WO2020213209A1 - Gas chromatography sample preparation method and analysis method - Google Patents

Gas chromatography sample preparation method and analysis method Download PDF

Info

Publication number
WO2020213209A1
WO2020213209A1 PCT/JP2019/048544 JP2019048544W WO2020213209A1 WO 2020213209 A1 WO2020213209 A1 WO 2020213209A1 JP 2019048544 W JP2019048544 W JP 2019048544W WO 2020213209 A1 WO2020213209 A1 WO 2020213209A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
solution
gas chromatography
analysis
standard
Prior art date
Application number
PCT/JP2019/048544
Other languages
French (fr)
Japanese (ja)
Inventor
結実 海野
川名 修一
藤原 賢
尾島 典行
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2020213209A1 publication Critical patent/WO2020213209A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis

Definitions

  • Non-Patent Document 1 oxime formation is performed by adding a pyridine solution in which methoxyamine hydrochloride is dissolved to a sample.
  • the efficiency of derivatization of molecules contained in the sample may vary depending on the sample preparation method.
  • the first aspect of the present invention is to prepare a sample solution containing a sample, to prepare a standard solution containing a standard substance having a known concentration, the sample solution, the standard solution, the sample solution, and the sample solution. At least one measurement of pH with a mixed solution obtained by mixing the standard solution, and analysis of a solution containing the same type of molecule as the analysis target and the standard substance, and the measured pH.
  • a derivatization sample is prepared based on the data obtained by the analysis, and the derivatization sample is brought into contact with a derivatizing agent in the presence of a base to prepare a gas chromatography sample.
  • the present invention relates to a method for preparing a sample for gas chromatography in which at least gas chromatography is performed on the solution contacted with the derivatizing agent in the presence of the base when the analysis is carried out.
  • a second aspect of the present invention relates to an analysis method comprising preparing a gas chromatography sample by the method for preparing a gas chromatography sample of the first aspect, and subjecting the gas chromatography sample to at least gas chromatography. ..
  • FIG. 1 is a conceptual diagram for explaining a method for preparing a sample for gas chromatography according to an embodiment.
  • FIG. 2 is a flowchart showing the flow of the analysis method according to the embodiment.
  • FIG. 3 is a flowchart showing the flow of the analysis method according to the modified example.
  • FIG. 4 is a table showing the peak area in the chromatogram obtained by gas chromatography / mass spectrometry in the examples.
  • FIG. 5 is a graph showing the peak area of the peak corresponding to pyruvic acid in the chromatogram obtained by gas chromatography / mass spectrometry in the example.
  • a solution containing a sample to be analyzed (hereinafter referred to as an analysis target sample), a solution containing a standard substance, and a solution containing the analysis target sample and the standard substance.
  • an analysis target sample a solution containing a sample to be analyzed
  • a solution containing a standard substance a solution containing the analysis target sample and the standard substance.
  • One pH measurement is performed, and a sample to be derivatized is prepared based on the measured pH.
  • the solution containing the sample to be analyzed is referred to as a sample solution
  • the solution containing the standard substance is referred to as a standard solution
  • the solution containing the sample to be analyzed and the standard substance is referred to as a mixed solution.
  • FIG. 1 is a conceptual diagram showing the preparation of a gas chromatography sample of the present embodiment.
  • gas chromatography is abbreviated as GC.
  • the sample solution Sn contains the sample S to be analyzed.
  • the sample Sg for GC is prepared by derivatization from the mixed solution M containing the standard solution Ss containing the internal standard Is and the sample solution Sn.
  • the mixed solution M is a sample for derivatization.
  • the concentration from the detection intensity of the molecule, etc. Can be calculated.
  • the detection intensity refers to the magnitude of the detection signal corresponding to the molecule.
  • FIG. 1 shows the flow of preparation when a plurality of standard solutions Ss are mixed to prepare a sample Sgx for GC.
  • Standard solutions Ss1, Ss2 and Ss3 containing the internal standards Is1, Is2 and Is3 corresponding to the three types of molecules contained in the sample S to be analyzed are prepared.
  • the sample solution Sn and the standard solutions Ss1, Ss2 and Ss3 are mixed to prepare a mixed solution Mx containing the sample S to be analyzed and the internal standards Is1, Is2 and Is3 (arrow A1).
  • FIG. 1 shows an example in which three types of internal standards Is1, Is2, and Is3 are prepared for each of the three types of molecules, the number of internal standards prepared is not particularly limited.
  • a plurality of molecules may be quantified using one internal standard Is.
  • TMSification trimethylsilylation
  • TMS agent trimethylsilylating agent
  • FIG. 1 shows the flow of preparation when preparing the GC sample Sg1 without mixing the standard solutions Ss with each other.
  • the sample solution Sn and the standard solution Ss1 are mixed to prepare a mixed solution M1 for quantifying the molecule corresponding to the internal standard Is1 (arrow A5). It is assumed that the mixed solution M1 is prepared without using the standard solution Ss other than the standard solution Ss1.
  • the mixed solution M1 is subjected to a derivatization reaction (arrow A6), ie, in the example of FIG. 1, methoxymization (arrow A7) and TMS formation (arrow A8).
  • the pH of the standard solution Ss may differ significantly depending on the properties of the molecules constituting the internal standard Is. Therefore, when a plurality of standard solution Ss are mixed to prepare a GC sample Sgx as shown in the upper part of FIG. 1, and when a GC sample Sg1 is prepared without mixing the standard solution Ss as shown in the lower part of FIG. It was found that even when the same amount of molecules are subjected to analysis containing GC, the detection intensity of the molecules is different.
  • the pH of at least one of the sample solution Sn, the standard solution Ss, and the mixed solution M is measured.
  • the method for measuring pH is not particularly limited, and a part of these solutions is transferred to another container or the like, and a pH measuring device such as a pH meter, pH test paper, or a reagent whose color changes depending on pH is used. Can be measured.
  • the pH of the mixed solution M is adjusted to be comparable in a series of analyzes performed under the same analytical conditions, or to be comparable to the analysis to be compared.
  • the term "similar” as used herein means that the pH difference is appropriately set to less than 2, less than 1, or the like so that the desired accuracy can be obtained in the analysis including GC.
  • the pH of the plurality of mixed solutions M can be adjusted by adjusting the pH.
  • the pH of a plurality of standard solutions Ss is measured and the difference between the pH of some standard solutions Ss and the pH of other standard solutions Ss is larger than a predetermined threshold value.
  • the pH of the plurality of mixed solutions M can be adjusted by changing the standard substance or its concentration as described above.
  • the threshold value is appropriately set to an arbitrary value such as 1, 2, 3, 4, or the like.
  • the pH of the mixed solution M By measuring the pH of the mixed solution M, it can be confirmed whether the mixed solution M that meets the conditions required by the pH has been prepared, and if necessary, re-preparation can be performed. By combining the measurement of the pH of the sample solution Sn, the standard solution Ss, and the mixed solution M, the pH can be adjusted more accurately.
  • the sample S to be analyzed and the standard substance can be dissolved in a solvent to form a solution, and the pH of the solution can be measured, and the analysis including GC is not particularly limited as long as it is possible.
  • the sample S to be analyzed may contain a molecule to be analyzed, and at least one of the molecules can be derivatized.
  • the standard substance is the internal standard Is, a molecule having a structure similar to that of the corresponding molecule to be analyzed is used, and when detected by a mass spectrometer, it is preferable to use a stable isotope of the molecule to be analyzed.
  • the reference substance is an external standard
  • the same type of molecule as the analysis target can be used as the reference substance.
  • methoxymation is performed and pyridine is used as the solvent for the methoxymizing agent, a cyclic molecule is included as the molecule to be analyzed.
  • the derivatization method is not particularly limited as long as at least a part of the derivatization reaction is carried out in the presence of a base and its efficiency depends on pH, such as oximeization such as methoxymation and TMS formation. Derivatization and combinations thereof can be used.
  • the base is not particularly limited, but pyridine and the like can be used.
  • methoxymization and TMS formation can be performed in the presence of pyridine.
  • the methoxymizing agent is not particularly limited, but methoxyamine and a salt thereof can be used, and as an example, methoxyamine hydrochloride can be used.
  • the TMS agent is not particularly limited, but for example, N-methyl-N-trimethylsilyl trifluoroacetamide (MSTFA), N-trimethylsilyl imidazole (TMSI), N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA), N, O-bis (trimethylsilyl) acetoamide (BSA), trimethylsilyldimethylamine (TMDSDMA), trimethylsilyldiethylamine (TMSDEA), trimethylchlorosilane (TMCS) and the like can be used.
  • MSTFA N-methyl-N-trimethylsilyl trifluoroacetamide
  • TMSI N-trimethylsilyl imidazole
  • BSTFA O-bis (trimethylsilyl) trifluoroacetamide
  • BSA O-bis (trimethylsilyl) acetoamide
  • TDSDMA trimethylsilyldimethylamine
  • TMSDEA trimethylsilyldiethylamine
  • the detection intensity can be detected by using the peak intensity or peak area of the peak corresponding to the target molecule in the chromatogram, but the calculation method of the detection intensity is not particularly limited, for example, the peak intensity of the peak of the mass spectrum. Alternatively, the peak area or the like may be used.
  • step S101 the sample solution Sn is prepared.
  • step S103 the standard solution Ss is selected and prepared.
  • step S105 a standard solution Ss that is at least partially different from the conventional one is selected.
  • step S109 derivatization is performed using the determined standard solution Ss, and a sample Sg for GC is prepared.
  • step S111 is started.
  • step S111 the GC sample Sg is subjected to analysis containing GC.
  • step S113 is started.
  • step S113 the information obtained by the analysis including GC is output.
  • step S113 the process is completed.
  • the method of the analysis (hereinafter referred to as trial analysis) is performed by at least GC in the same manner as the actual analysis of the sample S to be analyzed (hereinafter referred to as the main analysis), and is preferably performed by the same analysis method.
  • the sample solution for trial analysis (hereinafter referred to as trial sample solution)
  • the sample solution Sn of the sample S to be analyzed may be used, or a solution containing the same type of molecule as the molecule to be analyzed may be prepared separately. Good.
  • the difference in the detection intensity in the data obtained by detecting the molecules contained in the trial sample solution is a plurality of GC samples for trial analysis prepared under different conditions (hereinafter referred to as trial GC samples). ), which is less than a predetermined threshold such as 20% and 10%.
  • a predetermined threshold such as 20% and 10%.
  • a GC sample Sg is prepared using at least a part of the standard solution Ss used for preparing the trial GC sample, for example, the most convenient one, and this analysis is performed.
  • FIG. 3 is a flowchart showing the flow of the analysis method according to this modified example.
  • step S201 a trial sample solution is prepared.
  • step S203 the standard solution Ss is selected and prepared.
  • step S205 is started.
  • step S205 a mixed solution for trial analysis (hereinafter referred to as a trial mixed solution) is prepared.
  • a trial mixed solution is prepared in the same manner as in the above-described embodiment except that the trial sample solution is used as the sample solution.
  • a trial mixed solution containing one standard substance and a trial mixed solution containing a plurality of standard substances are prepared.
  • step S207 the molecules contained in the trial mixed solution are derivatized to prepare a sample for trial GC.
  • a sample for trial GC is prepared in the same manner as in the above-described embodiment except that the trial mixed solution is used as the mixed solution.
  • step S209 is started.
  • step S209 a sample for trial GC containing one standard substance and a sample for trial GC containing a plurality of standard substances are subjected to an analysis containing at least GC (trial analysis).
  • the detection intensity of the molecule in the data obtained by the former trial analysis is compared with the detection intensity of the molecule in the data obtained by the latter trial analysis.
  • step S211 is started.
  • step S211 it is determined whether or not the difference in the detection intensity between the plurality of trial GC samples is less than the predetermined threshold value. This determination can be performed by a gas chromatograph for performing trial analysis or a control device equipped with a CPU or the like built in or attached to or connected to an analyzer such as GC-MS.
  • step S213 for the standard solution Ss containing a plurality of standard substances, the sample solution Sn containing the sample S to be analyzed is prepared, and the sample Sg for GC is prepared.
  • step S213 is completed, step S215 is started. Since steps S215 and subsequent steps are the same as steps S111 and subsequent steps in the flowchart of FIG. 2 described above, the description thereof will be omitted.
  • the base is pyridine. This makes it possible to perform derivatization and analysis utilizing the characteristics of pyridine.
  • the derivatizing agent is trimethylsilyl. It is an agent.
  • various molecules can be silylated, and the target molecule can be efficiently derivatized by selecting an appropriate TMS agent.
  • the derivatization sample is pyridine and methoxymylated. After contacting with the methoxymization reaction solution containing the agent, contact with the trimethylsilylating agent is carried out in the presence of pyridine.
  • the pH of the derivatization sample particularly affects the efficiency of derivatization, and in such a case, the variation in derivatization due to pH can be reduced.
  • the analysis method is to prepare a gas chromatography sample by the method for preparing a gas chromatography sample according to any one of paragraphs 1 to 5, and the gas chromatography sample. At least to be subjected to gas chromatography. As a result, the influence of pH on the derivatization of the molecules contained in the sample can be reduced, and the analysis can be performed with high accuracy.
  • the present invention is not limited to the contents of the above embodiment. Other aspects conceivable within the scope of the technical idea of the present invention are also included within the scope of the present invention.
  • GC / MS was performed by GCMS-TQ8040 (Shimadzu), where AOC-20i (Shimadzu) was installed as an autosampler.
  • FIG. 4 is a table showing the intensities of pyruvic acid and lactic acid or sodium lactate detected in GC / MS of each of the solutions (1) to (5).
  • “Pyruvic acid-metho-TMS” indicates a methoxymated and TMS-ized pyruvate ion.
  • "Lactic acid-2 TMS” indicates lactic acid ions that have been TMS-ized in two places.
  • GC / MS was performed 6 times, and the result of each time was No. 1 to No. It is indicated by the number 6. The peak area of the chromatogram was used as the detection intensity.
  • “Average”, “SD” and “CV” indicate the arithmetic mean, standard deviation and coefficient of variation (%) of the detected intensities at 6 GC / MS, respectively. “Ratio” indicates the ratio (%) of the average detection intensity of pyruvic acid in each of the solutions (2) to (5) to the average detection intensity of pyruvic acid in the solution (1).
  • FIG. 5 is a graph showing the arithmetic mean of the peak area corresponding to pyruvic acid in the chromatogram obtained by GC / MS of the solutions (1) to (5).
  • lactic acid was present at a high concentration as in (2), pyruvic acid was not detected.
  • concentration of lactic acid was lower than that of (2) as in (3), pyruvic acid was detected, but the detection intensity was lower than that of (1).
  • sodium lactate which is a weak base, was used instead of lactic acid as in (4) and (5), the detection intensity of pyruvic acid did not decrease as compared with the case of (1).
  • M, M1, Mx ... mixed solution S ... sample to be analyzed, Sg, Sg1, Sgx ... GC sample, Sn ... sample solution, Ss, Ss1, Ss2, Ss3 ... standard solution, Is, Is1, Is2, Is3 ... internal standard.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

This gas chromatography sample preparation method comprises: performing at least one of measuring the pH of at least one from among a sample solution containing a sample, a reference solution containing a known concentration of a reference material, and a mixture of the sample solution and the reference solution, and analyzing a solution containing a molecule of the same type as the analyte and the reference material; preparing a sample for derivatization on the basis of the measured pH or the data obtained from said analysis; and bringing the sample for derivatization into contact with a derivatizing agent in the presence of a base. If the analysis is to be performed, the solution that has been brought into contact with the derivatization agent in the presence of the base is at least subjected to gas chromatography.

Description

ガスクロマトグラフィ用試料の調製方法および分析方法Preparation method and analysis method of sample for gas chromatography
 本発明は、ガスクロマトグラフィ用試料の調製方法および分析方法に関する。 The present invention relates to a method for preparing and analyzing a sample for gas chromatography.
 ガスクロマトグラフィ用試料の調製では、試料に含まれる分子を誘導体化することが行われる。このような誘導体化では、分子における特定の原子または原子団を安定化させてクロマトグラムにおける当該分子に対応するピークが分裂しないようにしたり、分子を揮発しやすくして感度を高めること等が行われる。非特許文献1では、試料に、メトキシアミン塩酸塩を溶解させたピリジン溶液を加えてオキシム化を行っている。 In the preparation of a sample for gas chromatography, the molecules contained in the sample are derivatized. In such derivatization, it is possible to stabilize a specific atom or group of atoms in the molecule so that the peak corresponding to the molecule in the chromatogram does not split, or to make the molecule more volatile to increase the sensitivity. Will be. In Non-Patent Document 1, oxime formation is performed by adding a pyridine solution in which methoxyamine hydrochloride is dissolved to a sample.
 試料に含まれる分子の誘導体化の効率が、試料の調製方法によりばらつく場合があった。 The efficiency of derivatization of molecules contained in the sample may vary depending on the sample preparation method.
 本発明の第1の態様は、試料を含む試料溶液を用意することと、既知の濃度の標準物質を含む標準溶液を用意することと、前記試料溶液と、前記標準溶液と、前記試料溶液および前記標準溶液を混合した混合溶液との少なくとも一つのpHの測定、ならびに、分析対象と同一の種類の分子および前記標準物質を含む溶液の分析の、少なくとも一つを行うことと、測定されたpHまたは前記分析により得られたデータに基づいて、誘導体化用試料を調製することと、前記誘導体化用試料を、塩基の存在下で誘導体化剤に接触させ、ガスクロマトグラフィ用試料を調製することとを備え、前記分析が行われる場合、前記塩基の存在下で前記誘導体化剤に接触させた前記溶液に対して、少なくともガスクロマトグラフィが行われるガスクロマトグラフィ用試料の調製方法に関する。
 本発明の第2の態様は、第1の態様のガスクロマトグラフィ用試料の調製方法によりガスクロマトグラフィ用試料を調製することと、前記ガスクロマトグラフィ用試料を少なくともガスクロマトグラフィに供することとを備える分析方法に関する。
The first aspect of the present invention is to prepare a sample solution containing a sample, to prepare a standard solution containing a standard substance having a known concentration, the sample solution, the standard solution, the sample solution, and the sample solution. At least one measurement of pH with a mixed solution obtained by mixing the standard solution, and analysis of a solution containing the same type of molecule as the analysis target and the standard substance, and the measured pH. Alternatively, a derivatization sample is prepared based on the data obtained by the analysis, and the derivatization sample is brought into contact with a derivatizing agent in the presence of a base to prepare a gas chromatography sample. The present invention relates to a method for preparing a sample for gas chromatography in which at least gas chromatography is performed on the solution contacted with the derivatizing agent in the presence of the base when the analysis is carried out.
A second aspect of the present invention relates to an analysis method comprising preparing a gas chromatography sample by the method for preparing a gas chromatography sample of the first aspect, and subjecting the gas chromatography sample to at least gas chromatography. ..
 本発明によれば、試料に含まれる分子に対する誘導体化の効率のばらつきを低減することができる。 According to the present invention, it is possible to reduce variations in derivatization efficiency with respect to molecules contained in the sample.
図1は、一実施形態のガスクロマトグラフィ用試料の調製方法を説明するための概念図である。FIG. 1 is a conceptual diagram for explaining a method for preparing a sample for gas chromatography according to an embodiment. 図2は、一実施形態に係る分析方法の流れを示すフローチャートである。FIG. 2 is a flowchart showing the flow of the analysis method according to the embodiment. 図3は、変形例に係る分析方法の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of the analysis method according to the modified example. 図4は、実施例におけるガスクロマトグラフィ/質量分析で得られたクロマトグラムにおけるピーク面積を示す表である。FIG. 4 is a table showing the peak area in the chromatogram obtained by gas chromatography / mass spectrometry in the examples. 図5は、実施例におけるガスクロマトグラフィ/質量分析で得られたクロマトグラムにおけるピルビン酸に対応するピークのピーク面積を示すグラフである。FIG. 5 is a graph showing the peak area of the peak corresponding to pyruvic acid in the chromatogram obtained by gas chromatography / mass spectrometry in the example.
 以下、図を参照して本発明を実施するための形態について説明する。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings.
 -第1実施形態-
 本実施形態のガスクロマトグラフィ用試料の調製方法では、分析対象の試料(以下、分析対象試料と呼ぶ)を含む溶液、標準物質を含む溶液、ならびに、分析対象試料および標準物質を含む溶液のうち少なくとも一つのpHの測定を行い、測定されたpHに基づいて、誘導体化に供する試料を調製する。以下では、分析対象試料を含む溶液を試料溶液、標準物質を含む溶液を標準溶液、分析対象試料および標準物質を含む溶液を混合溶液と呼ぶ。
-First Embodiment-
In the method for preparing a sample for gas chromatography of the present embodiment, at least a solution containing a sample to be analyzed (hereinafter referred to as an analysis target sample), a solution containing a standard substance, and a solution containing the analysis target sample and the standard substance. One pH measurement is performed, and a sample to be derivatized is prepared based on the measured pH. Hereinafter, the solution containing the sample to be analyzed is referred to as a sample solution, the solution containing the standard substance is referred to as a standard solution, and the solution containing the sample to be analyzed and the standard substance is referred to as a mixed solution.
 図1は、本実施形態のガスクロマトグラフィ用試料の調製を示す概念図である。以下では、ガスクロマトグラフィをGCと略する。試料溶液Snには分析対象試料Sが含まれている。分析対象試料Sを構成する分子をGCにより定量する際は、内部標準Isを含む標準溶液Ssと試料溶液Snとを含む混合溶液Mから誘導体化によりGC用試料Sgが調製される。言い換えれば、混合溶液Mは、誘導体化用試料である。GC用試料SgのGCを含む分析では、内部標準Isの既知の濃度と内部標準Isの検出により得られた強度(検出強度)とが対応することを利用して、分子の検出強度から濃度等を算出することができる。以下では、検出強度とは分子に対応する検出信号の大きさを指す。
 なお、不図示の外部標準を含むGC用標準試料を調製してGCに供し、検量線または相対応答係数等の較正データを作成し、この較正データを用いて定量を行ってもよい。さらに、この外部標準と、内部標準との両方を利用して定量を行ってもよい。
FIG. 1 is a conceptual diagram showing the preparation of a gas chromatography sample of the present embodiment. Hereinafter, gas chromatography is abbreviated as GC. The sample solution Sn contains the sample S to be analyzed. When the molecules constituting the sample S to be analyzed are quantified by GC, the sample Sg for GC is prepared by derivatization from the mixed solution M containing the standard solution Ss containing the internal standard Is and the sample solution Sn. In other words, the mixed solution M is a sample for derivatization. In the analysis of the GC sample Sg containing GC, the concentration from the detection intensity of the molecule, etc. Can be calculated. In the following, the detection intensity refers to the magnitude of the detection signal corresponding to the molecule.
A standard sample for GC including an external standard (not shown) may be prepared and subjected to GC to prepare calibration data such as a calibration curve or a relative response coefficient, and quantification may be performed using this calibration data. Further, both the external standard and the internal standard may be used for quantification.
 GCでは、通常、複数の分子が分離され検出される。図1の上段は、複数の標準溶液Ssを混合してGC用試料Sgxを調製する場合の調製の流れを示す。分析対象試料Sに含まれる3種類の分子に対応する内部標準Is1、Is2およびIs3のそれぞれを含む標準溶液Ss1、Ss2およびSs3が用意される。試料溶液Snと、各標準溶液Ss1、Ss2およびSs3とを混合し、分析対象試料Sと、各内部標準Is1、Is2およびIs3とを含む混合溶液Mxが調製される(矢印A1)。
 なお、図1では、3種類の分子について3種類の内部標準Is1、Is2およびIs3をそれぞれ用意する例を示したが、用意される内部標準の数は特に限定されない。また、1つの内部標準Isを用いて複数の分子を定量してもよい。
In GC, a plurality of molecules are usually separated and detected. The upper part of FIG. 1 shows the flow of preparation when a plurality of standard solutions Ss are mixed to prepare a sample Sgx for GC. Standard solutions Ss1, Ss2 and Ss3 containing the internal standards Is1, Is2 and Is3 corresponding to the three types of molecules contained in the sample S to be analyzed are prepared. The sample solution Sn and the standard solutions Ss1, Ss2 and Ss3 are mixed to prepare a mixed solution Mx containing the sample S to be analyzed and the internal standards Is1, Is2 and Is3 (arrow A1).
Although FIG. 1 shows an example in which three types of internal standards Is1, Is2, and Is3 are prepared for each of the three types of molecules, the number of internal standards prepared is not particularly limited. In addition, a plurality of molecules may be quantified using one internal standard Is.
 混合溶液Mxは、誘導体化反応に供される(矢印A2)。図1に示した誘導体化反応の例では、塩基存在下での混合溶液Mとメトキシム化剤との接触により第1反応としてメトキシム化が行われる(矢印A3)。混合溶液Mxを乾固した後、塩基であるピリジンを溶媒としたメトキシム化剤を含む溶液を加えて第1反応を行うことができる。メトキシム化では、GC用試料Sgの調製またはその分析において望ましくない反応が起きないように分子中の原子または原子団が安定化される。ピリジンは、環状分子を開環し、クロマトグラムにおいてピークが分裂しないように処理するものである。その後、トリメチルシリル化剤(以下、TMS化剤と呼ぶ)との接触により、第2反応としてトリメチルシリル化(以下、TMS化と呼ぶ)が行われる。第1反応の反応溶液に、塩基であるピリジンを残したままTMS化剤を加えて第2反応を行うことができる。TMS化により、分子は揮発しやすくなり、GCを含む分析における感度を高めることができる。 The mixed solution Mx is subjected to a derivatization reaction (arrow A2). In the example of the derivatization reaction shown in FIG. 1, methoxymation is carried out as the first reaction by contact between the mixed solution M and the methoxymizing agent in the presence of a base (arrow A3). After the mixed solution Mx is dried, a solution containing a methoxymating agent using pyridine as a base as a solvent can be added to carry out the first reaction. Modulation stabilizes the atoms or groups in the molecule so that unwanted reactions do not occur in the preparation or analysis of the GC sample Sg. Pyridine is used to open the cyclic molecule and treat it so that the peak does not split in the chromatogram. Then, trimethylsilylation (hereinafter referred to as TMSification) is performed as a second reaction by contact with a trimethylsilylating agent (hereinafter referred to as TMS agent). The second reaction can be carried out by adding a TMS agent to the reaction solution of the first reaction while leaving pyridine as a base. The TMS formation makes the molecule more volatile and can increase the sensitivity in analysis involving GC.
 図1の下段は、標準溶液Ss同士を混合せずにGC用試料Sg1を調製する場合の調製の流れを示す。試料溶液Snと標準溶液Ss1とを混合して、内部標準Is1に対応する分子を定量するための混合溶液M1が調製される(矢印A5)。標準溶液Ss1以外の標準溶液Ssは使用せずに混合溶液M1が調製されたものとする。混合溶液M1は誘導体化反応(矢印A6)、すなわち図1の例ではメトキシム化(矢印A7)およびTMS化(矢印A8)に供される。 The lower part of FIG. 1 shows the flow of preparation when preparing the GC sample Sg1 without mixing the standard solutions Ss with each other. The sample solution Sn and the standard solution Ss1 are mixed to prepare a mixed solution M1 for quantifying the molecule corresponding to the internal standard Is1 (arrow A5). It is assumed that the mixed solution M1 is prepared without using the standard solution Ss other than the standard solution Ss1. The mixed solution M1 is subjected to a derivatization reaction (arrow A6), ie, in the example of FIG. 1, methoxymization (arrow A7) and TMS formation (arrow A8).
 発明者らは、混合溶液MxのpHと混合溶液M1のpHが異なる(矢印A9)と、これらの溶液に含まれる分子の誘導体化の効率が異なり(矢印A10)、GCを含む分析により検出される強度も異なってしまうことを見出した。特に、標準溶液Ssは、内部標準Isを構成する分子の性質により、pHが大きく異なる場合がある。従って、図1上段のように複数の標準溶液Ssを混合してGC用試料Sgxを調製した場合と、図1下段のように標準溶液Ss同士を混合せずにGC用試料Sg1を調製した場合では、同じ量の分子をGCを含む分析に供する場合でも、当該分子の検出強度が異なってしまうことが見出された。 The inventors found that when the pH of the mixed solution Mx and the pH of the mixed solution M1 were different (arrow A9), the efficiency of derivatization of the molecules contained in these solutions was different (arrow A10), and the analysis including GC was performed. It was found that the strength is also different. In particular, the pH of the standard solution Ss may differ significantly depending on the properties of the molecules constituting the internal standard Is. Therefore, when a plurality of standard solution Ss are mixed to prepare a GC sample Sgx as shown in the upper part of FIG. 1, and when a GC sample Sg1 is prepared without mixing the standard solution Ss as shown in the lower part of FIG. It was found that even when the same amount of molecules are subjected to analysis containing GC, the detection intensity of the molecules is different.
 本実施形態のGC用試料の調製方法では、試料溶液Sn、標準溶液Ssおよび混合溶液Mのうち少なくとも一つのpHが測定される。pHの測定方法は、特に限定されず、これらの溶液の一部を別の容器等に移し、pHメータ等のpH測定器、pH試験紙、またはpHにより溶液の色が変わる試薬等を用いて測定することができる。 In the method for preparing a GC sample of the present embodiment, the pH of at least one of the sample solution Sn, the standard solution Ss, and the mixed solution M is measured. The method for measuring pH is not particularly limited, and a part of these solutions is transferred to another container or the like, and a pH measuring device such as a pH meter, pH test paper, or a reagent whose color changes depending on pH is used. Can be measured.
 測定されたpHに基づいて、混合溶液MのpHが、分析条件を合わせて行う一連の分析で同程度になるように、または、比較対象とする分析と同程度になるように調製される。ここでの「同程度」とは、GCを含む分析において所望の精度が得られるように、適宜pHの差が2未満、1未満等に設定される。標準物質を酸から対応する塩に変える等、酸解離定数の異なる標準物質を用いたり、標準溶液Ssにおける標準物質の濃度を変えたり、酸・塩基または緩衝剤を溶液に加えてpHを調節したり等することで、複数の混合溶液MのpHを合わせることができる。 Based on the measured pH, the pH of the mixed solution M is adjusted to be comparable in a series of analyzes performed under the same analytical conditions, or to be comparable to the analysis to be compared. The term "similar" as used herein means that the pH difference is appropriately set to less than 2, less than 1, or the like so that the desired accuracy can be obtained in the analysis including GC. Use standard substances with different acid dissociation constants, such as changing the standard substance from acid to the corresponding salt, change the concentration of the standard substance in the standard solution Ss, or add an acid / base or buffer to the solution to adjust the pH. The pH of the plurality of mixed solutions M can be adjusted by adjusting the pH.
 例えば、複数の標準溶液SsのpHを測定し、一部の標準溶液SsのpHと他の標準溶液SsのpHとの差が予め定められた閾値よりも大きかったとする。この場合、上記のように標準物質またはその濃度を変えることで、複数の混合溶液MのpHを合わせることができる。当該閾値は1、2、3、4等の任意の値に適宜設定される。試料溶液SnのpHが高い場合は、塩基の存在下で行う誘導体化への影響は少なくなるため、試料溶液SnのpHが高い場合はpHの調整を行わなかったり、pHの調整の方法を変える等、試料溶液SnのpHに基づいてpHの調整を行うこともできる。混合溶液MのpHを測定することにより、pHが求める条件に合った混合溶液Mが調製されたかを確認し、必要が有れば再調製を行う等することができる。試料溶液Sn、標準溶液Ssおよび混合溶液MのpHの測定を組み合わせて行うことで、より正確にpHの調整を行うことができる。 For example, it is assumed that the pH of a plurality of standard solutions Ss is measured and the difference between the pH of some standard solutions Ss and the pH of other standard solutions Ss is larger than a predetermined threshold value. In this case, the pH of the plurality of mixed solutions M can be adjusted by changing the standard substance or its concentration as described above. The threshold value is appropriately set to an arbitrary value such as 1, 2, 3, 4, or the like. When the pH of the sample solution Sn is high, the influence on the derivatization performed in the presence of the base is small. Therefore, when the pH of the sample solution Sn is high, the pH is not adjusted or the pH adjustment method is changed. Etc., the pH can be adjusted based on the pH of the sample solution Sn. By measuring the pH of the mixed solution M, it can be confirmed whether the mixed solution M that meets the conditions required by the pH has been prepared, and if necessary, re-preparation can be performed. By combining the measurement of the pH of the sample solution Sn, the standard solution Ss, and the mixed solution M, the pH can be adjusted more accurately.
(分析対象試料および標準物質について)
 分析対象試料Sおよび標準物質は、溶媒に溶解されて溶液を構成し、当該溶液のpHを測定することが可能であり、GCを含む分析が可能であれば特に限定されない。分析対象試料Sは、分析の対象となる分子を含む可能性があればよく、当該分子の少なくとも一種類は、誘導体化が可能である。標準物質が内部標準Isの場合、対応する分析対象の分子と類似した構造を有する分子が用いられ、質量分析計により検出する場合、分析対象の分子の安定同位体を用いることが好ましい。標準物質が外部標準の場合は、内部標準と同様の分子に加え、分析対象と同じ種類の分子を標準物質として用いることもできる。メトキシム化を行い、メトキシム化剤の溶媒にピリジンを用いる場合には、分析対象の分子として環状分子が含まれる。
(About the sample to be analyzed and the standard substance)
The sample S to be analyzed and the standard substance can be dissolved in a solvent to form a solution, and the pH of the solution can be measured, and the analysis including GC is not particularly limited as long as it is possible. The sample S to be analyzed may contain a molecule to be analyzed, and at least one of the molecules can be derivatized. When the standard substance is the internal standard Is, a molecule having a structure similar to that of the corresponding molecule to be analyzed is used, and when detected by a mass spectrometer, it is preferable to use a stable isotope of the molecule to be analyzed. When the reference substance is an external standard, in addition to the same molecules as the internal standard, the same type of molecule as the analysis target can be used as the reference substance. When methoxymation is performed and pyridine is used as the solvent for the methoxymizing agent, a cyclic molecule is included as the molecule to be analyzed.
(誘導体化について)
 誘導体化の方法は、誘導体化の反応の少なくとも一部が塩基の存在下で行われ、その効率がpHに依存するものであれば特に限定されず、メトキシム化等のオキシム化、TMS化等のシリル化およびこれらの組合せによる方法を用いることができる。塩基は特に限定されないが、ピリジン等を用いることができる。
(About derivatization)
The derivatization method is not particularly limited as long as at least a part of the derivatization reaction is carried out in the presence of a base and its efficiency depends on pH, such as oximeization such as methoxymation and TMS formation. Derivatization and combinations thereof can be used. The base is not particularly limited, but pyridine and the like can be used.
 誘導体化の一態様として、ピリジンの存在下で、メトキシム化およびTMS化を行うことができる。この場合、メトキシム化剤は特に限定されないが、メトキシアミンおよびその塩を用いることができ、一例として、メトキシアミン塩酸塩を用いることができる。TMS化剤は特に限定されないが、例えば、N-メチル-N-トリメチルシリルトリフルオロアセトアミド(MSTFA)、N-トリメチルシリルイミダソール(TMSI)、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)、N,O-ビス(トリメチルシリル)アセトアミド(BSA)、トリメチルシリルジメチルアミン(TMSDMA)、トリメチルシリルジエチルアミン(TMSDEA)、トリメチルクロロシラン(TMCS)等を用いることができる。 As one aspect of derivatization, methoxymization and TMS formation can be performed in the presence of pyridine. In this case, the methoxymizing agent is not particularly limited, but methoxyamine and a salt thereof can be used, and as an example, methoxyamine hydrochloride can be used. The TMS agent is not particularly limited, but for example, N-methyl-N-trimethylsilyl trifluoroacetamide (MSTFA), N-trimethylsilyl imidazole (TMSI), N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA), N, O-bis (trimethylsilyl) acetoamide (BSA), trimethylsilyldimethylamine (TMDSDMA), trimethylsilyldiethylamine (TMSDEA), trimethylchlorosilane (TMCS) and the like can be used.
(GCを含む分析について)
 GC用試料Sgの分析の種類は、GCを少なくとも含めば特に限定されず、ガスクロマトグラフィ/質量分析(以下、GC/MSと呼ぶ)の他、任意の検出器を用いるGCにより行うことができる。GC/MSはガスクロマトグラフ-質量分析計(以下、GC-MSと呼ぶ)により行われ、GCはガスクロマトグラフにより行われる。GC/MSにおける質量分析の方法は特に限定されず、任意の個数および任意の種類の質量分析器を組み合わせた質量分析計により、任意の種類若しくは組合せの1または複数段階の質量分析を行うことができる。検出強度は、クロマトグラムにおける対象の分子に対応するピークのピーク強度またはピーク面積等を用いて検出することができるが、検出強度の算出方法は特に限定されず、例えばマススペクトルのピークのピーク強度またはピーク面積等を用いてもよい。
(About analysis including GC)
The type of analysis of the sample Sg for GC is not particularly limited as long as GC is included, and can be performed by gas chromatography / mass spectrometry (hereinafter referred to as GC / MS) or GC using an arbitrary detector. GC / MS is performed by a gas chromatograph-mass spectrometer (hereinafter referred to as GC-MS), and GC is performed by a gas chromatograph. The method of mass spectrometry in GC / MS is not particularly limited, and one or more stages of mass spectrometry of any type or combination can be performed by a mass spectrometer combining any number and any type of mass spectrometer. it can. The detection intensity can be detected by using the peak intensity or peak area of the peak corresponding to the target molecule in the chromatogram, but the calculation method of the detection intensity is not particularly limited, for example, the peak intensity of the peak of the mass spectrum. Alternatively, the peak area or the like may be used.
(分析方法の流れについて)
 図2は、本実施形態に係る分析方法の流れを示すフローチャートである。図2の例では、1つの標準物質を含む標準溶液SsのpH、および、複数の標準物質を含む標準溶液SsのpHを測定し、当該測定に基づいて標準溶液Ssを選択する構成を示す。しかし、本実施形態に係るGC用試料の調製方法および分析方法はこの例に限定されず、代替的または付加的に試料溶液Snまたは混合溶液MのpHの測定を行うことができる。
(About the flow of analysis method)
FIG. 2 is a flowchart showing the flow of the analysis method according to the present embodiment. In the example of FIG. 2, the pH of the standard solution Ss containing one standard substance and the pH of the standard solution Ss containing a plurality of standard substances are measured, and the standard solution Ss is selected based on the measurement. However, the method for preparing and analyzing the sample for GC according to the present embodiment is not limited to this example, and the pH of the sample solution Sn or the mixed solution M can be measured alternative or additionally.
 ステップS101において、試料溶液Snが用意される。ステップS101が終了したら、ステップS103が開始される。ステップS103において、標準溶液Ssが選択され、用意される。ステップS107からS103へと戻ってきた場合には、従前とは少なくとも一部異なる標準溶液Ssが選択される。ステップS103が終了したらステップS105が開始される。 In step S101, the sample solution Sn is prepared. When step S101 is completed, step S103 is started. In step S103, the standard solution Ss is selected and prepared. When returning from step S107 to S103, a standard solution Ss that is at least partially different from the conventional one is selected. When step S103 is completed, step S105 is started.
 ステップS105において、1つの標準物質を含む標準溶液SsのpH、および、複数の標準物質を含む標準溶液SsのpHを測定する。ステップS105が終了したら、ステップS107が開始される。ステップS107において、ステップS105で測定された両pHの差が閾値未満か否かが判定される。両pHの差が閾値未満の場合、ステップS107が肯定判定され、GC用試料Sgの作成に用いる標準溶液Ssが決定され、ステップS109が開始される。両pHの差が閾値以上の場合、ステップS107が否定判定され、ステップS103に戻る。 In step S105, the pH of the standard solution Ss containing one standard substance and the pH of the standard solution Ss containing a plurality of standard substances are measured. When step S105 is completed, step S107 is started. In step S107, it is determined whether or not the difference between the two pH values measured in step S105 is less than the threshold value. When the difference between the two pH values is less than the threshold value, step S107 is determined affirmatively, the standard solution Ss used for preparing the GC sample Sg is determined, and step S109 is started. If the difference between the two pH values is equal to or greater than the threshold value, the negative determination in step S107 is made, and the process returns to step S103.
 ステップS109において、決定された標準溶液Ssを用いて誘導体化が行われ、GC用試料Sgが調製される。ステップS109が終了したら、ステップS111が開始される。ステップS111において、GC用試料SgがGCを含む分析に供される。ステップS111が終了したら、ステップS113が開始される。 In step S109, derivatization is performed using the determined standard solution Ss, and a sample Sg for GC is prepared. When step S109 is completed, step S111 is started. In step S111, the GC sample Sg is subjected to analysis containing GC. When step S111 is completed, step S113 is started.
 ステップS113において、GCを含む分析により得られた情報が出力される。ステップS113が終了したら、処理が終了される。 In step S113, the information obtained by the analysis including GC is output. When step S113 is completed, the process is completed.
 次のような変形も本発明の範囲内であり、上述の実施形態と組み合わせることが可能である。以下の変形例において、上述の実施形態と同様の構造、機能を示す部位等に関しては、同一の符号で参照し、適宜説明を省略する。
(変形例1)
 上述の実施形態では、pHの測定および調整を行うことにより誘導体化が効率よく起こるようにした。しかし、異なる条件の下で調製された複数のGC用試料Sgの分析を行い、得られた検出強度に基づいて、混合溶液のpHの調整を行ってもよい。当該分析(以下、試行分析と呼ぶ)の方法は、分析対象試料Sの実際の分析(以下、本分析と呼ぶ)と同様に少なくともGCにより行われ、同一の分析法により行われることが好ましい。試行分析用の試料溶液(以下、試行試料溶液と呼ぶ)は、分析対象試料Sの試料溶液Snを用いてもよいが、分析対象の分子と同じ種類の分子を含む溶液を別途調製してもよい。
The following modifications are also within the scope of the present invention and can be combined with the above embodiments. In the following modified examples, parts and the like exhibiting the same structure and function as those in the above-described embodiment will be referred to with the same reference numerals, and description thereof will be omitted as appropriate.
(Modification example 1)
In the above-described embodiment, derivatization is efficiently caused by measuring and adjusting the pH. However, the pH of the mixed solution may be adjusted based on the detection intensity obtained by analyzing a plurality of GC samples Sg prepared under different conditions. The method of the analysis (hereinafter referred to as trial analysis) is performed by at least GC in the same manner as the actual analysis of the sample S to be analyzed (hereinafter referred to as the main analysis), and is preferably performed by the same analysis method. As the sample solution for trial analysis (hereinafter referred to as trial sample solution), the sample solution Sn of the sample S to be analyzed may be used, or a solution containing the same type of molecule as the molecule to be analyzed may be prepared separately. Good.
 試行分析において試行試料溶液に含まれる分子の検出で得られたデータにおける検出強度の差が、異なる条件の下で調製された複数の試行分析用のGC用試料(以下、試行GC用試料と呼ぶ)の間において20%、10%等の所定の閾値未満であるとする。この場合、これら複数の試行GC用試料の調製における誘導体化の効率の差が、本分析において問題になるものではないとする。従って、この場合は、試行GC用試料の調製に用いた標準溶液Ssのうち少なくとも一部、例えば最も便利なものを用いて、GC用試料Sgを調製して本分析が行われる。試行分析で得られた検出強度の差が、異なる条件の下で調製された複数の試行GC用試料の間において上記所定の閾値以上であった場合には、上述の実施形態のように標準溶液Ssを選び直す等して、試行GC用試料を再調製する。 In the trial analysis, the difference in the detection intensity in the data obtained by detecting the molecules contained in the trial sample solution is a plurality of GC samples for trial analysis prepared under different conditions (hereinafter referred to as trial GC samples). ), Which is less than a predetermined threshold such as 20% and 10%. In this case, it is assumed that the difference in derivatization efficiency in the preparation of these plurality of trial GC samples does not pose a problem in this analysis. Therefore, in this case, a GC sample Sg is prepared using at least a part of the standard solution Ss used for preparing the trial GC sample, for example, the most convenient one, and this analysis is performed. When the difference in detection intensity obtained by trial analysis is equal to or greater than the above-mentioned predetermined threshold value among a plurality of trial GC samples prepared under different conditions, a standard solution as in the above-described embodiment. The sample for trial GC is reprepared by reselecting Ss.
 図3は、本変形例に係る分析方法の流れを示すフローチャートである。ステップS201において、試行試料溶液が用意される。ステップS201が終了したら、ステップS203が開始される。ステップS203において、標準溶液Ssが選択され、用意される。ステップS211からS203へと戻ってきた場合には、従前とは少なくとも一部異なる標準溶液Ssが選択される。ステップS203が終了したら、ステップS205が開始される。 FIG. 3 is a flowchart showing the flow of the analysis method according to this modified example. In step S201, a trial sample solution is prepared. When step S201 is completed, step S203 is started. In step S203, the standard solution Ss is selected and prepared. When returning from step S211 to S203, a standard solution Ss that is at least partially different from the conventional one is selected. When step S203 is completed, step S205 is started.
 ステップS205において、試行分析用の混合溶液(以下、試行混合溶液と呼ぶ)が調製される。試料溶液として試行試料溶液を用いるほかは、上述の実施形態と同様の方法で、試行混合溶液が調製される。図3の例では、1つの標準物質を含む試行混合溶液および複数の標準物質を含む試行混合溶液が調製される。ステップS205が終了したら、ステップS207が開始される。ステップS207において、試行混合溶液に含まれる分子の誘導体化が行われ、試行GC用試料が調製される。試行GC用試料は、混合溶液として試行混合溶液を用いるほかは、上述の実施形態と同様の方法で、試行GC用試料が調製される。ステップS207が終了したら、ステップS209が開始される。 In step S205, a mixed solution for trial analysis (hereinafter referred to as a trial mixed solution) is prepared. A trial mixed solution is prepared in the same manner as in the above-described embodiment except that the trial sample solution is used as the sample solution. In the example of FIG. 3, a trial mixed solution containing one standard substance and a trial mixed solution containing a plurality of standard substances are prepared. When step S205 is completed, step S207 is started. In step S207, the molecules contained in the trial mixed solution are derivatized to prepare a sample for trial GC. As the sample for trial GC, a sample for trial GC is prepared in the same manner as in the above-described embodiment except that the trial mixed solution is used as the mixed solution. When step S207 is completed, step S209 is started.
 ステップS209において、1つの標準物質を含む試行GC用試料および複数の標準物質を含む試行GC用試料が少なくともGCを含む分析(試行分析)に供される。前者の試行分析で得られたデータにおける分子の検出強度と、後者の試行分析で得られたデータにおける分子の検出強度とが比較される。ステップS209が終了したら、ステップS211が開始される。ステップS211において、複数の試行GC用試料の間における当該検出強度の差が上記所定の閾値未満か否かが判定される。この判定は、試行分析を行うガスクロマトグラフまたはGC-MS等の分析装置に内蔵若しくは付属して設けられたまたは接続された、CPU等を搭載した制御装置により行うことができる。当該検出強度の差が上記所定の閾値未満の場合、ステップS211は肯定判定され、ステップS213が開始される。当該検出強度の差が上記所定の閾値以上の場合、ステップS211は否定判定され、ステップS203に戻る。 In step S209, a sample for trial GC containing one standard substance and a sample for trial GC containing a plurality of standard substances are subjected to an analysis containing at least GC (trial analysis). The detection intensity of the molecule in the data obtained by the former trial analysis is compared with the detection intensity of the molecule in the data obtained by the latter trial analysis. When step S209 is completed, step S211 is started. In step S211 it is determined whether or not the difference in the detection intensity between the plurality of trial GC samples is less than the predetermined threshold value. This determination can be performed by a gas chromatograph for performing trial analysis or a control device equipped with a CPU or the like built in or attached to or connected to an analyzer such as GC-MS. When the difference in the detection intensities is less than the predetermined threshold value, the affirmative determination is made in step S211 and step S213 is started. When the difference in the detection intensities is equal to or greater than the predetermined threshold value, the negative determination in step S211 is made, and the process returns to step S203.
 ステップS213において、複数の標準物質を含む標準溶液Ssについて、分析対象試料Sを含む試料溶液Snが用意され、GC用試料Sgが調製される。ステップS213が終了したら、ステップS215が開始される。ステップS215以降は上述の図2のフローチャートにおけるステップS111以降と同様であるため、説明を省略する。 In step S213, for the standard solution Ss containing a plurality of standard substances, the sample solution Sn containing the sample S to be analyzed is prepared, and the sample Sg for GC is prepared. When step S213 is completed, step S215 is started. Since steps S215 and subsequent steps are the same as steps S111 and subsequent steps in the flowchart of FIG. 2 described above, the description thereof will be omitted.
(態様)
 上述した複数の例示的な実施形態または変形例は、以下の態様の具体例であることが当業者により理解される。
(Aspect)
It will be understood by those skilled in the art that the plurality of exemplary embodiments or modifications described above are specific examples of the following embodiments.
(第1項)一態様に係るガスクロマトグラフィ用試料の調製方法は、試料を含む試料溶液を用意することと、既知の濃度の標準物質を含む標準溶液を用意することと、前記試料溶液と、前記標準溶液と、前記試料溶液および前記標準溶液を混合した混合溶液との少なくとも一つのpHの測定、ならびに、分析対象と同一の種類の分子および前記標準物質を含む溶液の分析の、少なくとも一つを行うことと、測定されたpHまたは前記分析により得られたデータに基づいて、誘導体化用試料を調製することと、前記誘導体化用試料を、塩基の存在下で誘導体化剤に接触させ、ガスクロマトグラフィ用試料を調製することとを備え、前記分析が行われる場合、前記塩基の存在下で前記誘導体化剤に接触させた前記溶液に対して、少なくともガスクロマトグラフィが行われる。これにより、試料に含まれる分子の誘導体化に対するpHの影響を低減することができる。 (Clause 1) The method for preparing a sample for gas chromatography according to one embodiment includes preparing a sample solution containing the sample, preparing a standard solution containing a standard substance having a known concentration, and using the sample solution. At least one of measurement of at least one pH of the standard solution and a mixed solution of the sample solution and the standard solution, and analysis of a solution containing the same type of molecule as the analysis target and the standard substance. To prepare a derivatization sample based on the measured pH or the data obtained by the analysis, and to contact the derivatization sample with the derivatizing agent in the presence of a base. When the analysis is performed with the preparation of a sample for gas chromatography, at least gas chromatography is performed on the solution contacted with the derivatizer in the presence of the base. This makes it possible to reduce the effect of pH on the derivatization of molecules contained in the sample.
(第2項)他の一態様に係るガスクロマトグラフィ用試料の調製方法では、第1項に記載のガスクロマトグラフィ用試料の調製方法において、前記分析が行われる場合、1種類の標準物質を含む前記溶液についての前記分析により得られたデータと、複数の標準物質を含む前記溶液についての前記分析により得られたデータとの比較が行われ、前記比較に基づいて、前記前誘導体化用試料が調製される。これにより、異なる複数の標準溶液を用いてGCを含む分析を行う際に、当該複数の標準溶液による誘導体化への影響を確認し、精度よく分析を行うことができる。 (Item 2) In the method for preparing a sample for gas chromatography according to another aspect, when the analysis is performed in the method for preparing a sample for gas chromatography according to item 1, the method containing one kind of standard substance is contained. A comparison is made between the data obtained by the analysis of the solution and the data obtained by the analysis of the solution containing a plurality of reference substances, and the prederivative sample is prepared based on the comparison. Will be done. As a result, when performing an analysis containing GC using a plurality of different standard solutions, it is possible to confirm the effect of the plurality of standard solutions on derivatization and perform an analysis with high accuracy.
(第3項)他の一態様に係るガスクロマトグラフィ用試料の調製方法では、第1項または第2項に記載のガスクロマトグラフィ用試料の調製方法において、前記塩基は、ピリジンである。これにより、ピリジンの特性を生かした誘導体化および分析を行うことができる。 (Section 3) In the method for preparing a gas chromatography sample according to another aspect, in the method for preparing a gas chromatography sample according to the first or second paragraph, the base is pyridine. This makes it possible to perform derivatization and analysis utilizing the characteristics of pyridine.
(第4項)他の一態様に係るガスクロマトグラフィ用試料の調製方法では、第1項から第3項までのいずれかに記載のガスクロマトグラフィ用試料の調製方法において、前記誘導体化剤は、トリメチルシリル化剤である。これにより、様々な分子をシリル化することができ、適切なTMS化剤を選択することにより目的の分子を効率よく誘導体化することができる。 (Item 4) In the method for preparing a gas chromatography sample according to another aspect, in the method for preparing a gas chromatography sample according to any one of items 1 to 3, the derivatizing agent is trimethylsilyl. It is an agent. As a result, various molecules can be silylated, and the target molecule can be efficiently derivatized by selecting an appropriate TMS agent.
(第5項)他の一態様に係るガスクロマトグラフィ用試料の調製方法では、第3項または第4項に記載のガスクロマトグラフィ用試料の調製方法において、前記誘導体化用試料は、ピリジンおよびメトキシム化剤を含むメトキシム化反応溶液との接触が行われた後、ピリジンの存在下でトリメチルシリル化剤との接触が行われる。この場合に特に誘導体化用試料のpHが誘導体化の効率に影響を及ぼすことが発明者により見出され、このような場合にpHによる誘導体化のばらつきを低減することができる。 (Clause 5) In the method for preparing a gas chromatography sample according to another aspect, in the method for preparing a gas chromatography sample according to item 3 or 4, the derivatization sample is pyridine and methoxymylated. After contacting with the methoxymization reaction solution containing the agent, contact with the trimethylsilylating agent is carried out in the presence of pyridine. In this case, the inventor has found that the pH of the derivatization sample particularly affects the efficiency of derivatization, and in such a case, the variation in derivatization due to pH can be reduced.
(第6項)一態様に係る分析方法は、第1項から第5項までのいずれかに記載のガスクロマトグラフィ用試料の調製方法によりガスクロマトグラフィ用試料を調製することと、前記ガスクロマトグラフィ用試料を少なくともガスクロマトグラフィに供することとを備える。これにより、試料に含まれる分子の誘導体化に対するpHの影響を低減し、精度よく分析を行うことができる。 (Section 6) The analysis method according to one embodiment is to prepare a gas chromatography sample by the method for preparing a gas chromatography sample according to any one of paragraphs 1 to 5, and the gas chromatography sample. At least to be subjected to gas chromatography. As a result, the influence of pH on the derivatization of the molecules contained in the sample can be reduced, and the analysis can be performed with high accuracy.
 本発明は上記実施形態の内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The present invention is not limited to the contents of the above embodiment. Other aspects conceivable within the scope of the technical idea of the present invention are also included within the scope of the present invention.
 以下に、上述の実施形態に係る実施例を示すが、本発明は下記の実施例における具体的な装置または条件等に限定されるものではない。 Examples of the above-described embodiment will be shown below, but the present invention is not limited to the specific devices or conditions in the following examples.
 GC/MSに使用している標準溶液のpHを測定したところ、乳酸(遊離体、以下同様)の標準溶液はpH4程度であり、乳酸以外のいくつかの標準溶液は、pH6~7を示した。乳酸を含む11種の標準物質の混合溶液のpHを測定したところ、pHは4付近であった。 When the pH of the standard solution used for GC / MS was measured, the standard solution of lactic acid (free form, the same applies hereinafter) was about pH 4, and some standard solutions other than lactic acid showed pH 6-7. .. When the pH of the mixed solution of 11 kinds of standard substances containing lactic acid was measured, the pH was around 4.
 上記から、乳酸の濃度により誘導体化の際のpHが異なる可能性が考えられた。ピルビン酸、および、選択的に乳酸または乳酸ナトリウムを含む以下の(1)~(5)の5種類の溶液を調製した。乳酸ナトリウムは弱い塩基である。調製された溶液を、ピリジンの存在下でメトキシム化およびTMS化に供した後、GC/MSに供した。GC/MSにおける検出で得られたデータから、ピルビン酸に対応するピークの面積を検出強度として測定し、(1)~(5)の溶液の検出強度の比較を行った。
(1)500μM ピルビン酸溶液
(2)500μM ピルビン酸 10,000μM 乳酸溶液
(3)500μM ピルビン酸 500μM 乳酸溶液
(4)500μM ピルビン酸 10,000μM 乳酸ナトリウム溶液
(5)500μM ピルビン酸 500μM 乳酸ナトリウム溶液
From the above, it was considered that the pH at the time of derivatization may differ depending on the concentration of lactic acid. The following five kinds of solutions (1) to (5) containing pyruvic acid and selectively lactic acid or sodium lactate were prepared. Sodium lactate is a weak base. The prepared solution was subjected to methoxymization and TMS formation in the presence of pyridine and then subjected to GC / MS. From the data obtained by detection by GC / MS, the area of the peak corresponding to pyruvic acid was measured as the detection intensity, and the detection intensities of the solutions (1) to (5) were compared.
(1) 500 μM pyruvic acid solution (2) 500 μM pyruvic acid 10,000 μM lactic acid solution (3) 500 μM pyruvic acid 500 μM lactic acid solution (4) 500 μM pyruvic acid 10,000 μM sodium lactate solution (5) 500 μM pyruvic acid 500 μM sodium lactate solution
 誘導体化の条件
 メトキシム化は、上記(1)~(5)の溶液を乾固させた後、メトキシアミン塩酸塩を含むピリジン溶液を加えて行った。TMS化は、メトキシム化後の反応溶液にMSTFAを加えて行った。
Conditions for derivatization The methoxymation was carried out by drying the above solutions (1) to (5) and then adding a pyridine solution containing methoxyamine hydrochloride. TMS conversion was carried out by adding MSTFA to the reaction solution after methoxymation.
 GC/MSは、オートサンプラーとしてAOC-20i(島津製作所)が設置されたGCMS-TQ8040(島津製作所)により行われた。 GC / MS was performed by GCMS-TQ8040 (Shimadzu), where AOC-20i (Shimadzu) was installed as an autosampler.
ガスクロマトグラフィの条件
注入前の洗浄回数と順番:3回
(アセトンにより2回洗浄の後、ピリジンにより1回洗浄)
注入後の洗浄回数と順番 :7回
(アセトンにより5回洗浄の後、ピリジンにより2回洗浄)
カラム :BPX5 内径0.25mm、長さ30m、膜厚0.25μm(SGE)
カラム温度 :60℃で2分間保持した後、15℃/分の割合で温度上昇させ、330℃で3分間保持した。
注入口温度 :250℃
キャリアガス :ヘリウム
キャリアガス制御モード :線速度一定 39.0cm/秒
試料導入法 :スプリット (スプリット比 30:1)
注入量 :1μL
Conditions for gas chromatography Number and order of washings before injection: 3 times (washing twice with acetone and then washing once with pyridine)
Number and order of washings after injection: 7 times (washing 5 times with acetone and then 2 times with pyridine)
Column: BPX5 inner diameter 0.25 mm, length 30 m, film thickness 0.25 μm (SGE)
Column temperature: After holding at 60 ° C. for 2 minutes, the temperature was raised at a rate of 15 ° C./min and held at 330 ° C. for 3 minutes.
Injection temperature: 250 ° C
Carrier gas: Helium carrier gas control mode: Constant linear velocity 39.0 cm / sec Sample introduction method: Split (split ratio 30: 1)
Injection volume: 1 μL
質量分析の条件
イオン化法:電子イオン化法
イオン化電圧:70V
イオン化電流:60μA
インターフェース温度:280℃
イオン源温度:200℃
ゲイン:参考値(オートチューニング結果相対値+0.35kV)
モード:多重反応モニタリング(MRM)
Conditions for mass spectrometry Ionization method: Electron ionization method Ionization voltage: 70V
Ionization current: 60 μA
Interface temperature: 280 ° C
Ion source temperature: 200 ° C
Gain: Reference value (relative value of auto tuning result + 0.35 kV)
Mode: Multiple Reaction Monitoring (MRM)
 図4は、(1)~(5)の各溶液のGC/MSにおいて検出された、ピルビン酸および乳酸または乳酸ナトリウムの強度を示す表である。表中、「Pyruvic acid-meto-TMS」は、メトキシム化およびTMS化されたピルビン酸イオンを示す。「Lactic acid-2TMS」は、2か所TMS化された乳酸イオンを示す。GC/MSは6回行われ、各回の結果をNo.1~No.6の番号で示す。検出強度としてクロマトグラムのピーク面積を用いた。「平均」「SD」および「CV」は6回のGC/MSにおける検出強度の算術平均、標準偏差および変動係数(%)を、それぞれ示す。「割合」は、(1)の溶液についてのピルビン酸の検出強度の平均に対する、(2)~(5)の各溶液のピルビン酸の検出強度の平均の比率(%)を示す。 FIG. 4 is a table showing the intensities of pyruvic acid and lactic acid or sodium lactate detected in GC / MS of each of the solutions (1) to (5). In the table, "Pyruvic acid-metho-TMS" indicates a methoxymated and TMS-ized pyruvate ion. "Lactic acid-2 TMS" indicates lactic acid ions that have been TMS-ized in two places. GC / MS was performed 6 times, and the result of each time was No. 1 to No. It is indicated by the number 6. The peak area of the chromatogram was used as the detection intensity. "Average", "SD" and "CV" indicate the arithmetic mean, standard deviation and coefficient of variation (%) of the detected intensities at 6 GC / MS, respectively. “Ratio” indicates the ratio (%) of the average detection intensity of pyruvic acid in each of the solutions (2) to (5) to the average detection intensity of pyruvic acid in the solution (1).
 図5は、(1)~(5)の溶液のGC/MSで得られたクロマトグラムにおけるピルビン酸に対応するピークの面積の算術平均を示すグラフである。(2)のように乳酸が高濃度で存在する場合、ピルビン酸は検出されなかった。(3)のように乳酸の濃度を(2)よりも低くすると、ピルビン酸は検出されたが検出強度は(1)の場合よりも低下した。(4)および(5)のように弱塩基である乳酸ナトリウムを乳酸の代わりに用いた場合、ピルビン酸の検出強度は(1)の場合と比較して低下しなかった。 FIG. 5 is a graph showing the arithmetic mean of the peak area corresponding to pyruvic acid in the chromatogram obtained by GC / MS of the solutions (1) to (5). When lactic acid was present at a high concentration as in (2), pyruvic acid was not detected. When the concentration of lactic acid was lower than that of (2) as in (3), pyruvic acid was detected, but the detection intensity was lower than that of (1). When sodium lactate, which is a weak base, was used instead of lactic acid as in (4) and (5), the detection intensity of pyruvic acid did not decrease as compared with the case of (1).
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特願2019-079346号(2019年4月18日出願)
The disclosure content of the next priority basic application is incorporated here as a quotation.
Japanese Patent Application No. 2019-079346 (filed on April 18, 2019)
M,M1,Mx…混合溶液、S…分析対象試料、Sg,Sg1,Sgx…GC用試料、Sn…試料溶液、Ss,Ss1,Ss2,Ss3…標準溶液、Is,Is1,Is2,Is3…内部標準。
 
M, M1, Mx ... mixed solution, S ... sample to be analyzed, Sg, Sg1, Sgx ... GC sample, Sn ... sample solution, Ss, Ss1, Ss2, Ss3 ... standard solution, Is, Is1, Is2, Is3 ... internal standard.

Claims (6)

  1.  試料を含む試料溶液を用意することと、
     既知の濃度の標準物質を含む標準溶液を用意することと、
     前記試料溶液と、前記標準溶液と、前記試料溶液および前記標準溶液を混合した混合溶液との少なくとも一つのpHの測定、ならびに、分析対象と同一の種類の分子および前記標準物質を含む溶液の分析の、少なくとも一つを行うことと、
     測定されたpHまたは前記分析により得られたデータに基づいて、誘導体化用試料を調製することと、
     前記誘導体化用試料を、塩基の存在下で誘導体化剤に接触させ、ガスクロマトグラフィ用試料を調製することとを備え、
     前記分析が行われる場合、前記塩基の存在下で前記誘導体化剤に接触させた前記溶液に対して、少なくともガスクロマトグラフィが行われるガスクロマトグラフィ用試料の調製方法。
    Preparing a sample solution containing the sample and
    To prepare a standard solution containing a standard substance with a known concentration,
    Measurement of at least one pH of the sample solution, the standard solution, and a mixed solution of the sample solution and the standard solution, and analysis of a solution containing the same type of molecule as the analysis target and the standard substance. To do at least one of
    To prepare a derivatization sample based on the measured pH or the data obtained by the analysis.
    The derivatization sample is brought into contact with a derivatizing agent in the presence of a base to prepare a gas chromatography sample.
    A method for preparing a sample for gas chromatography, in which at least gas chromatography is performed on the solution contacted with the derivatizing agent in the presence of the base when the analysis is performed.
  2.  請求項1に記載のガスクロマトグラフィ用試料の調製方法において、
     前記分析が行われる場合、
     1種類の標準物質を含む前記溶液についての前記分析により得られたデータと、複数の標準物質を含む前記溶液についての前記分析により得られたデータとの比較が行われ、 前記比較に基づいて、前記誘導体化用試料が調製されるガスクロマトグラフィ用試料の調製方法。
    In the method for preparing a sample for gas chromatography according to claim 1.
    If the analysis is performed
    A comparison is made between the data obtained by the analysis of the solution containing one reference substance and the data obtained by the analysis of the solution containing a plurality of reference substances, and based on the comparison. A method for preparing a gas chromatography sample in which the derivatization sample is prepared.
  3.  請求項1または2に記載のガスクロマトグラフィ用試料の調製方法において、
     前記塩基は、ピリジンである、ガスクロマトグラフィ用試料の調製方法。
    In the method for preparing a sample for gas chromatography according to claim 1 or 2.
    A method for preparing a sample for gas chromatography, wherein the base is pyridine.
  4.  請求項1または2に記載のガスクロマトグラフィ用試料の調製方法において、
     前記誘導体化剤は、トリメチルシリル化剤である、ガスクロマトグラフィ用試料の調製方法。
    In the method for preparing a sample for gas chromatography according to claim 1 or 2.
    The method for preparing a sample for gas chromatography, wherein the derivatizing agent is a trimethylsilylating agent.
  5.  請求項3に記載のガスクロマトグラフィ用試料の調製方法において、
     前記誘導体化用試料は、ピリジンおよびメトキシム化剤を含むメトキシム化反応溶液との接触が行われた後、ピリジンの存在下でトリメチルシリル化剤との接触が行われる、ガスクロマトグラフィ用試料の調製方法。
    In the method for preparing a sample for gas chromatography according to claim 3.
    The method for preparing a sample for gas chromatography, wherein the derivatization sample is contacted with a methoxymization reaction solution containing pyridine and a methoxymizing agent, and then contacted with a trimethylsilylating agent in the presence of pyridine.
  6.  請求項1から5までのいずれか一項に記載のガスクロマトグラフィ用試料の調製方法によりガスクロマトグラフィ用試料を調製することと、
     前記ガスクロマトグラフィ用試料を少なくともガスクロマトグラフィに供することとを備える分析方法。
     
    To prepare a gas chromatography sample by the method for preparing a gas chromatography sample according to any one of claims 1 to 5.
    An analytical method comprising subjecting the gas chromatography sample to at least gas chromatography.
PCT/JP2019/048544 2019-04-18 2019-12-11 Gas chromatography sample preparation method and analysis method WO2020213209A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-079346 2019-04-18
JP2019079346A JP2022088694A (en) 2019-04-18 2019-04-18 Preparation method and analysis method of gas chromatography sample

Publications (1)

Publication Number Publication Date
WO2020213209A1 true WO2020213209A1 (en) 2020-10-22

Family

ID=72837475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048544 WO2020213209A1 (en) 2019-04-18 2019-12-11 Gas chromatography sample preparation method and analysis method

Country Status (2)

Country Link
JP (1) JP2022088694A (en)
WO (1) WO2020213209A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080261312A1 (en) * 2007-04-18 2008-10-23 Yuhui Yang Methods for matrix cleanup and analysis of drugs and metabolites in biological matrices
JP2012122974A (en) * 2010-12-10 2012-06-28 Dainippon Sumitomo Pharma Co Ltd Method for measuring sialic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080261312A1 (en) * 2007-04-18 2008-10-23 Yuhui Yang Methods for matrix cleanup and analysis of drugs and metabolites in biological matrices
JP2012122974A (en) * 2010-12-10 2012-06-28 Dainippon Sumitomo Pharma Co Ltd Method for measuring sialic acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIMADZU CORPORATION: "Profiling of Metabolites in Green Tea Leaves Using GC/MS.", GC/MS GC/MS APPLICATION NOTE, NO. 4, 31 March 2009 (2009-03-31), pages 1 - 6 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding

Also Published As

Publication number Publication date
JP2022088694A (en) 2022-06-15

Similar Documents

Publication Publication Date Title
Kafader et al. Multiplexed mass spectrometry of individual ions improves measurement of proteoforms and their complexes
WO2020213209A1 (en) Gas chromatography sample preparation method and analysis method
Persichilli et al. A simplified method for the determination of total homocysteine in plasma by electrospray tandem mass spectrometry
Georgakopoulos et al. Preventive doping control analysis: liquid and gas chromatography time‐of‐flight mass spectrometry for detection of designer steroids
Gómez‐Pérez et al. Wide‐scope analysis of pesticide and veterinary drug residues in meat matrices by high resolution MS: detection and identification using Exactive‐Orbitrap
CN110088615B (en) Mass spectrometry assay for detection and quantification of renal function metabolites
Ahmadkhaniha et al. Quantification of endogenous steroids in human urine by gas chromatography mass spectrometry using a surrogate analyte approach
JP7109374B2 (en) A method for determining the concentration of a target analyte in a sample of bodily fluid
Cha et al. Sensitivity of GC‐EI/MS, GC‐EI/MS/MS, LC‐ESI/MS/MS, LC‐Ag+ CIS/MS/MS, and GC‐ESI/MS/MS for analysis of anabolic steroids in doping control
Saleh et al. Evaluation of a direct high-capacity target screening approach for urine drug testing using liquid chromatography–time-of-flight mass spectrometry
Trötzmüller et al. Characteristics and origins of common chemical noise ions in negative ESI LC–MS
Li et al. Determination of Metaldehyde in Water by SPE and UPLC–MS–MS
Martí et al. Fast screening method for determining 2, 4, 6-trichloroanisole in wines using a headspace–mass spectrometry (HS–MS) system and multivariate calibration
Trobbiani et al. Increasing the linear dynamic range in LC–MS: is it valid to use a less abundant isotopologue?
Phipps et al. Quantitative amino acid analysis by liquid chromatography‐tandem mass spectrometry using low cost derivatization and an automated liquid handler
JP4506538B2 (en) Mass spectrometry method
Salvador et al. Scout-multiple reaction monitoring: A liquid chromatography tandem mass spectrometry approach for multi-residue pesticide analysis without time scheduling
Beißmann et al. Fast screening of stabilizers in polymeric materials by flow injection–tandem mass spectrometry
Prévost et al. Gas chromatography/combustion/isotope ratio mass spectrometry to control the misuse of androgens in breeding animals: new derivatisation method applied to testosterone metabolites and precursors in urine samples
Ji et al. Method development for the concentration determination of a protein in human plasma utilizing 96‐well solid‐phase extraction and liquid chromatography/tandem mass spectrometric detection
Li et al. Rapid determination of corticosterone in mouse plasma by ultra fast liquid chromatography‐tandem mass spectrometry
Gornischeff et al. A systematic approach toward comparing electrospray ionization efficiencies of derivatized and non‐derivatized amino acids and biogenic amines
Renaud et al. Normalization of LC-MS mycotoxin determination using the N-alkylpyridinium-3-sulfonates (NAPS) retention index system
Bunz et al. The selective determination of sulfates, sulfonates and phosphates in urine by CE‐MS
Mottram et al. Practical considerations in the gas chromatography/combustion/isotope ratio monitoring mass spectrometry of 13C‐enriched compounds: detection limits and carryover effects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP