WO2020211495A1 - 煤耗在线计量系统 - Google Patents

煤耗在线计量系统 Download PDF

Info

Publication number
WO2020211495A1
WO2020211495A1 PCT/CN2020/071969 CN2020071969W WO2020211495A1 WO 2020211495 A1 WO2020211495 A1 WO 2020211495A1 CN 2020071969 W CN2020071969 W CN 2020071969W WO 2020211495 A1 WO2020211495 A1 WO 2020211495A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
real
time
measuring device
measurement
Prior art date
Application number
PCT/CN2020/071969
Other languages
English (en)
French (fr)
Inventor
丁新淼
胡淑双
鲁皖
张雪中
杨夕dong
刘宇锋
波利伯纳德
曹前明
张峰
梁红玉
靳家林
杜俊选
周璠
杨李锋
石兴
崔道魁
刘卫英
赵敦
Original Assignee
中国建材检验认证集团股份有限公司
纳优科技(北京)有限公司
恩威雅环境技术(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建材检验认证集团股份有限公司, 纳优科技(北京)有限公司, 恩威雅环境技术(北京)有限公司 filed Critical 中国建材检验认证集团股份有限公司
Priority to US16/962,698 priority Critical patent/US11422100B2/en
Publication of WO2020211495A1 publication Critical patent/WO2020211495A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/222Solid fuels, e.g. coal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/507Detectors secondary-emission detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Definitions

  • This application relates to the technical field of analysis and measurement, in particular to an online coal consumption measurement system.
  • Coal is an important part of my country's industrial energy structure and is widely used in various industries. Especially the main energy source for thermal power generation, cement production and the main raw material for coal chemical industry. The exact amount of coal (calorific value) consumed by various industries and household energy companies is an important basis for formulating a national energy strategy, and is also the basic data for calculation and verification of corporate carbon emissions. In order to ensure that government departments can accurately grasp the amount of coal consumption in my country, the National Development and Reform Commission and the General Administration of Quality Supervision, Inspection and Quarantine jointly formulated and issued a notice on the "Work Plan for the Promotion and Construction of the Online Energy Consumption Monitoring System for Key Energy-consuming Units" in 2017. Coal consumption is one aspect of energy consumption, and the measurement of coal consumption is particularly complicated.
  • Coal consumption (coal) calorific value * coal quality. Because coal is naturally formed, the calorific value of different types of production areas and different batches is very different, and energy consumption statistics have large variables. Therefore, the detection and measurement of coal consumption, especially online measurement, has always been a technical problem. What needs to be pointed out is that coal is mined in lump shape, and it is necessary to grind the coal lump into fine coal powder in advance during industrial production, so as to burn fully and evenly. The following descriptions of measurement objects are all pulverized coal.
  • One is to burn unit mass of pulverized coal in the laboratory, measure the temperature rise of the heated medium, and calculate the calorific value.
  • the other is to calculate by the coal calorific value formula, which requires the measurement of characteristic quantities such as the ash, volatile content, moisture, and ash element content of the coal powder.
  • the specific calorific value calculation formula is as follows:
  • Q net.ad is the calorific value of coal, in units of calories/gram, kilocalories/kg;
  • V ad is the air drying base volatile matter of coal, unit:% (hereinafter referred to as volatile matter);
  • a ad is the air-dry base ash content of coal, unit:% (hereinafter referred to as ash content);
  • M ad is the air drying base moisture of coal, unit:% (hereinafter referred to as moisture);
  • CRC is the char slag characteristics of bituminous coal (values 1-8, determined by the composition and content of ash elements).
  • the measurement of the quality of pulverized coal is generally in the grinding stage or conveying stage of pulverized coal.
  • the weight sensor of the coal feeding device is used for weighing during the grinding stage.
  • the pulverized coal transportation stage includes belt transportation and pipeline gas transportation.
  • the belt conveyor has a pulverized coal conveyor belt scale weighing method.
  • the pipeline gas transportation uses the gas-solid two-phase transportation technology of the wind to transport the particles to transport the pulverized coal.
  • Method 1 Traditional non-online statistical method.
  • coal calorific value detection equipment is used in the laboratory to obtain coal calorific value data using the principle of temperature rise.
  • the measurement process of pulverized coal quality depends on the reliability of the pulverized coal weighing device.
  • the measurement results are unstable and cannot be verified, and there are many human factors, and the results are sometimes unreliable.
  • the acquisition of pulverized coal quality data depends on the production line equipment of the enterprise, and the measurement system does not exist independently.
  • Method 2 Incomplete online statistical method.
  • the calorific value is calculated using the calorific value calculation formula, the online mass measurement device is used to measure the real-time mass flow, and the coal consumption within the required time is calculated by integration.
  • the calorific value calculation needs to measure the ash content, volatile content, and moisture of the pulverized coal, and give the characteristic value of the coke slag based on the ash element composition and the sulfur content.
  • This method generally uses a gamma-ray ash measuring device (ash measuring device) to measure the total ash content, a moisture measuring device to measure moisture, and a volatile matter measuring device to measure volatile matter.
  • ash measuring device a gamma-ray ash measuring device
  • moisture measuring device to measure moisture
  • a volatile matter measuring device to measure volatile matter.
  • this application provides an online coal consumption metering system.
  • the coal consumption online metering system of this application is an independent and complete working system. It only uses the data measured by the coal consumption online metering system itself and does not require energy consumption units.
  • the data of production equipment participates in the calculation or is directly used as the intermediate result of the measurement, and is not easily disturbed by human factors. It realizes complete and independent online real-time measurement of coal consumption, and the measurement result is accurate.
  • a coal consumption online metering system includes a solid particulate matter equivalent atomic number measurement device, a gas-solid two-phase flow measurement device, an ash content measurement device, a volatile matter measurement device, and a moisture measurement device, the solid particulate matter equivalent atomic number measurement device
  • the device and the gas-solid two-phase flow measurement device are arranged on the coal conveying pipeline of the coal conveying path
  • the ash content measuring device, the volatile content measuring device and the moisture measuring device are arranged on the coal conveying path
  • the solid particulate matter equivalent atomic number measuring device , Gas-solid two-phase flow measurement device, ash content measurement device, volatile content measurement device and moisture measurement device are connected with data acquisition and information processing devices, including:
  • the solid particle equivalent atomic number measuring device and the gas-solid two-phase flow measuring device measure the real-time density and real-time volume flow of pulverized coal in the coal conveying pipeline
  • the ash content measuring device, the volatile content measuring device and the moisture measuring device measure the coal conveying path
  • Real-time ash content, real-time moisture content and real-time volatile content of pulverized coal, the real-time ash content includes total ash content, ash element composition and content
  • the data acquisition and information processing device estimates the matrix characteristics of the pulverized coal according to one or more of the measured real-time density, real-time ash content, real-time moisture, and real-time volatile content, and compares the measured real-time characteristics of the pulverized coal according to the estimated matrix characteristics of the coal One or more of density, real-time ash content, real-time moisture and real-time volatile content are iteratively corrected;
  • the data acquisition and information processing device calculates the real-time mass flow rate based on the iteratively corrected real-time density and real-time volume flow; the data acquisition and information processing device calculates the coal powder based on the iteratively corrected real-time ash content, real-time moisture and real-time volatile content Real-time heating value;
  • the data acquisition and information processing device calculates the real-time energy of pulverized coal according to the real-time mass flow and real-time calorific value, and the data acquisition and information processing device integrates the real-time energy in time to obtain the coal consumption within the required time.
  • the device for measuring the equivalent atomic number of solid particles includes a ray source device, a detection device, and a first analysis and communication component; the ray source device emits rays, which are directed toward the coal powder in the coal pipeline, which is received by the detection device After the signal is penetrated or reflected, the first analysis and communication component analyzes and obtains the equivalent atomic number of the pulverized coal in the coal pipeline, converts it according to the equivalent atomic number to obtain the real-time density, and sends it to the data acquisition and information processing device;
  • the source device is an X-ray source or a gamma-ray source.
  • the gas-solid two-phase flow measurement device includes at least one set of microwave transmitting unit and microwave receiving unit distributed on the coal pipeline, and the microwave transmitting unit and the microwave receiving unit are connected with a second analysis and communication component;
  • the microwave transmitting unit emits microwaves and the microwave receiving unit receives microwaves reflected by the pulverized coal in the coal conveying pipeline, and the second analysis and communication component analyzes and obtains the real-time volume flow in the coal conveying pipeline and sends it to data collection and information Processing device.
  • the ash content measuring device is arranged at the coal conveying pipeline, the ash content measuring device is an X-ray fluorescence spectrum element analysis device, and the X-ray fluorescence spectrum element analysis device includes an X-ray generator, an X-ray detector assembly, The optical path device, the first sampling device and the third analysis and communication component; the first sampling device grabs pulverized coal from the coal conveying pipeline to form a first pulverized coal sample and transmits it to the working position of the X-ray generator.
  • the generating device emits X-rays and irradiates the first pulverized coal sample through the optical path device to generate reflected rays with elemental information of the pulverized coal.
  • the X-ray detector assembly receives the reflected X-rays, and after the analysis and processing of the third analysis and communication components, The total ash content, ash element composition and content of the first pulverized coal sample are obtained and sent to the data collection and information processing device.
  • the volatile matter measuring device and the moisture measuring device are arranged at the coal conveying pipeline, and the volatile matter measuring device and the moisture measuring device are an integrated structure, including a light source assembly, a detector assembly, a second sampling device, and a fourth analyzer. And communication components; the second sampling device grabs pulverized coal from the coal conveying pipeline to form a second pulverized coal sample and send it to the working position of the light source assembly.
  • the light source assembly emits light to irradiate the second pulverized coal sample to produce coal Reflected or transmitted light of powder volatile matter and moisture information, the detection component collects the reflected or transmitted light, and after analysis and processing by the fourth analysis and communication component, the volatile matter and moisture of the second pulverized coal sample are obtained and sent to data collection and information Processing device; the light source component is an infrared light source or a Raman light source.
  • first sampling device and the second sampling device are the same sampling device, and the first pulverized coal sample and the second pulverized coal sample are the same pulverized coal sample.
  • the coal consumption online metering system is used in the production line of a coal-using unit, and the production line includes one or more coal conveying pipelines.
  • the production line includes one or more coal conveying pipelines.
  • multiple coal conveying pipelines among them:
  • Each coal conveying pipeline is equipped with a solid particle equivalent atomic number measuring device and a gas-solid two-phase flow measuring device; a set of ash measuring devices and volatiles are provided for coal conveying pipelines that use the same quality coal in multiple coal conveying pipelines Measuring device and moisture measuring device.
  • This group of ash measuring device, volatile matter measuring device and moisture measuring device are arranged on the coal conveying path corresponding to the coal conveying pipeline using the same quality coal.
  • the solid particle equivalent atomic number measuring device and the gas-solid two-phase flow measuring device are located upstream of the ash content measuring device, the volatile content measuring device and the moisture measuring device on the coal conveying pipeline according to the conveying direction of the coal powder.
  • solid particle equivalent atomic number measurement device gas-solid two-phase flow measurement device, ash content measurement device, volatile content measurement device and moisture measurement device are arranged on the vertical part of the coal conveying pipeline.
  • the coal consumption online metering system of this application is an independent and complete working system. In the process of coal consumption measurement or calculation, only the data measured by the coal consumption online metering system itself is used, which has no impact on the existing production process of the energy user. There is also no need for the production equipment data of the energy consuming unit to participate in the calculation or directly as the intermediate result of the measurement, and the result will not be artificially interfered, that is, this application is a complete and completely independent online detection data system, which is not easily interfered by human factors.
  • Figure 1 is a schematic diagram of the coal consumption online metering system of this application.
  • Figure 2 is a schematic diagram of an equivalent atomic number measuring device for solid particles
  • Figure 3 is a schematic diagram of a gas-solid two-phase flow measurement device
  • Figure 4 is a schematic diagram of an ash measuring device
  • Figure 5 is a schematic diagram of a volatile matter measuring device and a moisture measuring device.
  • This application provides an online coal consumption metering system, as shown in Figure 1.
  • the system includes a solid particle equivalent atomic number measurement device 1, a gas-solid two-phase flow measurement device 2, an ash content measurement device 3, a volatile matter measurement device 4, and moisture
  • the measuring device 4, the solid particle equivalent atomic number measuring device 1 and the gas-solid two-phase flow measuring device 2 are arranged on the coal conveying pipeline 5 of the coal conveying path, and the ash measuring device 3, the volatile substance measuring device 4 and the moisture measuring device 4 are arranged on On the coal transportation path.
  • the coal lump is ground into pulverized coal in the coal mill and then enters the pulverized coal silo, and then the pulverized coal in the pulverized coal silo is transported into the coal pipeline in the form of gas-solid two-phase by a conveyor, and finally enters the combustion chamber for combustion ,
  • the coal transportation path refers to the path composed of coal mill-pulverized coal storage-conveyor-coal pipeline.
  • the solid particulate matter equivalent atomic number measuring device and the gas-solid two-phase flow measurement device measure the final actual combustion quality of pulverized coal, so the solid particulate equivalent atomic number measurement device and the gas-solid two-phase flow measurement device need to be installed on the coal pipeline.
  • the ash content measuring device, volatile content measuring device and moisture measuring device measure the ash, moisture and volatile content of pulverized coal, which are inherent characteristics of pulverized coal. Therefore, it can be measured at any position of the coal conveying path.
  • the sub-measurement device and the moisture measurement device can be set at a certain position on the coal conveying path, and it is not limited to the coal conveying pipeline.
  • Solid particulate matter equivalent atomic number measurement device 1 gas-solid two-phase flow measurement device 2, ash content measurement device 3, volatile matter measurement device 4, and moisture measurement device 4 are connected with a data acquisition and information processing device 6, including:
  • the solid particle equivalent atomic number measuring device 1 and the gas-solid two-phase flow measuring device 2 measure the real-time density and real-time volume flow of pulverized coal in the coal conveying pipeline 5; the ash content measuring device 3, the volatile matter measuring device 4 and the moisture measuring device 4 measure the output
  • the measured real-time density, real-time volume flow, real-time ash, real-time moisture, and real-time volatile content are sent to the data acquisition and information processing device 6.
  • the data acquisition and information processing device 6 processes the data given by each sub-device in real time, calculates and obtains the required instantaneous mass flow data, real-time calorific value data, and coal consumption data statistics.
  • this application can perform iterative correction calculations on each data through the established mathematical model.
  • the data acquisition and information processing device 6 estimates the matrix characteristics of the pulverized coal according to one or more of the measured real-time density, real-time ash content, real-time moisture and real-time volatile content, and compares the measured real-time density according to the estimated matrix characteristics of the coal One or more of the real-time ash content, real-time moisture and real-time volatile content are iteratively corrected.
  • the measurement result will be affected by the change of the pulverized coal sample matrix.
  • the matrix change of the coal powder sample to be tested refers to the change of its constituent elements and the change of the content of these elements.
  • the change of the matrix directly affects the measurement of the characteristic X-ray intensity of the element to be measured.
  • the content of the element to be measured is the same, and the characteristic X-ray intensity of the element to be measured is also different due to the different matrix. It can be seen that the characteristics of the matrix are one of the important sources of error in the measurement.
  • the matrix properties of the pulverized coal are estimated through the measured parameters, and then the measured parameters are iteratively corrected according to the estimated matrix properties of the pulverized coal to correct the measurement errors caused by the change of the pulverized coal varieties.
  • Data acquisition and real-time information processing apparatus 6 calculates the mass flow M t
  • the density ⁇ t real time traffic and real-time volume V t iteratively corrected, M t ⁇ t * V t. Since the pulverized coal density data is measured by the equivalent atomic number measuring device 1 for solid particles, it is not necessary to calibrate the online gas-solid two-phase flow measuring device 2 and the online mass flow detection is completely realized.
  • the data acquisition and information processing device 6 calculates the real-time calorific value of the coal powder based on the iteratively corrected real-time ash, real-time moisture, and real-time volatile content.
  • Q net.ad is the calorific value of coal
  • V ad is the volatile content of coal
  • a ad is the total ash content of coal
  • M ad is the moisture content of coal
  • CRC is the char slag characteristics of bituminous coal, according to the ash element composition and its The content etc. take the value 1-8.
  • the coal consumption online metering system of this application is an independent and complete working system. In the process of coal consumption measurement or calculation, only the data measured by the coal consumption online metering system itself is used, which has no impact on the existing production process of the energy user. There is also no need for the production equipment data of the energy consuming unit to participate in the calculation or directly as the intermediate result of the measurement, and the result will not be artificially interfered, that is, this application is a complete and completely independent online detection data system, which is not easily interfered by human factors.
  • the solid particulate matter equivalent atomic number measurement device may be a radiation type measurement device.
  • the solid particulate matter equivalent atomic number measurement device 1 includes a ray source device 11, a detection device 12, and a first analysis device. And the communication component 13; the ray source device 11 emits rays to the coal powder in the coal conveying pipeline 5.
  • the detection device 12 receives the transmitted or reflected signal, and the first analysis and communication component 13 analyzes and obtains the coal in the coal conveying pipeline
  • the equivalent atomic number of the powder is converted according to the equivalent atomic number to obtain the real-time density and sent to the data acquisition and information processing device 6;
  • the ray source device 11 may be an X-ray source or a gamma-ray source, preferably an X-ray source.
  • the gas-solid two-phase flow measurement device may be a microwave measurement device.
  • the gas-solid two-phase flow measurement device 2 includes at least one set of microwave emitting units and The microwave receiving unit, preferably, the microwave transmitting unit and the microwave receiving unit can be made into an integrated microwave transmitting and receiving unit 21, the integrated microwave transmitting and receiving unit 21 is connected with the second analysis and communication component 22; the integrated microwave transmitting and receiving unit 21 transmits The microwave also receives the microwave reflected by the coal powder in the coal conveying pipeline 5, and the second analysis and communication component 22 analyzes the received signal to obtain the real-time volume flow in the coal conveying pipeline and sends it to the data acquisition and information processing device 6.
  • the second analysis and communication component analyzes the energy information and spectrum information of the received microwave signal.
  • the energy information represents the particle size of the pulverized coal
  • the spectrum information represents the flow rate of the pulverized coal.
  • the coal can be obtained through the energy information and the spectrum information. Real-time volume flow of powder.
  • it includes a plurality of integrated microwave transmitting and receiving units, such as three in number, which are regularly arranged on the wall of the coal conveying pipeline to perform microwave measurements on the coal powder passing through the coal conveying pipeline, with the purpose of improving measurement accuracy. Reduce errors caused by uneven distribution of coal in the pipeline.
  • the ash content measuring device, the volatile content measuring device, and the moisture measuring device can be installed at any position on the coal conveying path.
  • the structure and location of the ash content measuring device, volatile content measuring device and moisture measuring device is a preferred embodiment of the structure and location of the ash content measuring device, volatile content measuring device and moisture measuring device:
  • the ash content measurement device of the present application is preferably arranged at the coal conveying pipeline 5.
  • the ash content measurement device 3 may be an X-ray fluorescence spectrometry element analysis device.
  • the X-ray fluorescence spectrometry element analysis device includes X-ray generation The device 31, the X-ray detector assembly 32, the optical path device 33, the first sampling device 34, and the third analysis and communication assembly 35.
  • the first sampling device 34 grabs pulverized coal from the coal conveying pipeline 5 to form the first pulverized coal sample 36 and send it to the working position of the X-ray generator 31.
  • the X-ray generator 31 X-rays are emitted, and the first coal sample 36 is irradiated through the optical path device 33 to produce reflected rays with elemental information of the coal.
  • the X-ray detector assembly 32 receives the reflected X-rays and undergoes analysis and processing by the third analysis and communication assembly 35 Then, the total ash content, ash element composition and content of the first pulverized coal sample 36 are obtained and sent to the data collection and information processing device 6.
  • the optical path device 33 is a well-known configuration of the X-ray fluorescence spectroscopy element analysis device 3, and aims to configure different optical path properties for different elements in order to obtain more accurate results.
  • the ash content measuring device is installed at the coal conveying pipeline to measure the real-time ash content data of the pulverized coal at the coal conveying pipeline.
  • the real-time ash data measured at the coal conveying pipeline is more sensitive to changes in the quality of the pulverized coal, and the result is more accurate.
  • the volatile matter measuring device and the moisture measuring device are preferably arranged at the coal conveying pipeline 5.
  • the volatile matter measuring device and the moisture measuring device may be spectroscopic analysis devices.
  • the volatile matter measuring device and the moisture The measuring device can be an integrated structure 4, which includes a light source assembly 41, a detector assembly 42, a second sampling device 43, and a fourth analysis and communication assembly 44; the second sampling device 43 grabs pulverized coal from the coal pipeline 5 to form The second pulverized coal sample 45 is transferred to the working position of the light source assembly 41.
  • the light source assembly 41 irradiates the second pulverized coal sample 45 to generate reflected or transmitted light with information on the volatile content of the pulverized coal and moisture.
  • the detection assembly 42 collects this After the reflected or transmitted light is analyzed and processed by the fourth analysis and communication component 44, the volatile content and moisture of the second coal powder sample 45 are obtained and sent to the data collection and information processing device 6.
  • the light source assembly 41 of the present application may be an infrared light source or a Raman light source, preferably an infrared light source assembly, and the corresponding detector assembly is an infrared detector assembly.
  • the volatile matter measuring device and the moisture measuring device are installed at the coal conveying pipeline, and the real-time volatile matter and moisture data of the coal powder at the coal conveying pipeline are measured.
  • the real-time volatile matter and moisture data measured at the coal conveying pipeline affect the pulverized coal Changes in quality are more sensitive and results are more accurate.
  • the X-ray fluorescence spectrum element analysis device and the integrated volatile moisture measurement system can also share a set of sampling devices, and the formed coal samples can also be shared.
  • the first sampling device and the second sampling device may be the same sampling device, and the first pulverized coal sample and the second pulverized coal sample may be the same pulverized coal sample.
  • the aforementioned ash content measuring device, volatile content measuring device and moisture measuring device installed at the coal conveying pipeline means that the sampling device samples the coal powder at the coal conveying pipeline, and is not limited to the ash measuring device, volatile content measuring device and moisture measuring device Set on the coal pipeline. Since it is sampling and measuring the coal powder in the coal pipeline, the ash content measuring device, volatile content measuring device and moisture measuring device need not be installed on the coal pipeline. Only the sampling device needs to take samples from the coal pipeline and send it to the ash measurement The device, the volatile matter measuring device and the moisture measuring device are sufficient.
  • the ash content measuring device, the volatile content measuring device and the moisture measuring device can also be arranged on the coal conveying pipeline, as shown in the embodiments described in FIGS. 1, 4, and 5.
  • the coal consumption online metering system of the present application is used in the production line of a coal user, and the production line includes one or more coal conveying pipelines.
  • the corresponding solid particle equivalent atomic number measuring device, gas-solid two-phase flow measuring device, ash measuring device, volatile content measuring device and moisture measuring device can be provided for the coal conveying pipeline.
  • “set the corresponding solid particulate matter equivalent atomic number measurement device, gas-solid two-phase flow measurement device, ash content measurement device, volatile matter measurement device and moisture measurement device for the coal pipeline” refers to the solid particulate matter equivalent atomic number measurement device
  • the gas-solid two-phase flow measurement device is installed on the coal conveying pipeline.
  • the ash content measuring device, the volatile content measuring device and the moisture measuring device are installed on the coal conveying path, which may or may not be arranged at the coal conveying pipeline. , But set in other positions of the coal conveying route.
  • the "installed at the coal conveying pipeline” may be arranged on the coal conveying pipeline or not on the coal conveying pipeline, as mentioned above.
  • the cement production line includes the first coal pipeline and the tail coal pipeline.
  • a corresponding solid particle equivalent atomic number measurement device, gas-solid two-phase flow measurement device, ash content measurement device, volatile content measurement device and moisture measurement device can be provided for each coal transportation pipeline. This method is more suitable when the quality of coal used by multiple coal pipelines is different.
  • the present application may also be provided with a solid particle equivalent atomic number measurement device and a gas-solid two-phase flow measurement device on each coal transportation pipeline. It is only necessary to provide a set of ash content measuring devices, volatile content measuring devices and moisture measuring devices for coal conveying pipelines that use the same quality of pulverized coal among multiple coal conveying pipelines. This set of ash content measuring devices, volatile content measuring devices and moisture measuring devices are arranged on the coal conveying path corresponding to the coal conveying pipeline using the same quality coal.
  • This method is more suitable for multiple coal pipelines when several coal pipelines use the same quality of coal, only need to measure the ash, volatile matter and moisture of one of the coal pipelines that use the same quality coal.
  • the coal quality is the same, and other coal pipelines using the same quality coal use the same measurement results.
  • all coal pipelines use the same quality coal, so only one coal pipeline needs to be equipped with a corresponding solid particle equivalent atomic number measurement device, gas-solid two-phase flow measurement device, ash content measurement device, and volatile content measurement device. And moisture measuring device.
  • the ash measuring device, the volatile content measuring device and the moisture measuring device are arranged on the coal conveying path corresponding to the coal conveying pipeline using the same quality pulverized coal, which means that it can be arranged at the coal conveying pipeline or at other positions of the coal conveying route.
  • the meaning of setting at the coal pipeline is as mentioned above.
  • the solid particle equivalent atomic number measuring device 1 and the gas-solid two-phase flow measuring device 2 are in the conveying direction of the pulverized coal on the coal conveying pipeline 5 (the conveying direction of the pulverized coal in Figure 1 is from bottom to top) It is located upstream of the ash content measuring device 3, the volatile content measuring device 4 and the moisture measuring device 4.
  • the purpose is to reduce the effect of the X-ray fluorescence spectrometry element analysis device 3 and the online volatile moisture measurement device 4 on the change of the coal distribution pipeline 5 due to sampling caused by the on-line solid particulate matter equivalent atomic number measurement device 1 and the online gas-solid two
  • the result of the phase flow measuring device 2 causes interference.
  • the coal pipeline includes a horizontal part and a vertical part.
  • the horizontal part is unevenly distributed in the horizontal direction of the coal pipeline due to the action of gravity.
  • This application combines a solid particle equivalent atomic number measuring device and a gas-solid two-phase
  • the flow measuring device, the ash content measuring device, the volatile content measuring device and the moisture measuring device are arranged on the vertical part of the coal conveying pipeline, and the measured data (especially the volume flow data) is more accurate.
  • the aforementioned data collection and information processing device 6 of this application includes an on-site calculation server (including a calculation model and a calculation software system), a data bus connecting various detection devices, a measurement result data upload interface, and the like.
  • the data collection and information processing device can also record and store the obtained statistical results; when necessary, it can also output and upload the data obtained by the system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本申请公开了一种煤耗在线计量系统,属于分析测量技术领域。该系统包括等效原子序数测量装置、流量测量装置、灰分测量装置、挥发分测量装置、水分测量装置和数据采集及信息处理装置。数据采集及信息处理装置对测得的实时密度、实时灰分、实时水分和/或实时挥发分进行迭代校正;数据采集及信息处理装置根据迭代校正后的实时密度、实时体积流量、实时灰分、实时水分和实时挥发分在线计算煤耗。本申请的煤耗在线计量系统是一套独立的、完整的工作系统,只使用煤耗在线计量系统本身测量的数据,不需要用能单位的生产设备数据参与计算或直接作为计量的中间结果,不容易被人为因素干扰,实现了完全的、独立的煤耗在线实时测量,并且测量结果准确。

Description

煤耗在线计量系统 技术领域
本申请涉及分析测量技术领域,特别是指一种煤耗在线计量系统。
背景技术
煤炭是我国工业能源结构中的重要组成部分,被广泛应用于各个行业中。尤其是火力发电、水泥生产的主要能量来源以及煤化工行业的主要原料。各个行业、各家用能企业煤炭(发热量)消耗的准确数量,是制定国家能源战略的重要基础,也是企业碳排放计算与核查的基础数据。为了保障政府部门能够准确掌握我国煤炭消耗数量,国家发改委和质检总局于2017年共同制定并发布了《重点用能单位能耗在线检测系统推广建设工作方案》的通知。煤耗是能耗的其中一个方面,煤耗的测量尤其复杂。
煤耗=(煤炭)热值*煤质量。由于煤炭为自然形成,其不同产地种类和不同批次的热值存在很大差异,能耗统计存在较大变数。因此,煤耗的检测计量尤其是在线测量一直是技术难题。需要指出的是,煤炭开采出来的是块状,工业生产时需要预先将煤块磨成细小的煤粉,以便于燃烧充分均匀。以下测量对象描述皆为煤粉。
对热值的测量,一般有两种方法得到:
一种是在实验室对单位质量的煤粉进行燃烧,测量受热介质的温升,计算出热值。
另一种是通过煤炭热值公式进行计算,这需要测量煤粉的灰分、挥发分、水分、灰分元素含量等特征量。以水泥行业中熟料煅烧用烟煤为例,其具体的热值计算公式如下:
Q net.ad=8575.63-17.63V ad-94.64A ad-167.89M ad+41.52CRC
其中,Q net.ad为煤的热值,单位:卡/克、千卡/千克;
V ad为煤的空气干燥基挥发分,单位:%(以下简称挥发分);
A ad为煤的空气干燥基灰分,单位:%(以下简称灰分);
M ad为煤的空气干燥基水分,单位:%(以下简称水分);
CRC为烟煤的焦渣特征(取值1-8,由灰分元素组成及含量决定)。
对煤粉质量的测量,一般位于煤粉的粉磨阶段或输送阶段。粉磨阶段利用给煤装置的重量传感器称重。根据用煤企业的生产任务不同,煤粉输送阶段有皮带输送和管道气体输送。皮带输送有煤粉输送皮带秤称重方法,管道气体输送是利用风力输送颗粒物的气固两相输送技术输送煤粉,测量煤粉质量则是利用微波等技术测量管道内煤粉的体积流量,再通过标定煤粉的密度特性,得到质量流量。质量=体积*密度。
对应于热值和煤粉质量的得到方法,实际生产和工程上也有多种煤耗的计量方法。代表方法如下:
方法一:传统的非在线式统计方法。
即采用人工或自动化装置,在现场进行煤粉样品采集,然后在实验室采用煤炭热值检测设备,利用温升原理得到煤炭热值的数据。煤粉质量则采用企业生产线上使用的煤粉输送皮带秤或给煤装置的重量传感器进行重量称量。因为取样测量需要一定的周期,以水泥熟料生产企业为例,一般是每天或每批次煤炭取一次样。利用公式“能耗=(煤炭)热值*煤质量”,得到当天或本批次的煤耗值。
该方法在测量热值时,由于煤粉样品取样代表性不足,会导致其热值结果误差大;而且取样及测量周期长,导致时效性较差,不能对用能状态进行及时指导或调整。
另外,煤粉质量的测量过程依赖于煤粉称重装置的可靠性,其测量结果不稳定、无法验证,并且人为因素环节多,结果有时不可信。煤粉质量数据获得依赖于企业生产线装置,计量系统不是独立存在的。
方法二:不完全在线统计方法。
采用热值计算公式计算出热值、采用在线质量测量装置测量实时质量流量,积分计算出所需时长内的煤耗。
热值计算需要测量煤粉的灰分、挥发分、水分,并根据灰分元素组成 和硫元素含量给出焦渣特征值。该方法一般采用由伽马射线测灰仪(灰分测量装置)测量灰分总量、水分测量装置测量水分、挥发分测量装置测量挥发分。目前已经有在线的灰分和水分测量仪器,但针对煤粉的挥发分还未有现成的在线应用产品。并且由于灰分元素组成、硫元素含量等也没有在线产品,其焦渣特征值也不能实时在线给出。因此,热值计算没有做到完全在线,有较大误差。
还有,现有的大多数在线质量流量测量装置,测量气固两相输送管道内的煤粉体积流量,再通过标定煤粉的密度特性,得到质量流量。其准确性依赖于对煤粉(密度)的标定。该标定又依赖于“方法一”中用到的“煤炭输送皮带秤或给煤装置的重量传感器进行重量称量”等方式,标定过程比较复杂。另外,在标定完成后,当煤粉的品质变化时,其密度也有可能改变,这样计算的质量流量也会偏离正确值。也就是说,其体积是在线测量,相对准确,而其密度只是标定时用的煤品的数据,是一个固定值,没有做到在线实时随煤品变化而变动。所以,计算出的质量流量会有偏离。
综述,本方法的缺点在于:1,热值测量没有完全在线;2,质量流量数据严重依赖于标定,标定过程比较复杂;3,在生产进行中,由于煤粉品种品质变化引起的密度变化,无法马上进行密度标定,结果不准确;4,灰分元素没有在线测量,无法对质量流量进行校正。
专利“CN 103375808 A”的测量属于该方法。从该专利文件中可以看出,1,热值计算时灰分、水分、挥发分参数需要有煤粉样品进行标定;2,利用放射源装置进行在线质量称重在实际上无法实现。因为其原理是射线打过输煤皮带上的煤粉层,测量其衰减推算煤粉的通过量,然而煤粉在皮带宽度方向的厚度无法一致,所以其得到的衰减数据及其不准确。事实上,也没有这种设备或产品得到如该专利所述那样的实际应用;3,没有进行灰分元素的在线测量,无法对质量流量进行校正;4,忽略了焦渣特征对热值计算的影响;5,该专利技术的主要目的在于控制锅炉的煤粉燃烧而非计量,所以其精度不高。
以上所述几种方式,包括其他混合使用多种方法的煤耗计量方式,共 同存在的不足之处在于:首先,在煤耗的测量或计算过程中,需要依靠用能企业的设备数据参与计算或直接作为计量的中间结果,而不是完整的、完全独立的在线检测数据系统,容易被人为因素干扰,而影响计量结果的客观性和准确性。其次,现有的在线煤耗测量方法,需要进行大量而繁琐的现场标定过程,并且一旦使用的煤炭品种或煤炭优劣发生比较大的变化时,就需要重新进行标定,否则准确性就会发生严重偏差。再次,现有计量方法,由于灰分各元素成分没有在线测量,其测量或计算过程就只能是一个单向的流程,输出结果对测量过程没有校正,不是闭环计算。
发明内容
为解决上述技术问题,本申请提供一种煤耗在线计量系统,本申请的煤耗在线计量系统是一套独立的、完整的工作系统,只使用煤耗在线计量系统本身测量的数据,不需要用能单位的生产设备数据参与计算或直接作为计量的中间结果,不容易被人为因素干扰,实现了完全的、独立的煤耗在线实时测量,并且测量结果准确。
本申请提供技术方案如下:
一种煤耗在线计量系统,所述系统包括固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装置和水分测量装置,所述固体颗粒物等效原子序数测量装置和气固两相流量测量装置设置在输煤路径的输煤管道上,所述灰分测量装置、挥发分测量装置和水分测量装置设置在输煤路径上,所述固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装置和水分测量装置连接有数据采集及信息处理装置,其中:
所述固体颗粒物等效原子序数测量装置和气固两相流量测量装置测量输煤管道内煤粉的实时密度和实时体积流量,所述灰分测量装置、挥发分测量装置和水分测量装置测量输煤路径的煤粉的实时灰分、实时水分和实时挥发分,所述实时灰分包括灰分总量、灰分元素组成及其含量;
所述数据采集及信息处理装置根据测得的实时密度、实时灰分、实时 水分和实时挥发分中的一个或多个推定煤粉的基体特性,根据推定的煤粉的基体特性对测得的实时密度、实时灰分、实时水分和实时挥发分中的一个或多个进行迭代校正;
所述数据采集及信息处理装置根据迭代校正后的实时密度和实时体积流量计算实时质量流量;所述数据采集及信息处理装置根据迭代校正后的实时灰分、实时水分和实时挥发分计算煤粉的实时热值;
所述数据采集及信息处理装置根据实时质量流量和实时热值计算煤粉的实时能量,所述数据采集及信息处理装置对所述实时能量进行时间积分,得到所需时长内的煤耗。
进一步的,所述固体颗粒物等效原子序数测量装置包括射线源装置、探测装置和第一分析及通讯组件;所述射线源装置发出射线,射向输煤管道内的煤粉,由探测装置接收穿透或反射后的信号,第一分析及通讯组件分析获得输煤管道内煤粉的等效原子序数,根据等效原子序数折算得到实时密度并发送给数据采集及信息处理装置;所述射线源装置为X射线源或γ射线源。
进一步的,所述气固两相流量测量装置包括分布在输煤管道上的至少一组微波发射单元和微波接收单元,所述微波发射单元和微波接收单元连接有第二分析及通讯组件;所述微波发射单元发射微波并且所述微波接收单元接收经过输煤管道内的煤粉反射的微波,所述第二分析及通讯组件分析获得输煤管道内的实时体积流量并发送给数据采集及信息处理装置。
进一步的,所述灰分测量装置设置在输煤管道处,所述灰分测量装置为X射线荧光光谱元素分析装置,所述X射线荧光光谱元素分析装置包括X射线发生装置、X射线探测器组件、光路装置、第一取样装置和第三分析及通讯组件;所述第一取样装置从输煤管道内抓取煤粉,形成第一煤粉样品并传送至X射线发生装置的工作位置,X射线发生装置发出X射线,穿过光路装置照射第一煤粉样品,产生带有煤粉元素信息的反射射线,X射线探测器组件接收反射的X射线,经过第三分析及通讯组件分析处理后,得到第一煤粉样品的灰分总量、灰分元素组成及其含量并发送给数据 采集及信息处理装置。
进一步的,所述挥发分测量装置和水分测量装置设置在输煤管道处,所述挥发分测量装置和水分测量装置为一体结构,包括光源组件、探测器组件、第二取样装置和第四分析及通讯组件;所述第二取样装置从输煤管道内抓取煤粉,形成第二煤粉样品并传送至光源组件的工作位置,光源组件发出光线照射第二煤粉样品,产生带有煤粉挥发分和水分信息的反射或透射光线,探测组件收集该反射或透射光线,经过第四分析及通讯组件分析处理后,得到第二煤粉样品的挥发分和水分并发送给数据采集及信息处理装置;所述光源组件为红外光源或拉曼光源。
进一步的,所述第一取样装置和第二取样装置为同一个取样装置,所述第一煤粉样品和第二煤粉样品为同一个煤粉样品。
所述煤耗在线计量系统用于用煤单位的生产线上,所述生产线上包括一条或多条输煤管道,当为多条输煤管道时,其中:
为每条输煤管道均设置对应的固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装置和水分测量装置;
或者;
每条输煤管道上均设置有固体颗粒物等效原子序数测量装置和气固两相流量测量装置;为多条输煤管道中使用相同品质煤粉的输煤管道设置一组灰分测量装置、挥发分测量装置和水分测量装置,这一组灰分测量装置、挥发分测量装置和水分测量装置设置在使用相同品质煤粉的输煤管道对应的输煤路径上。
进一步的,所述固体颗粒物等效原子序数测量装置和气固两相流量测量装置在输煤管道上按煤粉的输送方向位于所述灰分测量装置、挥发分测量装置和水分测量装置的上游。
进一步的,所述固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装置和水分测量装置设置在输煤管道的竖直部分上。
本申请具有以下有益效果:
本申请的煤耗在线计量系统是一套独立的、完整的工作系统,在煤耗的测量或计算过程中,只使用煤耗在线计量系统本身测量的数据,对用能单位现有的生产过程没有影响,也不需要用能单位的生产设备数据参与计算或直接作为计量的中间结果,其结果不会被人为干预,即本申请是完整的、完全独立的在线检测数据系统,不容易被人为因素干扰,从而影响计量结果的客观性和准确性;本申请提供的煤耗在线计量系统,每一个数据的得到都是在线或实时的,其统计结果也就是完全的在线结果,实现了煤耗的在线实时测量;本系统不需要进行大量而繁琐的现场标定过程,安装运行简单;在生产过程中,当煤粉品种品质时,本系统可以自动进行参数匹配,统计结果精准;本系统还会根据各数据进行迭代校正计算,修正煤粉品种变化时引起的测量误差,计量结果更精准。
附图说明
图1为本申请的煤耗在线计量系统的示意图;
图2为固体颗粒物等效原子序数测量装置的示意图;
图3为气固两相流量测量装置的示意图;
图4为灰分测量装置的示意图;
图5为挥发分测量装置和水分测量装置的示意图。
具体实施方式
为使本申请要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本申请提供一种煤耗在线计量系统,如图1所示,该系统包括固体颗粒物等效原子序数测量装置1、气固两相流量测量装置2、灰分测量装置3、挥发分测量装置4和水分测量装置4,固体颗粒物等效原子序数测量装置1和气固两相流量测量装置2设置在输煤路径的输煤管道5上,灰分测量装置3、挥发分测量装置4和水分测量装置4设置在输煤路径上。
本申请中,煤块在煤磨中磨成煤粉后进入煤粉仓,然后通过输送机将 煤粉仓内的煤粉以气固两相的形式输送进输煤管道,最终进入燃烧室燃烧,输煤路径指的就是煤磨--煤粉仓--输送机--输煤管道组成的路径。
固体颗粒物等效原子序数测量装置和气固两相流量测量装置测量的是最终实际燃烧的煤粉质量,因此固体颗粒物等效原子序数测量装置和气固两相流量测量装置需要设置在输煤管道上。而灰分测量装置、挥发分测量装置和水分测量装置测量的是煤粉的灰分、水分和挥发分,是煤粉的固有特性,因此可以在输煤路径的任意位置测量,将灰分测量装置、挥发分测量装置和水分测量装置设置在输煤路径上的某个位置即可,不限定是在输煤管道处。
固体颗粒物等效原子序数测量装置1、气固两相流量测量装置2、灰分测量装置3、挥发分测量装置4和水分测量装置4连接有数据采集及信息处理装置6,其中:
固体颗粒物等效原子序数测量装置1和气固两相流量测量装置2测量输煤管道5内煤粉的实时密度、实时体积流量;灰分测量装置3、挥发分测量装置4和水分测量装置4测量输煤路径的煤粉的实时灰分、实时水分和实时挥发分,其中实时灰分包括灰分总量、灰分元素组成及其含量。
本申请在安装时,只需在输煤路径的相应位置增设必要的测量孔位和固定装置即可。测量后的实时密度、实时体积流量、实时灰分、实时水分和实时挥发分发送给数据采集及信息处理装置6。数据采集及信息处理装置6,对各子装置给出的数据进行实时处理,计算获得所需要的瞬时质量流量数据、实时热值数据,以及煤耗数据统计结果。并且,本申请可以通过建立的数学模型对各数据进行迭代校正计算。
数据采集及信息处理装置6根据测得的实时密度、实时灰分、实时水分和实时挥发分中的一个或多个推定煤粉的基体特性,根据推定的煤粉的基体特性对测得的实时密度、实时灰分、实时水分和实时挥发分中的一个或多个进行迭代校正。
本申请在对煤粉的各个参数进行测量时,测量的结果会受到煤粉样品基体变化的影响。待测煤粉样品的基体变化,一是指其组成元素的变化, 二是指这些元素含量的变化。以X射线测量灰分为例,基体变化直接影响待测元素特征X射线强度的测量。待测元素含量相同,由于其基体不同,测量到的待测元素特征X射线强度也不同。可见基体的特性是测量的重要误差来源之一。
本申请通过测得的各个参数推定出煤粉的基体特性,然后根据推定的煤粉的基体特性对测量的各个参数进行迭代校正,以修正煤粉品种变化时引起的测量误差。
数据采集及信息处理装置6根据迭代校正后的实时密度ρ t和实时体积流量V t计算实时质量流量M t,M t=ρ t*V t。由于煤粉密度数据通过固体颗粒物等效原子序数测量装置1测量给出,所以不必要再为在线气固两相流量测量装置2进行标定工作,完全实现了在线质量流量的检测。
数据采集及信息处理装置6根据迭代校正后的实时灰分、实时水分和实时挥发分计算煤粉的实时热值。
针对不同煤粉有不同的计算公式,以水泥行业中熟料煅烧用烟煤为例,该热值计算模型为:
Q net.ad=8575.63-17.63V ad-94.64A ad-167.89M ad+41.52CRC
其中:Q net.ad为煤的热值;V ad为煤的挥发分;A ad为煤的灰分总量;M ad为煤的水分;CRC为烟煤的焦渣特征,根据灰分元素组成及其含量等取值1-8。需要指出的是,虽然不同煤粉有不同的计算公式,但计算所需参数是一致的。本系统测量的数据足以满足不同品种的煤粉的热值计算。
数据采集及信息处理装置6根据实时质量流量M t和实时热值Q net.ad计算煤粉的实时能量Q t,Q t=M t*Q net.ad。数据采集及信息处理装置6对实时能量Q t进行时间积分,得到所需时长内的煤耗Q,Q=∫Q t
本申请的煤耗在线计量系统是一套独立的、完整的工作系统,在煤耗的测量或计算过程中,只使用煤耗在线计量系统本身测量的数据,对用能单位现有的生产过程没有影响,也不需要用能单位的生产设备数据参与计算或直接作为计量的中间结果,其结果不会被人为干预,即本申请是完整的、完全独立的在线检测数据系统,不容易被人为因素干扰,从而影响计 量结果的客观性和准确性;本申请提供的煤耗在线计量系统,每一个数据的得到都是在线或实时的,其统计结果也就是完全的在线结果,实现了煤耗的在线实时测量;本系统不需要进行大量而繁琐的现场标定过程,安装运行简单;在生产过程中,当煤粉品种品质时,本系统可以自动进行参数匹配,统计结果精准;本系统还会根据各数据进行迭代校正计算,修正煤粉品种变化时引起的测量误差,计量结果更精准。
本申请中,固体颗粒物等效原子序数测量装置可以为辐射式测量装置,作为其中优选的一种实施方式,固体颗粒物等效原子序数测量装置1包括射线源装置11、探测装置12和第一分析及通讯组件13;射线源装置11发出射线,射向输煤管道5内的煤粉,由探测装置12接收穿透或反射后的信号,第一分析及通讯组件13分析获得输煤管道内煤粉的等效原子序数,根据等效原子序数折算得到实时密度并发送给数据采集及信息处理装置6;射线源装置11可以为X射线源或γ射线源,优选为X射线源。
本申请中,气固两相流量测量装置可以为微波测量装置,作为其中优选的一种实施方式,气固两相流量测量装置2包括分布在输煤管道5上的至少一组微波发射单元和微波接收单元,优选的,微波发射单元和微波接收单元可以做成一体式微波发射接收单元21,一体式微波发射接收单元21连接有第二分析及通讯组件22;一体式微波发射接收单元21发射微波并接收经过输煤管道5内的煤粉反射的微波,第二分析及通讯组件22根据接收到的信号对分析获得输煤管道内的实时体积流量并发送给数据采集及信息处理装置6。
具体的,第二分析及通讯组件分析接收的微波信号的能量信息和频谱信息,能量信息代表了煤粉的颗粒大小,频谱信息代表了煤粉的流速,通过能量信息和频谱信息即可以得到煤粉的实时体积流量。
优选包括多个一体式微波发射接收单元,例如数量为3个,有规律的布置在输煤管道的筒壁上,分别对输煤管道内通过的煤粉进行微波测量,目的在于提高测量精度,减少管道内煤粉分布不均匀带来的误差。
前述表明了灰分测量装置、挥发分测量装置和水分测量装置可以设置 在输煤路径上的任意位置。这里给出灰分测量装置、挥发分测量装置和水分测量装置的结构和设置位置的一个优选实施方式:
本申请的灰分测量装置优选设置在输煤管道5处,该灰分测量装置3可以为X射线荧光光谱元素分析装置,作为其中优选的一种实施方式,X射线荧光光谱元素分析装置包括X射线发生装置31、X射线探测器组件32、光路装置33、第一取样装置34和第三分析及通讯组件35。
X射线荧光光谱元素分析装置工作时,第一取样装置34从输煤管道5内抓取煤粉,形成第一煤粉样品36并传送至X射线发生装置31的工作位置,X射线发生装置31发出X射线,穿过光路装置33照射第一煤粉样品36,产生带有煤粉元素信息的反射射线,X射线探测器组件32接收反射的X射线,经过第三分析及通讯组件35分析处理后,得到第一煤粉样品36的灰分总量、灰分元素组成及其含量并发送给数据采集及信息处理装置6。
光路装置33为X射线荧光光谱元素分析装置3公知的配置,目的在于针对不同元素配置不同的光路性能,以便得到更准确的结果。
本申请将灰分测量装置设置在输煤管道处,测量输煤管道处煤粉的实时灰分数据,在输煤管道处测得的实时灰分数据对煤粉品质的变化更敏感,结果更加准确。
本申请中,挥发分测量装置和水分测量装置优选设置在输煤管道5处,挥发分测量装置和水分测量装置可以为光谱分析装置,作为其中优选的一种实施方式,挥发分测量装置和水分测量装置可以为一体结构4,其包括光源组件41、探测器组件42、第二取样装置43和第四分析及通讯组件44;第二取样装置43从输煤管道5内抓取煤粉,形成第二煤粉样品45并传送至光源组件41的工作位置,光源组件41发出光线照射第二煤粉样品45,产生带有煤粉挥发分和水分信息的反射或透射光线,探测组件42收集该反射或透射光线,经过第四分析及通讯组件44分析处理后,得到第二煤粉样品45的挥发分和水分并发送给数据采集及信息处理装置6。本申请的光源组件41可以为红外光源或拉曼光源,优选为红外光源组件,相应的 探测器组件为红外探测器组件。
本申请将挥发分测量装置和水分测量装置设置在输煤管道处,测量输煤管道处煤粉的实时挥发分和水分数据,在输煤管道处测得的实时挥发分和水分数据对煤粉品质的变化更敏感,结果更加准确。
本申请中,X射线荧光光谱元素分析装置和一体式的挥发分水分测量系统还可以共用一套取样装置,形成的煤粉样品也可以共用。此时,第一取样装置和第二取样装置可以为同一个取样装置,第一煤粉样品和第二煤粉样品可以为同一个煤粉样品。以减少重复的结构并降低成本。
前述的灰分测量装置、挥发分测量装置和水分测量装置设置在输煤管道处是指取样装置对输煤管道处的煤粉进行取样,并不是限定灰分测量装置、挥发分测量装置和水分测量装置设置在输煤管道上。由于是对输煤管道中的煤粉取样测量,所以灰分测量装置、挥发分测量装置和水分测量装置可以不设置在输煤管道上,只需要取样装置从输煤管道中取样后送到灰分测量装置、挥发分测量装置和水分测量装置即可。当然,灰分测量装置、挥发分测量装置和水分测量装置也可以设置在输煤管道上,如图1、4、5所述的实施方式。
本申请的煤耗在线计量系统用于用煤单位的生产线上,生产线上包括一条或多条输煤管道。当生产线上仅有一条输煤管道时,为该输煤管道设置对应的固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装置和水分测量装置即可。其中“为该输煤管道设置对应的固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装置和水分测量装置”是指固体颗粒物等效原子序数测量装置和气固两相流量测量装置设置在输煤管道上,灰分测量装置、挥发分测量装置和水分测量装置设置在输煤路径上,可以设置在输煤管道处,也可以不设置在输煤管道处,而是设置在输煤路径的其他位置。而所述的“设置在输煤管道处”可以是设置在输煤管道上,也可以是不设置在输煤管道上,如前述。
当生产线上包括多条输煤管道时,例如水泥生产线就包括头煤输煤管 道和尾煤输煤管道。
本申请可以为每条输煤管道均设置对应的固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装置和水分测量装置。这种方式更适用于多条输煤管道使用的煤品质不同时。
本申请还可以在每条输煤管道上均设置有固体颗粒物等效原子序数测量装置和气固两相流量测量装置。而仅仅为多条输煤管道中使用相同品质煤粉的输煤管道设置一组灰分测量装置、挥发分测量装置和水分测量装置即可。这一组灰分测量装置、挥发分测量装置和水分测量装置设置在使用相同品质煤粉的输煤管道对应的输煤路径上。
这种方式适更用于多条输煤管道中若干输煤管道使用的煤品质相同时,只需要测量使用相同品质煤的输煤管道中的一个的灰分、挥发分和水分即可,由于使用的煤品质相同,使用相同品质的煤的其他输煤管道使用相同的测量结果。极端的,所有输煤管道均使用相同品质的煤,那只需要为一条输煤管道设置对应的固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装置和水分测量装置即可。
灰分测量装置、挥发分测量装置和水分测量装置设置在使用相同品质煤粉的输煤管道对应的输煤路径上是指可以设置在输煤管道处,也可以设置在输煤路径的其他位置。设置在输煤管道处的含义如前述。
本申请中,优选的,固体颗粒物等效原子序数测量装置1和气固两相流量测量装置2在输煤管道5上按煤粉的输送方向(图1中煤粉输送方向为自下而上)位于灰分测量装置3、挥发分测量装置4和水分测量装置4的上游。目的在于减少X射线荧光光谱元素分析装置3和在线挥发分水分测量装置4由于取样而导致的输煤管道5的煤粉分布的变化对线固体颗粒物等效原子序数测量装置1和在线气固两相流量测量装置2的结果产生干扰。
输煤管道包括水平的部分和竖直的部分,水平部分由于重力的作用,使得煤粉在输煤管道的水平方向分布不均匀,本申请将固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装 置和水分测量装置设置在输煤管道的竖直部分上,测得的数据(尤其是体积流量数据)更加准确。
本申请前述的数据采集及信息处理装置6包括现场计算服务器(含计算模型及计算软件系统)、连接各检测装置之间的数据总线、计量结果数据上传接口等。该数据采集及信息处理装置还可以对得到的统计结果进行记录和存储;必要时,还可以对系统得到的数据进行输出上传等。
以上所述是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (9)

  1. 一种煤耗在线计量系统,其特征在于,所述系统包括固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装置和水分测量装置,所述固体颗粒物等效原子序数测量装置和气固两相流量测量装置设置在输煤路径的输煤管道上,所述灰分测量装置、挥发分测量装置和水分测量装置设置在输煤路径上,所述固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装置和水分测量装置连接有数据采集及信息处理装置,其中:
    所述固体颗粒物等效原子序数测量装置和气固两相流量测量装置测量输煤管道内煤粉的实时密度和实时体积流量,所述灰分测量装置、挥发分测量装置和水分测量装置测量输煤路径的煤粉的实时灰分、实时水分和实时挥发分,所述实时灰分包括灰分总量、灰分元素组成及其含量;
    所述数据采集及信息处理装置根据测得的实时密度、实时灰分、实时水分和实时挥发分中的一个或多个推定煤粉的基体特性,根据推定的煤粉的基体特性对测得的实时密度、实时灰分、实时水分和实时挥发分中的一个或多个进行迭代校正;
    所述数据采集及信息处理装置根据迭代校正后的实时密度和实时体积流量计算实时质量流量;所述数据采集及信息处理装置根据迭代校正后的实时灰分、实时水分和实时挥发分计算煤粉的实时热值;
    所述数据采集及信息处理装置根据实时质量流量和实时热值计算煤粉的实时能量,所述数据采集及信息处理装置对所述实时能量进行时间积分,得到所需时长内的煤耗。
  2. 根据权利要求1所述的煤耗在线计量系统,其特征在于,所述固体颗粒物等效原子序数测量装置包括射线源装置、探测装置和第一分析及通讯组件;所述射线源装置发出射线,射向输煤管道内的煤粉,由探测装置接收穿透或反射后的信号,第一分析及通讯组件分析获得输煤管道内煤粉的等效原子序数,根据等效原子序数折算得到实时密度并发送给数据采 集及信息处理装置;所述射线源装置为X射线源或γ射线源。
  3. 根据权利要求1所述的煤耗在线计量系统,其特征在于,所述气固两相流量测量装置包括分布在输煤管道上的至少一组微波发射单元和微波接收单元,所述微波发射单元和微波接收单元连接有第二分析及通讯组件;所述微波发射单元发射微波并且所述微波接收单元接收经过输煤管道内的煤粉反射的微波,所述第二分析及通讯组件分析获得输煤管道内的实时体积流量并发送给数据采集及信息处理装置。
  4. 根据权利要求1所述的煤耗在线计量系统,其特征在于,所述灰分测量装置设置在输煤管道处,所述灰分测量装置为X射线荧光光谱元素分析装置,所述X射线荧光光谱元素分析装置包括X射线发生装置、X射线探测器组件、光路装置、第一取样装置和第三分析及通讯组件;所述第一取样装置从输煤管道内抓取煤粉,形成第一煤粉样品并传送至X射线发生装置的工作位置,X射线发生装置发出X射线,穿过光路装置照射第一煤粉样品,产生带有煤粉元素信息的反射射线,X射线探测器组件接收反射的X射线,经过第三分析及通讯组件分析处理后,得到第一煤粉样品的灰分总量、灰分元素组成及其含量并发送给数据采集及信息处理装置。
  5. 根据权利要求4所述的煤耗在线计量系统,其特征在于,所述挥发分测量装置和水分测量装置设置在输煤管道处,所述挥发分测量装置和水分测量装置为一体结构,包括光源组件、探测器组件、第二取样装置和第四分析及通讯组件;所述第二取样装置从输煤管道内抓取煤粉,形成第二煤粉样品并传送至光源组件的工作位置,光源组件发出光线照射第二煤粉样品,产生带有煤粉挥发分和水分信息的反射或透射光线,探测组件收集该反射或透射光线,经过第四分析及通讯组件分析处理后,得到第二煤粉样品的挥发分和水分并发送给数据采集及信息处理装置;所述光源组件为红外光源或拉曼光源。
  6. 根据权利要求5所述的煤耗在线计量系统,其特征在于,所述第一取样装置和第二取样装置为同一个取样装置,所述第一煤粉样品和第二煤粉样品为同一个煤粉样品。
  7. 根据权利要求1-6任一所述的煤耗在线计量系统,其特征在于,所述煤耗在线计量系统用于用煤单位的生产线上,所述生产线上包括一条或多条输煤管道,当为多条输煤管道时,其中:
    为每条输煤管道均设置对应的固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装置和水分测量装置;
    或者;
    每条输煤管道上均设置有固体颗粒物等效原子序数测量装置和气固两相流量测量装置;为多条输煤管道中使用相同品质煤粉的输煤管道设置一组灰分测量装置、挥发分测量装置和水分测量装置,这一组灰分测量装置、挥发分测量装置和水分测量装置设置在使用相同品质煤粉的输煤管道对应的输煤路径上。
  8. 根据权利要求7所述的煤耗在线计量系统,其特征在于,所述固体颗粒物等效原子序数测量装置和气固两相流量测量装置在输煤管道上按煤粉的输送方向位于所述灰分测量装置、挥发分测量装置和水分测量装置的上游。
  9. 根据权利要求8所述的煤耗在线计量系统,其特征在于,所述固体颗粒物等效原子序数测量装置、气固两相流量测量装置、灰分测量装置、挥发分测量装置和水分测量装置设置在输煤管道的竖直部分上。
PCT/CN2020/071969 2019-04-17 2020-01-14 煤耗在线计量系统 WO2020211495A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/962,698 US11422100B2 (en) 2019-04-17 2020-01-14 Coal consumption online measuring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910309962.8A CN110133007B (zh) 2019-04-17 2019-04-17 煤耗在线计量系统
CN201910309962.8 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020211495A1 true WO2020211495A1 (zh) 2020-10-22

Family

ID=67570423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071969 WO2020211495A1 (zh) 2019-04-17 2020-01-14 煤耗在线计量系统

Country Status (3)

Country Link
US (1) US11422100B2 (zh)
CN (1) CN110133007B (zh)
WO (1) WO2020211495A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114054191A (zh) * 2021-11-17 2022-02-18 西安热工研究院有限公司 一种基于成本变化的磨煤机煤粉最优细度评价方法
CN115639339A (zh) * 2022-10-12 2023-01-24 华能南京金陵发电有限公司 一种煤场在线煤质分析方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133007B (zh) 2019-04-17 2020-01-14 中国建材检验认证集团股份有限公司 煤耗在线计量系统
CN114894288B (zh) * 2022-05-07 2023-12-22 北京工业职业技术学院 标定装置、标定方法及电子皮带秤

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137294A (en) * 1999-01-21 2000-10-24 Usx Corporation Prediction of bulk density of particulates with a correlation based on moisture content
CN2570778Y (zh) * 2002-09-20 2003-09-03 中国原子能科学研究院 煤粉计量仪
CN201653849U (zh) * 2010-04-22 2010-11-24 陆宇平 电厂煤质在线分析装置
CN103375808A (zh) * 2012-04-28 2013-10-30 邸生才 一种锅炉煤粉燃烧热量控制系统及方法
CN104198503A (zh) * 2014-08-19 2014-12-10 开封市测控技术有限公司 基于自然伽马射线在线测量煤灰分系统及方法
CN110133007A (zh) * 2019-04-17 2019-08-16 中国建材检验认证集团股份有限公司 煤耗在线计量系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1603833A (zh) * 2004-02-27 2005-04-06 王玷 大型煤粉炉优化控制系统
EP1931977A2 (en) 2005-10-04 2008-06-18 Thermo Niton Analyzers LLC Analysis of elemental composition and thickness in multilayered materials
CN101446418B (zh) * 2008-12-01 2010-09-08 中国电力科学研究院 一种燃料水分对锅炉负荷影响进行修正控制的方法
CN102749345B (zh) * 2012-06-19 2015-07-22 内蒙古立信测控技术有限公司 一种多点式煤炭灰分检测装置
CN103983472A (zh) * 2014-05-29 2014-08-13 广东科立恩环保科技有限公司 一种声光识别的生物质燃料智能采样系统及方法
CN105807029B (zh) * 2016-05-20 2017-11-10 河南理工大学 基于热重的煤自燃特性测定装置
CN106896119A (zh) * 2017-04-18 2017-06-27 朔州中煤平朔能源有限公司 灰分处理系统及其灰分检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137294A (en) * 1999-01-21 2000-10-24 Usx Corporation Prediction of bulk density of particulates with a correlation based on moisture content
CN2570778Y (zh) * 2002-09-20 2003-09-03 中国原子能科学研究院 煤粉计量仪
CN201653849U (zh) * 2010-04-22 2010-11-24 陆宇平 电厂煤质在线分析装置
CN103375808A (zh) * 2012-04-28 2013-10-30 邸生才 一种锅炉煤粉燃烧热量控制系统及方法
CN104198503A (zh) * 2014-08-19 2014-12-10 开封市测控技术有限公司 基于自然伽马射线在线测量煤灰分系统及方法
CN110133007A (zh) * 2019-04-17 2019-08-16 中国建材检验认证集团股份有限公司 煤耗在线计量系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114054191A (zh) * 2021-11-17 2022-02-18 西安热工研究院有限公司 一种基于成本变化的磨煤机煤粉最优细度评价方法
CN115639339A (zh) * 2022-10-12 2023-01-24 华能南京金陵发电有限公司 一种煤场在线煤质分析方法
CN115639339B (zh) * 2022-10-12 2023-11-03 华能南京金陵发电有限公司 一种煤场在线煤质分析方法

Also Published As

Publication number Publication date
CN110133007A (zh) 2019-08-16
US20210231591A1 (en) 2021-07-29
CN110133007B (zh) 2020-01-14
US11422100B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2020211495A1 (zh) 煤耗在线计量系统
CN101603929B (zh) 输送带上煤炭成分实时检测装置
CN104198503B (zh) 基于自然伽马射线在线测量煤灰分系统及方法
CN101949852B (zh) 一种基于光谱标准化的煤质在线检测方法
CN2809646Y (zh) 煤质成分实时测量分析装置
CN101509872B (zh) 一种基于回归分析的煤质在线检测分析方法
CN201063033Y (zh) 用于煤质热值测量的连续在线检测装置
CN101509873B (zh) 一种基于主动式内标法的煤质检测方法
CN108645767B (zh) 耦合光散射和β射线测量燃煤烟气颗粒物质量浓度的方法
CN103376267B (zh) 一种灰分在线测量系统和灰分在线控制系统及其方法
US8656846B2 (en) Continuous real time heating value (BTU)/coal flow balancing meter
US5818899A (en) X-ray fluorescence analysis of pulverized coal
CN103375808B (zh) 一种锅炉煤粉燃烧热量控制系统及方法
CN103566815A (zh) 一种高效精准的配煤系统
US20180275078A1 (en) Alternative Fuels Analyzer
CN112697829A (zh) 基于实际样品为标样测定大气颗粒物中多种元素的方法
CN201653849U (zh) 电厂煤质在线分析装置
CN108387569B (zh) 一种可计量生物质掺混量的燃煤耦合生物质发电方法
CN106226332A (zh) 一种x射线煤灰分检测装置及方法
CN117314706A (zh) 一种燃煤机组二氧化碳排放量计算方法
CN112557426B (zh) X射线煤热值、灰分、水分、炭测量仪及其测量方法
CN110618232B (zh) 一种不用放射源的煤炭发热量在线测量装置及其方法
CN206208793U (zh) 一种x射线煤灰分检测装置
CN208795674U (zh) 煤发热量在线测量仪
CN104596982A (zh) 近红外漫反射光谱技术测定造纸法再造烟叶果胶的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791708

Country of ref document: EP

Kind code of ref document: A1