WO2020213080A1 - Rotary compressor and refrigeration cycle device - Google Patents

Rotary compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2020213080A1
WO2020213080A1 PCT/JP2019/016409 JP2019016409W WO2020213080A1 WO 2020213080 A1 WO2020213080 A1 WO 2020213080A1 JP 2019016409 W JP2019016409 W JP 2019016409W WO 2020213080 A1 WO2020213080 A1 WO 2020213080A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
compression chamber
piston
rotary compressor
guide hole
Prior art date
Application number
PCT/JP2019/016409
Other languages
French (fr)
Japanese (ja)
Inventor
祐策 石部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021514708A priority Critical patent/JP7008874B2/en
Priority to PCT/JP2019/016409 priority patent/WO2020213080A1/en
Publication of WO2020213080A1 publication Critical patent/WO2020213080A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member

Definitions

  • the present invention relates to a rotary compressor and a refrigeration cycle device having an injection mechanism.
  • the conventional rotary compressor is provided with an electric motor unit and a compression mechanism unit driven by the electric motor unit in a closed container.
  • the compression mechanism includes a cylindrical cylinder, a rotating piston mounted on the eccentric portion of the crankshaft of the electric motor portion to perform eccentric movement in the cylinder, and a vane that divides the space inside the cylinder into a suction chamber and a compression chamber.
  • a suction port and a discharge port are formed in the cylinder, and the rotary compressor compresses the refrigerant sucked into the suction chamber from the outside of the container through the suction pipe and the suction port with the eccentric movement of the rotary piston. , The compressed refrigerant is discharged from the compression chamber to the outside of the compression mechanism through the discharge port.
  • Patent Document 1 In such a rotary compressor, a configuration is known in which an injection mechanism for injecting an intermediate pressure refrigerant is provided in the compression chamber of the compression mechanism section (see, for example, Patent Document 1).
  • the injection mechanism of Patent Document 1 has a configuration in which an injection valve for opening and closing the injection flow path is provided in the injection flow path formed in the cylinder so as to communicate with the compression chamber. The injection valve opens and closes the injection flow path by moving the valve body through the valve chamber extending in the direction intersecting the injection flow path.
  • the injection mechanism of the rotary compressor of Patent Document 1 has a configuration in which a part of the injection flow path, specifically, a part from the compression chamber to the valve chamber always communicates with the compression chamber even when the injection valve is closed. For this reason, there is a problem that the space from the compression chamber to the valve chamber becomes a dead volume, and the performance is deteriorated due to the re-expansion loss.
  • the present invention is for solving the above-mentioned problems, and an object of the present invention is to provide a rotary compressor and a refrigeration cycle device capable of reducing the dead volume in the injection mechanism.
  • the rotary compressor according to the present invention includes a cylinder in which a compression chamber is formed and a rotary piston that rotates along the inner peripheral surface of the cylinder, and the rotary piston eccentrically rotates in the cylinder to compress the refrigerant in the compression chamber.
  • a guide hole is formed in the cylinder from the connection port to which the injection pipe is connected to the compression chamber, and the injection mechanism is arranged in the guide hole.
  • the injection mechanism is supplied from the injection pipe.
  • the injection piston is provided with an injection piston in which an injection flow path is formed to guide the injection refrigerant to the compression chamber.
  • the injection piston is slidably arranged in the guide hole and compresses the injection flow path when moved to the compression chamber side. While communicating with the chamber, the injection flow path is not communicated with the compression chamber when it is moved to the opposite side of the compression chamber and stored in the guide hole.
  • the injection mechanism has a configuration in which an injection piston in which an injection flow path is formed is slidably arranged in a guide hole formed in a cylinder, and guides the injection piston when injection is not performed. It is stored in the hole so that the injection flow path is not communicated with the compression chamber. As a result, the dead volume in the injection mechanism can be reduced.
  • FIG. 3 is an exploded plan view of a main part including an injection mechanism of the rotary compressor according to the first embodiment. It is a figure which shows the injection piston of the injection mechanism of the rotary compressor which concerns on Embodiment 1, (a) is a plan view, (b) is a side view, (c) is a front view.
  • FIG. 1 is an operation explanatory view (No. 1) of the injection piston when the injection pistons are installed at different phase angles in the rotary compressor according to the first embodiment.
  • FIG. 2 is an operation explanatory view (No. 2) of the injection piston when the injection pistons are installed at different phase angles in the rotary compressor according to the first embodiment.
  • FIG. 3 is an operation explanatory view (No. 3) of the injection piston when the injection pistons are installed at different phase angles in the rotary compressor according to the first embodiment.
  • FIG. 4 is an operation explanatory view (No.
  • FIG. 5 is an operation explanatory view (No. 5) of the injection piston when the injection pistons are installed at different phase angles in the rotary compressor according to the first embodiment. It is a figure which shows the opening and closing of the injection port during one rotation of the rotary piston shown in FIGS. 7 to 11. It is explanatory drawing of the injection port opening section in the rotary compressor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the modification 1 of the rotary compressor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the modification 2 of the rotary compressor which concerns on Embodiment 1.
  • FIG. 1 It is a figure which shows the injection piston of the modification 4 of the rotary compressor which concerns on Embodiment 1, (a) is a plan view, (b) is a side view, (c) is a front view. It is a figure which shows the cap 43 of the modification 4 of the rotary compressor which concerns on Embodiment 1, (a) is a plan view, (b) is a front view. It is a figure which shows an example of the refrigerating cycle apparatus which concerns on Embodiment 2.
  • FIG. 1 is a schematic vertical sectional view of the rotary compressor according to the first embodiment.
  • the rotary compressor 1 includes an electric motor unit 2 and a compression mechanism unit 3 which is connected to the electric motor unit 2 via a crankshaft 4 and compresses a refrigerant by rotation of the crankshaft 4, and these are inside a closed container 5. It has an arranged configuration.
  • the rotary compressor 1 according to the first embodiment will be described by exemplifying a twin rotary type rotary compressor in which the compression mechanism unit 3 has two cylinders, but the present invention is not limited to this, and the rotary compressor 1 is not limited to this, and has one or three cylinders. The above may be used.
  • a suction pipe 6 for sucking the refrigerant gas is connected to the side surface of the closed container 5.
  • the other end of the suction pipe 6 is connected to the suction muffler 7, and the refrigerant gas is sucked into the closed container 5 from the suction pipe 6 through the suction muffler 7.
  • a discharge pipe 8 for discharging the compressed refrigerant gas is provided on the upper surface of the closed container 5.
  • An oil reservoir 5a is formed at the bottom of the closed container 5. Refrigerating machine oil that lubricates sliding portions such as the compression mechanism portion 3 is stored in the oil reservoir portion 5a.
  • the refrigerating machine oil in the oil reservoir 5a is sucked up in the manner of a centrifugal pump utilizing the rotation of the crankshaft 4, and is supplied to each sliding portion through an oil supply hole (not shown) provided in the crankshaft 4.
  • the refueling hole includes a vertical hole extending in the axial direction of the crankshaft 4 and a horizontal hole extending in the radial direction.
  • An oil separator 9 that separates the refrigerant and the refrigerating machine oil is fitted in the upper part of the crankshaft 4.
  • the oil separator 9 is formed in a disk shape, and is installed at a position where the mixed fluid of the refrigerant flowing from the compression mechanism unit 3 toward the discharge pipe 8 and the refrigerating machine oil collides with each other.
  • the refrigerant and the refrigerating machine oil are separated.
  • the electric motor unit 2 includes a rotor 2a attached to the crankshaft 4 and a stator 2b that rotationally drives the rotor 2a.
  • a stator 2b that rotationally drives the rotor 2a.
  • the compression mechanism unit 3 includes a first compression mechanism unit 30A, a second compression mechanism unit 30B, an upper bearing 11, and a lower bearing 12.
  • An intermediate plate 10 is arranged between the first compression mechanism portion 30A and the second compression mechanism portion 30B.
  • the end of the injection pipe 15 that penetrates the closed container 5 from the outside is connected to each of the first compression mechanism portion 30A and the second compression mechanism portion 30B.
  • Discharge ports are formed in each of the upper bearing 11 and the lower bearing 12.
  • the upper discharge muffler 13 and the lower discharge muffler 14 are attached to the upper bearing 11 and the lower bearing 12, respectively, so as to cover the discharge port.
  • the upper discharge muffler 13 and the lower discharge muffler 14 reduce the noise amplified by the resonance of the space in the closed container 5.
  • FIG. 2 is a schematic plan view of the compression mechanism portion of the sealed compressor according to the first embodiment.
  • the configuration of the first compression mechanism unit 30A and the second compression mechanism unit 30B of the compression mechanism unit 3 will be described. Since the first compression mechanism unit 30A and the second compression mechanism unit 30B have basically the same configuration, the first compression mechanism unit 30A will be described below as a representative.
  • the first compression mechanism portion 30A is slidably arranged in a cylindrical cylinder 31, a rotary piston 32 rotatably fitted to the eccentric shaft portion 4a of the crankshaft 4, and a vane groove 33 provided in the cylinder 31. It is provided with a cylinder 34 and an injection mechanism 40.
  • the cylinder 31 is made of a flat plate, and a substantially cylindrical through hole is formed through the cylinder 31 in the vertical direction at a substantially central portion thereof. The through hole is closed by the upper bearing 11 and the intermediate plate 10, so that the compression chamber 35 is formed in the cylinder 31.
  • the vane groove 33 communicates with the compression chamber 35 and extends in the radial direction of the cylinder 31, and the tip end portion of the vane 34 provided in the vane groove 33 so as to be movable back and forth comes into sliding contact with the outer peripheral surface of the rotary piston 32.
  • the inside of the compression chamber 35 is divided into a low pressure space 35a and a high pressure space 35b.
  • the cylinder 31 is formed with a suction port 36 as a refrigerant suction path that opens in the low pressure space 35a and a discharge port 37 as a refrigerant discharge path that opens in the high pressure space 35b.
  • the suction port 36 is formed so as to penetrate from the outer peripheral surface 31a of the cylinder 31 toward the inner peripheral surface 31b, and the suction pipe 6 is connected to the end portion of the suction port 36 on the outer peripheral surface 31a side.
  • the discharge port 37 is formed by notching the inner peripheral surface 31b of the cylinder 31, and communicates with the discharge port formed in the upper bearing 11.
  • the cylinder 31 is formed with a guide hole 38 that penetrates from the outer peripheral surface 31a toward the inner peripheral surface 31b.
  • the opening on the outer peripheral surface 31a side of the guide hole 38 is a connection port 38a to which the injection pipe 15 (see FIG. 1) is connected.
  • An injection mechanism 40 for introducing an intermediate pressure refrigerant into the compression chamber 35 is arranged inside the guide hole 38.
  • the injection mechanism 40 includes an injection piston 41, a spring 42, and a cap 43. Hereinafter, the injection mechanism 40 will be described.
  • FIG. 3 is a plan view of a main part including the injection mechanism of the rotary compressor according to the first embodiment.
  • FIG. 4 is an exploded plan view of a main part including the injection mechanism of the rotary compressor according to the first embodiment.
  • 5A and 5B are views showing an injection piston of the injection mechanism of the rotary compressor according to the first embodiment, where FIG. 5A is a plan view, FIG. 5B is a side view, and FIG. 5C is a front view.
  • the injection piston 41 is slidably arranged in the guide hole 38.
  • the injection mechanism 40 is a mechanism for switching the injection flow path 41c, which will be described later, formed in the injection piston 41 to the compression chamber 35 in communication or non-communication by moving the injection piston 41 along the guide hole 38.
  • the injection piston 41 is slidably arranged in the guide hole 38 as described above, and in FIG. 3, the tip end portion of the injection piston 41 projects into the compression chamber 35 and is formed on the outer peripheral surface of the rotary piston 32. It shows the state of contact. Further, FIG. 2 shows a state in which the injection piston 41 is housed in the guide hole 38.
  • the injection piston 41 is configured so that the end surface on the compression chamber 35 side is flush with the inner peripheral surface 31b of the cylinder 31 when the injection piston 41 is housed in the guide hole 38.
  • the end of the guide hole 38 on the injection pipe side is closed by the cap 43, and the moving position of the injection piston 41 on the injection pipe side is regulated by the cap 43.
  • the cap 43 is formed in a tubular shape, and the central opening portion guides an intermediate pressure gas, liquid, or gas-liquid two-phase refrigerant (hereinafter referred to as injection refrigerant) supplied from the injection pipe 15 into the guide hole 38. It becomes an internal flow path.
  • the injection piston 41 has a head portion 41a and a rod-shaped shaft portion 41b having a diameter smaller than that of the head portion 41a.
  • the shaft portion 41b extends from the head portion 41a toward the compression chamber 35 side.
  • the injection piston 41 is formed with an injection flow path 41c that guides the injection refrigerant supplied from the injection pipe 15 connected to the connection port 38a of the guide hole 38 to the compression chamber 35.
  • the injection flow path 41c is formed of a hole that penetrates the inside of the injection piston 41 from the head portion 41a to the shaft portion 41b.
  • One end of the injection flow path 41c is open to the outer surface of the head 41a.
  • the other end of the injection flow path 41c opens to the outer surface of the shaft portion 41b, specifically, the side surface of the tip portion of the shaft portion 41b to form an injection port 41d.
  • the injection port 41d When the injection piston 41 is housed in the guide hole 38, the injection port 41d is closed by the inner peripheral surface of the guide hole 38, and the injection flow path 41c is not communicated with the compression chamber 35. On the other hand, when the injection piston 41 is in a state of being moved to the compression chamber 35 side, the injection port 41d protrudes into the compression chamber 35 and opens, and the injection flow path 41c communicates with the compression chamber 35.
  • the spring 42 is urged to house the injection piston 41 in the guide hole 38.
  • the spring 42 is provided to accommodate the injection piston 41 in the guide hole 38 when the operation is stopped and when the introduction of the injection refrigerant from the injection pipe 15 is stopped.
  • the spring 42 can be omitted if the position of the injection piston 41 when the operation is stopped and when the injection is stopped is not limited to the inside of the guide hole 38.
  • the rotary piston 32 makes an eccentric rotational movement in the cylinder 31 counterclockwise along the inner peripheral surface 31b.
  • the low-pressure space 35a in which the low-pressure gas refrigerant is sucked through the suction port 36 shifts to the high-pressure space 35b, and the volume of the high-pressure space 35b is gradually reduced to compress the refrigerant. ..
  • the compressed gas refrigerant reaches a predetermined pressure, it is guided to the discharge port through the discharge port 37 of the cylinder 31, and is discharged from the discharge port into the internal space of the closed container 5.
  • the rotation of the crankshaft 4 causes repeated suction and compression of the refrigerant gas. Then, the refrigerant gas compressed by each of the first compression mechanism unit 30A and the second compression mechanism unit 30B and discharged into the internal space of the closed container 5 is discharged from the discharge pipe 8 to the outside of the closed container 5.
  • the injection piston 41 When the internal pressure of the compression chamber 35 is equal to or lower than the pressure of the injection refrigerant supplied from the injection pipe 15 (hereinafter referred to as the injection pressure) during the operation of the rotary compressor 1, the injection piston 41 has the compression chamber 35 as shown in FIG. It moves to the side and the injection port 41d is opened. As a result, the injection flow path 41c communicates with the compression chamber 35, and the injection refrigerant from the injection pipe 15 is introduced into the compression chamber 35 from the injection port 41d via the internal passage of the cap 43, the guide hole 38, and the injection flow path 41c. Will be done. Since the spring pressure of the spring 42 is sufficiently smaller than the injection pressure and the internal pressure of the compression chamber 35, it is ignored here. The injection pressure is constant regardless of the rotational position of the rotary piston 32.
  • the injection port 41d is a side surface of the shaft portion 41b of the injection piston 41, and is open toward the discharge port 37 side instead of the suction port 36 side in the cylinder circumferential direction. Therefore, the injection refrigerant can be introduced into the compression chamber 35 from the injection port 41d without hindering the suction of the refrigerant sucked from the suction port 36 into the compression chamber 35.
  • the injection piston 41 is pressed by the rotary piston 32 and is housed in the guide hole 38. In this way, when the rotary piston 32 reaches the position of the injection piston 41, the injection piston 41 is forcibly housed in the guide hole 38 by the rotary piston 32 even if the internal pressure of the compression chamber 35 is equal to or lower than the injection pressure. ..
  • the injection port 41d is closed by the inner peripheral surface of the guide hole 38. As a result, the injection flow path 41c is not communicated with the compression chamber 35, and the introduction of the injection refrigerant into the compression chamber 35 is stopped.
  • FIG. 6 is a diagram showing the opening and closing of the injection port during one rotation of the rotary piston of the rotary compressor according to the first embodiment.
  • the injection refrigerant is constantly supplied from the injection pipe 15, and an injection pressure higher than the internal pressure of the compression chamber 35 at the installation position of the injection piston 41 acts on the injection piston 41.
  • the phase angle at the moment when the vane 34 is pushed into the vane groove 33 by the rotating piston 32 to the maximum is set to 0 °.
  • FIG. 6 corresponds to the case of the following configuration. That is, as shown in FIG. 3 and the like, the injection piston 41 is installed at a position having a phase angle of 180 °.
  • the injection piston 41 moves to the compression chamber 35 side and the injection port 41d is open. Then, when the rotation of the rotating piston 32 advances and the phase angle is 70 °, the injection piston 41 is pressed by the rotating piston 32 and housed in the guide hole 38, and the injection port 41d is closed. Then, when the rotation of the rotary piston 32 further progresses and the phase angle reaches 290 °, the injection piston 41 moves to the compression chamber 35 side in conjunction with the movement of the rotary piston 32, and the injection port 41d is opened.
  • the injection timing specified by the phase angle shown in FIG. 6 is an example, and may be appropriately set according to actual usage conditions and the like.
  • the injection timing can be changed according to the phase angle at which the injection piston 41 is provided and the position of the injection port 41d. This point will be described below.
  • injection timing By changing the phase angle at which the injection piston 41 is provided, the opening start timing at which the injection port 41d opens into the compression chamber 35 can be changed. Specifically, as the phase angle at which the injection piston 41 is provided is increased, the opening start timing is delayed.
  • the length of the phase range in which the injection port 41d opens into the compression chamber 35 can be changed according to the axial opening position of the shaft portion 41b of the injection port 41d, in other words, the opening position in the injection piston moving direction. Specifically, as the opening position of the injection port 41d is moved to the base side of the shaft portion 41b, the period in which the injection port 41d is blocked by the inner peripheral surface of the guide hole 38 becomes longer, so that the opposite is true.
  • the aperture phase range becomes shorter.
  • the injection timing can be adjusted by adjusting the phase angle at which the injection piston 41 is provided and the opening position of the injection port 41d. As a result, the injection timing can be adjusted to the optimum timing according to the model.
  • the injection piston 41 is housed in the guide hole 38 and the injection port 41d is closed. As a result, the backflow of the refrigerant from the compression chamber 35 to the injection flow path can be prevented.
  • FIG. 7 to 11 are explanatory views of the operation of the injection piston when the injection pistons are installed at different phase angles in the rotary compressor according to the first embodiment.
  • FIG. 7 shows a state in which the rotary piston 32 is at a position with a phase angle of 90 °.
  • FIG. 8 shows a state in which the rotary piston 32 is at a position with a phase angle of 180 °.
  • FIG. 9 shows a state in which the rotary piston 32 is at a position with a phase angle of 160 °.
  • FIG. 10 shows a state in which the rotary piston 32 is in a position immediately before the phase angle of 160 ° is reached.
  • FIG. 11 shows a state in which the rotary piston 32 is at a position with a phase angle of 270 °.
  • FIG. 7 shows a state in which the rotary piston 32 is at a position with a phase angle of 90 °.
  • FIG. 8 shows a state in which the rotary piston 32 is at a position with a phase angle
  • FIG. 12 is a diagram showing opening and closing of the injection port during one rotation of the rotary piston shown in FIGS. 7 to 11.
  • FIG. 12 corresponds to the case of the following configuration. That is, the injection piston 41 is installed at a position having a phase angle of 270 °.
  • the injection piston 41 When the phase angle is 0 °, the injection piston 41 is pressed by the rotating piston 32 and housed in the guide hole 38, and the injection port 41d is closed.
  • the injection piston 41 moves to the compression chamber 35 side and the injection port 41d opens. Become. Even when the rotation of the rotating piston 32 advances and the phase angle is 90 °, the injection port 41d is still open as shown in FIG.
  • the injection piston 41 is pressed by the rotary piston 32 and housed in the guide hole 38 as shown in FIG. 8, and the injection port 41d is opened. It will be closed.
  • the injection piston 41 is inserted into the guide hole 38 due to the pressure difference. It is stowed and the injection port 41d is closed.
  • the injection port 41d is still closed as shown in FIGS. 10 and 11. Then, when the rotation of the rotary piston 32 further advances and the phase angle exceeds 360 ° and further advances by 20 °, the injection port 41d is opened again.
  • FIG. 13 is an explanatory diagram of an injection port opening section in the rotary compressor according to the first embodiment.
  • the horizontal axis of FIG. 13 is the rotating piston phase [°].
  • the vertical axis of FIG. 13 is the internal pressure of the compression chamber.
  • the nth rotation of the rotating piston 32 has a suction section and a compression section.
  • A indicates the opening section of the injection port 41d at the nth rotation of the rotating piston 32 when the installation position of the injection piston 41 is at a phase angle of 180 °, and is ⁇ 70 ° to 70 °.
  • the injection port 41d opens again, but does not communicate with the compression chamber 35 being compressed.
  • B indicates the opening section of the injection port 41d at the nth rotation of the rotating piston 32 when the installation position of the injection piston 41 is at a phase angle of 270 °, and is 20 ° to 160 °.
  • the opening section B when the installation position of the injection piston 41 is at the phase angle of 270 ° has a later opening start timing than the opening section A when the installation position is at the phase angle of 180 °. There is.
  • FIG. 11 shows a state in which the injection piston 41 is pressed by the rotary piston 32 and housed in the guide hole 38 while the refrigerant is being sucked from the suction port 36 into the compression chamber 35.
  • the cylinder 31 is formed with a guide hole 38 extending from the connection port 38a to which the injection pipe 15 is connected to the compression chamber 35.
  • an injection piston 41 in which an injection flow path 41c for guiding the injection refrigerant supplied from the injection pipe 15 to the compression chamber 35 is formed is slidably arranged.
  • the injection piston 41 communicates the injection flow path 41c with the compression chamber 35 when it is moved to the compression chamber 35 side, while it moves to the opposite side of the compression chamber 35 and is housed in the guide hole 38.
  • the road 41c is not communicated with the compression chamber 35.
  • the first embodiment has a configuration in which the injection piston 41 in which the injection flow path 41c is formed is slidably arranged in the guide hole 38 formed in the cylinder 31. Therefore, the dead volume can be reduced and the performance deterioration due to the re-expansion loss can be suppressed as compared with the conventional technique corresponding to the configuration in which the injection flow path 41c is formed in the cylinder 31 separately from the guide hole 38.
  • the injection port 41d which is an opening on the compression chamber 35 side of the injection flow path 41c, is open on the outer surface of the injection piston 41. With the injection piston 41 housed in the guide hole 38, the injection port 41d is closed by the inner peripheral surface of the guide hole 38, so that the injection flow path 41c is not communicated with the compression chamber 35. As described above, since the injection piston 41 is the only configuration in which the injection flow path 41c is switched to the compression chamber 35 for communication or non-communication, the configuration is simple and the cost can be reduced.
  • the injection opening start timing and the opening phase range can be adjusted by adjusting the phase angle at which the injection piston 41 is installed and the opening position of the injection port 41d in the injection piston moving direction.
  • the injection timing can be set at the optimum position according to the actual usage conditions.
  • the injection pipe 15 can be arranged at an optimum position in terms of component arrangement in the unit.
  • the phase angle at which the injection piston 41 is provided and the injection of the injection port 41d so that the injection flow path 41c is not communicated with the compression chamber 35 while the refrigerant is being sucked from the suction port 36 set the opening position in the piston movement direction. As a result, the suction of the refrigerant from the suction port 36 is not hindered, so that a decrease in the overall flow rate can be prevented.
  • the end surface of the injection piston 41 on the compression chamber 35 side is formed so as to be flush with the inner peripheral surface 31b of the cylinder 31. Has been done. If the end surface of the injection piston 41 on the compression chamber 35 side is recessed into the guide hole 38, the end surface of the injection piston 41 on the compression chamber 35 side is closer to the compression chamber 35 than the end surface of the injection piston 41 on the compression chamber 35 side. Space can be a dead volume. However, since the end surface of the injection piston 41 on the compression chamber 35 side is along the inner peripheral surface 31b of the cylinder 31, the dead volume can be minimized.
  • the rotary compressor may be further modified as follows in addition to the configurations shown in the above figures. In this case as well, the same effect can be obtained.
  • FIG. 14 is a diagram showing a modification 1 of the rotary compressor according to the first embodiment.
  • the injection port 41d is a side surface of the shaft portion 41b of the injection piston 41 and is open to the bearing or the intermediate plate side.
  • the injection port 41d is a side surface of the shaft portion 41b of the injection piston 41 and is open to the discharge port 37 side in the cylinder circumferential direction.
  • the injection port 41d may be formed at a position where the injection piston 41 is housed in the guide hole 38 and is closed by the inner peripheral surface of the guide hole 38.
  • FIG. 15 is a diagram showing a modification 2 of the rotary compressor according to the first embodiment.
  • two springs 42 and 44 are housed in the guide hole 38.
  • the spring 42 is arranged on the compression chamber 35 side of the head 41a of the injection piston 41
  • the spring 44 is arranged on the injection pipe 15 side of the head 41a.
  • the injection piston 41 may be housed in the guide hole 38 when the operation is stopped by using the two springs.
  • 16 to 18 are diagrams showing a modification 3 of the rotary compressor according to the first embodiment.
  • 16A and 16B are views showing a cylinder of a modification 3 of the rotary compressor according to the first embodiment, where FIG. 16A is a plan view and FIG. 16B is a front view.
  • 17A and 17B are views showing an injection piston of a modification 3 of the rotary compressor according to the first embodiment, where FIG. 17A is a plan view, FIG. 17B is a side view, and FIG. 17C is a front view.
  • 18A and 18B are views showing a cap of a modification 3 of the rotary compressor according to the first embodiment, in which FIG. 18A is a plan view and FIG. 18B is a front view.
  • 19 to 21 are views showing a modified example 4 of the rotary compressor according to the first embodiment.
  • 19A and 19B are views showing a cylinder of a modified example 4 of the rotary compressor according to the first embodiment, where FIG. 19A is a plan view and FIG. 19B is a front view.
  • 20A and 20B are views showing an injection piston of a modification 4 of the rotary compressor according to the first embodiment, where FIG. 20A is a plan view, FIG. 20B is a side view, and FIG. 20C is a front view.
  • 21 is a view showing a cap 43 of a modification 4 of the rotary compressor according to the first embodiment, (a) is a plan view, and (b) is a front view.
  • the shapes of the head portion 41a and the shaft portion 41b of the injection piston 41 constituting the injection mechanism 40 and the cap 43 are not limited to a columnar shape, but are formed as quadrangles as shown in FIGS. 16 to 18 and 19 to 21. It may be a shape other than a round shape such as an elliptical shape.
  • the guide hole 38 has a shape that conforms to the shapes of the injection piston 41 and the cap 43.
  • the injection mechanism shown in FIGS. 16 to 18 and 19 to 21 does not include the spring 42.
  • the present invention includes a configuration without a spring.
  • Embodiment 2 relates to a refrigeration cycle apparatus including the rotary compressor 1 according to the first embodiment.
  • FIG. 22 is a diagram showing an example of the refrigeration cycle device according to the second embodiment.
  • the refrigeration cycle device 100 includes the rotary compressor 1 of the first embodiment, a condenser 101, a decompression device 102 composed of an expansion valve and the like, and an evaporator 103.
  • the rotary compressor 1, the condenser 101, the decompression device 102, and the evaporator 103 are connected by a refrigerant pipe 104 to form a main circuit in which the refrigerant circulates.
  • the refrigeration cycle device 100 includes an injection circuit 105 that branches from between the condenser 101 and the decompression device 102 and is connected to the rotary compressor 1.
  • the injection circuit 105 is composed of an expansion valve or the like, and is provided with a flow rate adjusting valve 106 that adjusts the flow rate of the injection circuit 105.
  • the refrigerant is sucked into the rotary compressor 1 via the suction muffler 7 and compressed internally to obtain a high temperature and a high pressure.
  • the high temperature and high pressure refrigerant is condensed in the condenser 101 to become a liquid.
  • the liquid refrigerant is decompressed and expanded by the decompression device 102 to become a low-temperature low-pressure gas, liquid, or gas-liquid two-phase, and flows into the evaporator 103.
  • the refrigerant that has flowed into the evaporator 103 evaporates in the evaporator 103 to become a gas refrigerant, and is sucked into the rotary compressor 1 again.
  • the injection refrigerant that has flowed into the injection pipe 15 is introduced into the compression chamber 35 from the injection port 41d through the injection flow path 41c of the injection piston 41 as described above.
  • the refrigerating cycle apparatus 100 configured as described above is equipped with the rotary compressor 1 according to the first embodiment, it is possible to prevent a deterioration in performance due to re-expansion loss and improve the performance. ..
  • the refrigeration cycle device 100 described here is for reference only, and changes such as adding a four-way valve, a supercooler, a valve, or the like can be appropriately changed as long as the purpose is not deviated. Further, the refrigerant and the refrigerating machine oil used in the refrigerating cycle device 100 are not limited by their types.

Abstract

A rotary compressor is provided with: a cylinder having a compression chamber; and a rotary piston that rotates along an inner peripheral surface of the cylinder. The cylinder has a guide hole ranging from a connection port to which an injection pipe is connected to the compression chamber. An injection mechanism arranged in the guide hole is provided with an injection piston having an injection flow path that guides an injection refrigerant supplied from the injection pipe to the compression chamber. The injection piston is slidably arranged in the guide hole. In a state in which the injection piston moves to the side of the compression chamber, the injection piston causes the injection flow path to communicate with the compression chamber. On the other hand, in a state in which the injection piston moves to the side opposite to the compression chamber and is accommodated in the guide hole, the injection piston causes the injection flow path so as not to communicate with the compression chamber.

Description

ロータリ圧縮機および冷凍サイクル装置Rotary compressor and refrigeration cycle equipment
 この発明は、インジェクション機構を有するロータリ圧縮機および冷凍サイクル装置に関する。 The present invention relates to a rotary compressor and a refrigeration cycle device having an injection mechanism.
 従来のロータリ圧縮機は、密閉容器内に、電動機部と、電動機部により駆動される圧縮機構部とを備えている。圧縮機構部は、円筒状のシリンダと、電動機部のクランクシャフトにおける偏心部に装着されてシリンダ内で偏心運動を行う回転ピストンと、シリンダ内の空間を吸入室と圧縮室とに仕切るベーンとを備えている。シリンダには、吸入口と吐出口とが形成されており、ロータリ圧縮機は、容器の外部から吸入管および吸入口を介して吸入室に吸入した冷媒を回転ピストンの偏心運動に伴って圧縮し、圧縮した冷媒を圧縮室から吐出口を介して圧縮機構部外に吐出する構成となっている。 The conventional rotary compressor is provided with an electric motor unit and a compression mechanism unit driven by the electric motor unit in a closed container. The compression mechanism includes a cylindrical cylinder, a rotating piston mounted on the eccentric portion of the crankshaft of the electric motor portion to perform eccentric movement in the cylinder, and a vane that divides the space inside the cylinder into a suction chamber and a compression chamber. I have. A suction port and a discharge port are formed in the cylinder, and the rotary compressor compresses the refrigerant sucked into the suction chamber from the outside of the container through the suction pipe and the suction port with the eccentric movement of the rotary piston. , The compressed refrigerant is discharged from the compression chamber to the outside of the compression mechanism through the discharge port.
 このようなロータリ圧縮機において、圧縮機構部の圧縮室に、中間圧の冷媒をインジェクションするインジェクション機構を備えた構成が知られている(例えば、特許文献1参照)。特許文献1のインジェクション機構は、圧縮室に連通してシリンダ内に形成されたインジェクション流路に、インジェクション流路を開閉するインジェクション弁を備えた構成を有する。インジェクション弁は、インジェクション流路に交差する方向に延びる弁室を、弁体が移動することでインジェクション流路を開閉する。 In such a rotary compressor, a configuration is known in which an injection mechanism for injecting an intermediate pressure refrigerant is provided in the compression chamber of the compression mechanism section (see, for example, Patent Document 1). The injection mechanism of Patent Document 1 has a configuration in which an injection valve for opening and closing the injection flow path is provided in the injection flow path formed in the cylinder so as to communicate with the compression chamber. The injection valve opens and closes the injection flow path by moving the valve body through the valve chamber extending in the direction intersecting the injection flow path.
特開2012-057568号公報Japanese Unexamined Patent Publication No. 2012-057568
 特許文献1のロータリ圧縮機のインジェクション機構は、インジェクション弁を閉じた状態でもインジェクション流路の一部、具体的には圧縮室から弁室に至る部分が圧縮室に常に連通する構成である。このため、圧縮室から弁室に至る部分の空間が死容積となり、再膨張損失による性能の低下が生じるという問題があった。 The injection mechanism of the rotary compressor of Patent Document 1 has a configuration in which a part of the injection flow path, specifically, a part from the compression chamber to the valve chamber always communicates with the compression chamber even when the injection valve is closed. For this reason, there is a problem that the space from the compression chamber to the valve chamber becomes a dead volume, and the performance is deteriorated due to the re-expansion loss.
 この発明は上記のような問題点を解決するためのもので、インジェクション機構における死容積の縮小を図ることが可能なロータリ圧縮機および冷凍サイクル装置を提供することを目的とする。 The present invention is for solving the above-mentioned problems, and an object of the present invention is to provide a rotary compressor and a refrigeration cycle device capable of reducing the dead volume in the injection mechanism.
 この発明に係るロータリ圧縮機は、圧縮室が形成されたシリンダと、シリンダの内周面に沿って回転する回転ピストンとを備え、回転ピストンがシリンダ内を偏心回転して圧縮室で冷媒を圧縮するロータリ圧縮機であって、シリンダには、インジェクション配管が接続される接続口から圧縮室に至るガイド孔が形成され、ガイド孔にインジェクション機構が配置されており、インジェクション機構は、インジェクション配管から供給されるインジェクション冷媒を圧縮室に導くインジェクション流路が形成されたインジェクションピストンを備え、インジェクションピストンは、ガイド孔に摺動自在に配置されており、圧縮室側に移動した状態ではインジェクション流路を圧縮室に連通させる一方、圧縮室とは反対側に移動してガイド孔内に収納された状態ではインジェクション流路を圧縮室に非連通とするものである。 The rotary compressor according to the present invention includes a cylinder in which a compression chamber is formed and a rotary piston that rotates along the inner peripheral surface of the cylinder, and the rotary piston eccentrically rotates in the cylinder to compress the refrigerant in the compression chamber. In the rotary compressor, a guide hole is formed in the cylinder from the connection port to which the injection pipe is connected to the compression chamber, and the injection mechanism is arranged in the guide hole. The injection mechanism is supplied from the injection pipe. The injection piston is provided with an injection piston in which an injection flow path is formed to guide the injection refrigerant to the compression chamber. The injection piston is slidably arranged in the guide hole and compresses the injection flow path when moved to the compression chamber side. While communicating with the chamber, the injection flow path is not communicated with the compression chamber when it is moved to the opposite side of the compression chamber and stored in the guide hole.
 この発明によれば、インジェクション機構は、インジェクション流路が形成されたインジェクションピストンを、シリンダに形成されたガイド孔内に摺動自在に配置した構成を有し、インジェクションを行わない時にはインジェクションピストンをガイド孔内に収納してインジェクション流路を圧縮室に非連通とする。これにより、インジェクション機構における死容積の縮小を図ることができる。 According to the present invention, the injection mechanism has a configuration in which an injection piston in which an injection flow path is formed is slidably arranged in a guide hole formed in a cylinder, and guides the injection piston when injection is not performed. It is stored in the hole so that the injection flow path is not communicated with the compression chamber. As a result, the dead volume in the injection mechanism can be reduced.
実施の形態1に係るロータリ圧縮機の概略縦断面図である。It is a schematic vertical sectional view of the rotary compressor which concerns on Embodiment 1. FIG. 実施の形態1に係る密閉型圧縮機の圧縮機構部の模式的な平面図である。It is a schematic plan view of the compression mechanism part of the closed type compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るロータリ圧縮機のインジェクション機構を含む要部平面図である。It is a top view which includes the injection mechanism of the rotary compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るロータリ圧縮機のインジェクション機構を含む要部の分解平面図である。FIG. 3 is an exploded plan view of a main part including an injection mechanism of the rotary compressor according to the first embodiment. 実施の形態1に係るロータリ圧縮機のインジェクション機構のインジェクションピストンを示す図で、(a)は平面図、(b)は側面図、(c)は正面図である。It is a figure which shows the injection piston of the injection mechanism of the rotary compressor which concerns on Embodiment 1, (a) is a plan view, (b) is a side view, (c) is a front view. 実施の形態1に係るロータリ圧縮機の回転ピストンが1回転する間のインジェクションポートの開閉を示す図である。It is a figure which shows the opening and closing of the injection port during one rotation of the rotary piston of the rotary compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るロータリ圧縮機において、インジェクションピストンを別の位相角に設置した場合のインジェクションピストンの動作説明図(その1)である。FIG. 1 is an operation explanatory view (No. 1) of the injection piston when the injection pistons are installed at different phase angles in the rotary compressor according to the first embodiment. 実施の形態1に係るロータリ圧縮機において、インジェクションピストンを別の位相角に設置した場合のインジェクションピストンの動作説明図(その2)である。FIG. 2 is an operation explanatory view (No. 2) of the injection piston when the injection pistons are installed at different phase angles in the rotary compressor according to the first embodiment. 実施の形態1に係るロータリ圧縮機において、インジェクションピストンを別の位相角に設置した場合のインジェクションピストンの動作説明図(その3)である。FIG. 3 is an operation explanatory view (No. 3) of the injection piston when the injection pistons are installed at different phase angles in the rotary compressor according to the first embodiment. 実施の形態1に係るロータリ圧縮機において、インジェクションピストンを別の位相角に設置した場合のインジェクションピストンの動作説明図(その4)である。FIG. 4 is an operation explanatory view (No. 4) of the injection piston when the injection pistons are installed at different phase angles in the rotary compressor according to the first embodiment. 実施の形態1に係るロータリ圧縮機において、インジェクションピストンを別の位相角に設置した場合のインジェクションピストンの動作説明図(その5)である。FIG. 5 is an operation explanatory view (No. 5) of the injection piston when the injection pistons are installed at different phase angles in the rotary compressor according to the first embodiment. 図7~図11に示された回転ピストンが1回転する間のインジェクションポートの開閉を示す図である。It is a figure which shows the opening and closing of the injection port during one rotation of the rotary piston shown in FIGS. 7 to 11. 実施の形態1に係るロータリ圧縮機におけるインジェクションポート開口区間の説明図である。It is explanatory drawing of the injection port opening section in the rotary compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るロータリ圧縮機の変形例1を示す図である。It is a figure which shows the modification 1 of the rotary compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るロータリ圧縮機の変形例2を示す図である。It is a figure which shows the modification 2 of the rotary compressor which concerns on Embodiment 1. FIG. 実施の形態1に係るロータリ圧縮機の変形例3のシリンダを示す図で、(a)は平面図、(b)は正面図である。It is a figure which shows the cylinder of the modification 3 of the rotary compressor which concerns on Embodiment 1, (a) is a plan view, (b) is a front view. 実施の形態1に係るロータリ圧縮機の変形例3のインジェクションピストンを示す図で、(a)は平面図、(b)は側面図、(c)は正面図である。It is a figure which shows the injection piston of the modification 3 of the rotary compressor which concerns on Embodiment 1, (a) is a plan view, (b) is a side view, (c) is a front view. 実施の形態1に係るロータリ圧縮機の変形例3のキャップを示す図で、(a)は平面図、(b)は正面図である。It is a figure which shows the cap of the modification 3 of the rotary compressor which concerns on Embodiment 1, (a) is a plan view, (b) is a front view. 実施の形態1に係るロータリ圧縮機の変形例4のシリンダを示す図で、(a)は平面図、(b)は正面図である。It is a figure which shows the cylinder of the modification 4 of the rotary compressor which concerns on Embodiment 1, (a) is a plan view, (b) is a front view. 実施の形態1に係るロータリ圧縮機の変形例4のインジェクションピストンを示す図で、(a)は平面図、(b)は側面図、(c)は正面図である。It is a figure which shows the injection piston of the modification 4 of the rotary compressor which concerns on Embodiment 1, (a) is a plan view, (b) is a side view, (c) is a front view. 実施の形態1に係るロータリ圧縮機の変形例4のキャップ43を示す図で、(a)は平面図、(b)は正面図である。It is a figure which shows the cap 43 of the modification 4 of the rotary compressor which concerns on Embodiment 1, (a) is a plan view, (b) is a front view. 実施の形態2に係る冷凍サイクル装置の一例を示す図である。It is a figure which shows an example of the refrigerating cycle apparatus which concerns on Embodiment 2. FIG.
実施の形態1.
 図1は、実施の形態1に係るロータリ圧縮機の概略縦断面図である。
 ロータリ圧縮機1は、電動機部2と、電動機部2にクランクシャフト4を介して連結され、クランクシャフト4の回転によって冷媒を圧縮する圧縮機構部3とを備え、これらが密閉容器5の内部に配置された構成を有する。この実施の形態1におけるロータリ圧縮機1は、圧縮機構部3が2つのシリンダを有するツインロータリー形の回転圧縮機を例に説明するが、これに限るものではなく、シリンダが1つまたは3つ以上のものでもよい。
Embodiment 1.
FIG. 1 is a schematic vertical sectional view of the rotary compressor according to the first embodiment.
The rotary compressor 1 includes an electric motor unit 2 and a compression mechanism unit 3 which is connected to the electric motor unit 2 via a crankshaft 4 and compresses a refrigerant by rotation of the crankshaft 4, and these are inside a closed container 5. It has an arranged configuration. The rotary compressor 1 according to the first embodiment will be described by exemplifying a twin rotary type rotary compressor in which the compression mechanism unit 3 has two cylinders, but the present invention is not limited to this, and the rotary compressor 1 is not limited to this, and has one or three cylinders. The above may be used.
 密閉容器5の側面には、冷媒ガスを吸入するための吸入管6の一端が接続されている。吸入管6の他端は吸入マフラ7に接続され、吸入マフラ7を通して吸入管6から冷媒ガスが密閉容器5の内部に吸入される。また、密閉容器5の上面には、圧縮した冷媒ガスを吐出するための吐出管8が設けられている。 One end of a suction pipe 6 for sucking the refrigerant gas is connected to the side surface of the closed container 5. The other end of the suction pipe 6 is connected to the suction muffler 7, and the refrigerant gas is sucked into the closed container 5 from the suction pipe 6 through the suction muffler 7. Further, a discharge pipe 8 for discharging the compressed refrigerant gas is provided on the upper surface of the closed container 5.
 密閉容器5の底部には、油溜め部5aが形成されている。油溜め部5aには、圧縮機構部3等の摺動部を潤滑する冷凍機油が溜まっている。油溜め部5a内の冷凍機油は、クランクシャフト4の回転を利用した遠心ポンプの要領で吸い上げられ、クランクシャフト4に設けられた給油穴(図示せず)を通って各摺動部に供給される。給油穴には、クランクシャフト4の軸方向に延びる縦穴と、径方向に延びる横穴とが含まれる。このように給油穴を通って冷凍機油が各摺動部に供給されることで、機械部分の隙間をシールして冷媒の漏れを防止するとともに、摺動部品同士が直接接触することによる損傷を防止する。 An oil reservoir 5a is formed at the bottom of the closed container 5. Refrigerating machine oil that lubricates sliding portions such as the compression mechanism portion 3 is stored in the oil reservoir portion 5a. The refrigerating machine oil in the oil reservoir 5a is sucked up in the manner of a centrifugal pump utilizing the rotation of the crankshaft 4, and is supplied to each sliding portion through an oil supply hole (not shown) provided in the crankshaft 4. To. The refueling hole includes a vertical hole extending in the axial direction of the crankshaft 4 and a horizontal hole extending in the radial direction. By supplying the refrigerating machine oil to each sliding part through the oil supply hole in this way, the gap between the mechanical parts is sealed to prevent the refrigerant from leaking, and the sliding parts are damaged due to direct contact with each other. To prevent.
 クランクシャフト4の上部には、冷媒と冷凍機油とを分離する油分離器9が嵌められている。油分離器9は円板状に構成され、圧縮機構部3から吐出管8へ向かって流れる冷媒と冷凍機油との混合流体が衝突する位置に設置されている。混合流体が油分離器9に衝突することで、冷媒と冷凍機油とに分離される。油分離器9によって冷媒と冷凍機油とを分離することで、圧縮機構部3から吐出された冷媒と一緒に冷凍機油が吐出管8から圧縮機外に吐出されるのを防ぎ、密閉容器5内の油が枯渇することによる摺動部の焼き付きを防止する。 An oil separator 9 that separates the refrigerant and the refrigerating machine oil is fitted in the upper part of the crankshaft 4. The oil separator 9 is formed in a disk shape, and is installed at a position where the mixed fluid of the refrigerant flowing from the compression mechanism unit 3 toward the discharge pipe 8 and the refrigerating machine oil collides with each other. When the mixed fluid collides with the oil separator 9, the refrigerant and the refrigerating machine oil are separated. By separating the refrigerant and the refrigerating machine oil by the oil separator 9, it is possible to prevent the refrigerating machine oil from being discharged from the discharge pipe 8 to the outside of the compressor together with the refrigerant discharged from the compression mechanism unit 3, and inside the closed container 5. Prevents seizure of sliding parts due to depletion of oil.
 電動機部2は、クランクシャフト4に取り付けられた回転子2aと、回転子2aを回転駆動する固定子2bとを備えている。固定子2bへの通電が開始されることにより回転子2aが回転し、クランクシャフト4を介して圧縮機構部3に回転動力が伝達される。 The electric motor unit 2 includes a rotor 2a attached to the crankshaft 4 and a stator 2b that rotationally drives the rotor 2a. When the energization of the stator 2b is started, the rotor 2a rotates, and the rotational power is transmitted to the compression mechanism portion 3 via the crankshaft 4.
 圧縮機構部3は、第1圧縮機構部30Aと、第2圧縮機構部30Bと、上軸受11と、下軸受12とを備えている。第1圧縮機構部30Aと第2圧縮機構部30Bとの間には中間板10が配置されている。第1圧縮機構部30Aおよび第2圧縮機構部30Bのそれぞれには、密閉容器5を外部から貫通したインジェクション配管15の端部が接続されている。 The compression mechanism unit 3 includes a first compression mechanism unit 30A, a second compression mechanism unit 30B, an upper bearing 11, and a lower bearing 12. An intermediate plate 10 is arranged between the first compression mechanism portion 30A and the second compression mechanism portion 30B. The end of the injection pipe 15 that penetrates the closed container 5 from the outside is connected to each of the first compression mechanism portion 30A and the second compression mechanism portion 30B.
 上軸受11および下軸受12のそれぞれには、吐出ポート(図示せず)が形成されている。その吐出ポートを覆うように、上吐出マフラ13および下吐出マフラ14が上軸受11および下軸受12にそれぞれ取り付けられている。上吐出マフラ13および下吐出マフラ14は、密閉容器5内の空間の共振によって増幅される騒音を低減させるものである。 Discharge ports (not shown) are formed in each of the upper bearing 11 and the lower bearing 12. The upper discharge muffler 13 and the lower discharge muffler 14 are attached to the upper bearing 11 and the lower bearing 12, respectively, so as to cover the discharge port. The upper discharge muffler 13 and the lower discharge muffler 14 reduce the noise amplified by the resonance of the space in the closed container 5.
 図2は、実施の形態1に係る密閉型圧縮機の圧縮機構部の模式的な平面図である。以下、圧縮機構部3の第1圧縮機構部30Aと第2圧縮機構部30Bとの構成について説明する。第1圧縮機構部30Aおよび第2圧縮機構部30Bは基本的に同様の構成であるため、以下、第1圧縮機構部30Aを代表して説明する。 FIG. 2 is a schematic plan view of the compression mechanism portion of the sealed compressor according to the first embodiment. Hereinafter, the configuration of the first compression mechanism unit 30A and the second compression mechanism unit 30B of the compression mechanism unit 3 will be described. Since the first compression mechanism unit 30A and the second compression mechanism unit 30B have basically the same configuration, the first compression mechanism unit 30A will be described below as a representative.
 第1圧縮機構部30Aは、円筒状のシリンダ31と、クランクシャフト4の偏心軸部4aに回転可能に嵌合する回転ピストン32と、シリンダ31に設けられたベーン溝33に摺動自在に配置されたベーン34と、インジェクション機構40とを備えている。シリンダ31は平板で構成され、その略中心には、略円筒状の貫通孔が上下方向に貫通形成されている。この貫通孔が上軸受11と中間板10とによって閉塞されることで、シリンダ31内に圧縮室35が形成されている。 The first compression mechanism portion 30A is slidably arranged in a cylindrical cylinder 31, a rotary piston 32 rotatably fitted to the eccentric shaft portion 4a of the crankshaft 4, and a vane groove 33 provided in the cylinder 31. It is provided with a cylinder 34 and an injection mechanism 40. The cylinder 31 is made of a flat plate, and a substantially cylindrical through hole is formed through the cylinder 31 in the vertical direction at a substantially central portion thereof. The through hole is closed by the upper bearing 11 and the intermediate plate 10, so that the compression chamber 35 is formed in the cylinder 31.
 ベーン溝33は、圧縮室35に連通してシリンダ31の径方向に延びており、ベーン溝33内に進退自在に設けられたベーン34の先端部が回転ピストン32の外周面と摺接することによって圧縮室35内を低圧空間35aと高圧空間35bとに仕切っている。シリンダ31には、低圧空間35aに開口する冷媒の吸入路としての吸入口36と、高圧空間35bに開口する冷媒の吐出路としての吐出口37とが形成されている。吸入口36は、シリンダ31の外周面31aから内周面31bに向けて貫通して形成されており、吸入口36の外周面31a側の端部には吸入管6が接続される。吐出口37は、シリンダ31の内周面31bが切り欠かれて形成されており、上軸受11に形成された吐出ポートに連通している。 The vane groove 33 communicates with the compression chamber 35 and extends in the radial direction of the cylinder 31, and the tip end portion of the vane 34 provided in the vane groove 33 so as to be movable back and forth comes into sliding contact with the outer peripheral surface of the rotary piston 32. The inside of the compression chamber 35 is divided into a low pressure space 35a and a high pressure space 35b. The cylinder 31 is formed with a suction port 36 as a refrigerant suction path that opens in the low pressure space 35a and a discharge port 37 as a refrigerant discharge path that opens in the high pressure space 35b. The suction port 36 is formed so as to penetrate from the outer peripheral surface 31a of the cylinder 31 toward the inner peripheral surface 31b, and the suction pipe 6 is connected to the end portion of the suction port 36 on the outer peripheral surface 31a side. The discharge port 37 is formed by notching the inner peripheral surface 31b of the cylinder 31, and communicates with the discharge port formed in the upper bearing 11.
 また、シリンダ31には、吸入口36とは別に、外周面31aから内周面31bに向けて貫通するガイド孔38が形成されている。ガイド孔38の外周面31a側の開口はインジェクション配管15(図1参照)が接続される接続口38aとなる。そして、ガイド孔38の内部に、中間圧の冷媒を圧縮室35に導入するインジェクション機構40が配置されている。インジェクション機構40は、インジェクションピストン41と、スプリング42と、キャップ43とを備えている。以下、インジェクション機構40について説明する。 In addition to the suction port 36, the cylinder 31 is formed with a guide hole 38 that penetrates from the outer peripheral surface 31a toward the inner peripheral surface 31b. The opening on the outer peripheral surface 31a side of the guide hole 38 is a connection port 38a to which the injection pipe 15 (see FIG. 1) is connected. An injection mechanism 40 for introducing an intermediate pressure refrigerant into the compression chamber 35 is arranged inside the guide hole 38. The injection mechanism 40 includes an injection piston 41, a spring 42, and a cap 43. Hereinafter, the injection mechanism 40 will be described.
(インジェクション機構の構成)
 図3は、実施の形態1に係るロータリ圧縮機のインジェクション機構を含む要部平面図である。図4は、実施の形態1に係るロータリ圧縮機のインジェクション機構を含む要部の分解平面図である。図5は、実施の形態1に係るロータリ圧縮機のインジェクション機構のインジェクションピストンを示す図で、(a)は平面図、(b)は側面図、(c)は正面図である。
(Structure of injection mechanism)
FIG. 3 is a plan view of a main part including the injection mechanism of the rotary compressor according to the first embodiment. FIG. 4 is an exploded plan view of a main part including the injection mechanism of the rotary compressor according to the first embodiment. 5A and 5B are views showing an injection piston of the injection mechanism of the rotary compressor according to the first embodiment, where FIG. 5A is a plan view, FIG. 5B is a side view, and FIG. 5C is a front view.
 インジェクション機構40において、インジェクションピストン41は、ガイド孔38内に摺動自在に配置されている。インジェクション機構40は、インジェクションピストン41をガイド孔38に沿って移動させることで、インジェクションピストン41に形成された後述のインジェクション流路41cを圧縮室35に連通または非連通に切り替える機構である。 In the injection mechanism 40, the injection piston 41 is slidably arranged in the guide hole 38. The injection mechanism 40 is a mechanism for switching the injection flow path 41c, which will be described later, formed in the injection piston 41 to the compression chamber 35 in communication or non-communication by moving the injection piston 41 along the guide hole 38.
 インジェクションピストン41は、上述したようにガイド孔38内に摺動自在に配置されており、図3には、インジェクションピストン41の先端部が圧縮室35の内部に突出して回転ピストン32の外周面に接触した状態を示している。また、図2には、インジェクションピストン41がガイド孔38内に収納された状態を示している。インジェクションピストン41は、ガイド孔38内に収納された状態において、圧縮室35側の端面がシリンダ31の内周面31bと面一になるように構成されている。 The injection piston 41 is slidably arranged in the guide hole 38 as described above, and in FIG. 3, the tip end portion of the injection piston 41 projects into the compression chamber 35 and is formed on the outer peripheral surface of the rotary piston 32. It shows the state of contact. Further, FIG. 2 shows a state in which the injection piston 41 is housed in the guide hole 38. The injection piston 41 is configured so that the end surface on the compression chamber 35 side is flush with the inner peripheral surface 31b of the cylinder 31 when the injection piston 41 is housed in the guide hole 38.
 ガイド孔38のインジェクション配管側の端部はキャップ43で閉塞されており、インジェクションピストン41のインジェクション配管側の移動位置はキャップ43で規制される。キャップ43は筒状に形成されており、中心の開口部分はインジェクション配管15から供給された中間圧のガス、液または気液二相の冷媒(以下、インジェクション冷媒という)をガイド孔38内に導く内部流路となる。 The end of the guide hole 38 on the injection pipe side is closed by the cap 43, and the moving position of the injection piston 41 on the injection pipe side is regulated by the cap 43. The cap 43 is formed in a tubular shape, and the central opening portion guides an intermediate pressure gas, liquid, or gas-liquid two-phase refrigerant (hereinafter referred to as injection refrigerant) supplied from the injection pipe 15 into the guide hole 38. It becomes an internal flow path.
 インジェクションピストン41は、図5に示すように頭部41aと、頭部41aよりも小径で棒状の軸部41bとを有する。軸部41bは、頭部41aから圧縮室35側に延びている。インジェクションピストン41には、ガイド孔38の接続口38aに接続されたインジェクション配管15から供給されるインジェクション冷媒を圧縮室35に導くインジェクション流路41cが形成されている。インジェクション流路41cは、インジェクションピストン41の内部を頭部41aから軸部41bにかけて貫通する孔で形成されている。インジェクション流路41cの一端は頭部41aの外面に開口している。インジェクション流路41cの他端は軸部41bの外面、具体的には軸部41bの先端部の側面に開口してインジェクションポート41dとなっている。 As shown in FIG. 5, the injection piston 41 has a head portion 41a and a rod-shaped shaft portion 41b having a diameter smaller than that of the head portion 41a. The shaft portion 41b extends from the head portion 41a toward the compression chamber 35 side. The injection piston 41 is formed with an injection flow path 41c that guides the injection refrigerant supplied from the injection pipe 15 connected to the connection port 38a of the guide hole 38 to the compression chamber 35. The injection flow path 41c is formed of a hole that penetrates the inside of the injection piston 41 from the head portion 41a to the shaft portion 41b. One end of the injection flow path 41c is open to the outer surface of the head 41a. The other end of the injection flow path 41c opens to the outer surface of the shaft portion 41b, specifically, the side surface of the tip portion of the shaft portion 41b to form an injection port 41d.
 インジェクションピストン41がガイド孔38内に収納された状態にあるとき、インジェクションポート41dはガイド孔38の内周面によって塞がれて閉となり、インジェクション流路41cが圧縮室35に非連通となる。一方、インジェクションピストン41が圧縮室35側に移動した状態にあるとき、インジェクションポート41dは圧縮室35内に突出して開となり、インジェクション流路41cが圧縮室35に連通する。 When the injection piston 41 is housed in the guide hole 38, the injection port 41d is closed by the inner peripheral surface of the guide hole 38, and the injection flow path 41c is not communicated with the compression chamber 35. On the other hand, when the injection piston 41 is in a state of being moved to the compression chamber 35 side, the injection port 41d protrudes into the compression chamber 35 and opens, and the injection flow path 41c communicates with the compression chamber 35.
 スプリング42は、インジェクションピストン41をガイド孔38内に収納する方向に付勢している。スプリング42は、運転停止時およびインジェクション配管15からのインジェクション冷媒の導入が停止されている時に、インジェクションピストン41をガイド孔38内に収納させるために設けられている。なお、スプリング42は、運転停止時およびインジェクション停止時のインジェクションピストン41の位置をガイド孔38内に限定しない場合は省略可能である。 The spring 42 is urged to house the injection piston 41 in the guide hole 38. The spring 42 is provided to accommodate the injection piston 41 in the guide hole 38 when the operation is stopped and when the introduction of the injection refrigerant from the injection pipe 15 is stopped. The spring 42 can be omitted if the position of the injection piston 41 when the operation is stopped and when the injection is stopped is not limited to the inside of the guide hole 38.
(圧縮機構部の動作)
 以上のように構成された第1圧縮機構部30Aでは、電動機部2に電力供給すると、電動機部2によってクランクシャフト4が回転する。クランクシャフト4が回転することにより、圧縮室35内で偏心軸部4aが偏心回転運動する。
(Operation of compression mechanism)
In the first compression mechanism unit 30A configured as described above, when power is supplied to the electric motor unit 2, the crankshaft 4 is rotated by the electric motor unit 2. As the crankshaft 4 rotates, the eccentric shaft portion 4a moves eccentrically in the compression chamber 35.
 偏心軸部4aの偏心回転運動に伴い、回転ピストン32がシリンダ31内を反時計回りに内周面31bに沿って偏心回転運動する。回転ピストン32の回転に伴い、吸入口36を介して低圧のガス冷媒が吸入された低圧空間35aが高圧空間35bに転じ、高圧空間35bの容積が徐々に縮小されることで冷媒が圧縮される。圧縮されたガス冷媒は、所定の圧力になると、シリンダ31の吐出口37を介して吐出ポートに導かれ、吐出ポートから密閉容器5の内部空間に吐出される。 Along with the eccentric rotational movement of the eccentric shaft portion 4a, the rotary piston 32 makes an eccentric rotational movement in the cylinder 31 counterclockwise along the inner peripheral surface 31b. As the rotary piston 32 rotates, the low-pressure space 35a in which the low-pressure gas refrigerant is sucked through the suction port 36 shifts to the high-pressure space 35b, and the volume of the high-pressure space 35b is gradually reduced to compress the refrigerant. .. When the compressed gas refrigerant reaches a predetermined pressure, it is guided to the discharge port through the discharge port 37 of the cylinder 31, and is discharged from the discharge port into the internal space of the closed container 5.
 第1圧縮機構部30Aおよび第2圧縮機構部30Bでは、クランクシャフト4が回転することで、冷媒ガスの吸入および圧縮が繰り返される。そして、第1圧縮機構部30Aおよび第2圧縮機構部30Bのそれぞれで圧縮されて密閉容器5の内部空間に吐出された冷媒ガスは、吐出管8より密閉容器5外へと吐出される。 In the first compression mechanism section 30A and the second compression mechanism section 30B, the rotation of the crankshaft 4 causes repeated suction and compression of the refrigerant gas. Then, the refrigerant gas compressed by each of the first compression mechanism unit 30A and the second compression mechanism unit 30B and discharged into the internal space of the closed container 5 is discharged from the discharge pipe 8 to the outside of the closed container 5.
(インジェクション機構の動作)
 ロータリ圧縮機1の運転中、圧縮室35の内圧が、インジェクション配管15から供給されるインジェクション冷媒の圧力(以下、インジェクション圧力という)以下の場合、インジェクションピストン41は図3に示すように圧縮室35側に移動し、インジェクションポート41dが開となる。これにより、インジェクション流路41cが圧縮室35に連通し、インジェクション配管15からのインジェクション冷媒が、キャップ43の内部通路、ガイド孔38およびインジェクション流路41cを介してインジェクションポート41dから圧縮室35に導入される。なお、スプリング42のばね圧はインジェクション圧力および圧縮室35の内圧に比べて十分に小さいため、ここでは無視するものとする。なお、インジェクション圧力は、回転ピストン32の回転位置によらず、一定である。
(Operation of injection mechanism)
When the internal pressure of the compression chamber 35 is equal to or lower than the pressure of the injection refrigerant supplied from the injection pipe 15 (hereinafter referred to as the injection pressure) during the operation of the rotary compressor 1, the injection piston 41 has the compression chamber 35 as shown in FIG. It moves to the side and the injection port 41d is opened. As a result, the injection flow path 41c communicates with the compression chamber 35, and the injection refrigerant from the injection pipe 15 is introduced into the compression chamber 35 from the injection port 41d via the internal passage of the cap 43, the guide hole 38, and the injection flow path 41c. Will be done. Since the spring pressure of the spring 42 is sufficiently smaller than the injection pressure and the internal pressure of the compression chamber 35, it is ignored here. The injection pressure is constant regardless of the rotational position of the rotary piston 32.
 インジェクションポート41dは、インジェクションピストン41の軸部41bの側面であって、シリンダ周方向の吸入口36側ではなく吐出口37側に向けて開口している。このため、吸入口36から圧縮室35へ吸入される冷媒の吸入を阻害することなく、インジェクションポート41dから圧縮室35にインジェクション冷媒を導入できる。 The injection port 41d is a side surface of the shaft portion 41b of the injection piston 41, and is open toward the discharge port 37 side instead of the suction port 36 side in the cylinder circumferential direction. Therefore, the injection refrigerant can be introduced into the compression chamber 35 from the injection port 41d without hindering the suction of the refrigerant sucked from the suction port 36 into the compression chamber 35.
 そして、ロータリ圧縮機1の運転中、回転ピストン32が回転してインジェクションピストン41の位置に到達した場合、インジェクションピストン41が回転ピストン32によって押圧されてガイド孔38内に収納される。このように、回転ピストン32がインジェクションピストン41の位置に到達した場合には、圧縮室35の内圧がインジェクション圧力以下でも、回転ピストン32によって強制的にインジェクションピストン41がガイド孔38内に収納される。インジェクションピストン41がガイド孔38内に収納されることでインジェクションポート41dがガイド孔38の内周面によって塞がれて閉となる。これにより、インジェクション流路41cが圧縮室35に非連通となり、インジェクション冷媒の圧縮室35への導入が停止される。 Then, when the rotary piston 32 rotates and reaches the position of the injection piston 41 during the operation of the rotary compressor 1, the injection piston 41 is pressed by the rotary piston 32 and is housed in the guide hole 38. In this way, when the rotary piston 32 reaches the position of the injection piston 41, the injection piston 41 is forcibly housed in the guide hole 38 by the rotary piston 32 even if the internal pressure of the compression chamber 35 is equal to or lower than the injection pressure. .. When the injection piston 41 is housed in the guide hole 38, the injection port 41d is closed by the inner peripheral surface of the guide hole 38. As a result, the injection flow path 41c is not communicated with the compression chamber 35, and the introduction of the injection refrigerant into the compression chamber 35 is stopped.
 図6は、実施の形態1に係るロータリ圧縮機の回転ピストンが1回転する間のインジェクションポートの開閉を示す図である。なお、ここでは回転ピストン32が回転中、常時、インジェクション配管15からインジェクション冷媒が供給され、インジェクションピストン41の設置位置での圧縮室35の内圧よりも高いインジェクション圧力がインジェクションピストン41に作用しているものとする。ここで、ベーン34が回転ピストン32によってベーン溝33に最大限押し込まれた瞬間における位相角を0°とする。また、図6は、以下の構成の場合に対応している。すなわち、図3等に示すようにインジェクションピストン41が位相角180°の位置に設置されている。 FIG. 6 is a diagram showing the opening and closing of the injection port during one rotation of the rotary piston of the rotary compressor according to the first embodiment. Here, while the rotary piston 32 is rotating, the injection refrigerant is constantly supplied from the injection pipe 15, and an injection pressure higher than the internal pressure of the compression chamber 35 at the installation position of the injection piston 41 acts on the injection piston 41. It shall be. Here, the phase angle at the moment when the vane 34 is pushed into the vane groove 33 by the rotating piston 32 to the maximum is set to 0 °. Further, FIG. 6 corresponds to the case of the following configuration. That is, as shown in FIG. 3 and the like, the injection piston 41 is installed at a position having a phase angle of 180 °.
 位相角が0°のとき(図3の状態)、インジェクションピストン41は圧縮室35側に移動してインジェクションポート41dは開いている。そして、回転ピストン32の回転が進んで位相角が70°のとき、インジェクションピストン41は、回転ピストン32によって押圧されてガイド孔38内に収納され、インジェクションポート41dは閉となる。そして、回転ピストン32の回転が更に進んで位相角が290°に至ると、回転ピストン32の移動に連動してインジェクションピストン41が圧縮室35側に移動し、インジェクションポート41dが開となる。 When the phase angle is 0 ° (state in FIG. 3), the injection piston 41 moves to the compression chamber 35 side and the injection port 41d is open. Then, when the rotation of the rotating piston 32 advances and the phase angle is 70 °, the injection piston 41 is pressed by the rotating piston 32 and housed in the guide hole 38, and the injection port 41d is closed. Then, when the rotation of the rotary piston 32 further progresses and the phase angle reaches 290 °, the injection piston 41 moves to the compression chamber 35 side in conjunction with the movement of the rotary piston 32, and the injection port 41d is opened.
 なお、図6に示した位相角で特定されるインジェクションタイミングは一例であって、実使用条件等に応じて適宜設定すればよい。インジェクションタイミングは、インジェクションピストン41を設ける位相角およびインジェクションポート41dの位置に応じて変更できる。以下、この点について説明する。 The injection timing specified by the phase angle shown in FIG. 6 is an example, and may be appropriately set according to actual usage conditions and the like. The injection timing can be changed according to the phase angle at which the injection piston 41 is provided and the position of the injection port 41d. This point will be described below.
(インジェクションタイミング)
 インジェクションピストン41を設ける位相角を変更することで、インジェクションポート41dが圧縮室35に開口する開口開始タイミングを変更できる。具体的には、インジェクションピストン41を設ける位相角を大きくするに連れ、開口開始タイミングが遅くなる。
(Injection timing)
By changing the phase angle at which the injection piston 41 is provided, the opening start timing at which the injection port 41d opens into the compression chamber 35 can be changed. Specifically, as the phase angle at which the injection piston 41 is provided is increased, the opening start timing is delayed.
 また、インジェクションポート41dの軸部41bの軸方向の開口位置、言い換えればインジェクションピストン移動方向の開口位置に応じて、インジェクションポート41dが圧縮室35に開口する位相範囲の長短を変更できる。具体的には、インジェクションポート41dの開口位置を、軸部41bの基部側に移動させるに連れ、インジェクションポート41dがガイド孔38の内周面によって塞がれている期間が長くなるため、逆に開口位相範囲は短くなる。 Further, the length of the phase range in which the injection port 41d opens into the compression chamber 35 can be changed according to the axial opening position of the shaft portion 41b of the injection port 41d, in other words, the opening position in the injection piston moving direction. Specifically, as the opening position of the injection port 41d is moved to the base side of the shaft portion 41b, the period in which the injection port 41d is blocked by the inner peripheral surface of the guide hole 38 becomes longer, so that the opposite is true. The aperture phase range becomes shorter.
 このように、インジェクションピストン41を設ける位相角とインジェクションポート41dの開口位置とを調整することで、インジェクションタイミングを調整できる。これにより、機種に応じた最適なタイミングにインジェクションタイミングを調整できる。 In this way, the injection timing can be adjusted by adjusting the phase angle at which the injection piston 41 is provided and the opening position of the injection port 41d. As a result, the injection timing can be adjusted to the optimum timing according to the model.
(インジェクション圧力と圧縮室の内圧との圧力差に応じたインジェクション機構の動作)
 上記では、回転ピストン32によってインジェクションピストン41が押圧されてインジェクションポート41dが閉じられる動作について説明したが、圧縮室35の内圧がインジェクション圧力よりも高い場合も、インジェクションピストン41がガイド孔38内に収納されてインジェクションポート41dが閉となる。具体的には、後述の図22に示すようにインジェクション回路105の流量調整弁106が閉じられてインジェクション冷媒の導入が停止され、吸入圧力がインジェクション圧力より高くなる場合が該当する。また、圧縮室35の内圧がインジェクション圧力より高くなる場合も、インジェクションピストン41がガイド孔38内に収納されてインジェクションポート41dが閉となる。これにより、圧縮室35からインジェクション流路への冷媒の逆流を防止できる。
(Operation of the injection mechanism according to the pressure difference between the injection pressure and the internal pressure of the compression chamber)
In the above, the operation in which the injection piston 41 is pressed by the rotating piston 32 to close the injection port 41d has been described, but even when the internal pressure of the compression chamber 35 is higher than the injection pressure, the injection piston 41 is housed in the guide hole 38. Then, the injection port 41d is closed. Specifically, as shown in FIG. 22 described later, the case where the flow rate adjusting valve 106 of the injection circuit 105 is closed, the introduction of the injection refrigerant is stopped, and the suction pressure becomes higher than the injection pressure is applicable. Further, even when the internal pressure of the compression chamber 35 becomes higher than the injection pressure, the injection piston 41 is housed in the guide hole 38 and the injection port 41d is closed. As a result, the backflow of the refrigerant from the compression chamber 35 to the injection flow path can be prevented.
 ここで、インジェクションピストン41を設ける位相角を、図2等に示した位相角とは別の位相角とした場合のインジェクションポート41dの開閉について説明する。 Here, the opening and closing of the injection port 41d when the phase angle at which the injection piston 41 is provided is set to a phase angle different from the phase angle shown in FIG. 2 and the like will be described.
 図7~図11は、実施の形態1に係るロータリ圧縮機において、インジェクションピストンを別の位相角に設置した場合のインジェクションピストンの動作説明図である。図7は、回転ピストン32が位相角90°の位置にある状態を示している。図8は、回転ピストン32が位相角180°の位置にある状態を示している。図9は、回転ピストン32が位相角160°の位置にある状態を示している。図10は、回転ピストン32が位相角160°が至る直前の位置にある状態を示している。図11は、回転ピストン32が位相角270°の位置にある状態を示している。図12は、図7~図11に示された回転ピストンが1回転する間のインジェクションポートの開閉を示す図である。図12は、以下の構成の場合に対応している。すなわち、インジェクションピストン41が位相角270°の位置に設置されている。 7 to 11 are explanatory views of the operation of the injection piston when the injection pistons are installed at different phase angles in the rotary compressor according to the first embodiment. FIG. 7 shows a state in which the rotary piston 32 is at a position with a phase angle of 90 °. FIG. 8 shows a state in which the rotary piston 32 is at a position with a phase angle of 180 °. FIG. 9 shows a state in which the rotary piston 32 is at a position with a phase angle of 160 °. FIG. 10 shows a state in which the rotary piston 32 is in a position immediately before the phase angle of 160 ° is reached. FIG. 11 shows a state in which the rotary piston 32 is at a position with a phase angle of 270 °. FIG. 12 is a diagram showing opening and closing of the injection port during one rotation of the rotary piston shown in FIGS. 7 to 11. FIG. 12 corresponds to the case of the following configuration. That is, the injection piston 41 is installed at a position having a phase angle of 270 °.
 位相角が0°のとき、回転ピストン32によって、インジェクションピストン41は押圧されてガイド孔38内に収納され、インジェクションポート41dが閉となっている。そして、回転ピストン32の回転が進んで位相角が20°のとき、かつ圧縮室35の内圧がインジェクション圧力以下の場合は、インジェクションピストン41が圧縮室35側に移動してインジェクションポート41dが開となる。回転ピストン32の回転が進んで位相角が90°のときも、図7に示すように引き続きインジェクションポート41dが開となっている。 When the phase angle is 0 °, the injection piston 41 is pressed by the rotating piston 32 and housed in the guide hole 38, and the injection port 41d is closed. When the rotation of the rotating piston 32 progresses and the phase angle is 20 ° and the internal pressure of the compression chamber 35 is equal to or less than the injection pressure, the injection piston 41 moves to the compression chamber 35 side and the injection port 41d opens. Become. Even when the rotation of the rotating piston 32 advances and the phase angle is 90 °, the injection port 41d is still open as shown in FIG.
 そして、回転ピストン32の回転が更に進んで位相角が160°に至ると、図8に示すように回転ピストン32によって、インジェクションピストン41は押圧されてガイド孔38内に収納され、インジェクションポート41dが閉となる。ここで、図9に示すように回転ピストン32の位相角が160°に至る以前に、圧縮室35の内圧がインジェクション圧力よりも高くなった場合、圧力差によりインジェクションピストン41がガイド孔38内に収納され、インジェクションポート41dが閉となる。回転ピストン32の回転が更に進んで位相角が180°のときおよび位相角が270°のときも、図10および図11に示すように引き続きインジェクションポートが閉となっている。そして、回転ピストン32の回転が更に進んで、位相角が360°を超えて更に20°進むと、再びインジェクションポート41dが開となる。 Then, when the rotation of the rotary piston 32 further progresses and the phase angle reaches 160 °, the injection piston 41 is pressed by the rotary piston 32 and housed in the guide hole 38 as shown in FIG. 8, and the injection port 41d is opened. It will be closed. Here, as shown in FIG. 9, if the internal pressure of the compression chamber 35 becomes higher than the injection pressure before the phase angle of the rotating piston 32 reaches 160 °, the injection piston 41 is inserted into the guide hole 38 due to the pressure difference. It is stowed and the injection port 41d is closed. Even when the rotation of the rotary piston 32 further progresses and the phase angle is 180 ° and the phase angle is 270 °, the injection port is still closed as shown in FIGS. 10 and 11. Then, when the rotation of the rotary piston 32 further advances and the phase angle exceeds 360 ° and further advances by 20 °, the injection port 41d is opened again.
 このように、インジェクションピストン41の設置位置を、図2等に示した位相角180°の位置から図7~図11に示した位相角270°の位置に変更した場合、開口開始タイミングが遅くなっている。この点について次の図13を用いて説明する。 In this way, when the installation position of the injection piston 41 is changed from the position of the phase angle of 180 ° shown in FIG. 2 or the like to the position of the phase angle of 270 ° shown in FIGS. 7 to 11, the opening start timing is delayed. ing. This point will be described with reference to FIG. 13 below.
 図13は、実施の形態1に係るロータリ圧縮機におけるインジェクションポート開口区間の説明図である。図13の横軸は回転ピストン位相[°]である。図13の縦軸は圧縮室の内圧である。
 図13において、回転ピストン32のn回転目は、吸入区間と圧縮区間とを有する。Aは、インジェクションピストン41の設置位置が位相角180°の位置のときの、回転ピストン32のn回転目におけるインジェクションポート41dの開口区間を示しており、-70°~70°である。なお、回転ピストン32が位相角290°に到達したとき、インジェクションポート41dは再び開くが、圧縮中の圧縮室35とは連通しない。
FIG. 13 is an explanatory diagram of an injection port opening section in the rotary compressor according to the first embodiment. The horizontal axis of FIG. 13 is the rotating piston phase [°]. The vertical axis of FIG. 13 is the internal pressure of the compression chamber.
In FIG. 13, the nth rotation of the rotating piston 32 has a suction section and a compression section. A indicates the opening section of the injection port 41d at the nth rotation of the rotating piston 32 when the installation position of the injection piston 41 is at a phase angle of 180 °, and is −70 ° to 70 °. When the rotary piston 32 reaches the phase angle of 290 °, the injection port 41d opens again, but does not communicate with the compression chamber 35 being compressed.
 また、Bは、インジェクションピストン41の設置位置が位相角270°の位置のときの、回転ピストン32のn回転目におけるインジェクションポート41dの開口区間を示しており、20°~160°である。 Further, B indicates the opening section of the injection port 41d at the nth rotation of the rotating piston 32 when the installation position of the injection piston 41 is at a phase angle of 270 °, and is 20 ° to 160 °.
 このように、インジェクションピストン41の設置位置が位相角270°の位置のときの開口区間Bは、設置位置が位相角180°の位置のときの開口区間Aよりも、開口開始タイミングが遅くなっている。 As described above, the opening section B when the installation position of the injection piston 41 is at the phase angle of 270 ° has a later opening start timing than the opening section A when the installation position is at the phase angle of 180 °. There is.
(冷媒吸入の阻害防止)
 吸入口36から圧縮室35に冷媒を吸入している最中にインジェクションポート41dからインジェクション冷媒を圧縮室35に導入すると、吸入口36からの冷媒の吸入を阻害してしまい、圧縮室35へ流入する冷媒の全体流量が低下する。このため、インジェクションピストン41は、吸入口36から圧縮室35への冷媒の吸入が行われている最中に、回転ピストン32によって押圧されてガイド孔38内に収納されるように、シリンダ31に設けられる位相角を設定するとよい。具体的には例えば、図7~図11に示したようにインジェクションピストン41を設ける位相角を270°とした場合が該当する。図11は、吸入口36から圧縮室35への冷媒の吸入が行われている最中に、インジェクションピストン41が回転ピストン32によって押圧されてガイド孔38内に収納された状態を示している。これにより、冷媒の吸入中は、インジェクション流路41cが圧縮室35に対して非連通となり、インジェクション冷媒の圧縮室35への導入が停止されて冷媒吸入の阻害を抑制できる。
(Prevention of inhibition of refrigerant inhalation)
If the injection refrigerant is introduced into the compression chamber 35 from the injection port 41d while the refrigerant is being sucked from the suction port 36 into the compression chamber 35, the suction of the refrigerant from the suction port 36 is hindered and the refrigerant flows into the compression chamber 35. The overall flow rate of the refrigerant is reduced. Therefore, the injection piston 41 is stored in the cylinder 31 so as to be pressed by the rotating piston 32 and housed in the guide hole 38 while the refrigerant is being sucked from the suction port 36 into the compression chamber 35. It is advisable to set the provided phase angle. Specifically, for example, as shown in FIGS. 7 to 11, the case where the phase angle at which the injection piston 41 is provided is set to 270 ° is applicable. FIG. 11 shows a state in which the injection piston 41 is pressed by the rotary piston 32 and housed in the guide hole 38 while the refrigerant is being sucked from the suction port 36 into the compression chamber 35. As a result, during the suction of the refrigerant, the injection flow path 41c is not communicated with the compression chamber 35, the introduction of the injection refrigerant into the compression chamber 35 is stopped, and the inhibition of the suction of the refrigerant can be suppressed.
 以上説明したように、実施の形態1によれば、シリンダ31に、インジェクション配管15が接続される接続口38aから圧縮室35に至るガイド孔38が形成されている。ガイド孔38には、インジェクション配管15から供給されたインジェクション冷媒を圧縮室35に導くインジェクション流路41cが形成されたインジェクションピストン41が摺動自在に配置されている。インジェクションピストン41は、圧縮室35側に移動した状態ではインジェクション流路41cを圧縮室35に連通する一方、圧縮室35とは反対側に移動したてガイド孔38内に収納された状態ではインジェクション流路41cを圧縮室35に非連通とする。このように、実施の形態1は、シリンダ31に形成されたガイド孔38内に、インジェクション流路41cが形成されたインジェクションピストン41を摺動自在に配置した構成である。このため、インジェクション流路41cをガイド孔38とは別にシリンダ31に形成する構成に相当する従来技術に比べて死容積を低減でき、再膨張損失による性能低下を抑制できる。 As described above, according to the first embodiment, the cylinder 31 is formed with a guide hole 38 extending from the connection port 38a to which the injection pipe 15 is connected to the compression chamber 35. In the guide hole 38, an injection piston 41 in which an injection flow path 41c for guiding the injection refrigerant supplied from the injection pipe 15 to the compression chamber 35 is formed is slidably arranged. The injection piston 41 communicates the injection flow path 41c with the compression chamber 35 when it is moved to the compression chamber 35 side, while it moves to the opposite side of the compression chamber 35 and is housed in the guide hole 38. The road 41c is not communicated with the compression chamber 35. As described above, the first embodiment has a configuration in which the injection piston 41 in which the injection flow path 41c is formed is slidably arranged in the guide hole 38 formed in the cylinder 31. Therefore, the dead volume can be reduced and the performance deterioration due to the re-expansion loss can be suppressed as compared with the conventional technique corresponding to the configuration in which the injection flow path 41c is formed in the cylinder 31 separately from the guide hole 38.
 実施の形態1では、インジェクション流路41cの圧縮室35側の開口であるインジェクションポート41dがインジェクションピストン41の外面に開口している。インジェクションピストン41がガイド孔38内に収納された状態でインジェクションポート41dがガイド孔38の内周面によって塞がれることで、インジェクション流路41cが圧縮室35に非連通となる。このように、インジェクション流路41cを圧縮室35に連通または非連通に切り替える構成がインジェクションピストン41だけであるので、構成が単純であり、コスト低減が可能である。 In the first embodiment, the injection port 41d, which is an opening on the compression chamber 35 side of the injection flow path 41c, is open on the outer surface of the injection piston 41. With the injection piston 41 housed in the guide hole 38, the injection port 41d is closed by the inner peripheral surface of the guide hole 38, so that the injection flow path 41c is not communicated with the compression chamber 35. As described above, since the injection piston 41 is the only configuration in which the injection flow path 41c is switched to the compression chamber 35 for communication or non-communication, the configuration is simple and the cost can be reduced.
 実施の形態1では、インジェクションピストン41が設置される位相角と、インジェクションポート41dのインジェクションピストン移動方向の開口位置とを調整することで、インジェクションの開口開始タイミングと開口位相範囲とを調整できる。これにより、シリンダ31に対してインジェクション機構40を設ける位置が他の構成部品との関係で制限される中でも、所望のインジェクションタイミングに調整することが可能である。つまり、実施の形態1の構成は、インジェクションタイミングの設定の自由度が高いため、実使用条件に応じて最適な位置にインジェクションタイミングを設定できる。また、ロータリ圧縮機1を有するユニットの設置箇所への据え付け時に、ユニット内の部品配置の面で最適な位置にインジェクション配管15を配置できる。 In the first embodiment, the injection opening start timing and the opening phase range can be adjusted by adjusting the phase angle at which the injection piston 41 is installed and the opening position of the injection port 41d in the injection piston moving direction. Thereby, even if the position where the injection mechanism 40 is provided with respect to the cylinder 31 is limited in relation to other components, it is possible to adjust to a desired injection timing. That is, since the configuration of the first embodiment has a high degree of freedom in setting the injection timing, the injection timing can be set at the optimum position according to the actual usage conditions. Further, when the unit having the rotary compressor 1 is installed at the installation location, the injection pipe 15 can be arranged at an optimum position in terms of component arrangement in the unit.
 実施の形態1では、吸入口36から冷媒を吸入している最中にインジェクション流路41cが圧縮室35に対して非連通となるように、インジェクションピストン41を設ける位相角とインジェクションポート41dのインジェクションピストン移動方向の開口位置とを設定する。これにより、吸入口36からの冷媒の吸入を阻害することがないため、全体流量の低下を防ぐことができる。 In the first embodiment, the phase angle at which the injection piston 41 is provided and the injection of the injection port 41d so that the injection flow path 41c is not communicated with the compression chamber 35 while the refrigerant is being sucked from the suction port 36. Set the opening position in the piston movement direction. As a result, the suction of the refrigerant from the suction port 36 is not hindered, so that a decrease in the overall flow rate can be prevented.
 また、実施の形態1は、インジェクションピストン41がガイド孔38に収納された状態にあるとき、インジェクションピストン41の圧縮室35側の端面がシリンダ31の内周面31bに面一になるように形成されている。仮に、インジェクションピストン41の圧縮室35側の端面がガイド孔38内の奥側に引っ込んだ位置にあると、ガイド孔38内においてインジェクションピストン41の圧縮室35側の端面よりも圧縮室35側の空間が死容積となりうる。しかし、インジェクションピストン41の圧縮室35側の端面がシリンダ31の内周面31bに沿うことで、死容積を最小限に抑えることができる。 Further, in the first embodiment, when the injection piston 41 is housed in the guide hole 38, the end surface of the injection piston 41 on the compression chamber 35 side is formed so as to be flush with the inner peripheral surface 31b of the cylinder 31. Has been done. If the end surface of the injection piston 41 on the compression chamber 35 side is recessed into the guide hole 38, the end surface of the injection piston 41 on the compression chamber 35 side is closer to the compression chamber 35 than the end surface of the injection piston 41 on the compression chamber 35 side. Space can be a dead volume. However, since the end surface of the injection piston 41 on the compression chamber 35 side is along the inner peripheral surface 31b of the cylinder 31, the dead volume can be minimized.
 なお、ロータリ圧縮機は、上記各図に示した構成に更に、以下のような変形を加えても良い。この場合も同様の作用効果を得ることができる。 The rotary compressor may be further modified as follows in addition to the configurations shown in the above figures. In this case as well, the same effect can be obtained.
 図14は、実施の形態1に係るロータリ圧縮機の変形例1を示す図である。
 上記図2ではインジェクションポート41dが、インジェクションピストン41の軸部41bの側面であって、軸受もしくは中間板側に開口していた。これに対し、変形例1では、インジェクションポート41dが、インジェクションピストン41の軸部41bの側面であって、シリンダ周方向の吐出口37側に開口している。このように、インジェクションポート41dは、インジェクションピストン41がガイド孔38内に収納された状態でガイド孔38の内周面によって塞がれる位置に形成されていればよい。
FIG. 14 is a diagram showing a modification 1 of the rotary compressor according to the first embodiment.
In FIG. 2 above, the injection port 41d is a side surface of the shaft portion 41b of the injection piston 41 and is open to the bearing or the intermediate plate side. On the other hand, in the modified example 1, the injection port 41d is a side surface of the shaft portion 41b of the injection piston 41 and is open to the discharge port 37 side in the cylinder circumferential direction. As described above, the injection port 41d may be formed at a position where the injection piston 41 is housed in the guide hole 38 and is closed by the inner peripheral surface of the guide hole 38.
 図15は、実施の形態1に係るロータリ圧縮機の変形例2を示す図である。
 変形例2では、ガイド孔38に2つのスプリング42およびスプリング44が収納されている。具体的には、インジェクションピストン41の頭部41aの圧縮室35側にスプリング42が配置され、頭部41aのインジェクション配管15側にスプリング44が配置されている。このように2つのスプリングを用いて運転停止時にインジェクションピストン41がガイド孔38内に収納される構成としてもよい。
FIG. 15 is a diagram showing a modification 2 of the rotary compressor according to the first embodiment.
In the second modification, two springs 42 and 44 are housed in the guide hole 38. Specifically, the spring 42 is arranged on the compression chamber 35 side of the head 41a of the injection piston 41, and the spring 44 is arranged on the injection pipe 15 side of the head 41a. In this way, the injection piston 41 may be housed in the guide hole 38 when the operation is stopped by using the two springs.
 図16~図18は、実施の形態1に係るロータリ圧縮機の変形例3を示す図である。図16は、実施の形態1に係るロータリ圧縮機の変形例3のシリンダを示す図で、(a)は平面図、(b)は正面図である。図17は、実施の形態1に係るロータリ圧縮機の変形例3のインジェクションピストンを示す図で、(a)は平面図、(b)は側面図、(c)は正面図である。図18は、実施の形態1に係るロータリ圧縮機の変形例3のキャップを示す図で、(a)は平面図、(b)は正面図である。図19~図21は、実施の形態1に係るロータリ圧縮機の変形例4を示す図である。図19は、実施の形態1に係るロータリ圧縮機の変形例4のシリンダを示す図で、(a)は平面図、(b)は正面図である。図20は、実施の形態1に係るロータリ圧縮機の変形例4のインジェクションピストンを示す図で、(a)は平面図、(b)は側面図、(c)は正面図である。図21は、実施の形態1に係るロータリ圧縮機の変形例4のキャップ43を示す図で、(a)は平面図、(b)は正面図である。 16 to 18 are diagrams showing a modification 3 of the rotary compressor according to the first embodiment. 16A and 16B are views showing a cylinder of a modification 3 of the rotary compressor according to the first embodiment, where FIG. 16A is a plan view and FIG. 16B is a front view. 17A and 17B are views showing an injection piston of a modification 3 of the rotary compressor according to the first embodiment, where FIG. 17A is a plan view, FIG. 17B is a side view, and FIG. 17C is a front view. 18A and 18B are views showing a cap of a modification 3 of the rotary compressor according to the first embodiment, in which FIG. 18A is a plan view and FIG. 18B is a front view. 19 to 21 are views showing a modified example 4 of the rotary compressor according to the first embodiment. 19A and 19B are views showing a cylinder of a modified example 4 of the rotary compressor according to the first embodiment, where FIG. 19A is a plan view and FIG. 19B is a front view. 20A and 20B are views showing an injection piston of a modification 4 of the rotary compressor according to the first embodiment, where FIG. 20A is a plan view, FIG. 20B is a side view, and FIG. 20C is a front view. 21 is a view showing a cap 43 of a modification 4 of the rotary compressor according to the first embodiment, (a) is a plan view, and (b) is a front view.
 インジェクション機構40を構成するインジェクションピストン41の頭部41aおよび軸部41bと、キャップ43の形状は、円柱状に限らず、図16~図18と、図19~図21とに示すように四角形としてもよいし、楕円形状などの丸形以外の形状としてもよい。ガイド孔38は、インジェクションピストン41およびキャップ43の形状に沿った形状とされる。インジェクションピストン41およびキャップ43を、四角形または楕円形状などの、軸部41bの軸方向に回転しない形状とすることで、インジェクションポート41dの向きを任意に決めた方向に固定することができる。 The shapes of the head portion 41a and the shaft portion 41b of the injection piston 41 constituting the injection mechanism 40 and the cap 43 are not limited to a columnar shape, but are formed as quadrangles as shown in FIGS. 16 to 18 and 19 to 21. It may be a shape other than a round shape such as an elliptical shape. The guide hole 38 has a shape that conforms to the shapes of the injection piston 41 and the cap 43. By forming the injection piston 41 and the cap 43 into shapes such as a quadrangle or an ellipse that do not rotate in the axial direction of the shaft portion 41b, the direction of the injection port 41d can be fixed in an arbitrarily determined direction.
 また、図16~図18と図19~図21とに示したインジェクション機構では、スプリング42を備えていない。このように、この発明はスプリングを備えない構成を含む。 Further, the injection mechanism shown in FIGS. 16 to 18 and 19 to 21 does not include the spring 42. Thus, the present invention includes a configuration without a spring.
実施の形態2.
 実施の形態2は、実施の形態1に係るロータリ圧縮機1を備えた冷凍サイクル装置に関するものである。
Embodiment 2.
The second embodiment relates to a refrigeration cycle apparatus including the rotary compressor 1 according to the first embodiment.
 図22は、実施の形態2に係る冷凍サイクル装置の一例を示す図である。
 冷凍サイクル装置100は、実施の形態1のロータリ圧縮機1と、凝縮器101と、膨張弁などで構成された減圧装置102と、蒸発器103とを備える。これらロータリ圧縮機1、凝縮器101、減圧装置102および蒸発器103が冷媒配管104で接続されて、冷媒が循環する主回路を形成している。また、冷凍サイクル装置100は、凝縮器101と減圧装置102との間から分岐し、ロータリ圧縮機1に接続されるインジェクション回路105を備えている。インジェクション回路105には、膨張弁等で構成され、インジェクション回路105の流量を調整する流量調整弁106が設けられている。
FIG. 22 is a diagram showing an example of the refrigeration cycle device according to the second embodiment.
The refrigeration cycle device 100 includes the rotary compressor 1 of the first embodiment, a condenser 101, a decompression device 102 composed of an expansion valve and the like, and an evaporator 103. The rotary compressor 1, the condenser 101, the decompression device 102, and the evaporator 103 are connected by a refrigerant pipe 104 to form a main circuit in which the refrigerant circulates. Further, the refrigeration cycle device 100 includes an injection circuit 105 that branches from between the condenser 101 and the decompression device 102 and is connected to the rotary compressor 1. The injection circuit 105 is composed of an expansion valve or the like, and is provided with a flow rate adjusting valve 106 that adjusts the flow rate of the injection circuit 105.
 冷凍サイクル装置100において、冷媒は、吸入マフラ7を介してロータリ圧縮機1に吸入され、内部で圧縮されることで高温高圧となる。高温高圧となった冷媒は、凝縮器101において凝縮されて液体になる。液体となった冷媒は、減圧装置102で減圧膨張されて低温低圧のガス、液または気液二相となり、蒸発器103に流入する。蒸発器103に流入した冷媒は、蒸発器103において蒸発してガス冷媒となり、再びロータリ圧縮機1に吸入される。 In the refrigeration cycle device 100, the refrigerant is sucked into the rotary compressor 1 via the suction muffler 7 and compressed internally to obtain a high temperature and a high pressure. The high temperature and high pressure refrigerant is condensed in the condenser 101 to become a liquid. The liquid refrigerant is decompressed and expanded by the decompression device 102 to become a low-temperature low-pressure gas, liquid, or gas-liquid two-phase, and flows into the evaporator 103. The refrigerant that has flowed into the evaporator 103 evaporates in the evaporator 103 to become a gas refrigerant, and is sucked into the rotary compressor 1 again.
 ロータリ圧縮機1から吐出されて凝縮器101を通過した冷媒の一部は、インジェクション回路105を介してロータリ圧縮機1のインジェクション配管15に流入する。インジェクション配管15に流入したインジェクション冷媒は、上述したようにインジェクションピストン41のインジェクション流路41cを通ってインジェクションポート41dから圧縮室35に導入される。 A part of the refrigerant discharged from the rotary compressor 1 and passing through the condenser 101 flows into the injection pipe 15 of the rotary compressor 1 via the injection circuit 105. The injection refrigerant that has flowed into the injection pipe 15 is introduced into the compression chamber 35 from the injection port 41d through the injection flow path 41c of the injection piston 41 as described above.
 以上、このように構成された冷凍サイクル装置100においては、実施の形態1に係るロータリ圧縮機1を搭載しているので、再膨張損失による性能の低下を防止でき、性能向上を図ることができる。 As described above, since the refrigerating cycle apparatus 100 configured as described above is equipped with the rotary compressor 1 according to the first embodiment, it is possible to prevent a deterioration in performance due to re-expansion loss and improve the performance. ..
 なお、ここで説明した冷凍サイクル装置100はあくまでも参考であり、例えば四方弁、過冷却器またはバルブなどを追加するといった変更についても、趣旨を逸脱しない範囲で適宜変更可能である。また、この冷凍サイクル装置100に使用される冷媒および冷凍機油について、その種類による限定はしないものとする。 The refrigeration cycle device 100 described here is for reference only, and changes such as adding a four-way valve, a supercooler, a valve, or the like can be appropriately changed as long as the purpose is not deviated. Further, the refrigerant and the refrigerating machine oil used in the refrigerating cycle device 100 are not limited by their types.
 1 ロータリ圧縮機、2 電動機部、2a 回転子、2b 固定子、3 圧縮機構部、4 クランクシャフト、4a 偏心軸部、5 密閉容器、5a 油溜め部、6 吸入管、7 吸入マフラ、8 吐出管、9 油分離器、10 中間板、11 上軸受、12 下軸受、13 上吐出マフラ、14 下吐出マフラ、15 インジェクション配管、23 回転ピストン、30A 第1圧縮機構部、30B 第2圧縮機構部、31 シリンダ、31a 外周面、31b 内周面、32 回転ピストン、33 ベーン溝、34 ベーン、35 圧縮室、35a 低圧空間、35b 高圧空間、36 吸入口、37 吐出口、38 ガイド孔、38a 接続口、40 インジェクション機構、41 インジェクションピストン、41a 頭部、41b 軸部、41c インジェクション流路、41d インジェクションポート、42 スプリング、43 キャップ、44 スプリング、100 冷凍サイクル装置、101 凝縮器、102 減圧装置、103 蒸発器、104 冷媒配管、105 インジェクション回路、106 流量調整弁。 1 rotary compressor, 2 electric motor part, 2a rotor, 2b stator, 3 compression mechanism part, 4 crankshaft, 4a eccentric shaft part, 5 closed container, 5a oil reservoir, 6 suction pipe, 7 suction muffler, 8 discharge Pipe, 9 oil separator, 10 intermediate plate, 11 upper bearing, 12 lower bearing, 13 upper discharge muffler, 14 lower discharge muffler, 15 injection piping, 23 rotating piston, 30A first compression mechanism, 30B second compression mechanism , 31 cylinder, 31a outer peripheral surface, 31b inner peripheral surface, 32 rotating piston, 33 vane groove, 34 vane, 35 compression chamber, 35a low pressure space, 35b high pressure space, 36 suction port, 37 discharge port, 38 guide hole, 38a connection Mouth, 40 injection mechanism, 41 injection piston, 41a head, 41b shaft, 41c injection flow path, 41d injection port, 42 spring, 43 cap, 44 spring, 100 refrigeration cycle device, 101 condenser, 102 decompression device, 103 Evaporator, 104 refrigerant piping, 105 injection circuit, 106 flow control valve.

Claims (6)

  1.  圧縮室が形成されたシリンダと、前記シリンダの内周面に沿って回転する回転ピストンとを備え、前記回転ピストンが前記シリンダ内を偏心回転して前記圧縮室で冷媒を圧縮するロータリ圧縮機であって、
     前記シリンダには、インジェクション配管が接続される接続口から前記圧縮室に至るガイド孔が形成され、
     前記ガイド孔にインジェクション機構が配置されており、
     前記インジェクション機構は、
     前記インジェクション配管から供給されるインジェクション冷媒を前記圧縮室に導くインジェクション流路が形成されたインジェクションピストンを備え、
     前記インジェクションピストンは、前記ガイド孔に摺動自在に配置されており、前記圧縮室側に移動した状態では前記インジェクション流路を前記圧縮室に連通させる一方、前記圧縮室とは反対側に移動して前記ガイド孔内に収納された状態では前記インジェクション流路を前記圧縮室に非連通とするロータリ圧縮機。
    A rotary compressor including a cylinder in which a compression chamber is formed and a rotating piston that rotates along the inner peripheral surface of the cylinder, and the rotating piston eccentrically rotates in the cylinder to compress the refrigerant in the compression chamber. There,
    A guide hole is formed in the cylinder from a connection port to which an injection pipe is connected to the compression chamber.
    An injection mechanism is arranged in the guide hole,
    The injection mechanism is
    An injection piston having an injection flow path for guiding the injection refrigerant supplied from the injection pipe to the compression chamber is provided.
    The injection piston is slidably arranged in the guide hole, and when it is moved to the compression chamber side, the injection flow path communicates with the compression chamber, while it moves to the side opposite to the compression chamber. A rotary compressor that does not communicate the injection flow path with the compression chamber when it is housed in the guide hole.
  2.  前記インジェクション流路の前記圧縮室側の開口であるインジェクションポートが前記インジェクションピストンの外面に開口しており、
     前記インジェクションピストンが前記ガイド孔内に収納された状態で前記インジェクションポートが前記ガイド孔の内周面によって塞がれることで、前記インジェクション流路が前記圧縮室に非連通となる請求項1記載のロータリ圧縮機。
    An injection port, which is an opening on the compression chamber side of the injection flow path, is open on the outer surface of the injection piston.
    The first aspect of claim 1, wherein the injection port is closed by the inner peripheral surface of the guide hole while the injection piston is housed in the guide hole, so that the injection flow path is not communicated with the compression chamber. Rotary compressor.
  3.  前記インジェクションピストンが設置される位相角と、前記インジェクションポートのインジェクションピストン移動方向の開口位置とにより、前記インジェクションポートが前記圧縮室に開口する開口開始タイミングと開口位相範囲とが調整されている請求項2記載のロータリ圧縮機。 The claim that the opening start timing and the opening phase range at which the injection port opens into the compression chamber are adjusted by the phase angle at which the injection piston is installed and the opening position of the injection port in the injection piston moving direction. 2. The rotary compressor according to 2.
  4.  前記インジェクションピストンは、前記シリンダに形成された吸入口から前記圧縮室への冷媒の吸入が行われている最中に、前記回転ピストンによって押圧されて前記インジェクション流路が前記圧縮室に対して非連通となる位相角に形成されている請求項3記載のロータリ圧縮機。 The injection piston is pressed by the rotating piston while the refrigerant is being sucked into the compression chamber from the suction port formed in the cylinder, and the injection flow path is not directed to the compression chamber. The rotary compressor according to claim 3, wherein the rotary compressor is formed at a phase angle of communication.
  5.  前記インジェクションピストンは、前記ガイド孔内に収納されて前記インジェクション流路が前記圧縮室に対して非連通となる状態にあるときに、前記インジェクションピストンの前記圧縮室側の端面が前記シリンダの内周面に面一になるように形成されている請求項1~請求項4のいずれか一項に記載のロータリ圧縮機。 When the injection piston is housed in the guide hole and the injection flow path is in a state of non-communication with the compression chamber, the end surface of the injection piston on the compression chamber side is the inner circumference of the cylinder. The rotary compressor according to any one of claims 1 to 4, which is formed so as to be flush with each other.
  6.  請求項1~請求項5のいずれか一項に記載のロータリ圧縮機と、凝縮器と、減圧装置と、蒸発器とを有し、冷媒が循環するように構成された主回路と、
     前記凝縮器と前記減圧装置との間から分岐し、前記ロータリ圧縮機に接続されるインジェクション回路と、
     前記インジェクション回路の流量を調整する流量調整弁と備えた冷凍サイクル装置。
    A main circuit having a rotary compressor according to any one of claims 1 to 5, a condenser, a decompression device, and an evaporator, and configured to circulate a refrigerant.
    An injection circuit that branches from between the condenser and the decompression device and is connected to the rotary compressor.
    A refrigeration cycle device including a flow rate adjusting valve for adjusting the flow rate of the injection circuit.
PCT/JP2019/016409 2019-04-17 2019-04-17 Rotary compressor and refrigeration cycle device WO2020213080A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021514708A JP7008874B2 (en) 2019-04-17 2019-04-17 Rotary compressor and refrigeration cycle equipment
PCT/JP2019/016409 WO2020213080A1 (en) 2019-04-17 2019-04-17 Rotary compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016409 WO2020213080A1 (en) 2019-04-17 2019-04-17 Rotary compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020213080A1 true WO2020213080A1 (en) 2020-10-22

Family

ID=72838111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016409 WO2020213080A1 (en) 2019-04-17 2019-04-17 Rotary compressor and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7008874B2 (en)
WO (1) WO2020213080A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397895A (en) * 1986-10-09 1988-04-28 Daikin Ind Ltd Helium compressor
JPH10141267A (en) * 1996-11-08 1998-05-26 Daikin Ind Ltd Rotary compressor
CN107131127A (en) * 2017-06-20 2017-09-05 清华大学 A kind of horizontal bar swing-rotor compressor with second vapor injection structure
CN107542659A (en) * 2016-06-26 2018-01-05 魏亮 A kind of single rotor Gas-supplying enthalpy-increasing compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397895A (en) * 1986-10-09 1988-04-28 Daikin Ind Ltd Helium compressor
JPH10141267A (en) * 1996-11-08 1998-05-26 Daikin Ind Ltd Rotary compressor
CN107542659A (en) * 2016-06-26 2018-01-05 魏亮 A kind of single rotor Gas-supplying enthalpy-increasing compressor
CN107131127A (en) * 2017-06-20 2017-09-05 清华大学 A kind of horizontal bar swing-rotor compressor with second vapor injection structure

Also Published As

Publication number Publication date
JPWO2020213080A1 (en) 2021-11-04
JP7008874B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
US7607319B2 (en) Positive displacement expander and fluid machinery
US7563080B2 (en) Rotary compressor
US8172558B2 (en) Rotary expander with discharge and introduction passages for working fluid
WO2006014081A1 (en) Capacity variable device for rotary compressor and driving method of air conditioner having the same
JP2007023993A (en) Two-stage compressor
AU2005240930A1 (en) Rotary fluid device
CN112055785A (en) Hermetic compressor and refrigeration cycle device
JP7008874B2 (en) Rotary compressor and refrigeration cycle equipment
KR101915968B1 (en) Swash plate type compressor
US11448072B2 (en) Rotary compressor
KR102547594B1 (en) Variable displacement swash plate type compressor
KR102547593B1 (en) Variable displacement swash plate type compressor
CN111788391B (en) Rotary compressor
US10968911B2 (en) Oscillating piston-type compressor
KR101843756B1 (en) Variable displacement swash plate type compressor
KR100635821B1 (en) The controling oil suppling capacity device for inverter compressor
WO2022269752A1 (en) Rotary compressor and refrigeration cycle device
KR102331606B1 (en) A compressor
KR102407603B1 (en) A compressor
CN112513466B (en) Rotary compressor and refrigeration cycle device
KR101763979B1 (en) Variable displacement swash plate type compressor
KR101866731B1 (en) Variable displacement swash plate type compressor
CN114008324B (en) Scroll compressor and refrigeration cycle device
KR20230064057A (en) Scroll compressor
JP2006046104A (en) Variable displacement type gas compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924936

Country of ref document: EP

Kind code of ref document: A1