度。
  11. 根据权利要求9所述的温度检测装置,其特征在于,所述温度传感器(1)封装固定在所述固定装置(2)上。
  12. 根据权利要求9所述的温度检测装置,其特征在于,所述温度传感器(1)的位 置对应所述转子上通过示温涂料确定的预设温度区域。
  13. 根据权利要求9所述的温度检测装置,其特征在于,所述固定装置(2)上固定有若干个同轴间隔设置的温度传感器(1),所述若干个温度传感器(1)分别检测所述转子不同位置的温度。
  14. 一种电机,其特征在于,采用权利要求1-12任一所述的温度检测装置。
PCT/CN2019/128955 2019-04-25 2019-12-27 温度检测装置及电机 WO2020215780A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910341144.6A CN110190714A (zh) 2019-04-25 2019-04-25 温度检测装置及电机
CN201910341144.6 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020215780A1 true WO2020215780A1 (zh) 2020-10-29

Family

ID=67715104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128955 WO2020215780A1 (zh) 2019-04-25 2019-12-27 温度检测装置及电机

Country Status (2)

Country Link
CN (1) CN110190714A (zh)
WO (1) WO2020215780A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190714A (zh) * 2019-04-25 2019-08-30 珠海格力电器股份有限公司 温度检测装置及电机
CN111711325B (zh) * 2020-06-28 2023-04-25 哈动国家水力发电设备工程技术研究中心有限公司 具有齿顶测温结构的潮流能永磁发电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1322026A1 (de) * 2001-12-22 2003-06-25 Grundfos a/s Stator eines Elektromotors
CN102087150A (zh) * 2010-11-25 2011-06-08 奇瑞汽车股份有限公司 一种电动汽车电机温度传感器系统及其检测方法
CN102483356A (zh) * 2009-08-19 2012-05-30 西门子公司 具有电机的装置以及用于驱动电机的方法
CN104620477A (zh) * 2012-09-17 2015-05-13 法雷奥电机设备公司 能够接收温度传感器的线圈绝缘器,和相应的定子互连器以及用于温度传感器的支撑件
EP3217518A1 (de) * 2016-03-08 2017-09-13 Siemens Aktiengesellschaft Elektrische rotierende maschine mit asynchronem anlauf
CN110190714A (zh) * 2019-04-25 2019-08-30 珠海格力电器股份有限公司 温度检测装置及电机
CN209659099U (zh) * 2019-04-25 2019-11-19 珠海格力电器股份有限公司 温度检测装置及电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1322026A1 (de) * 2001-12-22 2003-06-25 Grundfos a/s Stator eines Elektromotors
CN102483356A (zh) * 2009-08-19 2012-05-30 西门子公司 具有电机的装置以及用于驱动电机的方法
CN102087150A (zh) * 2010-11-25 2011-06-08 奇瑞汽车股份有限公司 一种电动汽车电机温度传感器系统及其检测方法
CN104620477A (zh) * 2012-09-17 2015-05-13 法雷奥电机设备公司 能够接收温度传感器的线圈绝缘器,和相应的定子互连器以及用于温度传感器的支撑件
EP3217518A1 (de) * 2016-03-08 2017-09-13 Siemens Aktiengesellschaft Elektrische rotierende maschine mit asynchronem anlauf
CN110190714A (zh) * 2019-04-25 2019-08-30 珠海格力电器股份有限公司 温度检测装置及电机
CN209659099U (zh) * 2019-04-25 2019-11-19 珠海格力电器股份有限公司 温度检测装置及电机

Also Published As

Publication number Publication date
CN110190714A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2020215780A1 (zh) 温度检测装置及电机
CA2879466C (en) Contactless power and data transfer
EP2684280B1 (en) Cooled magnet motor
CN105576919A (zh) 一体化冷却散热结构的盘式电机
WO2019241977A1 (zh) 一种转动部件温度监测系统
CN105467822A (zh) 一种小型cpt原子钟物理系统
CN209659099U (zh) 温度检测装置及电机
US20170250587A1 (en) Linear motor
CN106208542A (zh) 一种永磁同步电动机转子表面温度测量装置
US6329732B1 (en) Electric motors and methods for assembling temperature sensors therein
JP2014176148A (ja) 温度計測機能を備えているロータ
KR20210045679A (ko) 모터 일체형 빌렛 유도가열 장치
JP2015109727A (ja) 回転電機一体型制御装置
CN211377824U (zh) 用于电机的状态监测装置
CN110631955A (zh) 一种基于法拉第效应的一体化碱金属气体密度检测装置
CN104776939B (zh) 用于电机转子温升实时测量的空心共轴对拖电机试验台
CN202066979U (zh) 一种感应测井直耦信号调节装置
KR100912733B1 (ko) 원자공명기용 셀 공진기
KR101518977B1 (ko) 초전도 회전기용 공심형 전기자코일의 자기냉동식 냉각구조
CN208016044U (zh) 线圈盘组件及加热工具
JP2014183606A (ja) 温度計測機能を備えているロータ
CN218584210U (zh) 一种干式电抗器的温度检测装置
CN111077450A (zh) 电机测试可变负载装置
CN211043645U (zh) 交流磁铁时变磁场测量系统中测量线圈的固定结构
CN110104220A (zh) 一种流体式反作用装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926056

Country of ref document: EP

Kind code of ref document: A1