WO2020213737A1 - Parameter calculation method, separation film property prediction method, and separation membrange operation method - Google Patents

Parameter calculation method, separation film property prediction method, and separation membrange operation method Download PDF

Info

Publication number
WO2020213737A1
WO2020213737A1 PCT/JP2020/016973 JP2020016973W WO2020213737A1 WO 2020213737 A1 WO2020213737 A1 WO 2020213737A1 JP 2020016973 W JP2020016973 W JP 2020016973W WO 2020213737 A1 WO2020213737 A1 WO 2020213737A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
sludge
activated sludge
separation
membrane filtration
Prior art date
Application number
PCT/JP2020/016973
Other languages
French (fr)
Japanese (ja)
Inventor
浩志 濱田
間谷 聖子
和希 羽川
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020540358A priority Critical patent/JPWO2020213737A1/en
Publication of WO2020213737A1 publication Critical patent/WO2020213737A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a parameter calculation method, a separation membrane characteristic prediction method, and a separation membrane operation method.
  • the membrane separation method has features such as energy saving space and improvement of filtered water quality, so its use in various fields is expanding.
  • the membrane separation activated sludge method used when treating sewage and industrial wastewater is a solid-liquid separation of activated sludge using a filtration membrane or the like in which biological treatment is performed in a biological reaction tank and immersed in the reaction tank. It is a treatment method to obtain clear treated water.
  • Patent Document 1 after imaging the activated sludge collected from the membrane separation activated sludge tank by optical means, the captured image is processed, and the management parameters obtained from the processed image information are compared with the preset control reference range. A method of determining the operating conditions has been proposed.
  • the liquid to be filtered is actually membrane-filtered, and parameters are determined from changes in the value of the intermembrane differential pressure, the membrane filtration flux, and the membrane filtration resistance at that time, and the change over time in the membrane filtration resistance. And a prediction method for obtaining the time course of the intermembrane differential pressure has been proposed.
  • an object of the present invention is to provide a method for calculating parameters and a method for predicting separation membrane characteristics in the membrane separation activated sludge method, which can quantify the membrane filterability of activated sludge in-line.
  • the present invention has the following configuration.
  • a sludge imaging step of imaging active sludge by optical means to obtain a sludge image and the above-mentioned image.
  • a parameter calculation method comprising a sludge image processing step of obtaining sludge image information and a parameter calculation step of calculating a membrane filterability parameter based on the image information.
  • the membrane filtration parameters are the cake adhesion rate, the cake peeling rate, the cake resistance, the non-peeling cake formation rate, the non-peeling cake resistance, the progress rate of closure of the separation membrane pores, and the resistance due to the closure of the separation membrane pores.
  • the parameter calculation method according to (1), wherein the parameter is related to the calculation of any of the above.
  • the parameter calculation method according to (1) or (2), wherein the sludge image information is sludge image information in which a solid phase region and an aqueous phase region are distinguished.
  • Parameter calculation method (6) Of the membrane filtration parameters, the parameters related to cake resistance and closure of the separation membrane pores are the total area of the floc region below a certain area surrounded by the aqueous phase region per unit field of view in the image information element.
  • the activated sludge is imaged by optical means to obtain a sludge image, and the sludge imaging step described above.
  • a method for predicting separation membrane characteristics which comprises a time-dependent change prediction step for predicting a time-dependent change in cake membrane filtration resistance or a time-dependent change in intermembrane differential pressure.
  • Separation including a time-dependent change prediction step for predicting a time-dependent change in cake membrane filtration resistance or a time-dependent differential pressure, and controlling operating conditions from the membrane filterability parameter or the prediction result of the time-dependent change. How to operate the membrane. (11) When the prediction result of the membrane filtration parameter or the change over time of the membrane filtration resistance or the change over time of the intermembrane differential pressure deviates from a predetermined reference range or a predetermined rate of change, the operating conditions are changed.
  • a sludge imaging means which is a water treatment device that separates raw water into treated water and activated sludge by using a separation film, and obtains a sludge image by imaging the activated sludge by optical means, and the above-mentioned sludge imaging means.
  • a sludge image processing means that processes an image to obtain sludge image information, a parameter calculation means that calculates a membrane filterability parameter based on the image information, and a membrane filtration resistance over time based on the membrane filterability parameter.
  • a water treatment apparatus comprising: a time-dependent change predicting means for predicting a change or a time-dependent change in intermembrane differential pressure.
  • Membrane separation in the membrane separation active sludge method in which raw water is separated into treated water and activated sludge using a separation membrane. Activated sludge is imaged by an optical means on a computer in order to predict the characteristics of the separation membrane, and a sludge image is obtained.
  • a separation membrane property prediction program for performing the step of predicting the time course of the intermembrane differential pressure.
  • the activated sludge is imaged by an optical means on a computer in order to predict the characteristics of the separation membrane, and the sludge image is obtained.
  • an operation program of separation membrane characteristics for executing a step of predicting a change in the intermembrane differential pressure with time and a step of controlling operating conditions from the membrane filterability parameter or the prediction result of the change with time.
  • a computer-readable recording medium on which the separation membrane characteristic prediction program and the separation membrane operation program according to (15) or (16) are recorded.
  • the present invention easily and instantly visualizes and quantifies the membrane filtration property of sludge as parameters, so that the time change of membrane filtration resistance, the time change of intermembrane differential pressure, and the membrane filtration flux It is possible to accurately predict the time change or the time change of the membrane filtration flow rate.
  • operating conditions such as aeration air volume and filtration flow rate that suppress the rapid rise in membrane filtration resistance caused by changes in sludge conditions can be optimized based on predictions made in advance, and stable membrane filtration over a long period of time. Driving can be realized.
  • FIG. 1 is an example showing the flow of wastewater treatment by the membrane separation activated sludge method.
  • FIG. 2 is an example showing the flow of water to be treated in the activated sludge tank in the membrane separation activated sludge method.
  • FIG. 3 is an example showing an enlarged view of a part of the flat membrane element in the membrane separation activated sludge method.
  • FIG. 4 is a schematic view showing an example of the embodiment of the present invention.
  • FIG. 5 is a captured image showing an example of the form of image processing according to the present invention.
  • FIG. 6 is an example of a flowchart of the prediction method of the present invention.
  • FIG. 7 is another example of the flowchart of the prediction method of the present invention.
  • FIG. 8 is an example showing the flow of wastewater treatment by the membrane separation activated sludge method according to the present invention.
  • FIG. 9 is a schematic view showing an example of the form of the observation jig according to the present invention.
  • activated sludge is imaged by optical means to obtain a sludge image, and a membrane filtration parameter is calculated based on the image information obtained by processing the image to obtain the membrane filtration property.
  • a membrane filtration parameter is calculated based on the image information obtained by processing the image to obtain the membrane filtration property.
  • the change over time in the membrane filtration resistance or the change over time in the intermembrane differential pressure when the membrane filtration is continued while controlling the membrane filtration flow rate as a set value is predicted.
  • the time course of the membrane filtration resistance and / or the time course of the membrane filtration flow rate (flulux) when the membrane filtration is continued while controlling the filtration pressure as a set value is predicted.
  • the wastewater (raw water) 1 is supplied to the membrane separation activated sludge tank 3 by the raw water supply pump 6, and organic substances and nitrogen in the wastewater are removed and treated by adsorption by the activated sludge and decomposition by microorganisms.
  • the activated sludge is then filtered by the immersion type membrane separation unit 2, and the filtered filtered water 5 is stored in the filtered water tank 4 and then reused or discharged.
  • the membrane used for the membrane element constituting the immersion type membrane separation unit 2 in the present embodiment is not particularly limited, and may be either a flat membrane or a hollow fiber membrane.
  • FIG. 3 shows an example of a flat membrane element preferably used in this embodiment.
  • the structure of the membrane is not particularly limited, and for example, a flat membrane element structure in which a flat membrane is adhered to both sides of the frame 2d, a flat membrane element structure in which the flat membrane is spirally wound, and a surface on the permeation side are used.
  • a pair of flat membranes having two flat membranes arranged so as to face each other and a water collecting flow path provided between the flat membranes, and a seal that seals between the flat membranes at the peripheral edge of the flat membranes.
  • the flat membrane preferably used in the present embodiment is composed of a base material 2c and a separation function layer 2b, and between the base material 2c and the separation function layer 2b, a resin and a base material constituting the separation function layer are formed. There may be a layer in which is mixed.
  • the separation functional layer may have a symmetrical structure or an asymmetric structure with respect to the base material.
  • the microfiltration membrane used in the immersion type membrane separation unit 2 in which one or more suitable membranes may be selected and combined according to the size of the substance to be separated is preferably one having a pore size of about 0.01 ⁇ m to 10 ⁇ m. It is coarser than the ultrafiltration membrane, which is generally separated by molecular sieving, and is usually operated at a reduced operating pressure of 200 kPa or less.
  • a plurality of the immersion type membrane separation units 2 when the immersion type membrane separation unit 2 is immersed in the activated sludge tank, a plurality of the immersion type membrane separation units 2 may be arranged side by side or may be stacked in a plurality of stages.
  • the side surfaces parallel to each other in the direction in which the plurality of dip-type membrane separation units are loaded may be arranged adjacent to each other.
  • Surfaces perpendicular to the direction in which a plurality of membrane elements are loaded may be stacked adjacent to each other in the upper and lower stages.
  • stable operation means a state in which the filtration pressure does not rise above the preset control range during the operation period and the treated water quality does not deviate from the preset control range. It means that.
  • the membrane filterability of the activated sludge deteriorates, leading to an increase in the filtration pressure of the membrane. Therefore, it is important to stably maintain and manage the condition of the activated sludge.
  • Activated sludge consists of a solid phase called flocs and aqueous phase suspended matter and other aqueous phases.
  • Flock refers to aggregates composed of solids such as microorganisms, their metabolites, mortality, and other contaminants and precipitates contained in inflow water in activated sludge.
  • the aqueous phase refers to the water content in the voids around and inside the flocs in activated sludge.
  • the size of the flocs is often about 1 to 1000 ⁇ m in diameter, and among them, those having a maximum particle size distribution in 50 to 500 ⁇ m are exemplified.
  • microbial mortality and metabolites may not be taken up by flocs and may exist in the aqueous phase as colloidal or suspended substances.
  • the size thereof is exemplified by a diameter of 50 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 1 ⁇ m or less. Distinguish as suspended matter.
  • a predetermined size which is the boundary line of the distinction within the range of 1 to 50 ⁇ m in diameter as described above, but it is appropriate depending on the situation of activated sludge.
  • the above-mentioned predetermined size may be set.
  • the active sludge collected from the membrane-separated active sludge tank is imaged and image-processed by optical means, and the amount of suspended matter in the aqueous phase of the active sludge is a solid phase having a certain area or less existing in the aqueous phase region.
  • the area of the solid phase region surrounded by the aqueous phase region is included in the area of the aqueous phase region.
  • any amount that correlates with the ratio of the area of the solid phase region below a certain area to the area of the aqueous phase region may be used, such as when determining the ratio.
  • the area ratio in order to distinguish it from the fluctuation of the amount of suspended solids in the aqueous phase.
  • the flocs are separated from the membrane surface by the swirling flow generated by the aeration, and the aqueous phase suspended matter having a size smaller than the pore size of the membrane contained in the aqueous phase and the aqueous phase. Passes through the membrane and is discharged as membrane filtration water.
  • the activated sludge in a stable state refers to a state in which biological treatment is smoothly carried out by microorganisms, and the mortality and biotransforms of the generated microorganisms are taken into the flock by being decomposed by another microorganism. This indicates that the amount of suspended solids in the aqueous phase is small.
  • such activated sludge is defined as activated sludge whose condition has deteriorated.
  • activated sludge is visualized using a microscope which is an optical means, and the image is analyzed to simultaneously acquire information on both the aqueous phase region and the solid phase region, and the state of activated sludge can be immediately obtained. It was found that comprehensive judgment is possible and the degree of clogging when passing through the membrane can be quantified as a membrane filtration parameter. By using the calculated membrane filtration parameter, it is possible to accurately predict the time change of the membrane filtration resistance, the time change of the differential pressure between membranes, the time change of the membrane filtration flux, or the time change of the membrane filtration flow rate. ..
  • the activated sludge in order to acquire the filterability parameter of the membrane, the activated sludge is collected from the membrane separation activated sludge tank 3, and the optical means (optical microscope) 41 and the camera (imaging).
  • a sludge imaging step of imaging activated sludge using an imaging means consisting of 43, a sludge image processing step of performing image processing in which conditions are set in advance by the image processing means 42, and a membrane filterability parameter of the current activated sludge are calculated.
  • a step of calculating the parameter to be performed and a step of predicting the time-dependent change of the cake film filtration resistance or the time-dependent change of the intermembrane differential pressure based on the membrane filterability parameter are provided.
  • the optical means 41 uses a microscope for visualization.
  • the microscope is not particularly limited, and may be a transmission type or an epi-illumination type, and may be a stereoscopic microscope, a phase contrast microscope, a differential interference microscope, a fluorescence microscope, or a transmission type or a scanning type electron microscope.
  • the transmission type phase-contrast microscope is most suitable for the observation target in the present invention and any operability that allows direct observation without pretreatment.
  • activated sludge is observed with a microscope 41 and imaged with a camera 43.
  • a certain amount of activated sludge to be observed may be dropped on a slide glass, a cover glass may be placed on the slide glass, and the activated sludge may be placed on the stage of a microscope for observation, and the activated sludge is continuously sent into the gap between two glass plates. It may be liquid and observed as appropriate. Further, a dedicated observation jig 44 described later may be used.
  • the camera 43 may be a color camera or a monochrome camera, but a color camera is preferable in order to obtain numerical information such as the color tone of activated sludge.
  • a camera equipped with a measurement function is suitable because it can take an image, perform image processing under preset conditions, and immediately quantify it.
  • the flocs are discriminated by those having a diameter of 50 ⁇ m or more, and the aqueous phase suspended matter is discriminated by those having a diameter of 50 ⁇ m or less. Therefore, the camera 43 need only have a resolution capable of observing and imaging these. In order to recognize and discriminate each of the flocs and aqueous suspended matter and perform image processing to separate them from the noise at the time of imaging, it is preferable to image with 2 pixels ⁇ 2 pixels or more, and the spatial resolution in the visual field is high. , 500 nm / pixel or less, more preferably 300 nm / pixel or less.
  • the wavelength selection means for transmitting light rays in the wavelength range of 500 to 800 nm and the phase difference generating means for causing a phase difference when the light rays pass through the imaging target It is most preferable to have an imaging means for acquiring an image by imaging a transmitted light beam for which a phase difference is generated by the phase difference generating means.
  • the captured image is processed under the conditions preset by the image processing means 42.
  • an element extraction means for extracting an image information element in a wavelength range of 500 to 800 nm to create an extracted image
  • a conversion means for replacing the extracted image with the captured image
  • a candidate region with a predetermined threshold value It is preferable to have a means for creating an extracted image, a means for synthesizing extracted images of a plurality of candidate regions, and a means for quantifying the shape features of each of the extracted regions to obtain a numerical group of image information elements. ..
  • the image information element refers to a feature amount as an image in an image of a flock region or an aqueous phase floating substance, and includes hue, lightness, saturation, number of pixels, chromaticity, and brightness.
  • One or two or more image information elements are extracted from these to create an extracted image, which is further converted into a processed image.
  • threshold values are set for each, extracted images of a plurality of candidate regions are combined, and a plurality of results after determining the threshold values are logically operated to obtain the extracted region.
  • the shape feature is quantified to obtain a numerical group of another image information element.
  • the image focusing on the component having a wavelength of 500 to 800 nm is an image in the captured image when the imaging target is observed in phase difference using a light source having a wide output wavelength band represented by, for example, an LED light source.
  • a component having a wavelength of 500 to 800 nm may be extracted and obtained at the processing stage.
  • FIG. 5 shows an example of the form of the extracted image according to this embodiment.
  • the activated sludge collected from the film-separated activated sludge tank is observed with a microscope in phase contrast, it is observed with the following brightness and color due to the relationship between the refractive index and thickness of the components, and the activated sludge is a solid such as flocs and microorganisms. It is roughly divided into a phase and an aqueous phase, which is a non-flocked region.
  • the solid phase region 61 has higher brightness and saturation than the aqueous phase, and its color is white or red, yellow, black or brown, although it varies depending on the constituents and the state.
  • the aqueous phase region 62 which is a non-solid phase region, is imaged with medium brightness as a background, has a gray tint, and has low saturation.
  • filamentous bacteria and micro-animals are often imaged with medium to low brightness, blue tint, and medium saturation.
  • the extraction of the solid phase region 61 per unit field of view is not particularly limited, but the captured image is converted into an HSV space composed of three components of hue, saturation, and brightness, and one band, S (saturation).
  • S saturation
  • the information of the S (saturation) component of the HSV image is used. Good.
  • a large contrast is formed between the non-solid phase region and the aqueous phase region 62. Therefore, the binarization treatment is performed according to the high and low saturation to distinguish between the solid phase region and the aqueous phase region.
  • RGB (red / green / blue) color captured images were decomposed into R, G, and B information, the brightness profile for each component was obtained, and R only, G only, or R and G were combined. It is also preferable to obtain it as an image.
  • the binarization process may be performed by the luminance information or other components or another method.
  • the threshold value is arbitrarily set while observing the image of activated sludge captured in advance and the brightness distribution, a binarized image is created using the threshold value, the images before and after the processing are compared, and a deviation occurs. In that case, the threshold value is repeatedly corrected to set an appropriate threshold value.
  • a threshold value may be set for the result after multiplying the captured image by various image processing filters. For example, even if a threshold value is set for the result of edge extraction processing represented by a Laplacian filter and the value of the sharpening process for each pixel of the captured image is compared with the threshold value to binarize the captured image. good.
  • the binarized image may be subjected to expansion treatment, contraction treatment, or a treatment in which they are combined to remove noise components from the image.
  • the total area ratio is calculated from the solid phase region occupying the total area of the unit field image, or the peripheral length of the solid phase region is divided by the area to obtain the roundness to distinguish the solid phase region from other foreign substances. You can do it. These may be arbitrarily calculated manually, or may be automatically calculated using preset calculation software.
  • an image information element is acquired as image information in at least one of the solid phase region and the aqueous phase region distinguished by the image processing means 42, and the image information element is used to obtain at least one of the following. Calculate under the above conditions and calculate the membrane filterability parameter.
  • the membrane filterability parameter is calculated from the image information element obtained for the solid phase region (b) Calculated as a combination of a plurality of membrane filterability parameters calculated in the above (a) (c) The aqueous phase
  • the membrane filterability parameter is calculated from the image information element obtained for the region (d) Calculated as a combination of the plurality of the membrane filterability parameters calculated in the above (c) (e) About the solid phase region and the aqueous phase region.
  • the membrane filterability parameter is calculated from the required plurality of image information elements (f)
  • the membrane filterability parameter is calculated as a combination of the plurality of membrane filterability parameters calculated in the above (a) to (e).
  • the membrane filterability parameter is an index showing the membrane filterability of activated sludge, and is larger than the activated sludge adhering to the membrane surface called cake and the pore diameter entering the pores of the membrane called pore blockage. Parameters related to the adhesion rate and peeling rate of constituents in small activated sludge, resistance to the amount of adhesion, and the like can be mentioned.
  • any one of the cake adhesion rate, the cake peeling rate, the cake resistance, the non-peeling cake forming rate, the non-peeling cake resistance, the progress rate of the closure of the separation membrane pores, and the resistance due to the closure of the separation membrane pores can be mentioned, but the parameters are not particularly limited.
  • the present inventor found that there is a correlation between the membrane filtration property parameter and the image information element, and made it possible to calculate the membrane filtration property parameter from the image information element.
  • the membrane filtration parameters related to the calculation of cake resistance and the progress rate of closure of the separation membrane pores are, in particular, the total of the floc regions below a certain area surrounded by the aqueous phase region per unit field of view. It has been clarified that it has a strong correlation with the area, and it is preferable to calculate using this image information element.
  • the image information element includes the area of the solid phase region, the peripheral length of the solid phase region, the area of the aqueous phase region, the peripheral length of the aqueous phase region, the distance between the floc regions, and the space between the solid phase regions. Examples include the total value, the maximum value, the minimum value, the average value, the median value, or the deviation value for the elements selected from the group consisting of the number and the brightness between the solid phase regions.
  • the inter-region distance examples include the distance between the centers of gravity of each region in the flock, the distance between the regions and the closest portion of the regions, and the like. Further, the present invention is characterized in that the image information element is used for calculation under at least one of the above conditions (a) to (d), and another image information element is calculated.
  • the other image information element is not particularly limited, and examples thereof include the following.
  • the brightness of the (iv) solid phase region or the aqueous phase region it is preferable to use the brightness which is an image processing element individually obtained in the (a) solid phase region and / or the aqueous phase region.
  • the total area ratio of the solid phase region and the aqueous phase region is preferably calculated by combining at least two or more total area values individually obtained in (c) the solid phase region or the aqueous phase region. At this time, the calculation is included in the area of the solid phase region surrounded by the aqueous phase region.
  • the ratio of the total area of the solid phase region having a certain area or less surrounded by the aqueous phase region is used"
  • the area of the solid phase region having a certain area or less is relative to the area of the aqueous phase region.
  • the ratio of each region may be calculated by using the number of regions, the average or total brightness in each region, and the like in addition to the area of the region.
  • the method of calculating the area of the solid phase region having a certain area or less surrounded by the aqueous phase region or the area ratio to the aqueous phase region or the solid phase region is specifically to discriminate between the aqueous phase region and the solid phase region. After that, the solid phase region with a certain area or less surrounded by the aqueous phase region is determined, and finally, the total area of the aqueous phase region and the solid phase region with a certain area or less surrounded by the aqueous phase region is calculated.
  • An example is a method of calculating the solid phase region area ratio of a certain area or less surrounded by the aqueous phase region to the area of the aqueous phase region.
  • the total area of the solid phase region within a certain area surrounded by the aqueous phase region may or may not be included in the area of the aqueous phase region as the denominator. It may or may not be included in the area of the solid phase region. If the area of the solid phase region or the aqueous phase region is less than a certain area surrounded by the aqueous phase region, the area of each region calculated as described above may be used as it is.
  • the largest solid phase region or the largest aqueous phase region other than the total area the largest solid phase region or the largest aqueous phase region other than the total area.
  • Maximum area indicating the area of, minimum area indicating the area of the smallest solid phase region or the smallest aqueous phase region, average area in each region of the solid phase or aqueous phase, standard deviation of the area in each region of the solid phase or aqueous phase May be calculated.
  • the brightness, maximum brightness, minimum brightness, and deviation brightness for each RGB (red, green, blue) may be calculated, or ( Regarding the solid phase region peripheral length and the aqueous phase region peripheral length, which are examples of v), the maximum peripheral length, the minimum peripheral length, the average peripheral length, and the peripheral length deviation may be calculated.
  • a calculated value or a calculated value of at least one of the area, the circumference, the number, and the distance between the regions obtained from the image information in at least one of the solid phase region and the aqueous phase region. The amount of change over time can be calculated immediately.
  • a time-dependent change prediction step for predicting the time-dependent change in membrane filtration resistance, the time-dependent change in intermembrane differential pressure, or the membrane filtration flow rate (flulux) based on the membrane filtration property parameter.
  • the membrane filtration prediction method of the present invention the time course of the membrane filtration resistance or the time course of the intermembrane differential pressure when the membrane filtration is continued while controlling the membrane filtration flow rate as a set value is predicted.
  • the change with time of the membrane filtration resistance or the change with time of the membrane filtration flow rate (flux) is predicted.
  • the intermembrane differential pressure is a pressure difference between the filtered liquid side and the permeated liquid side of the separation membrane, and as a means for generating this, for example, a method of pressurizing the filtered liquid side with a pump, a pump. There are a method of sucking from the permeate side and a method of utilizing the head difference between the permeate side and the permeate side.
  • the intermembrane differential pressure can also be measured as the difference between the pressure measurement value on the filtered liquid side and the pressure measurement value on the permeate side of the separation membrane, and at this time, it is generated by a hydraulic flow.
  • the membrane filtration flow rate is the flow rate of the membrane filtration solution
  • the membrane filtration flux is the membrane filtration flow rate per unit area of the separation membrane.
  • Continuing membrane filtration while controlling the membrane filtration flow rate as a set value, or continuing membrane filtration while controlling the intermembrane differential pressure as a set value means that the membrane filtration flow rate or the intermembrane differential pressure is set in advance. It is to control the value.
  • the method of controlling the membrane filtration flow rate and the intermembrane differential pressure to be constant, the method of stopping the filtration periodically or intermittently, and the membrane filtration flow rate and the intermembrane differential pressure are continuously controlled.
  • the set value is changed over time, such as a method of changing it intermittently.
  • a suction pump or the like is installed on the membrane permeation liquid side of the separation membrane to acquire the membrane filtration liquid, and the suction pump is controlled by the flow inverter.
  • the method etc. can be mentioned.
  • the pressure required for membrane filtration is determined by a method of pressurizing the side to be filtered of the separation membrane or a method of utilizing the water head difference.
  • a method of controlling this pressure and the like can be mentioned.
  • the membrane filtration resistance is a resistance generated when the liquid to be filtered is filtered by a membrane, and is generally defined by the equation (1).
  • ⁇ P is the intermembrane differential pressure [Pa]
  • is the viscosity of the membrane filtration solution [Pa ⁇ s]
  • R is the membrane filtration resistance [1 / m]
  • J is the membrane filtration flux [m / s]. ..
  • may directly measure the viscosity of the membrane filtration solution, but since the membrane filtration solution is activated sludge in the membrane separation activated sludge method, it may be converted from the temperature according to Eq. (2).
  • F 0.01257187
  • B ⁇ 0.005806436
  • C 0.001130911
  • D ⁇ 0.000005723952
  • the prediction is a numerical value that becomes an output (time of membrane filtration resistance, etc.) by performing calculations and calculations using numerical values that are inputs (time series values of membrane filtration flow rate, time series values of intermembrane differential pressure, etc.). It is to output the change prediction value etc.).
  • the membrane filtration prediction method of the present invention when the membrane filtration flow rate (fluctuation) is controlled to a set value and the membrane filtration is continued, at least the membrane filtration flow rate (flow) is used as a numerical value for the membrane filtration prediction calculation.
  • the membrane filtration prediction calculation is performed. At least the set value of the intermembrane differential pressure, the initial value of the membrane filtration resistance, and the MLSS are used as the numerical values for this purpose.
  • the initial value of the membrane filtration resistance is the membrane filtration resistance value at the start of membrane filtration, the membrane filtration resistance value when pure water is permeated through the separation membrane, the membrane filtration resistance value after cleaning the separation membrane, and the like. May be an actually measured value, or a virtual value based on the type of separation membrane may be used.
  • MLSS may be an actual measurement value or a virtual value.
  • the time change of MLSS of activated sludge may be predicted using an existing simulation model such as the IWA activated sludge model.
  • the set value of the membrane filtration flow rate is a set value of the membrane filtration flow rate or the membrane filtration flux, which may be an actual measurement value or a virtual value, and a constant value that changes continuously or intermittently. May be. Further, the set value of the intermembrane differential pressure may be an actually measured value or a virtual value, may be a constant value, or may be a value that changes continuously or intermittently.
  • the membrane filtration prediction method of the present invention when the membrane filtration is continued while controlling the membrane filtration flow rate to a set value, at least one of the calculation steps 1a and the calculation steps 1b and 1c described later will be performed.
  • the membrane filtration resistance value and / or the intermembrane differential pressure value at an arbitrary time can be obtained, and the membrane filtration while controlling the intermembrane differential pressure to the set value.
  • At least one of the calculation steps 1a and 1b and the calculation step 1c, which will be described later, and the calculation step 2 and / or the calculation step 4 are performed to perform membrane filtration at an arbitrary time. Obtain the resistance value and / or the membrane filtration flow rate (fluctuation) value.
  • the membrane filtration resistance value and the intermembrane differential pressure value at an arbitrary time can be obtained.
  • the membrane filtration resistance value at an arbitrary time can be obtained.
  • the intermembrane differential pressure value at an arbitrary time can be obtained.
  • the membrane filtration resistance value and the membrane filtration flow rate (flux) value at an arbitrary time can be obtained.
  • the membrane filtration resistance value at an arbitrary time can be obtained.
  • the membrane filtration flow rate (flux) value at an arbitrary time can be obtained.
  • the amount of activated sludge (cake) adhering to the surface of the separation membrane is calculated at an arbitrary time.
  • the calculation step 1a is a calculation step for calculating the amount of change in the amount of cake adhering to the separation membrane surface within a predetermined time
  • the calculation formula in the calculation step 1a is that the cake adheres to the separation membrane surface.
  • the term of the rate of adhesion and the term of the rate at which the cake adhering to the surface of the separation membrane peels off from the surface of the separation membrane are included, and the rate of adhering to the surface of the separation membrane is the intermembrane differential pressure value or the membrane filtration flow rate (flow).
  • the bunch) value, the amount of cake and / or the membrane detergency value, and the rate of peeling from the separation membrane surface are separated from the intermembrane differential pressure value or the membrane filtration flow rate (fluctuation) value. It is preferable to calculate using the amount of cake adhering to the film surface and / or the pressure density of the cake. This makes it possible to accurately predict the amount of cake adhering to the surface of the separation membrane at an arbitrary time.
  • the "consolidation density of the cake adhering to the surface of the separation membrane” is the degree of consolidation by the pressure applied to the cake adhering to the surface of the separation membrane.
  • the cake adhering to the separation membrane surface will not be peeled off from the separation membrane surface by cleaning with aeration.
  • This fully compacted cake is defined as a non-peelable cake, and the amount of cake adhering to the separation membrane surface can be accurately predicted by using the cake and the non-peelable cake instead of the pressure density.
  • the formula for determining the rate at which the cake adhering to the separation membrane surface is peeled off from the membrane surface includes a term based on the membrane detergency value.
  • the membrane detergency is a stress for peeling off a substance adhering to the separation membrane surface
  • the value of the membrane detergency is the value of the shearing force generated on the membrane surface and the filtration of the membrane surface.
  • the value of the flow velocity of the liquid, the value calculated based on the shearing force and the flow velocity, or the power value of the cleaning means is, for example, the cleaning of the separation membrane is exposed from the lower part of the separation membrane.
  • the value of the membrane detergency is the result of the actual membrane filtration test. It may be calculated / estimated from. This makes it possible to add an element that does not depend on the performance of the separation membrane, such as aeration, as a factor that determines the rate at which the cake adhering to the surface of the separation membrane separates from the surface of the separation membrane. It becomes easier to reflect the operating conditions.
  • Xc is the amount of cake attached to the surface of the separation membrane per unit membrane area [gC / m 2 ], t is the time [s], X is the MLSS [gC / m 3 ] of the membrane separation tank, and J is the membrane filtration.
  • Flow flux [m / d] K ⁇ 1 is the membrane cleaning power inhibition coefficient [-]
  • is the membrane separation coefficient [1 / m / s]
  • is the membrane cleaning power value [-]
  • K ⁇ 2 is the cake friction coefficient [1 /].
  • Pa] and ⁇ P are the differential pressure between membranes [Pa]
  • is the inverse of the density of active sludge [m 3 / gC]
  • Dmax is the maximum pressure density [-] (usually 1)
  • D is the pressure density [-].
  • Xc, res are the amount of cake to be peeled [gC / m 2 ].
  • "gC" represents the carbon weight.
  • the first term on the right side of the equations (3) to (5) indicates the rate at which the cake adheres to the surface of the separation membrane, and the second term indicates the rate at which the cake separates from the surface of the separation membrane.
  • the separation membrane when the amount of change in the cake adhering to the surface of the separation membrane is based on a calculation formula expressed as the difference between the speed at which the cake adheres to the separation membrane and the speed at which the cake peels off, the separation membrane is used. It can be expressed as a differential equation related to the amount of attached cake, and at that time, there are Euler method, Runge-Kutta method, Runge-Kutta-Gill (RKG) method, etc. as an integration method for solving this differential equation.
  • the amount of sludge-derived substance (pore blockage amount) existing in the separation membrane pores at an arbitrary time is calculated.
  • the calculation step 1b is a calculation step for calculating the amount of change in the pore closure amount within a predetermined time, and the value of the change amount is the intermembrane differential pressure value and / or the membrane filtration flow rate (flulux). It is preferable to calculate based on the value of the amount of cake adhering to the surface of the separation membrane and / or the amount of pore closure. This makes it possible to accurately predict the amount of pore blockage at an arbitrary time.
  • Xf is the pore closure amount [gC / m 2 ]
  • is the mass transfer rate coefficient [gC / m 2 / Pa / s] into the separation membrane pores
  • is the substance into the separation membrane pores.
  • Kf is also the mass transfer inhibition coefficient into the separation membrane pores [gC 2/3 / m 4/3 ]
  • is the pore closure rate coefficient [s m-1 ⁇ gC. 1-b / m 2 + m-2b ]
  • m is a pore-blocking flux-dependent coefficient [-]
  • b is a pore-blocking cake-dependent coefficient [-].
  • the pressure density of the cake adhering to the surface of the separation membrane is calculated at an arbitrary time.
  • the calculation formula in the calculation step 1c is a calculation step for calculating the amount of change in the pressure density of the cake adhering to the surface of the separation membrane within a predetermined time, and the value of the amount of change is applied to the surface of the separation membrane. It is preferably calculated based on the pressure applied to the attached cake and / or the value of the pressure density of the cake attached to the separation membrane. This makes it possible to accurately predict the pressure density of the cake adhering to the surface of the separation membrane at an arbitrary time.
  • the pressure applied to the cake adhering to the surface of the separation membrane the pressure value derived from the cake may be used, or the differential pressure value between the membranes may be used.
  • the non-peelable cake may be used to express the consolidation.
  • the amount of cake adhering to the separation membrane obtained in the calculation step 1a and / or the amount of pore clogging obtained in the calculation step 1b and / or adhering to the separation membrane obtained in the calculation step 1c is calculated using the pressure density of the existing cake or the amount of non-peelable cake.
  • the membrane filtration resistance value at an arbitrary time is calculated based on the value of the pressure applied to the cake adhering to the surface of the separation membrane, and / or 1 of the pore closure amount. It is preferable to include a higher-order equation of ⁇ quadratic equation. As a result, the membrane filtration resistance value at an arbitrary time can be predicted more accurately.
  • the pressure applied to the cake adhering to the surface of the separation membrane the pressure value derived from the cake adhering to the surface of the separation membrane may be used, or the differential pressure value between the membranes may be used.
  • Rc is the cake-derived membrane filtration resistance [1 / m] attached to the surface of the separation membrane
  • is the cake resistance coefficient [m / gC]
  • a is the cake pressure dependence coefficient [m / gC / Pa].
  • Rf is the membrane filtration resistance derived from pore occlusion [1 / m]
  • is the pore occlusion filtration resistance coefficient [m 2 / gC 1.5 ]
  • R is the membrane filtration resistance [1 / m]
  • Rm is the membrane filtration resistance. Is the initial value [1 / m] of.
  • the cakes adhering to the surface of the separation membrane form a hierarchical structure, and it is preferable that the calculation step 1c includes the following calculation steps 1c-1 and 1c-2.
  • (Calculation Step 1c-1) Based on the amount of cakes adhering to the separation membrane obtained in the calculation step 1a, the number n of cake layers adhering to the surface of the separation membrane at an arbitrary time is calculated.
  • (Calculation step 1c-2) At an arbitrary time, the i-th layer adhering to the surface of the separation membrane (where i is an arbitrary natural number from 1 to n, the first layer is the closest to the separation membrane, and the first layer. The pressure density of the cake of (n layer is the farthest from the separation membrane) is calculated.
  • the amount of cake adhering to the surface of the separation membrane and the membrane filtration resistance value can be predicted more accurately.
  • the calculation step 1a is a calculation step for calculating the amount of change in the amount of cake adhering to the separation membrane surface within a predetermined time
  • the calculation formula in the calculation step 1a is that the cake adheres to the separation membrane surface.
  • the term of the rate of adhesion and the term of the rate at which the cake adhering to the surface of the separation membrane peels off from the surface of the separation membrane are included, and the rate of adhering to the surface of the separation membrane is the intermembrane differential pressure value or the membrane filtration flow rate (flow).
  • the bunch) value, the amount of cake and / or the membrane detergency value, and the rate of peeling from the separation membrane surface are separated from the intermembrane differential pressure value or the membrane filtration flow rate (fluctuation) value. It is preferable to calculate using the amount of cake of the first layer to the nth layer adhering to the film surface and / or the pressure density of the cake of the first layer to the nth layer. This makes it possible to accurately predict the amount of cake adhering to the surface of the separation membrane at an arbitrary time.
  • the formula for obtaining the speed at which the cake adhering to the separation membrane surface is peeled off from the separation membrane surface is a quadratic of the cake amount of the first layer to the nth layer adhering to the separation membrane surface. It is more preferable to include the above terms of higher-order functions. Thereby, the amount of cake adhering to the surface of the separation membrane at an arbitrary time can be predicted more accurately.
  • Formulas that satisfy such conditions include, for example, the following formulas (15) to (17), and in the present invention, it is recommended to follow the formulas (15) to (17).
  • the scope of the present invention is not limited to the equations (15) to (17).
  • n is the number of layers of the cake attached to the separation membrane surface [-]
  • Di is the pressure density of the cake of the i-th layer attached to the separation membrane surface [-]
  • Xc and i are the separation membrane surface. It is the amount of cake [gC / m 2 ] per layer of cake adhering to.
  • the pressure density of the cake of the i-th layer adhering to the surface of the separation membrane is calculated at an arbitrary time.
  • the calculation formula in the calculation step 1c includes a calculation step of calculating the amount of change in the pressure density of the cake of the layer i adhering to the surface of the separation membrane within a predetermined time, and the value of the amount of change is separated. It is preferably calculated based on the pressure applied to the cake adhering to the membrane surface and / or the pressure density of the cake of layer i adhering to the separation membrane. As a result, the pressure density of the cake of the i-th layer adhering to the surface of the separation membrane can be predicted more accurately.
  • the pressure applied to the cake adhering to the surface of the separation membrane the pressure value derived from the cake adhering to the surface of the separation membrane may be used, or the differential pressure value between the membranes may be used.
  • the calculation step 2 replaces the following calculation step 2'.
  • the membrane filtration resistance value at an arbitrary time can be predicted more accurately.
  • (Calculation step 2') The amount of pore closure determined in calculation step 1b, the amount of cake of layer i adhering to the surface of the separation membrane, and / or adhering to the surface of the separation membrane determined in calculation step 1c.
  • the membrane filtration resistance value at time t + ⁇ t is calculated based on the pressure density of the cake of the i-th layer.
  • the amount of cake adhering to the separation membrane obtained in the calculation step 1a and / or the amount of pore clogging obtained in the calculation step 1b and / or adhering to the separation membrane obtained in the calculation step 1c is calculated by using the pressure density of the cake, or by using the membrane filtration resistance value obtained in the calculation step 2 or the calculation step 2'.
  • the membrane filtration prediction is composed of the above (c) (that is, calculation step 1a and / or calculation step 1b and / or calculation step 1c and calculation step 3), it adheres to the separation membrane obtained in calculation step 1a.
  • the equations (19) and (20) may be substituted into the equation (21), and then the equation substituted into the equation (1) may be used.
  • the membrane filtration prediction is composed of the above (a) (that is, calculation step 1a and / or calculation step 1b and / or calculation step 1c and calculation step 2 and calculation step 3), the membrane obtained in calculation step 2 is obtained.
  • the filtration resistance value is used to calculate the intermembrane differential pressure value at an arbitrary time.
  • the amount of cake adhering to the separation membrane obtained in the calculation step 1a and / or the amount of the cake existing in the pores of the separation membrane obtained in the calculation step 1b and / or in the calculation step 1c Membrane filtration flow rate (flux) at any time using the pressure density of the amount of cake adhering to the obtained separation membrane, or using the membrane filtration resistance value obtained in calculation step 2 or calculation step 2'. Calculate the value.
  • the separation membrane obtained in calculation step 1a is used.
  • Calculate the flow rate (flux) value may be substituted into the equation (19), and then the equation substituted into the equation (1) may be used.
  • the membrane filtration prediction is composed of the above (d) (that is, calculation step 1a and / or calculation step 1b and / or calculation step 1c and calculation step 2 and calculation step 4)
  • the membrane obtained in calculation step 2 is obtained.
  • the filtration resistance value is used to calculate the membrane filtration flow rate (flux) value at an arbitrary time.
  • the membrane filtration prediction when the membrane filtration is continued while controlling the membrane filtration flow rate to a set value is performed by repeating the calculation step while updating the time, the membrane filtration resistance over time
  • the membrane filtration resistance over time is used. Find the change and / or the change over time in the membrane filtration flow rate (fluctuation).
  • the frequency of predicting the change over time is not limited, but the prediction result does not change significantly when the sludge membrane filtration property is stable, and the prediction result also changes when the sludge membrane filtration property changes. Therefore, it is preferable to obtain the change with time at the timing when the membrane filtration property of sludge changes. That is, it is preferable to predict the change with time when the membrane filterability parameter deviates from a predetermined reference range or a predetermined rate of change.
  • Table 1 summarizes the explanations of the symbols used in each formula.
  • the membrane separation activated sludge method if the operating conditions are inappropriate or unstable (raw water quality fluctuations, water temperature fluctuations, after washing the membrane with a chemical solution, etc.), the condition of the activated sludge tends to deteriorate, in which case the activated sludge When the amount of suspended matter in the aqueous phase is large and the amount of suspended matter in the aqueous phase is large, it easily adheres to and accumulates on the surface or pores of the membrane when the membrane is filtered, and the membrane is easily blocked. That is, the membrane filtration parameter deteriorates.
  • the captured image is processed, the membrane filtration parameter is calculated, the membrane filtration parameter and / or the prediction result, the value of the number of operable days and its value.
  • the rate of change By comparing the rate of change with a preset reference range, the effects of sludge conditions and operating conditions in the membrane separation activated sludge method are evaluated, and warnings and / or operations are performed before the membrane filtration pressure begins to rise. It is possible to output the control for optimizing the conditions.
  • the number of operable days is defined as the time-dependent change in membrane filtration resistance and / or the time-dependent change in membrane filtration differential pressure and / or the time-dependent change in membrane filtration flow rate (flulux) obtained by prediction of change over time. It is the number of operating days until the set value is reached.
  • Table 2 images of 10 fields are taken for the same activated sludge, image information elements and membrane filterability parameters in each image are calculated, averaged, and image information elements and membrane filtration of the activated sludge.
  • Image processing is performed by taking a plurality of images in order to use them as sex parameters. In the same activated sludge, if image processing is performed from the image processing result of one field of view, an error may occur.
  • the average value of the image processing results of a plurality of fields of view is improved by making a judgment using images in as many observation areas as possible.
  • the wastewater treatment conditions are controlled in order to detect the state of the membrane separation activated sludge and suppress the increase in membrane filtration pressure, deterioration of filtered water quality, etc. by using the evaluation result and / or the prediction result.
  • the object to be controlled is at least one of the following items.
  • A Inflow concentration and inflow amount of water to be treated
  • B Filtration flow rate
  • C Filtration time or filtration stop time
  • D Aeration air volume or aeration time
  • E Nutrient salt addition amount
  • G Activity Amount of sludge
  • H Amount of returned treated water
  • J Operating conditions of pretreatment process
  • K Operating conditions of posttreatment process
  • K Activated sludge tank temperature adjustment conditions
  • L Operating conditions of membrane element
  • M Operating conditions of membrane element
  • N Air diffuser cleaning conditions
  • FIG. 4 is used again to show an example of the embodiment of the present invention.
  • the membrane filterability parameters related to the progress rate of cake resistance and pore clogging are calculated from the area ratio to the solid phase region using a preset calculation formula, and the parameter calculation value and / or the prediction result and the value of the number of operable days are calculated.
  • the alarm output by the alarm output means 49 is a notification indicating that the value of the number of operable days or the rate of change, which is the result of the membrane filtration parameter or the membrane filtration prediction, has deviated from the control range, and is the control panel of the device.
  • the alarm output means 49 may output an alarm and control the operating conditions only when both the membrane filtration parameter and the number of operable days deviate from the control range. Furthermore, the alarm output display is provided step by step, and if only one type of membrane filtration parameter deviates from the control range, only the notification display is provided, and if two or more types deviate from the control range at the same time, control is required. It may be set to display that there is.
  • the state of activated sludge changes depending on the water quality to be treated, the operating conditions of the membrane-separated activated sludge process and the upstream treatment process.
  • the activated sludge is continuously or periodically collected from the membrane-separated activated sludge tank, imaged by the optical means 41 and the camera 43, and image-processed by the image processing means 42. There is a need.
  • the activated sludge visualization device 52 of the present invention is provided with a suction pump 47 for collecting activated sludge from the membrane separation activated sludge tank 3, and the activated sludge is continuously or periodically generated by a signal from the activated sludge visualization control unit 51. It is preferable to collect the sample and visualize the state of activated sludge.
  • the term “regular” as used herein is exemplified by a preset time once a day, once every three hours, and the like.
  • FIG. 8 an example of control using an image information element, a membrane filtration parameter, and a membrane filtration prediction result is shown.
  • the system of the example shown in FIG. 8 includes an immersion type membrane separation unit 2, a membrane separation active sludge tank 3, a raw water supply pump 6 for supplying wastewater 1, an air pump (air supply device) 7, an air diffuser pipe 8, and a suction pump. 9.
  • Active sludge extraction pump 10 nutrient addition pump 13 for adding nutrients in nutrient addition tank 12, chemical addition pump 15 for adding chemicals in chemical addition tank 14, cleaning of cleaning chemical addition tank 16.
  • Cleaning chemical addition pump 17 for adding chemicals, nutrient salt addition flow path switching valves 18a and 18b, cleaning chemical flow path switching valves 19a and 19b, cleaning chemical discharge valve 20, and spare tank for draining drainage 22 from the spare tank 21. It includes a drainage pump 24, a spare tank liquid feed pump 23 for feeding liquid from the reserve tank 21 to the membrane separation active sludge tank 3, and a wastewater (water to be treated) flow path switching valve 25. Further, as an example, the collection port 53 shown in FIG. 4 is installed in the membrane separation active sludge tank 3 of FIG. 8, and the activated sludge is collected and supplied to the activated sludge visualization device 52.
  • the balance between the amount of organic matter contained in the inflowing wastewater 1 and the amount of active sludge in the membrane separation activated sludge tank 3 that decomposes it should be kept constant. It is important to prepare.
  • the amount of organic matter referred to here is represented by BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), or TOC (Total Organic Carbon Demand), which are general water quality indicators.
  • the load per unit activated sludge amount for example, BOD / MLSS load is calculated and managed to be about 0.05 to 0.2 kgBOD / kgMLSS / day, more preferably about 0.07 to 0.15 kgBOD / kgMLSS / day.
  • the membrane filterability parameters related to the cake and pore occlusion rate are monitored, and when the control range is exceeded, the sludge state in the activated sludge deteriorates and the membrane filterability deteriorates.
  • As an alarm for example, "Please check if the BOD / MLSS load is within the control range" is displayed, and according to the displayed content, (A) the BOD concentration of wastewater 1 which is the water to be treated. It is exemplified that the amount of inflow and the amount of (G) activated sludge are confirmed to be within an appropriate range, and if they deviate from the control range, they are controlled to be within the range.
  • the water quality of wastewater 1 may change, causing a temporary shortage of trace components such as nitrogen and phosphorus, which worsens the sludge condition and worsens the membrane filterability parameters related to cake and pore blockage. Sometimes. Therefore, the membrane filtration parameters related to cake and pore occlusion are monitored, and if it exceeds the control range, it is determined that the sludge state is deteriorated and the membrane filtration property of activated sludge is deteriorated.
  • FIG. An alarm may be output to additionally adjust the amount of nutrients added from the nutrient addition tank 12 shown in (E).
  • the pH of the activated sludge in the membrane separation active sludge tank 3 may fluctuate to be acidic or alkaline in the process of the water quality fluctuation of the wastewater 1 or the biological treatment reaction by the activated sludge in the membrane separation active sludge tank 3. Therefore, when the membrane filtration parameter related to cake or pore blockage exceeds the control range, it is determined that the sludge state in the activated sludge has deteriorated and the membrane filtration property has deteriorated, and "pH is confirmed. Please do it.
  • the chemical addition tank 14 shown in FIG. 8 may be controlled to add an acid (for example, hydrochloric acid or sulfuric acid) or an alkali (for example, sodium hydroxide) for neutralization as the adjustment of the amount of the chemical addition (F).
  • an acid for example, hydrochloric acid or sulfuric acid
  • an alkali for example, sodium hydroxide
  • the alarm output may be recorded separately and changed sequentially so as to be in the order of troubles that are likely to occur in the processing process.
  • the chemical solution in addition to the acid and alkali used for adjusting the pH of the activated sludge, it is added to the wastewater 1 in or upstream of the membrane-separated activated sludge tank 3 to coagulate aqueous phase suspended matter and soluble substances in advance. Examples thereof include a flocculant and an antifoaming agent for suppressing the foaming of activated sludge.
  • activated sludge is imaged and image-processed by optical means before and after the change of operating conditions, so that the effect can be immediately obtained without performing analysis using a conventional water quality analyzer. Since it is possible to determine, there is an effect that the time required for changing the condition is significantly shortened.
  • the membrane filtration parameter related to pore occlusion is monitored, and the parameter related to pore occlusion rate. If the values and rate of change of parameters related to the pressure dependence of pore occlusion and the predicted operating days are out of the control range, the air diffuser below the membrane element may be clogged. Therefore, it is also preferable to adjust the flow rate of the air pump 7 (N) to clean the air diffuser pipe 8 or to replace, for example, a rubber resin member constituting the air diffuser pipe.
  • the area and / or water of the solid phase region of image information (viii) constant color tone or constant brightness or less.
  • Monitor the area ratio to the phase region or solid phase region and if the membrane filtration parameter deteriorates and the color tone of the solid phase region changes from brown to black, "dissolved oxygen in the activated sludge tank".
  • the concentration may have decreased. ”Is displayed an alarm, and based on the display, measure the dissolved oxygen concentration in the activated sludge tank and check if the air volume of the air pump is out of the control range.
  • the air diffuser pipe cleaning should be performed.
  • activated sludge at a plurality of locations in the membrane separation activated sludge tank 3 is collected, and a judgment is made for each of the locations that deviate from the control range. If there is, it is possible that the air diffuser in the vicinity is clogged. Therefore, preferentially adjust the flow rate of the air pump 7 to clean the air diffuser 8 in the vicinity or clean the air diffuser. For example, it is also preferable to replace the constituent rubber resin member.
  • the (C) filtration time or filtration stop time of the suction pump 9 can be adjusted, or the (D) aeration air volume or aeration of the air pump 7 can be adjusted according to the state of the activated sludge in the membrane separation activated sludge tank 3 and the predicted result.
  • the time may be increased or decreased or adjusted intermittently.
  • energy saving is achieved by (D) reducing the aeration air volume or the aeration time while confirming that there is no problem in the membrane filtration parameters and the membrane filtration prediction result even if the aeration air volume or the aeration time is reduced. be able to.
  • (D) reduce the aeration air volume or aeration time and operate, and the rate of change is greater than or equal to the control value.
  • (D) it is preferable to increase the aeration air volume or the aeration time for operation.
  • the number of operable days calculated by membrane filtration prediction is monitored, and the number of operational days is managed by reducing the aeration air volume or aeration time within the range where the operational days do not deviate from the preset control range.
  • (D) it is preferable to increase the aeration air volume or the aeration time for operation. Further, it is also preferable to adjust by combining (C) the filtration time or the filtration stop time and (D) the aeration air volume or the aeration time, respectively.
  • the membrane is checked for breakage, for example. It is also suitable for the maintenance of separation membranes for separation activated sludge treatment.
  • FIG. 9 schematically shows the configuration of the observation jig 44 used for continuous observation of activated sludge in one embodiment of the present invention.
  • the observation jig 44 is evaluated at intervals of 0.01 to 0.1 mm in which a pair of upper and lower transparent members 72 mounted on the gantry 71, for example, a pair of transparent members 72 such as transparent glass and acrylic resin are arranged facing each other. It is composed of a flow path 74 and an activated sludge transport flow path 73 that communicates with the evaluation flow path 74 from a liquid feeding line 46 that is directly connected to the evaluation flow path to the water treatment tank.
  • the activated sludge 70 is imaged by the optical means 41 and the camera 43 through the liquid feeding means 75 for feeding the activated sludge 70 into the evaluation flow path 74 and the evaluation flow path 74.
  • the optical means 41 includes a lens 41a, a phase difference / bright field switching / optical filter means 41b, and a light source 41c for switching between a phase difference image and a bright field image of the activated sludge 70 for observation.
  • the material of the member for maintaining the gap between the activated sludge transport flow path 73 of the observation jig 44 and the evaluation flow path 74 is not particularly limited, but a metal such as acrylic resin or stainless steel, which is easy to process, is preferable, and chemical resistance is preferable.
  • Stainless steel (SUS) 316 is preferable because of its properties and abrasion resistance.
  • the activated sludge 70 is sent from the membrane separation activated sludge tank 3 to the evaluation flow path 74 formed by the transparent member 72 mounted on the gantry 71 via the activated sludge transport flow path 73 by the liquid feeding means 75.
  • the liquid feeding means 75 includes a liquid feeding control means (not shown) for controlling the liquid feeding amount.
  • the liquid feeding means 75 may feed the activated sludge 70 collected in advance to a container (not shown), or may collect the activated sludge 70 through a movable collection port 53 installed in the membrane separation activated sludge tank 3.
  • the liquid feed control means is not particularly limited as long as the activated sludge 70 can be smoothly fed, but it is preferable that the speed can be selected such as acceleration, deceleration, or liquid feed at a constant speed, and the liquid feed is stopped for a certain period of time at the time of imaging. Is preferable. Instead of stopping the liquid feeding for a certain period of time at the time of imaging, both ends (inlet and outlet of activated sludge) of the evaluation flow path 74 may be physically blocked. For example, solenoid valves may be provided at both ends of the transparent flow path in order to physically block the flow path.
  • the liquid feeding means 75 is preferably, but is not limited to, a pump that can feed or stop the liquid or control the liquid feeding speed by an electric signal from the outside.
  • the activated sludge feed is temporarily stopped and left for a certain period of time, or the activated sludge 70 is temporarily closed by using a physical closing means such as a solenoid valve that blocks the inlet side and the outlet side of the evaluation flow path 74. Stop the flow and take an image. By taking an image in a state where the flow of the activated sludge 70 is stopped in this way, the solid phase region and the aqueous phase region can be accurately distinguished, and the amount of suspended solids in the aqueous phase can be detected.
  • a physical closing means such as a solenoid valve that blocks the inlet side and the outlet side of the evaluation flow path 74. Stop the flow and take an image.
  • the distance between the gaps between the pair of transparent members 72 constituting the evaluation flow path 74 is not particularly limited, but 0.01 to 0.1 mm is preferable in consideration of the size of the flocs. Further, it is also preferable that the distance between the transparent members 72 constituting the evaluation flow path 74 is inclined so that the flow path becomes narrower toward the portion provided with the gap of 0.01 to 0.10 mm. In order to reduce clogging during activated sludge feeding, it is also preferable to add an adjustment function for adjusting the gap interval, and to change the gap of the transparent member 72 between activated sludge feeding and observation. is there.
  • the gap in the evaluation flow path 74 By varying the gap in the evaluation flow path 74, it is possible to keep the gap between the gaps suitable only during observation, and to widen the gap in other cases to prevent clogging of activated sludge in the flow path. Furthermore, as described above, during observation, the thickness of the flow path is positively changed and the shape of the activated sludge is changed in the thickness direction to investigate the degree of change in the solid phase region in the image before and after the change, and according to the degree of change. It is suitable because it enables quantitative evaluation of the density, degree of aggregation, constituents, etc. of activated sludge.
  • the adjustment function for varying the gap of the evaluation flow path 74 is not particularly limited, and the thickness of the gap in the vertical direction may be changed by an electric signal or manually.
  • the density, the degree of aggregation, the constituent components, etc. in the thickness direction of the activated sludge may be quantified together with the position information.
  • the activated sludge collected from the membrane-separated activated sludge tank 3 depending on the stirring condition of the activated sludge, the activated sludge may stay at the bottom of the tank, or there are many components such as oil that easily float near the water surface of the tank. Since there may be a difference in the state of activated sludge, it is preferable to collect activated sludge in an average state in the tank. Therefore, the collection port 53 is movable in the depth direction so that the activated sludge can be collected from any place in the depth direction of the membrane separation activated sludge tank, whereby the average in the depth direction of the membrane separation activated sludge tank It is possible to collect activated sludge.
  • the air diffuser pipe 8 may be washed, or the rubber resin member constituting the air diffuser pipe may be replaced.
  • three collection ports to which three types of collection tubes having different lengths are attached may be immersed in the activated sludge tank, or three locations in the depth direction in advance. It is also possible to immerse a sampling pipe with a sampling port provided with an on-off valve in an activated sludge tank, open the on-off valve at one of the three locations at a preset time, and suck the sludge with the rest closed. Good.
  • the collection port 53 is provided with an expansion / contraction function and a direction adjustment function, and the activated sludge is first moved horizontally to the target location at the upper part of the activated sludge tank and then moved in the depth direction to collect activated sludge. It may be collected.
  • the activated sludge liquid supply line 46 from the collection port 53 to the suction pump 47 and the activated sludge visualization device 52 includes general tubes, hoses, hard polyvinyl chloride (HIVP) used for water pipes, and stainless steel pipes. Is used.
  • the material of the tube and hose is not particularly limited, and general silicon, nylon, polypropylene, polyurethane and the like are suitable.
  • a light source 41c, a lens 41a for observing and imaging, and a camera 43 are provided with the evaluation flow path 74 sandwiched so that light passes through the surface of the evaluation flow path 74 in the vertical direction sandwiched between the transparent members 72.
  • the phase difference, bright field switching, and the position of the optical filter means 41b are adjusted so as to be in an appropriate position.
  • the light from the light source 41c passes through the phase difference / bright field switching / optical filter means 41b, the transparent member 72 constituting the evaluation flow path 74, and the activated sludge 70.
  • This light is imaged by the camera 43 to which the lens 41a is attached.
  • the captured image acquired by the camera 43 is sent to the image processing means 42.
  • the lens 41a is not particularly limited as long as the required magnification and field of view can be secured, but it is preferable to use an objective lens having a magnification suitable for the sizes of flocs and aqueous phase suspended matter, and in the present invention, the magnification is 2 times or more and 1000 times. The following is preferable, and 10 times or more and 100 times or less is more preferable.
  • the phase difference / bright field switching / optical filter means 41b is composed of a ring slit, a retardation plate, a dedicated objective lens, and the like so that the phase difference image and the bright field image can be switched and observed.
  • phase difference / bright field switching / optical filter means 41b may be controlled by an electric signal, or may be manually switched by the observer at an arbitrary timing.
  • a surface through which light can pass in the evaluation flow path may be provided in a plurality of directions in the vertical and horizontal directions, and the light to be passed may be applied from a plurality of directions, or the camera 43 may capture images from a plurality of directions.
  • the observation jig itself or the evaluation flow path may have a rotatable structure.
  • the activated sludge contains a large amount of gas components such as gas generated by the air diffuser 8 and bubbles generated by biological treatment.
  • the activated sludge is imaged by the optical means 41 and the camera 43 in the state of containing the gas.
  • image processing is performed by the processing means 42, accurate processing may not be possible. Therefore, by installing the degassing device 45 in the liquid feeding line 46 that feeds the activated sludge to the optical means 41 and removing the gas component of the activated sludge, accurate treatment becomes possible.
  • the degassing device 45 may be any device such as a ball valve or a needle valve as long as it is a mechanism capable of discharging gas in general, but it is attached to the upper part of the liquid feeding line 46 in order to enable efficient exhaust. Is preferable.
  • the activated sludge collected from the membrane separation activated sludge tank is imaged by an imaging means including an optical means 41 and a camera 43, image processing is performed by the image processing means 42, and the membrane filtration calculated as the image processing result is performed. It has a determination means 48 for determining that an abnormality occurs when the membrane filtration prediction result performed using the sex parameter or the membrane filtration property parameter deviates from a preset control reference range.
  • Judgment as to whether or not there is a deviation from the control standard range may be made by incorporating judgment conditions in the control software of the camera based on a judgment formula created in advance based on past achievements and knowledge based on preliminary studies, or by incorporating the above judgment formula.
  • the image processing result may be imported into a personal computer or the like for determination. All of these are connected to the alarm output means 49 that outputs an abnormality alarm, and outputs an alarm when the determination result deviates from the preset control reference range.
  • a monitor may be provided to display the captured image, image processing conditions, judgment result and alarm content on the monitor according to the judgment result, and the wastewater treatments (A) to (N) corresponding to the judgment result may be displayed. It is more preferable to display the condition control method as well.
  • the evaluation frequency in the present embodiment is not particularly limited, and when the membrane separation activated sludge tank is operated stably, for example, it is evaluated once a day for about 1 hour, depending on the determination result. After the wastewater treatment conditions of (A) to (N) are controlled by the control means 50, it is preferable to carry out the control continuously until it can be confirmed that the state of the activated sludge is stable.
  • sludge is collected from the membrane separation activated sludge tank, imaged, sludge is discharged, image processing is performed, and the process of calculating the membrane filtration parameter is set as one set, and about 30 sets are performed. Is exemplified. The evaluation is carried out while operating the membrane separation activated sludge tank.
  • it may be a wastewater treatment system management program for making various control means for controlling the wastewater treatment conditions (A) to (N) by the control means 50 according to the determination result, or a computer. It may be incorporated into a wastewater treatment system as a recording medium that can be read by. As a result, the activated sludge collected from the membrane separation activated sludge tank is imaged and image-processed by optical means to determine the membrane filterability and the number of operating days, and when the determination result deviates from the predetermined management standard. It is preferable that an alarm is displayed and the various wastewater treatment conditions (A) to (N) are automatically controlled.
  • the activated sludge image captured by the activated sludge visualization device 52 of the present embodiment and the image processing result are monitored and determined even at a remote location by connecting to a remote monitoring server via the communication device 54.
  • PLC Process Control Control
  • DCS Distributed Logic Controller
  • a distributed control system that communicates with each other and monitors each other, have control devices in each device that composes the system. It may be installed together with a control management system such as (distributed control system), and operation data may be retrieved from the control management system via a remote monitoring device and installed on a cloud server installed at an arbitrary location. ..
  • the remote location referred to here may be a central control room or the like in another building in the plant, or may be either a centralized control center in a region or a country.
  • the present invention is intended to minimize an increase in the filtration pressure of the membrane due to deterioration of the state of activated sludge and to realize long-term stable operation, and is not particularly limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Dispersion Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

A membrane separation activated sludge method is provided which, for separating raw water into treated water and activated sludge using a separation membrane, involves a sludge imaging step in which the activated sludge is imaged with an optical means to obtain a sludge image, a sludge image processing step in which the image is processed to obtain sludge image information, and a parameter processing step in which a membrane filtration parameter is calculated on the basis of the image information.

Description

パラメータ算出方法、分離膜特性の予測方法、分離膜の運転方法Parameter calculation method, separation membrane characteristics prediction method, separation membrane operation method
 本発明は、パラメータ算出方法、分離膜特性の予測方法、分離膜の運転方法に関する。 The present invention relates to a parameter calculation method, a separation membrane characteristic prediction method, and a separation membrane operation method.
 膜分離法は、省エネルギー・スペース、およびろ過水質向上等の特長を有するため、様々な分野での使用が拡大している。例えば、下水や産業廃水を処理する際に用いられる膜分離活性汚泥法は、生物反応槽内で、生物処理を行い、反応槽内に浸漬させたろ過膜等を用いて活性汚泥を固液分離し、清澄な処理水を得る処理方法である。 The membrane separation method has features such as energy saving space and improvement of filtered water quality, so its use in various fields is expanding. For example, the membrane separation activated sludge method used when treating sewage and industrial wastewater is a solid-liquid separation of activated sludge using a filtration membrane or the like in which biological treatment is performed in a biological reaction tank and immersed in the reaction tank. It is a treatment method to obtain clear treated water.
 このような膜分離活性汚泥法は、活性汚泥自体や反応槽に流入する被処理液中の夾雑物などの固形分が分離膜表面に付着し、付着した物質が膜ろ過抵抗増加を引き起こすこととなる。このとき、膜ろ過抵抗が大きくなると、一定の膜ろ過圧力を加えることにより膜ろ過を行う場合には、膜ろ過流量が低減し、膜ろ過流量を一定として膜ろ過を行う場合には、膜間差圧が増大する。前者の場合には、計画していた流量が確保できないこととなり、後者の場合には圧力を増加させるためのエネルギーが必要となると同時に分離膜に対する負担が増加する。そのため、膜分離活性汚泥法では、ろ過効率が低下しないようにろ過膜の下部に、設置した散気管によって空気等を散気し、気泡および上昇流による分離膜の振動効果と撹拌効果によって、分離膜表面の付着物の付着を剥離させながらろ過している。 In such a membrane separation activated sludge method, solids such as the activated sludge itself and impurities in the liquid to be treated flowing into the reaction vessel adhere to the surface of the separation membrane, and the adhered substances cause an increase in membrane filtration resistance. Become. At this time, when the membrane filtration resistance increases, the membrane filtration flow rate decreases when the membrane filtration is performed by applying a constant membrane filtration pressure, and between the membranes when the membrane filtration is performed with the membrane filtration flow rate constant. The differential pressure increases. In the former case, the planned flow rate cannot be secured, and in the latter case, energy for increasing the pressure is required, and at the same time, the burden on the separation membrane increases. Therefore, in the membrane separation activated sludge method, air etc. is diffused by an air diffuser installed at the bottom of the filtration membrane so that the filtration efficiency does not decrease, and the separation membrane is separated by the vibration effect and stirring effect of the separation membrane due to bubbles and ascending current. Filtration is performed while removing the deposits on the film surface.
 それでも、被処理液を膜ろ過すると、処理水量に伴って、膜表面や膜細孔内に汚染物質の蓄積量が増大していき、処理水量・水質の低下あるいは膜ろ過圧力の上昇が問題となってくる。このような膜ろ過抵抗の増加挙動は、膜ろ過条件や汚泥の状態によって大きく影響を受けるため、膜ろ過を継続して行うための重要な因子である。すなわち、効率的かつ安定的なろ過を行うためには、活性汚泥の状態を監視し、活性汚泥の状態に即した運転条件を見いだすことが重要となる。 Even so, when the liquid to be treated is membrane-filtered, the amount of pollutants accumulated on the membrane surface and in the membrane pores increases with the amount of treated water, and there is a problem that the amount and quality of treated water decreases or the membrane filtration pressure rises. It will be. Such an increasing behavior of membrane filtration resistance is greatly affected by the membrane filtration conditions and the state of sludge, and is therefore an important factor for continuous membrane filtration. That is, in order to perform efficient and stable filtration, it is important to monitor the state of activated sludge and find the operating conditions suitable for the state of activated sludge.
 特許文献1には、膜分離活性汚泥槽から採取した活性汚泥を光学的手段で撮像後、撮像した画像を処理し、処理した画像情報から求められる管理パラメータとあらかじめ設定した管理基準範囲とを比較して運転条件を判定する方法が提案されている。 In Patent Document 1, after imaging the activated sludge collected from the membrane separation activated sludge tank by optical means, the captured image is processed, and the management parameters obtained from the processed image information are compared with the preset control reference range. A method of determining the operating conditions has been proposed.
 特許文献2には、被ろ過液を実際に膜ろ過し、そのときの膜間差圧の値や膜ろ過流束、膜ろ過抵抗の値の変化からパラメータを決定し、膜ろ過抵抗の経時変化および膜間差圧の経時変化を求める予測方法が提案されている。 In Patent Document 2, the liquid to be filtered is actually membrane-filtered, and parameters are determined from changes in the value of the intermembrane differential pressure, the membrane filtration flux, and the membrane filtration resistance at that time, and the change over time in the membrane filtration resistance. And a prediction method for obtaining the time course of the intermembrane differential pressure has been proposed.
国際公開第2018/181618号International Publication No. 2018/181618 国際公開第2009/054506号International Publication No. 2009/054506
 最適な運転条件を決定するためには、活性汚泥の状態から活性汚泥の膜ろ過性を定量化し、現状の活性汚泥状態および運転条件が膜ろ過抵抗に与える影響を考慮することが求められる。しかしながら、特許文献1では、現状の汚泥状態を維持するための運転条件を決定することはできるものの、汚泥の膜ろ過性を定量的に把握できていなかった。また、特許文献2では、汚泥の膜ろ過性を把握する方法としてろ過試験が挙げられているが、そのためには実際に膜ろ過性試験装置で膜ろ過する必要があり、インラインで状態を監視することは困難だった。
そこで本発明は、活性汚泥の膜ろ過性をインラインで定量化することが可能な、膜分離活性汚泥法におけるパラメータ算出方法および分離膜特性の予測方法を提供することを目的とする。
In order to determine the optimum operating conditions, it is necessary to quantify the membrane filtration property of the activated sludge from the state of the activated sludge, and to consider the influence of the current activated sludge state and the operating conditions on the membrane filtration resistance. However, in Patent Document 1, although the operating conditions for maintaining the current sludge state can be determined, the membrane filtration property of sludge cannot be quantitatively grasped. Further, in Patent Document 2, a filtration test is mentioned as a method for grasping the membrane filtration property of sludge, but for that purpose, it is necessary to actually perform membrane filtration with a membrane filtration test device, and the state is monitored in-line. That was difficult.
Therefore, an object of the present invention is to provide a method for calculating parameters and a method for predicting separation membrane characteristics in the membrane separation activated sludge method, which can quantify the membrane filterability of activated sludge in-line.
 上記目的を達成するため、本発明は、以下の構成を有する。
(1)分離膜を用いて、原水を処理水と活性汚泥とに分離する、膜分離活性汚泥法において、活性汚泥を光学的手段で撮像して、汚泥画像を得る汚泥撮像工程と、前記画像を処理して、汚泥画像情報を得る汚泥画像処理工程と、前記画像情報に基づき、膜ろ過性パラメータを算出する、パラメータ算出工程とを備えることを特徴とするパラメータ算出方法。
(2)前記膜ろ過性パラメータが、ケーク付着速度、ケーク剥離速度、ケーク抵抗、非剥離ケーク形成速度、非剥離ケーク抵抗、分離膜細孔の閉塞の進行速度、分離膜細孔の閉塞による抵抗、の何れかを算出するのに関わるパラメータであることを特徴とする(1)に記載のパラメータ算出方法。
(3)前記汚泥画像情報が、固体相領域と水相領域とが区別された汚泥画像情報である、(1)または(2)に記載のパラメータ算出方法。
(4)前記膜ろ過性パラメータが、下記(a)~(f)のいずれかの条件で算出されることを特徴とする(3)に記載のパラメータ算出方法。
(a)前記固体相領域について求められる画像情報要素から、前記膜ろ過性パラメータを算出
(b)前記(a)で算出された、複数の膜ろ過性パラメータの組み合わせとして算出
(c)前記水相領域について求められる画像情報要素から、前記膜ろ過性パラメータを算出
(d)前記(c)で算出された、複数の前記膜ろ過性パラメータの組み合わせとして算出
(e)固体相領域および水相領域について求められる複数の画像情報要素から、前記膜ろ過性パラメータを算出
(f)前記(a)~(e)で算出された、複数の前記膜ろ過性パラメータの組み合わせとして算出
(5)前記画像情報要素が、前記固体相領域の面積、前記固体相領域の周囲長、前記水相領域の面積、前記水相領域の周囲長、前記固体相領域間の距離、前記固体相領域間の個数、および、前記固体相領域間の輝度からなる群から選ばれる要素ついての、合計値、最大値、最小値、平均値、中央値または偏差値の少なくともいずれかであることを特徴とする(4)に記載のパラメータ算出方法。
(6)前記膜ろ過性パラメータのうちケーク抵抗および分離膜細孔の閉塞に関わるパラメータを前記画像情報要素における単位視野あたりの水相領域に囲まれた一定面積以下のフロック領域の総面積を用いて算出することを特徴とする(5)に記載のパラメータ算出方法。
(7)前記汚泥画像が撮像倍率2倍以上1000倍以下で撮像された画像であることを特徴とする(1)~(6)のいずれかに記載のパラメータ算出方法。
(8)分離膜を用いて、原水を処理水と活性汚泥とに分離する、膜分離活性汚泥法において、活性汚泥を光学的手段で撮像して、汚泥画像を得る、汚泥撮像工程と、前記汚泥画像を処理して、汚泥画像情報を得る、汚泥画像処理工程と、前記汚泥画像情報に基づき、あらかじめ求めた相関から膜ろ過性パラメータを算出するパラメータ算出工程と、前記膜ろ過性パラメータに基づきケーク膜ろ過抵抗の経時変化または膜間差圧の経時変化を予測する経時変化予測工程とを備えることを特徴とする分離膜特性の予測方法。
(9)前記膜ろ過性パラメータがあらかじめ決めた基準範囲またはあらかじめ決めた変化率の範囲を逸脱した場合に前記経時変化を予測することを特徴とする(8)に記載の分離膜特性の予測方法。
(10)分離膜を用いて、原水を処理水と活性汚泥とに分離する、膜分離活性汚泥法において、活性汚泥を光学的手段で撮像して、汚泥画像を得る、汚泥撮像工程と、前記汚泥画像を処理して、汚泥画像情報を得る、汚泥画像処理工程と、前記汚泥画像情報に基づき、あらかじめ求めた相関から膜ろ過性パラメータを算出するパラメータ算出工程と、前記膜ろ過性パラメータに基づきケーク膜ろ過抵抗の経時変化または膜間差圧の経時変化を予測する経時変化予測工程とを備え、前記膜ろ過性パラメータまたは前記経時変化の予測結果から運転条件を制御することを特徴とする分離膜の運転方法。
(11)前記膜ろ過性パラメータまたは前記膜ろ過抵抗の経時変化または膜間差圧の経時変化の予測結果が、あらかじめ決めた基準範囲またはあらかじめ決めた変化率の範囲を逸脱した場合に運転条件を制御することを特徴とする(10)に記載の分離膜の運転方法。
(12)前記経時変化の予測結果から、前記膜ろ過抵抗または前記膜間差圧があらかじめ決めた基準範囲を逸脱する予測日を算出し、前記予測日までの日数があらかじめ決めた基準範囲を逸脱した場合に運転条件を制御することを特徴とする(11)に記載の分離膜の運転方法。
(13)前記予測日までの日数があらかじめ決めた基準範囲を逸脱した場合に、分離膜に供給される空気の風量を制御することを特徴とする(12)記載の分離膜の運転方法。
(14)分離膜を用いて、原水を処理水と活性汚泥とに分離する、水処理装置であって、活性汚泥を光学的手段で撮像して、汚泥画像を得る、汚泥撮像手段と、前記画像を処理して、汚泥画像情報を得る、汚泥画像処理手段と、前記画像情報に基づき、膜ろ過性パラメータを算出する、パラメータ算出手段と、前記膜ろ過性パラメータに基づき、膜ろ過抵抗の経時変化、または、膜間差圧の経時変化を予測する、経時変化予測手段と、を備えることを特徴とする水処理装置。
(15)分離膜を用いて原水を処理水と活性汚泥とに分離する膜分離活性汚泥法における、分離膜特性を予測するためにコンピュータに、活性汚泥を光学的手段で撮像して、汚泥画像を得るステップと、前記画像を処理して、汚泥画像情報を得るステップと、前記画像情報に基づき、膜ろ過性パラメータを算出するステップと、前記膜ろ過性パラメータに基づき、膜ろ過抵抗の経時変化、または、膜間差圧の経時変化を予測するステップを実行させるための分離膜特性の予測プログラム。
(16)分離膜を用いて原水を処理水と活性汚泥とに分離する膜分離活性汚泥法における、分離膜特性を予測するためにコンピュータに、活性汚泥を光学的手段で撮像して、汚泥画像を得るステップと、前記画像を処理して、汚泥画像情報を得るステップと、前記画像情報に基づき、膜ろ過性パラメータを算出するステップと、前記膜ろ過性パラメータに基づき、膜ろ過抵抗の経時変化、または、膜間差圧の経時変化を予測するステップと、前記膜ろ過性パラメータまたは前記経時変化の予測結果から運転条件を制御するステップを実行させるための分離膜特性の運転プログラム。
(17)(15)または(16)に記載の分離膜特性の予測プログラムおよび分離膜の運転プログラムを記録したコンピュータ読み取り可能な記録媒体。
In order to achieve the above object, the present invention has the following configuration.
(1) In the membrane separation activated sludge method in which raw water is separated into treated water and activated sludge by using a separation membrane, a sludge imaging step of imaging active sludge by optical means to obtain a sludge image and the above-mentioned image. A parameter calculation method comprising a sludge image processing step of obtaining sludge image information and a parameter calculation step of calculating a membrane filterability parameter based on the image information.
(2) The membrane filtration parameters are the cake adhesion rate, the cake peeling rate, the cake resistance, the non-peeling cake formation rate, the non-peeling cake resistance, the progress rate of closure of the separation membrane pores, and the resistance due to the closure of the separation membrane pores. The parameter calculation method according to (1), wherein the parameter is related to the calculation of any of the above.
(3) The parameter calculation method according to (1) or (2), wherein the sludge image information is sludge image information in which a solid phase region and an aqueous phase region are distinguished.
(4) The parameter calculation method according to (3), wherein the membrane filtration parameter is calculated under any of the following conditions (a) to (f).
(A) Calculate the membrane filterability parameter from the image information element obtained for the solid phase region (b) Calculate as a combination of a plurality of membrane filterability parameters calculated in (a) above (c) The aqueous phase Calculate the membrane filterability parameter from the image information element obtained for the region (d) Calculate as a combination of the plurality of membrane filterability parameters calculated in (c) above (e) For the solid phase region and the aqueous phase region The membrane filterability parameter is calculated from a plurality of required image information elements (f) Calculated as a combination of the plurality of membrane filterability parameters calculated in the above (a) to (e) (5) The image information element However, the area of the solid phase region, the peripheral length of the solid phase region, the area of the aqueous phase region, the peripheral length of the aqueous phase region, the distance between the solid phase regions, the number of the solid phase regions, and Described in (4), the element selected from the group consisting of the brightness between the solid phase regions is at least one of a total value, a maximum value, a minimum value, an average value, a median value, and a deviation value. Parameter calculation method.
(6) Of the membrane filtration parameters, the parameters related to cake resistance and closure of the separation membrane pores are the total area of the floc region below a certain area surrounded by the aqueous phase region per unit field of view in the image information element. The parameter calculation method according to (5), wherein the parameter calculation method is performed.
(7) The parameter calculation method according to any one of (1) to (6), wherein the sludge image is an image captured at an imaging magnification of 2 times or more and 1000 times or less.
(8) In the membrane separation activated sludge method in which raw water is separated into treated water and activated sludge using a separation membrane, the activated sludge is imaged by optical means to obtain a sludge image, and the sludge imaging step described above. Based on the sludge image processing step of processing the sludge image to obtain sludge image information, the parameter calculation step of calculating the membrane filterability parameter from the correlation obtained in advance based on the sludge image information, and the membrane filterability parameter. A method for predicting separation membrane characteristics, which comprises a time-dependent change prediction step for predicting a time-dependent change in cake membrane filtration resistance or a time-dependent change in intermembrane differential pressure.
(9) The method for predicting separation membrane characteristics according to (8), wherein the change over time is predicted when the membrane filterability parameter deviates from a predetermined reference range or a predetermined rate of change. ..
(10) In the membrane separation activated sludge method in which raw water is separated into treated water and activated sludge using a separation membrane, the activated sludge is imaged by optical means to obtain a sludge image, and the sludge imaging step described above. Based on the sludge image processing step of processing the sludge image to obtain sludge image information, the parameter calculation step of calculating the membrane filterability parameter from the correlation obtained in advance based on the sludge image information, and the membrane filterability parameter. Separation including a time-dependent change prediction step for predicting a time-dependent change in cake membrane filtration resistance or a time-dependent differential pressure, and controlling operating conditions from the membrane filterability parameter or the prediction result of the time-dependent change. How to operate the membrane.
(11) When the prediction result of the membrane filtration parameter or the change over time of the membrane filtration resistance or the change over time of the intermembrane differential pressure deviates from a predetermined reference range or a predetermined rate of change, the operating conditions are changed. The method for operating a separation membrane according to (10), which comprises controlling.
(12) From the prediction result of the change with time, a predicted date in which the membrane filtration resistance or the intermembrane differential pressure deviates from a predetermined reference range is calculated, and the number of days until the predicted date deviates from the predetermined reference range. The method for operating a separation membrane according to (11), wherein the operating conditions are controlled in the case of
(13) The method for operating a separation membrane according to (12), wherein the air volume of air supplied to the separation membrane is controlled when the number of days until the predicted date deviates from a predetermined reference range.
(14) A sludge imaging means, which is a water treatment device that separates raw water into treated water and activated sludge by using a separation film, and obtains a sludge image by imaging the activated sludge by optical means, and the above-mentioned sludge imaging means. A sludge image processing means that processes an image to obtain sludge image information, a parameter calculation means that calculates a membrane filterability parameter based on the image information, and a membrane filtration resistance over time based on the membrane filterability parameter. A water treatment apparatus comprising: a time-dependent change predicting means for predicting a change or a time-dependent change in intermembrane differential pressure.
(15) Membrane separation in the membrane separation active sludge method in which raw water is separated into treated water and activated sludge using a separation membrane. Activated sludge is imaged by an optical means on a computer in order to predict the characteristics of the separation membrane, and a sludge image is obtained. The step of obtaining sludge image information by processing the image, the step of calculating the membrane filterability parameter based on the image information, and the time course of the membrane filtration resistance based on the membrane filterability parameter. Or, a separation membrane property prediction program for performing the step of predicting the time course of the intermembrane differential pressure.
(16) In the membrane separation active sludge method in which raw water is separated into treated water and activated sludge using a separation membrane, the activated sludge is imaged by an optical means on a computer in order to predict the characteristics of the separation membrane, and the sludge image is obtained. The step of obtaining sludge image information by processing the image, the step of calculating the membrane filterability parameter based on the image information, and the time course of the membrane filtration resistance based on the membrane filterability parameter. Or, an operation program of separation membrane characteristics for executing a step of predicting a change in the intermembrane differential pressure with time and a step of controlling operating conditions from the membrane filterability parameter or the prediction result of the change with time.
(17) A computer-readable recording medium on which the separation membrane characteristic prediction program and the separation membrane operation program according to (15) or (16) are recorded.
 本発明は膜分離活性汚泥法において、汚泥の膜ろ過性を簡便かつ即時に可視化およびパラメータとして定量化することで、膜ろ過抵抗の時間変化、膜間差圧の時間変化、膜ろ過流束の時間変化、あるいは、膜ろ過流量の時間変化を、精度良く予測することができる。その結果、汚泥の状態の変化によって発生する膜ろ過抵抗の急上昇を抑制する曝気風量やろ過流量などの運転条件を、事前検討による予測に基づき最適化することができ、長期間において安定した膜ろ過運転を実現することができる。 In the membrane separation active sludge method, the present invention easily and instantly visualizes and quantifies the membrane filtration property of sludge as parameters, so that the time change of membrane filtration resistance, the time change of intermembrane differential pressure, and the membrane filtration flux It is possible to accurately predict the time change or the time change of the membrane filtration flow rate. As a result, operating conditions such as aeration air volume and filtration flow rate that suppress the rapid rise in membrane filtration resistance caused by changes in sludge conditions can be optimized based on predictions made in advance, and stable membrane filtration over a long period of time. Driving can be realized.
図1は、膜分離活性汚泥法による廃水処理のフローを示す一例である。FIG. 1 is an example showing the flow of wastewater treatment by the membrane separation activated sludge method. 図2は、膜分離活性汚泥法における活性汚泥槽内の被処理水の流れを示す一例である。FIG. 2 is an example showing the flow of water to be treated in the activated sludge tank in the membrane separation activated sludge method. 図3は、膜分離活性汚泥法における平膜エレメントの一部の拡大図を示す一例である。FIG. 3 is an example showing an enlarged view of a part of the flat membrane element in the membrane separation activated sludge method. 図4は、本発明の形態の一例を示す概略図である。FIG. 4 is a schematic view showing an example of the embodiment of the present invention. 図5は、本発明に係る画像処理の形態の一例を示す撮像画像である。FIG. 5 is a captured image showing an example of the form of image processing according to the present invention. 図6は、本発明の予測方法のフローチャートの一例である。FIG. 6 is an example of a flowchart of the prediction method of the present invention. 図7は、本発明の予測方法のフローチャートの他の一例である。FIG. 7 is another example of the flowchart of the prediction method of the present invention. 図8は、本発明に係る膜分離活性汚泥法による廃水処理のフローを示す一例である。FIG. 8 is an example showing the flow of wastewater treatment by the membrane separation activated sludge method according to the present invention. 図9は、本発明に係る観察用治具の形態の一例を示す概略図である。FIG. 9 is a schematic view showing an example of the form of the observation jig according to the present invention.
 以下に、本発明の実施態様について図面を参照しながら詳細に説明するが、本発明はこれらによって何ら限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
 本発明の膜ろ過予測方法では、活性汚泥を光学的手段で撮像して、汚泥画像を得ると共に、前記画像を処理して得た画像情報に基づき膜ろ過性パラメータを算出し、前記膜ろ過性パラメータに基づき、膜ろ過流量を設定値として制御しつつ膜ろ過を継続する際の、膜ろ過抵抗の経時的変化または膜間差圧の経時的変化を予測する。あるいは、ろ過圧力を設定値として制御しつつ膜ろ過を継続する際の、膜ろ過抵抗の経時的変化およびまたは膜ろ過流量(流束)の経時的変化を予測する。 In the membrane filtration prediction method of the present invention, activated sludge is imaged by optical means to obtain a sludge image, and a membrane filtration parameter is calculated based on the image information obtained by processing the image to obtain the membrane filtration property. Based on the parameters, the change over time in the membrane filtration resistance or the change over time in the intermembrane differential pressure when the membrane filtration is continued while controlling the membrane filtration flow rate as a set value is predicted. Alternatively, the time course of the membrane filtration resistance and / or the time course of the membrane filtration flow rate (flulux) when the membrane filtration is continued while controlling the filtration pressure as a set value is predicted.
 図1および図2は、本発明の好適な実施形態で用いられる一般的な膜分離活性汚泥処理のフローを概略化したものである。
 まず、廃水(原水)1が原水供給ポンプ6によって膜分離活性汚泥槽3に供給され、活性汚泥による吸着・微生物による分解作用により廃水中の有機物や窒素などが除去・処理される。ついで、活性汚泥は、浸漬型膜分離ユニット2によりろ過され、ろ過されたろ過水5はろ過水槽4に貯えられた後、再利用、あるいは、放流される。
1 and 2 outline the flow of general membrane separation activated sludge treatment used in a preferred embodiment of the present invention.
First, the wastewater (raw water) 1 is supplied to the membrane separation activated sludge tank 3 by the raw water supply pump 6, and organic substances and nitrogen in the wastewater are removed and treated by adsorption by the activated sludge and decomposition by microorganisms. The activated sludge is then filtered by the immersion type membrane separation unit 2, and the filtered filtered water 5 is stored in the filtered water tank 4 and then reused or discharged.
 ここで、本実施形態で浸漬型膜分離ユニット2を構成する膜エレメントに用いられる膜は、特に限定されるものではなく、平膜、中空糸膜のいずれでもよい。本実施形態で好適に用いられる平膜エレメントの一例を図3に示す。膜の構造は、特に限定されるものではなく、例えば、フレーム2dの両面に平膜を接着した平膜エレメント構造や、平膜がスパイラル状に巻かれた平膜エレメント構造、透過側の面が互いに対向するように配置された2枚の平膜と、前記平膜間に設けられた集水流路とを有する平膜対、および前記平膜の周縁部において平膜間を封止する封止部を含み、可とう性を有する平膜エレメント構造、さらには中空糸膜を複数本束ねた中空糸膜エレメント構造、のいずれを用いてもよい。本実施形態で好適に用いられる平膜は、基材2cと分離機能層2bとからなり、基材2cと分離機能層2bとの間には、当該分離機能層を構成する樹脂と基材とが混在する層が介在していてもよい。分離機能層は、基材に対して、対称構造であっても、非対称構造であっても構わない。 Here, the membrane used for the membrane element constituting the immersion type membrane separation unit 2 in the present embodiment is not particularly limited, and may be either a flat membrane or a hollow fiber membrane. FIG. 3 shows an example of a flat membrane element preferably used in this embodiment. The structure of the membrane is not particularly limited, and for example, a flat membrane element structure in which a flat membrane is adhered to both sides of the frame 2d, a flat membrane element structure in which the flat membrane is spirally wound, and a surface on the permeation side are used. A pair of flat membranes having two flat membranes arranged so as to face each other and a water collecting flow path provided between the flat membranes, and a seal that seals between the flat membranes at the peripheral edge of the flat membranes. Any of a flat membrane element structure including a portion and having flexibility, and a hollow fiber membrane element structure in which a plurality of hollow fiber membranes are bundled may be used. The flat membrane preferably used in the present embodiment is composed of a base material 2c and a separation function layer 2b, and between the base material 2c and the separation function layer 2b, a resin and a base material constituting the separation function layer are formed. There may be a layer in which is mixed. The separation functional layer may have a symmetrical structure or an asymmetric structure with respect to the base material.
 平膜としては、限外ろ過膜、精密ろ過膜のいずれにも適用することができる。また、分離対象物質の大きさに応じて適当な一種以上の膜を選択、組み合わせればよい浸漬型膜分離ユニット2に用いられる精密ろ過膜は、孔径が0.01μmから10μm程度のものをいい、一般的に分子ふるいによる分離が行われる限外ろ過膜より目が粗く、通常操作圧は減圧状態から200kPa以下で運転される。 As a flat membrane, it can be applied to both ultrafiltration membranes and microfiltration membranes. Further, the microfiltration membrane used in the immersion type membrane separation unit 2 in which one or more suitable membranes may be selected and combined according to the size of the substance to be separated is preferably one having a pore size of about 0.01 μm to 10 μm. It is coarser than the ultrafiltration membrane, which is generally separated by molecular sieving, and is usually operated at a reduced operating pressure of 200 kPa or less.
 本実施形態において、浸漬型膜分離ユニット2を活性汚泥槽に浸漬させる際には、複数個並べてもよく、複数段重ねてもよい。複数個並べる場合には、浸漬型膜分離ユニットの平膜エレメントが複数装填されている方向に平行な側面同士を隣接させて並べてもよく、複数段重ねる場合には、浸漬型膜分離ユニットの平膜エレメントが複数装填されている方向に垂直な面同士を上下段に隣接させて重ねてもよい。 In the present embodiment, when the immersion type membrane separation unit 2 is immersed in the activated sludge tank, a plurality of the immersion type membrane separation units 2 may be arranged side by side or may be stacked in a plurality of stages. When arranging a plurality of the flat membrane elements of the immersion type membrane separation unit, the side surfaces parallel to each other in the direction in which the plurality of dip-type membrane separation units are loaded may be arranged adjacent to each other. Surfaces perpendicular to the direction in which a plurality of membrane elements are loaded may be stacked adjacent to each other in the upper and lower stages.
 ここで、膜分離活性汚泥法による廃水処理方法において、安定運転とは、運転期間中、ろ過圧力があらかじめ設定した管理範囲以上に上昇することなく、処理水質をあらかじめ設定した管理範囲を逸脱しない状態のことをいう。ろ過対象である活性汚泥の状態が悪化すると、活性汚泥の膜ろ過性が悪化して膜のろ過圧力上昇につながるため、活性汚泥の状態を、安定に維持管理することが重要である。また早期に、膜分離活性汚泥槽における活性汚泥の状態変化を捉え、膜のろ過圧力上昇が起きる前に、活性汚泥の状態を改善するための各種廃水処理条件の制御を行うことが重要である。 Here, in the wastewater treatment method by the membrane separation activated sludge method, stable operation means a state in which the filtration pressure does not rise above the preset control range during the operation period and the treated water quality does not deviate from the preset control range. It means that. When the condition of the activated sludge to be filtered deteriorates, the membrane filterability of the activated sludge deteriorates, leading to an increase in the filtration pressure of the membrane. Therefore, it is important to stably maintain and manage the condition of the activated sludge. In addition, it is important to detect changes in the state of activated sludge in the membrane separation activated sludge tank at an early stage and control various wastewater treatment conditions to improve the state of activated sludge before the filtration pressure of the film rises. ..
 活性汚泥は、フロックや水相浮遊物と呼ばれる固体相とそれ以外の水相からなる。フロックとは、活性汚泥において、微生物やその代謝物および死がい、その他流入水に含まれる混入物、析出物など、固体からなる凝集物のことをいう。水相とは、活性汚泥において、フロックの周囲およびフロック内の空隙にある水分のことを言う。
 フロックの大きさは、直径1~1000μm程度が多く、中でも50~500μmに粒度分布の極大があるものが例示される。
Activated sludge consists of a solid phase called flocs and aqueous phase suspended matter and other aqueous phases. Flock refers to aggregates composed of solids such as microorganisms, their metabolites, mortality, and other contaminants and precipitates contained in inflow water in activated sludge. The aqueous phase refers to the water content in the voids around and inside the flocs in activated sludge.
The size of the flocs is often about 1 to 1000 μm in diameter, and among them, those having a maximum particle size distribution in 50 to 500 μm are exemplified.
 一方で、微生物の死がいや代謝物などが、フロックに取り込まれず、コロイド状もしくは浮遊物として水相に存在する場合がある。その大きさは直径50μm以下、より好ましくは10μm以下、さらに好ましくは1μm以下のものが例示されるが、本発明においては、所定サイズ以上の大きさの固体相をフロックとし、それ以下のものを水相浮遊物として区別する。典型的に固体相と水相を区別するには、上記のように直径1~50μmの範囲内で区別の境界線となる所定サイズを設定することが好ましいが、活性汚泥の状況に応じて適宜上記所定サイズを設定してもよい。 On the other hand, microbial mortality and metabolites may not be taken up by flocs and may exist in the aqueous phase as colloidal or suspended substances. The size thereof is exemplified by a diameter of 50 μm or less, more preferably 10 μm or less, still more preferably 1 μm or less. Distinguish as suspended matter. Typically, in order to distinguish between the solid phase and the aqueous phase, it is preferable to set a predetermined size which is the boundary line of the distinction within the range of 1 to 50 μm in diameter as described above, but it is appropriate depending on the situation of activated sludge. The above-mentioned predetermined size may be set.
 本発明の実施形態では、膜分離活性汚泥槽から採取した活性汚泥を光学的手段で撮像および画像処理を行い、活性汚泥の水相浮遊物量として、水相領域に存在する一定面積以下の固体相領域の総面積、もしくは、上記一定面積以下の固体相領域の面積の水相領域の面積に対する比のほかに、水相領域に囲まれた固体相領域の面積を水相領域の面積に含めて比を求めたりする場合など、一定面積以下の固体相領域の面積の水相領域の面積に対する割合と相関のあるいかなる量を用いてもよい。特に活性汚泥量の総量に変動がある場合は、水相浮遊物量の変動と区別するため、面積比を用いるのが好適である。 In the embodiment of the present invention, the active sludge collected from the membrane-separated active sludge tank is imaged and image-processed by optical means, and the amount of suspended matter in the aqueous phase of the active sludge is a solid phase having a certain area or less existing in the aqueous phase region. In addition to the total area of the region or the ratio of the area of the solid phase region below a certain area to the area of the aqueous phase region, the area of the solid phase region surrounded by the aqueous phase region is included in the area of the aqueous phase region. Any amount that correlates with the ratio of the area of the solid phase region below a certain area to the area of the aqueous phase region may be used, such as when determining the ratio. In particular, when the total amount of activated sludge fluctuates, it is preferable to use the area ratio in order to distinguish it from the fluctuation of the amount of suspended solids in the aqueous phase.
 膜分離活性汚泥槽内でろ過運転を実施している際、フロックは曝気によって生じる旋回流により膜面から剥離され、水相と水相に含まれる膜の孔径以下の大きさの水相浮遊物が膜を通過し、膜ろ過水として排出される。本実施形態において、安定状態の活性汚泥とは、微生物により生物処理が順調に行われている状態を指し、発生した微生物の死がいや代謝物が、別の微生物によって分解されることでフロックに取り込まれ、水相浮遊物量が少ない状態のことを示す。一方、水温変動や水質変動などにより、生物処理条件のバランスが崩れた場合には、微生物の死がいや代謝物の発生量が増え、分解やフロックへの取り込みが間に合わず、水相浮遊物量が増加したり、フロックが分散したりする。水相浮遊物量が多くなるにつれ、膜を通過する際に、膜の表面または孔内に付着・蓄積し、膜を閉塞させやすくなる。つまり、膜ろ過性が悪化する。このような活性汚泥を、本発明では、状態が悪化した活性汚泥と定義する。 During the filtration operation in the membrane separation active sludge tank, the flocs are separated from the membrane surface by the swirling flow generated by the aeration, and the aqueous phase suspended matter having a size smaller than the pore size of the membrane contained in the aqueous phase and the aqueous phase. Passes through the membrane and is discharged as membrane filtration water. In the present embodiment, the activated sludge in a stable state refers to a state in which biological treatment is smoothly carried out by microorganisms, and the mortality and biotransforms of the generated microorganisms are taken into the flock by being decomposed by another microorganism. This indicates that the amount of suspended solids in the aqueous phase is small. On the other hand, when the balance of biological treatment conditions is lost due to fluctuations in water temperature or water quality, the amount of microbial mortality and metabolites generated increases, decomposition and incorporation into flocs are not in time, and the amount of suspended solids in the aqueous phase increases. Or the flocs are dispersed. As the amount of suspended solids in the aqueous phase increases, as it passes through the membrane, it adheres to and accumulates on the surface or pores of the membrane, making it easier to block the membrane. That is, the membrane filtration property deteriorates. In the present invention, such activated sludge is defined as activated sludge whose condition has deteriorated.
 本発明では光学的手段である顕微鏡を用いて活性汚泥を可視化し、その画像を解析することで、水相領域と固体相領域の両方の情報を同時に取得し、即時に、活性汚泥の状態を総合判断可能であり、膜ろ過性パラメータとして膜を通過する際の閉塞の程度を定量化可能であることを見出した。算出した膜ろ過性パラメータを用いることで膜ろ過抵抗の時間変化、膜間差圧の時間変化、膜ろ過流束の時間変化、あるいは、膜ろ過流量の時間変化を、精度良く予測することができる。 In the present invention, activated sludge is visualized using a microscope which is an optical means, and the image is analyzed to simultaneously acquire information on both the aqueous phase region and the solid phase region, and the state of activated sludge can be immediately obtained. It was found that comprehensive judgment is possible and the degree of clogging when passing through the membrane can be quantified as a membrane filtration parameter. By using the calculated membrane filtration parameter, it is possible to accurately predict the time change of the membrane filtration resistance, the time change of the differential pressure between membranes, the time change of the membrane filtration flux, or the time change of the membrane filtration flow rate. ..
 以降、本発明の好ましい形態の詳細について述べる。
 本発明の実施形態について図4を用いて説明する。本発明では、膜分離活性汚泥法による廃水処理方法において、膜のろ過性パラメータを取得するため、膜分離活性汚泥槽3から活性汚泥を採取し、光学的手段(光学顕微鏡)41とカメラ(撮像手段)43からなる撮像手段を用いて活性汚泥を撮像する汚泥撮像工程と、画像処理手段42であらかじめ条件設定した画像処理を行う汚泥画像処理工程と、現状の活性汚泥の膜ろ過性パラメータを算出するパラメータ算出工程と、膜ろ過性パラメータに基づき、ケーク膜ろ過抵抗の経時変化、または、膜間差圧の経時変化を予測する経時変化予測工程を備える。
Hereinafter, the details of the preferred embodiment of the present invention will be described.
An embodiment of the present invention will be described with reference to FIG. In the present invention, in the wastewater treatment method by the membrane separation activated sludge method, in order to acquire the filterability parameter of the membrane, the activated sludge is collected from the membrane separation activated sludge tank 3, and the optical means (optical microscope) 41 and the camera (imaging). Means) A sludge imaging step of imaging activated sludge using an imaging means consisting of 43, a sludge image processing step of performing image processing in which conditions are set in advance by the image processing means 42, and a membrane filterability parameter of the current activated sludge are calculated. A step of calculating the parameter to be performed and a step of predicting the time-dependent change of the cake film filtration resistance or the time-dependent change of the intermembrane differential pressure based on the membrane filterability parameter are provided.
 光学的手段41は、可視化のために顕微鏡を用いる。顕微鏡は、特に限定されるものではなく、透過型でも落射型でもよく、実体顕微鏡、位相差顕微鏡、微分干渉顕微鏡、蛍光顕微鏡、さらには透過型もしくは走査型の電子顕微鏡などいずれでもよいが、中でも、本発明における観察対象および前処理不要で直接観察可能などの操作性において透過型の位相差顕微鏡が最も好適である。 The optical means 41 uses a microscope for visualization. The microscope is not particularly limited, and may be a transmission type or an epi-illumination type, and may be a stereoscopic microscope, a phase contrast microscope, a differential interference microscope, a fluorescence microscope, or a transmission type or a scanning type electron microscope. The transmission type phase-contrast microscope is most suitable for the observation target in the present invention and any operability that allows direct observation without pretreatment.
 汚泥撮像工程では、活性汚泥を、顕微鏡41で観察し、カメラ43で撮像する。観察対象の活性汚泥をスライドガラスの上に一定量滴下し、カバーガラスをのせて、顕微鏡のステージにのせて観察してもよく、2枚のガラス板の間隙に、活性汚泥を連続的に送液し、適宜観察してもよい。また後述する専用の観察用治具44を用いてもよい。 In the sludge imaging step, activated sludge is observed with a microscope 41 and imaged with a camera 43. A certain amount of activated sludge to be observed may be dropped on a slide glass, a cover glass may be placed on the slide glass, and the activated sludge may be placed on the stage of a microscope for observation, and the activated sludge is continuously sent into the gap between two glass plates. It may be liquid and observed as appropriate. Further, a dedicated observation jig 44 described later may be used.
 カメラ43はカラーカメラでもモノクロカメラでも構わないが、活性汚泥の色調なども数値情報として入手するためには、カラーカメラの方が好ましい。計測機能を搭載したカメラであれば、画像を撮像したのち、あらかじめ設定した条件で画像処理を行い、即時に数値化できるため、好適である。 The camera 43 may be a color camera or a monochrome camera, but a color camera is preferable in order to obtain numerical information such as the color tone of activated sludge. A camera equipped with a measurement function is suitable because it can take an image, perform image processing under preset conditions, and immediately quantify it.
 本実施形態においては、フロックは、直径50μm以上、水相浮遊物は、直径50μm以下のもので判別するので、カメラ43はこれらを観察し撮像可能な分解能があればよい。フロックまたは水相浮遊物のそれぞれを認識・判別し、撮像時のノイズと分別するための画像処理を実施するには、2ピクセル×2ピクセル以上で画像化することが好ましく、視野における空間分解能は、500nm/ピクセル以下、より好ましくは300nm/ピクセル以下であることが好ましい。 In the present embodiment, the flocs are discriminated by those having a diameter of 50 μm or more, and the aqueous phase suspended matter is discriminated by those having a diameter of 50 μm or less. Therefore, the camera 43 need only have a resolution capable of observing and imaging these. In order to recognize and discriminate each of the flocs and aqueous suspended matter and perform image processing to separate them from the noise at the time of imaging, it is preferable to image with 2 pixels × 2 pixels or more, and the spatial resolution in the visual field is high. , 500 nm / pixel or less, more preferably 300 nm / pixel or less.
 本実施形態では、光学的手段41とカメラ43では、500~800nmの波長範囲の光線を透過させる波長選択手段と、前記光線が撮像対象を透過する際に位相差を生じさせる位相差発生手段と、前記位相差発生手段により位相差を生じた透過光線を、撮像して画像を取得する撮像手段を有していることが最も好適である。 In the present embodiment, in the optical means 41 and the camera 43, the wavelength selection means for transmitting light rays in the wavelength range of 500 to 800 nm and the phase difference generating means for causing a phase difference when the light rays pass through the imaging target. It is most preferable to have an imaging means for acquiring an image by imaging a transmitted light beam for which a phase difference is generated by the phase difference generating means.
 汚泥画像処理工程では、画像処理手段42であらかじめ設定した条件で前記撮像画像を処理する。前記撮像画像において、500~800nmの波長範囲の画像情報要素を抽出して抽出画像を作成する要素抽出手段と、前記抽出画像を前記撮像画像に置き換える変換手段と、所定の閾値で、候補領域の抽出画像を作成する手段と、複数の候補領域の抽出画像を合成する手段と、抽出した領域それぞれの形状特徴を数値化して画像情報要素の数値群を得る手段とを有していることが好ましい。画像情報要素とは、フロック領域や水相浮遊物の画像における画像としての特徴量をいい、色相、明度、彩度、画素数、色度、輝度などがあげられる。これらの内から一つないし二つ以上の画像情報要素を抽出して抽出画像を作成し、さらに処理後画像に変換する。さらに一つないし二つ以上の画像情報要素において、それぞれ閾値を設定し、複数の候補領域の抽出画像を合成し、閾値を判定した後の複数の結果を論理演算することで、抽出した領域の形状特徴を数値化して更なる別の画像情報要素の数値群を得る。 In the sludge image processing step, the captured image is processed under the conditions preset by the image processing means 42. In the captured image, an element extraction means for extracting an image information element in a wavelength range of 500 to 800 nm to create an extracted image, a conversion means for replacing the extracted image with the captured image, and a candidate region with a predetermined threshold value. It is preferable to have a means for creating an extracted image, a means for synthesizing extracted images of a plurality of candidate regions, and a means for quantifying the shape features of each of the extracted regions to obtain a numerical group of image information elements. .. The image information element refers to a feature amount as an image in an image of a flock region or an aqueous phase floating substance, and includes hue, lightness, saturation, number of pixels, chromaticity, and brightness. One or two or more image information elements are extracted from these to create an extracted image, which is further converted into a processed image. Furthermore, in one or more image information elements, threshold values are set for each, extracted images of a plurality of candidate regions are combined, and a plurality of results after determining the threshold values are logically operated to obtain the extracted region. The shape feature is quantified to obtain a numerical group of another image information element.
 また、前記500~800nmの波長の成分に注目した画像は、例えばLED光源などに代表される広範な出力波長帯域をもつ光源を用いて前記撮像対象を位相差観察した場合の撮像画像において、画像処理の段階で500~800nmの波長の成分を抽出して取得してもよい。 Further, the image focusing on the component having a wavelength of 500 to 800 nm is an image in the captured image when the imaging target is observed in phase difference using a light source having a wide output wavelength band represented by, for example, an LED light source. A component having a wavelength of 500 to 800 nm may be extracted and obtained at the processing stage.
 図5に、本実施形態に係る抽出画像の形態の一例を示す。膜分離活性汚泥槽から採取した活性汚泥を顕微鏡で位相差観察すると、構成要素の屈折率や厚みの関係から次のような明るさや色味で観察され、活性汚泥は、フロックや微生物などの固体相と非フロック領域である水相に大別される。 FIG. 5 shows an example of the form of the extracted image according to this embodiment. When the activated sludge collected from the film-separated activated sludge tank is observed with a microscope in phase contrast, it is observed with the following brightness and color due to the relationship between the refractive index and thickness of the components, and the activated sludge is a solid such as flocs and microorganisms. It is roughly divided into a phase and an aqueous phase, which is a non-flocked region.
 固体相領域61は、構成成分や状態に応じてばらつきはあるものの、総じて、水相より輝度や彩度が高く、かつその色味は白あるいは赤、黄、黒あるいは茶色である。
 非固体相領域である水相領域62は、背景として中程度の輝度で撮像され、色味はグレーで彩度が低い。その他、例えば糸状性細菌や微小動物は、中~低輝度で、色味は青色、その彩度は中程度に撮像されることが多い。
The solid phase region 61 has higher brightness and saturation than the aqueous phase, and its color is white or red, yellow, black or brown, although it varies depending on the constituents and the state.
The aqueous phase region 62, which is a non-solid phase region, is imaged with medium brightness as a background, has a gray tint, and has low saturation. In addition, for example, filamentous bacteria and micro-animals are often imaged with medium to low brightness, blue tint, and medium saturation.
 単位視野あたりの固体相領域61の抽出は、特に限定されるものではないが、撮像画像を色相、彩度、明度の3つの成分からなるHSV空間に変換し、その1バンドであるS(彩度)成分を抽出し、彩度成分を表示するときに表示装置のピクセルの明るさに置き換えて表示した画像を得ることで、HSV画像のS(彩度)成分の情報を利用して行うとよい。これにより、非固体相領域である水相領域62との間に、大きなコントラストができるため、彩度の高低で2値化処理を行い、固体相領域と水相領域とに区別する。このほか、RGB(赤色・緑色・青色)カラー撮像した画像をR、G、Bの情報に分解し、成分ごとの輝度プロファイルを求め、Rのみの、Gのみの、あるいはRとGを合成した画像として得ることも好適である。輝度情報またはそのほかの成分あるいは別の方法による2値化処理を行っても構わない。 The extraction of the solid phase region 61 per unit field of view is not particularly limited, but the captured image is converted into an HSV space composed of three components of hue, saturation, and brightness, and one band, S (saturation). By extracting the degree) component and replacing it with the brightness of the pixels of the display device when displaying the saturation component and obtaining the displayed image, the information of the S (saturation) component of the HSV image is used. Good. As a result, a large contrast is formed between the non-solid phase region and the aqueous phase region 62. Therefore, the binarization treatment is performed according to the high and low saturation to distinguish between the solid phase region and the aqueous phase region. In addition, RGB (red / green / blue) color captured images were decomposed into R, G, and B information, the brightness profile for each component was obtained, and R only, G only, or R and G were combined. It is also preferable to obtain it as an image. The binarization process may be performed by the luminance information or other components or another method.
 閾値は、あらかじめ撮像した活性汚泥の画像と輝度分布を見ながら、任意に設定し、その閾値を用いて2値化処理した画像を作成し、処理前後の画像を比較し、ズレが生じている場合には、閾値を修正することを繰り返し行い、適切な閾値を設定する。撮像画像に各種画像処理フィルタを掛け合わせた後の結果に対して閾値を設定しても良い。たとえばラプラシアンフィルタに代表されるエッジ抽出処理の結果に閾値を設定し、撮像画像の画素ごとの先鋭化処理の結果値と閾値との大小を比較することで撮像画像の2値化をしても良い。さらに、2値化後の画像に膨張処理や収縮処理またそれらを組み合わせた処理などを施し、画像からノイズ成分を除去してもよい。 The threshold value is arbitrarily set while observing the image of activated sludge captured in advance and the brightness distribution, a binarized image is created using the threshold value, the images before and after the processing are compared, and a deviation occurs. In that case, the threshold value is repeatedly corrected to set an appropriate threshold value. A threshold value may be set for the result after multiplying the captured image by various image processing filters. For example, even if a threshold value is set for the result of edge extraction processing represented by a Laplacian filter and the value of the sharpening process for each pixel of the captured image is compared with the threshold value to binarize the captured image. good. Further, the binarized image may be subjected to expansion treatment, contraction treatment, or a treatment in which they are combined to remove noise components from the image.
 また、画像情報を論理演算することで目的とする領域の情報を精度高く得ることも好適である。例えば、単位視野画像の総面積に占める固体相領域から総面積比を求めたり、固体相領域の周囲長を面積で除算して真円度を求め、固体相領域とそれ以外の異物とを区別したりしても構わない。これらは人手で任意に計算してもよく、あらかじめ設定した計算ソフトを用いて自動計算してもよい。 It is also preferable to obtain information in the target area with high accuracy by performing logical operations on the image information. For example, the total area ratio is calculated from the solid phase region occupying the total area of the unit field image, or the peripheral length of the solid phase region is divided by the area to obtain the roundness to distinguish the solid phase region from other foreign substances. You can do it. These may be arbitrarily calculated manually, or may be automatically calculated using preset calculation software.
 パラメータ算出工程では、前記画像処理手段42によって区別された、固体相領域および水相領域の少なくともいずれかの領域における画像情報として画像情報要素を取得し、画像情報要素を用いて、以下の少なくともいずれかの条件で計算し、膜ろ過性パラメータを算出する。
(a)前記固体相領域について求められる画像情報要素から、前記膜ろ過性パラメータを算出
(b)前記(a)で算出された、複数の膜ろ過性パラメータの組み合わせとして算出
(c)前記水相領域について求められる画像情報要素から、前記膜ろ過性パラメータを算出
(d)前記(c)で算出された、複数の前記膜ろ過性パラメータの組み合わせとして算出
(e)固体相領域および水相領域について求められる複数の画像情報要素から、前記膜ろ過性パラメータを算出
(f)前記(a)~(e)で算出された、複数の前記膜ろ過性パラメータの組み合わせとして算出する。
 ここで、膜ろ過性パラメータは、活性汚泥の膜ろ過性を表す指標であり、ケークと呼ばれる膜面に付着した活性汚泥や、細孔閉塞と呼ばれる膜の細孔内に入り込んだ細孔径よりも小さい活性汚泥中の構成成分等の付着速度や剥離速度、付着量に対する抵抗等に関わるパラメータがあげられる。具体的には、ケーク付着速度、ケーク剥離速度、ケーク抵抗、非剥離ケーク形成速度、非剥離ケーク抵抗、分離膜細孔の閉塞の進行速度、分離膜細孔の閉塞による抵抗、の何れかを算出するのに関わるパラメータなどがあげられるが、特に限定されるものではない。
In the parameter calculation step, an image information element is acquired as image information in at least one of the solid phase region and the aqueous phase region distinguished by the image processing means 42, and the image information element is used to obtain at least one of the following. Calculate under the above conditions and calculate the membrane filterability parameter.
(A) The membrane filterability parameter is calculated from the image information element obtained for the solid phase region (b) Calculated as a combination of a plurality of membrane filterability parameters calculated in the above (a) (c) The aqueous phase The membrane filterability parameter is calculated from the image information element obtained for the region (d) Calculated as a combination of the plurality of the membrane filterability parameters calculated in the above (c) (e) About the solid phase region and the aqueous phase region. The membrane filterability parameter is calculated from the required plurality of image information elements (f) The membrane filterability parameter is calculated as a combination of the plurality of membrane filterability parameters calculated in the above (a) to (e).
Here, the membrane filterability parameter is an index showing the membrane filterability of activated sludge, and is larger than the activated sludge adhering to the membrane surface called cake and the pore diameter entering the pores of the membrane called pore blockage. Parameters related to the adhesion rate and peeling rate of constituents in small activated sludge, resistance to the amount of adhesion, and the like can be mentioned. Specifically, any one of the cake adhesion rate, the cake peeling rate, the cake resistance, the non-peeling cake forming rate, the non-peeling cake resistance, the progress rate of the closure of the separation membrane pores, and the resistance due to the closure of the separation membrane pores. Parameters related to the calculation can be mentioned, but the parameters are not particularly limited.
 本発明者は、鋭意検討した結果、膜ろ過性パラメータと画像情報要素との間に相関があることを見出し、画像情報要素から膜ろ過性パラメータを算出することを可能とした。膜ろ過性パラメータのうち、ケーク抵抗および分離膜細孔の閉塞の進行速度の算出に関わる膜ろ過性パラメータは、特に、単位視野あたりの水相領域に囲まれた一定面積以下のフロック領域の総面積と強い相関を有することが明らかになっており、本画像情報要素を用いて算出することが好ましい。 As a result of diligent studies, the present inventor found that there is a correlation between the membrane filtration property parameter and the image information element, and made it possible to calculate the membrane filtration property parameter from the image information element. Among the membrane filtration parameters, the membrane filtration parameters related to the calculation of cake resistance and the progress rate of closure of the separation membrane pores are, in particular, the total of the floc regions below a certain area surrounded by the aqueous phase region per unit field of view. It has been clarified that it has a strong correlation with the area, and it is preferable to calculate using this image information element.
 前記画像情報要素には、前記固体相領域の面積、前記固体相領域の周囲長、前記水相領域の面積、前記水相領域の周囲長、前記フロック領域間の距離、前記固体相領域間の個数、および、前記固体相領域間の輝度からなる群から選ばれる要素ついての、合計値、最大値、最小値、平均値、中央値または偏差値があげられる。 The image information element includes the area of the solid phase region, the peripheral length of the solid phase region, the area of the aqueous phase region, the peripheral length of the aqueous phase region, the distance between the floc regions, and the space between the solid phase regions. Examples include the total value, the maximum value, the minimum value, the average value, the median value, or the deviation value for the elements selected from the group consisting of the number and the brightness between the solid phase regions.
 領域間距離は、たとえばフロックにおける各領域の重心間の距離、領域と領域の一番近い部位の間の距離などがあげられる。さらに、本発明では、画像情報要素を用いて、上記(a)~(d)の少なくともいずれかの条件で計算し、さらに別の画像情報要素を算出することを特徴としている。別の画像情報要素は特に限定されるものではないが、例えば、以下が例示される。
(i)固体相領域総面積および/または水相領域総面積
(ii)固体相領域と水相領域の総面積比
(iii)固体相領域および/または水相領域数
(iv)固体相領域および/または水相領域の輝度
(v)固体相領域および/または水相領域の周長
(vi)水相領域に囲まれた一定面積以下の固体相領域の面積または水相領域に囲まれた一定面積以下の固体相領域の面積の水相領域全体もしくは固体相領域全体に対する面積比 
(vii)固体相領域に囲まれた一定面積以下の水相領域の面積または固体相領域に囲まれた一定面積以下の水相領域の面積の固体相領域全体もしくは水相領域全体に対する面積比
(viii)一定色調もしくは一定輝度以下の固体相領域の面積または一定色調もしくは一定輝度以下の固体相領域の面積の水相領域全体もしくはフロック領域全体に対する面積比
(ix)一定色調もしくは一定輝度以下の水相領域の面積または一定色調もしくは一定輝度以下の水相領域の面積の固体相領域もしくは水相領域に対する面積比
Examples of the inter-region distance include the distance between the centers of gravity of each region in the flock, the distance between the regions and the closest portion of the regions, and the like. Further, the present invention is characterized in that the image information element is used for calculation under at least one of the above conditions (a) to (d), and another image information element is calculated. The other image information element is not particularly limited, and examples thereof include the following.
(I) Total area of solid phase region and / or total area of aqueous phase region (ii) Total area ratio of solid phase region to aqueous phase region (iii) Number of solid phase region and / or aqueous phase region (iv) Solid phase region and / Or brightness of aqueous phase region (v) solid phase region and / or circumference of aqueous phase region (vi) area of solid phase region below a certain area surrounded by aqueous phase region or constant surrounded by aqueous phase region Area ratio of the area of the solid phase region below the area to the entire aqueous phase region or the entire solid phase region
(Vii) Area ratio of the area of the aqueous phase region below a certain area surrounded by the solid phase region or the area of the aqueous phase region below a certain area surrounded by the solid phase region to the entire solid phase region or the entire aqueous phase region (vii) viii) Area ratio of the area of the solid phase region of constant color tone or less than constant brightness or the area of the solid phase region of constant color tone or less than constant brightness to the entire aqueous phase region or the entire floc region (ix) Water of constant color tone or less than constant brightness Area ratio of the area of the phase region or the area of the aqueous phase region with a certain color tone or less than a certain brightness to the solid phase region or the aqueous phase region
 具体的には(iv)固体相領域または水相領域の輝度は、(a)固体相領域および/または水相領域において個々に求められる画像処理要素である輝度を用いることが好適である。 Specifically, for the brightness of the (iv) solid phase region or the aqueous phase region, it is preferable to use the brightness which is an image processing element individually obtained in the (a) solid phase region and / or the aqueous phase region.
(i)固体相領域総面積または水相領域総面積、(iii)固体相領域の数または水相領域の数、(v)固体相領域の周長または水相領域の周長は、(b)固体相領域または水相領域で個々に求められる画像処理要素から算出する別の画像情報要素を、各領域別に少なくとも2つ以上組み合わせて算出するのが好適である。 (I) Total area of solid phase region or total area of aqueous phase region, (iii) Number of solid phase regions or number of aqueous phase regions, (v) Peripheral length of solid phase region or peripheral length of aqueous phase region are (b) ) It is preferable to combine at least two or more other image information elements calculated from the image processing elements individually obtained in the solid phase region or the aqueous phase region for each region.
(ii)固体相領域と水相領域の総面積比は、(c)固体相領域または水相領域で個々に求められる総面積値を少なくとも2つ以上組み合わせて算出するのが好適である。この時、水相領域に囲まれた固体相領域の面積に含めて算出する。なお、本実施形態において「水相領域に囲まれた一定面積以下の固体相領域の総面積の比を用いる」などという場合、上記一定面積以下の固体相領域の面積の水相領域の面積に対する比のほかに、水相領域に囲まれた固体相領域の面積を水相領域の面積に含めて比を求めたりする場合など、一定面積以下の固体相領域の面積の水相領域の面積に対する割合と相関のあるいかなる量を用いてもよい。また、比を算出する場合、領域の面積のほかに、領域の個数、各領域における平均もしくは合計の輝度などを用いて、各領域の割合を算出してもよい。 (Ii) The total area ratio of the solid phase region and the aqueous phase region is preferably calculated by combining at least two or more total area values individually obtained in (c) the solid phase region or the aqueous phase region. At this time, the calculation is included in the area of the solid phase region surrounded by the aqueous phase region. In the present embodiment, when it is said that "the ratio of the total area of the solid phase region having a certain area or less surrounded by the aqueous phase region is used", the area of the solid phase region having a certain area or less is relative to the area of the aqueous phase region. In addition to the ratio, when the area of the solid phase region surrounded by the aqueous phase region is included in the area of the aqueous phase region to obtain the ratio, the area of the solid phase region less than a certain area is relative to the area of the aqueous phase region. Any amount that correlates with the proportion may be used. When calculating the ratio, the ratio of each region may be calculated by using the number of regions, the average or total brightness in each region, and the like in addition to the area of the region.
(vi)水相領域に囲まれた一定面積以下の固体相領域の面積または水相領域または固体相領域に対する面積比、(vii)固体相領域に囲まれた一定面積以下の水相領域の面積または固体相領域または水相領域に対する面積比、(viii)一定色調もしくは一定輝度以下の固体相領域の面積または水相領域または固体相領域に対する面積比、(ix)一定色調もしくは一定輝度以下の水相領域の面積または固体相領域または水相領域に対する面積比は、(d)の(a)~(c)で算出される値を少なくとも2つ以上組み合わせて算出し、任意に設けた閾値に応じて分類するのが好適である。 (Vi) Area of solid phase region below a certain area surrounded by the aqueous phase region or area ratio to the aqueous phase region or solid phase region, (vii) Area of the aqueous phase region below a certain area surrounded by the solid phase region Or area ratio to solid phase region or aqueous phase region, (viii) area of solid phase region or water phase region or solid phase region with constant color tone or less than constant brightness, (ix) water with constant color tone or less than constant brightness The area of the phase region or the area ratio to the solid phase region or the aqueous phase region is calculated by combining at least two or more of the values calculated in (a) to (c) of (d), and depends on an arbitrarily set threshold value. It is preferable to classify by.
(vi)水相領域に囲まれた一定面積以下の固体相領域の面積または水相領域または固体相領域に対する面積比を算出する方法は、具体的には、水相領域と固体相領域を判別した後、水相領域に囲まれた一定面積以下の固体相領域を判別し、最後に、水相領域と水相領域に囲まれた一定面積以下の固体相領域の面積の合計を算出し、水相領域の面積に占める水相領域に囲まれた一定面積以下の固体相領域面積比率を算出する方法が例示される。ここで、固体相領域の面積比を算出する際に、分母として、水相領域に囲まれた一定面積以下の固体相領域の総面積を、水相領域の面積に含めても含めなくても良く、また、固体相領域の面積に含めても含めなくてもよい。水相領域に囲まれた一定面積以下の固体相領域または水相領域の面積であれば、上記のように算出した各領域の面積をそのまま用いればよい。 (Vi) The method of calculating the area of the solid phase region having a certain area or less surrounded by the aqueous phase region or the area ratio to the aqueous phase region or the solid phase region is specifically to discriminate between the aqueous phase region and the solid phase region. After that, the solid phase region with a certain area or less surrounded by the aqueous phase region is determined, and finally, the total area of the aqueous phase region and the solid phase region with a certain area or less surrounded by the aqueous phase region is calculated. An example is a method of calculating the solid phase region area ratio of a certain area or less surrounded by the aqueous phase region to the area of the aqueous phase region. Here, when calculating the area ratio of the solid phase region, the total area of the solid phase region within a certain area surrounded by the aqueous phase region may or may not be included in the area of the aqueous phase region as the denominator. It may or may not be included in the area of the solid phase region. If the area of the solid phase region or the aqueous phase region is less than a certain area surrounded by the aqueous phase region, the area of each region calculated as described above may be used as it is.
(vii)固体相領域に囲まれた一定面積以下の水相領域の面積または固体相領域または水相領域に対する面積比を算出する方法についても、(vi)と同様に、水相領域とフロック領域を判別した後、固体相領域に囲まれた一定面積以下の水相領域を判別し、最後に、固体相領域と固体相領域に囲まれた一定面積以下の水相領域の面積の合計を算出し、固体相領域の面積に占める固体相領域に囲まれた一定面積以下の水相領域面積比率を算出する方法が例示される。(viii)、(ix)についても(vi)や(vii)と同様の手順で、面積の代わりに、輝度や色調の情報を用いて算出するとよい。 (Vii) The method of calculating the area of the aqueous phase region surrounded by the solid phase region or less than a certain area or the area ratio to the solid phase region or the aqueous phase region is also the same as in (vi), the aqueous phase region and the floc region. After determining, determine the aqueous phase region with a certain area or less surrounded by the solid phase region, and finally calculate the total area of the solid phase region and the aqueous phase region with a certain area or less surrounded by the solid phase region. Then, a method of calculating the ratio of the area of the aqueous phase region to a certain area surrounded by the solid phase region to the area of the solid phase region is exemplified. For (viii) and (ix), it is preferable to calculate using the information of brightness and color tone instead of the area in the same procedure as in (vi) and (vii).
 なお、(i)を示す固体相領域総面積や水相領域総面積および(ix)の一例である低輝度フロック領域総面積に関しては、総面積以外に最大の固体相領域あるいは最大の水相領域の面積を示す最大面積、最小の固体相領域あるいは最小の水相領域の面積を示す最小面積、固体相あるいは水相の各領域における平均面積、固体相あるいは水相の各領域における面積の標準偏差を算出しても良い。(iv)の一例である固体相領域平均輝度や水相領域平均輝度に関しては、RGB(赤色、緑色、青色)毎の輝度、最大輝度、最小輝度、偏差輝度を算出しても良いし、(v)の一例である固体相領域周長や水相領域周長に関しては、最大周長、最小周長、平均周長、周長偏差を算出しても良い。本実施形態によれば、固体相領域および水相領域の少なくともいずれかの領域における画像情報から得られた面積、周長、個数、領域間の距離の少なくともいずれかの項目の算出値または算出値の経時変化量を即時に算出できる。 Regarding the total area of the solid phase region and the total area of the aqueous phase region showing (i) and the total area of the low-intensity floc region which is an example of (ix), the largest solid phase region or the largest aqueous phase region other than the total area. Maximum area indicating the area of, minimum area indicating the area of the smallest solid phase region or the smallest aqueous phase region, average area in each region of the solid phase or aqueous phase, standard deviation of the area in each region of the solid phase or aqueous phase May be calculated. Regarding the solid phase region average brightness and the aqueous phase region average brightness, which are examples of (iv), the brightness, maximum brightness, minimum brightness, and deviation brightness for each RGB (red, green, blue) may be calculated, or ( Regarding the solid phase region peripheral length and the aqueous phase region peripheral length, which are examples of v), the maximum peripheral length, the minimum peripheral length, the average peripheral length, and the peripheral length deviation may be calculated. According to the present embodiment, a calculated value or a calculated value of at least one of the area, the circumference, the number, and the distance between the regions obtained from the image information in at least one of the solid phase region and the aqueous phase region. The amount of change over time can be calculated immediately.
 次いで、膜ろ過性パラメータに基づき、膜ろ過抵抗の経時変化、膜間差圧の経時変化、または膜ろ過流量(流束)を予測する、経時変化予測工程について記載する。本発明の膜ろ過予測方法では、膜ろ過流量を設定値として制御しつつ膜ろ過を継続する際の、膜ろ過抵抗の経時的変化または膜間差圧の経時的変化を予測する。あるいは、膜間差圧を設定値として制御しつつ膜ろ過を継続する際の、膜ろ過抵抗の経時的変化または膜ろ過流量(流束)の経時的変化を予測する。 Next, a time-dependent change prediction step for predicting the time-dependent change in membrane filtration resistance, the time-dependent change in intermembrane differential pressure, or the membrane filtration flow rate (flulux) based on the membrane filtration property parameter will be described. In the membrane filtration prediction method of the present invention, the time course of the membrane filtration resistance or the time course of the intermembrane differential pressure when the membrane filtration is continued while controlling the membrane filtration flow rate as a set value is predicted. Alternatively, when the membrane filtration is continued while controlling the differential pressure between the membranes as a set value, the change with time of the membrane filtration resistance or the change with time of the membrane filtration flow rate (flux) is predicted.
 ここにおいて、膜間差圧とは、分離膜の被ろ過液側と透過液側との圧力差であり、これを発生させる手段として、例えば、ポンプにより被ろ過液側を加圧させる方法、ポンプにより透過液側から吸引する方法、被ろ過液側と透過液側の水頭差を利用する方法が挙げられる。また、膜間差圧は、分離膜の被ろ過液側における圧力測定値と透過液側における圧力測定値との差として実測することも可能であり、このときには、水理的な流れによって発生する圧力損失を測定もしくは算出し、前記分離膜の被ろ過液側における圧力測定値と透過液側における圧力測定値との差から、圧力損失分を減じて算出することが好ましい。また、膜ろ過流量とは、膜ろ過液の流量のことであり、膜ろ過流束とは、分離膜の単位面積あたりの膜ろ過流量のことをさす。 Here, the intermembrane differential pressure is a pressure difference between the filtered liquid side and the permeated liquid side of the separation membrane, and as a means for generating this, for example, a method of pressurizing the filtered liquid side with a pump, a pump. There are a method of sucking from the permeate side and a method of utilizing the head difference between the permeate side and the permeate side. The intermembrane differential pressure can also be measured as the difference between the pressure measurement value on the filtered liquid side and the pressure measurement value on the permeate side of the separation membrane, and at this time, it is generated by a hydraulic flow. It is preferable to measure or calculate the pressure loss and subtract the pressure loss from the difference between the pressure measurement value on the filtered liquid side and the pressure measurement value on the permeate side of the separation membrane. The membrane filtration flow rate is the flow rate of the membrane filtration solution, and the membrane filtration flux is the membrane filtration flow rate per unit area of the separation membrane.
 膜ろ過流量を設定値として制御しつつ膜ろ過を継続する、または、膜間差圧を設定値として制御しつつ膜ろ過を継続するとは、膜ろ過流量あるいは膜間差圧をあらかじめ決められた設定値に制御することである。これには、膜ろ過流量や膜間差圧が一定値となるように制御する方法の他に、定期的あるいは断続的にろ過を停止する方法や、膜ろ過流量や膜間差圧を連続的あるいは断続的に変化させる方法などのように設定値を経時的に変更する場合も含む。膜ろ過流量を設定値として制御しつつ膜ろ過を継続する方法としては、分離膜の膜透過液側に吸引ポンプなどを設置して膜ろ過液を取得し、その吸引ポンプを流量インバータで制御する方法などが挙げられる。また、膜間差圧を設定値として制御しつつ膜ろ過を継続する方法としては、分離膜の被ろ過液側を加圧する方法や、水頭差を利用する方法などによって膜ろ過に必要な圧力を加え、この圧力を制御する方法などが挙げられる。 Continuing membrane filtration while controlling the membrane filtration flow rate as a set value, or continuing membrane filtration while controlling the intermembrane differential pressure as a set value means that the membrane filtration flow rate or the intermembrane differential pressure is set in advance. It is to control the value. In addition to the method of controlling the membrane filtration flow rate and the intermembrane differential pressure to be constant, the method of stopping the filtration periodically or intermittently, and the membrane filtration flow rate and the intermembrane differential pressure are continuously controlled. Alternatively, it also includes the case where the set value is changed over time, such as a method of changing it intermittently. As a method of continuing membrane filtration while controlling the membrane filtration flow rate as a set value, a suction pump or the like is installed on the membrane permeation liquid side of the separation membrane to acquire the membrane filtration liquid, and the suction pump is controlled by the flow inverter. The method etc. can be mentioned. In addition, as a method of continuing membrane filtration while controlling the differential pressure between membranes as a set value, the pressure required for membrane filtration is determined by a method of pressurizing the side to be filtered of the separation membrane or a method of utilizing the water head difference. In addition, a method of controlling this pressure and the like can be mentioned.
 また、膜ろ過抵抗とは、被ろ過液を膜によってろ過する際に発生する抵抗のことであり、一般的に、(1)式によって定義される。
Figure JPOXMLDOC01-appb-M000001
 ここで、ΔPは膜間差圧[Pa]、μは膜ろ過液の粘度[Pa・s]、Rは膜ろ過抵抗[1/m]、Jは膜ろ過流束[m/s]である。
The membrane filtration resistance is a resistance generated when the liquid to be filtered is filtered by a membrane, and is generally defined by the equation (1).
Figure JPOXMLDOC01-appb-M000001
Here, ΔP is the intermembrane differential pressure [Pa], μ is the viscosity of the membrane filtration solution [Pa · s], R is the membrane filtration resistance [1 / m], and J is the membrane filtration flux [m / s]. ..
 ここで、μは膜ろ過液の粘度を直接測定してもよいが、膜分離活性汚泥法では膜ろ過液が活性汚泥のため、(2)式に従い、温度から換算してもよい。
Figure JPOXMLDOC01-appb-M000002
 ここで、F=0.01257187、B=-0.005806436、C=0.001130911、D=-0.000005723952であり、Tは絶対温度[K]である。すなわち、摂氏温度をσ[℃]とすると、T=σ+273.15として表される。
Here, μ may directly measure the viscosity of the membrane filtration solution, but since the membrane filtration solution is activated sludge in the membrane separation activated sludge method, it may be converted from the temperature according to Eq. (2).
Figure JPOXMLDOC01-appb-M000002
Here, F = 0.01257187, B = −0.005806436, C = 0.001130911, D = −0.000005723952, and T is the absolute temperature [K]. That is, if the temperature in degrees Celsius is σ [° C.], it is expressed as T = σ + 273.15.
 また、予測とは、インプットとなる数値(膜ろ過流量の時系列値や膜間差圧の時系列値など)を用いて、演算や計算を行い、アウトプットとなる数値(膜ろ過抵抗の時間変化予測値など)を出力することである。 In addition, the prediction is a numerical value that becomes an output (time of membrane filtration resistance, etc.) by performing calculations and calculations using numerical values that are inputs (time series values of membrane filtration flow rate, time series values of intermembrane differential pressure, etc.). It is to output the change prediction value etc.).
 また、本発明の膜ろ過予測方法では、膜ろ過流量(流束)を設定値に制御しつつ膜ろ過を継続する際には、膜ろ過予測計算のための数値として、少なくとも、膜ろ過流量(流束)の設定値、膜ろ過抵抗の初期値、および、活性汚泥濃度(MLSS)を用い、膜間差圧を設定値に制御しつつ膜ろ過を継続する際には、膜ろ過予測計算のための数値として、少なくとも、膜間差圧の設定値、膜ろ過抵抗の初期値、および、MLSSを用いる。 Further, in the membrane filtration prediction method of the present invention, when the membrane filtration flow rate (fluctuation) is controlled to a set value and the membrane filtration is continued, at least the membrane filtration flow rate (flow) is used as a numerical value for the membrane filtration prediction calculation. When continuing membrane filtration while controlling the differential pressure between membranes to the set value using the set value of (fluctuation), the initial value of membrane filtration resistance, and the active sludge concentration (MLSS), the membrane filtration prediction calculation is performed. At least the set value of the intermembrane differential pressure, the initial value of the membrane filtration resistance, and the MLSS are used as the numerical values for this purpose.
 ここにおいて、膜ろ過抵抗の初期値とは、膜ろ過開始時の膜ろ過抵抗値であり、純水を分離膜へ透過させたときの膜ろ過抵抗値や分離膜洗浄後における膜ろ過抵抗値などを実測した値でもよいし、また分離膜の種類に基づく仮想値でもよい。 Here, the initial value of the membrane filtration resistance is the membrane filtration resistance value at the start of membrane filtration, the membrane filtration resistance value when pure water is permeated through the separation membrane, the membrane filtration resistance value after cleaning the separation membrane, and the like. May be an actually measured value, or a virtual value based on the type of separation membrane may be used.
 MLSSは実測値でも仮想値でもよい。また、活性汚泥のMLSSの時間変化をIWA活性汚泥モデルなど、既存のシミュレーションモデルを用いて予測してもよい。 MLSS may be an actual measurement value or a virtual value. In addition, the time change of MLSS of activated sludge may be predicted using an existing simulation model such as the IWA activated sludge model.
 また、膜ろ過流量(流束)の設定値とは、膜ろ過流量あるいは膜ろ過流束の設定値であり、実測値でも仮想値でもよく、一定値でも、連続的あるいは断続的に変化する値としてもよい。また、膜間差圧の設定値は、実測値でも仮想値でもよく、一定値でも、連続的あるいは断続的に変化する値としてもよい。 The set value of the membrane filtration flow rate (flulux) is a set value of the membrane filtration flow rate or the membrane filtration flux, which may be an actual measurement value or a virtual value, and a constant value that changes continuously or intermittently. May be. Further, the set value of the intermembrane differential pressure may be an actually measured value or a virtual value, may be a constant value, or may be a value that changes continuously or intermittently.
 また、本発明の膜ろ過予測方法では、膜ろ過流量を設定値に制御しつつ膜ろ過を継続する際には、少なくとも後述の計算ステップ1a、および計算ステップ1bと計算ステップ1cのうち少なくとも1ステップ以上と計算ステップ2および/または計算ステップ3とを行うことにより、任意の時刻における膜ろ過抵抗値および/または膜間差圧値を求めること、膜間差圧を設定値に制御しつつ膜ろ過を継続する際には、少なくとも後述の計算ステップ1a、および計算ステップ1bと計算ステップ1cのうち少なくとも1ステップ以上と計算ステップ2および/または計算ステップ4とを行うことにより、任意の時刻における膜ろ過抵抗値および/または膜ろ過流量(流束)値を求める。 Further, in the membrane filtration prediction method of the present invention, when the membrane filtration is continued while controlling the membrane filtration flow rate to a set value, at least one of the calculation steps 1a and the calculation steps 1b and 1c described later will be performed. By performing the above and calculation step 2 and / or calculation step 3, the membrane filtration resistance value and / or the intermembrane differential pressure value at an arbitrary time can be obtained, and the membrane filtration while controlling the intermembrane differential pressure to the set value. At least one of the calculation steps 1a and 1b and the calculation step 1c, which will be described later, and the calculation step 2 and / or the calculation step 4 are performed to perform membrane filtration at an arbitrary time. Obtain the resistance value and / or the membrane filtration flow rate (fluctuation) value.
 即ち、膜ろ過流量を設定値に制御しつつ膜ろ過を継続する際における膜ろ過予測の計算ステップの構成として、下記の9通りがあるということを意味する。
(a1)後述する計算ステップ1a、計算ステップ1b、計算ステップ2および計算ステップ3
(a2)後述の計算ステップ1a、計算ステップ1c、計算ステップ2および計算ステップ3
(a3)後述の計算ステップ1a、計算ステップ1b、計算ステップ1c、計算ステップ2および計算ステップ3
(b1)後述する計算ステップ1a、計算ステップ1bおよび計算ステップ2
(b2)後述の計算ステップ1a、計算ステップ1cおよび計算ステップ2
(b3)後述の計算ステップ1a、計算ステップ1b、計算ステップ1cおよび計算ステップ2
(c1)後述する計算ステップ1a、計算ステップ1bおよび計算ステップ3
(c2)後述の計算ステップ1aおよび計算ステップ1cおよび計算ステップ3
(c3)後述の計算ステップ1a、計算ステップ1b、計算ステップ1cおよび計算ステップ3
That is, it means that there are the following nine configurations of the calculation steps of the membrane filtration prediction when the membrane filtration flow rate is controlled to the set value and the membrane filtration is continued.
(A1) Calculation step 1a, calculation step 1b, calculation step 2 and calculation step 3 described later.
(A2) Calculation step 1a, calculation step 1c, calculation step 2 and calculation step 3 described later.
(A3) Calculation step 1a, calculation step 1b, calculation step 1c, calculation step 2 and calculation step 3 described later.
(B1) Calculation step 1a, calculation step 1b and calculation step 2 described later.
(B2) Calculation step 1a, calculation step 1c and calculation step 2 described later.
(B3) Calculation step 1a, calculation step 1b, calculation step 1c and calculation step 2 described later.
(C1) Calculation step 1a, calculation step 1b and calculation step 3 described later.
(C2) Calculation step 1a, calculation step 1c, and calculation step 3 described later.
(C3) Calculation step 1a, calculation step 1b, calculation step 1c and calculation step 3 described later.
 ここにおいて、(a3)の場合(図6参照)には、任意の時刻における膜ろ過抵抗値および膜間差圧値を求めることができる。(b3)の場合には、任意の時刻における膜ろ過抵抗値を求めることができる。また、(c3)の場合には、任意の時刻における膜間差圧値を、求めることができる。 Here, in the case of (a3) (see FIG. 6), the membrane filtration resistance value and the intermembrane differential pressure value at an arbitrary time can be obtained. In the case of (b3), the membrane filtration resistance value at an arbitrary time can be obtained. Further, in the case of (c3), the intermembrane differential pressure value at an arbitrary time can be obtained.
 また、同様に、膜間差圧を設定値に制御しつつ膜ろ過を継続する際における膜ろ過予測の計算ステップの構成として、下記の9通りがあるということを意味する。
(d1)後述する計算ステップ1a、計算ステップ1b、計算ステップ2および計算ステップ4
(d2)後述の計算ステップ1a、計算ステップ1c、計算ステップ2および計算ステップ4
(d3)後述の計算ステップ1a、計算ステップ1b、計算ステップ1c、計算ステップ2および計算ステップ4
(e1)後述する計算ステップ1a、計算ステップ1bおよび計算ステップ2
(e2)後述の計算ステップ1a、計算ステップ1cおよび計算ステップ2
(e3)後述の計算ステップ1a、計算ステップ1b、計算ステップ1cおよび計算ステップ2
(f1)後述する計算ステップ1a、計算ステップ1bおよび計算ステップ4
(f2)後述の計算ステップ1aおよび計算ステップ1cおよび計算ステップ4
(f3)後述の計算ステップ1a、計算ステップ1b、計算ステップ1cおよび計算ステップ4
Similarly, it means that there are the following nine configurations of the calculation steps of the membrane filtration prediction when the membrane filtration is continued while controlling the differential pressure between the membranes to the set value.
(D1) Calculation step 1a, calculation step 1b, calculation step 2 and calculation step 4 described later.
(D2) Calculation step 1a, calculation step 1c, calculation step 2 and calculation step 4 described later.
(D3) Calculation step 1a, calculation step 1b, calculation step 1c, calculation step 2 and calculation step 4 described later.
(E1) Calculation step 1a, calculation step 1b and calculation step 2 described later.
(E2) Calculation step 1a, calculation step 1c and calculation step 2 described later.
(E3) Calculation step 1a, calculation step 1b, calculation step 1c and calculation step 2 described later.
(F1) Calculation step 1a, calculation step 1b and calculation step 4 described later.
(F2) Calculation step 1a, calculation step 1c, and calculation step 4 described later.
(F3) Calculation step 1a, calculation step 1b, calculation step 1c and calculation step 4 described later.
 ここにおいて、(d3)の場合(図7参照)には、任意の時刻における膜ろ過抵抗値および膜ろ過流量(流束)値を求めることができる。(e3)の場合には、任意の時刻における膜ろ過抵抗値を求めることができる。また、(f3)の場合には、任意の時刻における膜ろ過流量(流束)値を、求めることができる。 Here, in the case of (d3) (see FIG. 7), the membrane filtration resistance value and the membrane filtration flow rate (flux) value at an arbitrary time can be obtained. In the case of (e3), the membrane filtration resistance value at an arbitrary time can be obtained. Further, in the case of (f3), the membrane filtration flow rate (flux) value at an arbitrary time can be obtained.
 ここで、計算ステップ1aでは、任意の時刻において分離膜表面に付着している活性汚泥(ケーク)量を算出する。 Here, in the calculation step 1a, the amount of activated sludge (cake) adhering to the surface of the separation membrane is calculated at an arbitrary time.
 ここにおいて、計算ステップ1aは、分離膜表面に付着しているケーク量の、所定時間内における変化量を算出する計算ステップであって、計算ステップ1aにおける計算式が、ケークが分離膜表面に付着する速度の項と、分離膜表面に付着しているケークが分離膜表面から剥離する速度の項とを含み、前記分離膜表面に付着する速度は、膜間差圧値若しくは膜ろ過流量(流束)値と、ケーク量および/または膜洗浄力値とを用いて算出され、かつ、前記分離膜表面から剥離する速度は、膜間差圧値若しくは膜ろ過流量(流束)値と、分離膜表面に付着しているケーク量、および/または、ケークの圧密度とを用いて算出されることが好ましい。これによって、任意の時刻における分離膜表面に付着しているケーク量を、精度良く予測することができる。 Here, the calculation step 1a is a calculation step for calculating the amount of change in the amount of cake adhering to the separation membrane surface within a predetermined time, and the calculation formula in the calculation step 1a is that the cake adheres to the separation membrane surface. The term of the rate of adhesion and the term of the rate at which the cake adhering to the surface of the separation membrane peels off from the surface of the separation membrane are included, and the rate of adhering to the surface of the separation membrane is the intermembrane differential pressure value or the membrane filtration flow rate (flow). The bunch) value, the amount of cake and / or the membrane detergency value, and the rate of peeling from the separation membrane surface are separated from the intermembrane differential pressure value or the membrane filtration flow rate (fluctuation) value. It is preferable to calculate using the amount of cake adhering to the film surface and / or the pressure density of the cake. This makes it possible to accurately predict the amount of cake adhering to the surface of the separation membrane at an arbitrary time.
 ここで、「分離膜表面に付着しているケークの圧密度」とは、分離膜表面に付着しているケークに加えられる圧力によって圧密する度合のことである。この圧密度を用いて、分離膜表面に付着しているケーク量を計算することにより、より精度良く分離膜表面に付着しているケーク量を予測することができる。 Here, the "consolidation density of the cake adhering to the surface of the separation membrane" is the degree of consolidation by the pressure applied to the cake adhering to the surface of the separation membrane. By calculating the amount of cake adhering to the surface of the separation membrane using this pressure density, the amount of cake adhering to the surface of the separation membrane can be predicted more accurately.
 また、十分にケークが圧密化されている場合、分離膜表面に付着しているケークは曝気による洗浄によって分離膜表面から剥離されない。この十分に圧密化されたケークを非剥離ケークと定義し、圧密度の代わりに、ケークと非剥離ケークを用いても精度よく分離膜表面に付着しているケーク量を予測することができる。 Also, if the cake is sufficiently compacted, the cake adhering to the separation membrane surface will not be peeled off from the separation membrane surface by cleaning with aeration. This fully compacted cake is defined as a non-peelable cake, and the amount of cake adhering to the separation membrane surface can be accurately predicted by using the cake and the non-peelable cake instead of the pressure density.
 また、分離膜表面に付着しているケークが膜表面から剥離する速度を求める式が、膜洗浄力値に基づく項を含むことがさらに好ましい。ここで、膜洗浄力とは、分離膜表面に付着している物質を剥離させるための応力であり、当該膜洗浄力の値は、膜表面に発生する剪断力の値、膜表面の被ろ過液の流速の値、前記剪断力や前記流速に基づいて算出された値、あるいは、洗浄手段の動力値(洗浄手段の動力値とは、例えば、分離膜の洗浄を分離膜の下部から曝気することによって行うときには、曝気風量や曝気ブロアの出力値などである。)などに基づいて算出された値とすることが好ましく、また、膜洗浄力の値を、実際に膜ろ過テストを行った結果から算出・推定してもよい。このことにより、分離膜表面に付着しているケークが分離膜表面から剥離する速度を決定する要素として、曝気などの分離膜の性能に依存しない要素を加えることができ、これにより膜ろ過装置の運転条件を反映しやすくなる。 Further, it is more preferable that the formula for determining the rate at which the cake adhering to the separation membrane surface is peeled off from the membrane surface includes a term based on the membrane detergency value. Here, the membrane detergency is a stress for peeling off a substance adhering to the separation membrane surface, and the value of the membrane detergency is the value of the shearing force generated on the membrane surface and the filtration of the membrane surface. The value of the flow velocity of the liquid, the value calculated based on the shearing force and the flow velocity, or the power value of the cleaning means (the power value of the cleaning means is, for example, the cleaning of the separation membrane is exposed from the lower part of the separation membrane. It is preferable to use a value calculated based on the air volume, the output value of the air blower, etc.), and the value of the membrane detergency is the result of the actual membrane filtration test. It may be calculated / estimated from. This makes it possible to add an element that does not depend on the performance of the separation membrane, such as aeration, as a factor that determines the rate at which the cake adhering to the surface of the separation membrane separates from the surface of the separation membrane. It becomes easier to reflect the operating conditions.
 このような条件を満たす数式として、例えば、次の(3)~(5)式があり、本発明においては、(3)~(5)式に従うことを推奨する。しかし、本発明の範囲は(3)~(5)式に限定されるものではない。
Figure JPOXMLDOC01-appb-M000003
ただし、(1-Kτ1・τ)≧0、(τ-Kτ2・ΔP)≧0である。
As mathematical formulas satisfying such conditions, for example, there are the following formulas (3) to (5), and in the present invention, it is recommended to follow the formulas (3) to (5). However, the scope of the present invention is not limited to the equations (3) to (5).
Figure JPOXMLDOC01-appb-M000003
However, (1-Kτ1 · τ) ≧ 0 and (τ−Kτ2 · ΔP) ≧ 0.
 ここで、Xcは単位膜面積あたりの分離膜表面に付着したケーク量[gC/m]、tは時間[s]、Xは膜分離槽のMLSS[gC/m]、Jは膜ろ過流束[m/d]、Kτ1は膜洗浄力阻害係数[-]、γはケーク剥離係数[1/m/s]、τは膜洗浄力値[-]、Kτ2はケーク摩擦係数[1/Pa]、ΔPは膜間差圧[Pa]、ηは活性汚泥の密度の逆数[m/gC]、Dmaxは最大圧密度[-](通常は1となる)、Dは圧密度[-]、Xc,resは被剥離ケーク量[gC/m]である。また「gC」は炭素重量を表す。ここで、(3)~(5)式の右辺の第1項は、ケークが分離膜表面に付着する速度、および、第2項は、ケークが分離膜表面から剥離する速度を示している。また、後述のように、膜洗浄力値τを、曝気風量や曝気ブロアの出力値の関数として表現した場合には、その関数をτに代入することによって、(3)~(5)式を膜洗浄力値ではなく曝気風量や曝気ブロアの出力値に関する計算式に変換することが可能である。 Here, Xc is the amount of cake attached to the surface of the separation membrane per unit membrane area [gC / m 2 ], t is the time [s], X is the MLSS [gC / m 3 ] of the membrane separation tank, and J is the membrane filtration. Flow flux [m / d], Kτ1 is the membrane cleaning power inhibition coefficient [-], γ is the membrane separation coefficient [1 / m / s], τ is the membrane cleaning power value [-], and Kτ2 is the cake friction coefficient [1 /]. Pa] and ΔP are the differential pressure between membranes [Pa], η is the inverse of the density of active sludge [m 3 / gC], Dmax is the maximum pressure density [-] (usually 1), and D is the pressure density [-]. ], Xc, res are the amount of cake to be peeled [gC / m 2 ]. Further, "gC" represents the carbon weight. Here, the first term on the right side of the equations (3) to (5) indicates the rate at which the cake adheres to the surface of the separation membrane, and the second term indicates the rate at which the cake separates from the surface of the separation membrane. Further, as described later, when the membrane detergency value τ is expressed as a function of the aeration air volume and the output value of the aeration blower, by substituting the function into τ, equations (3) to (5) can be obtained. It is possible to convert to a formula related to the aeration air volume and the output value of the aeration blower instead of the membrane detergency value.
 また、前記のように、分離膜表面に付着しているケークの変化量を、前記ケークが分離膜に付着する速度と剥離する速度との差として表現される計算式に基づく場合、分離膜に付着したケーク量に関する微分方程式として表現することができるが、そのとき、この微分方程式を解く積分方法として、Euler法や、Runge-Kutta法や、Runge-Kutta-Gill(RKG)法などがある。 Further, as described above, when the amount of change in the cake adhering to the surface of the separation membrane is based on a calculation formula expressed as the difference between the speed at which the cake adheres to the separation membrane and the speed at which the cake peels off, the separation membrane is used. It can be expressed as a differential equation related to the amount of attached cake, and at that time, there are Euler method, Runge-Kutta method, Runge-Kutta-Gill (RKG) method, etc. as an integration method for solving this differential equation.
 また、計算ステップ1bでは、任意の時刻において分離膜細孔内に存在している汚泥由来の物質量(細孔閉塞量)を算出する。 Further, in the calculation step 1b, the amount of sludge-derived substance (pore blockage amount) existing in the separation membrane pores at an arbitrary time is calculated.
 ここにおいて、計算ステップ1bは、細孔閉塞量の所定時間内における変化量を算出する計算ステップであって、前記変化量の値が、膜間差圧値および/または膜ろ過流量(流束)および/または分離膜表面に付着しているケーク量値および/または細孔閉塞量の値に基づいて算出されることが好ましい。これによって、任意の時刻における細孔閉塞量を、精度良く予測することができる。 Here, the calculation step 1b is a calculation step for calculating the amount of change in the pore closure amount within a predetermined time, and the value of the change amount is the intermembrane differential pressure value and / or the membrane filtration flow rate (flulux). It is preferable to calculate based on the value of the amount of cake adhering to the surface of the separation membrane and / or the amount of pore closure. This makes it possible to accurately predict the amount of pore blockage at an arbitrary time.
 このような条件を満たす数式として、例えば、次の(6)~(9)式があり、本発明においては、(6)~(9)式に従うことを推奨する。しかし、本発明の範囲は(6)~(9)式に限定されるものではない。
Figure JPOXMLDOC01-appb-M000004
 ここで、Xfは細孔閉塞量[gC/m]、ψは分離膜細孔内への物質移動速度係数[gC/m/Pa/s]、εは分離膜細孔内への物質移動阻害係数[m/gC]、Kfも分離膜細孔内への物質移動阻害係数[gC2/3/m4/3]、λは細孔閉塞速度係数[sm-1・gC1-b/m2+m-2b]、mは細孔閉塞流束依存係数[-]、bは細孔閉塞ケーク依存係数[-]である。
As mathematical formulas satisfying such conditions, for example, there are the following formulas (6) to (9), and in the present invention, it is recommended to follow the formulas (6) to (9). However, the scope of the present invention is not limited to the equations (6) to (9).
Figure JPOXMLDOC01-appb-M000004
Here, Xf is the pore closure amount [gC / m 2 ], ψ is the mass transfer rate coefficient [gC / m 2 / Pa / s] into the separation membrane pores, and ε is the substance into the separation membrane pores. The transfer inhibition coefficient [m 4 / gC 2 ], Kf is also the mass transfer inhibition coefficient into the separation membrane pores [gC 2/3 / m 4/3 ], and λ is the pore closure rate coefficient [s m-1 · gC. 1-b / m 2 + m-2b ], m is a pore-blocking flux-dependent coefficient [-], and b is a pore-blocking cake-dependent coefficient [-].
 また、計算ステップ1cでは、任意の時刻において分離膜表面に付着しているケークの圧密度を算出する。 Further, in the calculation step 1c, the pressure density of the cake adhering to the surface of the separation membrane is calculated at an arbitrary time.
 ここにおいて、計算ステップ1cにおける計算式は、分離膜表面に付着しているケークの圧密度の所定時間内における変化量を算出する計算ステップであって、前記変化量の値が、分離膜表面に付着しているケークに加えられる圧力、および/または分離膜に付着しているケークの圧密度の値に基づいて算出されることが好ましい。これによって、任意の時刻における分離膜表面に付着しているケークの圧密度を、精度良く予測することができる。ここにおいて、分離膜表面に付着しているケークに加えられる圧力には、ケーク由来の圧力値を用いてもよいし、膜間差圧値を用いてもよい。また、ケークの圧密度の代わりに、非剥離ケークを用いて圧密化を表現してもよい。 Here, the calculation formula in the calculation step 1c is a calculation step for calculating the amount of change in the pressure density of the cake adhering to the surface of the separation membrane within a predetermined time, and the value of the amount of change is applied to the surface of the separation membrane. It is preferably calculated based on the pressure applied to the attached cake and / or the value of the pressure density of the cake attached to the separation membrane. This makes it possible to accurately predict the pressure density of the cake adhering to the surface of the separation membrane at an arbitrary time. Here, as the pressure applied to the cake adhering to the surface of the separation membrane, the pressure value derived from the cake may be used, or the differential pressure value between the membranes may be used. Further, instead of the compaction density of the cake, the non-peelable cake may be used to express the consolidation.
 このような条件を満たす数式として、例えば、次の(10)式または(11)式があり、本発明においては、(10)または(11)式に従うことを推奨する。しかし、本発明の範囲は(10)式または(11)式に限定されるものではない。
Figure JPOXMLDOC01-appb-M000005
 ここで、Dは圧密度[-]、k1は圧密化速度係数[1/(Pa/s)]、Dmaxは最大圧密度[-](通常は1となる)、ΔPcはケークの圧力値[Pa]、kは非剥離ケーク形成速度係数[1/Pa/s]、lは非剥離ケーク圧力依存係数[-]である。
As a mathematical formula satisfying such a condition, for example, there is the following formula (10) or formula (11), and in the present invention, it is recommended to follow the formula (10) or (11). However, the scope of the present invention is not limited to the equation (10) or the equation (11).
Figure JPOXMLDOC01-appb-M000005
Here, D is the consolidation density [-], k1 is the consolidation rate coefficient [1 / (Pa / s)], Dmax is the maximum consolidation density [-] (usually 1), and ΔPc is the cake pressure value [ Pa] and k are non-peeling cake formation rate coefficients [1 / Pa / s], and l is a non-peeling cake pressure dependence coefficient [−].
 また、計算ステップ2では、計算ステップ1aで求めた分離膜に付着しているケーク量および/または計算ステップ1bで求めた細孔閉塞量および/または計算ステップ1cで求めた分離膜に付着しているケークの圧密度または非剥離ケーク量を用いて、任意の時刻における膜ろ過抵抗値を算出する。 Further, in the calculation step 2, the amount of cake adhering to the separation membrane obtained in the calculation step 1a and / or the amount of pore clogging obtained in the calculation step 1b and / or adhering to the separation membrane obtained in the calculation step 1c. The membrane filtration resistance value at an arbitrary time is calculated using the pressure density of the existing cake or the amount of non-peelable cake.
 ここにおいて、計算ステップ2では、任意の時刻における膜ろ過抵抗値が分離膜表面に付着しているケークに加えられる圧力の値に基づいて算出されること、および/または、細孔閉塞量の1~2次式の高次式を含むことが好ましい。これにより、任意の時刻における膜ろ過抵抗値をより精度良く予測できる。ここにおいて、分離膜表面に付着しているケークに加えられる圧力には、分離膜表面に付着しているケーク由来の圧力値を用いてもよいし、膜間差圧値を用いてもよい。 Here, in the calculation step 2, the membrane filtration resistance value at an arbitrary time is calculated based on the value of the pressure applied to the cake adhering to the surface of the separation membrane, and / or 1 of the pore closure amount. It is preferable to include a higher-order equation of ~ quadratic equation. As a result, the membrane filtration resistance value at an arbitrary time can be predicted more accurately. Here, as the pressure applied to the cake adhering to the surface of the separation membrane, the pressure value derived from the cake adhering to the surface of the separation membrane may be used, or the differential pressure value between the membranes may be used.
 このような条件を満たす数式として、例えば、次の(12)~(14)式があり、本発明においては、(12)~(14)式に従うことを推奨する。しかし、本発明の範囲は(12)~(14)式に限定されるものではない。
Figure JPOXMLDOC01-appb-M000006
 ここで、Rcは分離膜表面に付着しているケーク由来の膜ろ過抵抗[1/m]、αはケーク抵抗係数[m/gC]、aはケーク圧力依存係数[m/gC/Pa]、Rfは細孔閉塞由来の膜ろ過抵抗[1/m]、βは細孔閉塞ろ過抵抗係数[m/gC1.5]、Rは膜ろ過抵抗[1/m]、Rmは膜ろ過抵抗の初期値[1/m]である。
As mathematical formulas satisfying such conditions, for example, there are the following formulas (12) to (14), and in the present invention, it is recommended to follow the formulas (12) to (14). However, the scope of the present invention is not limited to the equations (12) to (14).
Figure JPOXMLDOC01-appb-M000006
Here, Rc is the cake-derived membrane filtration resistance [1 / m] attached to the surface of the separation membrane, α is the cake resistance coefficient [m / gC], and a is the cake pressure dependence coefficient [m / gC / Pa]. Rf is the membrane filtration resistance derived from pore occlusion [1 / m], β is the pore occlusion filtration resistance coefficient [m 2 / gC 1.5 ], R is the membrane filtration resistance [1 / m], and Rm is the membrane filtration resistance. Is the initial value [1 / m] of.
 また、分離膜表面に付着しているケークが階層構造を形成していると定義し、前記計算ステップ1cが下記の計算ステップ1c-1、計算ステップ1c-2を含むことが好ましい。
(計算ステップ1c-1) 計算ステップ1aにより求めた分離膜に付着しているケーク量に基づいて、任意の時刻における分離膜表面に付着しているケークの層数nを算出する。
(計算ステップ1c-2) 任意の時刻において、分離膜表面に付着している第i層(ここで、iは1~nの任意の自然数であり、第1層が分離膜に最も近く、第n層が分離膜から最も遠いとする。)のケークの圧密度を算出する。
Further, it is defined that the cakes adhering to the surface of the separation membrane form a hierarchical structure, and it is preferable that the calculation step 1c includes the following calculation steps 1c-1 and 1c-2.
(Calculation Step 1c-1) Based on the amount of cakes adhering to the separation membrane obtained in the calculation step 1a, the number n of cake layers adhering to the surface of the separation membrane at an arbitrary time is calculated.
(Calculation step 1c-2) At an arbitrary time, the i-th layer adhering to the surface of the separation membrane (where i is an arbitrary natural number from 1 to n, the first layer is the closest to the separation membrane, and the first layer. The pressure density of the cake of (n layer is the farthest from the separation membrane) is calculated.
 これにより分離膜表面に付着しているケーク量、膜ろ過抵抗値がより精度良く予測することができる。 As a result, the amount of cake adhering to the surface of the separation membrane and the membrane filtration resistance value can be predicted more accurately.
 ここにおいて、計算ステップ1aは、分離膜表面に付着しているケーク量の、所定時間内における変化量を算出する計算ステップであって、計算ステップ1aにおける計算式が、ケークが分離膜表面に付着する速度の項と、分離膜表面に付着しているケークが分離膜表面から剥離する速度の項とを含み、前記分離膜表面に付着する速度は、膜間差圧値若しくは膜ろ過流量(流束)値と、ケーク量および/または膜洗浄力値とを用いて算出され、かつ、前記分離膜表面から剥離する速度は、膜間差圧値若しくは膜ろ過流量(流束)値と、分離膜表面に付着している第1層~第n層のケーク量、および/または第1層~第n層のケークの圧密度とを用いて算出されることが好ましい。これによって、任意の時刻における分離膜表面に付着しているケーク量を、精度良く予測することができる。 Here, the calculation step 1a is a calculation step for calculating the amount of change in the amount of cake adhering to the separation membrane surface within a predetermined time, and the calculation formula in the calculation step 1a is that the cake adheres to the separation membrane surface. The term of the rate of adhesion and the term of the rate at which the cake adhering to the surface of the separation membrane peels off from the surface of the separation membrane are included, and the rate of adhering to the surface of the separation membrane is the intermembrane differential pressure value or the membrane filtration flow rate (flow). The bunch) value, the amount of cake and / or the membrane detergency value, and the rate of peeling from the separation membrane surface are separated from the intermembrane differential pressure value or the membrane filtration flow rate (fluctuation) value. It is preferable to calculate using the amount of cake of the first layer to the nth layer adhering to the film surface and / or the pressure density of the cake of the first layer to the nth layer. This makes it possible to accurately predict the amount of cake adhering to the surface of the separation membrane at an arbitrary time.
 また、計算ステップ1aにおいて、分離膜表面に付着しているケークが分離膜表面から剥離する速度を求める式が、分離膜表面に付着している第1層~第n層のケーク量の2次以上の高次関数の項を含むことがさらに好ましい。これによって、任意の時刻における分離膜表面に付着しているケーク量を、さらに精度良く予測することができる。 Further, in the calculation step 1a, the formula for obtaining the speed at which the cake adhering to the separation membrane surface is peeled off from the separation membrane surface is a quadratic of the cake amount of the first layer to the nth layer adhering to the separation membrane surface. It is more preferable to include the above terms of higher-order functions. Thereby, the amount of cake adhering to the surface of the separation membrane at an arbitrary time can be predicted more accurately.
 このような条件を満たす数式として、例えば、次の(15)~(17)式があり、本発明においては、(15)~(17)式に従うことを推奨する。しかし、本発明の範囲は(15)~(17)式に限定されるものではない。
Figure JPOXMLDOC01-appb-M000007
 ここで、nは分離膜表面に付着しているケークの階層数[-]、Diは分離膜表面に付着している第i層のケークの圧密度[-]、Xc,iは分離膜表面に付着しているケーク1階層あたりのケーク量[gC/m]である。
Formulas that satisfy such conditions include, for example, the following formulas (15) to (17), and in the present invention, it is recommended to follow the formulas (15) to (17). However, the scope of the present invention is not limited to the equations (15) to (17).
Figure JPOXMLDOC01-appb-M000007
Here, n is the number of layers of the cake attached to the separation membrane surface [-], Di is the pressure density of the cake of the i-th layer attached to the separation membrane surface [-], and Xc and i are the separation membrane surface. It is the amount of cake [gC / m 2 ] per layer of cake adhering to.
 また、計算ステップ1c-2では、任意の時刻において分離膜表面に付着している第i層のケークの圧密度を算出する。 Further, in the calculation step 1c-2, the pressure density of the cake of the i-th layer adhering to the surface of the separation membrane is calculated at an arbitrary time.
 ここにおいて、計算ステップ1cにおける計算式は、分離膜表面に付着している第i層のケークの圧密度の所定時間内における変化量を算出する計算ステップを含み、前記変化量の値が、分離膜表面に付着しているケークに加えられる圧力、および/または分離膜に付着している第i層のケークの圧密度の値に基づいて算出されることが好ましい。これにより、分離膜表面に付着している第i層のケークの圧密度をより精度よく予測できる。ここにおいて、分離膜表面に付着しているケークに加えられる圧力には、分離膜表面に付着しているケーク由来の圧力値を用いてもよいし、膜間差圧値を用いてもよい。 Here, the calculation formula in the calculation step 1c includes a calculation step of calculating the amount of change in the pressure density of the cake of the layer i adhering to the surface of the separation membrane within a predetermined time, and the value of the amount of change is separated. It is preferably calculated based on the pressure applied to the cake adhering to the membrane surface and / or the pressure density of the cake of layer i adhering to the separation membrane. As a result, the pressure density of the cake of the i-th layer adhering to the surface of the separation membrane can be predicted more accurately. Here, as the pressure applied to the cake adhering to the surface of the separation membrane, the pressure value derived from the cake adhering to the surface of the separation membrane may be used, or the differential pressure value between the membranes may be used.
 このような条件を満たす数式として、例えば、次の(18)式があり、本発明においては、(18)式に従うことを推奨する。しかし、本発明の範囲は(18)式に限定されるものではない。
Figure JPOXMLDOC01-appb-M000008
As a mathematical formula satisfying such a condition, for example, there is the following formula (18), and in the present invention, it is recommended to follow the formula (18). However, the scope of the present invention is not limited to the equation (18).
Figure JPOXMLDOC01-appb-M000008
また、前記計算ステップ2が、下記計算ステップ2’に代わることが好ましい。これにより、任意の時刻における膜ろ過抵抗値をより精度良く予測できる。
(計算ステップ2’) 計算ステップ1bで求めた細孔閉塞量、および、分離膜表面に付着している第i層のケーク量、および/または計算ステップ1cで求めた分離膜表面に付着している第i層のケークの圧密度に基づいて、時刻t+Δtにおける膜ろ過抵抗値を算出する。
Further, it is preferable that the calculation step 2 replaces the following calculation step 2'. As a result, the membrane filtration resistance value at an arbitrary time can be predicted more accurately.
(Calculation step 2') The amount of pore closure determined in calculation step 1b, the amount of cake of layer i adhering to the surface of the separation membrane, and / or adhering to the surface of the separation membrane determined in calculation step 1c. The membrane filtration resistance value at time t + Δt is calculated based on the pressure density of the cake of the i-th layer.
 このような条件を満たす数式として、例えば、次の(19)~(21)式があり、本発明においては、(19)~(21)式に従うことを推奨する。しかし、本発明の範囲は(19)~(21)式に限定されるものではない。
Figure JPOXMLDOC01-appb-M000009
 ここで、k2は圧密効果定数[-]である。
Examples of mathematical formulas satisfying such conditions include the following formulas (19) to (21), and in the present invention, it is recommended to follow the formulas (19) to (21). However, the scope of the present invention is not limited to the equations (19) to (21).
Figure JPOXMLDOC01-appb-M000009
Here, k2 is a consolidation effect constant [−].
 また、計算ステップ3では、計算ステップ1aで求めた分離膜に付着しているケーク量および/または計算ステップ1bで求めた細孔閉塞量および/または計算ステップ1cで求めた分離膜に付着しているケークの圧密度を用いて、または、計算ステップ2もしくは計算ステップ2’で求めた膜ろ過抵抗値を用いて、任意の時刻における膜間差圧値を算出する。 Further, in the calculation step 3, the amount of cake adhering to the separation membrane obtained in the calculation step 1a and / or the amount of pore clogging obtained in the calculation step 1b and / or adhering to the separation membrane obtained in the calculation step 1c. The intermembrane differential pressure value at an arbitrary time is calculated by using the pressure density of the cake, or by using the membrane filtration resistance value obtained in the calculation step 2 or the calculation step 2'.
 ここにおいて、膜ろ過予測が前記(c)(即ち、計算ステップ1aおよび/または計算ステップ1bおよび/または計算ステップ1cおよび計算ステップ3)で構成される場合、計算ステップ1aで求めた分離膜に付着しているケーク量および/または計算ステップ1bで求めた細孔閉塞量および/または計算ステップ1cで求めた分離膜に付着しているケークの圧密度を用いて、任意の時刻における膜間差圧値を算出する。その方法として、例えば、前記(19)、(20)式を前記(21)式に代入し、さらに前記(1)式に代入した数式を用いることなどがある。また、膜ろ過予測が前記(a)(即ち、計算ステップ1aおよび/または計算ステップ1bおよび/または計算ステップ1cおよび計算ステップ2および計算ステップ3)で構成される場合、計算ステップ2で求めた膜ろ過抵抗値を用いて、任意の時刻における膜間差圧値を算出する。その方法として、前記(1)式、または、それに基づいた数式を用いて計算することが好ましい。 Here, when the membrane filtration prediction is composed of the above (c) (that is, calculation step 1a and / or calculation step 1b and / or calculation step 1c and calculation step 3), it adheres to the separation membrane obtained in calculation step 1a. Intermembrane differential pressure at any time using the amount of cake and / or the amount of pore closure determined in calculation step 1b and / or the pressure density of the cake adhering to the separation membrane determined in calculation step 1c. Calculate the value. As a method for this, for example, the equations (19) and (20) may be substituted into the equation (21), and then the equation substituted into the equation (1) may be used. Further, when the membrane filtration prediction is composed of the above (a) (that is, calculation step 1a and / or calculation step 1b and / or calculation step 1c and calculation step 2 and calculation step 3), the membrane obtained in calculation step 2 is obtained. The filtration resistance value is used to calculate the intermembrane differential pressure value at an arbitrary time. As the method, it is preferable to calculate using the above formula (1) or a mathematical formula based on the above formula (1).
また、計算ステップ4では、計算ステップ1aで求めた分離膜に付着しているケーク量および/または計算ステップ1bで求めた分離膜細孔内に存在する、ケーク量値および/または計算ステップ1cで求めた分離膜に付着しているケーク量の圧密度を用いて、または、計算ステップ2もしくは計算ステップ2’で求めた膜ろ過抵抗値を用いて、任意の時刻における膜ろ過流量(流束)値を算出する。 Further, in the calculation step 4, the amount of cake adhering to the separation membrane obtained in the calculation step 1a and / or the amount of the cake existing in the pores of the separation membrane obtained in the calculation step 1b and / or in the calculation step 1c. Membrane filtration flow rate (flux) at any time using the pressure density of the amount of cake adhering to the obtained separation membrane, or using the membrane filtration resistance value obtained in calculation step 2 or calculation step 2'. Calculate the value.
 ここにおいて、膜ろ過予測が前記(f)(即ち、計算ステップ1aおよび/または、計算ステップ1bおよび/または計算ステップ1cおよび計算ステップ4)で構成される場合、計算ステップ1aで求めた分離膜に付着しているケーク量および/または計算ステップ1bで求めた細孔閉塞量値および/または計算ステップ1cで求めた分離膜に付着しているケークの圧密度を用いて、任意の時刻における膜ろ過流量(流束)値を算出する。その方法として、例えば、前記(17)、(18)式を前記(19)式に代入し、さらに前記(1)式に代入した数式を用いることなどがある。また、膜ろ過予測が前記(d)(即ち、計算ステップ1aおよび/または計算ステップ1bおよび/または計算ステップ1cおよび計算ステップ2および計算ステップ4)で構成される場合、計算ステップ2で求めた膜ろ過抵抗値を用いて、任意の時刻における膜ろ過流量(流束)値を算出する。その方法として、前記(1)式、または、それに基づいた数式を用いて計算することが好ましい。 Here, when the membrane filtration prediction is composed of the above (f) (that is, calculation step 1a and / or calculation step 1b and / or calculation step 1c and calculation step 4), the separation membrane obtained in calculation step 1a is used. Membrane filtration at any time using the amount of cake adhering and / or the pore blockage value determined in calculation step 1b and / or the pressure density of the cake adhering to the separation membrane determined in calculation step 1c. Calculate the flow rate (flux) value. As a method for this, for example, the equations (17) and (18) may be substituted into the equation (19), and then the equation substituted into the equation (1) may be used. Further, when the membrane filtration prediction is composed of the above (d) (that is, calculation step 1a and / or calculation step 1b and / or calculation step 1c and calculation step 2 and calculation step 4), the membrane obtained in calculation step 2 is obtained. The filtration resistance value is used to calculate the membrane filtration flow rate (flux) value at an arbitrary time. As the method, it is preferable to calculate using the above formula (1) or a mathematical formula based on the above formula (1).
 本発明では、時刻を更新しながら前記計算ステップを繰り返し行うことによって、膜ろ過流量を設定値に制御しつつ膜ろ過を継続する際の膜ろ過予測を行う場合には、膜ろ過抵抗の経時的変化、および/または、膜間差圧の経時的変化を求め、膜間差圧を設定値に制御しつつ膜ろ過を継続する際の膜ろ過予測を行う場合には、膜ろ過抵抗の経時的変化、および/または、膜ろ過流量(流束)の経時的変化を求める。 In the present invention, when the membrane filtration prediction when the membrane filtration is continued while controlling the membrane filtration flow rate to a set value is performed by repeating the calculation step while updating the time, the membrane filtration resistance over time When the change and / or the change over time of the intermembrane differential pressure is obtained and the membrane filtration is predicted when the membrane filtration is continued while controlling the intermembrane differential pressure to a set value, the membrane filtration resistance over time is used. Find the change and / or the change over time in the membrane filtration flow rate (fluctuation).
 本発明では、上記経時的変化を予測する頻度については限定しないが、汚泥の膜ろ過性が安定している時には予測結果に大きな変化は無く、汚泥の膜ろ過性が変化した時には予測結果も変化することから、汚泥の膜ろ過性が変化したタイミングで上記経時変化を求めることが好ましい。すなわち、前記膜ろ過性パラメータがあらかじめ決めた基準範囲またはあらかじめ決めた変化率の範囲を逸脱した場合に前記経時変化を予測することが好ましい。
 各数式において用いた記号の説明をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000010
In the present invention, the frequency of predicting the change over time is not limited, but the prediction result does not change significantly when the sludge membrane filtration property is stable, and the prediction result also changes when the sludge membrane filtration property changes. Therefore, it is preferable to obtain the change with time at the timing when the membrane filtration property of sludge changes. That is, it is preferable to predict the change with time when the membrane filterability parameter deviates from a predetermined reference range or a predetermined rate of change.
Table 1 summarizes the explanations of the symbols used in each formula.
Figure JPOXMLDOC01-appb-T000010
 膜分離活性汚泥法において、運転条件が不適もしくは不安定な場合(原水水質変動や水温変動、膜の薬液洗浄後など)には、活性汚泥の状態が悪化しやすく、その際には活性汚泥の水相浮遊物量が多くなり、水相浮遊物量が多いと、膜ろ過する際に、膜の表面または孔内に付着・蓄積し、膜を閉塞させやすくなる。つまり、膜ろ過性パラメータが悪化する。 In the membrane separation activated sludge method, if the operating conditions are inappropriate or unstable (raw water quality fluctuations, water temperature fluctuations, after washing the membrane with a chemical solution, etc.), the condition of the activated sludge tends to deteriorate, in which case the activated sludge When the amount of suspended matter in the aqueous phase is large and the amount of suspended matter in the aqueous phase is large, it easily adheres to and accumulates on the surface or pores of the membrane when the membrane is filtered, and the membrane is easily blocked. That is, the membrane filtration parameter deteriorates.
 膜分離活性汚泥槽から採取した活性汚泥を光学的手段で撮像後、撮像した画像を処理し、膜ろ過性パラメータを算出し、膜ろ過性パラメータおよび/または予測結果、運転可能日数の値やその変化率と、あらかじめ設定した基準範囲との比較を行うことで、膜分離活性汚泥法における汚泥の状態および運転条件による影響を評価し、膜ろ過圧力が上昇し始める前に、警報および/または運転条件を適正化するための制御を出力可能となる。 After imaging the activated sludge collected from the membrane separation activated sludge tank by optical means, the captured image is processed, the membrane filtration parameter is calculated, the membrane filtration parameter and / or the prediction result, the value of the number of operable days and its value. By comparing the rate of change with a preset reference range, the effects of sludge conditions and operating conditions in the membrane separation activated sludge method are evaluated, and warnings and / or operations are performed before the membrane filtration pressure begins to rise. It is possible to output the control for optimizing the conditions.
 ここで、運転可能日数とは、経時変化予測によって得られた膜ろ過抵抗の経時的変化および/または膜ろ過差圧の経時的変化および/または膜ろ過流量(流束)の経時的変化において、設定値に達するまでの運転日数である。
表2では、同じ活性汚泥について、10視野の画像を撮像し、それぞれの画像における画像情報要素および膜ろ過性パラメータを算出して、それを平均して、その活性汚泥の画像情報要素および膜ろ過性パラメータとするため、複数の画像を取って画像処理を実施している。同じ活性汚泥において、1視野の撮像結果から画像処理すると、誤差が出る可能性があるので、複数視野の撮像結果の平均値を画像処理結果として用いるのが好ましい。できるだけ多くの観察領域の画像を用いて判断を行なうことで、判断精度が向上する。多くの観察領域の画像を得るために、後述する観察用治具44および送液手段75を用いて活性汚泥を入れ替え、自動的に観察視野を増やすことが好ましい。
Here, the number of operable days is defined as the time-dependent change in membrane filtration resistance and / or the time-dependent change in membrane filtration differential pressure and / or the time-dependent change in membrane filtration flow rate (flulux) obtained by prediction of change over time. It is the number of operating days until the set value is reached.
In Table 2, images of 10 fields are taken for the same activated sludge, image information elements and membrane filterability parameters in each image are calculated, averaged, and image information elements and membrane filtration of the activated sludge. Image processing is performed by taking a plurality of images in order to use them as sex parameters. In the same activated sludge, if image processing is performed from the image processing result of one field of view, an error may occur. Therefore, it is preferable to use the average value of the image processing results of a plurality of fields of view as the image processing result. Judgment accuracy is improved by making a judgment using images in as many observation areas as possible. In order to obtain images of many observation areas, it is preferable to replace the activated sludge with the observation jig 44 and the liquid feeding means 75 described later to automatically increase the observation field of view.
 本実施形態では、評価結果および/または予測結果を用いて、膜分離活性汚泥の状態を検知し、膜ろ過圧力上昇、ろ過水質悪化等を未然に抑制するため、廃水処理条件を制御するが、制御する対象は少なくとも下記に示すいずれかの項目である。
(A)被処理水流入濃度および流入量
(B)ろ過流量
(C)ろ過時間もしくはろ過停止時間
(D)曝気風量もしくは曝気時間
(E)栄養塩添加量
(F)薬品添加量
(G)活性汚泥量
(H)返送処理水量
(I)前処理工程の稼動条件
(J)後処理工程の稼働条件
(K)活性汚泥槽温度調整条件
(L)膜エレメントの稼動条件
(M)膜エレメント洗浄条件
(N)散気管洗浄条件
Figure JPOXMLDOC01-appb-T000011
In the present embodiment, the wastewater treatment conditions are controlled in order to detect the state of the membrane separation activated sludge and suppress the increase in membrane filtration pressure, deterioration of filtered water quality, etc. by using the evaluation result and / or the prediction result. The object to be controlled is at least one of the following items.
(A) Inflow concentration and inflow amount of water to be treated (B) Filtration flow rate (C) Filtration time or filtration stop time (D) Aeration air volume or aeration time (E) Nutrient salt addition amount (F) Chemical addition amount (G) Activity Amount of sludge (H) Amount of returned treated water (I) Operating conditions of pretreatment process (J) Operating conditions of posttreatment process (K) Activated sludge tank temperature adjustment conditions (L) Operating conditions of membrane element (M) Operating conditions of membrane element (N) Air diffuser cleaning conditions
Figure JPOXMLDOC01-appb-T000011
 再び図4を用いて、本発明の実施形態の一例を示す。活性汚泥を光学的手段41およびカメラ43で撮像し、画像処理手段42で画像処理することにより、(vi)水相領域に囲まれた一定面積以下の固体相領域の面積および/または水相領域または固体相領域に対する面積比からあらかじめ設定した算出式を用いてケーク抵抗や細孔の閉塞の進行速度に関わる膜ろ過性パラメータを算出し、パラメータ算出値および/または予測結果、運転可能日数の値やその変化率があらかじめ設定した基準範囲を逸脱する場合には、警報出力手段49で警報を出力し、それに応じて、例えば(D)曝気風量もしくは曝気時間を制御することで、膜ろ過圧力上昇およびろ過水質悪化の抑制を行うことが可能となる。 FIG. 4 is used again to show an example of the embodiment of the present invention. By imaging the active sludge with the optical means 41 and the camera 43 and image-processing with the image processing means 42, (vi) the area of the solid phase region below a certain area surrounded by the aqueous phase region and / or the aqueous phase region. Alternatively, the membrane filterability parameters related to the progress rate of cake resistance and pore clogging are calculated from the area ratio to the solid phase region using a preset calculation formula, and the parameter calculation value and / or the prediction result and the value of the number of operable days are calculated. When the rate of change deviates from the preset reference range, an alarm is output by the alarm output means 49, and the membrane filtration pressure is increased by, for example, (D) controlling the aeration air volume or the aeration time accordingly. And it becomes possible to suppress the deterioration of the filtered water quality.
 警報出力手段49で出力する警報とは、膜ろ過性パラメータまたは膜ろ過予測を行った結果である運転可能日数の値や変化率が管理範囲を逸脱したことを知らせる通知をいい、装置の制御盤にある画面に文字が表示される機能などがある、緊急度に応じて表示方法を変えたり、音を用いたりしてもよく、また通信機器を用いて遠隔地で受信してもよい。 The alarm output by the alarm output means 49 is a notification indicating that the value of the number of operable days or the rate of change, which is the result of the membrane filtration parameter or the membrane filtration prediction, has deviated from the control range, and is the control panel of the device. There is a function of displaying characters on the screen in, the display method may be changed according to the degree of urgency, sound may be used, or reception may be performed at a remote location using a communication device.
 判定結果の精度を高めるために、膜ろ過性パラメータと運転可能日数がともに管理範囲を逸脱した場合のみ、警報出力手段49で警報を出力し、運転条件を制御してもよい。さらに、警報出力の表示を段階的に設け、膜ろ過性パラメータが1種のみ管理範囲を逸脱する場合には、お知らせ表示のみとし、2種以上同時に管理範囲を逸脱した場合に、制御が必要であることを表示するよう設定してもよい。 In order to improve the accuracy of the determination result, the alarm output means 49 may output an alarm and control the operating conditions only when both the membrane filtration parameter and the number of operable days deviate from the control range. Furthermore, the alarm output display is provided step by step, and if only one type of membrane filtration parameter deviates from the control range, only the notification display is provided, and if two or more types deviate from the control range at the same time, control is required. It may be set to display that there is.
 活性汚泥の状態は、被処理水質、膜分離活性汚泥プロセスおよびその上流の処理プロセスの運転条件に影響され変化する。活性汚泥の状態を正確に把握するためには、連続的もしくは定期的に膜分離活性汚泥槽から活性汚泥を採取し、光学的手段41およびカメラ43で撮像し、画像処理手段42で画像処理する必要がある。そこで、本発明の活性汚泥可視化装置52には膜分離活性汚泥槽3から活性汚泥を採取する吸引ポンプ47が設置され、活性汚泥可視化制御部51からの信号により、連続的もしくは定期的に活性汚泥を採取し、活性汚泥の状態を可視化するのが好ましい。ここでいう定期的とは、1日1回あらかじめ設定した時間、もしくは、3時間毎に1回、などが例示される。 The state of activated sludge changes depending on the water quality to be treated, the operating conditions of the membrane-separated activated sludge process and the upstream treatment process. In order to accurately grasp the state of the activated sludge, the activated sludge is continuously or periodically collected from the membrane-separated activated sludge tank, imaged by the optical means 41 and the camera 43, and image-processed by the image processing means 42. There is a need. Therefore, the activated sludge visualization device 52 of the present invention is provided with a suction pump 47 for collecting activated sludge from the membrane separation activated sludge tank 3, and the activated sludge is continuously or periodically generated by a signal from the activated sludge visualization control unit 51. It is preferable to collect the sample and visualize the state of activated sludge. The term “regular” as used herein is exemplified by a preset time once a day, once every three hours, and the like.
 以下に、図8を用いて、画像情報要素、膜ろ過性パラメータおよび膜ろ過予測結果を用いた制御の一例を示す。なお、図8に示す一例のシステムは、浸漬型膜分離ユニット2、膜分離活性汚泥槽3、廃水1を供給する原水供給ポンプ6、エアーポンプ(空気供給装置)7、散気管8、吸引ポンプ9、活性汚泥引き抜きポンプ10、栄養塩添加槽12の栄養塩を添加するための栄養塩添加ポンプ13、薬品添加槽14の薬品を添加するための薬品添加ポンプ15、洗浄薬品添加槽16の洗浄薬品を添加するための洗浄薬品添加ポンプ17、栄養塩添加流路切り替えバルブ18a、18b、洗浄薬品流路切り替えバルブ19a、19b、洗浄薬品排出バルブ20、予備槽21から排水22を排水する予備槽排水ポンプ24、予備槽21から膜分離活性汚泥槽3に送液するための予備槽送液ポンプ23、及び廃水(被処理水)流路切り替えバルブ25を備えている。また、一例として、図8の膜分離活性汚泥槽3に図4に示す採取口53が設置され、活性汚泥が採取され、活性汚泥可視化装置52に供給される。 Below, using FIG. 8, an example of control using an image information element, a membrane filtration parameter, and a membrane filtration prediction result is shown. The system of the example shown in FIG. 8 includes an immersion type membrane separation unit 2, a membrane separation active sludge tank 3, a raw water supply pump 6 for supplying wastewater 1, an air pump (air supply device) 7, an air diffuser pipe 8, and a suction pump. 9. Active sludge extraction pump 10, nutrient addition pump 13 for adding nutrients in nutrient addition tank 12, chemical addition pump 15 for adding chemicals in chemical addition tank 14, cleaning of cleaning chemical addition tank 16. Cleaning chemical addition pump 17 for adding chemicals, nutrient salt addition flow path switching valves 18a and 18b, cleaning chemical flow path switching valves 19a and 19b, cleaning chemical discharge valve 20, and spare tank for draining drainage 22 from the spare tank 21. It includes a drainage pump 24, a spare tank liquid feed pump 23 for feeding liquid from the reserve tank 21 to the membrane separation active sludge tank 3, and a wastewater (water to be treated) flow path switching valve 25. Further, as an example, the collection port 53 shown in FIG. 4 is installed in the membrane separation active sludge tank 3 of FIG. 8, and the activated sludge is collected and supplied to the activated sludge visualization device 52.
 膜分離活性汚泥槽の生物処理において、生物処理を安定化させるためには、流入する廃水1に含まれる有機物量とそれを分解する膜分離活性汚泥槽3における活性汚泥量とのバランスを一定に整えることが重要である。ここでいう有機物量とは、一般的な水質指標であるBOD(生物学的酸素要求量)やCOD(化学的酸素要求量)、もしくはTOC(全有機炭素量)で表されるものを用い、単位活性汚泥量あたりの負荷、例えばBOD/MLSS負荷を算出し、0.05~0.2kgBOD/kgMLSS・日程度、より好ましくは0.07~0.15kgBOD/kgMLSS・日程度に管理する。本実施形態によれば、ケークや細孔閉塞速度に関わる膜ろ過性パラメータを監視し、管理範囲を上回っている場合には、活性汚泥内の汚泥状態が悪化し、膜ろ過性が悪化していると判定し、警報として、例えば「BOD/MLSS負荷が管理範囲内であるか確認してください」と表示し、その表示内容に応じて、(A)被処理水である廃水1のBOD濃度や流入量や、(G)活性汚泥量が、適正範囲であるかを確認し、管理範囲から逸脱している場合には、範囲内になるよう制御することが例示される。 In the biological treatment of the membrane separation activated sludge tank, in order to stabilize the biological treatment, the balance between the amount of organic matter contained in the inflowing wastewater 1 and the amount of active sludge in the membrane separation activated sludge tank 3 that decomposes it should be kept constant. It is important to prepare. The amount of organic matter referred to here is represented by BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), or TOC (Total Organic Carbon Demand), which are general water quality indicators. The load per unit activated sludge amount, for example, BOD / MLSS load is calculated and managed to be about 0.05 to 0.2 kgBOD / kgMLSS / day, more preferably about 0.07 to 0.15 kgBOD / kgMLSS / day. According to the present embodiment, the membrane filterability parameters related to the cake and pore occlusion rate are monitored, and when the control range is exceeded, the sludge state in the activated sludge deteriorates and the membrane filterability deteriorates. As an alarm, for example, "Please check if the BOD / MLSS load is within the control range" is displayed, and according to the displayed content, (A) the BOD concentration of wastewater 1 which is the water to be treated. It is exemplified that the amount of inflow and the amount of (G) activated sludge are confirmed to be within an appropriate range, and if they deviate from the control range, they are controlled to be within the range.
 また、図示しないが、生物処理活性を維持するために、温調機能を付設している場合には、警報として「温度調整条件を確認してください」と表示し、設定温度の調整を行なう等、(K)活性汚泥槽温度調整条件を制御することも好ましい。例えば、活性汚泥槽内の温度が低下もしくは上昇し、活性汚泥内の微生物が、流入水中の有機物を生分解処理するために至適な温度範囲から外れた場合には、微生物の生分解能力が低下し、微生物の自己防衛機能が働いて代謝物を発生したり、死滅したりして、水相浮遊物を増加させやすくなるため、活性汚泥槽の温度を至適な温度範囲になるよう上げるもしくは下げることで、微生物の生分解能力を維持し、水相浮遊物を増加させることなく安定運転可能となる。生物処理には有機物だけでなく、窒素やリンなどの微量成分も必要であり、図8に示す(E)栄養塩添加槽12から添加する栄養塩量を追加調整している場合、被処理水である廃水1の水質が変化し、一時的に窒素やリンなどの微量成分が不足することがあり、それによって汚泥の状態が悪化し、ケークや細孔閉塞に関わる膜ろ過性パラメータが悪化することがある。そこで、ケークや細孔閉塞に関わる膜ろ過性パラメータを監視し、管理範囲を上回っている場合には、汚泥状態が悪化し、活性汚泥の膜ろ過性が悪化していると判定し、図8に示す(E)栄養塩添加槽12から添加する栄養塩量を追加調整するよう警報を出力してもよい。 In addition, although not shown, if a temperature control function is installed to maintain the biological processing activity, "Please check the temperature adjustment conditions" is displayed as an alarm and the set temperature is adjusted. , (K) It is also preferable to control the temperature adjustment conditions of the activated sludge tank. For example, if the temperature inside the activated sludge tank drops or rises and the microorganisms in the activated sludge deviate from the optimum temperature range for biodegrading organic substances in the inflow water, the biodegradation ability of the microorganisms becomes high. Raise the temperature of the activated sludge tank to the optimum temperature range because it decreases and the self-defense function of microorganisms works to generate or kill metabolites, which makes it easier to increase the amount of suspended matter in the aqueous phase. Alternatively, by lowering it, the biodegradation ability of microorganisms is maintained, and stable operation becomes possible without increasing the amount of suspended matter in the aqueous phase. Not only organic substances but also trace components such as nitrogen and phosphorus are required for biological treatment, and when the amount of nutrients added from (E) nutrient addition tank 12 shown in FIG. 8 is additionally adjusted, the water to be treated The water quality of wastewater 1 may change, causing a temporary shortage of trace components such as nitrogen and phosphorus, which worsens the sludge condition and worsens the membrane filterability parameters related to cake and pore blockage. Sometimes. Therefore, the membrane filtration parameters related to cake and pore occlusion are monitored, and if it exceeds the control range, it is determined that the sludge state is deteriorated and the membrane filtration property of activated sludge is deteriorated. FIG. An alarm may be output to additionally adjust the amount of nutrients added from the nutrient addition tank 12 shown in (E).
 また、廃水1の水質変動や膜分離活性汚泥槽3における活性汚泥による生物処理反応の過程で、膜分離活性汚泥槽3の活性汚泥のpHが酸性やアルカリ性に変動する場合がある。そこで、ケークや細孔閉塞に関わる膜ろ過性パラメータが管理範囲を上回っている場合には、活性汚泥内の汚泥状態が悪化し、膜ろ過性が悪化していると判定し、「pHを確認して下さい」と警報が出力するようにしてもよい。さらに、警報出力と制御機器を用いて、図8に示す薬品添加槽14のpH計と連動させ、膜分離活性汚泥槽3の活性汚泥のpHが酸性やアルカリ性に変動している場合には、図8に示す薬品添加槽14から、(F)薬品添加量の調整として、中和のための酸(例えば塩酸や硫酸)、アルカリ(例えば水酸化ナトリウム)を添加するよう制御してもよい。ここで、ケークや細孔閉塞に関わる膜ろ過性パラメータの値や変化率が、管理範囲を逸脱した場合に、出力する警報内容の選択は、あらかじめ別に調査した過去の実績に基づいて、最も多く発生したトラブルの順でもよいし、あらかじめ登録しておいた膜分離活性汚泥槽3に設けた各種センサーの順でもよい。さらに、警報出力を別途記録し、その処理工程において発生しやすいトラブルの順になるよう、逐次変更してもよい。薬液としては、活性汚泥のpH調整用に用いる酸、アルカリの他に、膜分離活性汚泥槽3の槽内もしくは上流で、廃水1に添加し、水相浮遊物や溶解性物質をあらかじめ凝集させる凝集剤や、活性汚泥の発泡を抑制するための消泡剤などが例示される。 In addition, the pH of the activated sludge in the membrane separation active sludge tank 3 may fluctuate to be acidic or alkaline in the process of the water quality fluctuation of the wastewater 1 or the biological treatment reaction by the activated sludge in the membrane separation active sludge tank 3. Therefore, when the membrane filtration parameter related to cake or pore blockage exceeds the control range, it is determined that the sludge state in the activated sludge has deteriorated and the membrane filtration property has deteriorated, and "pH is confirmed. Please do it. " Further, when the pH of the active sludge in the membrane-separating active sludge tank 3 is changed to acidic or alkaline by interlocking with the pH meter of the chemical addition tank 14 shown in FIG. 8 by using the alarm output and the control device, The chemical addition tank 14 shown in FIG. 8 may be controlled to add an acid (for example, hydrochloric acid or sulfuric acid) or an alkali (for example, sodium hydroxide) for neutralization as the adjustment of the amount of the chemical addition (F). Here, when the value or rate of change of the membrane filtration parameter related to cake or pore occlusion deviates from the control range, the selection of the alarm content to be output is the most based on the past results investigated separately in advance. It may be in the order of troubles that have occurred, or in the order of various sensors provided in the membrane separation activated sludge tank 3 registered in advance. Further, the alarm output may be recorded separately and changed sequentially so as to be in the order of troubles that are likely to occur in the processing process. As the chemical solution, in addition to the acid and alkali used for adjusting the pH of the activated sludge, it is added to the wastewater 1 in or upstream of the membrane-separated activated sludge tank 3 to coagulate aqueous phase suspended matter and soluble substances in advance. Examples thereof include a flocculant and an antifoaming agent for suppressing the foaming of activated sludge.
 この他にも、本発明により、運転条件変更前後で、活性汚泥を光学的手段で撮像および画像処理を行うことで、従来の水質分析機器を用いた分析を行なわなくても、即時にその効果を判定することができるため、条件変更にかかる時間が大幅に短縮される効果がある。 In addition to this, according to the present invention, activated sludge is imaged and image-processed by optical means before and after the change of operating conditions, so that the effect can be immediately obtained without performing analysis using a conventional water quality analyzer. Since it is possible to determine, there is an effect that the time required for changing the condition is significantly shortened.
 その他、ある特定の膜エレメントのみ定期的にろ過圧力上昇が見られる場合にも、その周囲の活性汚泥を採取し、細孔閉塞に関わる膜ろ過性パラメータを監視し、細孔閉塞速度に関わるパラメータや細孔閉塞の圧力依存に関わるパラメータの値や変化率、予測結果である運転可能日数が管理範囲を逸脱している場合には、その膜エレメントの下方にある散気管が詰まっている可能性が考えられるため、エアーポンプ7の流量を調整して(N)散気管8を洗浄したり、散気管を構成する例えばラバー樹脂部材を交換したりすることも好適に行われる。 In addition, even when the filtration pressure rises regularly only in a specific membrane element, the activated sludge around it is collected, the membrane filtration parameter related to pore occlusion is monitored, and the parameter related to pore occlusion rate. If the values and rate of change of parameters related to the pressure dependence of pore occlusion and the predicted operating days are out of the control range, the air diffuser below the membrane element may be clogged. Therefore, it is also preferable to adjust the flow rate of the air pump 7 (N) to clean the air diffuser pipe 8 or to replace, for example, a rubber resin member constituting the air diffuser pipe.
 本実施形態によれば、連続的もしくは定期的に活性汚泥を撮像することで、膜ろ過性パラメータに加えて、画像情報(viii)一定色調もしくは一定輝度以下の固体相領域の面積および/または水相領域または固体相領域に対する面積比を監視し、膜ろ過性パラメータが悪化しているとともに、固体相領域の色調が茶色から黒色に変化している場合には、「活性汚泥槽内の溶存酸素濃度が低下している可能性があります」と警報を表示させ、その表示に基づいて、活性汚泥槽内の溶存酸素濃度を測定し、エアーポンプの風量が管理範囲を逸脱していないかを確認し、風量に問題がなければ、散気管の目詰まりにより、槽内の一部で、空気供給の偏りが起きている可能性があるため、(N)散気管洗浄を実施するとよい。散気管8が複数系列ある場合には、洗浄する順番を決めるために、膜分離活性汚泥槽3の複数箇所の活性汚泥を採取し、それぞれで判定を行い、そのうち管理範囲を逸脱している場所がある場合には、その近傍の散気管が詰まっている可能性が考えられるため、優先的に、エアーポンプ7の流量を調整して、その近傍の散気管8を洗浄したり、散気管を構成する例えばラバー樹脂部材を交換したりすることも好適である。 According to the present embodiment, by continuously or periodically imaging activated sludge, in addition to the membrane filtration parameters, the area and / or water of the solid phase region of image information (viii) constant color tone or constant brightness or less. Monitor the area ratio to the phase region or solid phase region, and if the membrane filtration parameter deteriorates and the color tone of the solid phase region changes from brown to black, "dissolved oxygen in the activated sludge tank". The concentration may have decreased. ”Is displayed an alarm, and based on the display, measure the dissolved oxygen concentration in the activated sludge tank and check if the air volume of the air pump is out of the control range. However, if there is no problem with the air volume, there is a possibility that the air supply is biased in a part of the tank due to the clogging of the air diffuser pipe. Therefore, (N) the air diffuser pipe cleaning should be performed. When there are a plurality of series of air diffuser pipes 8, in order to determine the order of cleaning, activated sludge at a plurality of locations in the membrane separation activated sludge tank 3 is collected, and a judgment is made for each of the locations that deviate from the control range. If there is, it is possible that the air diffuser in the vicinity is clogged. Therefore, preferentially adjust the flow rate of the air pump 7 to clean the air diffuser 8 in the vicinity or clean the air diffuser. For example, it is also preferable to replace the constituent rubber resin member.
 他方で、膜分離活性汚泥槽3の活性汚泥の状態や予測結果に応じて、吸引ポンプ9の(C)ろ過時間もしくはろ過停止時間を調整したり、エアーポンプ7の(D)曝気風量もしくは曝気時間を増減したり、間欠的に調整してもよい。例えば、(D)曝気風量もしくは曝気時間を減少させても、膜ろ過パラメータや膜ろ過予測結果に問題無いことを確認しながら(D)曝気風量もしくは曝気時間を減少させることで、省エネルギー化を図ることができる。特にケークや細孔閉塞に関わる膜ろ過性パラメータの変化率を監視し、変化率があらかじめ設定した管理値以下なら(D)曝気風量もしくは曝気時間を減少させて運転し、変化率が管理値以上になった場合には(D)曝気風量もしくは曝気時間を増加させて運転することが好ましい。同様に、膜ろ過予測によって算出した運転可能日数を監視し、運転可能日数があらかじめ設定した管理範囲を逸脱しない範囲で(D)曝気風量もしくは曝気時間を減少させて運転し、運転可能日数が管理範囲を逸脱した場合には(D)曝気風量もしくは曝気時間を増加させて運転することが好ましい。さらに、(C)ろ過時間もしくはろ過停止時間と(D)曝気風量もしくは曝気時間をそれぞれ組み合わせて調整することも好適である。 On the other hand, the (C) filtration time or filtration stop time of the suction pump 9 can be adjusted, or the (D) aeration air volume or aeration of the air pump 7 can be adjusted according to the state of the activated sludge in the membrane separation activated sludge tank 3 and the predicted result. The time may be increased or decreased or adjusted intermittently. For example, energy saving is achieved by (D) reducing the aeration air volume or the aeration time while confirming that there is no problem in the membrane filtration parameters and the membrane filtration prediction result even if the aeration air volume or the aeration time is reduced. be able to. In particular, monitor the rate of change of membrane filtration parameters related to cake and pore blockage, and if the rate of change is less than or equal to the preset control value, (D) reduce the aeration air volume or aeration time and operate, and the rate of change is greater than or equal to the control value. In the case of (D), it is preferable to increase the aeration air volume or the aeration time for operation. Similarly, the number of operable days calculated by membrane filtration prediction is monitored, and the number of operational days is managed by reducing the aeration air volume or aeration time within the range where the operational days do not deviate from the preset control range. When it deviates from the range, (D) it is preferable to increase the aeration air volume or the aeration time for operation. Further, it is also preferable to adjust by combining (C) the filtration time or the filtration stop time and (D) the aeration air volume or the aeration time, respectively.
 これらの他にも、(A)被処理水流入濃度および流入量が変動しやすい廃水処理施設の場合、膜ろ過性パラメータや膜ろ過予測結果に基づいて膜分離活性汚泥槽3の活性汚泥の状態へ悪影響がないことを監視しながら、(A)被処理水流入濃度および流入量に応じて、吸引ポンプ9の(C)ろ過時間もしくはろ過停止時間を調整したり、エアーポンプ7の(D)曝気風量もしくは曝気時間を増減したり、間欠的に調整してもよい。さらに、(C)と(D)をそれぞれ組み合わせて調整してもよい。 In addition to these, (A) in the case of a wastewater treatment facility where the inflow concentration and inflow amount of water to be treated are likely to fluctuate, the state of the active sludge in the membrane separation active sludge tank 3 based on the membrane filtration parameters and the membrane filtration prediction results. While monitoring that there is no adverse effect on the water, (A) adjust the (C) filtration time or filtration stop time of the suction pump 9 according to the inflow concentration and inflow amount of water to be treated, or (D) of the air pump 7. The aeration air volume or aeration time may be increased or decreased, or may be adjusted intermittently. Further, (C) and (D) may be combined and adjusted respectively.
 また本実施形態によれば、膜ろ過性パラメータが急激に悪化しているにもかかわらず、膜間差圧に変化が見られない場合には、膜に破損部がないか確認するなど、膜分離活性汚泥処理の分離膜の保全にも好適である。 Further, according to the present embodiment, if there is no change in the intermembrane differential pressure even though the membrane filterability parameter is rapidly deteriorated, the membrane is checked for breakage, for example. It is also suitable for the maintenance of separation membranes for separation activated sludge treatment.
 図9は、本発明の一つの実施形態における活性汚泥を連続観察する際に用いる観察用治具44の構成を模式的に示す。観察用治具44は、架台71に載置された上下1対の、例えば、透明ガラスやアクリル樹脂などの一対の透明部材72を対向して配置した0.01~0.1mmの間隔の評価流路74と、評価流路に水処理槽に直結された送液ライン46から評価流路74に連通した活性汚泥搬送流路73からなる。評価流路74に活性汚泥70を送り込む送液手段75と、評価流路74を通して、光学的手段41およびカメラ43で、活性汚泥70を撮像する。なお、光学的手段41は、レンズ41aと、活性汚泥70の位相差像と明視野像を切り替えて観察するための位相差・明視野切替・光学フィルタ手段41bおよび光源41cを有する。観察用治具44の活性汚泥搬送流路73および、評価流路74の間隙を維持するための部材の材質は、特に限定されないが、加工しやすいアクリル樹脂やステンレスなどの金属が好ましく、耐薬品性、耐磨耗性からステンレス(SUS)316製が好ましい。 FIG. 9 schematically shows the configuration of the observation jig 44 used for continuous observation of activated sludge in one embodiment of the present invention. The observation jig 44 is evaluated at intervals of 0.01 to 0.1 mm in which a pair of upper and lower transparent members 72 mounted on the gantry 71, for example, a pair of transparent members 72 such as transparent glass and acrylic resin are arranged facing each other. It is composed of a flow path 74 and an activated sludge transport flow path 73 that communicates with the evaluation flow path 74 from a liquid feeding line 46 that is directly connected to the evaluation flow path to the water treatment tank. The activated sludge 70 is imaged by the optical means 41 and the camera 43 through the liquid feeding means 75 for feeding the activated sludge 70 into the evaluation flow path 74 and the evaluation flow path 74. The optical means 41 includes a lens 41a, a phase difference / bright field switching / optical filter means 41b, and a light source 41c for switching between a phase difference image and a bright field image of the activated sludge 70 for observation. The material of the member for maintaining the gap between the activated sludge transport flow path 73 of the observation jig 44 and the evaluation flow path 74 is not particularly limited, but a metal such as acrylic resin or stainless steel, which is easy to process, is preferable, and chemical resistance is preferable. Stainless steel (SUS) 316 is preferable because of its properties and abrasion resistance.
 ここで活性汚泥を連続観察する際に用いる観察用治具44の動作について説明する。
 膜分離活性汚泥槽3から送液手段75により、活性汚泥70が活性汚泥搬送流路73を介して、架台71に載置された透明部材72で形成された評価流路74に送り込まれる。送液手段75は、送液量を制御する送液制御手段(図示しない)を備えている。送液手段75は事前に図示しない容器に採取した活性汚泥70を送液するようにしてもよく、膜分離活性汚泥槽3に設置した可動式の採取口53を介して採取してもよい。送液制御手段は、円滑に活性汚泥70を送り込むことが出来れば特に限定されないが、加速や減速または一定速度で送液するなど速度を選択できることが好ましく、撮像時、送液を一定時間停止するのが好ましい。撮像時に送液を一定時間停止する代わりに、評価流路74の両端(活性汚泥の入り口と出口)を物理的に閉塞してもよい。物理的に閉塞するために、例えば、透明流路の両端に電磁弁を設けてもよい。送液手段75は、外部からの電気信号によって送液や停止、または送液速度を制御できるポンプなどが望ましいがこれに限定されるものではない。撮像時には、活性汚泥の送液を一時停止して一定時間放置、あるいは、一時的に、評価流路74の入り口側と出口側を塞ぐ電磁弁などの物理的閉塞手段を用いて、活性汚泥70の流れを止めて撮像する。このように、活性汚泥70の流れが停止している状態で撮像することで、精度よく、固体相領域と水相領域を区別し、水相の浮遊物量を検知する。
Here, the operation of the observation jig 44 used for continuous observation of activated sludge will be described.
The activated sludge 70 is sent from the membrane separation activated sludge tank 3 to the evaluation flow path 74 formed by the transparent member 72 mounted on the gantry 71 via the activated sludge transport flow path 73 by the liquid feeding means 75. The liquid feeding means 75 includes a liquid feeding control means (not shown) for controlling the liquid feeding amount. The liquid feeding means 75 may feed the activated sludge 70 collected in advance to a container (not shown), or may collect the activated sludge 70 through a movable collection port 53 installed in the membrane separation activated sludge tank 3. The liquid feed control means is not particularly limited as long as the activated sludge 70 can be smoothly fed, but it is preferable that the speed can be selected such as acceleration, deceleration, or liquid feed at a constant speed, and the liquid feed is stopped for a certain period of time at the time of imaging. Is preferable. Instead of stopping the liquid feeding for a certain period of time at the time of imaging, both ends (inlet and outlet of activated sludge) of the evaluation flow path 74 may be physically blocked. For example, solenoid valves may be provided at both ends of the transparent flow path in order to physically block the flow path. The liquid feeding means 75 is preferably, but is not limited to, a pump that can feed or stop the liquid or control the liquid feeding speed by an electric signal from the outside. At the time of imaging, the activated sludge feed is temporarily stopped and left for a certain period of time, or the activated sludge 70 is temporarily closed by using a physical closing means such as a solenoid valve that blocks the inlet side and the outlet side of the evaluation flow path 74. Stop the flow and take an image. By taking an image in a state where the flow of the activated sludge 70 is stopped in this way, the solid phase region and the aqueous phase region can be accurately distinguished, and the amount of suspended solids in the aqueous phase can be detected.
 評価流路74を構成する一対の透明部材72の間隙の間隔は、特に限定されるものではないが、フロックの大きさを考慮すると、0.01~0.1mmが好適である。さらに、評価流路74を構成する透明部材72の間隔には0.01~0.10mmの隙間を設けた部分に向けて流路が狭くなるように傾斜を設けるのも好適である。活性汚泥送液時の詰まりを低減するために、間隙の間隔を調整するための調整機能を付設し、活性汚泥送液時と観察時とで、透明部材72の間隙を変動させるのも好適である。評価流路74の隙間を変動させることで、観察時のみ隙間の間隔を好適に保ち、それ以外の場合は隙間を大きく広げ、流路での活性汚泥の詰まりを防ぐことが可能となる。さらに、先述の通り、観察時に、積極的に流路の厚みを変え、活性汚泥形状を厚み方向に変化させることで、変化前後の画像における固体相領域の変化度合いを調べ、その度合いに応じて活性汚泥の密度や凝集度合いや構成成分などを定量評価可能となるため好適である。評価流路74の隙間を可変させる調整機能は、特に限定されるものではなく、電気信号もしくは手動で、隙間の上下方向の厚みを変更するとよい。また、流路の厚みを一定にして、透過させる光の強度や種類を変えることで、活性汚泥の厚み方向における密度や凝集度合いや構成成分などを位置情報とともに、定量化しても構わない。特に、蛍光色素などで事前に微生物をマーキングし、蛍光顕微鏡を用いて、マーキングした微生物の密度、凝集度合いなどを位置情報とともに定量化することも好適である。なお、膜分離活性汚泥槽3から採取される活性汚泥は、活性汚泥の攪拌状況により、槽の底部では活性汚泥が滞留していたり、槽の水面付近では油分のような浮上しやすい成分が多いなど、活性汚泥の状態の違いがある可能性があるため、槽内における平均的な状態の活性汚泥を採取するのが好ましい。そこで膜分離活性汚泥槽の深さ方向の任意の場所から活性汚泥を採取できるよう採取口53は深さ方向に可動式となっており、これにより、膜分離活性汚泥槽の深さ方向に平均的な活性汚泥を採取することが可能となる。例えば、三種類の深さから採取し、各深さの活性汚泥における固体相領域総面積の差が大きくなってきた場合には、攪拌のための散気管が一部詰まり、活性汚泥の攪拌状況に偏りが生じたと判断し、(N)散気管8を洗浄したり、散気管を構成するラバー樹脂部材を交換したりしてもよい。 The distance between the gaps between the pair of transparent members 72 constituting the evaluation flow path 74 is not particularly limited, but 0.01 to 0.1 mm is preferable in consideration of the size of the flocs. Further, it is also preferable that the distance between the transparent members 72 constituting the evaluation flow path 74 is inclined so that the flow path becomes narrower toward the portion provided with the gap of 0.01 to 0.10 mm. In order to reduce clogging during activated sludge feeding, it is also preferable to add an adjustment function for adjusting the gap interval, and to change the gap of the transparent member 72 between activated sludge feeding and observation. is there. By varying the gap in the evaluation flow path 74, it is possible to keep the gap between the gaps suitable only during observation, and to widen the gap in other cases to prevent clogging of activated sludge in the flow path. Furthermore, as described above, during observation, the thickness of the flow path is positively changed and the shape of the activated sludge is changed in the thickness direction to investigate the degree of change in the solid phase region in the image before and after the change, and according to the degree of change. It is suitable because it enables quantitative evaluation of the density, degree of aggregation, constituents, etc. of activated sludge. The adjustment function for varying the gap of the evaluation flow path 74 is not particularly limited, and the thickness of the gap in the vertical direction may be changed by an electric signal or manually. Further, by keeping the thickness of the flow path constant and changing the intensity and type of transmitted light, the density, the degree of aggregation, the constituent components, etc. in the thickness direction of the activated sludge may be quantified together with the position information. In particular, it is also preferable to mark microorganisms in advance with a fluorescent dye or the like and use a fluorescence microscope to quantify the density, agglutination degree, etc. of the marked microorganisms together with position information. In the activated sludge collected from the membrane-separated activated sludge tank 3, depending on the stirring condition of the activated sludge, the activated sludge may stay at the bottom of the tank, or there are many components such as oil that easily float near the water surface of the tank. Since there may be a difference in the state of activated sludge, it is preferable to collect activated sludge in an average state in the tank. Therefore, the collection port 53 is movable in the depth direction so that the activated sludge can be collected from any place in the depth direction of the membrane separation activated sludge tank, whereby the average in the depth direction of the membrane separation activated sludge tank It is possible to collect activated sludge. For example, when samples are taken from three different depths and the difference in the total area of the solid phase region in the activated sludge at each depth becomes large, the air diffuser for stirring is partially clogged and the activated sludge is stirred. (N) The air diffuser pipe 8 may be washed, or the rubber resin member constituting the air diffuser pipe may be replaced.
 採取方法は、図示しないが、例えば、3種類の長さの異なる採取用チューブを取り付けた3個の採取口を活性汚泥槽に浸漬させてもよく、または、あらかじめ深さ方向に、3箇所の開閉弁を設けた採取口を有する採取管を活性汚泥槽に浸漬させて、あらかじめ設定した時間に3箇所のうち1箇所の開閉弁が開き、残りは閉じた状態で、汚泥を吸引する方法でもよい。 Although the collection method is not shown, for example, three collection ports to which three types of collection tubes having different lengths are attached may be immersed in the activated sludge tank, or three locations in the depth direction in advance. It is also possible to immerse a sampling pipe with a sampling port provided with an on-off valve in an activated sludge tank, open the on-off valve at one of the three locations at a preset time, and suck the sludge with the rest closed. Good.
 この他、採取口53に伸縮機能および方向調節機能をつけて、先に活性汚泥槽の上部で、目的とする場所まで、水平方向に可動した後、深さ方向に可動して、活性汚泥を採取してもよい。 In addition, the collection port 53 is provided with an expansion / contraction function and a direction adjustment function, and the activated sludge is first moved horizontally to the target location at the upper part of the activated sludge tank and then moved in the depth direction to collect activated sludge. It may be collected.
 採取口53から吸引ポンプ47および活性汚泥可視化装置52に至る活性汚泥の送液ライン46には、一般的なチューブやホースもしくは水道配管に使われる硬質ポリ塩化ビニル(HIVP)やステンレス製の配管などを用いる。チューブやホースの材質は特に限定されず、一般的なシリコン、ナイロン、ポリプロピレン、ポリウレタンなどが好適である。 The activated sludge liquid supply line 46 from the collection port 53 to the suction pump 47 and the activated sludge visualization device 52 includes general tubes, hoses, hard polyvinyl chloride (HIVP) used for water pipes, and stainless steel pipes. Is used. The material of the tube and hose is not particularly limited, and general silicon, nylon, polypropylene, polyurethane and the like are suitable.
 透明部材72で挟む方向は上下方向に評価流路74の面に光が通過するように、評価流路74を挟んで、光源41cと観察および撮像するためのレンズ41aおよびカメラ43とを設け、適正な位置になるよう位相差・明視野切替・光学フィルタ手段41bの位置を調整する。光源41cからの光は、図中に矢印で示すように、位相差・明視野切替・光学フィルタ手段41b、評価流路74を構成する透明部材72、活性汚泥70を透過する。この光をレンズ41aが取り付けられたカメラ43で撮像する。カメラ43が取得した撮像画像は画像処理手段42に送られる。レンズ41aは必要な倍率、視野を確保できれば特に限定されるものではないが、フロックと水相浮遊物のサイズに適した倍率の対物レンズを用いるのが好ましく、本発明では、2倍以上1000倍以下が好ましく、10倍以上100倍以下がより好ましい。位相差・明視野切替・光学フィルタ手段41bは、位相差画像と明視野画像とを切り替えて観察できるように、リングスリット、位相差板、専用対物レンズなどで構成されている。位相差画像を撮像する場合には、リングスリット、位相差板、専用対物レンズなどを通して観察し、明視野画像を撮像する場合には、リングスリット、位相差板、専用対物レンズなどを通さずに観察する。位相差・明視野切替・光学フィルタ手段41bは、電気信号によって切り替えを制御しても、観察者が任意のタイミングで手動により切り替えても良い。さらに、図示はしないが、評価流路において光を通過可能な面を上下左右複数方向に設け、通過させる光を複数方向からあててもよく、カメラ43で複数方向から撮像できる態様でもよい。評価流路を他方向から撮像しやすくするため、観察用治具自体もしくは評価流路を回転可能な構造にしてもかまわない。 A light source 41c, a lens 41a for observing and imaging, and a camera 43 are provided with the evaluation flow path 74 sandwiched so that light passes through the surface of the evaluation flow path 74 in the vertical direction sandwiched between the transparent members 72. The phase difference, bright field switching, and the position of the optical filter means 41b are adjusted so as to be in an appropriate position. As shown by the arrows in the figure, the light from the light source 41c passes through the phase difference / bright field switching / optical filter means 41b, the transparent member 72 constituting the evaluation flow path 74, and the activated sludge 70. This light is imaged by the camera 43 to which the lens 41a is attached. The captured image acquired by the camera 43 is sent to the image processing means 42. The lens 41a is not particularly limited as long as the required magnification and field of view can be secured, but it is preferable to use an objective lens having a magnification suitable for the sizes of flocs and aqueous phase suspended matter, and in the present invention, the magnification is 2 times or more and 1000 times. The following is preferable, and 10 times or more and 100 times or less is more preferable. The phase difference / bright field switching / optical filter means 41b is composed of a ring slit, a retardation plate, a dedicated objective lens, and the like so that the phase difference image and the bright field image can be switched and observed. When capturing a retardation image, observe through a ring slit, a retardation plate, a dedicated objective lens, etc., and when capturing a bright field image, do not pass through a ring slit, a retardation plate, a dedicated objective lens, etc. Observe. The phase difference / bright field switching / optical filter means 41b may be controlled by an electric signal, or may be manually switched by the observer at an arbitrary timing. Further, although not shown, a surface through which light can pass in the evaluation flow path may be provided in a plurality of directions in the vertical and horizontal directions, and the light to be passed may be applied from a plurality of directions, or the camera 43 may capture images from a plurality of directions. In order to facilitate imaging of the evaluation flow path from another direction, the observation jig itself or the evaluation flow path may have a rotatable structure.
 活性汚泥には、散気管8による気体や生物処理で発生する気泡など、気体成分が多分に含まれており、気体を含んだ状態で活性汚泥を光学的手段41およびカメラ43で撮像し、画像処理手段42で画像処理すると、正確な処理ができないことがある。そこで活性汚泥を光学的手段41に送液する送液ライン46に脱気器具45を設置し、活性汚泥の気体成分を除去することで、正確な処理が可能となる。 The activated sludge contains a large amount of gas components such as gas generated by the air diffuser 8 and bubbles generated by biological treatment. The activated sludge is imaged by the optical means 41 and the camera 43 in the state of containing the gas. When image processing is performed by the processing means 42, accurate processing may not be possible. Therefore, by installing the degassing device 45 in the liquid feeding line 46 that feeds the activated sludge to the optical means 41 and removing the gas component of the activated sludge, accurate treatment becomes possible.
 脱気器具45は、一般的に気体を排出できる機構であれば、ボール弁、ニードル弁などいずれの器具でも構わないが、効率的に排気を可能とするため、送液ライン46の上部に取り付けることが好ましい。 The degassing device 45 may be any device such as a ball valve or a needle valve as long as it is a mechanism capable of discharging gas in general, but it is attached to the upper part of the liquid feeding line 46 in order to enable efficient exhaust. Is preferable.
 本実施形態は膜分離活性汚泥槽から採取した活性汚泥を光学的手段41およびカメラ43からなる撮像手段で撮像し、画像処理手段42で画像処理を行い、その画像処理結果として算出される膜ろ過性パラメータまたは膜ろ過性パラメータを用いて行った膜ろ過予測結果が、あらかじめ設定した管理基準範囲を逸脱した場合に異常と判定する判定手段48を有している。 In the present embodiment, the activated sludge collected from the membrane separation activated sludge tank is imaged by an imaging means including an optical means 41 and a camera 43, image processing is performed by the image processing means 42, and the membrane filtration calculated as the image processing result is performed. It has a determination means 48 for determining that an abnormality occurs when the membrane filtration prediction result performed using the sex parameter or the membrane filtration property parameter deviates from a preset control reference range.
 管理基準範囲の逸脱有無の判定は、過去の実績および予備検討に基づく知見を元にあらかじめ作成した判定式に基づき、カメラの制御ソフトに判定条件を搭載しても良いし、上記判定式を搭載したパソコンなどに画像処理結果を取り込み判定しても良い。これらはいずれも異常警報を出力する警報出力手段49に接続され、判定結果があらかじめ設定した管理基準範囲を逸脱した場合に警報を出力する。モニターを設けて、判定結果に応じて、撮像した画像や画像処理条件、判定結果や警報内容を、モニターに表示してもよく、判定結果に対応した前記(A)~(N)の廃水処理条件制御方法をも表示すると、より好適である。 Judgment as to whether or not there is a deviation from the control standard range may be made by incorporating judgment conditions in the control software of the camera based on a judgment formula created in advance based on past achievements and knowledge based on preliminary studies, or by incorporating the above judgment formula. The image processing result may be imported into a personal computer or the like for determination. All of these are connected to the alarm output means 49 that outputs an abnormality alarm, and outputs an alarm when the determination result deviates from the preset control reference range. A monitor may be provided to display the captured image, image processing conditions, judgment result and alarm content on the monitor according to the judgment result, and the wastewater treatments (A) to (N) corresponding to the judgment result may be displayed. It is more preferable to display the condition control method as well.
 本実施形態における評価頻度は、特に限定されるものではなく、膜分離活性汚泥槽が安定に運転されている場合には、例えば1日1回1時間程度評価するものとし、判定結果に応じて制御手段50により前記(A)~(N)の廃水処理条件制御を行った後は、活性汚泥の状態が安定したことを確認できるまで、連続的に実施することが好適である。 The evaluation frequency in the present embodiment is not particularly limited, and when the membrane separation activated sludge tank is operated stably, for example, it is evaluated once a day for about 1 hour, depending on the determination result. After the wastewater treatment conditions of (A) to (N) are controlled by the control means 50, it is preferable to carry out the control continuously until it can be confirmed that the state of the activated sludge is stable.
 ここで、評価としては、膜分離活性汚泥槽から汚泥を採取し、撮像し、汚泥を排出し、画像処理し、膜ろ過性パラメータを算出するまでを1セットとして、これを30セット程度行うことが例示される。評価は、膜分離活性汚泥槽を運転しながら実施する。 Here, as an evaluation, sludge is collected from the membrane separation activated sludge tank, imaged, sludge is discharged, image processing is performed, and the process of calculating the membrane filtration parameter is set as one set, and about 30 sets are performed. Is exemplified. The evaluation is carried out while operating the membrane separation activated sludge tank.
 定期的に活性汚泥の状態変化の度合いを観察することで、より精度高く、また早期に、膜分離活性汚泥槽における活性汚泥の状態変化を捉え、異常有無の判定が可能となり、膜のろ過圧力上昇が起きる前に、活性汚泥の状態を改善するための各種廃水処理条件の制御が実施可能である。 By observing the degree of change in the state of activated sludge on a regular basis, it is possible to detect the change in the state of activated sludge in the membrane-separated activated sludge tank at an early stage and determine the presence or absence of abnormalities. It is possible to control various wastewater treatment conditions to improve the condition of activated sludge before the rise occurs.
 本実施形態において、判定結果に応じて制御手段50により前記(A)~(N)の廃水処理条件を制御するための各種制御手段を機能させるための廃水処理システム管理プログラムとしてもよく、もしくはコンピュータで読み取り可能な記録媒体として、廃水処理システムに組み込んでもよい。これにより、膜分離活性汚泥槽から採取した活性汚泥を光学的手段で撮像および画像処理を行い、膜ろ過性や運転可能日数を判定し、判定結果が、あらかじめ決めた管理基準を逸脱する場合には、警報が表示され、前記(A)~(N)の各種廃水処理条件の制御を自動的に行うことが好適である。 In the present embodiment, it may be a wastewater treatment system management program for making various control means for controlling the wastewater treatment conditions (A) to (N) by the control means 50 according to the determination result, or a computer. It may be incorporated into a wastewater treatment system as a recording medium that can be read by. As a result, the activated sludge collected from the membrane separation activated sludge tank is imaged and image-processed by optical means to determine the membrane filterability and the number of operating days, and when the determination result deviates from the predetermined management standard. It is preferable that an alarm is displayed and the various wastewater treatment conditions (A) to (N) are automatically controlled.
 本実施形態の活性汚泥可視化装置52で得られる活性汚泥撮像画像、画像処理結果は、通信機器54を介して、遠方監視サーバと接続することで、遠隔地においても活性汚泥を監視し、判定し、前記(A)~(N)の各種廃水処理条件を制御することが可能である。廃水処理システムに通常設置されている、プログラムに従って逐次制御を行う制御装置であるPLC(Programmable logic controller)やシステムを構成する各機器に制御装置があり、相互に通信し監視し合う分散制御システムDCS(distributed control system)などの制御管理システムと一緒に設置し、制御管理システムから遠方監視装置を用いて、運転データをインターネット経由で取り出し、任意の場所に設置されるクラウドサーバーに設置してもよい。 The activated sludge image captured by the activated sludge visualization device 52 of the present embodiment and the image processing result are monitored and determined even at a remote location by connecting to a remote monitoring server via the communication device 54. , It is possible to control various wastewater treatment conditions (A) to (N). PLC (Programmable Logic Controller), which is a control device that performs sequential control according to a program, which is usually installed in a wastewater treatment system, and DCS, a distributed control system that communicates with each other and monitors each other, have control devices in each device that composes the system. It may be installed together with a control management system such as (distributed control system), and operation data may be retrieved from the control management system via a remote monitoring device and installed on a cloud server installed at an arbitrary location. ..
 これにより、現地に作業員が行って、活性汚泥の状態を確認する必要がなく、遠隔地から膜分離活性汚泥プロセスおよびその上流の処理プロセスの運転条件を制御し、ろ過圧力上昇やろ過水質悪化などの致命的なトラブルが発生する前に、改善策を実施することが可能である。ここでいう遠隔地とは、プラント内で別の建物にある中央管理室などでもよく、地域もしくは国に1つの集中管理センターのいずれでもよい。 As a result, it is not necessary for workers to go to the site to check the state of activated sludge, and the operating conditions of the membrane separation activated sludge process and its upstream treatment process can be controlled from a remote location, increasing the filtration pressure and deteriorating the quality of filtered water. It is possible to implement improvement measures before a fatal trouble such as the above occurs. The remote location referred to here may be a central control room or the like in another building in the plant, or may be either a centralized control center in a region or a country.
 本発明は、活性汚泥の状態悪化による膜のろ過圧力上昇を最低限に抑えて、長期安定運転を実現するためのものであり、特に限定されるものではない。 The present invention is intended to minimize an increase in the filtration pressure of the membrane due to deterioration of the state of activated sludge and to realize long-term stable operation, and is not particularly limited.
 本出願は、2019年4月19日出願の日本特許出願(特願2019-079914)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on April 19, 2019 (Japanese Patent Application No. 2019-079914), the contents of which are incorporated herein by reference.
1:廃水(被処理水)
2:浸漬型膜分離ユニット
2a:平膜エレメント
2b:平膜分離機能層
2c:平膜基材
2d:フレーム
3:膜分離活性汚泥槽
4:ろ過水槽
5:ろ過水
6:原水供給ポンプ
7:エアーポンプ(空気供給装置)
8:散気管
8a:気泡 
9:吸引ポンプ
10:活性汚泥引き抜きポンプ
11:引き抜き活性汚泥(余剰活性汚泥)
12:栄養塩添加槽
13:栄養塩添加ポンプ
14:薬品添加槽
15:薬品添加ポンプ
16:洗浄薬品添加槽
17:洗浄薬品添加ポンプ
18a:栄養塩添加流路切り替えバルブ
18b:栄養塩添加流路切り替えバルブ
19a:洗浄薬品流路切り替えバルブ
19b:洗浄薬品流路切り替えバルブ
20:洗浄薬品排出バルブ
21:予備槽
22:予備槽排水
23:予備槽送液ポンプ
24:予備槽排水ポンプ
25:廃水(被処理水)流路切り替えバルブ
41:光学的手段
41a:レンズ
41b:位相差・明視野切替・光学フィルタ手段
41c:光源
42:画像処理手段
43:カメラ
44:観察用治具
45:脱気器具
46:送液ライン
47:吸引ポンプ
48:判定手段(判定部)
49:警報出力手段(警報出力部)
50:制御手段
51:活性汚泥可視化制御部
52:活性汚泥可視化装置
53:採取口
54:通信機器
61:固体相領域
62:水相領域(非固体相領域)
63:水相浮遊物(一定面積以下の固体相)
70:活性汚泥
71:架台
72:透明部材
73:活性汚泥搬送流路
74:評価流路
75:送液手段
1: Wastewater (water to be treated)
2: Immersion type membrane separation unit 2a: Flat membrane element 2b: Flat membrane separation functional layer 2c: Flat membrane base material 2d: Frame 3: Membrane separation active sludge tank 4: Filtered water tank 5: Filtered water 6: Raw water supply pump 7: Air pump (air supply device)
8: Air diffuser 8a: Bubbles
9: Suction pump 10: Activated sludge extraction pump 11: Extraction activated sludge (surplus activated sludge)
12: Nutrient addition tank 13: Nutrient addition pump 14: Chemical addition tank 15: Chemical addition pump 16: Cleaning chemical addition tank 17: Cleaning chemical addition pump 18a: Nutrient addition flow path switching valve 18b: Nutrient addition flow path Switching valve 19a: Cleaning chemical flow path switching valve 19b: Cleaning chemical flow path switching valve 20: Cleaning chemical discharge valve 21: Spare tank 22: Spare tank drainage 23: Spare tank liquid feed pump 24: Spare tank drainage pump 25: Waste water ( Water to be treated) Flow path switching valve 41: Optical means 41a: Lens 41b: Phase difference / bright field switching / optical filter means 41c: Light source 42: Image processing means 43: Camera 44: Observation jig 45: Degassing device 46: Liquid feeding line 47: Suction pump 48: Judgment means (judgment unit)
49: Alarm output means (alarm output unit)
50: Control means 51: Activated sludge visualization control unit 52: Activated sludge visualization device 53: Collection port 54: Communication device 61: Solid phase region 62: Aqueous phase region (non-solid phase region)
63: Aqueous suspended matter (solid phase with a certain area or less)
70: Activated sludge 71: Stand 72: Transparent member 73: Activated sludge transport flow path 74: Evaluation flow path 75: Liquid feeding means

Claims (17)

  1.  分離膜を用いて、原水を処理水と活性汚泥とに分離する膜分離活性汚泥法において、
     活性汚泥を光学的手段で撮像して、汚泥画像を得る汚泥撮像工程と、
     前記汚泥画像を処理して、汚泥画像情報を得る汚泥画像処理工程と、
     前記汚泥画像情報に基づき、膜ろ過性パラメータを算出するパラメータ算出工程とを備えることを特徴とするパラメータ算出方法。
    In the membrane separation activated sludge method, which separates raw water into treated water and activated sludge using a separation membrane,
    A sludge imaging process in which activated sludge is imaged by optical means to obtain a sludge image,
    A sludge image processing step of processing the sludge image to obtain sludge image information,
    A parameter calculation method comprising a parameter calculation step of calculating a membrane filterability parameter based on the sludge image information.
  2.  前記膜ろ過性パラメータが、ケーク付着速度、ケーク剥離速度、ケーク抵抗、非剥離ケーク形成速度、非剥離ケーク抵抗、分離膜細孔の閉塞の進行速度、分離膜細孔の閉塞による抵抗の何れかを算出するのに関わるパラメータであることを特徴とする請求項1に記載のパラメータ算出方法。 The membrane filtration parameter is any one of the cake adhesion rate, the cake peeling rate, the cake resistance, the non-peeling cake formation rate, the non-peeling cake resistance, the progress rate of the closure of the separation membrane pores, and the resistance due to the closure of the separation membrane pores. The parameter calculation method according to claim 1, wherein the parameters are related to the calculation.
  3.  前記汚泥画像情報が、固体相領域と水相領域とが区別された画像情報である、請求項1または2に記載のパラメータ算出方法。 The parameter calculation method according to claim 1 or 2, wherein the sludge image information is image information in which a solid phase region and an aqueous phase region are distinguished.
  4.  前記膜ろ過性パラメータが、下記(a)~(f)のいずれかの条件で算出されることを特徴とする請求項3に記載のパラメータ算出方法。
    (a)前記固体相領域について求められる画像情報要素から、前記膜ろ過性パラメータを算出
    (b)前記(a)で算出された、複数の膜ろ過性パラメータの組み合わせとして算出
    (c)前記水相領域について求められる画像情報要素から、前記膜ろ過性パラメータを算出
    (d)前記(c)で算出された、複数の前記膜ろ過性パラメータの組み合わせとして算出
    (e)固体相領域および水相領域について求められる複数の画像情報要素から、前記膜ろ過性パラメータを算出
    (f)前記(a)~(e)で算出された、複数の前記膜ろ過性パラメータの組み合わせとして算出
    The parameter calculation method according to claim 3, wherein the membrane filterability parameter is calculated under any of the following conditions (a) to (f).
    (A) The membrane filterability parameter is calculated from the image information element obtained for the solid phase region (b) Calculated as a combination of a plurality of membrane filterability parameters calculated in the above (a) (c) The aqueous phase The membrane filterability parameter is calculated from the image information element obtained for the region (d) Calculated as a combination of the plurality of the membrane filterability parameters calculated in the above (c) (e) About the solid phase region and the aqueous phase region. The membrane filterability parameter is calculated from a plurality of required image information elements (f) Calculated as a combination of the plurality of membrane filterability parameters calculated in the above (a) to (e).
  5.  前記画像情報要素が、前記固体相領域の面積、前記固体相領域の周囲長、前記水相領域の面積、前記水相領域の周囲長、前記固体相領域間の距離、前記固体相領域間の個数、および、前記固体相領域間の輝度からなる群から選ばれる要素についての、合計値、最大値、最小値、平均値、中央値および偏差値の少なくともいずれかであることを特徴とする請求項4に記載のパラメータ算出方法。 The image information element includes the area of the solid phase region, the peripheral length of the solid phase region, the area of the aqueous phase region, the peripheral length of the aqueous phase region, the distance between the solid phase regions, and the space between the solid phase regions. A claim characterized by being at least one of a total value, a maximum value, a minimum value, an average value, a median value, and a deviation value for an element selected from the group consisting of the number and the brightness between the solid phase regions. Item 4. The parameter calculation method according to Item 4.
  6.  前記膜ろ過性パラメータのうちケーク抵抗、分離膜細孔の閉塞に関わるパラメータを、前記画像情報要素における単位視野あたりの水相領域に囲まれた一定面積以下のフロック領域の総面積を用いて算出することを特徴とする請求項5記載のパラメータ算出方法。 Of the membrane filtration parameters, parameters related to cake resistance and closure of separation membrane pores are calculated using the total area of the floc region below a certain area surrounded by the aqueous phase region per unit field of view in the image information element. The parameter calculation method according to claim 5, wherein the parameter calculation method is performed.
  7. 前記汚泥画像が撮像倍率2倍以上1000倍以下で撮像された画像であることを特徴とする請求項1~6のいずれか1項に記載のパラメータ算出方法。 The parameter calculation method according to any one of claims 1 to 6, wherein the sludge image is an image captured at an imaging magnification of 2 times or more and 1000 times or less.
  8. 分離膜を用いて、原水を処理水と活性汚泥とに分離する、膜分離活性汚泥法において、
     活性汚泥を光学的手段で撮像して、汚泥画像を得る汚泥撮像工程と、
     前記汚泥画像を処理して、汚泥画像情報を得る汚泥画像処理工程と、
     前記汚泥画像情報に基づき、膜ろ過性パラメータを算出するパラメータ算出工程と、
     前記膜ろ過性パラメータに基づき膜ろ過抵抗の経時変化または膜間差圧の経時変化を予測する経時変化予測工程とを備えることを特徴とする分離膜特性の予測方法。
    In the membrane separation activated sludge method, which separates raw water into treated water and activated sludge using a separation membrane,
    A sludge imaging process in which activated sludge is imaged by optical means to obtain a sludge image,
    A sludge image processing step of processing the sludge image to obtain sludge image information,
    A parameter calculation step for calculating the membrane filtration parameter based on the sludge image information, and
    A method for predicting separation membrane characteristics, which comprises a time-dependent change prediction step for predicting a time-dependent change in membrane filtration resistance or a time-dependent change in intermembrane differential pressure based on the membrane filtration property parameter.
  9. 前記膜ろ過性パラメータがあらかじめ決めた基準範囲またはあらかじめ決めた変化率の範囲を逸脱した場合に前記経時変化を予測することを特徴とする請求項8に記載の分離膜特性の予測方法。 The method for predicting separation membrane characteristics according to claim 8, wherein the change with time is predicted when the membrane filterability parameter deviates from a predetermined reference range or a predetermined rate of change.
  10.  分離膜を用いて、原水を処理水と活性汚泥とに分離する膜分離活性汚泥法において、
     活性汚泥を光学的手段で撮像して、汚泥画像を得る汚泥撮像工程と、
     前記汚泥画像を処理して、汚泥画像情報を得る汚泥画像処理工程と、
     前記汚泥画像情報に基づき、膜ろ過性パラメータを算出するパラメータ算出工程と、
     前記膜ろ過性パラメータに基づき膜ろ過抵抗の経時変化または膜間差圧の経時変化を予測する経時変化予測工程とを備え、前記膜ろ過性パラメータまたは前記経時変化の予測結果から運転条件を制御することを特徴とする分離膜の運転方法。
    In the membrane separation activated sludge method, which separates raw water into treated water and activated sludge using a separation membrane,
    A sludge imaging process in which activated sludge is imaged by optical means to obtain a sludge image,
    A sludge image processing step of processing the sludge image to obtain sludge image information,
    A parameter calculation step for calculating the membrane filtration parameter based on the sludge image information, and
    A time-dependent change prediction step for predicting a time-dependent change in membrane filtration resistance or a time-dependent difference pressure based on the membrane filtration parameter is provided, and operating conditions are controlled from the membrane filtration parameter or the prediction result of the time-dependent change. A method of operating a separation membrane, which is characterized in that.
  11.  前記膜ろ過性パラメータまたは前記膜ろ過抵抗の経時変化または膜間差圧の経時変化の予測結果が、あらかじめ決めた基準範囲またはあらかじめ決めた変化率の範囲を逸脱した場合に運転条件を制御することを特徴とする請求項10に記載の分離膜の運転方法。 Controlling operating conditions when the prediction result of the membrane filtration parameter or the change over time of the membrane filtration resistance or the change over time of the intermembrane differential pressure deviates from a predetermined reference range or a predetermined rate of change. 10. The method of operating a separation membrane according to claim 10.
  12.  前記経時変化の予測結果から、前記膜ろ過抵抗または前記膜間差圧があらかじめ決めた基準範囲を逸脱する予測日を算出し、前記予測日までの日数があらかじめ決めた基準範囲を逸脱した場合に運転条件を制御することを特徴とする請求項11に記載の分離膜の運転方法。 When the predicted date when the membrane filtration resistance or the intermembrane differential pressure deviates from a predetermined reference range is calculated from the prediction result of the change with time, and the number of days until the predicted date deviates from the predetermined reference range. The method for operating a separation membrane according to claim 11, wherein the operating conditions are controlled.
  13.  前記予測日までの日数があらかじめ決めた基準範囲を逸脱した場合に、分離膜に供給される空気の風量を制御することを特徴とする請求項12記載の分離膜の運転方法。 The method for operating a separation membrane according to claim 12, wherein the air volume of air supplied to the separation membrane is controlled when the number of days until the predicted date deviates from a predetermined reference range.
  14.  分離膜を用いて、原水を処理水と活性汚泥とに分離する水処理装置であって、
     活性汚泥を光学的手段で撮像して、汚泥画像を得る汚泥撮像手段と、
     前記画像を処理して、汚泥画像情報を得る汚泥画像処理手段と、
     前記画像情報に基づき、膜ろ過性パラメータを算出するパラメータ算出手段と、
     前記膜ろ過性パラメータに基づき、膜ろ過抵抗の経時変化または膜間差圧の経時変化を予測する経時変化予測手段とを備えることを特徴とする水処理装置。
    A water treatment device that separates raw water into treated water and activated sludge using a separation membrane.
    Sludge imaging means for obtaining sludge images by imaging activated sludge with optical means,
    A sludge image processing means for processing the image to obtain sludge image information,
    A parameter calculation means for calculating a membrane filtration parameter based on the image information,
    A water treatment apparatus comprising a time-dependent change predicting means for predicting a time-dependent change in membrane filtration resistance or a time-dependent change in intermembrane differential pressure based on the membrane filtration property parameter.
  15.  分離膜を用いて、原水を処理水と活性汚泥とに分離する膜分離活性汚泥法における分離膜特性を予測するためにコンピュータに、
     活性汚泥を光学的手段で撮像して、汚泥画像を得るステップと、
     前記画像を処理して、汚泥画像情報を得るステップと、
     前記画像情報に基づき、膜ろ過性パラメータを算出するステップと、
     前記膜ろ過性パラメータに基づき、膜ろ過抵抗の経時変化、または、膜間差圧の経時変化を予測するステップを実行させるための分離膜特性の予測プログラム。
    Using a separation membrane, a computer is used to predict the separation membrane characteristics in the membrane separation activated sludge method that separates raw water into treated water and activated sludge.
    Steps to obtain a sludge image by imaging activated sludge by optical means,
    The step of processing the image to obtain sludge image information,
    Steps to calculate membrane filtration parameters based on the image information,
    A separation membrane property prediction program for executing a step of predicting a time-dependent change in membrane filtration resistance or a time-dependent change in intermembrane differential pressure based on the membrane filtration parameter.
  16.  分離膜を用いて、原水を処理水と活性汚泥とに分離する膜分離活性汚泥法における分離膜特性を予測するためにコンピュータに、
     活性汚泥を光学的手段で撮像して、汚泥画像を得るステップと、
     前記画像を処理して、汚泥画像情報を得るステップと、
     前記画像情報に基づき、膜ろ過性パラメータを算出するステップと、
     前記膜ろ過性パラメータに基づき、膜ろ過抵抗の経時変化、または、膜間差圧の経時変化を予測するステップと、
    前記膜ろ過性パラメータまたは前記経時変化の予測結果から運転条件を制御するステップを実行させるための分離膜特性の運転プログラム。
    Using a separation membrane, a computer is used to predict the separation membrane characteristics in the membrane separation activated sludge method that separates raw water into treated water and activated sludge.
    Steps to obtain a sludge image by imaging activated sludge by optical means,
    The step of processing the image to obtain sludge image information,
    Steps to calculate membrane filterability parameters based on the image information,
    A step of predicting a change over time in membrane filtration resistance or a change over time in intermembrane differential pressure based on the membrane filtration parameter.
    An operation program of separation membrane characteristics for executing a step of controlling operating conditions from the membrane filtration parameter or the prediction result of the change with time.
  17.  請求項15に記載の分離膜特性の予測プログラムまたは請求項16に記載の分離膜の運転プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium that records the separation membrane characteristic prediction program according to claim 15 or the separation membrane operation program according to claim 16.
PCT/JP2020/016973 2019-04-19 2020-04-17 Parameter calculation method, separation film property prediction method, and separation membrange operation method WO2020213737A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020540358A JPWO2020213737A1 (en) 2019-04-19 2020-04-17 Parameter calculation method, separation membrane characteristics prediction method, separation membrane operation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019079914 2019-04-19
JP2019-079914 2019-04-19

Publications (1)

Publication Number Publication Date
WO2020213737A1 true WO2020213737A1 (en) 2020-10-22

Family

ID=72837365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016973 WO2020213737A1 (en) 2019-04-19 2020-04-17 Parameter calculation method, separation film property prediction method, and separation membrange operation method

Country Status (2)

Country Link
JP (1) JPWO2020213737A1 (en)
WO (1) WO2020213737A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477084A (en) * 2021-08-12 2021-10-08 广州高得环保科技股份有限公司 Automatic control method and system for pipeline direct drinking water film filtration
CN114295527A (en) * 2021-12-27 2022-04-08 杭州哲达科技股份有限公司 Monitoring system for monitoring operation of membrane module in real time and analysis method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253786A (en) * 1989-03-28 1990-10-12 Ebara Infilco Co Ltd Method for recognizing active sludge picture
JPH05146791A (en) * 1991-11-26 1993-06-15 Hitachi Ltd Microbe recognizer
WO2009054506A1 (en) * 2007-10-25 2009-04-30 Toray Industries, Inc. Film filtration prediction method, prediction apparatus and film filtration prediction program
US20110060533A1 (en) * 2009-09-09 2011-03-10 ClearCorp Suspended particle characterization system for a water processing facility
WO2017030138A1 (en) * 2015-08-17 2017-02-23 東レ株式会社 Jig for device for evaluating water treatment tank activated sludge condition, and device for evaluating water treatment tank activated sludge condition and condition-evaluating method using same
WO2018181618A1 (en) * 2017-03-28 2018-10-04 東レ株式会社 Effluent treatment method for membrane separation activated sludge, effluent treatment apparatus, and effluent treatment system management program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253786A (en) * 1989-03-28 1990-10-12 Ebara Infilco Co Ltd Method for recognizing active sludge picture
JPH05146791A (en) * 1991-11-26 1993-06-15 Hitachi Ltd Microbe recognizer
WO2009054506A1 (en) * 2007-10-25 2009-04-30 Toray Industries, Inc. Film filtration prediction method, prediction apparatus and film filtration prediction program
US20110060533A1 (en) * 2009-09-09 2011-03-10 ClearCorp Suspended particle characterization system for a water processing facility
WO2017030138A1 (en) * 2015-08-17 2017-02-23 東レ株式会社 Jig for device for evaluating water treatment tank activated sludge condition, and device for evaluating water treatment tank activated sludge condition and condition-evaluating method using same
WO2018181618A1 (en) * 2017-03-28 2018-10-04 東レ株式会社 Effluent treatment method for membrane separation activated sludge, effluent treatment apparatus, and effluent treatment system management program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477084A (en) * 2021-08-12 2021-10-08 广州高得环保科技股份有限公司 Automatic control method and system for pipeline direct drinking water film filtration
CN114295527A (en) * 2021-12-27 2022-04-08 杭州哲达科技股份有限公司 Monitoring system for monitoring operation of membrane module in real time and analysis method
CN114295527B (en) * 2021-12-27 2023-11-21 杭州哲达科技股份有限公司 Monitoring system for monitoring operation of membrane module in real time and analysis method

Also Published As

Publication number Publication date
JPWO2020213737A1 (en) 2021-09-13

Similar Documents

Publication Publication Date Title
US11414331B2 (en) Effluent treatment method for membrane separation activated sludge, effluent treatment apparatus, and effluent treatment system management program
WO2020213737A1 (en) Parameter calculation method, separation film property prediction method, and separation membrange operation method
CA3009259C (en) A method and an apparatus for monitoring and controlling deposit formation
TWI618567B (en) Method of removing contaminants from a process stream or stabilizing a system parameter in the process stream
JP4821950B2 (en) Sludge characterization device
US10960357B2 (en) Method and apparatus for real-time direct membrane monitoring
US20130220002A1 (en) Membrane separation apparatus, membrane separation apparatus operation method, and evaluation method using the membrane separation apparatus
KR101006901B1 (en) Membrane Fouling Pollution Index Measurement Apparatus
JPWO2008047926A1 (en) Filtrated water monitoring device and filtered water monitoring system
Koo et al. Use and development of fouling index in predicting membrane fouling
WO2017030138A1 (en) Jig for device for evaluating water treatment tank activated sludge condition, and device for evaluating water treatment tank activated sludge condition and condition-evaluating method using same
US20140284267A1 (en) Abrasion-proof filtration membrane and method of producing said membrane
JPH0381645A (en) Method, device and facility for treating suspended material in liquid
KR20160057595A (en) Maintenance Cleaning Method of Membrane Precess by TMP and Variation Coefficient
JP2022032528A (en) Fine particle separation method
JP2009195893A (en) Operation method of water purification membrane filtration system
JP2005211891A (en) Wastewater treatment method and wastewater treatment system
KR102105968B1 (en) Deposit quantification device and deposit quantification method using same
WO2023127818A1 (en) Method for operating separation membrane, separation membrane device, and program for determining operating conditions of separation membrane
JP2015231607A (en) Remote management control system for membrane filtration apparatus
WO2022201978A1 (en) Filter evaluating device, purifying device, and filter evaluating method
KR102576339B1 (en) Apparatus for measuring line parameter
JP2018083162A (en) Operation method of pressurized floatation separator, and pressurized floatation separator
JP2009201462A (en) Method and apparatus for recovering microorganism
JP2021192601A (en) Microbial measurement system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020540358

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791129

Country of ref document: EP

Kind code of ref document: A1