WO2020213391A1 - Polyester resin composition - Google Patents

Polyester resin composition Download PDF

Info

Publication number
WO2020213391A1
WO2020213391A1 PCT/JP2020/014846 JP2020014846W WO2020213391A1 WO 2020213391 A1 WO2020213391 A1 WO 2020213391A1 JP 2020014846 W JP2020014846 W JP 2020014846W WO 2020213391 A1 WO2020213391 A1 WO 2020213391A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
diisocyanate
polyester
resin composition
polyester resin
Prior art date
Application number
PCT/JP2020/014846
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 佐々木
Original Assignee
日清紡ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ケミカル株式会社 filed Critical 日清紡ケミカル株式会社
Publication of WO2020213391A1 publication Critical patent/WO2020213391A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polyester resin composition.
  • Polyester resin is widely used for films, sheets, etc. because it has excellent transparency, mechanical strength, melt stability, solvent resistance, and recyclability. In recent years, it has been used as a housing for home appliances and OA equipment. It is also used on the body. However, since polyester resins have the property of being easily hydrolyzed as compared with conventional general-purpose resins, a method of adding a carbodiimide compound has been studied for the purpose of improving hydrolysis resistance. There is.
  • the carboxy group in the polyester resin and the carboxy group generated by the decomposition of the ester group when kneading at a high temperature react with the blended carbodiimide compound to mold it. It is possible to suppress a decrease in the initial performance (for example, mechanical strength) of an object. In addition, the durability of the molded product is improved by leaving the carbodiimide compound in the molded product.
  • a hydrolysis resistant stabilizer for polyester resins those containing, for example, a specific aliphatic or aromatic carbodiimide compound as a main component are known (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 the polyester resin composition to which such a specific aliphatic or aromatic carbodiimide compound is added has improved hydrolysis resistance, the carbodiimide compound is decomposed by heating during melt kneading and molding, and the isocyanate gas is decomposed. There was a problem that the work environment was deteriorated.
  • an object of the present invention is to provide a polyester resin composition having excellent hydrolysis resistance and less generation of isocyanate gas due to heating during melt kneading and molding.
  • the present inventors have contained a polyester resin (A) and a specific carbodiimide compound (B), and the content of the carbodiimide compound (B) is the polyester resin (A) and the carbodiimide. Since the total amount of the compound (B) is 0.1 to 10 parts by mass with respect to 100 parts by mass, the polyester type has excellent hydrolysis resistance and generates less isocyanate gas due to heating during melt kneading and molding. They have found that a resin composition can be obtained, and have completed the present invention.
  • the gist structure of the present invention is as follows.
  • R 1 and R 4 represent residues excluding the functional group of an organic compound having one functional group capable of reacting with an isocyanate group, and R 1 and R 4 are the same but different.
  • R 2 represents a divalent residue obtained by removing two isocyanate groups from the diisocyanate compound, and the diisocyanate compound has a benzene-based aromatic ring that is directly bonded to the isocyanate group, and the benzene-based aromatic ring is used.
  • the structure has no substituent or only one substituent at both ortho positions of the ring at the position where it is bonded to the isocyanate group.
  • R 3 is a divalent residue obtained by removing two hydroxyl groups from the diol compound. Representing a group.
  • X 1 and X 2 represent a group formed by the reaction of the functional group of the organic compound with the isocyanate group of the diisocyanate compound, and X 1 and X 2 may be the same or different.
  • n and m represent numbers from 1 to 20.
  • the diisocyanate compound contains a mixture of 2,4'-diphenylmethane diisocyanate and 4,4'-diphenylmethane diisocyanate.
  • the ratio of the 2,4'-diphenylmethane diisocyanate is 30 to 70 mol%
  • the ratio of the 4,4'-diphenylmethane diisocyanate is 30 to 70 mol%.
  • polyester-based resin composition according to any one of the above [1] to [5], wherein the diol compound is one or more selected from a polyether polyol, a polyester polyol, a polycarbonate polyol, and an alkane diol. object.
  • the polyester resin (A) is at least one selected from polyethylene terephthalate, polybutylene terephthalate, polybutylene succinate, polylactic acid, and polyhydroxyalkanoic acid.
  • the polyester-based resin composition according to any one of the items.
  • polyester-based resin composition having excellent hydrolysis resistance and less generation of isocyanate gas due to heating during melt-kneading and molding.
  • polyester resin composition according to the present invention An embodiment of the polyester resin composition according to the present invention will be described in detail below.
  • the polyester-based resin composition of the present invention contains a polyester-based resin (A) and a carbodiimide compound (B) represented by the following general formula (1), and the content of the carbodiimide compound (B) is polyester-based.
  • the total amount of the resin (A) and the carbodiimide compound (B) is 0.1 to 10 parts by mass with respect to 100 parts by mass.
  • R 1 and R 4 represent residues excluding the functional group of an organic compound having one functional group capable of reacting with an isocyanate group, and R 1 and R 4 are the same but different. You may.
  • R 2 represents a divalent residue obtained by removing two isocyanate groups from the diisocyanate compound, and the diisocyanate compound has a benzene-based aromatic ring directly bonded to the isocyanate group, and the isocyanate of the benzene-based aromatic ring.
  • the structure has no substituent or has only one substituent at both ortho positions at the position where it is bonded to the group.
  • R 3 represents a divalent residue obtained by removing two hydroxyl groups from the diol compound.
  • X 1 and X 2 represent groups formed by the reaction of the functional group of the organic compound with the isocyanate group of the diisocyanate compound, and X 1 and X 2 may be the same or different.
  • n and m represent numbers from 1 to 20.
  • Such a polyester-based resin composition has excellent hydrolysis resistance, and generates less isocyanate gas due to heating during melt-kneading and molding. The reason is not clear, but it can be considered as follows.
  • the polyester-based resin composition of the present invention has higher reactivity than the conventional aliphatic carbodiimide by using the carbodiimide compound (B) which is a specific aromatic carbodiimide, and has excellent hydrolysis resistance even at a low carbodiimide group concentration. It is thought that it can exert.
  • the carbodiimide compound (B) has a benzene-based aromatic ring that directly bonds with an isocyanate group, and does not have a substituent at both ortho positions at positions that bond with the isocyanate group of the benzene-based aromatic ring, or 1 because having a divalent residue R 2 derived from a diisocyanate compound having only one substituent, be a carbodiimide compound (B) is decomposed in the heating process at the time of melt kneading and molding, degradation resulting reaction of the isocyanate It is considered that the isocyanate gas is easily taken into the polyester resin (A) and is not easily released into the environment as an isocyanate gas.
  • polyester-based resin composition of the present invention will be described in detail for each component.
  • polyester resin (A) any resin having an ester group can be used without particular limitation.
  • the polyester resin (A) can be obtained, for example, by a polycondensation reaction of a dibasic acid or an acid anhydride thereof or a dibasic acid ester with a dihydric alcohol, a polycondensation reaction of a hydroxycarboxylic acid or a cyclic derivative thereof, or ring-opening polymerization. It is a resin having an ester bond in the main chain.
  • dibasic acid or its acid anhydride examples include phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, and the like.
  • examples thereof include tetrabrom phthalic anhydride, tetrachlorophthalic anhydride, hetic anhydride, endomethylenetetrahydrophthalic anhydride, maleic anhydride, fumaric acid and itaconic acid.
  • dibasic acid ester examples include dimethyl terephthalate and dimethyl naphthalenedicarboxylic acid.
  • dihydric alcohol examples include ethylene glycol, propylene glycol, 1,3-butylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, and triethylene glycol.
  • diethylene glycol examples include hydride bisphenol A, bisphenol A2-hydroxypropyl ether, cyclohexanedimethanol and the like.
  • polyalkylene oxide glycols such as polyethylene oxide glycol, polypropylene oxide glycol, polytetramethylene oxide glycol, and polyhexamethylene oxide glycol, which are aliphatic polyethers having OH groups at both ends, can also be used.
  • Examples of the hydroxycarboxylic acid include lactic acid and hydroxybutyric acid.
  • Examples of the cyclic derivative of hydroxycarboxylic acid include lactide and lactone, examples of lactide include cyclic dimer of lactic acid, and examples of lactone include ⁇ -propiolactone and ⁇ -valerolactone. Can be mentioned.
  • polyester resin (A) examples include polyethylene terephthalate (hereinafter, also referred to as “PET”), polybutylene terephthalate (hereinafter, also referred to as “PBT”), and polybutylene succinate (hereinafter, also referred to as “PBS”).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PBS polybutylene succinate
  • PBSA Polybutylene succinate adipate
  • PBAT polybutylene adipate terephthalate
  • polyethylene naphthalate polyarylate
  • ethylene terephthalate-isophthalate copolymer polylactic acid.
  • PHA polyhydroxyalkanoic acids
  • polyhydroxybutyric acid one or more selected from polyhydroxyalkanoic acids such as polyhydroxybutyric acid
  • PHA polyhydroxyalkanoic acids
  • polyethylene terephthalate, polybutylene terephthalate, polybutylene succinate, polylactic acid, and polyhydroxyalkanoic acid more preferably polyethylene terephthalate and polybutylene, from the viewpoint of economy and processability.
  • terephthalate one or more selected from terephthalate.
  • the polyester-based resin composition of the present invention contains a polyester-based resin (A) and a carbodiimide compound (B), and the carbodiimide compound (B) has a specific structure, so that the polyester-based resin (A) can be used.
  • the affinity is improved and it can be more uniformly dispersed in the polyester resin (A).
  • the content of the polyester resin (A) in the polyester resin composition of the present invention is preferably 80 to 99.9% by mass, more preferably 85 to 99.8% by mass, and further preferably 90 to 99.7% by mass. It is by mass, more preferably 95 to 99.5% by mass.
  • the carbodiimide compound (B) used in the present invention is represented by the following general formula (1).
  • R 1 and R 4 represent residues excluding the functional group of an organic compound having one functional group capable of reacting with an isocyanate group, and R 1 and R 4 are the same but different. You may.
  • R 2 represents a divalent residue obtained by removing two isocyanate groups from the diisocyanate compound, and the diisocyanate compound has a benzene-based aromatic ring directly bonded to the isocyanate group, and the isocyanate of the benzene-based aromatic ring.
  • the structure has no substituent or has only one substituent at both ortho positions at the position where it is bonded to the group.
  • R 3 represents a divalent residue obtained by removing two hydroxyl groups from the diol compound.
  • X 1 and X 2 represent groups formed by the reaction of the functional group of the organic compound with the isocyanate group of the diisocyanate compound, and X 1 and X 2 may be the same or different.
  • n and m represent numbers from 1 to 20.
  • R 1 and R 4 represent residues excluding the functional group of an organic compound having one functional group capable of reacting with an isocyanate group, and R 1 and R 4 are the same but different. You may.
  • organic compound having one functional group capable of reacting with the isocyanate group (hereinafter, also simply referred to as “organic compound”) is not particularly limited as long as it has one functional group capable of reacting with the isocyanate group, but is reactive. From the viewpoint of the above, it is preferable that the mixture is one or more selected from monoisocyanate, monoalcohol, monoamine, monocarboxylic acid and acid anhydride.
  • monoisocyanate is preferable in that the content ratio of the carbodiimide group in the carbodiimide compound (B) can be increased.
  • the monoisocyanate include lower alkyl isocyanates such as methyl isocyanate, ethyl isocyanate, propyl isocyanate, n-, sec- or ter-butyl isocyanate; alicyclic isocyanates such as cyclohexyl isocyanate; phenyl isocyanate, tolyl isocyanate and dimethylphenyl isocyanate. , 2,6-Diisopropylphenylisocyanate and other aromatic isocyanates.
  • phenylisocyanate and tolylisocyanate are preferable, and phenylisocyanate is more preferable, from the viewpoint of reactivity.
  • phenylisocyanate is particularly reactive and tends to be carbodiimided by itself to become monocarbodiimide. Therefore, from the viewpoint of suppressing the formation of monocarbodiimide, monoisocyanate excluding phenylisocyanate is preferable.
  • the monoalcohol has high reactivity with the isocyanate group, which makes it easy to synthesize the carbodiimide compound (B), and can effectively suppress the generation of isocyanate gas when the carbodiimide compound (B) is decomposed.
  • monoalcohols include aliphatic alcohols, alicyclic alcohols, and polyether monools. Examples of such monoalcohols include methanol, ethanol, isopropyl alcohol, cyclohexanol, 2-ethylhexanol, octanol, dodecyl alcohol, polyethylene glycol monomethyl ether, polypropylene glycol monomethyl ether and the like.
  • isopropyl alcohol 2-ethylhexanol, octanol and dodecyl alcohol are preferable, and isopropyl alcohol is preferable from the viewpoint of excellent handleability of the obtained carbodiimide compound (B) and good processability with the polyester resin (A). Is more preferable.
  • monoamine is preferable in that it has high reactivity with an isocyanate group, facilitates the synthesis of a carbodiimide compound (B), and has excellent compatibility with a polyester resin (A).
  • monoamines include primary and secondary alkylamines. Examples of such monoamines include primary amines such as butylamine and cyclohexylamine; and secondary amines such as diethylamine, dibutylamine and dicyclohexylamine. Of these, butylamine and cyclohexylamine are preferable from the viewpoint of improving processability with the polyester resin (A).
  • the monocarboxylic acid and the acid anhydride have excellent heat resistance of the bond sites (X 1 , X 2 in the above general formula (1)) generated by the reaction with the isocyanate group, and the carbodiimide compound (B). It is preferable in that it can effectively suppress the generation of isocyanate gas when it is decomposed.
  • monocarboxylic acids include formic acid, acetic acid, propionic acid, isovaleric acid, hexanoic acid, octanoic acid, lauric acid, myrstinic acid, palmitic acid, stearic acid, araquinic acid, oleic acid, linoleic acid, linolenic acid, and benzoic acid. Examples include acid.
  • acetic acid, propionic acid and octanoic acid are preferable from the viewpoint of improving processability with the polyester resin (A).
  • the acid anhydride include phthalic anhydride, acetic anhydride, succinic anhydride, maleic anhydride, benzoic anhydride and the like. Of these, phthalic anhydride, acetic anhydride and succinic anhydride are preferable from the viewpoint of improving processability with the polyester resin (A).
  • R 2 represents a divalent residue obtained by removing two isocyanate groups from the diisocyanate compound, and the diisocyanate compound has a benzene-based aromatic ring that is directly bonded to the isocyanate group.
  • the structure has no substituent or only one substituent at both ortho positions of the benzene-based aromatic ring at the position where it is bonded to the isocyanate group.
  • the diisocyanate compound has one or more benzene-based aromatic rings, and the two isocyanate groups are directly bonded to the same or different benzene-based aromatic rings, respectively.
  • the benzene-based aromatic ring to which each isocyanate group is bonded does not have a substituent at both the ortho positions with respect to the bonding position of the isocyanate group. That is, the benzene-based aromatic ring to which each isocyanate group is bonded has a substituent at only one of the ortho positions with respect to the bonding position of the isocyanate group, or both have no substituent.
  • the carbodiimide compound (B) used in the present invention has a benzene-based aromatic ring that is directly bonded to an isocyanate group, and a substituent is placed at both ortho positions of the benzene-based aromatic ring at a position where it is bonded to the isocyanate group. because it has a divalent residue R 2 derived from a diisocyanate compound having no or only one substituent have, as the carbodiimide compound (B) is decomposed by heat during melt kneading and molding, The isocyanate produced is highly reactive and can be effectively suppressed from being released as a gas to the outside of the composition.
  • the isocyanate produced by the decomposition of the carbodiimide compound (B) having the predetermined R 2 has a conventional carbodiimide compound (for example, a benzene-based aromatic ring directly bonded to an isocyanate group, and the benzene-based aromatic ring.
  • a polyester resin because it is more reactive than isocyanates produced by decomposition of diisocyanate compounds (carbodiimide compounds with divalent residues derived from diisocyanate compounds that have substituents at both ortho positions at the positions where they bond with isocyanate groups). It is presumed that it easily reacts with the components in (A) and is easily incorporated into the resin.
  • the molecular weight of the isocyanate produced by decomposition is also relatively large, so that the polyester resin (A) has a higher molecular weight than the low molecular weight compound. It is presumed that it will be more likely to remain.
  • the diisocyanate compound has a benzene-based aromatic ring that is directly bonded to the isocyanate group, and has no substituent or only one substituent at both ortho positions of the position where the benzene-based aromatic ring is bonded to the isocyanate group.
  • tolylene diisocyanate also referred to as toluene diisocyanate; may be abbreviated as “TDI” below
  • trizine diisocyanate also referred to as dimethylbiphenyl diisocyanate, hereinafter.
  • TODI diphenylmethane diisocyanate
  • MDI diphenylmethane diisocyanate
  • NDI naphthalenediocyanate
  • paraphenylenediocyanate (1, 4-Also also referred to as phenylenediisocyanate) and the like.
  • toluene diisocyanate has two types of isomers, 2,4-TDI and 2,6-TDI.
  • 2,4-TDI and 2,6-TDI a mixture of 2,4-TDI and 2,6-TDI is preferable, and specifically 2,4-TDI (80 mol%) and 2,6-TDI (20 mol%). Mixtures of are common.
  • diphenylmethane diisocyanate has three types of isomers, 2,2'-MDI, 2,4'-MDI and 4,4'-MDI.
  • diphenylmethane diisocyanate a simple substance of 4,4'-MDI or a mixture of 2,4'-MDI and 4,4'-MDI is preferable.
  • a mixture of 2,4'-MDI and 4,4'-MDI is more preferable from the viewpoint of suppressing an increase in the melt viscosity of the carbodiimide compound (B) produced.
  • the ratio of 2,4'-MDI is preferably 30 to 70 mol%, and 40 to 65 mol% is preferable. More preferably, it is 50-60 mol%, where the proportion of 4,4'-MDI is the balance of the total mixture (100 mol%) minus the proportion of 2,4'-MDI.
  • the trizine diisocyanate is generally 3,3'-dimethylbiphenyl-4,4'-diisocyanate.
  • the naphthalene diisocyanate is generally 1,5-naphthalene diisocyanate.
  • the diisocyanate compound preferably contains at least one selected from tolylene diisocyanis, trizine diisocyanis, diphenylmethane diisocyanate, naphthalenediocyanis and paraphenylenediisocyanus from the viewpoint of hydrolysis resistance and effective suppression of isocyanate gas generation. More preferably, it contains at least one selected from trizine diisocyanate, diphenylmethane diisocyanate, naphthalenediocyanis and paraphenylenediisocyanate, more preferably diphenylmethane diisocyanate, and a mixture of 2,4'-MDI and 4,4'-MDI. It is even more preferable to include it.
  • the diisocyanate compound contains at least one selected from the group consisting of toluene diisocyanate, trizine diisocyanate, diphenylmethane diisocyanate, naphthalenediocyanisocyanate and paraphenylenediisocyanate
  • 1 is selected from the above group in the whole diisocyanate compound.
  • the ratio (total) of the compounds of the species or more is preferably 80 mol% or more, more preferably 90 mol% or more, further preferably 95 mol% or more, and it is selected from the above group1 It may consist only of compounds of more than one species. Further, from the viewpoint of ease of production control and reduction of production cost, the diisocyanate compound is preferably one selected from the above group.
  • the ratio of 2,4'-MDI is 30 to 30 to 100 mol% as a whole of the diisocyanate compound. It is preferably 70 mol%, and the ratio of 4,4'-MDI is preferably 30 to 70 mol%.
  • the ratio of 2,4'-MDI is 30 mol% or more, the carbodiimide compound (B) is less likely to gel, and storage stability and solubility in a solvent can be improved.
  • the ratio of 2,4'-MDI in the diisocyanate compound is more preferably 40 to 65 mol%, further preferably 50 to 60 mol%, and 4,4'-MDI.
  • the ratio of is more preferably 35 to 60 mol%, still more preferably 40 to 50 mol%.
  • the organic compound is monoisocyanate, monoalcohol, monoamine, excluding phenylisocyanate. It is preferably one or more selected from monocarboxylic acids and acid anhydrides.
  • n is preferably a number of 4 to 20.
  • R 2 is represented by two or more kinds of residues.
  • R 3 represents a divalent residue obtained by removing two hydroxyl groups from the diol compound.
  • the diol compound means a compound having two hydroxyl groups in the molecule.
  • the carbodiimide compound (B) used in the present invention has the residue of the diol compound and the urethane bond adjacent to the carbodiimide group, it is familiar with the polyester resin (A) and more uniformly the polyester resin (A). It is thought that it can be dispersed inside. Therefore, it is considered that the increase in viscosity can be suppressed without causing a local cross-linking reaction in the composition during melt-kneading.
  • diol compound examples include a high molecular compound having two hydroxyl groups in the molecule and a low molecular compound.
  • polymer compound having two hydroxyl groups in the molecule examples include polyether polyol (polyalkylene oxide glycol), polyester polyol, polycarbonate polyol, silicone diol, polyolefin polyol, polyurethane polyol, alkane (21 to carbon atoms) diol and the like. Can be mentioned.
  • a polyether polyol and a polycarbonate polyol are preferable, and a polyether polyol is particularly preferable.
  • Examples of the low molecular weight compound having two hydroxyl groups in the molecule include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,2-butanediol, and 2-methyl-.
  • Alcan diols such as 1,3-propanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, and alkane (7 to 20 carbon atoms) diol; Diols having alicyclic aliphatic groups such as cyclohexanediol, cyclohexanedimethanol, hydride bisphenol A, alkendiols such as 1,4-dihydroxy-2-butene; bishydroxyethoxybenzene, xylene glycol, bis (2-hydroxy) Examples thereof include diols having an aromatic ring such as ethyl) terephthalic acid.
  • an alkane diol or a diol having an aromatic ring is preferable, an alkane diol is more preferable, and ethylene glycol is more preferable.
  • the above diol compound may be used alone or in combination of two or more.
  • the number average molecular weight of the diol compound is preferably 100 to 40,000, more preferably 150 to 10,000, from the viewpoint of hydrolysis resistance, melt viscosity, and solution viscosity of the polyester resin composition. More preferably, it is 200 to 1,000.
  • the number average molecular weight is measured by a gel chromatography method using polystyrene as a standard substance. However, this does not apply to low molecular weight compounds.
  • X 1 and X 2 represent groups formed by the reaction of a functional group capable of reacting with the isocyanate group of the organic compound and the isocyanate group of the diisocyanate compound, and X 1 and X 2 are represented. May be the same or different.
  • X 1 and X 2 are groups represented by the following formula (I)
  • X 1 and X 2 are the following formula (II).
  • X 1 and X 2 are groups represented by the following formula (III), and when the organic compound is a monocarboxylic acid, X 1 , X 2 Is a group represented by the following formula (IV), and when the organic compound is an acid anhydride, X 1 and X 2 are groups represented by the following formula (V).
  • n and m represent numbers from 1 to 20.
  • n is preferably 1 to 15, more preferably 2 to 10, from the viewpoint of hydrolysis resistance of the polyester resin composition, suppression of increase in melt viscosity, and suppression of isocyanate gas generation. is there.
  • n is particularly preferably a number of 4 to 20.
  • m is preferably 1 to 15, more preferably 1 to 10, and further preferably 1 to 1 from the viewpoint of hydrolysis resistance of the polyester resin composition and suppression of increase in melt viscosity. 3, even more preferably 1.
  • the relationship between n and m is preferably n ⁇ m, more preferably n> m, from the viewpoint of hydrolysis resistance of the polyester resin composition.
  • the method of connecting each structural unit may be a block connection or a random connection. That is, in the general formula (1), n and m only indicate the number of the structural units (N) and the structural units (M) contained in the carbodiimide compound (B), and the general formula (1) ) Is not limited to the carbodiimide compound in which the structural unit (N) and the structural unit (M) are block-bonded.
  • the carbodiimide equivalent (chemical formula amount per 1 mol of carbodiimide group) of the carbodiimide compound (B) is preferably 200 to 1,500, more preferably 200 to 1,500 from the viewpoint of hydrolysis resistance of the polyester resin composition and suppression of isocyanate gas generation. It is 200 to 1,250, more preferably 200 to 1,000, and even more preferably 200 to 700.
  • the content of the carbodiimide compound (B) is 100 parts by mass in total of the polyester resin (A) and the carbodiimide compound (B) from the viewpoint of hydrolysis resistance of the polyester resin composition and suppression of isocyanate gas generation. On the other hand, it is 0.1 to 10 parts by mass, preferably 0.2 to 7 parts by mass, and more preferably 0.3 to 5 parts by mass.
  • the carbodiimide compound (B) of the present invention can be produced by a known method.
  • the diisocyanate compound (a) and the diol compound (b) are reacted to produce a compound of both-terminal isocyanates containing a urethane bond (hereinafter, also referred to as “component (d)”), and then the component (a) is produced.
  • the diisocyanate compound (a) is carbodiimided in the presence of a catalyst to obtain a polycarbodiimide (hereinafter, also referred to as “component (e)”), and then the component (e) is added to the diol compound (b) and the terminal.
  • component (e) a polycarbodiimide
  • a method of adding a sealing agent (c) to carry out a copolymerization reaction and a terminal sealing reaction examples thereof include a method in which a diisocyanate compound (a), a diol compound (b), and an end-capping agent (c) are simultaneously subjected to a urethanization reaction, a carbodiimideization reaction, and an end-sealing reaction in the presence of a catalyst. .. Among these, from the viewpoint of productivity, it is preferable to produce by the method (i) above.
  • the diisocyanate compound (a) and the diol compound (b) are mixed with the hydroxyl group of the diol compound (b) so that the isocyanate group of the diisocyanate is excessive, and a urethanization reaction is carried out.
  • the terminal sealant (c) and an organic phosphorus compound or an organic metal compound as a carbodiimidization catalyst to carry out the carbodiimidization reaction in a solvent-free or inert solvent.
  • the diisocyanate compound (a) and the diol compound (b) are as described above.
  • the diisocyanate compound and the diol compound may be used alone or in combination of two or more.
  • the terminal encapsulant (c) is an organic compound having one functional group capable of reacting with the above-mentioned isocyanate group, and specific examples are as described above.
  • the organic compound may be used alone or in combination of two or more. Further, the blending amount of the organic compound may be appropriately adjusted so that n and m in the general formula (1) are within the above range.
  • Examples of the catalyst used in the carbodiimidization reaction include 3-methyl-1-phenyl-2-phospholene-1-oxide, 3-methyl-1-ethyl-2-phospholene-1-oxide, and 1,3-dimethyl.
  • -2-phospholene-1-oxide, 1-phenyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide and 3-methyl-2-phospholene-1-oxide 1-methyl-2- Phosphorene-1-oxide and the like can be mentioned, and among these, 3-methyl-1-phenyl-2-phospholene-1-oxide, which has good reactivity and is easily available industrially, is preferable. These may be used alone or in combination of two or more.
  • the amount of the catalyst used can be appropriately determined depending on the type of catalyst used, but is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5.0 parts by mass with respect to 100 mass by mass of the diisocyanate compound (a). It is by mass, more preferably 0.1 to 3.0 parts by mass.
  • Solvents that can be used include alicyclic ethers such as tetrahydrofuran, 1,3-dioxane, and dioxolane: benzene, toluene, xylene, and aromatic hydrocarbons such as ethylbenzene: chlorobenzene, dichlorobenzene, trichlorobenzene, percrene, trichloroethane, etc. And halogenated hydrocarbons such as dichloroethane, cyclohexanone and the like. These may be used alone or in combination of two or more.
  • the conditions for the urethanization reaction between the component (a) and the component (b) are not particularly limited and can be appropriately determined according to the raw materials used and the like.
  • the reaction temperature is preferably 30 to 200 ° C., more preferably 35 to 120 ° C., and even more preferably 40 to 80 ° C. from the viewpoint of productivity.
  • the conditions for the carbodiimidization reaction are not particularly limited and can be appropriately determined according to the raw materials used and the like.
  • the reaction temperature is preferably 40 to 250 ° C., more preferably 60 to 200 ° C., still more preferably 80 to 150 ° C. when the reaction is carried out in a solvent, from the viewpoint of productivity when no solvent is used. Is preferably 40 ° C. or higher and lower than the boiling point of the solvent.
  • the reaction time is preferably 10 minutes to 20 hours, more preferably 1 hour to 10 hours, still more preferably 2 hours to 4 hours from the viewpoint of productivity.
  • Additives such as pigments, fillers, leveling agents, surfactants, dispersants, ultraviolet absorbers, antioxidants, flame retardants, and colorants should be appropriately added to the polyester resin composition, if necessary. Can be done.
  • the total content of the polyester resin (A) and the carbodiimide compound (B) in the polyester resin composition of the present invention includes hydrolysis resistance, mechanical properties, suppression of melt viscosity increase, processability, and processability of the polyester resin composition. From the viewpoint of suppressing the generation of isocyanate gas, it is preferably 90 to 100% by mass, more preferably 92 to 100% by mass, and further preferably 95 to 100% by mass.
  • the polyester-based resin composition of the present invention can be produced, for example, by blending a carbodiimide compound (B) with a polyester-based resin (A) and other components added as necessary, and melt-kneading the mixture. it can.
  • a carbodiimide compound (B) in such a polyester-based resin composition of the present invention, isocyanate gas is less likely to be generated even during melt-kneading, so that the working environment is not deteriorated.
  • Melt kneading can be performed with a mixer equipped with heating means.
  • the order in which each material is charged into the mixer is not particularly limited, but it is preferable that the base polyester resin is first charged and melted, and then the carbodiimide compound and, if necessary, additives are added.
  • the melt-kneading time can be appropriately determined depending on the shape of the screw, the rotation speed, etc., and is usually about 1 to 30 minutes.
  • the temperature during melt-kneading varies depending on the type of the base polyester resin, but is usually about 150 to 350 ° C.
  • polyester-based resin composition of the present invention a high-quality molded product can be obtained without deteriorating the working environment in the manufacturing process.
  • a molded product When a molded product is obtained from the polyester-based resin composition of the present invention, it may be molded by extrusion molding, injection molding, blow molding or the like during the above-mentioned melt-kneading, or it may be first compounded into a masterbatch or the like and then other. You may perform molding by melt-kneading with the material of.
  • the polyester-based resin composition of the present invention can effectively suppress the generation of isocyanate gas during heat molding in any molding method, does not deteriorate the working environment, and significantly increases the melt viscosity during molding. Workability is good because there is no need to do so.
  • the molded product molded from the polyester-based resin composition of the present invention has good hydrolysis resistance, and is therefore excellent in various performances such as strength.
  • ⁇ Diisocyanate compound> A mixture of 54% by mass of 2,4'-diphenylmethane diisocyanate and 46% by mass of 4,4'-diphenylmethane diisocyanate (mixture of 2,4'-MDI (54%) and 4,4'-MDI (46%)): Product name "Monomeric MDI; Millionate NM" manufactured by Tosoh Corporation -4,5'-Diphenylmethane diisocyanate (4,5'-MDI): Tosoh Corporation, product name "Millionate MT” -Mixture of 2,4-toluene diisocyanate 80% by mass and 2,6-toluene diisocyanate 20% by mass (mixture of 2,4-TDI (80%) and 2,6-TDI (20%)): Mitsui Chemicals Product name "Cosmonate T-80" manufactured by SKC Polyurethane Co., Ltd.
  • HMDI 4,4'-Dicyclohexylmethane diisocyanate
  • ⁇ Diol compound> -Polycarbonate polyol 1 Made by Ube Industries, Ltd., product name "Etanacol UH-50", molecular weight 504 -Polycarbonate polyol 2: manufactured by Asahi Kasei Chemicals Co., Ltd., product name "Duranol T-5650E", molecular weight 523 -Polyester polyol 1: Kawasaki Kasei Chemicals Co., Ltd., product name "Maximol RFK-505", molecular weight 442 -Polyester polyol 2: manufactured by Kawasaki Kasei Chemicals Co., Ltd., product name "Maximol RFK-509", molecular weight 573 -Polyester polyol 3: Kuraray Co., Ltd., product name "Kuraray polyol P-1020", molecular weight 1000 -Polyester polyol 4: Kuraray Co., Ltd., product name "Kuraray polyol P-520", molecular weight 500 -Pol
  • Synthesis Example 7 (Synthesis Example 7)
  • the diisocyanate compound shown in Table 1 the diol compound, the terminal encapsulant, and the carbodiimidization catalyst are blended at the ratios shown in Table 1, and stirring under a nitrogen stream is performed at 60 ° C. for 1 hour.
  • Synthesis Example 10 (Synthesis Example 10)
  • the diisocyanate compound shown in Table 1 and the carbodiimidization catalyst were placed in a reflux tube and a reaction vessel equipped with a stirrer at the ratio shown in Table 1, stirred at 180 ° C. for 4 hours under a nitrogen stream, and then the temperature was raised to 150 ° C. I lowered it. Then, the diol compound and the terminal encapsulant were added at the ratios shown in Table 1, and the mixture was stirred at 150 ° C. for 1 hour.
  • Example 1 98 parts by mass of PBT resin as polyester resin (A) was melted under the condition of 250 ° C. using a lab mixer, and then carbodiimide compound P1: 2 mass obtained as carbodiimide compound (B) in Synthesis Example 1. Parts were added and mixed for 3 minutes to obtain a polyester resin composition.
  • Example 2 In Example 2, the same method as in Example 1 was used except that the blending amount of the PBT resin was changed from 98 parts by mass to 95 parts by mass and the blending amount of the carbodiimide compound P1 was changed from 2 parts by mass to 5 parts by mass. A polyester resin composition was obtained.
  • Examples 3 to 10 Examples 3 to 10
  • the carbodiimide compounds P2 to 9 obtained in Synthesis Examples 2 to 9 are used in place of the carbodiimide compounds P1 obtained in Synthesis Example 1, and the amounts of the PBT resin and each carbodiimide compound compounded.
  • a polyester resin composition was obtained in the same manner as in Example 1 except that the ratios shown in Table 2 were set.
  • Comparative Examples 1 and 2 In Comparative Examples 1 and 2, the same method as in Example 1 was used except that the carbodiimide compounds P10 and 11 obtained in Synthesis Examples 10 and 11 were used in place of the carbodiimide compound P1 obtained in Synthesis Example 1. A polyester resin composition was obtained.
  • Comparative Example 3 In Comparative Example 3, the same method as in Example 1 was used except that the blending amount of the PBT resin was changed from 98 parts by mass to 85 parts by mass and the blending amount of the carbodiimide compound P1 was changed from 2 parts by mass to 15 parts by mass. A polyester resin composition was obtained.
  • Example 11 to 20 and Comparative Examples 4 to 6 PET resin was used instead of PBT resin, and Examples 1 to 10 and Comparative Examples 1 to 3 were used, respectively, except that the melting temperature was changed from 250 ° C. to 280 ° C.
  • a polyester resin composition was obtained in the same manner as in the above.
  • Example 21 to 30 and Comparative Examples 7 to 9 In Examples 21 to 30 and Comparative Examples 7 to 9, PLA resin was used instead of PBT resin, and Examples 1 to 10 and Comparative Examples 1 to 3, respectively, except that the melting temperature was changed from 250 ° C. to 200 ° C. A polyester resin composition was obtained in the same manner as in the above.
  • Example 21 to 30 and Comparative Examples 7 to 9 gas analysis was performed in the same manner as in Example 1 and the like except that the heating temperature was changed from 300 ° C. to 200 ° C., and the detection amount of isocyanate gas was evaluated. went.
  • the tensile strength was measured under the following conditions for each of the sample before the test, the sample after 72 hours of the test, and the sample after 120 hours of the test.
  • the strength retention rate (%) was calculated by the following formula (I) as the ratio of the tensile strength of the sample after the lapse of 72 hours or 120 hours of the test to the sample before the test.
  • Strength retention [tensile strength after test] / [tensile strength before test] x 100 (%) ... (I)
  • the larger the value of the strength retention rate the more the tensile strength is maintained before and after the high acceleration life test, and it means that the polyester resin composition is excellent in hydrolysis resistance.
  • Example 11 to 20 and Comparative Examples 4 to 6 the strength was increased in the same manner as in Example 1 except that the holding time in the advanced accelerated life test was changed from 72 hours and 120 hours to 24 hours and 40 hours. The retention rate was calculated.
  • Example 21 to 30 and Comparative Examples 7 to 9 In Examples 21 to 30 and Comparative Examples 7 to 9, in the advanced accelerated life test, a constant temperature and humidity controller (PH-2KT-E manufactured by ESPEC) was used instead of the advanced accelerated life test device, and the holding condition was set to 85.
  • the strength retention rate was determined by the same method as in Example 1 and the like except that the retention was changed to 24 hours and 48 hours under the conditions of ° C. and 85% RH.
  • the polyester resin compositions (Examples 1 to 30) containing the carbodiimide compounds P1 to P9, which are the carbodiimide compounds (B) specified in the present invention, in a predetermined ratio are hydrolyzed resistant. It was confirmed that the property was excellent and isocyanate gas was hardly generated (detection levels A and B).
  • polyester resin compositions containing carbodiimide compounds P10 and P11 other than the carbodiimide compound (B) specified in the present invention (Comparative Examples 1, 2, 4, 5, 7 and 8) and the present invention specify.
  • the polyester-based resin compositions (Comparative Examples 3, 6 and 9) containing the carbodiimide compound P1 which is the carbodiimide compound (B) but containing too much of the carbodiimide compound P1 are the polyester-based resin compositions of the present invention (Examples 1 to 30). It was confirmed that the amount of isocyanate gas generated was large (detection level C) in all cases.
  • the polyester-based resin obtained depends on the relationship with the type of polyester-based resin (A) to be combined (for example, PBT resin). It was confirmed that the hydrolysis resistance of the resin composition deteriorated. Further, it was confirmed that when the content of the carbodiimide compound is too large, the hydrolysis resistance of the obtained polyester resin composition deteriorates regardless of the type of the polyester resin (A) to be combined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Provided is a polyester resin composition that exhibits superior hydrolytic resistance and generates little isocyanate gas when heated during melt kneading and molding. The polyester resin composition contains a polyester resin (A) and a carbodiimide compound (B) having a specific structure, wherein the carbodiimide compound (B) content is 0.1-10 parts by mass relative to a total of 100 parts by mass of the polyester resin (A) and the carbodiimide compound (B).

Description

ポリエステル系樹脂組成物Polyester resin composition
 本発明は、ポリエステル系樹脂組成物に関する。 The present invention relates to a polyester resin composition.
 ポリエステル樹脂は、透明性、機械的強度、溶融安定性、耐溶剤性及びリサイクル性に優れていることから、フィルム、シート等に広く利用されており、更に近年では、家電製品やOA機器の筐体等にも使用されている。
 しかしながら、ポリエステル樹脂は、従来の汎用樹脂に比べて容易に加水分解される性質を有していることから、耐加水分解性を向上させることを目的として、カルボジイミド化合物を添加する手法が検討されている。
Polyester resin is widely used for films, sheets, etc. because it has excellent transparency, mechanical strength, melt stability, solvent resistance, and recyclability. In recent years, it has been used as a housing for home appliances and OA equipment. It is also used on the body.
However, since polyester resins have the property of being easily hydrolyzed as compared with conventional general-purpose resins, a method of adding a carbodiimide compound has been studied for the purpose of improving hydrolysis resistance. There is.
 カルボジイミド化合物をポリエステル樹脂に配合し、成形することにより、ポリエステル樹脂中のカルボキシ基や、高温で混練した際にエステル基の分解によって発生したカルボキシ基が、配合されたカルボジイミド化合物と反応して、成形物の初期性能(例えば機械的強度)の低下を抑制できる。また、成形物中にカルボジイミド化合物が残存することで、成形物の耐久性も向上する。 By blending a carbodiimide compound with a polyester resin and molding it, the carboxy group in the polyester resin and the carboxy group generated by the decomposition of the ester group when kneading at a high temperature react with the blended carbodiimide compound to mold it. It is possible to suppress a decrease in the initial performance (for example, mechanical strength) of an object. In addition, the durability of the molded product is improved by leaving the carbodiimide compound in the molded product.
 このようなポリエステル樹脂用の耐加水分解安定剤としては、例えば特定の脂肪族又は芳香族カルボジイミド化合物等を主成分とするものが知られている(特許文献1及び2)。
 しかし、このような特定の脂肪族又は芳香族カルボジイミド化合物を添加したポリエステル樹脂組成物は、耐加水分解性は向上するものの、溶融混練及び成形加工時の加熱により、カルボジイミド化合物が分解し、イソシアネートガスが発生し、作業環境を悪化させる問題があった。
As such a hydrolysis resistant stabilizer for polyester resins, those containing, for example, a specific aliphatic or aromatic carbodiimide compound as a main component are known (Patent Documents 1 and 2).
However, although the polyester resin composition to which such a specific aliphatic or aromatic carbodiimide compound is added has improved hydrolysis resistance, the carbodiimide compound is decomposed by heating during melt kneading and molding, and the isocyanate gas is decomposed. There was a problem that the work environment was deteriorated.
特開平9-249801号公報Japanese Unexamined Patent Publication No. 9-249801 特開2015-147838号公報Japanese Unexamined Patent Publication No. 2015-147838
 そこで本発明は、耐加水分解性に優れ、溶融混練及び成形加工時の加熱によるイソシアネートガスの発生が少ないポリエステル系樹脂組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide a polyester resin composition having excellent hydrolysis resistance and less generation of isocyanate gas due to heating during melt kneading and molding.
 本発明者らは、鋭意検討した結果、ポリエステル系樹脂(A)と、特定のカルボジイミド化合物(B)とを含有し、該カルボジイミド化合物(B)の含有量が、ポリエステル系樹脂(A)及びカルボジイミド化合物(B)の合計量100質量部に対して、0.1~10質量部であることにより、耐加水分解性に優れ、溶融混練及び成形加工時の加熱によるイソシアネートガスの発生が少ないポリエステル系樹脂組成物が得られることを見出し、本発明を完成させるに至った。 As a result of diligent studies, the present inventors have contained a polyester resin (A) and a specific carbodiimide compound (B), and the content of the carbodiimide compound (B) is the polyester resin (A) and the carbodiimide. Since the total amount of the compound (B) is 0.1 to 10 parts by mass with respect to 100 parts by mass, the polyester type has excellent hydrolysis resistance and generates less isocyanate gas due to heating during melt kneading and molding. They have found that a resin composition can be obtained, and have completed the present invention.
 すなわち、本発明の要旨構成は、以下のとおりである。
 [1] ポリエステル系樹脂(A)と、下記一般式(1)で表されるカルボジイミド化合物(B)とを含有するポリエステル系樹脂組成物であって、
 前記カルボジイミド化合物(B)の含有量が、前記ポリエステル系樹脂(A)及び前記カルボジイミド化合物(B)の合計量100質量部に対して、0.1~10質量部である、ポリエステル系樹脂組成物。
Figure JPOXMLDOC01-appb-C000002

(一般式(1)中、R、Rはイソシアネート基と反応し得る官能基を1つ有する有機化合物の前記官能基を除いた残基を表し、R、Rは同一でも異なっていてもよい。Rは、ジイソシアネート化合物から2つのイソシアネート基を除いた2価の残基を表し、前記ジイソシアネート化合物は、前記イソシアネート基と直接結合するベンゼン系芳香環を有し、該ベンゼン系芳香環の前記イソシアネート基と結合する位置の両オルト位には、置換基を持たない又は1つのみ置換基を有する構造である。Rは、ジオール化合物から2つの水酸基を除いた2価の残基を表す。X、Xは前記有機化合物の前記官能基と前記ジイソシアネート化合物の前記イソシアネート基との反応により形成される基を表し、X、Xは同一でも異なっていてもよい。n、mは1~20の数を表す。)
 [2] 前記ジイソシアネート化合物が、トリレンジイソシアネート、トリジンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート及びパラフェニレンジイソシアネートから選ばれる1種以上を含む、上記[1]に記載のポリエステル系樹脂組成物。
 [3] 前記ジイソシアネート化合物が、2,4’-ジフェニルメタンジイソシアネート及び4、4’-ジフェニルメタンジイソシアネートの混合物を含み、
 前記ジイソシアネート化合物の全体を100モル%としたときに、前記2,4’-ジフェニルメタンジイソシアネートの割合が30~70モル%であり、前記4,4’-ジフェニルメタンジイソシアネートの割合が30~70モル%である、上記[2]に記載のポリエステル系樹脂組成物。
 [4] 前記ジイソシアネート化合物の全体を100モル%としたときに、前記2,4’-ジフェニルメタンジイソシアネートの割合が50~60モル%であり、前記4,4’-ジフェニルメタンジイソシアネートの割合が40~50モル%である、上記[3]に記載のポリエステル系樹脂組成物。
 [5] 前記イソシアネート基と反応し得る官能基を1つ有する有機化合物が、モノイソシアネート、モノアルコール、モノアミン、モノカルボン酸及び酸無水物から選ばれる1種以上である、上記[1]~[4]のいずれか1項に記載のポリエステル系樹脂組成物。
 [6] 前記ジオール化合物が、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、及びアルカンジオールから選ばれる1種以上である、上記[1]~[5]のいずれか1項に記載のポリエステル系樹脂組成物。
 [7] 前記ポリエステル系樹脂(A)が、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンサクシネート、ポリ乳酸、及びポリヒドロキシアルカン酸から選ばれる1種以上である、上記[1]~[6]のいずれか1項に記載のポリエステル系樹脂組成物。
That is, the gist structure of the present invention is as follows.
[1] A polyester resin composition containing a polyester resin (A) and a carbodiimide compound (B) represented by the following general formula (1).
A polyester resin composition in which the content of the carbodiimide compound (B) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the polyester resin (A) and the carbodiimide compound (B). ..
Figure JPOXMLDOC01-appb-C000002

(In the general formula (1), R 1 and R 4 represent residues excluding the functional group of an organic compound having one functional group capable of reacting with an isocyanate group, and R 1 and R 4 are the same but different. R 2 represents a divalent residue obtained by removing two isocyanate groups from the diisocyanate compound, and the diisocyanate compound has a benzene-based aromatic ring that is directly bonded to the isocyanate group, and the benzene-based aromatic ring is used. The structure has no substituent or only one substituent at both ortho positions of the ring at the position where it is bonded to the isocyanate group. R 3 is a divalent residue obtained by removing two hydroxyl groups from the diol compound. Representing a group. X 1 and X 2 represent a group formed by the reaction of the functional group of the organic compound with the isocyanate group of the diisocyanate compound, and X 1 and X 2 may be the same or different. n and m represent numbers from 1 to 20.)
[2] The polyester-based resin composition according to the above [1], wherein the diisocyanate compound contains at least one selected from toluene diisocyanate, trizine diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate and paraphenylenedi isocyanate.
[3] The diisocyanate compound contains a mixture of 2,4'-diphenylmethane diisocyanate and 4,4'-diphenylmethane diisocyanate.
When the total amount of the diisocyanate compound is 100 mol%, the ratio of the 2,4'-diphenylmethane diisocyanate is 30 to 70 mol%, and the ratio of the 4,4'-diphenylmethane diisocyanate is 30 to 70 mol%. The polyester-based resin composition according to the above [2].
[4] When the total amount of the diisocyanate compound is 100 mol%, the ratio of the 2,4'-diphenylmethane diisocyanate is 50 to 60 mol%, and the ratio of the 4,4'-diphenylmethane diisocyanate is 40 to 50. The polyester-based resin composition according to the above [3], which is mol%.
[5] The above-mentioned [1] to [5], wherein the organic compound having one functional group capable of reacting with the isocyanate group is one or more selected from monoisocyanate, monoalcohol, monoamine, monocarboxylic acid and acid anhydride. The polyester-based resin composition according to any one of 4].
[6] The polyester-based resin composition according to any one of the above [1] to [5], wherein the diol compound is one or more selected from a polyether polyol, a polyester polyol, a polycarbonate polyol, and an alkane diol. object.
[7] The above-mentioned [1] to [6], wherein the polyester resin (A) is at least one selected from polyethylene terephthalate, polybutylene terephthalate, polybutylene succinate, polylactic acid, and polyhydroxyalkanoic acid. The polyester-based resin composition according to any one of the items.
 本発明によれば、耐加水分解性に優れ、溶融混練及び成形加工時の加熱によるイソシアネートガスの発生が少ないポリエステル系樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a polyester-based resin composition having excellent hydrolysis resistance and less generation of isocyanate gas due to heating during melt-kneading and molding.
 本発明に従うポリエステル系樹脂組成物の実施形態について、以下で詳細に説明する。 An embodiment of the polyester resin composition according to the present invention will be described in detail below.
 本発明のポリエステル系樹脂組成物は、ポリエステル系樹脂(A)と、下記一般式(1)で表されるカルボジイミド化合物(B)とを含有し、カルボジイミド化合物(B)の含有量が、ポリエステル系樹脂(A)及びカルボジイミド化合物(B)の合計量100質量部に対して、0.1~10質量部であることを特徴とする。 The polyester-based resin composition of the present invention contains a polyester-based resin (A) and a carbodiimide compound (B) represented by the following general formula (1), and the content of the carbodiimide compound (B) is polyester-based. The total amount of the resin (A) and the carbodiimide compound (B) is 0.1 to 10 parts by mass with respect to 100 parts by mass.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)中、R、Rはイソシアネート基と反応し得る官能基を1つ有する有機化合物の前記官能基を除いた残基を表し、R、Rは同一でも異なっていてもよい。Rは、ジイソシアネート化合物から2つのイソシアネート基を除いた2価の残基を表し、前記ジイソシアネート化合物は、前記イソシアネート基と直接結合するベンゼン系芳香環を有し、該ベンゼン系芳香環の前記イソシアネート基と結合する位置の両オルト位には、置換基を持たない又は1つのみ置換基を有する構造である。Rは、ジオール化合物から2つの水酸基を除いた2価の残基を表す。X、Xは前記有機化合物の前記官能基と前記ジイソシアネート化合物の前記イソシアネート基との反応により形成される基を表し、X、Xは同一でも異なっていてもよい。n、mは1~20の数を表す。 In the above general formula (1), R 1 and R 4 represent residues excluding the functional group of an organic compound having one functional group capable of reacting with an isocyanate group, and R 1 and R 4 are the same but different. You may. R 2 represents a divalent residue obtained by removing two isocyanate groups from the diisocyanate compound, and the diisocyanate compound has a benzene-based aromatic ring directly bonded to the isocyanate group, and the isocyanate of the benzene-based aromatic ring. The structure has no substituent or has only one substituent at both ortho positions at the position where it is bonded to the group. R 3 represents a divalent residue obtained by removing two hydroxyl groups from the diol compound. X 1 and X 2 represent groups formed by the reaction of the functional group of the organic compound with the isocyanate group of the diisocyanate compound, and X 1 and X 2 may be the same or different. n and m represent numbers from 1 to 20.
 このようなポリエステル系樹脂組成物は、耐加水分解性に優れ、溶融混練及び成形加工時の加熱によるイソシアネートガスの発生が少ない。その理由は定かではないが、以下のように考えられる。
 本発明のポリエステル系樹脂組成物は、特定の芳香族カルボジイミドであるカルボジイミド化合物(B)を用いることにより、従来の脂肪族カルボジイミドより反応性が高く、低いカルボジイミド基濃度でも、優れた耐加水分解性を発揮することができると考えられる。
 特に、カルボジイミド化合物(B)は、イソシアネート基と直接結合するベンゼン系芳香環を有し、且つ該ベンゼン系芳香環のイソシアネート基と結合する位置の両オルト位には、置換基を持たない又は1つのみ置換基を有するジイソシアネート化合物に由来する2価の残基Rを有するため、溶融混練及び成形加工時の加熱過程においてカルボジイミド化合物(B)が分解しても、分解生成したイソシアネートの反応性が高いため、ポリエステル系樹脂(A)中に取り込まれ易く、イソシアネートガスとして環境中に放出され難いものと考えられる。
Such a polyester-based resin composition has excellent hydrolysis resistance, and generates less isocyanate gas due to heating during melt-kneading and molding. The reason is not clear, but it can be considered as follows.
The polyester-based resin composition of the present invention has higher reactivity than the conventional aliphatic carbodiimide by using the carbodiimide compound (B) which is a specific aromatic carbodiimide, and has excellent hydrolysis resistance even at a low carbodiimide group concentration. It is thought that it can exert.
In particular, the carbodiimide compound (B) has a benzene-based aromatic ring that directly bonds with an isocyanate group, and does not have a substituent at both ortho positions at positions that bond with the isocyanate group of the benzene-based aromatic ring, or 1 because having a divalent residue R 2 derived from a diisocyanate compound having only one substituent, be a carbodiimide compound (B) is decomposed in the heating process at the time of melt kneading and molding, degradation resulting reaction of the isocyanate It is considered that the isocyanate gas is easily taken into the polyester resin (A) and is not easily released into the environment as an isocyanate gas.
 以下、本発明のポリエステル系樹脂組成物について、構成成分毎に詳しく説明する。 Hereinafter, the polyester-based resin composition of the present invention will be described in detail for each component.
<ポリエステル系樹脂(A)>
 ポリエステル系樹脂(A)としては、エステル基を有する樹脂であれば特に制限することなく使用することができる。
 ポリエステル系樹脂(A)は、例えば二塩基酸若しくはその酸無水物又は二塩基酸エステルと、二価アルコールとの重縮合反応、ヒドロキシカルボン酸又はその環状誘導体の重縮合反応又は開環重合によって得られ、主鎖にエステル結合を持つ樹脂である。
<Polyester resin (A)>
As the polyester resin (A), any resin having an ester group can be used without particular limitation.
The polyester resin (A) can be obtained, for example, by a polycondensation reaction of a dibasic acid or an acid anhydride thereof or a dibasic acid ester with a dihydric alcohol, a polycondensation reaction of a hydroxycarboxylic acid or a cyclic derivative thereof, or ring-opening polymerization. It is a resin having an ester bond in the main chain.
 上記二塩基酸又はその酸無水物としては、例えば無水フタル酸、イソフタル酸、テレフタル酸、コハク酸、コハク酸無水物、アジピン酸、アゼライン酸、セバシン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、テトラブロム無水フタル酸、テトラクロロ無水フタル酸、無水ヘット酸、エンドメチレンテトラヒドロ無水フタル酸、無水マレイン酸、フマル酸、イタコン酸等が挙げられる。
 上記二塩基酸エステルとしては、例えばテレフタル酸ジメチル、ナフタレンジカルボン酸ジメチル等が挙げられる。
Examples of the dibasic acid or its acid anhydride include phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, and the like. Examples thereof include tetrabrom phthalic anhydride, tetrachlorophthalic anhydride, hetic anhydride, endomethylenetetrahydrophthalic anhydride, maleic anhydride, fumaric acid and itaconic acid.
Examples of the dibasic acid ester include dimethyl terephthalate and dimethyl naphthalenedicarboxylic acid.
 上記二価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-ブチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、トリエチレングリコール、水素化ビスフェノールA、ビスフェノールA2-ヒドロキシプロピルエーテル、シクロヘキサンジメタノール等が挙げられる。
 他にも、両末端にOH基を有する脂肪族ポリエーテルである、ポリエチレンオキシドグリコール、ポリプロピレンオキシドグリコール、ポリテトラメチレンオキシドグリコール、ポリヘキサメチレンオキシドグリコール等のポリアルキレンオキシドグリコールを用いることもできる。
Examples of the dihydric alcohol include ethylene glycol, propylene glycol, 1,3-butylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, and triethylene glycol. Examples thereof include hydride bisphenol A, bisphenol A2-hydroxypropyl ether, cyclohexanedimethanol and the like.
In addition, polyalkylene oxide glycols such as polyethylene oxide glycol, polypropylene oxide glycol, polytetramethylene oxide glycol, and polyhexamethylene oxide glycol, which are aliphatic polyethers having OH groups at both ends, can also be used.
 上記ヒドロキシカルボン酸としては、例えば乳酸、ヒドロキシ酪酸等が挙げられる。
 また、ヒドロキシカルボン酸の環状誘導体としては、例えばラクチドやラクトンが挙げられ、ラクチドとしては、例えば乳酸の環状二量体等が挙げられ、ラクトンとしてはβ-プロピオラクトンやδ-バレロラクトン等が挙げられる。
Examples of the hydroxycarboxylic acid include lactic acid and hydroxybutyric acid.
Examples of the cyclic derivative of hydroxycarboxylic acid include lactide and lactone, examples of lactide include cyclic dimer of lactic acid, and examples of lactone include β-propiolactone and δ-valerolactone. Can be mentioned.
 ポリエステル系樹脂(A)の具体例としては、例えば、ポリエチレンテレフタレート(以下、「PET」ともいう)、ポリブチレンテレフタレート(以下、「PBT」ともいう)、ポリブチレンサクシネート(以下、「PBS」ともいう)、ポリブチレンサクシネートアジペート(以下、「PBSA」ともいう)、ポリブチレンアジペートテレフタレート(以下、「PBAT」ともいう)、ポリエチレンナフタレート、ポリアリレート、エチレンテレフタレート-イソフタレート共重合体、ポリ乳酸(以下、「PLA」ともいう)、及びポリヒドロキシ酪酸等のポリヒドロキシアルカン酸から選ばれる1種以上を用いることができる。
 これらの中でも、経済性、加工性の観点から、好ましくはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンサクシネート、ポリ乳酸、及びポリヒドロキシアルカン酸から選ばれる1種以上、より好ましくはポリエチレンテレフタレート及びポリブチレンテレフタレートから選ばれる1種以上である。
Specific examples of the polyester resin (A) include polyethylene terephthalate (hereinafter, also referred to as “PET”), polybutylene terephthalate (hereinafter, also referred to as “PBT”), and polybutylene succinate (hereinafter, also referred to as “PBS”). , Polybutylene succinate adipate (hereinafter, also referred to as "PBSA"), polybutylene adipate terephthalate (hereinafter, also referred to as "PBAT"), polyethylene naphthalate, polyarylate, ethylene terephthalate-isophthalate copolymer, polylactic acid. (Hereinafter, also referred to as "PLA"), and one or more selected from polyhydroxyalkanoic acids such as polyhydroxybutyric acid can be used.
Among these, one or more selected from polyethylene terephthalate, polybutylene terephthalate, polybutylene succinate, polylactic acid, and polyhydroxyalkanoic acid, more preferably polyethylene terephthalate and polybutylene, from the viewpoint of economy and processability. One or more selected from terephthalate.
 本発明のポリエステル系樹脂組成物は、ポリエステル系樹脂(A)と、カルボジイミド化合物(B)とを含み、該カルボジイミド化合物(B)が特定の構造を有することにより、ポリエステル系樹脂(A)との親和性が向上し、より均一にポリエステル系樹脂(A)中に分散させることができる。その結果、組成物内では、ポリエステル系樹脂(A)が局所的に架橋反応することを防止できる。 The polyester-based resin composition of the present invention contains a polyester-based resin (A) and a carbodiimide compound (B), and the carbodiimide compound (B) has a specific structure, so that the polyester-based resin (A) can be used. The affinity is improved and it can be more uniformly dispersed in the polyester resin (A). As a result, it is possible to prevent the polyester resin (A) from locally cross-linking in the composition.
 本発明のポリエステル系樹脂組成物中のポリエステル系樹脂(A)の含有量は、好ましくは80~99.9質量%、より好ましくは85~99.8質量%、更に好ましくは90~99.7質量%、より更に好ましくは95~99.5質量%である。 The content of the polyester resin (A) in the polyester resin composition of the present invention is preferably 80 to 99.9% by mass, more preferably 85 to 99.8% by mass, and further preferably 90 to 99.7% by mass. It is by mass, more preferably 95 to 99.5% by mass.
<カルボジイミド化合物(B)>
 本発明に用いるカルボジイミド化合物(B)は、下記一般式(1)で表される。
<Carbodiimide compound (B)>
The carbodiimide compound (B) used in the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(1)中、R、Rはイソシアネート基と反応し得る官能基を1つ有する有機化合物の前記官能基を除いた残基を表し、R、Rは同一でも異なっていてもよい。Rは、ジイソシアネート化合物から2つのイソシアネート基を除いた2価の残基を表し、前記ジイソシアネート化合物は、前記イソシアネート基と直接結合するベンゼン系芳香環を有し、該ベンゼン系芳香環の前記イソシアネート基と結合する位置の両オルト位には、置換基を持たない又は1つのみ置換基を有する構造である。Rは、ジオール化合物から2つの水酸基を除いた2価の残基を表す。X、Xは前記有機化合物の前記官能基と前記ジイソシアネート化合物の前記イソシアネート基との反応により形成される基を表し、X、Xは同一でも異なっていてもよい。n、mは1~20の数を表す。 In the above general formula (1), R 1 and R 4 represent residues excluding the functional group of an organic compound having one functional group capable of reacting with an isocyanate group, and R 1 and R 4 are the same but different. You may. R 2 represents a divalent residue obtained by removing two isocyanate groups from the diisocyanate compound, and the diisocyanate compound has a benzene-based aromatic ring directly bonded to the isocyanate group, and the isocyanate of the benzene-based aromatic ring. The structure has no substituent or has only one substituent at both ortho positions at the position where it is bonded to the group. R 3 represents a divalent residue obtained by removing two hydroxyl groups from the diol compound. X 1 and X 2 represent groups formed by the reaction of the functional group of the organic compound with the isocyanate group of the diisocyanate compound, and X 1 and X 2 may be the same or different. n and m represent numbers from 1 to 20.
(R、R
 上記一般式(1)中、R、Rはイソシアネート基と反応し得る官能基を1つ有する有機化合物の前記官能基を除いた残基を表し、R、Rは同一でも異なっていてもよい。
(R 1 , R 4 )
In the above general formula (1), R 1 and R 4 represent residues excluding the functional group of an organic compound having one functional group capable of reacting with an isocyanate group, and R 1 and R 4 are the same but different. You may.
 上記イソシアネート基と反応し得る官能基を1つ有する有機化合物(以下、単に「有機化合物」ともいう)としては、イソシアネート基と反応し得る官能基を1つ有すれば特に限定されないが、反応性の観点から、モノイソシアネート、モノアルコール、モノアミン、モノカルボン酸及び酸無水物から選ばれる1種以上であることが好ましい。 The organic compound having one functional group capable of reacting with the isocyanate group (hereinafter, also simply referred to as “organic compound”) is not particularly limited as long as it has one functional group capable of reacting with the isocyanate group, but is reactive. From the viewpoint of the above, it is preferable that the mixture is one or more selected from monoisocyanate, monoalcohol, monoamine, monocarboxylic acid and acid anhydride.
 中でも、モノイソシアネートは、カルボジイミド化合物(B)中のカルボジイミド基の含有割合を高めることができる点で好ましい。
 モノイソシアネートとしては、例えば、メチルイソシアネート、エチルイソシアネート、プロピルイソシアネート、n-、sec-或いはter-ブチルイソシアネート等の低級アルキルイソシアネート;シクロヘキシルイソシアネート等の脂環式イソシアネート;フェニルイソシアネート、トリルイソシアネート、ジメチルフェニルイソシアネート、2,6-ジイソプロピルフェニルイソシアネート等の芳香族イソシアネート等が挙げられる。中でも、反応性の観点から、フェニルイソシアネート及びトリルイソシアネートが好ましく、フェニルイソシアネートがより好ましい。一方で、フェニルイソシアネートは特に反応性が高く、自身同士でカルボジイミド化し、モノカルボジイミドとなる傾向があるため、モノカルボジイミドの生成を抑制する観点では、フェニルイソシアネートを除くモノイソシアネートが好ましい。
Above all, monoisocyanate is preferable in that the content ratio of the carbodiimide group in the carbodiimide compound (B) can be increased.
Examples of the monoisocyanate include lower alkyl isocyanates such as methyl isocyanate, ethyl isocyanate, propyl isocyanate, n-, sec- or ter-butyl isocyanate; alicyclic isocyanates such as cyclohexyl isocyanate; phenyl isocyanate, tolyl isocyanate and dimethylphenyl isocyanate. , 2,6-Diisopropylphenylisocyanate and other aromatic isocyanates. Of these, phenylisocyanate and tolylisocyanate are preferable, and phenylisocyanate is more preferable, from the viewpoint of reactivity. On the other hand, phenylisocyanate is particularly reactive and tends to be carbodiimided by itself to become monocarbodiimide. Therefore, from the viewpoint of suppressing the formation of monocarbodiimide, monoisocyanate excluding phenylisocyanate is preferable.
 また、モノアルコールは、イソシアネート基との反応性が高く、カルボジイミド化合物(B)を合成し易くなる点、及びカルボジイミド化合物(B)が分解した際にイソシアネートガスが発生することを効果的に抑制できる点で好ましい。
 モノアルコールとしては、例えば、脂肪族アルコール、脂環式アルコール、ポリエーテルモノオール等が挙げられる。このようなモノアルコールとしては、例えば、メタノール、エタノール、イソプロピルアルコール、シクロヘキサノール、2-エチルヘキサノール、オクタノール、ドデシルアルコール、ポリエチレングリコールモノメチルエーテル、ポリプロピレングリコールモノメチルエーテル等が挙げられる。中でも、得られるカルボジイミド化合物(B)の取り扱い性に優れ、ポリエステル系樹脂(A)との加工性が良好となる観点からは、イソプロピルアルコール、2-エチルヘキサノール、オクタノール及びドデシルアルコールが好ましく、イソプロピルアルコールがより好ましい。
Further, the monoalcohol has high reactivity with the isocyanate group, which makes it easy to synthesize the carbodiimide compound (B), and can effectively suppress the generation of isocyanate gas when the carbodiimide compound (B) is decomposed. Preferred in terms of points.
Examples of monoalcohols include aliphatic alcohols, alicyclic alcohols, and polyether monools. Examples of such monoalcohols include methanol, ethanol, isopropyl alcohol, cyclohexanol, 2-ethylhexanol, octanol, dodecyl alcohol, polyethylene glycol monomethyl ether, polypropylene glycol monomethyl ether and the like. Among them, isopropyl alcohol, 2-ethylhexanol, octanol and dodecyl alcohol are preferable, and isopropyl alcohol is preferable from the viewpoint of excellent handleability of the obtained carbodiimide compound (B) and good processability with the polyester resin (A). Is more preferable.
 また、モノアミンは、イソシアネート基との反応性が高く、カルボジイミド化合物(B)を合成し易くなる点、及びポリエステル系樹脂(A)との相溶性に優れる点で好ましい。
 モノアミンとしては、例えば、1級又は2級のアルキルアミン等が挙げられる。このようなモノアミンとしては、例えば、ブチルアミン、シクロヘキシルアミン等の1級アミン;ジエチルアミン、ジブチルアミン、ジシクロヘキシルアミン等の2級アミンが挙げられる。中でも、ポリエステル系樹脂(A)との加工性を良好とする観点から、ブチルアミン及びシクロヘキシルアミンが好ましい。
Further, monoamine is preferable in that it has high reactivity with an isocyanate group, facilitates the synthesis of a carbodiimide compound (B), and has excellent compatibility with a polyester resin (A).
Examples of monoamines include primary and secondary alkylamines. Examples of such monoamines include primary amines such as butylamine and cyclohexylamine; and secondary amines such as diethylamine, dibutylamine and dicyclohexylamine. Of these, butylamine and cyclohexylamine are preferable from the viewpoint of improving processability with the polyester resin (A).
 また、モノカルボン酸及び酸無水物は、イソシアネート基との反応により生成する結合部位(上記一般式(1)中のX、X)の耐熱性が優れる点、及びカルボジイミド化合物(B)が分解した際にイソシアネートガスが発生することを効果的に抑制できる点で好ましい。
 モノカルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、イソ吉草酸、ヘキサン酸、オクタン酸、ラウリン酸、ミルスチン酸、パルミチン酸、ステアリン酸、アラキン酸、オレイン酸、リノール酸、リノレン酸、安息香酸等が挙げられる。中でも、ポリエステル系樹脂(A)との加工性を良好とする観点から、酢酸、プロピオン酸及びオクタン酸が好ましい。
 酸無水物としては、無水フタル酸、無水酢酸、無水コハク酸、無水マレイン酸、無水安息香酸等が挙げられる。中でも、ポリエステル系樹脂(A)との加工性を良好とする観点から、無水フタル酸、無水酢酸及び無水コハク酸が好ましい。
Further, the monocarboxylic acid and the acid anhydride have excellent heat resistance of the bond sites (X 1 , X 2 in the above general formula (1)) generated by the reaction with the isocyanate group, and the carbodiimide compound (B). It is preferable in that it can effectively suppress the generation of isocyanate gas when it is decomposed.
Examples of monocarboxylic acids include formic acid, acetic acid, propionic acid, isovaleric acid, hexanoic acid, octanoic acid, lauric acid, myrstinic acid, palmitic acid, stearic acid, araquinic acid, oleic acid, linoleic acid, linolenic acid, and benzoic acid. Examples include acid. Of these, acetic acid, propionic acid and octanoic acid are preferable from the viewpoint of improving processability with the polyester resin (A).
Examples of the acid anhydride include phthalic anhydride, acetic anhydride, succinic anhydride, maleic anhydride, benzoic anhydride and the like. Of these, phthalic anhydride, acetic anhydride and succinic anhydride are preferable from the viewpoint of improving processability with the polyester resin (A).
(R
 上記一般式(1)中、Rは、ジイソシアネート化合物から2つのイソシアネート基を除いた2価の残基を表し、前記ジイソシアネート化合物は、前記イソシアネート基と直接結合するベンゼン系芳香環を有し、該ベンゼン系芳香環の前記イソシアネート基と結合する位置の両オルト位には、置換基を持たない又は1つのみ置換基を有する構造である。上記ジイソシアネート化合物は、1つ又は2つ以上のベンゼン系芳香環を有しており、上記2つイソシアネート基は、それぞれ、同一の又は異なるベンゼン系芳香環に直接結合している。各イソシアネート基が結合しているベンゼン系芳香環は、該イソシアネート基の結合位置に対するオルト位の両方ともが、置換基を持つことはない。すなわち、各イソシアネート基が結合しているベンゼン系芳香環は、該イソシアネート基の結合位置に対するオルト位の一方のみに置換基を持つか、又は、両方ともに置換基を持たない。
(R 2 )
In the general formula (1), R 2 represents a divalent residue obtained by removing two isocyanate groups from the diisocyanate compound, and the diisocyanate compound has a benzene-based aromatic ring that is directly bonded to the isocyanate group. The structure has no substituent or only one substituent at both ortho positions of the benzene-based aromatic ring at the position where it is bonded to the isocyanate group. The diisocyanate compound has one or more benzene-based aromatic rings, and the two isocyanate groups are directly bonded to the same or different benzene-based aromatic rings, respectively. The benzene-based aromatic ring to which each isocyanate group is bonded does not have a substituent at both the ortho positions with respect to the bonding position of the isocyanate group. That is, the benzene-based aromatic ring to which each isocyanate group is bonded has a substituent at only one of the ortho positions with respect to the bonding position of the isocyanate group, or both have no substituent.
 このようなRを有するカルボジイミド化合物(B)は、カルボジイミド基(-N=C=N-)が、ベンゼン系芳香環に直接結合しているため、カルボキシ基との反応性が高く、従来の脂肪族ポリカルボジイミドより低いカルボジイミド基濃度でも、ポリエステル系樹脂(A)に対して、優れた耐加水分解性を発揮することができると考えられる。 In such a carbodiimide compound (B) having R 2 , the carbodiimide group (-N = C = N-) is directly bonded to the benzene-based aromatic ring, so that the carbodiimide compound (B) has high reactivity with the carboxy group and is conventionally used. It is considered that even if the carbodiimide group concentration is lower than that of the aliphatic polycarbodiimide, excellent hydrolysis resistance can be exhibited with respect to the polyester resin (A).
 また、本発明に用いるカルボジイミド化合物(B)は、特に、イソシアネート基と直接結合するベンゼン系芳香環を有し、該ベンゼン系芳香環のイソシアネート基と結合する位置の両オルト位には、置換基を持たない又は1つのみ置換基を有するジイソシアネート化合物に由来する2価の残基Rを有しているため、溶融混練及び成形加工時の加熱によりカルボジイミド化合物(B)が分解したとしても、生成するイソシアネートの反応性が高く、ガスとして組成物外に放出されることを効果的に抑制できる。 Further, the carbodiimide compound (B) used in the present invention has a benzene-based aromatic ring that is directly bonded to an isocyanate group, and a substituent is placed at both ortho positions of the benzene-based aromatic ring at a position where it is bonded to the isocyanate group. because it has a divalent residue R 2 derived from a diisocyanate compound having no or only one substituent have, as the carbodiimide compound (B) is decomposed by heat during melt kneading and molding, The isocyanate produced is highly reactive and can be effectively suppressed from being released as a gas to the outside of the composition.
 特に、上記所定のRを有するカルボジイミド化合物(B)が分解して生成するイソシアネートは、従来のカルボジイミド化合物(例えば、イソシアネート基と直接結合するベンゼン系芳香環を有し、該ベンゼン系芳香環のイソシアネート基と結合する位置の両オルト位に置換基を有するジイソシアネート化合物に由来する2価の残基をもつカルボジイミド化合物)が分解して生成するイソシアネートに比べて、反応性が高いため、ポリエステル系樹脂(A)中の成分と反応し易く、樹脂中に取り込まれ易いと推察される。
 また、特にRの部分の分子量が比較的大きなカルボジイミド化合物(B)の場合には、分解生成するイソシアネートの分子量も比較的大きくなるため、低分量のものに比べてポリエステル系樹脂(A)中にさらに残り易くなるものと推察される。
In particular, the isocyanate produced by the decomposition of the carbodiimide compound (B) having the predetermined R 2 has a conventional carbodiimide compound (for example, a benzene-based aromatic ring directly bonded to an isocyanate group, and the benzene-based aromatic ring. A polyester resin because it is more reactive than isocyanates produced by decomposition of diisocyanate compounds (carbodiimide compounds with divalent residues derived from diisocyanate compounds that have substituents at both ortho positions at the positions where they bond with isocyanate groups). It is presumed that it easily reacts with the components in (A) and is easily incorporated into the resin.
Further, particularly in the case of the carbodiimide compound (B) having a relatively large molecular weight in the R 2 portion, the molecular weight of the isocyanate produced by decomposition is also relatively large, so that the polyester resin (A) has a higher molecular weight than the low molecular weight compound. It is presumed that it will be more likely to remain.
 上記ジイソシアネート化合物は、イソシアネート基と直接結合するベンゼン系芳香環を有し、該ベンゼン系芳香環のイソシアネート基と結合する位置の両オルト位には、置換基を持たない又は1つのみ置換基を有する構造をもつものであれば、特に限定されず、例えば、トリレンジイソシアネート(トルエンジイソシアネートともいう。また、以下「TDI」と略記する場合がある。)、トリジンジイソシアネート(ジメチルビフェニルジイソシアネートともいう。以下「TODI」と略記する場合がある。)、ジフェニルメタンジイソシアネート(以下「MDI」と略記する場合がある。)、ナフタレンジイソシアネート(以下「NDI」と略記する場合がある。)及びパラフェニレンジイソシアネート(1,4-フェニレンジイソシアネートともいう。)等が挙げられる。 The diisocyanate compound has a benzene-based aromatic ring that is directly bonded to the isocyanate group, and has no substituent or only one substituent at both ortho positions of the position where the benzene-based aromatic ring is bonded to the isocyanate group. As long as it has a structure, it is not particularly limited, and for example, tolylene diisocyanate (also referred to as toluene diisocyanate; may be abbreviated as “TDI” below), trizine diisocyanate (also referred to as dimethylbiphenyl diisocyanate, hereinafter. "TODI" may be abbreviated), diphenylmethane diisocyanate (hereinafter may be abbreviated as "MDI"), naphthalenediocyanate (hereinafter may be abbreviated as "NDI") and paraphenylenediocyanate (1, 4-Also also referred to as phenylenediisocyanate) and the like.
 ここで、トリレンジイソシアネートには、2,4-TDI及び2,6-TDIの2種類の異性体が存在する。このようなトリレンジイソシアネートとしては、2,4-TDI及び2,6-TDIの混合物が好ましく、具体的には2,4-TDI(80モル%)及び2,6-TDI(20モル%)の混合物が一般的である。 Here, toluene diisocyanate has two types of isomers, 2,4-TDI and 2,6-TDI. As such a toluene diisocyanate, a mixture of 2,4-TDI and 2,6-TDI is preferable, and specifically 2,4-TDI (80 mol%) and 2,6-TDI (20 mol%). Mixtures of are common.
 また、ジフェニルメタンジイソシアネートには、2,2’-MDI、2,4’-MDI及び4,4’-MDIの3種類の異性体が存在する。このようなジフェニルメタンジイソシアネートとしては、4,4’-MDIの単体や、2,4’-MDI及び4,4’-MDIの混合物が好ましい。中でも生成するカルボジイミド化合物(B)の溶融粘度の上昇を抑制する観点で、2,4’-MDI及び4,4’-MDIの混合物がより好ましい。このような2,4’-MDI及び4,4’-MDIの混合物としては、2,4’-MDIの割合が30~70モル%であるものが好ましく、40~65モル%であるものがより好ましく、50~60モル%であるものが更に好ましく、ここで4,4’-MDIの割合は混合物の全体(100モル%)から2,4’-MDIの割合を引いた残部である。 In addition, diphenylmethane diisocyanate has three types of isomers, 2,2'-MDI, 2,4'-MDI and 4,4'-MDI. As such diphenylmethane diisocyanate, a simple substance of 4,4'-MDI or a mixture of 2,4'-MDI and 4,4'-MDI is preferable. Above all, a mixture of 2,4'-MDI and 4,4'-MDI is more preferable from the viewpoint of suppressing an increase in the melt viscosity of the carbodiimide compound (B) produced. As such a mixture of 2,4'-MDI and 4,4'-MDI, the ratio of 2,4'-MDI is preferably 30 to 70 mol%, and 40 to 65 mol% is preferable. More preferably, it is 50-60 mol%, where the proportion of 4,4'-MDI is the balance of the total mixture (100 mol%) minus the proportion of 2,4'-MDI.
 また、トリジンジイソシアネートとしては、一般的には、3,3’-ジメチルビフェニル-4,4’-ジイソシアネートである。
 また、ナフタレンジイソシアネートとしては、一般的には、1,5-ナフタレンジイソシアネートである。
The trizine diisocyanate is generally 3,3'-dimethylbiphenyl-4,4'-diisocyanate.
The naphthalene diisocyanate is generally 1,5-naphthalene diisocyanate.
 上記ジイソシアネート化合物は、耐加水分解性及びイソシアネートガス発生を効果的に抑制する観点で、トリレンジイソシアネート、トリジンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート及びパラフェニレンジイソシアネートから選ばれる1種以上を含むことが好ましく、トリジンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート及びパラフェニレンジイソシアネートから選ばれる1種以上を含むことがより好ましく、ジフェニルメタンジイソシアネートを含むことが更に好ましく、2,4’-MDI及び4,4’-MDIの混合物を含むことがより更に好ましい。 The diisocyanate compound preferably contains at least one selected from tolylene diisocyanis, trizine diisocyanis, diphenylmethane diisocyanate, naphthalenediocyanis and paraphenylenediisocyanus from the viewpoint of hydrolysis resistance and effective suppression of isocyanate gas generation. More preferably, it contains at least one selected from trizine diisocyanate, diphenylmethane diisocyanate, naphthalenediocyanis and paraphenylenediisocyanate, more preferably diphenylmethane diisocyanate, and a mixture of 2,4'-MDI and 4,4'-MDI. It is even more preferable to include it.
 また、上記ジイソシアネート化合物が、トリレンジイソシアネート、トリジンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート及びパラフェニレンジイソシアネートからなる群から選択される1種以上を含む場合、ジイソシアネート化合物の全体における、上記群から選択される1種以上の化合物の割合(合計)は、80モル%以上であることが好ましく、90モル%以上であることがより好ましく、95モル%以上であることが更に好ましく、上記群から選択される1種以上の化合物のみからなってもよい。また、製造管理のし易さ及び生産コストの低減の観点で、上記ジイソシアネート化合物は、上記群から選択される1種であることが好ましい。 Further, when the diisocyanate compound contains at least one selected from the group consisting of toluene diisocyanate, trizine diisocyanate, diphenylmethane diisocyanate, naphthalenediocyanisocyanate and paraphenylenediisocyanate, 1 is selected from the above group in the whole diisocyanate compound. The ratio (total) of the compounds of the species or more is preferably 80 mol% or more, more preferably 90 mol% or more, further preferably 95 mol% or more, and it is selected from the above group1 It may consist only of compounds of more than one species. Further, from the viewpoint of ease of production control and reduction of production cost, the diisocyanate compound is preferably one selected from the above group.
 また、上記ジイソシアネート化合物が、2,4’-MDI及び4,4’-MDIの混合物を含む場合、ジイソシアネート化合物の全体を100モル%としたときに、2,4’-MDIの割合が30~70モル%であり、4,4’-MDIの割合が30~70モル%であることが好ましい。2,4’-MDIの割合が30モル%以上の場合、カルボジイミド化合物(B)がゲル化し難くなり、保存安定性及び溶媒への溶解性を良好にすることができる。また、2,4’-MDIの割合を70モル%以下とすることにより、立体障害が大きくなり過ぎず、カルボジイミド化合物(B)の反応性が良好となり、ポリエステル系樹脂(A)と共に用いた際に所望の性能が得易くなる。このような観点から、上記ジイソシアネート化合物中の、2,4’-MDIの割合は、より好ましくは40~65モル%であり、更に好ましくは50~60モル%であり、4,4’-MDIの割合は、より好ましくは35~60モル%、更に好ましくは40~50モル%である。 Further, when the diisocyanate compound contains a mixture of 2,4'-MDI and 4,4'-MDI, the ratio of 2,4'-MDI is 30 to 30 to 100 mol% as a whole of the diisocyanate compound. It is preferably 70 mol%, and the ratio of 4,4'-MDI is preferably 30 to 70 mol%. When the ratio of 2,4'-MDI is 30 mol% or more, the carbodiimide compound (B) is less likely to gel, and storage stability and solubility in a solvent can be improved. Further, by setting the ratio of 2,4'-MDI to 70 mol% or less, the steric hindrance does not become too large, the reactivity of the carbodiimide compound (B) becomes good, and when used together with the polyester resin (A), It becomes easy to obtain the desired performance. From this point of view, the ratio of 2,4'-MDI in the diisocyanate compound is more preferably 40 to 65 mol%, further preferably 50 to 60 mol%, and 4,4'-MDI. The ratio of is more preferably 35 to 60 mol%, still more preferably 40 to 50 mol%.
 また、カルボジイミド化合物(B)の合成時にモノカルボジイミドを生成させないようにする観点から、上記ジイソシアネート化合物が、トリレンジイソシアネートである場合、上記有機化合物は、フェニルイソシアネートを除くモノイソシアネート、モノアルコール、モノアミン、モノカルボン酸及び酸無水物から選ばれる1種以上であることが好ましい。
 なお、上記ジイソシアネート化合物が、トリレンジイソシアネートであり、上記有機化合物が、フェニルイソシアネートである場合、nは4~20の数であることが好ましい。
Further, from the viewpoint of preventing the formation of monocarbodiimide during the synthesis of the carbodiimide compound (B), when the diisocyanate compound is tolylene diisocyanate, the organic compound is monoisocyanate, monoalcohol, monoamine, excluding phenylisocyanate. It is preferably one or more selected from monocarboxylic acids and acid anhydrides.
When the diisocyanate compound is tolylene diisocyanate and the organic compound is phenyl isocyanate, n is preferably a number of 4 to 20.
 なお、上記ジイソシアネート化合物が2種以上のジイソシアネート化合物を含む場合、Rは、2種類以上の残基で表される。 When the diisocyanate compound contains two or more kinds of diisocyanate compounds, R 2 is represented by two or more kinds of residues.
(R
 上記一般式(1)中、Rは、ジオール化合物から2つの水酸基を除いた2価の残基を表す。なお、本明細書中、ジオール化合物とは、分子中に水酸基を2個有する化合物を意味する。
(R 3 )
In the above general formula (1), R 3 represents a divalent residue obtained by removing two hydroxyl groups from the diol compound. In the present specification, the diol compound means a compound having two hydroxyl groups in the molecule.
 本発明に用いるカルボジイミド化合物(B)は、カルボジイミド基に隣接して上記ジオール化合物の残基及びウレタン結合を有するため、ポリエステル系樹脂(A)と馴染みがよく、より均一にポリエステル系樹脂(A)中に分散させることができると考えられる。そのため、溶融混練時に組成物内での局所的な架橋反応を起こさず、粘度上昇を抑制できると考えられる。 Since the carbodiimide compound (B) used in the present invention has the residue of the diol compound and the urethane bond adjacent to the carbodiimide group, it is familiar with the polyester resin (A) and more uniformly the polyester resin (A). It is thought that it can be dispersed inside. Therefore, it is considered that the increase in viscosity can be suppressed without causing a local cross-linking reaction in the composition during melt-kneading.
 上記ジオール化合物としては、分子中に水酸基を2個有する高分子化合物、低分子化合物が挙げられる。
 上記分子中に水酸基を2個有する高分子化合物としては、ポリエーテルポリオール(ポリアルキレンオキシドグリコール)、ポリエステルポリオール、ポリカーボネートポリオール、シリコーンジオール、ポリオレフィンポリオール、ポリウレタンポリオール、アルカン(炭素数21~)ジオール等が挙げられる。これらの中でも、ポリエステル系樹脂組成物の溶融粘度、及び溶液粘度の観点から、好ましくはポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、及びアルカンジオールから選ばれる1種以上、より好ましくはポリエーテルポリオール、ポリエステルポリオール及びポリカーボネートポリオールから選ばれる1種以上である。更に、ポリエステル系樹脂組成物の耐加水分解性の観点から、好ましくはポリエーテルポリオール及びポリカーボネートポリオール、特に好ましくポリエーテルポリオールである。
Examples of the diol compound include a high molecular compound having two hydroxyl groups in the molecule and a low molecular compound.
Examples of the polymer compound having two hydroxyl groups in the molecule include polyether polyol (polyalkylene oxide glycol), polyester polyol, polycarbonate polyol, silicone diol, polyolefin polyol, polyurethane polyol, alkane (21 to carbon atoms) diol and the like. Can be mentioned. Among these, from the viewpoint of the melt viscosity and the solution viscosity of the polyester resin composition, one or more selected from preferably a polyether polyol, a polyester polyol, a polycarbonate polyol, and an alcan diol, more preferably a polyether polyol, a polyester. One or more selected from polyols and polycarbonate polyols. Further, from the viewpoint of hydrolysis resistance of the polyester resin composition, a polyether polyol and a polycarbonate polyol are preferable, and a polyether polyol is particularly preferable.
 上記分子中に水酸基を2個有する低分子化合物としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、アルカン(炭素数7~20)ジオール等のアルカンジオール;シクロヘキサンジオール、シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式脂肪族基を有するジオール、1,4-ジヒドロキシ-2-ブテン等のアルケンジオール;ビスヒドロキシエトキシベンゼン、キシレングリコール、ビス(2-ヒドロキシエチル)テレフタル酸等の芳香環を有するジオール等が挙げられる。これらの中でも、ポリエステル系樹脂組成物の溶融粘度、及び溶液粘度の観点から、好ましくはアルカンジオール又は芳香環を有するジオール、より好ましくはアルカンジオール、更に好ましくはエチレングリコールである。 Examples of the low molecular weight compound having two hydroxyl groups in the molecule include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,2-butanediol, and 2-methyl-. Alcan diols such as 1,3-propanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, and alkane (7 to 20 carbon atoms) diol; Diols having alicyclic aliphatic groups such as cyclohexanediol, cyclohexanedimethanol, hydride bisphenol A, alkendiols such as 1,4-dihydroxy-2-butene; bishydroxyethoxybenzene, xylene glycol, bis (2-hydroxy) Examples thereof include diols having an aromatic ring such as ethyl) terephthalic acid. Among these, from the viewpoint of the melt viscosity and the solution viscosity of the polyester resin composition, an alkane diol or a diol having an aromatic ring is preferable, an alkane diol is more preferable, and ethylene glycol is more preferable.
 上記ジオール化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。特に耐加水分解性の向上及び溶融混練時の溶融粘度を好適に調整する観点からは、低分子のジオール化合物と高分子のジオール化合物とを組み合わせて用いることが好ましい。
 また、上記ジオール化合物の数平均分子量としては、ポリエステル系樹脂組成物の耐加水分解性、溶融粘度、及び溶液粘度の観点から、好ましくは100~40,000、より好ましくは150~10,000、更に好ましくは200~1,000である。なお、数平均分子量は、ゲルクロマトグラフィー法により、標準物質としてポリスチレンを用いて測定される。ただし、低分子化合物についてはこの限りではない。
The above diol compound may be used alone or in combination of two or more. In particular, from the viewpoint of improving hydrolysis resistance and preferably adjusting the melt viscosity during melt-kneading, it is preferable to use a combination of a low molecular weight diol compound and a high molecular weight diol compound.
The number average molecular weight of the diol compound is preferably 100 to 40,000, more preferably 150 to 10,000, from the viewpoint of hydrolysis resistance, melt viscosity, and solution viscosity of the polyester resin composition. More preferably, it is 200 to 1,000. The number average molecular weight is measured by a gel chromatography method using polystyrene as a standard substance. However, this does not apply to low molecular weight compounds.
(X、X
 上記一般式(1)中、X、Xは前記有機化合物のイソシアネート基と反応し得る官能基と前記ジイソシアネート化合物の前記イソシアネート基との反応により形成される基を表し、X、Xは同一でも異なっていてもよい。例えば、上記有機化合物がモノイソシアネートの場合、X、Xは下記式(I)で表される基であり、上記有機化合物がモノアルコールの場合、X、Xは下記式(II)で表される基であり、上記有機化合物がモノアミンの場合、X、Xは下記式(III)で表される基であり、上記有機化合物がモノカルボン酸の場合、X、Xは下記式(IV)で表される基であり、上記有機化合物が酸無水物の場合、X、Xは下記式(V)で表される基である。
(X 1 , X 2 )
In the general formula (1), X 1 and X 2 represent groups formed by the reaction of a functional group capable of reacting with the isocyanate group of the organic compound and the isocyanate group of the diisocyanate compound, and X 1 and X 2 are represented. May be the same or different. For example, when the organic compound is monoisocyanate, X 1 and X 2 are groups represented by the following formula (I), and when the organic compound is mono alcohol, X 1 and X 2 are the following formula (II). When the organic compound is a monoamine, X 1 and X 2 are groups represented by the following formula (III), and when the organic compound is a monocarboxylic acid, X 1 , X 2 Is a group represented by the following formula (IV), and when the organic compound is an acid anhydride, X 1 and X 2 are groups represented by the following formula (V).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(n、m)
 上記一般式(1)中、n、mは1~20の数を表す。
 特に上記一般式(1)中、nは、ポリエステル系樹脂組成物の耐加水分解性、溶融粘度上昇抑制及びイソシアネートガス発生の抑制の観点から、好ましくは1~15、より好ましくは2~10である。なお、上記ジイソシアネート化合物がトリレンジイソシアネートであり、上記有機化合物が、フェニルイソシアネートである場合、nは、特に4~20の数であることが好ましい。
 また、上記一般式(1)中、mは、ポリエステル系樹脂組成物の耐加水分解性及び溶融粘度上昇抑制の観点から、好ましくは1~15、より好ましくは1~10、更に好ましくは1~3、より更に好ましくは1である。
 なお、上記一般式(1)中、nとmとの関係は、ポリエステル系樹脂組成物の耐加水分解性の観点から、好ましくはn≧mであり、より好ましくはn>mである。
(N, m)
In the above general formula (1), n and m represent numbers from 1 to 20.
In particular, in the above general formula (1), n is preferably 1 to 15, more preferably 2 to 10, from the viewpoint of hydrolysis resistance of the polyester resin composition, suppression of increase in melt viscosity, and suppression of isocyanate gas generation. is there. When the diisocyanate compound is tolylene diisocyanate and the organic compound is phenyl isocyanate, n is particularly preferably a number of 4 to 20.
Further, in the above general formula (1), m is preferably 1 to 15, more preferably 1 to 10, and further preferably 1 to 1 from the viewpoint of hydrolysis resistance of the polyester resin composition and suppression of increase in melt viscosity. 3, even more preferably 1.
In the general formula (1), the relationship between n and m is preferably n ≧ m, more preferably n> m, from the viewpoint of hydrolysis resistance of the polyester resin composition.
 なお、上記一般式(1)中に、構成単位(N):「―N=C=N-R―」と、構成単位(M)「―NH-CO-O-R-O-CO-NH-R―」とが、それぞれ複数ある場合、各構成単位の結合の仕方は、ブロック結合であってもよいし、ランダム結合であってもよい。
 すなわち、上記一般式(1)中、n及びmは、カルボジイミド化合物(B)中に含まれる構成単位(N)及び構成単位(M)の数を示しているだけであり、上記一般式(1)に表されるような、構成単位(N)及び構成単位(M)がブロック結合したカルボジイミド化合物に限定されるものではない。
In the general formula (1), the structural unit (N): "-N = C = N-R 2- " and the structural unit (M) "-NH-CO-OR 3- O-CO" When there are a plurality of "-NH-R 2- ", the method of connecting each structural unit may be a block connection or a random connection.
That is, in the general formula (1), n and m only indicate the number of the structural units (N) and the structural units (M) contained in the carbodiimide compound (B), and the general formula (1) ) Is not limited to the carbodiimide compound in which the structural unit (N) and the structural unit (M) are block-bonded.
(カルボジイミド当量)
 カルボジイミド化合物(B)のカルボジイミド当量(カルボジイミド基1mol当たりの化学式量)は、ポリエステル系樹脂組成物の耐加水分解性及びイソシアネートガス発生の抑制の観点から、好ましくは200~1,500、より好ましくは200~1,250、更に好ましくは200~1,000であり、より更に好ましくは200~700である。
(Carbodiimide equivalent)
The carbodiimide equivalent (chemical formula amount per 1 mol of carbodiimide group) of the carbodiimide compound (B) is preferably 200 to 1,500, more preferably 200 to 1,500 from the viewpoint of hydrolysis resistance of the polyester resin composition and suppression of isocyanate gas generation. It is 200 to 1,250, more preferably 200 to 1,000, and even more preferably 200 to 700.
(カルボジイミド化合物(B)の含有量)
 上記カルボジイミド化合物(B)の含有量は、ポリエステル系樹脂組成物の耐加水分解性及びイソシアネートガス発生の抑制の観点から、ポリエステル系樹脂(A)及びカルボジイミド化合物(B)の合計量100質量部に対して、0.1~10質量部であり、好ましくは0.2~7質量部、より好ましくは0.3~5質量部である。
(Content of carbodiimide compound (B))
The content of the carbodiimide compound (B) is 100 parts by mass in total of the polyester resin (A) and the carbodiimide compound (B) from the viewpoint of hydrolysis resistance of the polyester resin composition and suppression of isocyanate gas generation. On the other hand, it is 0.1 to 10 parts by mass, preferably 0.2 to 7 parts by mass, and more preferably 0.3 to 5 parts by mass.
(カルボジイミド化合物(B)の製造方法)
 本発明のカルボジイミド化合物(B)は、公知の方法によって製造することができる。
 例えば、
(i)ジイソシアネート化合物(a)とジオール化合物(b)とを反応させてウレタン結合を含む両末端イソシアネートの化合物(以下、「(d)成分」ともいう)を生成し、その後、(a)成分、(d)成分、末端封止剤(c)及び触媒の存在下でカルボジイミド化及び末端封止を行う方法、
(ii)ジイソシアネート化合物(a)を触媒の存在下でカルボジイミド化してポリカルボジイミド(以下、「(e)成分」ともいう)を得て、次いで、(e)成分にジオール化合物(b)、及び末端封止剤(c)を添加して、共重合反応及び末端封止反応する方法、
(iii)ジイソシアネート化合物(a)、ジオール化合物(b)、及び末端封止剤(c)を触媒の存在下でウレタン化反応、カルボジイミド化反応、及び末端封止反応を同時に行う方法等が挙げられる。
 これらの中でも、生産性の観点から、上記(i)の方法によって製造することが好ましい。
 具体的には、ジイソシアネート化合物(a)とジオール化合物(b)とを、ジオール化合物(b)の水酸基に対して、ジイソシアネートのイソシアネート基が過剰量となるように混合してウレタン化反応を行い、次いで、末端封止剤(c)、及びカルボジイミド化触媒として有機リン系化合物又は有機金属化合物等を添加して、無溶媒又は不活性溶媒中で、カルボジイミド化反応を行うことが好ましい。
(Method for producing carbodiimide compound (B))
The carbodiimide compound (B) of the present invention can be produced by a known method.
For example
(I) The diisocyanate compound (a) and the diol compound (b) are reacted to produce a compound of both-terminal isocyanates containing a urethane bond (hereinafter, also referred to as “component (d)”), and then the component (a) is produced. , (D), carbodiimidization and terminal encapsulation in the presence of terminal encapsulant (c) and catalyst,
(Ii) The diisocyanate compound (a) is carbodiimided in the presence of a catalyst to obtain a polycarbodiimide (hereinafter, also referred to as “component (e)”), and then the component (e) is added to the diol compound (b) and the terminal. A method of adding a sealing agent (c) to carry out a copolymerization reaction and a terminal sealing reaction,
(Iii) Examples thereof include a method in which a diisocyanate compound (a), a diol compound (b), and an end-capping agent (c) are simultaneously subjected to a urethanization reaction, a carbodiimideization reaction, and an end-sealing reaction in the presence of a catalyst. ..
Among these, from the viewpoint of productivity, it is preferable to produce by the method (i) above.
Specifically, the diisocyanate compound (a) and the diol compound (b) are mixed with the hydroxyl group of the diol compound (b) so that the isocyanate group of the diisocyanate is excessive, and a urethanization reaction is carried out. Next, it is preferable to add the terminal sealant (c) and an organic phosphorus compound or an organic metal compound as a carbodiimidization catalyst to carry out the carbodiimidization reaction in a solvent-free or inert solvent.
 ここで、上記ジイソシアネート化合物(a)及びジオール化合物(b)の具体例としては前述のとおりである。なお、上記ジイソシアネート化合物及びジオール化合物はそれぞれ、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、上記末端封止剤(c)は、前述のイソシアネート基と反応し得る官能基を1つ有する有機化合物であり、具体例は前述のとおりである。なお、上記有機化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、上記有機化合物の配合量は、上記一般式(1)中のn、mが上記範囲内となるように適宜調整すればよい。
Here, specific examples of the diisocyanate compound (a) and the diol compound (b) are as described above. The diisocyanate compound and the diol compound may be used alone or in combination of two or more.
Further, the terminal encapsulant (c) is an organic compound having one functional group capable of reacting with the above-mentioned isocyanate group, and specific examples are as described above. The organic compound may be used alone or in combination of two or more. Further, the blending amount of the organic compound may be appropriately adjusted so that n and m in the general formula (1) are within the above range.
 上記カルボジイミド化反応に用いられる触媒としては、例えば、3-メチル-1-フェニル-2-ホスホレン-1-オキシド、3-メチル-1-エチル-2-ホスホレン-1-オキシド、1,3-ジメチル-2-ホスホレン-1-オキシド、1-フェニル-2-ホスホレン-1-オキシド、1-エチル-2-ホスホレン-1-オキシド及び3-メチル-2-ホスホレン-1-オキシド1-メチル-2-ホスホレン-1-オキシド等を挙げることができ、これらの中でも、反応性が良く、工業的に入手の容易な3-メチル-1-フェニル-2-ホスホレン-1-オキシドが好ましい。これらは、単独でもよく、2種以上を組み合わせて用いてもよい。 Examples of the catalyst used in the carbodiimidization reaction include 3-methyl-1-phenyl-2-phospholene-1-oxide, 3-methyl-1-ethyl-2-phospholene-1-oxide, and 1,3-dimethyl. -2-phospholene-1-oxide, 1-phenyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide and 3-methyl-2-phospholene-1-oxide 1-methyl-2- Phosphorene-1-oxide and the like can be mentioned, and among these, 3-methyl-1-phenyl-2-phospholene-1-oxide, which has good reactivity and is easily available industrially, is preferable. These may be used alone or in combination of two or more.
 触媒の使用量は、使用する触媒の種類に応じて適宜決定できるが、好ましくはジイソシアネート化合物(a)100質量に対して、0.01~10質量部、より好ましくは0.05~5.0質量部、更に好ましくは0.1~3.0質量部である。 The amount of the catalyst used can be appropriately determined depending on the type of catalyst used, but is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5.0 parts by mass with respect to 100 mass by mass of the diisocyanate compound (a). It is by mass, more preferably 0.1 to 3.0 parts by mass.
 上記カルボジイミド化反応は、無溶媒でも行うことができ、溶媒中で行うこともできる。使用できる溶媒としては、テトラヒドロフラン、1,3-ジオキサン、及びジオキソラン等の脂環式エーテル:ベンゼン、トルエン、キシレン、及びエチルベンゼン等の芳香族炭化水素:クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、パークレン、トリクロロエタン、及びジクロロエタン等のハロゲン化炭化水素、及びシクロヘキサノン等が挙げられる。これらは、単独でもよく、2種以上を組み合わせて用いてもよい。 The above carbodiimideization reaction can be carried out without a solvent or in a solvent. Solvents that can be used include alicyclic ethers such as tetrahydrofuran, 1,3-dioxane, and dioxolane: benzene, toluene, xylene, and aromatic hydrocarbons such as ethylbenzene: chlorobenzene, dichlorobenzene, trichlorobenzene, percrene, trichloroethane, etc. And halogenated hydrocarbons such as dichloroethane, cyclohexanone and the like. These may be used alone or in combination of two or more.
 また、上記(a)成分と(b)成分とのウレタン化反応の条件は、特に限定はされず、使用する原料等に応じて適宜決定することができる。例えば、反応温度は、生産性の観点から、好ましくは30~200℃、より好ましくは35~120℃、更に好ましくは40~80℃である。 Further, the conditions for the urethanization reaction between the component (a) and the component (b) are not particularly limited and can be appropriately determined according to the raw materials used and the like. For example, the reaction temperature is preferably 30 to 200 ° C., more preferably 35 to 120 ° C., and even more preferably 40 to 80 ° C. from the viewpoint of productivity.
 また、上記カルボジイミド化反応の条件は、特に限定はされず、使用する原料等に応じて適宜決定することができる。例えば、反応温度は、溶媒を用いない場合、生産性の観点から、好ましくは40~250℃、より好ましくは60~200℃、更に好ましくは80~150℃であり、溶媒中で反応を行う場合は、40℃以上、溶媒の沸点以下であることが好ましい。さらに、反応時間は、生産性の観点から、好ましくは10分~20時間、より好ましくは1時間~10時間、更に好ましくは2時間~4時間である。 The conditions for the carbodiimidization reaction are not particularly limited and can be appropriately determined according to the raw materials used and the like. For example, the reaction temperature is preferably 40 to 250 ° C., more preferably 60 to 200 ° C., still more preferably 80 to 150 ° C. when the reaction is carried out in a solvent, from the viewpoint of productivity when no solvent is used. Is preferably 40 ° C. or higher and lower than the boiling point of the solvent. Further, the reaction time is preferably 10 minutes to 20 hours, more preferably 1 hour to 10 hours, still more preferably 2 hours to 4 hours from the viewpoint of productivity.
<その他の成分>
 ポリエステル系樹脂組成物には、必要に応じて、顔料、充填剤、レベリング剤、界面活性剤、分散剤、紫外線吸収剤、酸化防止剤、難燃剤、着色剤等の添加剤を適宜配合することができる。
<Other ingredients>
Additives such as pigments, fillers, leveling agents, surfactants, dispersants, ultraviolet absorbers, antioxidants, flame retardants, and colorants should be appropriately added to the polyester resin composition, if necessary. Can be done.
<ポリエステル系樹脂(A)及びカルボジイミド化合物(B)の合計含有量>
 本発明のポリエステル系樹脂組成物中のポリエステル系樹脂(A)及びカルボジイミド化合物(B)の合計含有量は、ポリエステル系樹脂組成物の耐加水分解性、機械特性、溶融粘度上昇抑制、加工性及びイソシアネートガス発生の抑制の観点から、好ましくは90~100質量%、より好ましくは92~100質量%、更に好ましくは95~100質量%である。
<Total content of polyester resin (A) and carbodiimide compound (B)>
The total content of the polyester resin (A) and the carbodiimide compound (B) in the polyester resin composition of the present invention includes hydrolysis resistance, mechanical properties, suppression of melt viscosity increase, processability, and processability of the polyester resin composition. From the viewpoint of suppressing the generation of isocyanate gas, it is preferably 90 to 100% by mass, more preferably 92 to 100% by mass, and further preferably 95 to 100% by mass.
<ポリエステル系樹脂組成物の製造方法>
 本発明のポリエステル系樹脂組成物は、例えば、ポリエステル系樹脂(A)に対して、カルボジイミド化合物(B)、及び必要に応じて加えるその他の成分を配合し、溶融混練することにより製造することができる。このような本発明のポリエステル系樹脂組成物は、上記カルボジイミド化合物(B)を用いることにより、溶融混練時にもイソシアネートガスが発生し難いため、作業環境を悪化させることがない。また、上記カルボジイミド化合物(B)を用いることにより、溶融粘度の大幅な上昇を抑えることができ、溶融混練時の作業性を高めることができるため、ポリエステル系樹脂組成物の生産性に優れていると考えられる。
<Manufacturing method of polyester resin composition>
The polyester-based resin composition of the present invention can be produced, for example, by blending a carbodiimide compound (B) with a polyester-based resin (A) and other components added as necessary, and melt-kneading the mixture. it can. By using the carbodiimide compound (B) in such a polyester-based resin composition of the present invention, isocyanate gas is less likely to be generated even during melt-kneading, so that the working environment is not deteriorated. Further, by using the carbodiimide compound (B), a significant increase in melt viscosity can be suppressed, and workability during melt-kneading can be improved, so that the productivity of the polyester-based resin composition is excellent. it is conceivable that.
 溶融混練は加熱手段を備えたミキサーで行うことができる。各材料をミキサーに投入する順序に特に制限はないが、ベースとなるポリエステル系樹脂を先に投入して溶融した後に、カルボジイミド化合物、及び必要に応じて加える添加剤を投入することが好ましい。 Melt kneading can be performed with a mixer equipped with heating means. The order in which each material is charged into the mixer is not particularly limited, but it is preferable that the base polyester resin is first charged and melted, and then the carbodiimide compound and, if necessary, additives are added.
 溶融混練の時間は、スクリューの形状や回転速度等により適宜決定することができ、通常1~30分程度である。また、溶融混練時の温度はベースとなるポリエステル系樹脂の種類により異なるが、通常150~350℃程度である。 The melt-kneading time can be appropriately determined depending on the shape of the screw, the rotation speed, etc., and is usually about 1 to 30 minutes. The temperature during melt-kneading varies depending on the type of the base polyester resin, but is usually about 150 to 350 ° C.
 本発明のポリエステル系樹脂組成物によれば、製造工程において作業環境を悪化させることなく、良質の成形品を得ることができる。 According to the polyester-based resin composition of the present invention, a high-quality molded product can be obtained without deteriorating the working environment in the manufacturing process.
 本発明のポリエステル系樹脂組成物から成形品を得る場合、上述の溶融混練時に押出し成形、射出成形、ブロー成形等により成形してもよいし、一旦、マスターバッチ等にコンパウンド化して、その後、他の材料と溶融混練して成形を行ってもよい。 When a molded product is obtained from the polyester-based resin composition of the present invention, it may be molded by extrusion molding, injection molding, blow molding or the like during the above-mentioned melt-kneading, or it may be first compounded into a masterbatch or the like and then other. You may perform molding by melt-kneading with the material of.
 本発明のポリエステル系樹脂組成物は、いずれの成形方法においても、加熱成形時にイソシアネートガスの発生を効果的に抑制でき、作業環境を悪化させることがなく、また、成形時に溶融粘度が大幅に上昇することがないため、作業性が良好である。また、本発明のポリエステル系樹脂組成物により成形された成形品は、耐加水分解性が良好であることから、強度等の諸性能に優れるものである。 The polyester-based resin composition of the present invention can effectively suppress the generation of isocyanate gas during heat molding in any molding method, does not deteriorate the working environment, and significantly increases the melt viscosity during molding. Workability is good because there is no need to do so. In addition, the molded product molded from the polyester-based resin composition of the present invention has good hydrolysis resistance, and is therefore excellent in various performances such as strength.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念及び特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, but includes all aspects included in the concept of the present invention and claims, and varies within the scope of the present invention. Can be modified to.
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
 以下、合成例、実施例及び比較例で用いた各種材料を示す。
<ジイソシアネート化合物>
・2,4’-ジフェニルメタンジイソシアネート54質量%と4,4’-ジフェニルメタンジイソシアネート46質量%の混合物(2,4’-MDI(54%)と4,4’-MDI(46%)の混合物):東ソー株式会社製、製品名「モノメリックMDI;ミリオネートNM」
・4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI):東ソー株式会社製、製品名「ミリオネートMT」
・2,4-トリレンジイソシアネート80質量%と2,6-トリレンジイソシアネート20質量%の混合物(2,4-TDI(80%)と2,6-TDI(20%)の混合物):三井化学SKCポリウレタン株式会社製、製品名「コスモネートT-80」
・4,4’-ジシクロヘキシルメタンジイソシアネート(HMDI):住化コベストロウレタン株式会社製、製品名「デスモジュールW」
・2,4,6-トリイソプロピルフェニル-1,3-ジイソシアネート:シンセシア社製、製品名「TRIDI」
Hereinafter, various materials used in Synthesis Examples, Examples and Comparative Examples are shown.
<Diisocyanate compound>
A mixture of 54% by mass of 2,4'-diphenylmethane diisocyanate and 46% by mass of 4,4'-diphenylmethane diisocyanate (mixture of 2,4'-MDI (54%) and 4,4'-MDI (46%)): Product name "Monomeric MDI; Millionate NM" manufactured by Tosoh Corporation
-4,5'-Diphenylmethane diisocyanate (4,5'-MDI): Tosoh Corporation, product name "Millionate MT"
-Mixture of 2,4-toluene diisocyanate 80% by mass and 2,6-toluene diisocyanate 20% by mass (mixture of 2,4-TDI (80%) and 2,6-TDI (20%)): Mitsui Chemicals Product name "Cosmonate T-80" manufactured by SKC Polyurethane Co., Ltd.
・ 4,4'-Dicyclohexylmethane diisocyanate (HMDI): manufactured by Sumika Covestro Urethane Co., Ltd., product name "Death Module W"
-2,4,6-triisopropylphenyl-1,3-diisocyanate: manufactured by Synthesia, product name "TRIDI"
<ジオール化合物>
・ポリカーボネートポリオール1:宇部興産株式会社製、製品名「エタナコールUH-50」、分子量504
・ポリカーボネートポリオール2:旭化成ケミカルズ株式会社製、製品名「デュラノールT-5650E」、分子量523
・ポリエステルポリオール1:川崎化成工業株式会社製、製品名「マキシモールRFK-505」、分子量442
・ポリエステルポリオール2:川崎化成工業株式会社製、製品名「マキシモールRFK-509」、分子量573
・ポリエステルポリオール3:株式会社クラレ製、製品名「クラレポリオールP-1020」、分子量1000
・ポリエステルポリオール4:株式会社クラレ製、製品名「クラレポリオールP-520」、分子量500
・ポリエーテルポリオール1:日本油脂株式会社製、製品名「ユニオールPB-500」、分子量500
・ポリエーテルポリオール2:三洋化成工業株式会社製、製品名「サンニックスPP-400」、分子量405
<Diol compound>
-Polycarbonate polyol 1: Made by Ube Industries, Ltd., product name "Etanacol UH-50", molecular weight 504
-Polycarbonate polyol 2: manufactured by Asahi Kasei Chemicals Co., Ltd., product name "Duranol T-5650E", molecular weight 523
-Polyester polyol 1: Kawasaki Kasei Chemicals Co., Ltd., product name "Maximol RFK-505", molecular weight 442
-Polyester polyol 2: manufactured by Kawasaki Kasei Chemicals Co., Ltd., product name "Maximol RFK-509", molecular weight 573
-Polyester polyol 3: Kuraray Co., Ltd., product name "Kuraray polyol P-1020", molecular weight 1000
-Polyester polyol 4: Kuraray Co., Ltd., product name "Kuraray polyol P-520", molecular weight 500
-Polyether polyol 1: Made by NOF CORPORATION, product name "Uniol PB-500", molecular weight 500
-Polyether polyol 2: Sanyo Chemical Industries, Ltd., product name "Sannicks PP-400", molecular weight 405
<末端封止剤>
・フェニルイソシアネート:ランクセス株式会社製
・イソプロピルアルコール:関東化学株式会社製
・1-オクタノール:東京化成工業株式会社製
・ドデシルアルコール:関東化学株式会社製
・シクロヘキシルアミン:東京化成工業株式会社製
・オクタン酸:東京化成工業株式会社製
・無水フタル酸:東京化成工業株式会社製
<カルボジイミド化触媒>
・3-メチル-1-フェニル-2-ホスホレン-1-オキシド:四国化成工業株式会社製、製品名「MPO」
<Terminal sealant>
・ Phenyl isocyanate: manufactured by Rankses Co., Ltd. ・ Isopropyl alcohol: manufactured by Kanto Chemical Co., Inc. ・ 1-octanol: manufactured by Tokyo Chemical Industry Co., Ltd. ・ Dodecyl alcohol: manufactured by Kanto Chemical Co., Inc. ・ Cyclohexylamine: manufactured by Tokyo Chemical Industry Co., Ltd. : Made by Tokyo Chemical Industry Co., Ltd. ・ Phtalic anhydride: Made by Tokyo Chemical Industry Co., Ltd. <Carbodiimidization catalyst>
-3-Methyl-1-phenyl-2-phospholene-1-oxide: manufactured by Shikoku Chemicals Corporation, product name "MPO"
<ポリエステル系樹脂(A)>
・ポリブチレンテレフタレート(PBT)樹脂:三菱エンジニアリングプラスチックス株式会社製、製品名「ノバデュラン5010L」
・ポリエチレンテレフタレート(PET)樹脂:帝人化成株式会社製、製品名「TRN-8500FF」
・ポリ乳酸(PLA)樹脂:Natureworks社製、製品名「Ingeo Biopolymer4032D」
<Polyester resin (A)>
-Polybutylene terephthalate (PBT) resin: manufactured by Mitsubishi Engineering Plastics Co., Ltd., product name "Novaduran 5010L"
-Polyethylene terephthalate (PET) resin: manufactured by Teijin Chemicals Ltd., product name "TRN-8500FF"
-Polylactic acid (PLA) resin: manufactured by Natureworks, product name "Ingeo Biopolymer 4032D"
(合成例1)
 表1に示すジイソシアネート化合物と、ジオール化合物と、末端封止剤とを、表1の割合で、還流管および攪拌機付き反応容器に入れ、窒素気流下60℃で1時間撹拌した後、カルボジイミド化触媒を表1の割合で添加し、100℃で3時間撹拌した。
 その後、赤外吸収(IR)スペクトル測定によって、波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、m=1、n=2のカルボジイミド化合物P1を得た。
(Synthesis Example 1)
The diisocyanate compound shown in Table 1, the diol compound, and the terminal encapsulant were placed in a reaction vessel equipped with a reflux tube and a stirrer at the ratio shown in Table 1, stirred at 60 ° C. for 1 hour under a nitrogen stream, and then a carbodiimidation catalyst. Was added at the ratio shown in Table 1 and stirred at 100 ° C. for 3 hours.
Then, by infrared absorption (IR) spectrum measurement, it was confirmed that the absorption peak due to the isocyanate group having a wavelength of about 2270 cm -1 was almost eliminated, and a carbodiimide compound P1 having m = 1 and n = 2 was obtained.
(合成例2)
 合成例2では、表1に示すジイソシアネート化合物と、ジオール化合物と、末端封止剤と、カルボジイミド化触媒とを、表1の割合で配合した以外は、合成例1と同様の方法で、m=1、n=3のカルボジイミド化合物P2を得た。
(Synthesis Example 2)
In Synthesis Example 2, the diisocyanate compound shown in Table 1, the diol compound, the terminal encapsulant, and the carbodiimidization catalyst were blended in the proportions shown in Table 1, but in the same manner as in Synthesis Example 1, m = A carbodiimide compound P2 having 1, n = 3 was obtained.
(合成例3)
 合成例3では、表1に示すジイソシアネート化合物と、ジオール化合物と、末端封止剤と、カルボジイミド化触媒とを、表1の割合で配合した以外は、合成例1と同様の方法で、m=1、n=3のカルボジイミド化合物P3を得た。なお、表1に示されるように、末端封止剤は、フェニルイソシアネートとイソプロピルアルコールとを併用しているが、これらが混ざり合うとそれぞれの末端封止剤としての機能が消失する場合があるため、先にイソプロピルアルコールを配合後に、十分な時間差を設けてフェニルイソシアネートを配合した。
(Synthesis Example 3)
In Synthesis Example 3, the diisocyanate compound shown in Table 1, the diol compound, the terminal encapsulant, and the carbodiimidization catalyst were blended in the proportions shown in Table 1, but in the same manner as in Synthesis Example 1, m = A carbodiimide compound P3 having 1, n = 3 was obtained. As shown in Table 1, phenylisocyanate and isopropyl alcohol are used in combination as the end-capping agent, but if they are mixed, their functions as end-capping agents may be lost. After blending isopropyl alcohol first, phenyl isocyanate was blended with a sufficient time difference.
(合成例4)
 合成例4では、表1に示すジイソシアネート化合物と、ジオール化合物と、末端封止剤と、カルボジイミド化触媒とを、表1の割合で配合した以外は、合成例1と同様の方法で、m=1、n=5のカルボジイミド化合物P4を得た。
(Synthesis Example 4)
In Synthesis Example 4, the diisocyanate compound shown in Table 1, the diol compound, the terminal encapsulant, and the carbodiimidization catalyst were blended in the proportions shown in Table 1, but in the same manner as in Synthesis Example 1, m = A carbodiimide compound P4 having 1, n = 5 was obtained.
(合成例5)
 表1に示すジイソシアネート化合物と、ジオール化合物を、還流管および攪拌機付き反応容器に入れ、撹拌しながら表1に示す末端封止剤を添加し、窒素気流下100℃で2時間撹拌した後、カルボジイミド化触媒を添加して100℃で3時間撹拌した。なお、各成分の配合割合は表1に示すとおりとした。
 その後、赤外吸収(IR)スペクトル測定によって、波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、m=1、n=5のカルボジイミド化合物P5を得た。
(Synthesis Example 5)
The diisocyanate compound and the diol compound shown in Table 1 are placed in a reaction vessel equipped with a reflux tube and a stirrer, the terminal sealant shown in Table 1 is added while stirring, and the mixture is stirred at 100 ° C. for 2 hours under a nitrogen stream, and then carbodiimide. A chemical catalyst was added and the mixture was stirred at 100 ° C. for 3 hours. The blending ratio of each component was as shown in Table 1.
Then, by infrared absorption (IR) spectrum measurement, it was confirmed that the absorption peak due to the isocyanate group having a wavelength of about 2270 cm -1 was almost eliminated, and a carbodiimide compound P5 having m = 1 and n = 5 was obtained.
(合成例6)
 合成例6では、表1に示すジイソシアネート化合物と、ジオール化合物と、末端封止剤と、カルボジイミド化触媒とを、表1の割合で配合した以外は、合成例1と同様の方法で、m=1、n=5のカルボジイミド化合物P6を得た。
(Synthesis Example 6)
In Synthesis Example 6, the diisocyanate compound shown in Table 1, the diol compound, the terminal encapsulant, and the carbodiimidization catalyst were blended in the proportions shown in Table 1, but in the same manner as in Synthesis Example 1, m = A carbodiimide compound P6 having 1, n = 5 was obtained.
(合成例7)
 合成例7では、表1に示すジイソシアネート化合物と、ジオール化合物と、末端封止剤と、カルボジイミド化触媒とを、表1の割合で配合すると共に、窒素気流下での攪拌を60℃で1時間から160℃で2時間に変更した以外は、合成例1と同様の方法で、m=1、n=5のカルボジイミド化合物P7を得た。
(Synthesis Example 7)
In Synthesis Example 7, the diisocyanate compound shown in Table 1, the diol compound, the terminal encapsulant, and the carbodiimidization catalyst are blended at the ratios shown in Table 1, and stirring under a nitrogen stream is performed at 60 ° C. for 1 hour. A carbodiimide compound P7 having m = 1 and n = 5 was obtained in the same manner as in Synthesis Example 1 except that the temperature was changed from 1 to 160 ° C. for 2 hours.
(合成例8)
 合成例8では、表1に示すジイソシアネート化合物と、ジオール化合物と、末端封止剤と、カルボジイミド化触媒とを、表1の割合で配合した以外は、合成例1と同様の方法で、m=1、n=8のカルボジイミド化合物P8を得た。
(Synthesis Example 8)
In Synthesis Example 8, the diisocyanate compound shown in Table 1, the diol compound, the terminal encapsulant, and the carbodiimidization catalyst were blended in the proportions shown in Table 1, but in the same manner as in Synthesis Example 1, m = A carbodiimide compound P8 having 1, n = 8 was obtained.
(合成例9)
 合成例9では、表1に示すジイソシアネート化合物と、ジオール化合物と、末端封止剤と、カルボジイミド化触媒とを、表1の割合で配合すると共に、カルボジイミド化触媒添加後の100℃での攪拌を3時間から4時間に変更した以外は、合成例1と同様の方法で、m=1、n=4のカルボジイミド化合物P9を得た。
(Synthesis Example 9)
In Synthesis Example 9, the diisocyanate compound shown in Table 1, the diol compound, the terminal encapsulant, and the carbodiimidization catalyst are blended at the ratios shown in Table 1, and stirring at 100 ° C. after adding the carbodiimided catalyst is performed. A carbodiimide compound P9 having m = 1 and n = 4 was obtained in the same manner as in Synthesis Example 1 except that the time was changed from 3 hours to 4 hours.
(合成例10)
 合成例10では、表1に示すジイソシアネート化合物とカルボジイミド化触媒とを、表1の割合で還流管および攪拌機付き反応容器に入れ、窒素気流下180℃で4時間撹拌した後、温度を150℃まで下げた。その後ジオール化合物と、末端封止剤とを表1の割合で添加し、150℃で1時間撹拌した。
 その後、赤外吸収(IR)スペクトル測定によって、波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消失したことを確認して、m=1、n=6のカルボジイミド化合物P10を得た。
(Synthesis Example 10)
In Synthesis Example 10, the diisocyanate compound shown in Table 1 and the carbodiimidization catalyst were placed in a reflux tube and a reaction vessel equipped with a stirrer at the ratio shown in Table 1, stirred at 180 ° C. for 4 hours under a nitrogen stream, and then the temperature was raised to 150 ° C. I lowered it. Then, the diol compound and the terminal encapsulant were added at the ratios shown in Table 1, and the mixture was stirred at 150 ° C. for 1 hour.
Then, by infrared absorption (IR) spectrum measurement, it was confirmed that the absorption peak due to the isocyanate group having a wavelength of about 2270 cm -1 was almost eliminated, and a carbodiimide compound P10 having m = 1 and n = 6 was obtained.
(合成例11)
 合成例11では、表1に示すジイソシアネート化合物と、ジオール化合物と、末端封止剤と、カルボジイミド化触媒とを、表1の割合で配合した以外は、合成例1と同様の方法で、m=1、n=6のカルボジイミド化合物P11を得た。
(Synthesis Example 11)
In Synthesis Example 11, the diisocyanate compound shown in Table 1, the diol compound, the terminal encapsulant, and the carbodiimidization catalyst were blended in the proportions shown in Table 1, but in the same manner as in Synthesis Example 1, m = A carbodiimide compound P11 having 1, n = 6 was obtained.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(実施例1)
 ポリエステル系樹脂(A)としてPBT樹脂:98質量部を、ラボミキサーを用いて250℃の条件下で溶融させた後、カルボジイミド化合物(B)として合成例1で得られたカルボジイミド化合物P1:2質量部を加え、3分間混合して、ポリエステル系樹脂組成物を得た。
(Example 1)
98 parts by mass of PBT resin as polyester resin (A) was melted under the condition of 250 ° C. using a lab mixer, and then carbodiimide compound P1: 2 mass obtained as carbodiimide compound (B) in Synthesis Example 1. Parts were added and mixed for 3 minutes to obtain a polyester resin composition.
(実施例2)
 実施例2では、PBT樹脂の配合量を98質量部から95質量部に、カルボジイミド化合物P1の配合量を2質量部から5質量部に、それぞれ変更した以外は、実施例1と同様の方法でポリエステル系樹脂組成物を得た。
(Example 2)
In Example 2, the same method as in Example 1 was used except that the blending amount of the PBT resin was changed from 98 parts by mass to 95 parts by mass and the blending amount of the carbodiimide compound P1 was changed from 2 parts by mass to 5 parts by mass. A polyester resin composition was obtained.
(実施例3~10)
 実施例3~10では、合成例1で得られたカルボジイミド化合物P1に替えて、合成例2~9で得られたカルボジイミド化合物P2~9をそれぞれ用いると共に、PBT樹脂及び各カルボジイミド化合物の各配合量を表2に示す割合とした以外は、実施例1と同様の方法でポリエステル系樹脂組成物を得た。
(Examples 3 to 10)
In Examples 3 to 10, the carbodiimide compounds P2 to 9 obtained in Synthesis Examples 2 to 9 are used in place of the carbodiimide compounds P1 obtained in Synthesis Example 1, and the amounts of the PBT resin and each carbodiimide compound compounded. A polyester resin composition was obtained in the same manner as in Example 1 except that the ratios shown in Table 2 were set.
(比較例1及び2)
 比較例1及び2では、合成例1で得られたカルボジイミド化合物P1に替えて、合成例10及び11で得られたカルボジイミド化合物P10及び11をそれぞれ用いた以外は、実施例1と同様の方法でポリエステル系樹脂組成物を得た。
(Comparative Examples 1 and 2)
In Comparative Examples 1 and 2, the same method as in Example 1 was used except that the carbodiimide compounds P10 and 11 obtained in Synthesis Examples 10 and 11 were used in place of the carbodiimide compound P1 obtained in Synthesis Example 1. A polyester resin composition was obtained.
(比較例3)
 比較例3では、PBT樹脂の配合量を98質量部から85質量部に、カルボジイミド化合物P1の配合量を2質量部から15質量部に、それぞれ変更した以外は、実施例1と同様の方法でポリエステル系樹脂組成物を得た。
(Comparative Example 3)
In Comparative Example 3, the same method as in Example 1 was used except that the blending amount of the PBT resin was changed from 98 parts by mass to 85 parts by mass and the blending amount of the carbodiimide compound P1 was changed from 2 parts by mass to 15 parts by mass. A polyester resin composition was obtained.
(実施例11~20及び比較例4~6)
 実施例11~20及び比較例4~6では、PBT樹脂に替えてPET樹脂を用いると共に、溶融温度を250℃から280℃に変更した以外は、それぞれ実施例1~10及び比較例1~3と同様の方法でポリエステル系樹脂組成物を得た。
(Examples 11 to 20 and Comparative Examples 4 to 6)
In Examples 11 to 20 and Comparative Examples 4 to 6, PET resin was used instead of PBT resin, and Examples 1 to 10 and Comparative Examples 1 to 3 were used, respectively, except that the melting temperature was changed from 250 ° C. to 280 ° C. A polyester resin composition was obtained in the same manner as in the above.
(実施例21~30及び比較例7~9)
 実施例21~30及び比較例7~9では、PBT樹脂に替えてPLA樹脂を用いると共に、溶融温度を250℃から200℃に変更した以外は、それぞれ実施例1~10及び比較例1~3と同様の方法でポリエステル系樹脂組成物を得た。
(Examples 21 to 30 and Comparative Examples 7 to 9)
In Examples 21 to 30 and Comparative Examples 7 to 9, PLA resin was used instead of PBT resin, and Examples 1 to 10 and Comparative Examples 1 to 3, respectively, except that the melting temperature was changed from 250 ° C. to 200 ° C. A polyester resin composition was obtained in the same manner as in the above.
[評価]
 上記実施例及び比較例に係るポリエステル系樹脂組成物について、下記に示す特性評価を行った。結果を表2~4に示す。
[Evaluation]
The polyester-based resin compositions according to the above Examples and Comparative Examples were evaluated for the characteristics shown below. The results are shown in Tables 2-4.
[1]イソシアネートガス発生
(実施例1~20、並びに比較例1~6)
 溶融混練したポリエステル系樹脂組成物を300℃で20分間加熱し、GC-MSにて発生するガスを分析した。
 GC-MSは、株式会社島津製作所製、製品名「6890GCシステム」を用いた。
 イソシアネートガスの検出量(発生量)は少ないほど好ましく、検出量に応じて、以下の検出レベルで評価した。
<検出レベルとその基準値>
A:イソシアネートガスの検出量が500ppm未満である場合
B:イソシアネートガスの検出量が500ppm以上1000ppm未満である場合
C:イソシアネートガスの検出量が1000ppm以上である場合
[1] Isocyanate gas generation (Examples 1 to 20 and Comparative Examples 1 to 6)
The melt-kneaded polyester resin composition was heated at 300 ° C. for 20 minutes, and the gas generated by GC-MS was analyzed.
For GC-MS, a product name "6890GC system" manufactured by Shimadzu Corporation was used.
The smaller the detected amount (generated amount) of the isocyanate gas, the more preferable, and the evaluation was made at the following detection levels according to the detected amount.
<Detection level and its reference value>
A: When the detected amount of isocyanate gas is less than 500 ppm B: When the detected amount of isocyanate gas is 500 ppm or more and less than 1000 ppm C: When the detected amount of isocyanate gas is 1000 ppm or more
(実施例21~30及び比較例7~9)
 実施例21~30及び比較例7~9では、加熱温度を300℃から200℃に変更した以外は、実施例1等と同様の方法で、ガス分析を行い、イソシアネートガスの検出量の評価を行った。
(Examples 21 to 30 and Comparative Examples 7 to 9)
In Examples 21 to 30 and Comparative Examples 7 to 9, gas analysis was performed in the same manner as in Example 1 and the like except that the heating temperature was changed from 300 ° C. to 200 ° C., and the detection amount of isocyanate gas was evaluated. went.
[2]強度保持率(耐加水分解性)
(実施例1~10並びに比較例1~3)
 耐加水分解性の評価指標として、以下の方法により、高度加速寿命試験後の強度保持率(%)を求めた。
<高度加速寿命試験>
 溶融混練したポリエステル系樹脂組成物を、軟化点以上の温度で平板プレスし、厚み約300μmのシートを作製し、該シートから幅10mm長さ70mmの短冊シートを作製した。
 短冊シートを、高度加速寿命試験装置(ESPEC社製  HAST  CHAMBER  EHS-210M)に入れ、121℃、100%RHの条件下で、72時間及び120時間保持して、高度加速寿命試験を行った。
<引張強度の測定>
 上記試験前のサンプルと、上記試験72時間経過後のサンプルと、上記試験120時間経過後のサンプルのそれぞれについて、下記の条件で引張強度の測定を行った。
 引張強度の測定は、引張試験機(INSTRON社製、製品名「INSTRON3365」)を用いて、室温(20℃±5℃)にて行った。測定は、各サンプル5点(短冊シート5枚)ずつ行い、その測定値(N=5)の平均値を、そのサンプルの引張強度とした。
<強度保持率の算出>
 強度保持率(%)は、上記試験前のサンプルに対する、上記試験72時間経過後又は120時間経過後のサンプルの引張強度の比率として、下記式(I)により算出した。
 強度保持率=[試験後の引張強度]/[試験前の引張強度]×100(%)・・・(I)
 強度保持率は、値が大きいほど、高度加速寿命試験の前後において引張強度が維持されていることを意味し、ポリエステル系樹脂組成物としての耐加水分解性に優れることを意味している。
[2] Strength retention (hydrolysis resistance)
(Examples 1 to 10 and Comparative Examples 1 to 3)
As an evaluation index of hydrolysis resistance, the strength retention rate (%) after the highly accelerated life test was determined by the following method.
<Highly accelerated life test>
The melt-kneaded polyester resin composition was flat-plate pressed at a temperature equal to or higher than the softening point to prepare a sheet having a thickness of about 300 μm, and a strip sheet having a width of 10 mm and a length of 70 mm was prepared from the sheet.
The strip sheet was placed in an advanced accelerated life test device (HAST CHAMBER EHS-210M manufactured by ESPEC) and held at 121 ° C. and 100% RH for 72 hours and 120 hours to perform an advanced accelerated life test.
<Measurement of tensile strength>
The tensile strength was measured under the following conditions for each of the sample before the test, the sample after 72 hours of the test, and the sample after 120 hours of the test.
The tensile strength was measured at room temperature (20 ° C. ± 5 ° C.) using a tensile tester (manufactured by INSTRON, product name "INSTRON3365"). The measurement was performed at 5 points (5 strip sheets) for each sample, and the average value of the measured values (N = 5) was taken as the tensile strength of the sample.
<Calculation of strength retention rate>
The strength retention rate (%) was calculated by the following formula (I) as the ratio of the tensile strength of the sample after the lapse of 72 hours or 120 hours of the test to the sample before the test.
Strength retention = [tensile strength after test] / [tensile strength before test] x 100 (%) ... (I)
The larger the value of the strength retention rate, the more the tensile strength is maintained before and after the high acceleration life test, and it means that the polyester resin composition is excellent in hydrolysis resistance.
(実施例11~20及び比較例4~6)
 実施例11~20及び比較例4~6では、高度加速寿命試験における保持時間を72時間及び120時間から、24時間及び40時間に変更した以外は、実施例1等と同様の方法で、強度保持率を求めた。
(Examples 11 to 20 and Comparative Examples 4 to 6)
In Examples 11 to 20 and Comparative Examples 4 to 6, the strength was increased in the same manner as in Example 1 except that the holding time in the advanced accelerated life test was changed from 72 hours and 120 hours to 24 hours and 40 hours. The retention rate was calculated.
(実施例21~30及び比較例7~9)
 実施例21~30及び比較例7~9では、高度加速寿命試験において、高度加速寿命試験装置に替えて、恒温恒湿器(ESPEC社製 PH-2KT-E)を用いると共に、保持条件を85℃、85%RHの条件下で、24時間及び48時間保持に変更した以外は、実施例1等と同様の方法で、強度保持率を求めた。
(Examples 21 to 30 and Comparative Examples 7 to 9)
In Examples 21 to 30 and Comparative Examples 7 to 9, in the advanced accelerated life test, a constant temperature and humidity controller (PH-2KT-E manufactured by ESPEC) was used instead of the advanced accelerated life test device, and the holding condition was set to 85. The strength retention rate was determined by the same method as in Example 1 and the like except that the retention was changed to 24 hours and 48 hours under the conditions of ° C. and 85% RH.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表2~4に示されるように、本発明で特定するカルボジイミド化合物(B)であるカルボジイミド化合物P1~P9を所定の割合で含むポリエステル系樹脂組成物(実施例1~30)は、耐加水分解性に優れ、イソシアネートガスが発生し難いこと(検出レベルA、B)が確認された。 As shown in Tables 2 to 4, the polyester resin compositions (Examples 1 to 30) containing the carbodiimide compounds P1 to P9, which are the carbodiimide compounds (B) specified in the present invention, in a predetermined ratio are hydrolyzed resistant. It was confirmed that the property was excellent and isocyanate gas was hardly generated (detection levels A and B).
 これに対し、本発明で特定するカルボジイミド化合物(B)以外のカルボジイミド化合物P10及びP11を含有するポリエステル系樹脂組成物(比較例1、2、4、5、7及び8)及び本発明で特定するカルボジイミド化合物(B)であるカルボジイミド化合物P1を含むがその含有量が多すぎるポリエステル系樹脂組成物(比較例3、6及び9)は、本発明のポリエステル系樹脂組成物(実施例1~30)に比べて、いずれもイソシアネートガスの発生量が多い(検出レベルC)ことが確認された。 On the other hand, polyester resin compositions containing carbodiimide compounds P10 and P11 other than the carbodiimide compound (B) specified in the present invention (Comparative Examples 1, 2, 4, 5, 7 and 8) and the present invention specify. The polyester-based resin compositions (Comparative Examples 3, 6 and 9) containing the carbodiimide compound P1 which is the carbodiimide compound (B) but containing too much of the carbodiimide compound P1 are the polyester-based resin compositions of the present invention (Examples 1 to 30). It was confirmed that the amount of isocyanate gas generated was large (detection level C) in all cases.
 なお、本発明で特定するカルボジイミド化合物(B)以外のカルボジイミド化合物P10及びP11を含有する場合は、組み合わせるポリエステル系樹脂(A)の種類(例えば、PBT樹脂)との関係によっては、得られるポリエステル系樹脂組成物の耐加水分解性が悪化することが確認された。
 また、カルボジイミド化合物の含有量が多すぎる場合は、組み合わせるポリエステル系樹脂(A)の種類によらず、得られるポリエステル系樹脂組成物の耐加水分解性が悪化することが確認された。
When the carbodiimide compounds P10 and P11 other than the carbodiimide compound (B) specified in the present invention are contained, the polyester-based resin obtained depends on the relationship with the type of polyester-based resin (A) to be combined (for example, PBT resin). It was confirmed that the hydrolysis resistance of the resin composition deteriorated.
Further, it was confirmed that when the content of the carbodiimide compound is too large, the hydrolysis resistance of the obtained polyester resin composition deteriorates regardless of the type of the polyester resin (A) to be combined.

Claims (7)

  1.  ポリエステル系樹脂(A)と、下記一般式(1)で表されるカルボジイミド化合物(B)とを含有するポリエステル系樹脂組成物であって、
     前記カルボジイミド化合物(B)の含有量が、前記ポリエステル系樹脂(A)及び前記カルボジイミド化合物(B)の合計量100質量部に対して、0.1~10質量部である、ポリエステル系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(1)中、R、Rはイソシアネート基と反応し得る官能基を1つ有する有機化合物の前記官能基を除いた残基を表し、R、Rは同一でも異なっていてもよい。Rは、ジイソシアネート化合物から2つのイソシアネート基を除いた2価の残基を表し、前記ジイソシアネート化合物は、前記イソシアネート基と直接結合するベンゼン系芳香環を有し、該ベンゼン系芳香環の前記イソシアネート基と結合する位置の両オルト位には、置換基を持たない又は1つのみ置換基を有する構造である。Rは、ジオール化合物から2つの水酸基を除いた2価の残基を表す。X、Xは前記有機化合物の前記官能基と前記ジイソシアネート化合物の前記イソシアネート基との反応により形成される基を表し、X、Xは同一でも異なっていてもよい。n、mは1~20の数を表す。)
    A polyester resin composition containing a polyester resin (A) and a carbodiimide compound (B) represented by the following general formula (1).
    A polyester resin composition in which the content of the carbodiimide compound (B) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the polyester resin (A) and the carbodiimide compound (B). ..
    Figure JPOXMLDOC01-appb-C000001

    (In the general formula (1), R 1 and R 4 represent residues excluding the functional group of an organic compound having one functional group capable of reacting with an isocyanate group, and R 1 and R 4 are the same but different. R 2 represents a divalent residue obtained by removing two isocyanate groups from the diisocyanate compound, and the diisocyanate compound has a benzene-based aromatic ring that is directly bonded to the isocyanate group, and the benzene-based aromatic ring is used. The structure has no substituent or only one substituent at both ortho positions of the ring at the position where it is bonded to the isocyanate group. R 3 is a divalent residue obtained by removing two hydroxyl groups from the diol compound. Representing a group. X 1 and X 2 represent a group formed by the reaction of the functional group of the organic compound with the isocyanate group of the diisocyanate compound, and X 1 and X 2 may be the same or different. n and m represent numbers from 1 to 20.)
  2.  前記ジイソシアネート化合物が、トリレンジイソシアネート、トリジンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート及びパラフェニレンジイソシアネートから選ばれる1種以上を含む、請求項1に記載のポリエステル系樹脂組成物。 The polyester-based resin composition according to claim 1, wherein the diisocyanate compound contains at least one selected from toluene diisocyanate, trizine diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate and paraphenylenedi isocyanate.
  3.  前記ジイソシアネート化合物が、2,4’-ジフェニルメタンジイソシアネート及び4、4’-ジフェニルメタンジイソシアネートの混合物を含み、
     前記ジイソシアネート化合物の全体を100モル%としたときに、前記2,4’-ジフェニルメタンジイソシアネートの割合が30~70モル%であり、前記4,4’-ジフェニルメタンジイソシアネートの割合が30~70モル%である、請求項2に記載のポリエステル系樹脂組成物。
    The diisocyanate compound contains a mixture of 2,4'-diphenylmethane diisocyanate and 4,4'-diphenylmethane diisocyanate.
    When the total amount of the diisocyanate compound is 100 mol%, the ratio of the 2,4'-diphenylmethane diisocyanate is 30 to 70 mol%, and the ratio of the 4,4'-diphenylmethane diisocyanate is 30 to 70 mol%. The polyester-based resin composition according to claim 2.
  4.  前記ジイソシアネート化合物の全体を100モル%としたときに、前記2,4’-ジフェニルメタンジイソシアネートの割合が50~60モル%であり、前記4,4’-ジフェニルメタンジイソシアネートの割合が40~50モル%である、請求項3に記載のポリエステル系樹脂組成物。 When the total amount of the diisocyanate compound is 100 mol%, the ratio of the 2,4'-diphenylmethane diisocyanate is 50 to 60 mol%, and the ratio of the 4,4'-diphenylmethane diisocyanate is 40 to 50 mol%. The polyester-based resin composition according to claim 3.
  5.  前記イソシアネート基と反応し得る官能基を1つ有する有機化合物が、モノイソシアネート、モノアルコール、モノアミン、モノカルボン酸及び酸無水物から選ばれる1種以上である、請求項1~4のいずれか1項に記載のポリエステル系樹脂組成物。 Any one of claims 1 to 4, wherein the organic compound having one functional group capable of reacting with the isocyanate group is at least one selected from monoisocyanate, monoalcohol, monoamine, monocarboxylic acid and acid anhydride. The polyester-based resin composition according to the section.
  6.  前記ジオール化合物が、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、及びアルカンジオールから選ばれる1種以上である、請求項1~5のいずれか1項に記載のポリエステル系樹脂組成物。 The polyester-based resin composition according to any one of claims 1 to 5, wherein the diol compound is one or more selected from a polyether polyol, a polyester polyol, a polycarbonate polyol, and an alkane diol.
  7.  前記ポリエステル系樹脂(A)が、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンサクシネート、ポリ乳酸、及びポリヒドロキシアルカン酸から選ばれる1種以上である、請求項1~6のいずれか1項に記載のポリエステル系樹脂組成物。 The one according to any one of claims 1 to 6, wherein the polyester resin (A) is at least one selected from polyethylene terephthalate, polybutylene terephthalate, polybutylene succinate, polylactic acid, and polyhydroxyalkanoic acid. Polyester resin composition.
PCT/JP2020/014846 2019-04-15 2020-03-31 Polyester resin composition WO2020213391A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019077161A JP7249197B2 (en) 2019-04-15 2019-04-15 Polyester resin composition
JP2019-077161 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020213391A1 true WO2020213391A1 (en) 2020-10-22

Family

ID=72836852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014846 WO2020213391A1 (en) 2019-04-15 2020-03-31 Polyester resin composition

Country Status (2)

Country Link
JP (1) JP7249197B2 (en)
WO (1) WO2020213391A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593056A (en) * 1990-06-07 1993-04-16 Bayer Ag Method for stabilizing plastic having ester group
JPH05178812A (en) * 1991-05-28 1993-07-20 Bayer Ag Preparation of storable liquid organic isocyanate having carbodiimide group and/or uretoneimine group, and its use for preparing polyurethane plastic
JPH09249801A (en) * 1996-03-14 1997-09-22 Nisshinbo Ind Inc Hydrolysis stabilizer for unsaturated polyester resin and method for stabilizing the unsaturated polyester resin against hydrolysis by the hydrolysis stabilizer
JP2000256436A (en) * 1999-03-08 2000-09-19 Basf Ag Carbodiimide, production and use thereof, and mixture containing carbodiimide
JP2001011151A (en) * 1999-04-30 2001-01-16 Nippon Paint Co Ltd Thermosetting aqueous coating material composition, membrane formation by using the same and plurally layered coated membrane formation
JP2013193986A (en) * 2012-03-19 2013-09-30 Toyo Ink Sc Holdings Co Ltd Crosslinking agent and method for producing the same
JP2013249456A (en) * 2012-06-04 2013-12-12 Techno Polymer Co Ltd Resin composition and molding
WO2015119191A1 (en) * 2014-02-05 2015-08-13 日清紡ケミカル株式会社 Polyester-based resin composition, production method for said polyester-based resin composition, and molded article using said polyester-based resin composition
WO2015119190A1 (en) * 2014-02-05 2015-08-13 日清紡ケミカル株式会社 Polyester resin composition and molded article using said polyester resin composition
WO2018092752A1 (en) * 2016-11-18 2018-05-24 日清紡ケミカル株式会社 Polycarbodiimide copolymer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102924887A (en) * 2006-07-21 2013-02-13 日本电气株式会社 Aliphatic polyester resin composition and method for production thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593056A (en) * 1990-06-07 1993-04-16 Bayer Ag Method for stabilizing plastic having ester group
JPH05178812A (en) * 1991-05-28 1993-07-20 Bayer Ag Preparation of storable liquid organic isocyanate having carbodiimide group and/or uretoneimine group, and its use for preparing polyurethane plastic
JPH09249801A (en) * 1996-03-14 1997-09-22 Nisshinbo Ind Inc Hydrolysis stabilizer for unsaturated polyester resin and method for stabilizing the unsaturated polyester resin against hydrolysis by the hydrolysis stabilizer
JP2000256436A (en) * 1999-03-08 2000-09-19 Basf Ag Carbodiimide, production and use thereof, and mixture containing carbodiimide
JP2001011151A (en) * 1999-04-30 2001-01-16 Nippon Paint Co Ltd Thermosetting aqueous coating material composition, membrane formation by using the same and plurally layered coated membrane formation
JP2013193986A (en) * 2012-03-19 2013-09-30 Toyo Ink Sc Holdings Co Ltd Crosslinking agent and method for producing the same
JP2013249456A (en) * 2012-06-04 2013-12-12 Techno Polymer Co Ltd Resin composition and molding
WO2015119191A1 (en) * 2014-02-05 2015-08-13 日清紡ケミカル株式会社 Polyester-based resin composition, production method for said polyester-based resin composition, and molded article using said polyester-based resin composition
WO2015119190A1 (en) * 2014-02-05 2015-08-13 日清紡ケミカル株式会社 Polyester resin composition and molded article using said polyester resin composition
WO2018092752A1 (en) * 2016-11-18 2018-05-24 日清紡ケミカル株式会社 Polycarbodiimide copolymer

Also Published As

Publication number Publication date
JP2020176167A (en) 2020-10-29
JP7249197B2 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
KR101051708B1 (en) Yellowing inhibited carbodiimide compositions, stabilizers against hydrolysis and thermoplastic resin compositions
KR102267208B1 (en) Polyester-based resin composition, production method for said polyester-based resin composition, and molded article using said polyester-based resin composition
JP5793585B2 (en) POLYESTER RESIN COMPOSITION AND MOLDED ARTICLE USING THE POLYESTER RESIN COMPOSITION
KR101086442B1 (en) A stabilizer against hydrolysis for an ester-group-containing resin and a thermoplastic resin composition
WO2018092752A1 (en) Polycarbodiimide copolymer
WO2020213391A1 (en) Polyester resin composition
JP7232697B2 (en) Polyester resin composition
KR102132954B1 (en) Ester-type resin composition, method for producing said ester-type resin composition, and molded article produced using said ester-type resin
TWI675882B (en) Polyester resin composition, method for producing the polyester resin composition, and molded article using the polyester resin composition
CN113728040B (en) Polyester resin composition
JPH10218956A (en) Flame-retardant polyurethane foam
TWI674289B (en) Polyester resin composition and molded article using the polyester resin composition
US20220396656A1 (en) Compatibilizer and polyester resin composition
JP2003342364A (en) Degradable resin and degradable resin composition comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790995

Country of ref document: EP

Kind code of ref document: A1