WO2020213054A1 - Obstacle detection device - Google Patents

Obstacle detection device Download PDF

Info

Publication number
WO2020213054A1
WO2020213054A1 PCT/JP2019/016310 JP2019016310W WO2020213054A1 WO 2020213054 A1 WO2020213054 A1 WO 2020213054A1 JP 2019016310 W JP2019016310 W JP 2019016310W WO 2020213054 A1 WO2020213054 A1 WO 2020213054A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
distance
sonar sensor
unit
determination unit
Prior art date
Application number
PCT/JP2019/016310
Other languages
French (fr)
Japanese (ja)
Inventor
侑己 浦川
井上 悟
裕 小野寺
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/016310 priority Critical patent/WO2020213054A1/en
Priority to JP2021508018A priority patent/JP6873353B2/en
Publication of WO2020213054A1 publication Critical patent/WO2020213054A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present invention relates to an obstacle detection device that detects an obstacle using ultrasonic waves.
  • the obstacle detection device mounted on the vehicle evaluates the position of the obstacle and performs brake control or steering control, etc. It is required to do and avoid collisions.
  • a low-cost ultrasonic distance measuring sensor hereinafter referred to as "sona sensor”
  • the position of the obstacle in the medium-short distance region is aperture synthesis processing or two circles. It is evaluated accurately by intersection processing.
  • the long-distance region the region where the detection ranges of the adjacent ultrasonic distance measuring sensors overlap is narrowed, so that the position evaluation accuracy by the aperture synthesis process or the like is lowered.
  • the detection device has a configuration in which an obstacle can be detected at a longer distance by increasing the amplitude of ultrasonic waves.
  • the sonar sensor Even if the sonar sensor increases the detectable distance by increasing the amplitude of ultrasonic waves, it is difficult to expand the area where the detection ranges overlap in the long-distance area. Therefore, even if the sonar sensor can detect the presence of an obstacle in a long distance region, the position evaluation accuracy remains low.
  • the present invention has been made to solve the above problems, and an object of the present invention is to evaluate the position of an obstacle in a medium-short distance region and a long-distance region.
  • the obstacle detection device includes a plurality of sonar sensors provided on one side of the vehicle, and a transmission / reception unit that transmits exploration waves using the plurality of sonar sensors and receives the reflected waves reflected by the exploration waves.
  • the distance calculation unit that calculates the distance to the obstacle using the transmission / reception results of the exploration wave and the reflected wave, and the distance to the obstacle are set based on the size of the overlapping area where the detection ranges of the adjacent sonar sensors overlap.
  • the intensity of the reflected wave used to calculate the distance to the obstacle is greater than or equal to the first threshold.
  • the two-dimensional coordinate position evaluation method of the obstacle is used properly depending on whether or not the distance to the obstacle is equal to or more than the reference distance. Can be rated.
  • FIG. 1 It is a block diagram which shows the structural example of the obstacle detection apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the detection range and the reference distance of the sonar sensor in Embodiment 1.
  • FIG. It is a flowchart which shows the operation example of the obstacle detection apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the setting example of the detection range in a long-distance region of the 1st sonar sensor in Embodiment 1.
  • FIG. It is a graph which shows the setting example of the 1st threshold value in Embodiment 1.
  • FIG. It is a graph which shows the setting example of the 1st threshold value and the 2nd threshold value in Embodiment 1.
  • FIG. 2 It is a block diagram which shows the structural example of the obstacle detection apparatus which concerns on Embodiment 2.
  • FIG. It is a graph which shows the setting example of the 1st threshold value, the 2nd threshold value and the 3rd threshold value in Embodiment 2.
  • FIG. It is a figure which shows the setting example of the 3rd threshold value in Embodiment 2.
  • It is a flowchart which shows the operation example of the obstacle detection apparatus which concerns on Embodiment 3.
  • FIG. 6 is a graph showing a setting example of a second threshold value, a fourth threshold value, and a fifth threshold value in the fifth embodiment. It is a figure which shows an example of the hardware configuration of the obstacle detection apparatus which concerns on each embodiment. It is a figure which shows another example of the hardware composition of the obstacle detection apparatus which concerns on each embodiment.
  • FIG. 1 is a block diagram showing a configuration example of the obstacle detection device 10 according to the first embodiment.
  • the obstacle detection device 10 is mounted on the vehicle and detects obstacles around the vehicle.
  • the obstacle detection device 10 includes a first sonar sensor 11, a second sonar sensor 12, a third sonar sensor 13, a fourth sonar sensor 14, a transmission / reception unit 15, a distance calculation unit 16, a distance determination unit 17, a first strength determination unit 18, and a first. It includes a 1-position rating unit 19, a second strength determination section 20, and a second position rating section 21.
  • FIG. 2 is a diagram showing an example of the detection range and the reference distance of the sonar sensor in the first embodiment.
  • FIG. 2 shows a state in which the vehicle 1 is viewed from above, and the front-rear direction of the vehicle 1 is the X-axis and the vehicle width direction is the Y-axis.
  • the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 are installed in a row at equal intervals at the rear of the vehicle 1. That is, the direction in which the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 are arranged is the same as the Y-axis direction.
  • the installation positions of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 are not limited to the rear part of the vehicle 1.
  • the detection range of a sonar sensor becomes narrower as the distance from the sonar sensor increases. Therefore, in the long-distance region, the region where the detection ranges of the adjacent sonar sensors overlap is also narrowed.
  • the aperture synthesis process it is desirable that the detection ranges of adjacent sonar sensors overlap, but in the long-distance region, the areas where the detection ranges overlap are narrow or the detection ranges do not overlap, so the longer the distance, the lower the position evaluation accuracy. .. Therefore, in the first embodiment, the distance at which the overlapping regions where the detection ranges of the adjacent sonar sensors overlap is set as the reference distance Dx. In the medium-short distance region A2, which is closer to the sonar sensor than the reference distance Dx, the detection ranges overlap, so that highly accurate obstacle position evaluation by aperture synthesis processing is possible.
  • a second threshold Th2 is set so that the detection ranges of adjacent sonar sensors overlap with respect to the medium-short distance region A2 less than the reference distance Dx.
  • the second threshold Th2 will be described later.
  • the detection range 11-2 of the first sonar sensor 11 and the detection range 12-2 of the second sonar sensor 12 partially overlap.
  • the detection range 12-2 of the adjacent second sonar sensor 12 and the detection range 13-2 of the third sonar sensor 13, the detection range 13-2 of the third sonar sensor 13 and the detection range 14-2 of the fourth sonar sensor 14 also Each part overlaps.
  • a first threshold Th1 is set so that the detection ranges of adjacent sonar sensors do not overlap.
  • the first threshold Th1 will be described later.
  • the detection range 11-1 of the first sonar sensor 11 is a range having a width Dy in the Y-axis direction, and does not overlap with the detection range 12-1 of the second sonar sensor 12.
  • the detection ranges 12-1, 13-1, and 14-1 of the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 do not overlap.
  • FIG. 3 is a flowchart showing an operation example of the obstacle detection device 10 according to the first embodiment. For example, while the vehicle 1 is traveling, the obstacle detection device 10 repeats the operation shown in the flowchart of FIG. 3 at predetermined time intervals.
  • the transmission / reception unit 15 transmits the exploration wave in the order of, for example, the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14. Further, the transmission / reception unit 15 causes the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 to receive the reflected wave reflected by the obstacle. At this time, the transmission / reception unit 15 may cause the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 to receive the direct wave or the indirect wave.
  • the transmission / reception unit 15 transmits a search wave from the first sonar sensor 11, receives the reflected wave reflected by the search wave by an obstacle as a direct wave at the first sonar sensor 11, and at the adjacent second sonar sensor 12. Receive as an indirect wave.
  • the transmission / reception unit 15 arbitrarily selects a sonar sensor for exploration wave transmission and direct wave reception and a sonar sensor for indirect wave reception from the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14. You can select.
  • the transmission / reception unit 15 outputs the transmission / reception result using the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 to the distance calculation unit 16.
  • the transmission / reception results include the sonar sensor that transmitted the exploration wave, the sonar sensor that received the direct wave corresponding to this exploration wave, the time from transmission of the exploration wave to the reception of the direct wave, the intensity of the direct wave, and the indirect wave corresponding to this exploration wave.
  • the received sonar sensor, the time from the exploration wave transmission to the indirect wave reception, the intensity of the indirect wave, and the like are included.
  • step ST12 the distance calculation unit 16 uses the transmission / reception result from the transmission / reception unit 15 until each of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 receives the reflected wave.
  • the distance to the obstacle is calculated for each sonar sensor by the TOF (Time Of Flight) method based on the time required for.
  • This reflected wave may be a direct wave or an indirect wave.
  • the distance calculation unit 16 outputs the calculated distance to the obstacle together with the transmission / reception result used for this calculation to the distance determination unit 17.
  • step ST13 the distance determination unit 17 determines whether or not the distance to the obstacle calculated by the distance calculation unit 16 for each sonar sensor is equal to or greater than the reference distance Dx shown in FIG. It is assumed that the reference distance Dx is given to the distance determination unit 17 in advance.
  • the distance determination unit 17 determines that the distance to the obstacle is equal to or greater than the reference distance Dx (step ST13 “YES”)
  • the distance determination unit 17 outputs the distance to the obstacle and the transmission / reception result to the first strength determination unit 18.
  • the second strength determination unit 20 determines the distance to the obstacle and the transmission / reception result. Output to.
  • the first intensity determination unit 18 determines whether or not the intensity of the reflected wave used to calculate the distance to the obstacle determined to be the reference distance Dx or more is the predetermined first threshold Th1 or more. Is determined. In the first embodiment, the reflected wave is limited to a direct wave. When the first intensity determination unit 18 determines that the intensity of the reflected wave is equal to or higher than the first threshold value Th1 (step ST14 “YES”), the first position evaluation unit 19 determines the distance to the obstacle and the transmission / reception result. Output to. On the other hand, when the first intensity determination unit 18 determines that the intensity of the reflected wave is less than the first threshold Th1 for all the sonar sensors (step ST14 “NO”), the operation shown in the flowchart of FIG. 3 ends.
  • the first position rating unit 19 uses the distance to the obstacle calculated from the reflected wave whose intensity is determined to be the first threshold Th1 or more, and the position of the sonar sensor that received the reflected wave.
  • the two-dimensional coordinate range of the obstacle is evaluated. For example, in FIG. 2, when the sonar sensor that has received the reflected wave is the first sonar sensor 11, the Y-axis coordinate position of the obstacle 3 is the width Dy in the Y-axis direction that is the detection range 11-1 of the first sonar sensor 11. Become a range.
  • the X-axis coordinate position of the obstacle 3 is a position corresponding to the distance calculated by the distance calculation unit 16.
  • the first threshold value Th1 and the detection ranges 11-1, 12-1, 13-1, and 14-1 set by the first threshold value Th1 will be described.
  • FIG. 4 is a diagram showing a setting example of the detection range 11-1 of the first sonar sensor 11 in the first embodiment.
  • FIG. 5 is a graph showing a setting example of the first threshold value Th1 in the first embodiment. The horizontal axis of the graph is the distance from the first sonar sensor 11 in the X-axis direction, and the vertical axis is the value of the first threshold Th1.
  • the contour level V1 of the detection sensitivity has the same intensity as the intensity of the reflected wave received by the first sonar sensor 11 (that is, the detection sensitivity) when the reference pole 2-1 is present in front of the first sonar sensor 11.
  • the range is connected by a line.
  • the contour lines V2 to V6 have the same intensity as the reflected wave received by the first sonar sensor 11 when the reference poles 2-2 to 2-6 are present in front of the first sonar sensor 11, respectively.
  • the range is connected by a line.
  • the width of the detection range 11-1 in the Y-axis direction is set to the above width Dy so that the detection range 11-1 of the first sonar sensor 11 and the detection range 12-1 of the second sonar sensor 12 do not overlap.
  • the value of the contour line level V1 is the first threshold value with respect to the distance in the X-axis direction where the broken line frame deviated by 1 / 2Dy in width from the front of the first sonar sensor 11 and the contour line level V1 intersect. It is set as Th1 (V1).
  • the values of the contour lines V2 to V5 for each distance in the X-axis direction where the broken line frame deviated by 1/2 DY in the Y-axis direction from the front of the first sonar sensor 11 and the contour lines V2 to V6 intersect. Is set as the first thresholds Th1 (V2) to Th1 (V5).
  • the line connecting the first threshold values Th1 (V1) to Th1 (V5) is the first threshold value Th1 used in the long distance region A1 having the reference distance Dx or more.
  • the detection ranges 11-1, 12-1, 13-1, and 14-1 of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 have the same size. Therefore, the first threshold Th1 is the same for all sonar sensors.
  • the intensity of the reflected wave of the first sonar sensor 11 used for calculating the distance to the obstacle determined to be the reference distance Dx or more is set as described above. It is determined whether or not the first threshold value is Th1 or more. When the intensity of the reflected wave is equal to or higher than the first threshold value Th1 (step ST14 “YES”), this obstacle is present in the detection range 11-1. Therefore, the first position evaluation unit 19 evaluates the X-axis coordinate position of the obstacle from the distance to the obstacle, and sets the range of the detection range 11-1 in the Y-axis direction as the Y-axis coordinate position of the obstacle. Rating (step ST15).
  • the first position rating unit 19 does not rate the two-dimensional coordinate range of this obstacle. In this way, the detection range 11-1 at the reference distance Dx or more of the first sonar sensor 11 is set by the first threshold Th1.
  • the first position rating unit 19 evaluates the X-axis coordinate position of the obstacle from the distance to the obstacle, and sets the range of the detection range 12-1 in the Y-axis direction as the Y-axis coordinate position of the obstacle. Rating (step ST15).
  • FIG. 6 is a graph showing a setting example of the first threshold value Th1 and the second threshold value Th2 in the first embodiment.
  • the horizontal axis of the graph is the distance from the first sonar sensor 11 in the X-axis direction, and the vertical axis is the values of the first threshold Th1 and the second threshold Th2.
  • the second threshold Th2 of the first sonar sensor 11 is set to a value such that the detection range 11-2 of the first sonar sensor 11 partially overlaps the detection range 12-2 of the adjacent second sonar sensor 12.
  • the setting method may be the same as the setting method of the first threshold value Th1, or a well-known technique may be used.
  • the detection ranges 11-2, 12-2, 13-2, 14-2 of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 have the same size. Therefore, the second threshold Th2 is the same for all sonar sensors.
  • the second intensity determination unit 20 determines that the intensity of the reflected wave used to calculate the distance to the obstacle determined to be less than the reference distance Dx is equal to or higher than a predetermined second threshold value Th2. Determine if it exists.
  • This reflected wave may be a direct wave or an indirect wave.
  • the second intensity determination unit 20 determines that the intensity of the reflected wave is equal to or higher than the second threshold value Th2 (step ST16 “YES”)
  • the second position evaluation unit 21 determines the distance to the obstacle and the transmission / reception result. Output to.
  • the second intensity determination unit 20 determines that the intensity of the reflected wave is less than the second threshold Th2 for all the sonar sensors (step ST16 “NO”), the second intensity determination unit 20 ends the operation shown in the flowchart of FIG.
  • the second position rating unit 21 performs aperture synthesis processing using the distance of the obstacle calculated from the reflected wave whose intensity is determined to be equal to or higher than the second threshold value, and performs the aperture synthesis process, and the two-dimensional coordinates of the obstacle. Evaluate the position. For example, assume that the first sonar sensor 11 transmits an exploration wave, the first sonar sensor 11 receives the exploration wave as a direct wave, and the second sonar sensor 12 receives this exploration wave as an indirect wave. In this case, the second position rating unit 21 draws a circle centered on the position of the first sonar sensor 11 and having the distance to the obstacle calculated from the direct wave as the radius.
  • the second position evaluation unit 21 focuses on the position of the first sonar sensor 11 and the position of the second sonar sensor 12, and draws an ellipse using the distance to the obstacle calculated from the indirect wave. Then, the second position evaluation unit 21 evaluates the two-dimensional coordinate position of the intersection of the circle and the ellipse as the two-dimensional coordinate position of the obstacle. Further, for example, it is assumed that the first sonar sensor 11 transmits the exploration wave and receives the direct wave, and the second sonar sensor 12 also transmits the exploration wave and receives the direct wave. In this case, the second position rating unit 21 draws a circle centered on the position of the first sonar sensor 11 and having the distance to the obstacle calculated from the direct wave as the radius.
  • the second position rating unit 21 draws a circle centered on the position of the second sonar sensor 12 and having the distance to the obstacle calculated from the direct wave as the radius. Then, the second position evaluation unit 21 evaluates the two-dimensional coordinate position of the intersection of the two circles as the two-dimensional coordinate position of the obstacle. The second position rating unit 21 may find the intersection of the ellipse and the ellipse, or may find the intersection of three or more circles or the ellipse.
  • the obstacle detection device 10 includes the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, the fourth sonar sensor 14, the transmission / reception unit 15, the distance calculation unit 16, and the distance determination unit. 17, a first strength determination unit 18, a first position evaluation unit 19, a second strength determination unit 20, and a second position evaluation unit 21 are provided.
  • the transmission / reception unit 15 transmits the exploration wave using the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14, and receives the reflected wave reflected by the obstacle.
  • the distance calculation unit 16 calculates the distance to the obstacle using the transmission / reception results of the exploration wave and the reflected wave.
  • the distance determination unit 17 determines whether or not the distance to the obstacle is equal to or greater than the reference distance Dx set based on the size of the overlapping region where the detection ranges of the adjacent sonar sensors overlap.
  • the first intensity determination unit 18 determines whether or not the intensity of the reflected wave used to calculate the distance to the obstacle is equal to or greater than the first threshold Th1.
  • the first position rating unit 19 uses the distance to the obstacle calculated from the reflected wave whose intensity is determined by the first intensity determination unit 18 to be the first threshold Th1 or more, and the position of the sonar sensor that receives the reflected wave. The two-dimensional coordinate range of the obstacle is evaluated.
  • the second intensity determination unit 20 determines whether or not the intensity of the reflected wave used for calculating the distance to the obstacle is the second threshold Th2 or more. To do.
  • the second position rating unit 21 performs aperture synthesis processing using the distance of the obstacle calculated from the reflected wave whose intensity is determined by the second intensity determination unit 20 to be the second threshold Th2 or more, and performs the aperture synthesis process in two dimensions of the obstacle. Evaluate the coordinate position.
  • the obstacle detection device 10 evaluates the two-dimensional coordinate position of the obstacle by the aperture synthesis process in the medium-short distance region A2 where the position evaluation accuracy by the aperture synthesis process is high, and the position evaluation accuracy by the aperture synthesis process is improved. In the low long-distance region A1, the two-dimensional coordinate range of the obstacle can be evaluated without performing the aperture synthesis process.
  • Reference numeral 14-1 is rectangular, and the detection ranges of adjacent sonar sensors do not overlap.
  • the obstacle detection device 10 has the respective detection ranges 11-1, 12-1, 13-1 as the resolution of the position evaluation in the Y-axis direction in the long-distance region A1 where the position evaluation accuracy by the aperture synthesis process is low.
  • 14-1 can obtain a resolution corresponding to the width in the Y-axis direction.
  • the number of sonar sensors included in the obstacle detection device 10 is at least two, preferably three or more.
  • FIG. 7 is a block diagram showing a configuration example of the obstacle detection device 10 according to the second embodiment.
  • the obstacle detection device 10 according to the second embodiment has a configuration in which a boundary position determination unit 22 is added to the obstacle detection device 10 of the first embodiment shown in FIG.
  • the same or corresponding parts as those in FIGS. 1 to 6 are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 8 is a graph showing a setting example of the first threshold value Th1 and the second threshold value Th2 and the third threshold value Th3 in the second embodiment.
  • the horizontal axis of the graph is the distance from the sonar sensor in the X-axis direction, and the vertical axis is the values of the first threshold Th1, the second threshold Th2, and the third threshold Th3.
  • the third threshold Th3 is a value larger than the first threshold Th1.
  • FIG. 9 is a diagram showing a setting example of the third threshold value Th3 in the second embodiment.
  • the obstacle 4 exists at the boundary position between the detection range 12-1 of the second sonar sensor 12 and the detection range 13-1 of the third sonar sensor 13. To do. Further, the obstacle 5 exists in the detection range 12-1 of the second sonar sensor 12.
  • the second sonar sensor 12 transmits the exploration wave
  • the second sonar sensor 12 receives the direct wave reflected by the obstacle 4 and the direct wave reflected by the obstacle 5.
  • the third sonar sensor 13 receives the indirect wave reflected by the obstacle 4 and the indirect wave reflected by the obstacle 5.
  • the first sonar sensor 11 receives the indirect wave reflected by the obstacle 5.
  • the indirect wave path 4a reflected by the obstacle 4 existing at the boundary position forms an isosceles triangle, and at this time, the transmission / reception efficiency is maximized.
  • the transmission / reception efficiency of the path 5a is lower than the transmission / reception efficiency of the path 4a. Therefore, even if the length of the path 4a and the length of the path 5a are the same, the intensity of the indirect wave of the path 4a received by the third sonar sensor 13 is larger than the intensity of the indirect wave of the path 5a. Therefore, in the second embodiment, in order to discriminate between the indirect wave of the path 4a and the indirect wave of the path 5a, a third threshold value Th3 larger than the first threshold value Th1 is set as shown in FIG.
  • the distance determination unit 17 has a distance to an obstacle of any one of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 of the reference distance Dx or more. If it is determined, the distance to the obstacle and the transmission / reception result are output to the boundary position determination unit 22.
  • the boundary position determination unit 22 causes one of the adjacent sonar sensors to directly wave based on the transmission / reception result from the distance determination unit 17. Receive and determine if the other has received an indirect wave.
  • the boundary position determination unit 22 determines that one of the adjacent sonar sensors receives the direct wave and the other receives the indirect wave, this obstacle may exist at the boundary position of the detection range of the adjacent sonar sensor. Judged as having sex.
  • the boundary position determination unit 22 outputs the determination result of whether or not the obstacle exists at the boundary position to the first strength determination unit 18a together with the distance to the obstacle and the transmission / reception result.
  • the first intensity determination unit 18a holds a third threshold value Th3 for indirect wave comparison in addition to the first threshold value Th1 for direct wave comparison.
  • the first intensity determining unit 18a makes a comparison with the first threshold value Th1 as in the first embodiment, and the reflected wave is an indirect wave. If is, the comparison with the third threshold value Th3 is performed.
  • the first position evaluation unit 19a determines the distance of the obstacle, the transmission / reception result, and the presence of the obstacle at the boundary position. Output to.
  • the first intensity determination unit 18a determines that the intensity of the indirect wave is less than the third threshold value Th3, it does not output to the first position evaluation unit 19a because the obstacle does not exist at the boundary position.
  • the first position evaluation unit 19a evaluates the boundary position as the Y-axis coordinate position of the obstacle. To do.
  • the boundary position determination unit 22 receives the direct wave from the second sonar sensor 12 and is adjacent to the second sonar sensor 12. 3 It is determined that the sonar sensor 13 has received the indirect wave. Therefore, the boundary position determination unit 22 determines that the obstacle whose distance has been calculated by the distance calculation unit 16 may exist at the boundary positions of the detection ranges 12-1 and 13-1.
  • the first intensity determination unit 18a determines that the intensity of the indirect wave used to calculate the distance to the obstacle is the third threshold Th3 or more, and the obstacle has a detection range of 12-1, 13-1. The fact that it exists at the boundary position of is output to the first position rating unit 19a.
  • the boundary position determination unit 22 receives the wave directly from the second sonar sensor 12 and the first sonar sensor adjacent to the second sonar sensor 12. It is determined that the 11 and the third sonar sensor 13 have received the indirect wave. Therefore, in the boundary position determination unit 22, the obstacle whose distance is calculated by the distance calculation unit 16 is placed at the boundary position of the detection ranges 12-1 and 11-1 and the boundary position of the detection ranges 12-1 and 13-1. Determine that it may exist. However, since the first intensity determination unit 18a determines that the intensity of the indirect wave used to calculate the distance to the obstacle is less than the third threshold Th3, the determination result of the boundary position determination unit 22 is Rejected.
  • the obstacle detection device 10 includes the boundary position determination unit 22.
  • the boundary position determination unit 22 indicates that the obstacle is the adjacent sonar sensor. It is determined that it exists at the boundary position of the detection range of.
  • the obstacle detection device 10 uses only the direct wave at the reference distance Dx or more, but in the second embodiment, the indirect wave is also used in addition to the direct wave.
  • the second embodiment it is possible to determine whether an obstacle exists in the detection range of the long-distance region A1 or whether the obstacle exists at the boundary position of the detection range of the long-distance region A1. Therefore, the resolution in the Y-axis direction in the position evaluation of the first position evaluation unit 19a is further improved.
  • the first intensity determination unit 18a uses the third threshold value Th3 which is larger than the first threshold value Th1. To determine the intensity of the indirect wave. As a result, the first intensity determination unit 18a can adopt the indirect wave reflected by the obstacle only when the obstacle exists at the boundary position of the adjacent detection range in the long distance region A1. Therefore, the position evaluation accuracy of the first position evaluation unit 19a is further improved.
  • FIG. 10 is a block diagram showing a configuration example of the obstacle detection device 10 according to the third embodiment.
  • the obstacle detection device 10 according to the third embodiment has a configuration in which an obstacle tracking unit 23 and a collision determination unit 24 are added to the obstacle detection device 10 of the first embodiment shown in FIG. ..
  • the same or corresponding parts as those in FIGS. 1 to 6 are designated by the same reference numerals, and the description thereof will be omitted.
  • an example is shown in which the obstacle tracking unit 23 and the collision determination unit 24 according to the third embodiment are added to the obstacle detection device 10 of the first embodiment, but the obstacle tracking unit 23 and The collision determination unit 24 can also be added to the obstacle detection device 10 of the second embodiment.
  • the obstacle detection device 10 of the third embodiment is connected to the vehicle control unit 25.
  • the vehicle control unit 25 has, for example, a function of operating the brake of the vehicle 1 to reduce the impact at the time of a collision (so-called collision damage mitigation) when the possibility of collision with an obstacle is high. Brake) or a function to issue an alarm to the driver (so-called collision prevention warning system) to prevent a collision.
  • the vehicle control unit 25 outputs information such as the speed and steering angle of the vehicle 1 to the obstacle tracking unit 23 and the collision determination unit 24 as needed.
  • FIG. 11 is a flowchart showing an operation example of the obstacle detection device 10 according to the third embodiment. For example, while the vehicle 1 is traveling, the obstacle detection device 10 repeats the operation shown in the flowchart of FIG. 11 at predetermined time intervals.
  • step ST21 the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, the fourth sonar sensor 14, the transmission / reception unit 15, the distance calculation unit 16, the distance determination unit 17, the first strength determination unit 18, and the first position evaluation unit. 19 and the second strength determination unit 20 perform the operations shown in the flowchart of FIG. Then, when the first position rating unit 19 evaluates the two-dimensional coordinate range of the obstacle, or when the second position rating unit 21 evaluates the two-dimensional coordinate position of the obstacle, the two-dimensional coordinate range or the two-dimensional coordinate position Is output to the obstacle tracking unit 23.
  • the obstacle tracking unit 23 receives at least one of the two-dimensional coordinate range or the two-dimensional coordinate position of the obstacle from at least one of the first position evaluation unit 19 and the second position evaluation unit 21.
  • the two-dimensional coordinate range or the two-dimensional coordinate position of the obstacle received from at least one of the first position evaluation unit 19 and the second position evaluation unit 21 this time is the first position evaluation unit 19 last time.
  • the obstacle tracking unit 23 determines that the two-dimensional coordinate range or the two-dimensional coordinate position of the obstacle this time falls within the tracking range, the obstacle tracked in the current step ST21 and the position rated in the previous step ST21. It is determined that the obstacles that have been made are the same obstacles. On the other hand, when the obstacle tracking unit 23 determines that the two-dimensional coordinate range or the two-dimensional coordinate position of the obstacle this time is out of the tracking range, the obstacle whose position has been evaluated in this step ST21 and the previous step ST21 It is determined that the obstacle whose position is evaluated in 1 is a different obstacle. In that case, the obstacle tracking unit 23 sets a new tracking range for the obstacle whose position has been evaluated in step ST21 this time, and adds it to the next tracking target.
  • the obstacle tracking unit 23 tracks the two-dimensional coordinate range or the two-dimensional coordinate position of the same obstacle that changes with time.
  • the obstacle tracking unit 23 outputs the two-dimensional coordinate range or the two-dimensional coordinate position of the same obstacle to be tracked to the collision determination unit 24.
  • the obstacle tracking unit 23 changes the size of the above tracking range depending on whether the same obstacle exists in the long-distance region A1 or in the medium-short-distance region A2.
  • the obstacle tracking unit 23 relatively increases the tracking range when the same obstacle exists in the long-distance region A1, and relatively decreases the tracking range when the same obstacle moves to the medium-short distance region A2. To do.
  • the obstacle tracking unit 23 changes the size of the tracking range based on the relative speed between the vehicle 1 and the same obstacle.
  • the obstacle tracking unit 23 changes the tracking range to a size corresponding to the relative speed by using, for example, a function or a table that defines the correspondence between the relative speed and the size of the tracking range.
  • the relative speed is slow, the obstacle tracking unit 23 relatively increases the tracking range, and when the relative speed is high, the tracking range is relatively small.
  • FIG. 12 is a diagram showing an example of a tracking range when the relative speed is slow in the third embodiment.
  • obstacles 30, 31, and 32 are positioned in this order by the first position rating unit 19, and then obstacles 33, 34, and 35 are position rated in this order by the second position rating unit 21.
  • the obstacle 30 is detected by the first sonar sensor 11, the obstacle 31 is detected by both the first sonar sensor 11 and the second sonar sensor 12, and the obstacle 32 is detected by the second sonar sensor 12. It is assumed that it has been done.
  • the Y-axis coordinate position of the obstacle detected simultaneously by the two sonar sensors such as the obstacle 31 the center position of both sonar sensors or the position distributed according to the intensity of the direct wave received by both sonar sensors is used. In this way, since the Y-axis coordinate range is the Y-axis coordinate position of one point, the two-dimensional coordinate range is treated as the two-dimensional coordinate position below.
  • the obstacle tracking unit 23 calculates the moving speeds of the obstacles 30 and 31 based on the distance difference between the two-dimensional coordinate position of the obstacle 30 and the two-dimensional coordinate position of the obstacle 31. Further, the obstacle tracking unit 23 acquires the speed of the vehicle 1 from the vehicle control unit 25. Then, the obstacle tracking unit 23 calculates the relative speed between the vehicle 1 and the obstacles 30 and 31, and based on the calculated relative speed, determines the size of the tracking range 40 set in the obstacle 30 in the X-axis direction. change. Further, since the obstacle 30 exists in the long-distance region A1 having low position evaluation accuracy, the obstacle tracking unit 23 determines the size of the tracking range 40 in the Y-axis direction by the position evaluation resolution of the first position evaluation unit 19. Set 1.5 to 2 times.
  • the obstacle tracking unit 23 since the position evaluation resolution of the first position evaluation unit 19 is the width Dy in the Y-axis direction, the obstacle tracking unit 23 sets the size of the tracking range 40 in the Y-axis direction to 1.5 Dy to 2 Dy. To do. Since the obstacle 31 is included in the tracking range 40, the obstacle tracking unit 23 determines that the obstacle 30 and the obstacle 31 are the same obstacle. The obstacle tracking unit 23 sets the tracking ranges 41 and 42 for the obstacles 31 and 32 in the same manner.
  • the obstacle tracking unit 23 calculates the moving speeds of the obstacles 33 and 34 based on the distance difference between the two-dimensional coordinate position of the obstacle 33 and the two-dimensional coordinate position of the obstacle 34. Further, the obstacle tracking unit 23 acquires the speed of the vehicle 1 from the vehicle control unit 25. Then, the obstacle tracking unit 23 calculates the relative speed between the vehicle 1 and the obstacles 33 and 34, and based on the calculated relative speed, determines the size of the tracking range 43 set in the obstacle 33 in the X-axis direction. change. Further, since the obstacle 33 exists in the medium / short distance region A2 having high position evaluation accuracy, the obstacle tracking unit 23 determines the size of the tracking range 43 in the Y-axis direction by the position evaluation resolution of the second position evaluation unit 21.
  • the position evaluation resolution of the second position evaluation unit 21 is higher than the position evaluation resolution of the first position evaluation unit 19, the size of the tracking range 43 in the Y-axis direction is larger than that of the tracking ranges 40, 41, 42 in the Y-axis direction. It is smaller than the resolution. Since the obstacle 34 is included in the tracking range 43, the obstacle tracking unit 23 determines that the obstacle 33 and the obstacle 34 are the same obstacle. The obstacle tracking unit 23 sets the tracking ranges 44 and 45 for the obstacles 34 and 35 in the same manner.
  • FIG. 13 is a diagram showing an example of a tracking range when the relative speed is high in the third embodiment.
  • the obstacle tracking unit 23 sets tracking ranges 40a, 41a, 42a, 43a, 44a for obstacles 30a, 31a, 32a, 33a, 34a, as in the example shown in FIG. 12, where the relative speed is slow.
  • the magnitudes of the tracking ranges 40a, 41a, 42a, 43a, 44a in the X-axis direction are the tracking ranges 40, 41. , 42, 43, 44, 45 are larger than the size in the X-axis direction.
  • the obstacle 31a is included in the tracking range 40a set for the obstacle 30a, the obstacle tracking unit 23 determines that the obstacle 30a and the obstacle 31a are the same obstacle.
  • the collision determination unit 24 obtains the locus 50 shown in FIG. 12 or the locus 50a shown in FIG. 13 using the two-dimensional coordinate positions of the same obstacle output from the obstacle tracking unit 23, and obtains the locus 50a. Predict the course of the obstacle to be tracked based on.
  • the collision determination unit 24 may give a width to the course when predicting the course of the obstacle.
  • the collision determination unit 24 acquires the steering angle of the vehicle 1 from the vehicle control unit 25, predicts the course of the vehicle 1, and determines whether or not a collision is possible by comparing the predicted course of the vehicle 1 with the course of an obstacle. To do. Since the collision determination unit 24 may determine whether or not a collision is possible using a well-known technique, detailed description here will be omitted.
  • the collision determination unit 24 calculates the collision margin time (TTC) when it is determined that the vehicle 1 and an obstacle may collide with each other.
  • the collision margin time is an index showing how many seconds are left when the relative speed between the vehicle 1 and the obstacle is maintained.
  • the collision determination unit 24 outputs the collision possibility determination result and the collision margin time to the vehicle control unit 25.
  • the vehicle control unit 25 activates the brake of the vehicle 1 or issues an alarm to the driver based on the collision possibility determination result output from the collision determination unit 24 and the collision margin time.
  • the obstacle detection device 10 includes an obstacle tracking unit 23.
  • the obstacle tracking unit 23 has a plurality of obstacles whose two-dimensional coordinate range has been evaluated by the first position evaluation unit 19 or whose two-dimensional coordinate position has been evaluated by the second position evaluation unit 21 at predetermined time intervals. If is within the tracking range, the plurality of obstacles are determined to be the same obstacle. Further, the obstacle tracking unit 23 increases the tracking range in proportion to the relative speed between the vehicle 1 and the same obstacle, and when the distance to the same obstacle is equal to or greater than the reference distance Dx, the reference distance Dx Make it larger than if it is less than.
  • the obstacle tracking unit 23 when an obstacle exists in a long-distance region A1 having a reference distance Dx or more, the obstacle tracking unit 23 has low positioning accuracy of the obstacle, so that the tracking range can be set wide and tracking can be easily performed. can do. Therefore, the obstacle tracking unit 23 can track the obstacle from the long-distance region A1 having low position evaluation accuracy. Further, the obstacle tracking unit 23 can individually change the size of the tracking range in the X-axis direction and the Y-axis direction according to the distance to the obstacle and the relative speed between the obstacle and the vehicle 1. Therefore, the obstacle tracking unit 23 can accurately determine whether or not the obstacles are the same.
  • the obstacle detection device 10 includes a collision determination unit 24.
  • the collision determination unit 24 determines whether or not the same obstacle collides with the vehicle 1 and calculates the time until the collision. Since the obstacle tracking unit 23 enables tracking of obstacles from the long-distance region A1, the collision determination unit 24 collides more accurately at a distance as compared with the conventional obstacle position evaluation only by the aperture synthesis process. It is possible to judge whether or not it is possible.
  • Embodiment 4 In the first to third embodiments, the detection ranges of the adjacent sonar sensors do not overlap in the long-distance region A1. On the other hand, in the fourth embodiment, the detection ranges of the adjacent sonar sensors partially overlap in the long-distance region A1.
  • FIG. 14 is a diagram showing an example of the detection range of the long-distance region A1 of the sonar sensor according to the fourth embodiment.
  • the detection range of the medium-short distance region A2 is not shown.
  • the detection range 11-1a of the first sonar sensor 11 overlaps the detection range 12-1a of the second sonar sensor 12 adjacent to the first sonar sensor 11 by the width Dyb ( ⁇ 1 / 2Dya) in the Y-axis direction. That is, in the Y-axis direction, the detection range 11-1a and the detection range 12-1a overlap by the width Dyb.
  • the detection range 12-1a of the second sonar sensor 12 overlaps the detection ranges 11-1a and 13-1a on both sides with a width of Dyb.
  • the detection range 13-1a of the third sonar sensor 13 overlaps the detection ranges 12-1a and 14-1a on both sides by a width Dyb.
  • the detection range 14-1a of the fourth sonar sensor 14 overlaps the adjacent detection range 13-1a by the width Dyb.
  • the long-distance region A1 is divided into four as shown in FIG. 2 in the first embodiment, but is divided into seven as shown in FIG. 14 in the fourth embodiment.
  • the size of the detection ranges 11-1a, 12-1a, 13-1a, 14-1a is set by the first threshold value Th1.
  • FIG. 1 Since the configuration of the obstacle detection device 10 according to the fourth embodiment is the same as the configuration shown in FIG. 1 of the first embodiment on the drawing, FIG. 1 will be referred to below.
  • an example is shown in which the detection ranges 11-1a, 12-1a, 13-1a, 14-1a shown in FIG. 14 are applied to the obstacle detection device 10 of the first embodiment.
  • the detection ranges 11-1a, 12-1a, 13-1a, 14-1a can also be applied to the obstacle detection device 10 of the third embodiment.
  • the first position rating unit 19 evaluates the Y-axis coordinate range of the obstacle based on the overlap of the detection ranges of the sonar sensors that have received the direct waves determined to have the intensity equal to or higher than the first threshold Th1. For example, as shown in FIG. 14, it is assumed that the obstacle 6 exists in the region where the detection range 11-1a and the detection range 12-1a overlap. In this case, the first sonar sensor 11 and the second sonar sensor 12 receive a direct wave having an intensity equal to or higher than the first threshold Th1. Therefore, the first position evaluation unit 19 covers an area where the detection range 11-1a of the first sonar sensor 11 indicated by the thick black line and the detection range 12-1a of the second sonar sensor 12 overlap in the Y-axis direction as an obstacle. It is rated as the Y-axis coordinate range 6a of 6.
  • the obstacle 7 exists in the area of only the detection range 13-1a.
  • the third sonar sensor 13 receives a direct wave having an intensity equal to or higher than the first threshold Th1. Therefore, the first position evaluation unit 19 detects the detection range 12-1a of the second sonar sensor 12 and the fourth sonar sensor 14 in the detection range 13-1a of the third sonar sensor 13 indicated by the thick black line in the Y-axis direction. The area that does not overlap with the range 14-1a is evaluated as the Y-axis coordinate range 7a of the obstacle 7.
  • -1a and 14-1a are square, and the detection range of the adjacent sonar sensors is in the Y-axis direction in which the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 are arranged. Overlap less than 1/2. With this configuration, the resolution in the Y-axis direction in the position evaluation of the first position evaluation unit 19 is further improved.
  • Embodiment 5 the distance between the adjacent sonar sensors in the Y-axis direction is uniform with the width Dy, and the positions of the adjacent sonar sensors in the X-axis direction are also uniform.
  • the distance in the Y-axis direction and the position in the X-axis direction between adjacent sonar sensors are different, and the arrangement is symmetrical with respect to the vehicle 1.
  • FIG. 15 is a diagram showing an example of the detection range of the long-distance region A1 of the sonar sensor in the fifth embodiment.
  • the detection range of the medium-short distance region A2 is not shown.
  • the distance between the first sonar sensor 11 and the second sonar sensor 12 is equal to the distance between the third sonar sensor 13 and the fourth sonar sensor 14.
  • the distance between the second sonar sensor 12 and the third sonar sensor 13 is larger than the distance between the first sonar sensor 11 and the second sonar sensor 12.
  • the second sonar sensor 12 and the third sonar sensor 13 are arranged in front of the first sonar sensor 11 and the fourth sonar sensor 14.
  • FIG. 16 is a graph showing a setting example of the second threshold value Th2, the fourth threshold value Th4, and the fifth threshold value Th5 in the fifth embodiment.
  • the horizontal axis of the graph is the distance from the sonar sensor in the X-axis direction, and the vertical axis is the values of the second threshold Th2, the fourth threshold Th4, and the fifth threshold Th5.
  • the fourth threshold value Th4 is a value larger than the fifth threshold value Th5.
  • the detection range 11-1b of the first sonar sensor 11 and the detection range 14-1b of the fourth sonar sensor 14 are ranges having a width Dyc in the Y-axis direction, respectively.
  • the detection range 12-1b of the second sonar sensor 12 and the detection range 13-1b of the third sonar sensor 13 are ranges having a width Dyd (> Dyc) in the Y-axis direction, respectively.
  • the detection range 11-1b of the first sonar sensor 11 overlaps the detection range 12-1b of the second sonar sensor 12 adjacent to the first sonar sensor 11 by the width Dye ( ⁇ 1 / 2Dyc) in the Y-axis direction.
  • the detection range 11-1b and the detection range 12-1b overlap by the width Dye.
  • the detection range 12-1b of the second sonar sensor 12 overlaps with the adjacent detection range 11-1b by the width Dye.
  • the detection range 13-1b of the third sonar sensor 13 overlaps the adjacent detection range 14-1b by the width Dye.
  • the detection range 14-1b of the fourth sonar sensor 14 overlaps the adjacent detection range 13-1b by the width Dye.
  • the long-distance region A1 is divided into four as shown in FIG. 2 in the first embodiment, but is divided into six as shown in FIG. 15 in the fifth embodiment.
  • the detection range 11-1b of the first sonar sensor 11 and the detection range 14-1b of the fourth sonar sensor 14 have the same size, and the sizes of the detection ranges 11-1b and 14-1b are the same.
  • the detection range 12-1b of the second sonar sensor 12 and the detection range 13-1b of the third sonar sensor 13 have the same size, and the sizes of these detection ranges 12-1b and 13-1b are the fifth threshold values. It is set by Th5. Since the method of setting the fourth threshold value Th4 and the fifth threshold value Th5 is the same as the setting method of the first threshold value Th1, the description thereof will be omitted.
  • FIG. 1 Since the configuration of the obstacle detection device 10 according to the fifth embodiment is the same as the configuration shown in FIG. 1 of the first embodiment on the drawing, FIG. 1 will be referred to below.
  • an example is shown in which the detection ranges 11-1b, 12-1b, 13-1b, 14-1b shown in FIG. 15 are applied to the obstacle detection device 10 of the first embodiment.
  • the detection ranges 11-1b, 12-1b, 13-1b, and 14-1b are also applicable to the obstacle detection device 10 of the third embodiment.
  • the first intensity determination unit 18 holds the fourth threshold value Th4 and the fifth threshold value Th5 instead of the first threshold value Th1.
  • the first intensity determination unit 18 compares the intensity of the direct wave received by the first sonar sensor 11 and the fourth sonar sensor 14 with the fourth threshold value Th4 in the long distance region A1 of the reference distance Dx or more. Further, the first intensity determination unit 18 compares the intensity of the direct wave received by the second sonar sensor 12 and the third sonar sensor 13 with the fifth threshold value Th5 in the long distance region A1 of the reference distance Dx or more.
  • the first position rating unit 19 determines the Y-axis coordinate range of the obstacle based on the overlap of the detection ranges of the sonar sensors that have received the direct waves determined to have the intensity of the fourth threshold Th4 or more or the fifth threshold Th5 or more. To rate. Since the evaluation method of the Y coordinate range is the same as the evaluation method by the first position evaluation unit 19 of the fourth embodiment, the description thereof will be omitted.
  • the obstacle detection device 10 has different positions of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 in the X-axis direction.
  • the two-dimensional coordinate range of the obstacle can be evaluated in the long-distance region A1 without performing the aperture synthesis process.
  • the transmission / reception unit 15 in the obstacle detection device 10 is a transmission circuit 103 and a reception circuit 104.
  • the transmission circuit 103 is a circuit that applies a voltage to the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 to transmit the exploration wave.
  • the receiving circuit 104 is a circuit that converts the voltage corresponding to the reflected wave output by the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 into a digital signal.
  • the obstacle detection device 10 includes a processing circuit for realizing the above function.
  • the processing circuit may be a processing circuit 100 as dedicated hardware, or a processor 101 that executes a program stored in the memory 102.
  • the processing circuit 100 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Special Integrated Circuit). ), FPGA (Field Processor Gate Array), or a combination thereof.
  • Distance calculation unit 16 distance determination unit 17, first strength determination unit 18, 18a, first position evaluation unit 19, 19a, second strength determination unit 20, second position evaluation unit 21, boundary position determination unit 22, obstacle
  • the functions of the tracking unit 23 and the collision determination unit 24 may be realized by a plurality of processing circuits 100, or the functions of each unit may be collectively realized by one processing circuit 100.
  • the distance calculation unit 16 the distance determination unit 17, the first intensity determination units 18, 18a, the first position evaluation units 19, 19a, and the second intensity determination unit 20
  • the functions of the second position evaluation unit 21, the boundary position determination unit 22, the obstacle tracking unit 23, and the collision determination unit 24 are realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 102.
  • the processor 101 realizes the functions of each part by reading and executing the program stored in the memory 102. That is, the obstacle detection device 10 includes a memory 102 for storing a program in which the steps shown in the flowcharts of FIGS. 3 and 11 are eventually executed when executed by the processor 101.
  • this program includes a distance calculation unit 16, a distance determination unit 17, a first strength determination unit 18, 18a, a first position evaluation unit 19, 19a, a second intensity determination unit 20, a second position evaluation unit 21, and a boundary position. It can also be said that the procedure or method of the determination unit 22, the obstacle tracking unit 23, and the collision determination unit 24 is executed by the computer.
  • the processor 101 is a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, or the like.
  • the memory 102 may be a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), or a flash memory, or may be a non-volatile or volatile semiconductor memory such as a hard disk or a flexible disk. It may be a magnetic disk of the above, or an optical disk such as a CD (Compact Disc) or a DVD (Digital Versaille Disc).
  • the distance calculation unit 16 the distance determination unit 17, the first strength determination units 18, 18a, the first position evaluation units 19, 19a, the second strength determination unit 20, the second position evaluation unit 21, the boundary position determination unit 22,
  • the functions of the obstacle tracking unit 23 and the collision determination unit 24 may be partially realized by dedicated hardware and partly realized by software or firmware.
  • the processing circuit in the obstacle detection device 10 can realize the above-mentioned functions by hardware, software, firmware, or a combination thereof.
  • the present invention allows any combination of embodiments, modifications of any component of each embodiment, or omission of any component of each embodiment within the scope of the invention.
  • the obstacle detection device can start tracking obstacles from a distance, it is suitable for an obstacle detection device used in a collision damage mitigation brake, a collision prevention warning system, or the like.
  • 1 Vehicle 2-1 to 2-6 Reference pole, 3, 4, 5, 6, 7 Obstacles, 4a, 5a Indirect wave path, 6a, 7a Y-axis coordinate range, 10 Obstacle detection device, 11 1st Sonar Sensors, 11-1, 11-1a, 11-1b, 11-2, 12-1, 12-1a, 12-1b, 12-2, 13-1, 13-1a, 13-1b, 13-2, 14-1, 14-1a, 14-1b, 14-2 Detection range, 12 2nd sonar sensor, 13 3rd sonar sensor, 14 4th sonar sensor, 15 transmission / reception unit, 16 distance calculation unit, 17 distance determination unit, 18, 18a 1st strength determination unit, 19, 19a 1st position evaluation unit, 20 2nd strength determination unit, 21 2nd position evaluation unit, 22 boundary position determination unit, 23 obstacle tracking unit, 24 collision determination unit, 25 vehicle control unit , 30, 30a, 31, 31a, 32, 32a, 33, 33a, 34, 34a, 35 Obstacles, 41, 41a, 42, 42a, 43,

Abstract

According to the present invention, a first position locating unit (19) locates a two-dimensional coordinate range of an obstacle by using the distance to the obstacle and the position of a sonar sensor that receives a reflection wave, when the distance to the obstacle is equal to or greater than a reference distance (Dx) and the strength of the reflection wave reflected by this obstacle is equal to or greater than a first threshold (Th1). A second position locating unit (21) locates the two-dimensional coordinate position of the obstacle by performing an opening synthesis process by using the distance to the obstacle, when the distance to the obstacle is shorter than the reference distance (Dx) and the strength of the reflection wave reflected by the obstacle is equal to or greater than a second threshold (Th2).

Description

障害物検知装置Obstacle detector
 この発明は、超音波を用いて障害物を検知する障害物検知装置に関するものである。 The present invention relates to an obstacle detection device that detects an obstacle using ultrasonic waves.
 車両に搭載された障害物検知装置は、自車両又は障害物の少なくとも一方が移動することで自車両と障害物とが接近する場合、障害物の位置を評定してブレーキ制御又はステアリング制御等を行い、衝突を回避することが要求されている。ここで、障害物検知のために低コストの超音波式測距センサ(以下、「ソナーセンサ」と称する)が使用される場合、中近距離領域における障害物の位置は、開口合成処理又は二円交点処理等により精度よく評定される。一方、遠距離領域は、隣接する超音波式測距センサの検知範囲が重なる領域が狭くなるので、開口合成処理等による位置評定精度が低下する。 When at least one of the own vehicle or the obstacle moves and the own vehicle and the obstacle approach each other, the obstacle detection device mounted on the vehicle evaluates the position of the obstacle and performs brake control or steering control, etc. It is required to do and avoid collisions. Here, when a low-cost ultrasonic distance measuring sensor (hereinafter referred to as "sona sensor") is used for obstacle detection, the position of the obstacle in the medium-short distance region is aperture synthesis processing or two circles. It is evaluated accurately by intersection processing. On the other hand, in the long-distance region, the region where the detection ranges of the adjacent ultrasonic distance measuring sensors overlap is narrowed, so that the position evaluation accuracy by the aperture synthesis process or the like is lowered.
 ところで、特許文献1に係る検出装置は、超音波の振幅を大きくすることによって、障害物を検知可能な距離を長くする構成である。 By the way, the detection device according to Patent Document 1 has a configuration in which an obstacle can be detected at a longer distance by increasing the amplitude of ultrasonic waves.
特開2018-54582号公報JP-A-2018-54582
 ソナーセンサは、超音波の振幅を大きくすることによって検知可能な距離を長くしたとしても、遠距離領域における検知範囲が重なる領域は広がりにくい。そのため、ソナーセンサが遠距離領域において障害物の存在を検知できたとしても、位置評定精度は低いままである。 Even if the sonar sensor increases the detectable distance by increasing the amplitude of ultrasonic waves, it is difficult to expand the area where the detection ranges overlap in the long-distance area. Therefore, even if the sonar sensor can detect the presence of an obstacle in a long distance region, the position evaluation accuracy remains low.
 この発明は、上記のような課題を解決するためになされたもので、中近距離領域と遠距離領域とにおいて障害物の位置を評定することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to evaluate the position of an obstacle in a medium-short distance region and a long-distance region.
 この発明に係る障害物検知装置は、車両の一辺に設けられた複数のソナーセンサと、複数のソナーセンサを用いて探査波を送信し、探査波が障害物で反射した反射波を受信する送受信部と、探査波と反射波の送受信結果を用いて障害物までの距離を算出する距離算出部と、障害物までの距離が、隣接するソナーセンサの検知範囲が重なる重複領域の大きさに基づいて設定された基準距離以上であるか否かを判定する距離判定部と、障害物までの距離が基準距離以上である場合、障害物までの距離の算出に用いられた反射波の強度が第1閾値以上であるか否かを判定する第1強度判定部と、第1強度判定部により強度が第1閾値以上と判定された反射波から算出された障害物までの距離及び反射波を受信したソナーセンサの位置を用いて、障害物の2次元座標範囲を評定する第1位置評定部と、障害物までの距離が基準距離未満である場合、障害物までの距離の算出に用いられた反射波の強度が第2閾値以上であるか否かを判定する第2強度判定部と、第2強度判定部により強度が第2閾値以上と判定された反射波から算出された障害物の距離を用いて開口合成処理を行い、障害物の2次元座標位置を評定する第2位置評定部とを備えるものである。 The obstacle detection device according to the present invention includes a plurality of sonar sensors provided on one side of the vehicle, and a transmission / reception unit that transmits exploration waves using the plurality of sonar sensors and receives the reflected waves reflected by the exploration waves. , The distance calculation unit that calculates the distance to the obstacle using the transmission / reception results of the exploration wave and the reflected wave, and the distance to the obstacle are set based on the size of the overlapping area where the detection ranges of the adjacent sonar sensors overlap. When the distance to the obstacle is greater than or equal to the reference distance, the intensity of the reflected wave used to calculate the distance to the obstacle is greater than or equal to the first threshold. The distance to the obstacle calculated from the first intensity determination unit that determines whether or not the intensity is, and the reflected wave whose intensity is determined by the first intensity determination unit to be equal to or higher than the first threshold value, and the sonar sensor that receives the reflected wave. The intensity of the reflected wave used to calculate the distance to the obstacle when the distance to the obstacle is less than the reference distance and the first position evaluation part that evaluates the two-dimensional coordinate range of the obstacle using the position. Opening using the distance between the second intensity determination unit that determines whether or not is equal to or greater than the second threshold and the obstacle calculated from the reflected wave whose intensity is determined by the second intensity determination unit to be equal to or greater than the second threshold. It is provided with a second position evaluation unit that performs synthesis processing and evaluates the two-dimensional coordinate positions of obstacles.
 この発明によれば、障害物までの距離が基準距離以上か否かによって障害物の2次元座標位置の評定方法を使い分けるようにしたので、中近距離領域と遠距離領域とにおいて障害物の位置を評定することができる。 According to the present invention, the two-dimensional coordinate position evaluation method of the obstacle is used properly depending on whether or not the distance to the obstacle is equal to or more than the reference distance. Can be rated.
実施の形態1に係る障害物検知装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the obstacle detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1におけるソナーセンサの検知範囲と基準距離の例を示す図である。It is a figure which shows the example of the detection range and the reference distance of the sonar sensor in Embodiment 1. FIG. 実施の形態1に係る障害物検知装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the obstacle detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1における第1ソナーセンサの遠距離領域における検知範囲の設定例を示す図である。It is a figure which shows the setting example of the detection range in a long-distance region of the 1st sonar sensor in Embodiment 1. FIG. 実施の形態1における第1閾値の設定例を示すグラフである。It is a graph which shows the setting example of the 1st threshold value in Embodiment 1. FIG. 実施の形態1における第1閾値と第2閾値の設定例を示すグラフである。It is a graph which shows the setting example of the 1st threshold value and the 2nd threshold value in Embodiment 1. FIG. 実施の形態2に係る障害物検知装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the obstacle detection apparatus which concerns on Embodiment 2. FIG. 実施の形態2における第1閾値と第2閾値と第3閾値の設定例を示すグラフである。It is a graph which shows the setting example of the 1st threshold value, the 2nd threshold value and the 3rd threshold value in Embodiment 2. FIG. 実施の形態2における第3閾値の設定例を示す図である。It is a figure which shows the setting example of the 3rd threshold value in Embodiment 2. 実施の形態3に係る障害物検知装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the obstacle detection apparatus which concerns on Embodiment 3. 実施の形態3に係る障害物検知装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the obstacle detection apparatus which concerns on Embodiment 3. 実施の形態3において相対速度が遅い場合の追跡範囲の例を示す図である。It is a figure which shows the example of the tracking range when the relative speed is slow in Embodiment 3. 実施の形態3において相対速度が速い場合の追跡範囲の例を示す図である。It is a figure which shows the example of the tracking range when the relative speed is high in Embodiment 3. 実施の形態4におけるソナーセンサの遠距離領域の検知範囲の例を示す図である。It is a figure which shows the example of the detection range of the long-distance region of the sonar sensor in Embodiment 4. 実施の形態5におけるソナーセンサの遠距離領域の検知範囲の例を示す図である。It is a figure which shows the example of the detection range of the long-distance region of the sonar sensor in Embodiment 5. 実施の形態5における第2閾値と第4閾値と第5閾値の設定例を示すグラフである。6 is a graph showing a setting example of a second threshold value, a fourth threshold value, and a fifth threshold value in the fifth embodiment. 各実施の形態に係る障害物検知装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware configuration of the obstacle detection apparatus which concerns on each embodiment. 各実施の形態に係る障害物検知装置のハードウェア構成の別の例を示す図である。It is a figure which shows another example of the hardware composition of the obstacle detection apparatus which concerns on each embodiment.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る障害物検知装置10の構成例を示すブロック図である。障害物検知装置10は、車両に搭載され、車両周辺の障害物を検知するものである。この障害物検知装置10は、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、第4ソナーセンサ14、送受信部15、距離算出部16、距離判定部17、第1強度判定部18、第1位置評定部19、第2強度判定部20、及び第2位置評定部21を備える。
Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1.
FIG. 1 is a block diagram showing a configuration example of the obstacle detection device 10 according to the first embodiment. The obstacle detection device 10 is mounted on the vehicle and detects obstacles around the vehicle. The obstacle detection device 10 includes a first sonar sensor 11, a second sonar sensor 12, a third sonar sensor 13, a fourth sonar sensor 14, a transmission / reception unit 15, a distance calculation unit 16, a distance determination unit 17, a first strength determination unit 18, and a first. It includes a 1-position rating unit 19, a second strength determination section 20, and a second position rating section 21.
 図2は、実施の形態1におけるソナーセンサの検知範囲と基準距離の例を示す図である。図2は車両1を上から見た状態であり、車両1の前後方向をX軸、車幅方向をY軸とする。図2の例では、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14は、車両1の後部に、等間隔に一列に並べて設置されている。つまり、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14が並ぶ方向とY軸方向が同じである。なお、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14の設置位置は、車両1の後部に限定されない。 FIG. 2 is a diagram showing an example of the detection range and the reference distance of the sonar sensor in the first embodiment. FIG. 2 shows a state in which the vehicle 1 is viewed from above, and the front-rear direction of the vehicle 1 is the X-axis and the vehicle width direction is the Y-axis. In the example of FIG. 2, the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 are installed in a row at equal intervals at the rear of the vehicle 1. That is, the direction in which the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 are arranged is the same as the Y-axis direction. The installation positions of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 are not limited to the rear part of the vehicle 1.
 一般に、ソナーセンサは、このソナーセンサからの距離が遠くなるほど、検知範囲が狭くなる。そのため、遠距離領域では、隣接するソナーセンサの検知範囲が重なる領域も狭くなる。開口合成処理では、隣接するソナーセンサの検知範囲が重なっていることが望ましいが、遠距離領域では検知範囲が重なる領域が狭い、又は検知範囲が重ならないため、距離が遠くなるほど位置評定精度が低下する。そこで、実施の形態1では、隣接するソナーセンサの検知範囲が重なる重複領域の存在する距離が、基準距離Dxに設定される。この基準距離Dxよりソナーセンサに近い中近距離領域A2では、検知範囲が重なっているため、開口合成処理による高精度な障害物位置評定が可能である。 In general, the detection range of a sonar sensor becomes narrower as the distance from the sonar sensor increases. Therefore, in the long-distance region, the region where the detection ranges of the adjacent sonar sensors overlap is also narrowed. In the aperture synthesis process, it is desirable that the detection ranges of adjacent sonar sensors overlap, but in the long-distance region, the areas where the detection ranges overlap are narrow or the detection ranges do not overlap, so the longer the distance, the lower the position evaluation accuracy. .. Therefore, in the first embodiment, the distance at which the overlapping regions where the detection ranges of the adjacent sonar sensors overlap is set as the reference distance Dx. In the medium-short distance region A2, which is closer to the sonar sensor than the reference distance Dx, the detection ranges overlap, so that highly accurate obstacle position evaluation by aperture synthesis processing is possible.
 図2の例では、基準距離Dx未満の中近距離領域A2に対して、隣接するソナーセンサの検知範囲が重なるような第2閾値Th2が設定される。第2閾値Th2については後述する。この中近距離領域A2において、第1ソナーセンサ11の検知範囲11-2と、第2ソナーセンサ12の検知範囲12-2とは、一部が重なっている。同様に、隣接する第2ソナーセンサ12の検知範囲12-2と第3ソナーセンサ13の検知範囲13-2、第3ソナーセンサ13の検知範囲13-2と第4ソナーセンサ14の検知範囲14-2も、それぞれ、一部が重なっている。 In the example of FIG. 2, a second threshold Th2 is set so that the detection ranges of adjacent sonar sensors overlap with respect to the medium-short distance region A2 less than the reference distance Dx. The second threshold Th2 will be described later. In this medium-short distance region A2, the detection range 11-2 of the first sonar sensor 11 and the detection range 12-2 of the second sonar sensor 12 partially overlap. Similarly, the detection range 12-2 of the adjacent second sonar sensor 12 and the detection range 13-2 of the third sonar sensor 13, the detection range 13-2 of the third sonar sensor 13 and the detection range 14-2 of the fourth sonar sensor 14 also Each part overlaps.
 基準距離Dx以上の遠距離領域A1に対しては、隣接するソナーセンサの検知範囲が重ならないような第1閾値Th1が設定される。第1閾値Th1については後述する。この遠距離領域A1において、第1ソナーセンサ11の検知範囲11-1は、Y軸方向に幅Dyをもつ範囲であり、第2ソナーセンサ12の検知範囲12-1とは重ならない。同様に、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14の各検知範囲12-1,13-1,14-1も重ならない。 For a long-distance region A1 equal to or greater than the reference distance Dx, a first threshold Th1 is set so that the detection ranges of adjacent sonar sensors do not overlap. The first threshold Th1 will be described later. In this long-distance region A1, the detection range 11-1 of the first sonar sensor 11 is a range having a width Dy in the Y-axis direction, and does not overlap with the detection range 12-1 of the second sonar sensor 12. Similarly, the detection ranges 12-1, 13-1, and 14-1 of the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 do not overlap.
 図3は、実施の形態1に係る障害物検知装置10の動作例を示すフローチャートである。障害物検知装置10は、例えば車両1の走行中、予め定められた時間ごとに、図3のフローチャートに示される動作を繰り返す。 FIG. 3 is a flowchart showing an operation example of the obstacle detection device 10 according to the first embodiment. For example, while the vehicle 1 is traveling, the obstacle detection device 10 repeats the operation shown in the flowchart of FIG. 3 at predetermined time intervals.
 ステップST11において、送受信部15は、例えば第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14の順番で探査波を送信させる。また、送受信部15は、探査波が障害物で反射した反射波を、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14に受信させる。このとき、送受信部15は、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14に、直接波を受信させてもよいし、間接波を受信させてもよい。例えば、送受信部15は、第1ソナーセンサ11から探査波を送信させ、この探査波が障害物で反射した反射波を、第1ソナーセンサ11において直接波として受信させると共に、隣接する第2ソナーセンサ12において間接波として受信させる。送受信部15は、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14の中から、探査波送信かつ直接波受信用のソナーセンサと、間接波受信用のソナーセンサとを任意に選択すればよい。送受信部15は、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14を用いた送受信結果を、距離算出部16へ出力する。送受信結果には、探査波を送信したソナーセンサ、この探査波に対応する直接波を受信したソナーセンサ、探査波送信から直接波受信までの時間、直接波の強度、この探査波に対応する間接波を受信したソナーセンサ、探査波送信から間接波受信までの時間、及び間接波の強度等が含まれる。 In step ST11, the transmission / reception unit 15 transmits the exploration wave in the order of, for example, the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14. Further, the transmission / reception unit 15 causes the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 to receive the reflected wave reflected by the obstacle. At this time, the transmission / reception unit 15 may cause the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 to receive the direct wave or the indirect wave. For example, the transmission / reception unit 15 transmits a search wave from the first sonar sensor 11, receives the reflected wave reflected by the search wave by an obstacle as a direct wave at the first sonar sensor 11, and at the adjacent second sonar sensor 12. Receive as an indirect wave. The transmission / reception unit 15 arbitrarily selects a sonar sensor for exploration wave transmission and direct wave reception and a sonar sensor for indirect wave reception from the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14. You can select. The transmission / reception unit 15 outputs the transmission / reception result using the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 to the distance calculation unit 16. The transmission / reception results include the sonar sensor that transmitted the exploration wave, the sonar sensor that received the direct wave corresponding to this exploration wave, the time from transmission of the exploration wave to the reception of the direct wave, the intensity of the direct wave, and the indirect wave corresponding to this exploration wave. The received sonar sensor, the time from the exploration wave transmission to the indirect wave reception, the intensity of the indirect wave, and the like are included.
 ステップST12において、距離算出部16は、送受信部15からの送受信結果を用いて、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14のそれぞれが反射波を受信するまでに要した時間を元に、TOF(Time Of Flight)方式によりソナーセンサごとに障害物までの距離を算出する。この反射波は、直接波でもよいし間接波でもよい。距離算出部16は、算出した障害物までの距離を、この算出に用いた送受信結果とあわせて、距離判定部17へ出力する。 In step ST12, the distance calculation unit 16 uses the transmission / reception result from the transmission / reception unit 15 until each of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 receives the reflected wave. The distance to the obstacle is calculated for each sonar sensor by the TOF (Time Of Flight) method based on the time required for. This reflected wave may be a direct wave or an indirect wave. The distance calculation unit 16 outputs the calculated distance to the obstacle together with the transmission / reception result used for this calculation to the distance determination unit 17.
 ステップST13において、距離判定部17は、各ソナーセンサについて距離算出部16により算出された障害物までの距離が、図2に示される基準距離Dx以上であるか否かを判定する。基準距離Dxは、距離判定部17に予め与えられているものとする。距離判定部17は、障害物までの距離が基準距離Dx以上であると判定した場合(ステップST13“YES”)、その障害物までの距離と送受信結果とを、第1強度判定部18へ出力する。一方、距離判定部17は、障害物までの距離が基準距離Dx未満であると判定した場合(ステップST13“NO”)、その障害物までの距離と送受信結果とを、第2強度判定部20へ出力する。 In step ST13, the distance determination unit 17 determines whether or not the distance to the obstacle calculated by the distance calculation unit 16 for each sonar sensor is equal to or greater than the reference distance Dx shown in FIG. It is assumed that the reference distance Dx is given to the distance determination unit 17 in advance. When the distance determination unit 17 determines that the distance to the obstacle is equal to or greater than the reference distance Dx (step ST13 “YES”), the distance determination unit 17 outputs the distance to the obstacle and the transmission / reception result to the first strength determination unit 18. To do. On the other hand, when the distance determination unit 17 determines that the distance to the obstacle is less than the reference distance Dx (step ST13 “NO”), the second strength determination unit 20 determines the distance to the obstacle and the transmission / reception result. Output to.
 ステップST14において、第1強度判定部18は、基準距離Dx以上と判定された障害物までの距離の算出に用いられた反射波の強度が、予め定められた第1閾値Th1以上であるか否かを判定する。実施の形態1においては、この反射波は、直接波に限定される。第1強度判定部18は、反射波の強度が第1閾値Th1以上であると判定した場合(ステップST14“YES”)、上記障害物までの距離と送受信結果とを、第1位置評定部19へ出力する。一方、第1強度判定部18は、全ソナーセンサについて、反射波の強度が第1閾値Th1未満であると判定した場合(ステップST14“NO”)、図3のフローチャートに示される動作を終了する。 In step ST14, the first intensity determination unit 18 determines whether or not the intensity of the reflected wave used to calculate the distance to the obstacle determined to be the reference distance Dx or more is the predetermined first threshold Th1 or more. Is determined. In the first embodiment, the reflected wave is limited to a direct wave. When the first intensity determination unit 18 determines that the intensity of the reflected wave is equal to or higher than the first threshold value Th1 (step ST14 “YES”), the first position evaluation unit 19 determines the distance to the obstacle and the transmission / reception result. Output to. On the other hand, when the first intensity determination unit 18 determines that the intensity of the reflected wave is less than the first threshold Th1 for all the sonar sensors (step ST14 “NO”), the operation shown in the flowchart of FIG. 3 ends.
 ステップST15において、第1位置評定部19は、強度が第1閾値Th1以上であると判定された反射波から算出された障害物までの距離と、この反射波を受信したソナーセンサの位置とを用いて、障害物の2次元座標範囲を評定する。例えば、図2において、反射波を受信したソナーセンサが第1ソナーセンサ11である場合、障害物3のY軸座標位置は、第1ソナーセンサ11の検知範囲11-1であるY軸方向の幅Dyの範囲になる。障害物3のX軸座標位置は、距離算出部16により算出された距離に相当する位置になる。 In step ST15, the first position rating unit 19 uses the distance to the obstacle calculated from the reflected wave whose intensity is determined to be the first threshold Th1 or more, and the position of the sonar sensor that received the reflected wave. The two-dimensional coordinate range of the obstacle is evaluated. For example, in FIG. 2, when the sonar sensor that has received the reflected wave is the first sonar sensor 11, the Y-axis coordinate position of the obstacle 3 is the width Dy in the Y-axis direction that is the detection range 11-1 of the first sonar sensor 11. Become a range. The X-axis coordinate position of the obstacle 3 is a position corresponding to the distance calculated by the distance calculation unit 16.
 ここで、第1閾値Th1と、この第1閾値Th1により設定される検知範囲11-1,12-1,13-1,14-1を説明する。 Here, the first threshold value Th1 and the detection ranges 11-1, 12-1, 13-1, and 14-1 set by the first threshold value Th1 will be described.
 図4は、実施の形態1における第1ソナーセンサ11の検知範囲11-1の設定例を示す図である。図5は、実施の形態1における第1閾値Th1の設定例を示すグラフである。グラフの横軸はX軸方向における第1ソナーセンサ11からの距離、縦軸は第1閾値Th1の値である。 FIG. 4 is a diagram showing a setting example of the detection range 11-1 of the first sonar sensor 11 in the first embodiment. FIG. 5 is a graph showing a setting example of the first threshold value Th1 in the first embodiment. The horizontal axis of the graph is the distance from the first sonar sensor 11 in the X-axis direction, and the vertical axis is the value of the first threshold Th1.
 図4において、検知感度の等高線レベルV1は、第1ソナーセンサ11の正面に基準ポール2-1が存在する場合に第1ソナーセンサ11により受信された反射波の強度(つまり検知感度)と同じ強度になる範囲を線で結んだものである。同様に、等高線レベルV2~V6は、それぞれ、第1ソナーセンサ11の正面に基準ポール2-2~2-6が存在する場合に第1ソナーセンサ11により受信された反射波の強度と同じ強度になる範囲を線で結んだものである。 In FIG. 4, the contour level V1 of the detection sensitivity has the same intensity as the intensity of the reflected wave received by the first sonar sensor 11 (that is, the detection sensitivity) when the reference pole 2-1 is present in front of the first sonar sensor 11. The range is connected by a line. Similarly, the contour lines V2 to V6 have the same intensity as the reflected wave received by the first sonar sensor 11 when the reference poles 2-2 to 2-6 are present in front of the first sonar sensor 11, respectively. The range is connected by a line.
 第1ソナーセンサ11の検知範囲11-1と第2ソナーセンサ12の検知範囲12-1とが重ならないように、検知範囲11-1のY軸方向の幅が上記幅Dyに設定される。この場合、第1ソナーセンサ11の正面からY軸方向に幅1/2Dy分ずれた破線枠と等高線レベルV1とが交差するX軸方向の距離に対して、等高線レベルV1の値が、第1閾値Th1(V1)として設定される。同様に、第1ソナーセンサ11の正面からY軸方向に幅1/2Dy分ずれた破線枠と等高線レベルV2~V6とが交差するX軸方向の各距離に対して、等高線レベルV2~V5の値が第1閾値Th1(V2)~Th1(V5)として設定される。図5に示されるように、第1閾値Th1(V1)~Th1(V5)を結ぶ線が、基準距離Dx以上の遠距離領域A1において使用される第1閾値Th1となる。 The width of the detection range 11-1 in the Y-axis direction is set to the above width Dy so that the detection range 11-1 of the first sonar sensor 11 and the detection range 12-1 of the second sonar sensor 12 do not overlap. In this case, the value of the contour line level V1 is the first threshold value with respect to the distance in the X-axis direction where the broken line frame deviated by 1 / 2Dy in width from the front of the first sonar sensor 11 and the contour line level V1 intersect. It is set as Th1 (V1). Similarly, the values of the contour lines V2 to V5 for each distance in the X-axis direction where the broken line frame deviated by 1/2 DY in the Y-axis direction from the front of the first sonar sensor 11 and the contour lines V2 to V6 intersect. Is set as the first thresholds Th1 (V2) to Th1 (V5). As shown in FIG. 5, the line connecting the first threshold values Th1 (V1) to Th1 (V5) is the first threshold value Th1 used in the long distance region A1 having the reference distance Dx or more.
 実施の形態1では、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14の検知範囲11-1,12-1,13-1,14-1が同じ大きさであるため、第1閾値Th1も全ソナーセンサで同じである。 In the first embodiment, the detection ranges 11-1, 12-1, 13-1, and 14-1 of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 have the same size. Therefore, the first threshold Th1 is the same for all sonar sensors.
 具体例として、第1強度判定部18は、基準距離Dx以上と判定された障害物までの距離の算出に用いられた、第1ソナーセンサ11の反射波の強度が、上記のように設定された第1閾値Th1以上であるか否かを判定する。反射波の強度が第1閾値Th1以上である場合(ステップST14“YES”)、この障害物は検知範囲11-1に存在することになる。そのため、第1位置評定部19は、障害物までの距離からこの障害物のX軸座標位置を評定すると共に、検知範囲11-1のY軸方向の範囲をこの障害物のY軸座標位置と評定する(ステップST15)。一方、反射波の強度が第1閾値Th1未満である場合(ステップST14“NO”)、この障害物は検知範囲11-1外に存在することになる。そのため、第1位置評定部19は、この障害物の2次元座標範囲を評定しない。このように、第1閾値Th1により、第1ソナーセンサ11の基準距離Dx以上における検知範囲11-1が設定される。 As a specific example, in the first intensity determination unit 18, the intensity of the reflected wave of the first sonar sensor 11 used for calculating the distance to the obstacle determined to be the reference distance Dx or more is set as described above. It is determined whether or not the first threshold value is Th1 or more. When the intensity of the reflected wave is equal to or higher than the first threshold value Th1 (step ST14 “YES”), this obstacle is present in the detection range 11-1. Therefore, the first position evaluation unit 19 evaluates the X-axis coordinate position of the obstacle from the distance to the obstacle, and sets the range of the detection range 11-1 in the Y-axis direction as the Y-axis coordinate position of the obstacle. Rating (step ST15). On the other hand, when the intensity of the reflected wave is less than the first threshold Th1 (step ST14 “NO”), this obstacle is outside the detection range 11-1. Therefore, the first position rating unit 19 does not rate the two-dimensional coordinate range of this obstacle. In this way, the detection range 11-1 at the reference distance Dx or more of the first sonar sensor 11 is set by the first threshold Th1.
 なお、この障害物が第1ソナーセンサ11の検知範囲11-1ではなく第2ソナーセンサ12の検知範囲12-1に存在する場合、第2ソナーセンサ12の反射波の強度が、第2ソナーセンサ12に対して設定された第1閾値Th1以上になる。したがって、第1位置評定部19は、障害物までの距離からこの障害物のX軸座標位置を評定すると共に、検知範囲12-1のY軸方向の範囲をこの障害物のY軸座標位置と評定する(ステップST15)。 When this obstacle exists in the detection range 12-1 of the second sonar sensor 12 instead of the detection range 11-1 of the first sonar sensor 11, the intensity of the reflected wave of the second sonar sensor 12 is higher than that of the second sonar sensor 12. The first threshold value Th1 or more set in Therefore, the first position rating unit 19 evaluates the X-axis coordinate position of the obstacle from the distance to the obstacle, and sets the range of the detection range 12-1 in the Y-axis direction as the Y-axis coordinate position of the obstacle. Rating (step ST15).
 図6は、実施の形態1における第1閾値Th1と第2閾値Th2の設定例を示すグラフである。グラフの横軸はX軸方向における第1ソナーセンサ11からの距離、縦軸は第1閾値Th1及び第2閾値Th2の値である。例えば、第1ソナーセンサ11の第2閾値Th2は、第1ソナーセンサ11の検知範囲11-2が隣接する第2ソナーセンサ12の検知範囲12-2に一部重なるような値に設定される。設定方法は、第1閾値Th1の設定方法と同じであってもよいし、周知の技術を用いてもよい。 FIG. 6 is a graph showing a setting example of the first threshold value Th1 and the second threshold value Th2 in the first embodiment. The horizontal axis of the graph is the distance from the first sonar sensor 11 in the X-axis direction, and the vertical axis is the values of the first threshold Th1 and the second threshold Th2. For example, the second threshold Th2 of the first sonar sensor 11 is set to a value such that the detection range 11-2 of the first sonar sensor 11 partially overlaps the detection range 12-2 of the adjacent second sonar sensor 12. The setting method may be the same as the setting method of the first threshold value Th1, or a well-known technique may be used.
 実施の形態1では、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14の検知範囲11-2,12-2,13-2,14-2が同じ大きさであるため、第2閾値Th2も全ソナーセンサで同じである。 In the first embodiment, the detection ranges 11-2, 12-2, 13-2, 14-2 of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 have the same size. Therefore, the second threshold Th2 is the same for all sonar sensors.
 図3のステップST16において、第2強度判定部20は、基準距離Dx未満と判定された障害物までの距離の算出に用いられた反射波の強度が、予め定められた第2閾値Th2以上であるか否かを判定する。この反射波は、直接波でもよいし間接波でもよい。第2強度判定部20は、反射波の強度が第2閾値Th2以上であると判定した場合(ステップST16“YES”)、上記障害物までの距離と送受信結果とを、第2位置評定部21へ出力する。一方、第2強度判定部20は、全ソナーセンサについて反射波の強度が第2閾値Th2未満であると判定した場合(ステップST16“NO”)、図3のフローチャートに示される動作を終了する。 In step ST16 of FIG. 3, the second intensity determination unit 20 determines that the intensity of the reflected wave used to calculate the distance to the obstacle determined to be less than the reference distance Dx is equal to or higher than a predetermined second threshold value Th2. Determine if it exists. This reflected wave may be a direct wave or an indirect wave. When the second intensity determination unit 20 determines that the intensity of the reflected wave is equal to or higher than the second threshold value Th2 (step ST16 “YES”), the second position evaluation unit 21 determines the distance to the obstacle and the transmission / reception result. Output to. On the other hand, when the second intensity determination unit 20 determines that the intensity of the reflected wave is less than the second threshold Th2 for all the sonar sensors (step ST16 “NO”), the second intensity determination unit 20 ends the operation shown in the flowchart of FIG.
 ステップST17において、第2位置評定部21は、強度が第2閾値以上であると判定された反射波から算出された障害物の距離を用いて開口合成処理を行い、この障害物の2次元座標位置を評定する。例えば、第1ソナーセンサ11が探査波を送信し、第1ソナーセンサ11がこの探査波を直接波として受信すると共に、第2ソナーセンサ12がこの探査波を間接波として受信した場合を仮定する。この場合、第2位置評定部21は、第1ソナーセンサ11の位置を中心とし、直接波から算出された障害物までの距離を半径とした円を描く。また、第2位置評定部21は、第1ソナーセンサ11の位置と第2ソナーセンサ12の位置とを焦点とし、間接波から算出された障害物までの距離を用いた楕円を描く。そして、第2位置評定部21は、円と楕円との交点の2次元座標位置を、障害物の2次元座標位置として評定する。また、例えば、第1ソナーセンサ11が探査波の送信と直接波の受信を行うと共に、第2ソナーセンサ12も探査波の送信と直接波の受信を行った場合を仮定する。この場合、第2位置評定部21は、第1ソナーセンサ11の位置を中心とし、直接波から算出された障害物までの距離を半径とした円を描く。同様に、第2位置評定部21は、第2ソナーセンサ12の位置を中心とし、直接波から算出された障害物までの距離を半径とした円を描く。そして、第2位置評定部21は、2つの円の交点の2次元座標位置を、障害物の2次元座標位置として評定する。なお、第2位置評定部21は、楕円と楕円の交点を求めてもよいし、3つ以上の円又は楕円の交点を求めてもよい。 In step ST17, the second position rating unit 21 performs aperture synthesis processing using the distance of the obstacle calculated from the reflected wave whose intensity is determined to be equal to or higher than the second threshold value, and performs the aperture synthesis process, and the two-dimensional coordinates of the obstacle. Evaluate the position. For example, assume that the first sonar sensor 11 transmits an exploration wave, the first sonar sensor 11 receives the exploration wave as a direct wave, and the second sonar sensor 12 receives this exploration wave as an indirect wave. In this case, the second position rating unit 21 draws a circle centered on the position of the first sonar sensor 11 and having the distance to the obstacle calculated from the direct wave as the radius. Further, the second position evaluation unit 21 focuses on the position of the first sonar sensor 11 and the position of the second sonar sensor 12, and draws an ellipse using the distance to the obstacle calculated from the indirect wave. Then, the second position evaluation unit 21 evaluates the two-dimensional coordinate position of the intersection of the circle and the ellipse as the two-dimensional coordinate position of the obstacle. Further, for example, it is assumed that the first sonar sensor 11 transmits the exploration wave and receives the direct wave, and the second sonar sensor 12 also transmits the exploration wave and receives the direct wave. In this case, the second position rating unit 21 draws a circle centered on the position of the first sonar sensor 11 and having the distance to the obstacle calculated from the direct wave as the radius. Similarly, the second position rating unit 21 draws a circle centered on the position of the second sonar sensor 12 and having the distance to the obstacle calculated from the direct wave as the radius. Then, the second position evaluation unit 21 evaluates the two-dimensional coordinate position of the intersection of the two circles as the two-dimensional coordinate position of the obstacle. The second position rating unit 21 may find the intersection of the ellipse and the ellipse, or may find the intersection of three or more circles or the ellipse.
 以上のように、実施の形態1に係る障害物検知装置10は、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、第4ソナーセンサ14、送受信部15、距離算出部16、距離判定部17、第1強度判定部18、第1位置評定部19、第2強度判定部20、及び第2位置評定部21を備える。送受信部15は、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14を用いて探査波を送信し、探査波が障害物で反射した反射波を受信する。距離算出部16は、探査波と反射波の送受信結果を用いて障害物までの距離を算出する。距離判定部17は、障害物までの距離が、隣接するソナーセンサの検知範囲が重なる重複領域の大きさに基づいて設定された基準距離Dx以上であるか否かを判定する。第1強度判定部18は、障害物までの距離が基準距離Dx以上である場合、障害物までの距離の算出に用いられた反射波の強度が第1閾値Th1以上であるか否かを判定する。第1位置評定部19は、第1強度判定部18により強度が第1閾値Th1以上と判定された反射波から算出された障害物までの距離、及びこの反射波を受信したソナーセンサの位置を用いて、障害物の2次元座標範囲を評定する。第2強度判定部20は、障害物までの距離が基準距離Dx未満である場合、障害物までの距離の算出に用いられた反射波の強度が第2閾値Th2以上であるか否かを判定する。第2位置評定部21は、第2強度判定部20により強度が第2閾値Th2以上と判定された反射波から算出された障害物の距離を用いて開口合成処理を行い、障害物の2次元座標位置を評定する。この構成により、障害物検知装置10は、開口合成処理による位置評定精度が高い中近距離領域A2においては開口合成処理により障害物の2次元座標位置を評定し、開口合成処理による位置評定精度が低い遠距離領域A1においては開口合成処理を行わずに障害物の2次元座標範囲を評定することができる。 As described above, the obstacle detection device 10 according to the first embodiment includes the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, the fourth sonar sensor 14, the transmission / reception unit 15, the distance calculation unit 16, and the distance determination unit. 17, a first strength determination unit 18, a first position evaluation unit 19, a second strength determination unit 20, and a second position evaluation unit 21 are provided. The transmission / reception unit 15 transmits the exploration wave using the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14, and receives the reflected wave reflected by the obstacle. The distance calculation unit 16 calculates the distance to the obstacle using the transmission / reception results of the exploration wave and the reflected wave. The distance determination unit 17 determines whether or not the distance to the obstacle is equal to or greater than the reference distance Dx set based on the size of the overlapping region where the detection ranges of the adjacent sonar sensors overlap. When the distance to the obstacle is equal to or greater than the reference distance Dx, the first intensity determination unit 18 determines whether or not the intensity of the reflected wave used to calculate the distance to the obstacle is equal to or greater than the first threshold Th1. To do. The first position rating unit 19 uses the distance to the obstacle calculated from the reflected wave whose intensity is determined by the first intensity determination unit 18 to be the first threshold Th1 or more, and the position of the sonar sensor that receives the reflected wave. The two-dimensional coordinate range of the obstacle is evaluated. When the distance to the obstacle is less than the reference distance Dx, the second intensity determination unit 20 determines whether or not the intensity of the reflected wave used for calculating the distance to the obstacle is the second threshold Th2 or more. To do. The second position rating unit 21 performs aperture synthesis processing using the distance of the obstacle calculated from the reflected wave whose intensity is determined by the second intensity determination unit 20 to be the second threshold Th2 or more, and performs the aperture synthesis process in two dimensions of the obstacle. Evaluate the coordinate position. With this configuration, the obstacle detection device 10 evaluates the two-dimensional coordinate position of the obstacle by the aperture synthesis process in the medium-short distance region A2 where the position evaluation accuracy by the aperture synthesis process is high, and the position evaluation accuracy by the aperture synthesis process is improved. In the low long-distance region A1, the two-dimensional coordinate range of the obstacle can be evaluated without performing the aperture synthesis process.
 また、実施の形態1によれば、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14の基準距離Dx以上における検知範囲11-1,12-1,13-1,14-1は、方形状であり、かつ、隣接するソナーセンサの検知範囲は重ならない。この構成により、障害物検知装置10は、開口合成処理による位置評定精度が低い遠距離領域A1において、Y軸方向の位置評定の分解能として、各検知範囲11-1,12-1,13-1,14-1のY軸方向の幅相当の分解能を得ることができる。 Further, according to the first embodiment, the detection ranges 11-1, 12-1, 13-1, in the reference distance Dx or more of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14. Reference numeral 14-1 is rectangular, and the detection ranges of adjacent sonar sensors do not overlap. With this configuration, the obstacle detection device 10 has the respective detection ranges 11-1, 12-1, 13-1 as the resolution of the position evaluation in the Y-axis direction in the long-distance region A1 where the position evaluation accuracy by the aperture synthesis process is low. , 14-1 can obtain a resolution corresponding to the width in the Y-axis direction.
 なお、障害物検知装置10が備えるソナーセンサの数は、少なくとも2つ、好ましくは3つ以上である。 The number of sonar sensors included in the obstacle detection device 10 is at least two, preferably three or more.
実施の形態2.
 図7は、実施の形態2に係る障害物検知装置10の構成例を示すブロック図である。実施の形態2に係る障害物検知装置10は、図1に示された実施の形態1の障害物検知装置10に対して、境界位置判定部22が追加された構成である。図7において図1~図6と同一又は相当する部分は、同一の符号を付し説明を省略する。
Embodiment 2.
FIG. 7 is a block diagram showing a configuration example of the obstacle detection device 10 according to the second embodiment. The obstacle detection device 10 according to the second embodiment has a configuration in which a boundary position determination unit 22 is added to the obstacle detection device 10 of the first embodiment shown in FIG. In FIG. 7, the same or corresponding parts as those in FIGS. 1 to 6 are designated by the same reference numerals, and the description thereof will be omitted.
 図8は、実施の形態2における第1閾値Th1と第2閾値Th2と第3閾値Th3の設定例を示すグラフである。グラフの横軸はX軸方向におけるソナーセンサからの距離、縦軸は第1閾値Th1、第2閾値Th2、及び第3閾値Th3の値である。第3閾値Th3は、第1閾値Th1より大きい値である。 FIG. 8 is a graph showing a setting example of the first threshold value Th1 and the second threshold value Th2 and the third threshold value Th3 in the second embodiment. The horizontal axis of the graph is the distance from the sonar sensor in the X-axis direction, and the vertical axis is the values of the first threshold Th1, the second threshold Th2, and the third threshold Th3. The third threshold Th3 is a value larger than the first threshold Th1.
 図9は、実施の形態2における第3閾値Th3の設定例を示す図である。図9に示されるように、基準距離Dx以上の遠距離領域A1において、第2ソナーセンサ12の検知範囲12-1と第3ソナーセンサ13の検知範囲13-1との境界位置に障害物4が存在する。また、第2ソナーセンサ12の検知範囲12-1に障害物5が存在する。 FIG. 9 is a diagram showing a setting example of the third threshold value Th3 in the second embodiment. As shown in FIG. 9, in the long-distance region A1 of the reference distance Dx or more, the obstacle 4 exists at the boundary position between the detection range 12-1 of the second sonar sensor 12 and the detection range 13-1 of the third sonar sensor 13. To do. Further, the obstacle 5 exists in the detection range 12-1 of the second sonar sensor 12.
 図9の状況において、第2ソナーセンサ12が探査波を送信すると、第2ソナーセンサ12は、障害物4で反射した直接波と、障害物5で反射した直接波とを受信する。第3ソナーセンサ13は、障害物4で反射した間接波と、障害物5で反射した間接波とを受信する。第1ソナーセンサ11は、障害物5で反射した間接波を受信する。 In the situation of FIG. 9, when the second sonar sensor 12 transmits the exploration wave, the second sonar sensor 12 receives the direct wave reflected by the obstacle 4 and the direct wave reflected by the obstacle 5. The third sonar sensor 13 receives the indirect wave reflected by the obstacle 4 and the indirect wave reflected by the obstacle 5. The first sonar sensor 11 receives the indirect wave reflected by the obstacle 5.
 図9の状況において、境界位置に存在する障害物4で反射する間接波の経路4aは、二等辺三角形を構成し、このときに送受信効率が最大になる。これに対し、検知範囲12-1に存在する障害物5で反射する間接波の経路5aは、二等辺三角形にならないので、経路5aの送受信効率は、経路4aの送受信効率より低い。したがって、経路4aの長さと経路5aの長さとが同じであったとしても、第3ソナーセンサ13が受信した経路4aの間接波の強度は、経路5aの間接波の強度より大きい。そこで、実施の形態2では、経路4aの間接波と経路5aの間接波とを判別するために、図8のような、第1閾値Th1より大きな第3閾値Th3が設定される。 In the situation of FIG. 9, the indirect wave path 4a reflected by the obstacle 4 existing at the boundary position forms an isosceles triangle, and at this time, the transmission / reception efficiency is maximized. On the other hand, since the indirect wave path 5a reflected by the obstacle 5 existing in the detection range 12-1 does not form an isosceles triangle, the transmission / reception efficiency of the path 5a is lower than the transmission / reception efficiency of the path 4a. Therefore, even if the length of the path 4a and the length of the path 5a are the same, the intensity of the indirect wave of the path 4a received by the third sonar sensor 13 is larger than the intensity of the indirect wave of the path 5a. Therefore, in the second embodiment, in order to discriminate between the indirect wave of the path 4a and the indirect wave of the path 5a, a third threshold value Th3 larger than the first threshold value Th1 is set as shown in FIG.
 次に、障害物検知装置10の動作を説明する。
 実施の形態2において、距離判定部17は、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14のうちのいずれかについて障害物までの距離が基準距離Dx以上であると判定した場合、その障害物までの距離と送受信結果とを、境界位置判定部22へ出力する。
Next, the operation of the obstacle detection device 10 will be described.
In the second embodiment, the distance determination unit 17 has a distance to an obstacle of any one of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 of the reference distance Dx or more. If it is determined, the distance to the obstacle and the transmission / reception result are output to the boundary position determination unit 22.
 境界位置判定部22は、距離判定部17において障害物の距離が基準距離Dx以上であると判定された場合、距離判定部17からの送受信結果に基づいて、隣接するソナーセンサの一方が直接波を受信し、もう一方が間接波を受信したか否かを判定する。境界位置判定部22は、隣接するソナーセンサの一方が直接波を受信し、もう一方が間接波を受信したと判定した場合、この障害物は、隣接するソナーセンサの検知範囲の境界位置に存在する可能性があると判定する。境界位置判定部22は、障害物が境界位置に存在するか否かの判定結果を、障害物までの距離と送受信結果とあわせて、第1強度判定部18aへ出力する。 When the distance determination unit 17 determines that the distance of the obstacle is equal to or greater than the reference distance Dx, the boundary position determination unit 22 causes one of the adjacent sonar sensors to directly wave based on the transmission / reception result from the distance determination unit 17. Receive and determine if the other has received an indirect wave. When the boundary position determination unit 22 determines that one of the adjacent sonar sensors receives the direct wave and the other receives the indirect wave, this obstacle may exist at the boundary position of the detection range of the adjacent sonar sensor. Judged as having sex. The boundary position determination unit 22 outputs the determination result of whether or not the obstacle exists at the boundary position to the first strength determination unit 18a together with the distance to the obstacle and the transmission / reception result.
 第1強度判定部18aは、直接波比較用の第1閾値Th1に加え、間接波比較用の第3閾値Th3を保持している。第1強度判定部18aは、基準距離Dx以上の遠距離領域A1において、反射波が直接波である場合は実施の形態1と同様に第1閾値Th1との比較を行い、反射波が間接波である場合は第3閾値Th3との比較を行う。第1強度判定部18aは、間接波の強度が第3閾値Th3以上であると判定した場合、障害物の距離、送受信結果、及び障害物が境界位置に存在する旨を第1位置評定部19aへ出力する。一方、第1強度判定部18aは、間接波の強度が第3閾値Th3未満であると判定した場合、障害物が境界位置に存在しないので、第1位置評定部19aへの出力を行わない。 The first intensity determination unit 18a holds a third threshold value Th3 for indirect wave comparison in addition to the first threshold value Th1 for direct wave comparison. When the reflected wave is a direct wave in the long distance region A1 of the reference distance Dx or more, the first intensity determining unit 18a makes a comparison with the first threshold value Th1 as in the first embodiment, and the reflected wave is an indirect wave. If is, the comparison with the third threshold value Th3 is performed. When the first intensity determination unit 18a determines that the intensity of the indirect wave is the third threshold value Th3 or more, the first position evaluation unit 19a determines the distance of the obstacle, the transmission / reception result, and the presence of the obstacle at the boundary position. Output to. On the other hand, when the first intensity determination unit 18a determines that the intensity of the indirect wave is less than the third threshold value Th3, it does not output to the first position evaluation unit 19a because the obstacle does not exist at the boundary position.
 第1位置評定部19aは、障害物の位置評定において、第1強度判定部18aから障害物が境界位置に存在する旨を通知された場合、境界位置をこの障害物のY軸座標位置として評定する。 When the first strength determination unit 18a notifies that the obstacle exists at the boundary position in the position evaluation of the obstacle, the first position evaluation unit 19a evaluates the boundary position as the Y-axis coordinate position of the obstacle. To do.
 例えば、図9において障害物4が存在し、第2ソナーセンサ12が探査波を送信した場合、境界位置判定部22は、第2ソナーセンサ12が直接波を受信し、第2ソナーセンサ12に隣接する第3ソナーセンサ13が間接波を受信したと判定する。よって、境界位置判定部22は、距離算出部16により距離が算出された障害物が、検知範囲12-1,13-1の境界位置に存在する可能性があると判定する。第1強度判定部18aは、この障害物までの距離の算出に用いられた間接波の強度が、第3閾値Th3以上であると判定し、この障害物が検知範囲12-1,13-1の境界位置に存在する旨を第1位置評定部19aへ出力する。 For example, when the obstacle 4 exists in FIG. 9 and the second sonar sensor 12 transmits the exploration wave, the boundary position determination unit 22 receives the direct wave from the second sonar sensor 12 and is adjacent to the second sonar sensor 12. 3 It is determined that the sonar sensor 13 has received the indirect wave. Therefore, the boundary position determination unit 22 determines that the obstacle whose distance has been calculated by the distance calculation unit 16 may exist at the boundary positions of the detection ranges 12-1 and 13-1. The first intensity determination unit 18a determines that the intensity of the indirect wave used to calculate the distance to the obstacle is the third threshold Th3 or more, and the obstacle has a detection range of 12-1, 13-1. The fact that it exists at the boundary position of is output to the first position rating unit 19a.
 図9において障害物5が存在し、第2ソナーセンサ12が探査波を送信した場合、境界位置判定部22は、第2ソナーセンサ12が直接波を受信し、第2ソナーセンサ12に隣接する第1ソナーセンサ11と第3ソナーセンサ13とが間接波を受信したと判定する。よって、境界位置判定部22は、距離算出部16により距離が算出された障害物が、検知範囲12-1,11-1の境界位置、及び検知範囲12-1,13-1の境界位置に存在する可能性があると判定する。しかしながら、第1強度判定部18aにおいて、この障害物までの距離の算出に用いられた間接波の強度が、第3閾値Th3未満であると判定されるため、境界位置判定部22の判定結果は棄却される。 In FIG. 9, when the obstacle 5 exists and the second sonar sensor 12 transmits the exploration wave, the boundary position determination unit 22 receives the wave directly from the second sonar sensor 12 and the first sonar sensor adjacent to the second sonar sensor 12. It is determined that the 11 and the third sonar sensor 13 have received the indirect wave. Therefore, in the boundary position determination unit 22, the obstacle whose distance is calculated by the distance calculation unit 16 is placed at the boundary position of the detection ranges 12-1 and 11-1 and the boundary position of the detection ranges 12-1 and 13-1. Determine that it may exist. However, since the first intensity determination unit 18a determines that the intensity of the indirect wave used to calculate the distance to the obstacle is less than the third threshold Th3, the determination result of the boundary position determination unit 22 is Rejected.
 以上のように、実施の形態2に係る障害物検知装置10は、境界位置判定部22を備える。境界位置判定部22は、障害物の距離が基準距離Dx以上である場合、かつ、隣接するソナーセンサの一方が直接波を受信し、もう一方が間接波を受信した場合、障害物は隣接するソナーセンサの検知範囲の境界位置に存在すると判定する。このように、障害物検知装置10は、実施の形態1では基準距離Dx以上において直接波のみを用いていたが、実施の形態2では直接波に加えて間接波も用いる。これにより、実施の形態2では、遠距離領域A1の検知範囲に障害物が存在するか、又は、遠距離領域A1の検知範囲の境界位置に障害物が存在するかを判別することが可能となるため、第1位置評定部19aの位置評定におけるY軸方向の分解能がさらに向上する。 As described above, the obstacle detection device 10 according to the second embodiment includes the boundary position determination unit 22. When the distance of the obstacle is equal to or greater than the reference distance Dx and one of the adjacent sonar sensors receives the direct wave and the other receives the indirect wave, the boundary position determination unit 22 indicates that the obstacle is the adjacent sonar sensor. It is determined that it exists at the boundary position of the detection range of. As described above, in the first embodiment, the obstacle detection device 10 uses only the direct wave at the reference distance Dx or more, but in the second embodiment, the indirect wave is also used in addition to the direct wave. Thereby, in the second embodiment, it is possible to determine whether an obstacle exists in the detection range of the long-distance region A1 or whether the obstacle exists at the boundary position of the detection range of the long-distance region A1. Therefore, the resolution in the Y-axis direction in the position evaluation of the first position evaluation unit 19a is further improved.
 また、実施の形態1によれば、第1強度判定部18aは、境界位置判定部22により障害物が境界位置に存在すると判定された場合、第1閾値Th1よりも大きい第3閾値Th3を用いて間接波の強度を判定する。これにより、第1強度判定部18aは、遠距離領域A1において、隣接する検知範囲の境界位置に障害物が存在するときだけ、この障害物で反射した間接波を採用することができる。よって、第1位置評定部19aの位置評定精度がさらに向上する。 Further, according to the first embodiment, when the boundary position determination unit 22 determines that the obstacle exists at the boundary position, the first intensity determination unit 18a uses the third threshold value Th3 which is larger than the first threshold value Th1. To determine the intensity of the indirect wave. As a result, the first intensity determination unit 18a can adopt the indirect wave reflected by the obstacle only when the obstacle exists at the boundary position of the adjacent detection range in the long distance region A1. Therefore, the position evaluation accuracy of the first position evaluation unit 19a is further improved.
実施の形態3.
 図10は、実施の形態3に係る障害物検知装置10の構成例を示すブロック図である。実施の形態3に係る障害物検知装置10は、図1に示された実施の形態1の障害物検知装置10に対して、障害物追跡部23と衝突判定部24が追加された構成である。図10において図1~図6と同一又は相当する部分は、同一の符号を付し説明を省略する。
 なお、ここでは、実施の形態3に係る障害物追跡部23及び衝突判定部24が実施の形態1の障害物検知装置10に対して追加された例が示されるが、障害物追跡部23及び衝突判定部24は、実施の形態2の障害物検知装置10に対しても追加可能である。
Embodiment 3.
FIG. 10 is a block diagram showing a configuration example of the obstacle detection device 10 according to the third embodiment. The obstacle detection device 10 according to the third embodiment has a configuration in which an obstacle tracking unit 23 and a collision determination unit 24 are added to the obstacle detection device 10 of the first embodiment shown in FIG. .. In FIG. 10, the same or corresponding parts as those in FIGS. 1 to 6 are designated by the same reference numerals, and the description thereof will be omitted.
Here, an example is shown in which the obstacle tracking unit 23 and the collision determination unit 24 according to the third embodiment are added to the obstacle detection device 10 of the first embodiment, but the obstacle tracking unit 23 and The collision determination unit 24 can also be added to the obstacle detection device 10 of the second embodiment.
 また、実施の形態3の障害物検知装置10は、車両制御部25と接続されている。車両制御部25は、例えば、障害物との衝突可能性が高い場合に、車両1のブレーキを作動させて衝突時の衝撃を軽減するために車両1のブレーキを作動させる機能(いわゆる衝突被害軽減ブレーキ)、又は衝突を未然に防ぐために運転者に対して警報を発する機能(いわゆる衝突防止警報システム)等を実行する。この車両制御部25は、車両1の速度及びステアリング角度等の情報を、必要に応じて障害物追跡部23及び衝突判定部24へ出力する。 Further, the obstacle detection device 10 of the third embodiment is connected to the vehicle control unit 25. The vehicle control unit 25 has, for example, a function of operating the brake of the vehicle 1 to reduce the impact at the time of a collision (so-called collision damage mitigation) when the possibility of collision with an obstacle is high. Brake) or a function to issue an alarm to the driver (so-called collision prevention warning system) to prevent a collision. The vehicle control unit 25 outputs information such as the speed and steering angle of the vehicle 1 to the obstacle tracking unit 23 and the collision determination unit 24 as needed.
 図11は、実施の形態3に係る障害物検知装置10の動作例を示すフローチャートである。障害物検知装置10は、例えば車両1の走行中、予め定められた時間ごとに、図11のフローチャートに示される動作を繰り返す。 FIG. 11 is a flowchart showing an operation example of the obstacle detection device 10 according to the third embodiment. For example, while the vehicle 1 is traveling, the obstacle detection device 10 repeats the operation shown in the flowchart of FIG. 11 at predetermined time intervals.
 ステップST21において、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、第4ソナーセンサ14、送受信部15、距離算出部16、距離判定部17、第1強度判定部18、第1位置評定部19、及び第2強度判定部20は、図3のフローチャートに示される動作を行う。そして、第1位置評定部19が障害物の2次元座標範囲を評定した場合、又は第2位置評定部21が障害物の2次元座標位置を評定した場合、2次元座標範囲又は2次元座標位置が障害物追跡部23へ出力される。 In step ST21, the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, the fourth sonar sensor 14, the transmission / reception unit 15, the distance calculation unit 16, the distance determination unit 17, the first strength determination unit 18, and the first position evaluation unit. 19 and the second strength determination unit 20 perform the operations shown in the flowchart of FIG. Then, when the first position rating unit 19 evaluates the two-dimensional coordinate range of the obstacle, or when the second position rating unit 21 evaluates the two-dimensional coordinate position of the obstacle, the two-dimensional coordinate range or the two-dimensional coordinate position Is output to the obstacle tracking unit 23.
 ステップST22において、障害物追跡部23は、第1位置評定部19又は第2位置評定部21の少なくとも一方から、障害物の2次元座標範囲又は2次元座標位置の少なくとも一方を受け付ける。障害物追跡部23は、今回、第1位置評定部19又は第2位置評定部21の少なくとも一方から受け付けた障害物の2次元座標範囲又は2次元座標位置が、前回、第1位置評定部19又は第2位置評定部21の少なくとも一方から受け付けた障害物の2次元座標範囲又は2次元座標位置に対して設定した追跡範囲に入るか否かを判定する。障害物追跡部23は、今回の障害物の2次元座標範囲又は2次元座標位置が追跡範囲に入ると判定した場合、今回のステップST21で位置評定された障害物と前回のステップST21で位置評定された障害物とが同一の障害物であると判定する。一方、障害物追跡部23は、今回の障害物の2次元座標範囲又は2次元座標位置が追跡範囲外であると判定した場合、今回のステップST21で位置評定された障害物と前回のステップST21で位置評定された障害物とが異なる障害物であると判定する。その場合、障害物追跡部23は、今回のステップST21で位置評定された障害物に対して新たな追跡範囲を設定し、次回の追跡対象に加える。このように障害物追跡部23は、時間と共に変化していく同一障害物の2次元座標範囲又は2次元座標位置を追跡する。障害物追跡部23は、追跡対象である同一障害物の2次元座標範囲又は2次元座標位置を衝突判定部24へ出力する。 In step ST22, the obstacle tracking unit 23 receives at least one of the two-dimensional coordinate range or the two-dimensional coordinate position of the obstacle from at least one of the first position evaluation unit 19 and the second position evaluation unit 21. In the obstacle tracking unit 23, the two-dimensional coordinate range or the two-dimensional coordinate position of the obstacle received from at least one of the first position evaluation unit 19 and the second position evaluation unit 21 this time is the first position evaluation unit 19 last time. Alternatively, it is determined whether or not the obstacle falls within the two-dimensional coordinate range or the tracking range set for the two-dimensional coordinate position of the obstacle received from at least one of the second position evaluation units 21. When the obstacle tracking unit 23 determines that the two-dimensional coordinate range or the two-dimensional coordinate position of the obstacle this time falls within the tracking range, the obstacle tracked in the current step ST21 and the position rated in the previous step ST21. It is determined that the obstacles that have been made are the same obstacles. On the other hand, when the obstacle tracking unit 23 determines that the two-dimensional coordinate range or the two-dimensional coordinate position of the obstacle this time is out of the tracking range, the obstacle whose position has been evaluated in this step ST21 and the previous step ST21 It is determined that the obstacle whose position is evaluated in 1 is a different obstacle. In that case, the obstacle tracking unit 23 sets a new tracking range for the obstacle whose position has been evaluated in step ST21 this time, and adds it to the next tracking target. In this way, the obstacle tracking unit 23 tracks the two-dimensional coordinate range or the two-dimensional coordinate position of the same obstacle that changes with time. The obstacle tracking unit 23 outputs the two-dimensional coordinate range or the two-dimensional coordinate position of the same obstacle to be tracked to the collision determination unit 24.
 障害物追跡部23は、上記の追跡範囲の大きさを、同一障害物が遠距離領域A1に存在する場合と中近距離領域A2に存在する場合とで変更する。障害物追跡部23は、同一障害物が遠距離領域A1に存在する場合、追跡範囲を相対的に大きくし、同一障害物が中近距離領域A2に移動した場合、追跡範囲を相対的に小さくする。 The obstacle tracking unit 23 changes the size of the above tracking range depending on whether the same obstacle exists in the long-distance region A1 or in the medium-short-distance region A2. The obstacle tracking unit 23 relatively increases the tracking range when the same obstacle exists in the long-distance region A1, and relatively decreases the tracking range when the same obstacle moves to the medium-short distance region A2. To do.
 また、障害物追跡部23は、追跡範囲の大きさを、車両1と同一障害物との相対速度に基づいて変更する。障害物追跡部23は、例えば、相対速度と追跡範囲の大きさとの対応関係を定義した関数又はテーブルを用いて、追跡範囲を相対速度に応じた大きさに変更する。障害物追跡部23は、相対速度が遅い場合、追跡範囲を相対的に大きくし、相対速度が速い場合、追跡範囲を相対的に小さくする。 Further, the obstacle tracking unit 23 changes the size of the tracking range based on the relative speed between the vehicle 1 and the same obstacle. The obstacle tracking unit 23 changes the tracking range to a size corresponding to the relative speed by using, for example, a function or a table that defines the correspondence between the relative speed and the size of the tracking range. When the relative speed is slow, the obstacle tracking unit 23 relatively increases the tracking range, and when the relative speed is high, the tracking range is relatively small.
 図12は、実施の形態3において相対速度が遅い場合の追跡範囲の例を示す図である。図12において、第1位置評定部19により障害物30,31,32がこの順に位置評定され、続けて第2位置評定部21により障害物33,34,35がこの順に位置評定されたものとする。また、図12の例では、障害物30は、第1ソナーセンサ11により検知され、障害物31は第1ソナーセンサ11及び第2ソナーセンサ12の両方により検知され、障害物32は第2ソナーセンサ12により検知されたものと仮定する。障害物31のように、2つのソナーセンサにより同時に検知された障害物のY軸座標位置は、両ソナーセンサの中央位置、又は両ソナーセンサが受信した直接波の強度に応じて配分した位置が用いられる。このように、Y軸座標範囲が1点のY軸座標位置となるため、以下では、2次元座標範囲が2次元座標位置として扱われる。 FIG. 12 is a diagram showing an example of a tracking range when the relative speed is slow in the third embodiment. In FIG. 12, obstacles 30, 31, and 32 are positioned in this order by the first position rating unit 19, and then obstacles 33, 34, and 35 are position rated in this order by the second position rating unit 21. To do. Further, in the example of FIG. 12, the obstacle 30 is detected by the first sonar sensor 11, the obstacle 31 is detected by both the first sonar sensor 11 and the second sonar sensor 12, and the obstacle 32 is detected by the second sonar sensor 12. It is assumed that it has been done. As the Y-axis coordinate position of the obstacle detected simultaneously by the two sonar sensors such as the obstacle 31, the center position of both sonar sensors or the position distributed according to the intensity of the direct wave received by both sonar sensors is used. In this way, since the Y-axis coordinate range is the Y-axis coordinate position of one point, the two-dimensional coordinate range is treated as the two-dimensional coordinate position below.
 図12において、障害物追跡部23は、障害物30の2次元座標位置と障害物31の2次元座標位置との距離差に基づいて障害物30,31の移動速度を算出する。また、障害物追跡部23は、車両制御部25から車両1の速度を取得する。そして、障害物追跡部23は、車両1と障害物30,31との相対速度を算出し、算出した相対速度に基づいて、障害物30に設定する追跡範囲40のX軸方向の大きさを変更する。また、障害物追跡部23は、障害物30が位置評定精度の低い遠距離領域A1に存在するため、追跡範囲40のY軸方向の大きさを、第1位置評定部19による位置評定分解能の1.5倍~2倍に設定する。図2の例では第1位置評定部19の位置評定分解能はY軸方向の幅Dyであるため、障害物追跡部23は、追跡範囲40のY軸方向の大きさを1.5Dy~2Dyにする。この追跡範囲40に障害物31が入っているため、障害物追跡部23は、障害物30と障害物31とを同一障害物と判定する。障害物追跡部23は、同様の方法で、障害物31,32に対して追跡範囲41,42を設定する。 In FIG. 12, the obstacle tracking unit 23 calculates the moving speeds of the obstacles 30 and 31 based on the distance difference between the two-dimensional coordinate position of the obstacle 30 and the two-dimensional coordinate position of the obstacle 31. Further, the obstacle tracking unit 23 acquires the speed of the vehicle 1 from the vehicle control unit 25. Then, the obstacle tracking unit 23 calculates the relative speed between the vehicle 1 and the obstacles 30 and 31, and based on the calculated relative speed, determines the size of the tracking range 40 set in the obstacle 30 in the X-axis direction. change. Further, since the obstacle 30 exists in the long-distance region A1 having low position evaluation accuracy, the obstacle tracking unit 23 determines the size of the tracking range 40 in the Y-axis direction by the position evaluation resolution of the first position evaluation unit 19. Set 1.5 to 2 times. In the example of FIG. 2, since the position evaluation resolution of the first position evaluation unit 19 is the width Dy in the Y-axis direction, the obstacle tracking unit 23 sets the size of the tracking range 40 in the Y-axis direction to 1.5 Dy to 2 Dy. To do. Since the obstacle 31 is included in the tracking range 40, the obstacle tracking unit 23 determines that the obstacle 30 and the obstacle 31 are the same obstacle. The obstacle tracking unit 23 sets the tracking ranges 41 and 42 for the obstacles 31 and 32 in the same manner.
 その後、障害物追跡部23は、障害物33の2次元座標位置と障害物34の2次元座標位置との距離差に基づいて障害物33,34の移動速度を算出する。また、障害物追跡部23は、車両制御部25から車両1の速度を取得する。そして、障害物追跡部23は、車両1と障害物33,34との相対速度を算出し、算出した相対速度に基づいて、障害物33に設定する追跡範囲43のX軸方向の大きさを変更する。また、障害物追跡部23は、障害物33が位置評定精度の高い中近距離領域A2に存在するため、追跡範囲43のY軸方向の大きさを、第2位置評定部21による位置評定分解能の1.5倍~2倍に設定する。第2位置評定部21の位置評定分解能は第1位置評定部19の位置評定分解能より高いため、追跡範囲43のY軸方向の大きさは、追跡範囲40,41,42のY軸方向の大きさに比べて小さくなる。追跡範囲43に障害物34が入っているため、障害物追跡部23は、障害物33と障害物34とを同一障害物と判定する。障害物追跡部23は、同様の方法で、障害物34,35に対して追跡範囲44,45を設定する。 After that, the obstacle tracking unit 23 calculates the moving speeds of the obstacles 33 and 34 based on the distance difference between the two-dimensional coordinate position of the obstacle 33 and the two-dimensional coordinate position of the obstacle 34. Further, the obstacle tracking unit 23 acquires the speed of the vehicle 1 from the vehicle control unit 25. Then, the obstacle tracking unit 23 calculates the relative speed between the vehicle 1 and the obstacles 33 and 34, and based on the calculated relative speed, determines the size of the tracking range 43 set in the obstacle 33 in the X-axis direction. change. Further, since the obstacle 33 exists in the medium / short distance region A2 having high position evaluation accuracy, the obstacle tracking unit 23 determines the size of the tracking range 43 in the Y-axis direction by the position evaluation resolution of the second position evaluation unit 21. Set to 1.5 to 2 times. Since the position evaluation resolution of the second position evaluation unit 21 is higher than the position evaluation resolution of the first position evaluation unit 19, the size of the tracking range 43 in the Y-axis direction is larger than that of the tracking ranges 40, 41, 42 in the Y-axis direction. It is smaller than the resolution. Since the obstacle 34 is included in the tracking range 43, the obstacle tracking unit 23 determines that the obstacle 33 and the obstacle 34 are the same obstacle. The obstacle tracking unit 23 sets the tracking ranges 44 and 45 for the obstacles 34 and 35 in the same manner.
 図13は、実施の形態3において相対速度が速い場合の追跡範囲の例を示す図である。障害物追跡部23は、図12に示される相対速度が遅い例と同様に、障害物30a,31a,32a,33a,34aに対して追跡範囲40a,41a,42a,43a,44aを設定する。ただし、図13に示される例は、図12に示される例に比べて相対速度が速いため、追跡範囲40a,41a,42a,43a,44aのX軸方向の大きさは、追跡範囲40,41,42,43,44,45のX軸方向の大きさに比べて大きくなる。例えば、障害物30aに対して設定された追跡範囲40aに障害物31aが入っているため、障害物追跡部23は、障害物30aと障害物31aとを同一障害物と判定する。 FIG. 13 is a diagram showing an example of a tracking range when the relative speed is high in the third embodiment. The obstacle tracking unit 23 sets tracking ranges 40a, 41a, 42a, 43a, 44a for obstacles 30a, 31a, 32a, 33a, 34a, as in the example shown in FIG. 12, where the relative speed is slow. However, since the example shown in FIG. 13 has a higher relative velocity than the example shown in FIG. 12, the magnitudes of the tracking ranges 40a, 41a, 42a, 43a, 44a in the X-axis direction are the tracking ranges 40, 41. , 42, 43, 44, 45 are larger than the size in the X-axis direction. For example, since the obstacle 31a is included in the tracking range 40a set for the obstacle 30a, the obstacle tracking unit 23 determines that the obstacle 30a and the obstacle 31a are the same obstacle.
 ステップST23において、衝突判定部24は、障害物追跡部23から出力される同一障害物の2次元座標位置を用いて、図12に示される軌跡50又は図13に示される軌跡50aを求め、軌跡に基づいて追跡対象の障害物の進路を予測する。なお、衝突判定部24は、障害物の進路を予測する際、進路に幅を持たせてもよい。衝突判定部24は、車両制御部25から車両1のステアリング角度を取得して車両1の進路を予測し、予測した車両1の進路と障害物の進路とを比較することによって衝突の可否を判定する。衝突判定部24は、周知の技術を用いて衝突の可否を判定すればよいため、ここでの詳細な説明を省略する。さらに、衝突判定部24は、車両1と障害物とが衝突する可能性があると判定した場合、衝突余裕時間(TTC)を算出する。衝突余裕時間は、車両1と障害物との相対速度が維持された場合にあと何秒で衝突するかを表す指標である。衝突判定部24は、衝突可否の判定結果と衝突余裕時間とを、車両制御部25へ出力する。 In step ST23, the collision determination unit 24 obtains the locus 50 shown in FIG. 12 or the locus 50a shown in FIG. 13 using the two-dimensional coordinate positions of the same obstacle output from the obstacle tracking unit 23, and obtains the locus 50a. Predict the course of the obstacle to be tracked based on. The collision determination unit 24 may give a width to the course when predicting the course of the obstacle. The collision determination unit 24 acquires the steering angle of the vehicle 1 from the vehicle control unit 25, predicts the course of the vehicle 1, and determines whether or not a collision is possible by comparing the predicted course of the vehicle 1 with the course of an obstacle. To do. Since the collision determination unit 24 may determine whether or not a collision is possible using a well-known technique, detailed description here will be omitted. Further, the collision determination unit 24 calculates the collision margin time (TTC) when it is determined that the vehicle 1 and an obstacle may collide with each other. The collision margin time is an index showing how many seconds are left when the relative speed between the vehicle 1 and the obstacle is maintained. The collision determination unit 24 outputs the collision possibility determination result and the collision margin time to the vehicle control unit 25.
 車両制御部25は、衝突判定部24から出力される衝突可否の判定結果と衝突余裕時間とに基づいて、車両1のブレーキを作動させる、又は、運転者に対して警報を発する。 The vehicle control unit 25 activates the brake of the vehicle 1 or issues an alarm to the driver based on the collision possibility determination result output from the collision determination unit 24 and the collision margin time.
 以上のように、実施の形態3に係る障害物検知装置10は、障害物追跡部23を備える。障害物追跡部23は、予め定められた時間ごとに第1位置評定部19により2次元座標範囲を評定された、又は第2位置評定部21により2次元座標位置を評定された複数の障害物が追跡範囲に入っている場合、この複数の障害物を同一障害物と判定する。また、障害物追跡部23は、追跡範囲を、車両1と同一障害物との相対速度に比例して大きくし、かつ、同一障害物までの距離が基準距離Dx以上である場合、基準距離Dx未満である場合に比べて大きくする。この構成により、障害物追跡部23は、基準距離Dx以上の遠距離領域A1に障害物が存在する場合、この障害物の位置評定精度が低いので、追跡範囲を広く設定し、追跡を容易にすることができる。したがって、障害物追跡部23は、位置評定精度が低い遠距離領域A1から、障害物の追跡が可能になる。また、障害物追跡部23は、障害物までの距離と、障害物と車両1の相対速度に応じて、追跡範囲のX軸方向及びY軸方向の大きさを個別に変更することができる。したがって、障害物追跡部23は、障害物が同一か否かを精度よく判定することができる。 As described above, the obstacle detection device 10 according to the third embodiment includes an obstacle tracking unit 23. The obstacle tracking unit 23 has a plurality of obstacles whose two-dimensional coordinate range has been evaluated by the first position evaluation unit 19 or whose two-dimensional coordinate position has been evaluated by the second position evaluation unit 21 at predetermined time intervals. If is within the tracking range, the plurality of obstacles are determined to be the same obstacle. Further, the obstacle tracking unit 23 increases the tracking range in proportion to the relative speed between the vehicle 1 and the same obstacle, and when the distance to the same obstacle is equal to or greater than the reference distance Dx, the reference distance Dx Make it larger than if it is less than. With this configuration, when an obstacle exists in a long-distance region A1 having a reference distance Dx or more, the obstacle tracking unit 23 has low positioning accuracy of the obstacle, so that the tracking range can be set wide and tracking can be easily performed. can do. Therefore, the obstacle tracking unit 23 can track the obstacle from the long-distance region A1 having low position evaluation accuracy. Further, the obstacle tracking unit 23 can individually change the size of the tracking range in the X-axis direction and the Y-axis direction according to the distance to the obstacle and the relative speed between the obstacle and the vehicle 1. Therefore, the obstacle tracking unit 23 can accurately determine whether or not the obstacles are the same.
 また、実施の形態3に係る障害物検知装置10は、衝突判定部24を備える。衝突判定部24は、同一障害物と車両1との衝突の可否を判定すると共に衝突までの時間を算出する。障害物追跡部23により遠距離領域A1からの障害物の追跡が可能になるため、衝突判定部24は、従来の開口合成処理のみによる障害物位置評定に比べて、より遠方でより精度よく衝突可否を判定することができる。 Further, the obstacle detection device 10 according to the third embodiment includes a collision determination unit 24. The collision determination unit 24 determines whether or not the same obstacle collides with the vehicle 1 and calculates the time until the collision. Since the obstacle tracking unit 23 enables tracking of obstacles from the long-distance region A1, the collision determination unit 24 collides more accurately at a distance as compared with the conventional obstacle position evaluation only by the aperture synthesis process. It is possible to judge whether or not it is possible.
実施の形態4.
 実施の形態1~3では、遠距離領域A1において隣接するソナーセンサの検知範囲が重ならない構成であった。これに対し、実施の形態4では、遠距離領域A1において隣接するソナーセンサの検知範囲が一部重なる構成である。
Embodiment 4.
In the first to third embodiments, the detection ranges of the adjacent sonar sensors do not overlap in the long-distance region A1. On the other hand, in the fourth embodiment, the detection ranges of the adjacent sonar sensors partially overlap in the long-distance region A1.
 図14は、実施の形態4におけるソナーセンサの遠距離領域A1の検知範囲の例を示す図である。なお、図14では、中近距離領域A2の検知範囲は図示が省略されている。
 遠距離領域A1において、第1ソナーセンサ11の検知範囲11-1a、第2ソナーセンサ12の検知範囲12-1a、第3ソナーセンサ13の検知範囲13-1a、及び第4ソナーセンサ14の検知範囲14-1aは、それぞれ、Y軸方向に幅Dya(例えば、Dya=2Dy)をもつ範囲である。第1ソナーセンサ11の検知範囲11-1aは、この第1ソナーセンサ11に隣接する第2ソナーセンサ12の検知範囲12-1aとY軸方向において幅Dyb(<1/2Dya)だけ重なる。つまり、Y軸方向において、検知範囲11-1aと検知範囲12-1aとが幅Dybだけ重なる。第2ソナーセンサ12の検知範囲12-1aは、両隣の検知範囲11-1a,13-1aと幅Dybずつ重なる。同様に、第3ソナーセンサ13の検知範囲13-1aは、両隣の検知範囲12-1a,14-1aと幅Dybずつ重なる。第4ソナーセンサ14の検知範囲14-1aは、隣接する検知範囲13-1aと幅Dybだけ重なる。このように、遠距離領域A1は、実施の形態1では図2に示されるように4分割されたが、実施の形態4では図14に示されるように7分割される。
FIG. 14 is a diagram showing an example of the detection range of the long-distance region A1 of the sonar sensor according to the fourth embodiment. In FIG. 14, the detection range of the medium-short distance region A2 is not shown.
In the long-distance region A1, the detection range 11-1a of the first sonar sensor 11, the detection range 12-1a of the second sonar sensor 12, the detection range 13-1a of the third sonar sensor 13, and the detection range 14-1a of the fourth sonar sensor 14 Each is a range having a width Dya (for example, Dya = 2Dy) in the Y-axis direction. The detection range 11-1a of the first sonar sensor 11 overlaps the detection range 12-1a of the second sonar sensor 12 adjacent to the first sonar sensor 11 by the width Dyb (<1 / 2Dya) in the Y-axis direction. That is, in the Y-axis direction, the detection range 11-1a and the detection range 12-1a overlap by the width Dyb. The detection range 12-1a of the second sonar sensor 12 overlaps the detection ranges 11-1a and 13-1a on both sides with a width of Dyb. Similarly, the detection range 13-1a of the third sonar sensor 13 overlaps the detection ranges 12-1a and 14-1a on both sides by a width Dyb. The detection range 14-1a of the fourth sonar sensor 14 overlaps the adjacent detection range 13-1a by the width Dyb. As described above, the long-distance region A1 is divided into four as shown in FIG. 2 in the first embodiment, but is divided into seven as shown in FIG. 14 in the fourth embodiment.
 なお、実施の形態1で説明したように、検知範囲11-1a,12-1a,13-1a,14-1aの大きさは、第1閾値Th1により設定される。 As described in the first embodiment, the size of the detection ranges 11-1a, 12-1a, 13-1a, 14-1a is set by the first threshold value Th1.
 実施の形態4に係る障害物検知装置10の構成は、実施の形態1の図1に示された構成と図面上は同一であるため、以下では図1を援用する。
 なお、ここでは、図14に示される検知範囲11-1a,12-1a,13-1a,14-1aが実施の形態1の障害物検知装置10に対して適用された例が示されるが、検知範囲11-1a,12-1a,13-1a,14-1aは、実施の形態3の障害物検知装置10に対しても適用可能である。
Since the configuration of the obstacle detection device 10 according to the fourth embodiment is the same as the configuration shown in FIG. 1 of the first embodiment on the drawing, FIG. 1 will be referred to below.
Here, an example is shown in which the detection ranges 11-1a, 12-1a, 13-1a, 14-1a shown in FIG. 14 are applied to the obstacle detection device 10 of the first embodiment. The detection ranges 11-1a, 12-1a, 13-1a, 14-1a can also be applied to the obstacle detection device 10 of the third embodiment.
 第1位置評定部19は、強度が第1閾値Th1以上であると判定された直接波を受信したソナーセンサの検知範囲の重なりに基づいて、障害物のY軸座標範囲を評定する。例えば、図14に示されるように、検知範囲11-1aと検知範囲12-1aとが重なる領域に、障害物6が存在すると仮定する。この場合、第1ソナーセンサ11と第2ソナーセンサ12とが、第1閾値Th1以上の強度の直接波を受信する。そのため、第1位置評定部19は、Y軸方向において、黒色太線で示される第1ソナーセンサ11の検知範囲11-1aと、第2ソナーセンサ12の検知範囲12-1aとが重なる領域を、障害物6のY軸座標範囲6aとして評定する。 The first position rating unit 19 evaluates the Y-axis coordinate range of the obstacle based on the overlap of the detection ranges of the sonar sensors that have received the direct waves determined to have the intensity equal to or higher than the first threshold Th1. For example, as shown in FIG. 14, it is assumed that the obstacle 6 exists in the region where the detection range 11-1a and the detection range 12-1a overlap. In this case, the first sonar sensor 11 and the second sonar sensor 12 receive a direct wave having an intensity equal to or higher than the first threshold Th1. Therefore, the first position evaluation unit 19 covers an area where the detection range 11-1a of the first sonar sensor 11 indicated by the thick black line and the detection range 12-1a of the second sonar sensor 12 overlap in the Y-axis direction as an obstacle. It is rated as the Y-axis coordinate range 6a of 6.
 また、例えば、図14に示されるように、検知範囲13-1aのみの領域に、障害物7が存在すると仮定する。この場合、第3ソナーセンサ13のみが、第1閾値Th1以上の強度の直接波を受信する。そのため、第1位置評定部19は、Y軸方向において、黒色太線で示される第3ソナーセンサ13の検知範囲13-1aのうち、第2ソナーセンサ12の検知範囲12-1a及び第4ソナーセンサ14の検知範囲14-1aと重ならない領域を、障害物7のY軸座標範囲7aとして評定する。 Further, for example, as shown in FIG. 14, it is assumed that the obstacle 7 exists in the area of only the detection range 13-1a. In this case, only the third sonar sensor 13 receives a direct wave having an intensity equal to or higher than the first threshold Th1. Therefore, the first position evaluation unit 19 detects the detection range 12-1a of the second sonar sensor 12 and the fourth sonar sensor 14 in the detection range 13-1a of the third sonar sensor 13 indicated by the thick black line in the Y-axis direction. The area that does not overlap with the range 14-1a is evaluated as the Y-axis coordinate range 7a of the obstacle 7.
 以上のように、実施の形態4によれば、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14の基準距離Dx以上における検知範囲11-1a,12-1a,13-1a,14-1aは、方形状であり、かつ、隣接するソナーセンサの検知範囲は、これら第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14が並ぶY軸方向において1/2未満重なる。この構成により、第1位置評定部19の位置評定におけるY軸方向の分解能がさらに向上する。 As described above, according to the fourth embodiment, the detection ranges 11-1a, 12-1a, 13 of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 at the reference distance Dx or more. -1a and 14-1a are square, and the detection range of the adjacent sonar sensors is in the Y-axis direction in which the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 are arranged. Overlap less than 1/2. With this configuration, the resolution in the Y-axis direction in the position evaluation of the first position evaluation unit 19 is further improved.
 実施の形態5.
 実施の形態1~4では、Y軸方向において隣接するソナーセンサ間の距離が幅Dyと一様であり、かつ、X軸方向における隣接するソナーセンサの位置も一様な配置であった。これに対し、実施の形態5では、隣接するソナーセンサ間のY軸方向の距離及びX軸方向の位置が異なり、かつ、車両1に対しては左右対称の配置となる構成である。
Embodiment 5.
In the first to fourth embodiments, the distance between the adjacent sonar sensors in the Y-axis direction is uniform with the width Dy, and the positions of the adjacent sonar sensors in the X-axis direction are also uniform. On the other hand, in the fifth embodiment, the distance in the Y-axis direction and the position in the X-axis direction between adjacent sonar sensors are different, and the arrangement is symmetrical with respect to the vehicle 1.
 図15は、実施の形態5におけるソナーセンサの遠距離領域A1の検知範囲の例を示す図である。なお、図15では、中近距離領域A2の検知範囲は図示が省略されている。Y軸方向において、第1ソナーセンサ11と第2ソナーセンサ12との距離は、第3ソナーセンサ13と第4ソナーセンサ14との距離と等しい。Y軸方向において、第2ソナーセンサ12と第3ソナーセンサ13との距離は、第1ソナーセンサ11と第2ソナーセンサ12との距離に比べて大きい。また、X軸方向において、第2ソナーセンサ12と第3ソナーセンサ13は、第1ソナーセンサ11と第4ソナーセンサ14に比べて前方に配置されている。 FIG. 15 is a diagram showing an example of the detection range of the long-distance region A1 of the sonar sensor in the fifth embodiment. In FIG. 15, the detection range of the medium-short distance region A2 is not shown. In the Y-axis direction, the distance between the first sonar sensor 11 and the second sonar sensor 12 is equal to the distance between the third sonar sensor 13 and the fourth sonar sensor 14. In the Y-axis direction, the distance between the second sonar sensor 12 and the third sonar sensor 13 is larger than the distance between the first sonar sensor 11 and the second sonar sensor 12. Further, in the X-axis direction, the second sonar sensor 12 and the third sonar sensor 13 are arranged in front of the first sonar sensor 11 and the fourth sonar sensor 14.
 図16は、実施の形態5における第2閾値Th2と第4閾値Th4と第5閾値Th5の設定例を示すグラフである。グラフの横軸はX軸方向におけるソナーセンサからの距離、縦軸は第2閾値Th2、第4閾値Th4、及び第5閾値Th5の値である。第4閾値Th4は、第5閾値Th5より大きい値である。 FIG. 16 is a graph showing a setting example of the second threshold value Th2, the fourth threshold value Th4, and the fifth threshold value Th5 in the fifth embodiment. The horizontal axis of the graph is the distance from the sonar sensor in the X-axis direction, and the vertical axis is the values of the second threshold Th2, the fourth threshold Th4, and the fifth threshold Th5. The fourth threshold value Th4 is a value larger than the fifth threshold value Th5.
 遠距離領域A1において、第1ソナーセンサ11の検知範囲11-1bと第4ソナーセンサ14の検知範囲14-1bは、それぞれ、Y軸方向に幅Dycをもつ範囲である。第2ソナーセンサ12の検知範囲12-1bと第3ソナーセンサ13の検知範囲13-1bは、それぞれ、Y軸方向に幅Dyd(>Dyc)をもつ範囲である。第1ソナーセンサ11の検知範囲11-1bは、この第1ソナーセンサ11に隣接する第2ソナーセンサ12の検知範囲12-1bとY軸方向において幅Dye(<1/2Dyc)だけ重なる。つまり、Y軸方向において、検知範囲11-1bと検知範囲12-1bとが幅Dyeだけ重なる。第2ソナーセンサ12の検知範囲12-1bは、隣の検知範囲11-1bと幅Dyeだけ重なる。同様に、第3ソナーセンサ13の検知範囲13-1bは、隣の検知範囲14-1bと幅Dyeだけ重なる。第4ソナーセンサ14の検知範囲14-1bは、隣接する検知範囲13-1bと幅Dyeだけ重なる。このように、遠距離領域A1は、実施の形態1では図2に示されるように4分割されたが、実施の形態5では図15に示されるように6分割される。 In the long-distance region A1, the detection range 11-1b of the first sonar sensor 11 and the detection range 14-1b of the fourth sonar sensor 14 are ranges having a width Dyc in the Y-axis direction, respectively. The detection range 12-1b of the second sonar sensor 12 and the detection range 13-1b of the third sonar sensor 13 are ranges having a width Dyd (> Dyc) in the Y-axis direction, respectively. The detection range 11-1b of the first sonar sensor 11 overlaps the detection range 12-1b of the second sonar sensor 12 adjacent to the first sonar sensor 11 by the width Dye (<1 / 2Dyc) in the Y-axis direction. That is, in the Y-axis direction, the detection range 11-1b and the detection range 12-1b overlap by the width Dye. The detection range 12-1b of the second sonar sensor 12 overlaps with the adjacent detection range 11-1b by the width Dye. Similarly, the detection range 13-1b of the third sonar sensor 13 overlaps the adjacent detection range 14-1b by the width Dye. The detection range 14-1b of the fourth sonar sensor 14 overlaps the adjacent detection range 13-1b by the width Dye. As described above, the long-distance region A1 is divided into four as shown in FIG. 2 in the first embodiment, but is divided into six as shown in FIG. 15 in the fifth embodiment.
 実施の形態5では、第1ソナーセンサ11の検知範囲11-1bと第4ソナーセンサ14の検知範囲14-1bとが同じ大きさであり、これらの検知範囲11-1b,14-1bの大きさは、第4閾値Th4により設定される。また、第2ソナーセンサ12の検知範囲12-1bと第3ソナーセンサ13の検知範囲13-1bとが同じ大きさであり、これらの検知範囲12-1b,13-1bの大きさは、第5閾値Th5により設定される。第4閾値Th4と第5閾値Th5の設定方法は、第1閾値Th1の設定方法と同じであるため、説明を省略する。 In the fifth embodiment, the detection range 11-1b of the first sonar sensor 11 and the detection range 14-1b of the fourth sonar sensor 14 have the same size, and the sizes of the detection ranges 11-1b and 14-1b are the same. , Is set by the fourth threshold Th4. Further, the detection range 12-1b of the second sonar sensor 12 and the detection range 13-1b of the third sonar sensor 13 have the same size, and the sizes of these detection ranges 12-1b and 13-1b are the fifth threshold values. It is set by Th5. Since the method of setting the fourth threshold value Th4 and the fifth threshold value Th5 is the same as the setting method of the first threshold value Th1, the description thereof will be omitted.
 実施の形態5に係る障害物検知装置10の構成は、実施の形態1の図1に示された構成と図面上は同一であるため、以下では図1を援用する。
 なお、ここでは、図15に示される検知範囲11-1b,12-1b,13-1b,14-1bが実施の形態1の障害物検知装置10に対して適用された例が示されるが、検知範囲11-1b,12-1b,13-1b,14-1bは、実施の形態3の障害物検知装置10に対しても適用可能である。
Since the configuration of the obstacle detection device 10 according to the fifth embodiment is the same as the configuration shown in FIG. 1 of the first embodiment on the drawing, FIG. 1 will be referred to below.
Here, an example is shown in which the detection ranges 11-1b, 12-1b, 13-1b, 14-1b shown in FIG. 15 are applied to the obstacle detection device 10 of the first embodiment. The detection ranges 11-1b, 12-1b, 13-1b, and 14-1b are also applicable to the obstacle detection device 10 of the third embodiment.
 第1強度判定部18が、第1閾値Th1に代えて、第4閾値Th4と第5閾値Th5保持している。第1強度判定部18は、基準距離Dx以上の遠距離領域A1において、第1ソナーセンサ11及び第4ソナーセンサ14により受信された直接波の強度を第4閾値Th4と比較する。また、第1強度判定部18は、基準距離Dx以上の遠距離領域A1において、第2ソナーセンサ12及び第3ソナーセンサ13により受信された直接波の強度を第5閾値Th5と比較する。 The first intensity determination unit 18 holds the fourth threshold value Th4 and the fifth threshold value Th5 instead of the first threshold value Th1. The first intensity determination unit 18 compares the intensity of the direct wave received by the first sonar sensor 11 and the fourth sonar sensor 14 with the fourth threshold value Th4 in the long distance region A1 of the reference distance Dx or more. Further, the first intensity determination unit 18 compares the intensity of the direct wave received by the second sonar sensor 12 and the third sonar sensor 13 with the fifth threshold value Th5 in the long distance region A1 of the reference distance Dx or more.
 第1位置評定部19は、強度が第4閾値Th4以上又は第5閾値Th5以上であると判定された直接波を受信したソナーセンサの検知範囲の重なりに基づいて、障害物のY軸座標範囲を評定する。Y座標範囲の評定方法は、実施の形態4の第1位置評定部19による評定方法と同じであるため、説明を省略する。 The first position rating unit 19 determines the Y-axis coordinate range of the obstacle based on the overlap of the detection ranges of the sonar sensors that have received the direct waves determined to have the intensity of the fourth threshold Th4 or more or the fifth threshold Th5 or more. To rate. Since the evaluation method of the Y coordinate range is the same as the evaluation method by the first position evaluation unit 19 of the fourth embodiment, the description thereof will be omitted.
 以上のように、実施の形態5によれば、障害物検知装置10は、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14のX軸方向における位置が異なっている場合にも、遠距離領域A1において開口合成処理を行わずに障害物の2次元座標範囲を評定することができる。 As described above, according to the fifth embodiment, the obstacle detection device 10 has different positions of the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 in the X-axis direction. In this case as well, the two-dimensional coordinate range of the obstacle can be evaluated in the long-distance region A1 without performing the aperture synthesis process.
 最後に、各実施の形態に係る障害物検知装置10のハードウェア構成を説明する。
 図17及び図18は、各実施の形態に係る障害物検知装置10のハードウェア構成例を示す図である。障害物検知装置10における送受信部15は、送信回路103と受信回路104である。送信回路103は、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14に電圧を印加して探査波を送信させる回路である。受信回路104は、第1ソナーセンサ11、第2ソナーセンサ12、第3ソナーセンサ13、及び第4ソナーセンサ14が出力する、反射波に対応する電圧を、デジタル信号に変換する回路である。障害物検知装置10における距離算出部16、距離判定部17、第1強度判定部18,18a、第1位置評定部19,19a、第2強度判定部20、第2位置評定部21、境界位置判定部22、障害物追跡部23、及び衝突判定部24の機能は、処理回路により実現される。即ち、障害物検知装置10は、上記機能を実現するための処理回路を備える。処理回路は、専用のハードウェアとしての処理回路100であってもよいし、メモリ102に格納されるプログラムを実行するプロセッサ101であってもよい。
Finally, the hardware configuration of the obstacle detection device 10 according to each embodiment will be described.
17 and 18 are diagrams showing a hardware configuration example of the obstacle detection device 10 according to each embodiment. The transmission / reception unit 15 in the obstacle detection device 10 is a transmission circuit 103 and a reception circuit 104. The transmission circuit 103 is a circuit that applies a voltage to the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 to transmit the exploration wave. The receiving circuit 104 is a circuit that converts the voltage corresponding to the reflected wave output by the first sonar sensor 11, the second sonar sensor 12, the third sonar sensor 13, and the fourth sonar sensor 14 into a digital signal. Distance calculation unit 16, distance determination unit 17, first strength determination unit 18, 18a, first position evaluation unit 19, 19a, second strength determination unit 20, second position evaluation unit 21, boundary position in the obstacle detection device 10. The functions of the determination unit 22, the obstacle tracking unit 23, and the collision determination unit 24 are realized by the processing circuit. That is, the obstacle detection device 10 includes a processing circuit for realizing the above function. The processing circuit may be a processing circuit 100 as dedicated hardware, or a processor 101 that executes a program stored in the memory 102.
 図17に示されるように、処理回路が専用のハードウェアである場合、処理回路100は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。距離算出部16、距離判定部17、第1強度判定部18,18a、第1位置評定部19,19a、第2強度判定部20、第2位置評定部21、境界位置判定部22、障害物追跡部23、及び衝突判定部24の機能を複数の処理回路100で実現してもよいし、各部の機能をまとめて1つの処理回路100で実現してもよい。 As shown in FIG. 17, when the processing circuit is dedicated hardware, the processing circuit 100 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Special Integrated Circuit). ), FPGA (Field Processor Gate Array), or a combination thereof. Distance calculation unit 16, distance determination unit 17, first strength determination unit 18, 18a, first position evaluation unit 19, 19a, second strength determination unit 20, second position evaluation unit 21, boundary position determination unit 22, obstacle The functions of the tracking unit 23 and the collision determination unit 24 may be realized by a plurality of processing circuits 100, or the functions of each unit may be collectively realized by one processing circuit 100.
 図18に示されるように、処理回路がプロセッサ101である場合、距離算出部16、距離判定部17、第1強度判定部18,18a、第1位置評定部19,19a、第2強度判定部20、第2位置評定部21、境界位置判定部22、障害物追跡部23、及び衝突判定部24の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ102に格納される。プロセッサ101は、メモリ102に格納されたプログラムを読みだして実行することにより、各部の機能を実現する。即ち、障害物検知装置10は、プロセッサ101により実行されるときに、図3及び図11のフローチャートで示されるステップが結果的に実行されることになるプログラムを格納するためのメモリ102を備える。また、このプログラムは、距離算出部16、距離判定部17、第1強度判定部18,18a、第1位置評定部19,19a、第2強度判定部20、第2位置評定部21、境界位置判定部22、障害物追跡部23、及び衝突判定部24の手順又は方法をコンピュータに実行させるものであるとも言える。 As shown in FIG. 18, when the processing circuit is the processor 101, the distance calculation unit 16, the distance determination unit 17, the first intensity determination units 18, 18a, the first position evaluation units 19, 19a, and the second intensity determination unit 20, the functions of the second position evaluation unit 21, the boundary position determination unit 22, the obstacle tracking unit 23, and the collision determination unit 24 are realized by software, firmware, or a combination of software and firmware. The software or firmware is described as a program and stored in the memory 102. The processor 101 realizes the functions of each part by reading and executing the program stored in the memory 102. That is, the obstacle detection device 10 includes a memory 102 for storing a program in which the steps shown in the flowcharts of FIGS. 3 and 11 are eventually executed when executed by the processor 101. In addition, this program includes a distance calculation unit 16, a distance determination unit 17, a first strength determination unit 18, 18a, a first position evaluation unit 19, 19a, a second intensity determination unit 20, a second position evaluation unit 21, and a boundary position. It can also be said that the procedure or method of the determination unit 22, the obstacle tracking unit 23, and the collision determination unit 24 is executed by the computer.
 ここで、プロセッサ101とは、CPU(Central Processing Unit)、処理装置、演算装置、又はマイクロプロセッサ等のことである。
 メモリ102は、RAM(Random Access Memory)、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、又はフラッシュメモリ等の不揮発性もしくは揮発性の半導体メモリであってもよいし、ハードディスク又はフレキシブルディスク等の磁気ディスクであってもよいし、CD(Compact Disc)又はDVD(Digital Versatile Disc)等の光ディスクであってもよい。
Here, the processor 101 is a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, or the like.
The memory 102 may be a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), or a flash memory, or may be a non-volatile or volatile semiconductor memory such as a hard disk or a flexible disk. It may be a magnetic disk of the above, or an optical disk such as a CD (Compact Disc) or a DVD (Digital Versaille Disc).
 なお、距離算出部16、距離判定部17、第1強度判定部18,18a、第1位置評定部19,19a、第2強度判定部20、第2位置評定部21、境界位置判定部22、障害物追跡部23、及び衝突判定部24の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。このように、障害物検知装置10における処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の機能を実現することができる。 The distance calculation unit 16, the distance determination unit 17, the first strength determination units 18, 18a, the first position evaluation units 19, 19a, the second strength determination unit 20, the second position evaluation unit 21, the boundary position determination unit 22, The functions of the obstacle tracking unit 23 and the collision determination unit 24 may be partially realized by dedicated hardware and partly realized by software or firmware. As described above, the processing circuit in the obstacle detection device 10 can realize the above-mentioned functions by hardware, software, firmware, or a combination thereof.
 本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、又は各実施の形態の任意の構成要素の省略が可能である。 The present invention allows any combination of embodiments, modifications of any component of each embodiment, or omission of any component of each embodiment within the scope of the invention.
 この発明に係る障害物検知装置は、障害物の追跡を遠方から開始することができるので、衝突被害軽減ブレーキ又は衝突防止警報システム等で用いられる障害物検知装置に適している。 Since the obstacle detection device according to the present invention can start tracking obstacles from a distance, it is suitable for an obstacle detection device used in a collision damage mitigation brake, a collision prevention warning system, or the like.
 1 車両、2-1~2-6 基準ポール、3,4,5,6,7 障害物、4a,5a 間接波の経路、6a,7a Y軸座標範囲、10 障害物検知装置、11 第1ソナーセンサ、11-1,11-1a,11-1b,11-2,12-1,12-1a,12-1b,12-2,13-1,13-1a,13-1b,13-2,14-1,14-1a,14-1b,14-2 検知範囲、12 第2ソナーセンサ、13 第3ソナーセンサ、14 第4ソナーセンサ、15 送受信部、16 距離算出部、17 距離判定部、18,18a 第1強度判定部、19,19a 第1位置評定部、20 第2強度判定部、21 第2位置評定部、22 境界位置判定部、23 障害物追跡部、24 衝突判定部、25 車両制御部、30,30a,31,31a,32,32a,33,33a,34,34a,35 障害物、41,41a,42,42a,43,43a,44,44a,45 追跡範囲、50,50a 軌跡、100 処理回路、101 プロセッサ、102 メモリ、103 送信回路、104 受信回路、A1 遠距離領域、A2 中近距離領域、Dx 基準距離、Dy,Dya,Dyb,Dyc,Dyd,Dye 幅、Th1,Th1(V1)~Th1(V5) 第1閾値、Th2 第2閾値、Th3 第3閾値、Th4 第4閾値、Th5 第5閾値、V1~V6 等高線レベル。 1 Vehicle, 2-1 to 2-6 Reference pole, 3, 4, 5, 6, 7 Obstacles, 4a, 5a Indirect wave path, 6a, 7a Y-axis coordinate range, 10 Obstacle detection device, 11 1st Sonar Sensors, 11-1, 11-1a, 11-1b, 11-2, 12-1, 12-1a, 12-1b, 12-2, 13-1, 13-1a, 13-1b, 13-2, 14-1, 14-1a, 14-1b, 14-2 Detection range, 12 2nd sonar sensor, 13 3rd sonar sensor, 14 4th sonar sensor, 15 transmission / reception unit, 16 distance calculation unit, 17 distance determination unit, 18, 18a 1st strength determination unit, 19, 19a 1st position evaluation unit, 20 2nd strength determination unit, 21 2nd position evaluation unit, 22 boundary position determination unit, 23 obstacle tracking unit, 24 collision determination unit, 25 vehicle control unit , 30, 30a, 31, 31a, 32, 32a, 33, 33a, 34, 34a, 35 Obstacles, 41, 41a, 42, 42a, 43, 43a, 44, 44a, 45 Tracking range, 50, 50a locus, 100 processing circuit, 101 processor, 102 memory, 103 transmission circuit, 104 reception circuit, A1 long distance area, A2 medium and short distance area, Dx reference distance, Dy, Dya, Dyb, Dic, Dyd, Dye width, Th1, Th1 ( V1) to Th1 (V5) 1st threshold, Th2 2nd threshold, Th3 3rd threshold, Th4 4th threshold, Th5 5th threshold, V1 to V6 contour levels.

Claims (7)

  1.  車両の一辺に設けられた複数のソナーセンサと、
     前記複数のソナーセンサを用いて探査波を送信し、前記探査波が障害物で反射した反射波を受信する送受信部と、
     前記探査波と前記反射波の送受信結果を用いて前記障害物までの距離を算出する距離算出部と、
     前記障害物までの距離が、隣接するソナーセンサの検知範囲が重なる重複領域の大きさに基づいて設定された基準距離以上であるか否かを判定する距離判定部と、
     前記障害物までの距離が前記基準距離以上である場合、前記障害物までの距離の算出に用いられた前記反射波の強度が第1閾値以上であるか否かを判定する第1強度判定部と、
     前記第1強度判定部により強度が前記第1閾値以上と判定された前記反射波から算出された前記障害物までの距離及び前記反射波を受信したソナーセンサの位置を用いて、前記障害物の2次元座標範囲を評定する第1位置評定部と、
     前記障害物までの距離が前記基準距離未満である場合、前記障害物までの距離の算出に用いられた前記反射波の強度が第2閾値以上であるか否かを判定する第2強度判定部と、
     前記第2強度判定部により強度が前記第2閾値以上と判定された前記反射波から算出された前記障害物の距離を用いて開口合成処理を行い、前記障害物の2次元座標位置を評定する第2位置評定部とを備える障害物検知装置。
    Multiple sonar sensors installed on one side of the vehicle,
    A transmitter / receiver that transmits exploration waves using the plurality of sonar sensors and receives reflected waves reflected by obstacles.
    A distance calculation unit that calculates the distance to the obstacle using the transmission / reception results of the search wave and the reflected wave, and
    A distance determination unit that determines whether or not the distance to the obstacle is equal to or greater than a reference distance set based on the size of the overlapping region where the detection ranges of adjacent sonar sensors overlap.
    When the distance to the obstacle is equal to or greater than the reference distance, the first intensity determination unit for determining whether or not the intensity of the reflected wave used for calculating the distance to the obstacle is equal to or greater than the first threshold value. When,
    Using the distance to the obstacle calculated from the reflected wave whose intensity is determined by the first intensity determination unit to be equal to or higher than the first threshold value and the position of the sonar sensor that received the reflected wave, the obstacle 2 The first position rating unit that evaluates the dimensional coordinate range, and
    When the distance to the obstacle is less than the reference distance, the second intensity determination unit for determining whether or not the intensity of the reflected wave used for calculating the distance to the obstacle is equal to or greater than the second threshold value. When,
    Aperture synthesis processing is performed using the distance of the obstacle calculated from the reflected wave whose intensity is determined by the second intensity determination unit to be equal to or higher than the second threshold value, and the two-dimensional coordinate position of the obstacle is evaluated. An obstacle detection device including a second position rating unit.
  2.  前記複数のソナーセンサそれぞれの前記基準距離以上における検知範囲は、方形状であり、かつ、隣接するソナーセンサの検知範囲は重ならないことを特徴とする請求項1記載の障害物検知装置。 The obstacle detection device according to claim 1, wherein the detection range of each of the plurality of sonar sensors at the reference distance or more is rectangular, and the detection ranges of adjacent sonar sensors do not overlap.
  3.  前記障害物の距離が前記基準距離以上である場合、かつ、隣接するソナーセンサの一方が直接波を受信し、もう一方が間接波を受信した場合、前記障害物は前記隣接するソナーセンサの検知範囲の境界位置に存在すると判定する境界位置判定部を備えることを特徴とする請求項1記載の障害物検知装置。 When the distance of the obstacle is equal to or greater than the reference distance, and one of the adjacent sonar sensors receives a direct wave and the other receives an indirect wave, the obstacle is within the detection range of the adjacent sonar sensor. The obstacle detection device according to claim 1, further comprising a boundary position determination unit that determines that the device exists at the boundary position.
  4.  前記第1強度判定部は、前記境界位置判定部により前記障害物が前記境界位置に存在すると判定された場合、前記第1閾値よりも大きい第3閾値を用いて前記間接波の強度を判定することを特徴とする請求項3記載の障害物検知装置。 When the boundary position determination unit determines that the obstacle exists at the boundary position, the first intensity determination unit determines the intensity of the indirect wave using a third threshold value larger than the first threshold value. The obstacle detection device according to claim 3, wherein the obstacle detection device is characterized.
  5.  予め定められた時間ごとに前記第1位置評定部により2次元座標範囲を評定された、又は前記第2位置評定部により2次元座標位置を評定された複数の障害物が追跡範囲に入っている場合、前記複数の障害物を同一障害物と判定する障害物追跡部を備え、
     前記障害物追跡部は、前記追跡範囲を、前記車両と前記同一障害物との相対速度に比例して大きくし、かつ、前記同一障害物までの距離が前記基準距離以上である場合、前記基準距離未満である場合に比べて大きくすることを特徴とする請求項1記載の障害物検知装置。
    A plurality of obstacles whose two-dimensional coordinate range has been evaluated by the first position evaluation unit or whose two-dimensional coordinate position has been evaluated by the second position evaluation unit are included in the tracking range at predetermined time intervals. In this case, an obstacle tracking unit for determining the plurality of obstacles as the same obstacle is provided.
    The obstacle tracking unit increases the tracking range in proportion to the relative speed between the vehicle and the same obstacle, and when the distance to the same obstacle is equal to or greater than the reference distance, the reference The obstacle detection device according to claim 1, wherein the distance is made larger than when the distance is less than the distance.
  6.  前記同一障害物と前記車両との衝突の可否を判定すると共に衝突までの時間を算出する衝突判定部を備えることを特徴とする請求項5記載の障害物検知装置。 The obstacle detection device according to claim 5, further comprising a collision determination unit that determines whether or not the same obstacle collides with the vehicle and calculates the time until the collision.
  7.  前記複数のソナーセンサそれぞれの前記基準距離以上における検知範囲は、方形状であり、かつ、隣接するソナーセンサの検知範囲は、前記複数のソナーセンサが並ぶ方向において1/2未満重なることを特徴とする請求項1記載の障害物検知装置。 The claim is characterized in that the detection range of each of the plurality of sonar sensors at the reference distance or more is rectangular, and the detection range of the adjacent sonar sensors overlaps by less than 1/2 in the direction in which the plurality of sonar sensors are arranged. 1. Obstacle detection device according to 1.
PCT/JP2019/016310 2019-04-16 2019-04-16 Obstacle detection device WO2020213054A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/016310 WO2020213054A1 (en) 2019-04-16 2019-04-16 Obstacle detection device
JP2021508018A JP6873353B2 (en) 2019-04-16 2019-04-16 Obstacle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016310 WO2020213054A1 (en) 2019-04-16 2019-04-16 Obstacle detection device

Publications (1)

Publication Number Publication Date
WO2020213054A1 true WO2020213054A1 (en) 2020-10-22

Family

ID=72838136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016310 WO2020213054A1 (en) 2019-04-16 2019-04-16 Obstacle detection device

Country Status (2)

Country Link
JP (1) JP6873353B2 (en)
WO (1) WO2020213054A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136647A (en) * 1994-11-08 1996-05-31 Honda Motor Co Ltd Fm-cw type multi-beam radar equipment
CN101887125A (en) * 2010-06-24 2010-11-17 浙江海康集团有限公司 Reverse sensor range positioning method and system for assisting parking
JP2011196803A (en) * 2010-03-19 2011-10-06 Hitachi Information & Control Solutions Ltd Phased array synthetic aperture sonar system
JP2014055778A (en) * 2012-09-11 2014-03-27 Mitsubishi Electric Corp Periphery monitoring device
WO2016103464A1 (en) * 2014-12-26 2016-06-30 三菱電機株式会社 Obstacle detection device and obstacle detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136647A (en) * 1994-11-08 1996-05-31 Honda Motor Co Ltd Fm-cw type multi-beam radar equipment
JP2011196803A (en) * 2010-03-19 2011-10-06 Hitachi Information & Control Solutions Ltd Phased array synthetic aperture sonar system
CN101887125A (en) * 2010-06-24 2010-11-17 浙江海康集团有限公司 Reverse sensor range positioning method and system for assisting parking
JP2014055778A (en) * 2012-09-11 2014-03-27 Mitsubishi Electric Corp Periphery monitoring device
WO2016103464A1 (en) * 2014-12-26 2016-06-30 三菱電機株式会社 Obstacle detection device and obstacle detection method

Also Published As

Publication number Publication date
JP6873353B2 (en) 2021-05-19
JPWO2020213054A1 (en) 2021-09-13

Similar Documents

Publication Publication Date Title
JP6970936B2 (en) Object detector, object detection program, and recording medium
JP3044524B2 (en) Method for detecting objects in vehicles
CN112230193A (en) Radar data processing apparatus and local stroke resolution adjustment method
KR102045135B1 (en) Method of classifying longitudinally extending stationary objects within the lateral peripheral area of the motor vehicle, driver assistance system and motor vehicle
JP2019504303A (en) Vehicle radar system configured to determine unoccupied area
KR102013224B1 (en) Autonomous Emergencyy Braking System and Controlling Method Thereof
JP3044522B2 (en) Recognition method of objects in vehicles
US11158192B2 (en) Method and system for detecting parking spaces which are suitable for a vehicle
JP3035768B2 (en) Vehicle contrast detector
KR102569900B1 (en) Apparatus and method for performing omnidirectional sensor-fusion and vehicle including the same
JP6993136B2 (en) Radar device and target detection method
CN112558049A (en) Method and control device for detecting objects in the surroundings of a vehicle
JPWO2017159639A1 (en) Mining work machine
JP2021513643A (en) Methods and devices for detecting critical lateral movements
CN114207469A (en) Method for classifying objects in the surroundings of a vehicle and driver assistance system
US20220342061A1 (en) Method and a device for classifying an object, in particular in the surroundings of a motor vehicle
JP2003014844A (en) Object type-discriminating apparatus and method
JP6873353B2 (en) Obstacle detector
JP5163084B2 (en) Object detection device
JP5436652B1 (en) Vehicle periphery monitoring device and vehicle periphery monitoring method
JP2006048568A (en) Object recognition method and object recognizing device
KR102126622B1 (en) A method for capturing at least one object, a device of a sensor device, a sensor device and a driver assistance system with at least one sensor device
JP6851111B2 (en) Railroad crossing obstacle detection device
JP7414154B2 (en) Method and device for detecting traffic congestion in a vehicle
JP6945776B2 (en) Obstacle detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925272

Country of ref document: EP

Kind code of ref document: A1