WO2020211208A1 - 一种磁性标签传感器及其制作方法及河床冲刷检测装置 - Google Patents

一种磁性标签传感器及其制作方法及河床冲刷检测装置 Download PDF

Info

Publication number
WO2020211208A1
WO2020211208A1 PCT/CN2019/097266 CN2019097266W WO2020211208A1 WO 2020211208 A1 WO2020211208 A1 WO 2020211208A1 CN 2019097266 W CN2019097266 W CN 2019097266W WO 2020211208 A1 WO2020211208 A1 WO 2020211208A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
cylinder
guide rail
cable
solenoid
Prior art date
Application number
PCT/CN2019/097266
Other languages
English (en)
French (fr)
Inventor
杨则英
曲建波
李术才
张庆松
葛智
田利
王浩
杨远东
马宁堃
单玉辉
范效斌
孙明皓
曲永业
张亚磊
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US17/282,962 priority Critical patent/US11566882B2/en
Priority to AU2019441279A priority patent/AU2019441279B2/en
Publication of WO2020211208A1 publication Critical patent/WO2020211208A1/zh
Priority to ZA2021/08226A priority patent/ZA202108226B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/26Measuring arrangements characterised by the use of electric or magnetic techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/0046Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm with a stationary probe, where a liquid specimen is separated from the mean mass and measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/10Plotting field distribution ; Measuring field distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V15/00Tags attached to, or associated with, an object, in order to enable detection of the object

Definitions

  • the present disclosure belongs to the field of bridge transportation facilities, and in particular relates to a magnetic tag sensor, a manufacturing method thereof, and a riverbed scour detection device.
  • Riverbed erosion is the main cause of bridge flooding.
  • the river passes through the bridge substructure, it will scour the river bed, especially the river bed near the bridge piers. Long-term scouring caused the river bed to sink, and the bridge piers and abutments were gradually exposed to the water environment. The bearing capacity of the bridge piers and abutments that lost the surrounding river bed support decreased seriously and caused collapse.
  • the first aspect of the present disclosure provides a magnetic tag sensor whose shape highly simulates a magnetic dipole model, and the generated magnetic field is more stable, which is convenient for later analysis.
  • a magnetic label sensor including:
  • a cylinder the wall of the cylinder is embedded with a threaded tube, the threaded tube is used to simulate a magnetic dipole; the two wiring ports of the threaded tube are respectively connected to the first cable and the second cable and pass through the upper part of the cylinder
  • the outer wall of the section extends out of the cylinder; the cylinder is sleeved on the guide rail, and the cylinder is arranged at the junction of the river bed and the water; the end of the guide rail is inserted into the river bed, and the top of the guide rail is installed with a water seal box, and the water seal box is provided with a power supply inside Module, relay and load, the first cable is connected to the positive pole of the power module, and the second cable is connected to the negative pole of the power module through the serial relay and load in turn; the threaded tube in the cylinder wall moves up and down with the river bed to generate a magnetic field signal.
  • the second aspect of the present disclosure provides a manufacturing method of a magnetic tag sensor.
  • the manufacturing method is simple, and the shape of the manufactured magnetic tag sensor is highly simulating a magnetic dipole model, and the generated magnetic field is more stable, which is convenient for later analysis.
  • a method for manufacturing a magnetic label sensor including:
  • the third aspect of the present disclosure provides a riverbed scour detection device, which includes a magnetic tag sensor with a highly simulating magnetic dipole model.
  • the magnetic field generated by the magnetic tag sensor is more stable and improves riverbed scour detection. Accuracy and stability.
  • a riverbed scour detection device comprising the above-mentioned magnetic label sensor
  • the magnetic label sensor is connected to a processor; the processor is used for:
  • the single degree of freedom positioning formula of the magnetic dipole is obtained:
  • Bz is the axial magnetic field intensity component of the magnetic dipole at a certain point P in space
  • Bx is the transverse magnetic field intensity component of the magnetic dipole at a point P in space
  • h is the height difference to be measured
  • R is the magnetic moment radius of the magnetic dipole
  • a is the horizontal distance from the magnetic dipole to the point P to be measured.
  • the cylinder is sleeved on the guide rail to limit the degree of freedom of the magnetic label sensor, and the magnetic label sensor has its own power module, which can generate a stable magnetic field, which further lays a foundation for improving the accuracy and stability of riverbed scour detection.
  • Fig. 1 is a schematic diagram of a cylinder structure provided by an embodiment of the present disclosure.
  • Fig. 2 is a schematic diagram of the structure of the guide rail and the water seal box provided by the embodiment of the present disclosure.
  • 1-cylinder 2-threaded tube; 3-first wiring port; 4-second wiring port; 5-rail; 6-water seal box; 7-power module; 8-load; 9-relay.
  • azimuth or positional relationship is based on the azimuth or positional relationship shown in the drawings, and is only a relationship term determined to facilitate the description of the structural relationship of each component or element in the present disclosure. It does not specifically refer to any component or element in the present disclosure, and cannot be understood as a reference to the present disclosure. Disclosure restrictions.
  • Cylinder 1 a threaded tube 2 is embedded in the wall of the cylinder 1, and the threaded tube 2 is used to simulate a magnetic dipole; the two wiring ports of the threaded tube, the first wiring port 3 and the second wiring port 4 Connect the first cable and the second cable respectively and extend the cylinder 1 through the outer wall of the upper section of the cylinder 1, as shown in Figure 1;
  • the cylinder 1 is sleeved on the guide rail 5, which is set at the junction of the river bed and the water; the end of the guide rail 5 is inserted into the river bed, and the top of the guide rail 5 is equipped with a water seal box 6, as shown in Figure 2, the water seal box 6
  • a power module 7, a relay 9 and a load 8 are provided inside.
  • the first cable is connected to the positive pole of the power module, and the second cable is connected to the negative pole of the power module through the relay and load in sequence; the threaded tube in the cylindrical wall follows the river bed. Move up and down to generate a magnetic field signal.
  • the load can be realized by using resistance or other resistive loads.
  • the power module is a battery.
  • the storage battery can perform monitoring work when the monitored riverbed cannot meet the power supply demand.
  • the power supply module can also be other power supply structures, such as a lithium battery, which can be selected by those skilled in the art according to actual conditions, and will not be repeated here.
  • the material of the cylinder is waterproof concrete, and ferric chloride is added to enhance the impermeability.
  • the cylinder height range is determined according to the required solenoid height, and the inner diameter and outer diameter of the cylinder are determined according to the required solenoid coil radius and winding thickness.
  • a solenoid is used to simulate a magnetic dipole, and the solenoid is fixedly embedded in the cylinder wall, which can play a role in accurate positioning.
  • a protective layer is reserved inside and outside the solenoid.
  • the conductor material of the solenoid is protected by a waterproof film, and an epoxy zinc-rich anti-rust paint is plated on the outside to prevent water infiltration.
  • the material of the cylinder, its surface and the cuff are all treated with waterproofing.
  • the relay is connected to a controller, and the controller is connected to a remote monitoring terminal.
  • the switch of the sensor can be controlled through the relay, which effectively separates the mutual interference of the earth background magnetic field and the magnetic field between the sensors, and improves the accuracy of riverbed detection.
  • the water seal box is arranged on an installation platform, and the installation platform is arranged on the top of the guide rail.
  • the installation platform and the guide rail are an integral structure.
  • the material of the installation platform is the same as the guide rail, and at the same time it is the base of the water-tight box, which plays a role in fixing the water-tight box.
  • the guide rail is a rigid guide rail
  • the material of the guide rail is rigid waterproof non-conductor material (such as: PVC);
  • the shape of the guide rail is a cylinder, and the radius of the guide rail is smaller than the radius of the cylinder.
  • the radius is required to enable the cylinder of the body to move down and follow the riverbed.
  • the height is required to be stable after being inserted into the riverbed and a certain distance above the riverbed.
  • the upper cover of the water seal box is a single-sided opening cuboid.
  • the upper cover of the water seal box and the installation platform base are fixed by circumferential bolts and sealing gaskets to ensure that the interior is isolated from the water environment;
  • Mounting holes of the cable cup-shaped pipe section are processed on the side of the water seal box, and the cable cup-shaped pipe section is in a sealed connection with the upper cover of the water seal box.
  • the cylinder is sleeved on the guide rail to limit the degree of freedom of the magnetic label sensor, and the magnetic label sensor has its own power module, which can generate a stable magnetic field, which further lays a foundation for improving the accuracy and stability of riverbed scour detection.
  • a manufacturing method of a magnetic label sensor is also provided.
  • this sensor should be collected by the magnetic dipole single-degree-of-freedom positioning principle
  • this sensor should be collected by the magnetic dipole single-degree-of-freedom positioning principle
  • set the number of turns and radius of the required solenoid and use hard waterproof wire to wind it into a spiral.
  • the wire tube is coated with epoxy zinc-rich anti-rust paint, and the two solenoid ports can be placed above the solenoid at the same time (the lower wiring port can be extended and returned to the top at the last turn).
  • the thickness of the protective layer is 1.5 cm.
  • the concrete is prepared according to the standard grade of waterproof concrete, and an appropriate amount of ferric chloride admixture is added.
  • the solenoid is placed in the mold, and the two connection ports of the solenoid and the waterproof cable are connected from above to extend out of the mold, and the pouring configuration is complete.
  • the concrete should be demolished and cured at the specified time. After the concrete is completely hardened, the surface is coated with epoxy zinc-rich anti-rust paint.
  • an installation hole for the cable cup-shaped pipe section is processed on the side, and the cable cup-shaped pipe section is in a sealed connection with the upper cover of the sealing box.
  • the manufacturing method of the magnetic tag sensor in this embodiment is simple, and the shape of the manufactured magnetic tag sensor is highly analogous to the magnetic dipole model, and the generated magnetic field is more stable, which is convenient for later analysis.
  • a device for detecting riverbed erosion is also provided.
  • a riverbed scour detection device comprising the above-mentioned magnetic label sensor
  • the magnetic label sensor is connected to a processor; the processor is used for:
  • the single degree of freedom positioning formula of the magnetic dipole is obtained:
  • Bz is the axial magnetic field intensity component of the magnetic dipole at a certain point P in space
  • Bx is the transverse magnetic field intensity component of the magnetic dipole at a point P in space
  • h is the height difference to be measured
  • R is the magnetic moment radius of the magnetic dipole
  • a is the horizontal distance from the magnetic dipole to the point P to be measured.
  • the riverbed scour detection device of this embodiment includes a magnetic tag sensor with a highly simulated magnetic dipole model.
  • the magnetic field generated by the magnetic label sensor is more stable, which improves the accuracy and stability of riverbed scour detection.

Abstract

一种磁性标签传感器及其制作方法及河床冲刷检测装置。磁性标签传感器包括:圆筒(1),圆筒(1)壁内嵌有螺纹管(2),螺纹管(2)用于模拟磁偶极子;螺纹管(2)的两个接线口(3,4)分别连接第一电缆和第二电缆并穿过圆筒(1)的上截面外壁伸出圆筒(1);圆筒(1)套设在导轨(5)上,圆筒(1)设置在河床与水交界处;导轨(5)末端插入河床内部,导轨(5)顶部安装有水密封箱(6),水密封箱(6)内部设置有电源模块(7)、继电器(9)和负载(8),第一电缆连接至电源模块(7)的正极,第二电缆依次通过串接继电器(9)和负载(8)连接至电源模块(7)的负极;圆筒(1)壁内的螺纹管(2)随河床上下移动而产生磁场信号。

Description

一种磁性标签传感器及其制作方法及河床冲刷检测装置 技术领域
本公开属于桥梁交通设施领域,尤其涉及一种磁性标签传感器及其制作方法及河床冲刷检测装置。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。
河床冲刷是桥梁水毁的主要原因。河流经过桥梁下部结构时,会对河床特别是桥墩附近的河床进行冲刷。长时间的冲刷使得河床下陷,使桥墩及桥台逐渐暴露于水环境中,失去周围河床支护的桥墩桥台承载能力下降严重从而造成坍塌。
发明人发现,现有的河床监测方法存在定位不精准,对工作环境要求苛刻,不具有普适性等缺点。
发明内容
为了解决上述问题,本公开的第一个方面提供一种磁性标签传感器,其形态高度模拟磁偶极子模型,产生的磁场更加稳定,便于后期分析。
为了实现上述目的,本公开采用如下技术方案:
一种磁性标签传感器,包括:
圆筒,所述圆筒壁内嵌有螺纹管,所述螺纹管用于模拟磁耦极子;所述螺纹管的两个接线口分别连接第一电缆和第二电缆并穿过圆筒的上截面外壁伸出圆筒;所述圆筒套设在导轨上,圆筒设置在河床与水交界处;导轨末端插入河 床内部,导轨顶部安装有水密封箱,所述水密封箱内部设置有电源模块、继电器和负载,第一电缆连接至电源模块的正极,第二电缆依次通过串接继电器和负载连接至电源模块的负极;圆筒壁内的螺纹管随河床上下移动而产生磁场信号。
为了解决上述问题,本公开的第二个方面提供一种磁性标签传感器的制作方法,其制作方法简单,且制作的磁性标签传感器形态高度模拟磁偶极子模型,产生的磁场更加稳定,便于后期分析。
为了实现上述目的,本公开采用如下技术方案:
一种磁性标签传感器的制作方法,包括:
(1)设定所需螺线管的匝数及半径,绕制螺线管,螺线管两接口可同时置于螺线管上方;
(2)根据螺线管的参数制作圆筒混凝土模具,螺线管上下内外均有保护层;
(3)按照防水混凝土标准级配制混凝土,将螺线管放入模具内,螺线管两接线口与第一电缆和第二电缆连接自上方伸出模具外,浇灌配置好的混凝土,在规定的时间拆模及养护;
(4)根据所制作的本体圆筒内径及高度,选择相应参数的导轨;
(5)选择防水材料制作水密封箱上盖;
(6)将电源模块与继电器、负载以及密封穿过水密封箱的第一电缆和第二电缆连接,然后通过周向螺栓及密封衬垫将上盖与底座连接,形成水密封箱;
(7)将本体圆筒从导轨底部套入,第一电缆和第二电缆预留足够的长度使圆筒能沿导轨向下运动,将导轨插入所需监测的河床处,使圆筒底面与河床贴合,跟随河床的冲刷下移。
为了解决上述问题,本公开的第三个方面提供一种河床冲刷检测装置,其包括形态高度模拟磁偶极子模型的磁性标签传感器,该磁性标签传感器产生的磁场更加稳定,提高了河床冲刷检测的准确性及稳定性。
为了实现上述目的,本公开采用如下技术方案:
一种河床冲刷检测装置,包括上述所述的磁性标签传感器;
所述磁性标签传感器与处理器相连;所述处理器,用于:
接收磁性标签传感器所检测到的磁场信号,其中,磁场信号的XOY平面与所述磁性标签传感器的水平截面平行;
根据磁偶极子磁场强度空间分布模式,得到磁偶极子的单自由度定位公式:
Figure PCTCN2019097266-appb-000001
Figure PCTCN2019097266-appb-000002
其中,Bz为磁偶极子在空间某一点P处的轴向磁场强度分量;
Bx为磁偶极子在空间某一点P处的横向磁场强度分量;
By为磁偶极子在空间某一点P处的纵向磁场强度分量;
h为待测高差,R为磁偶极子磁矩半径,a为磁偶极子至待测点P的水平距离。
本公开的有益效果是:
本公开将圆筒套设在导轨上来限制磁性标签传感器的自由度,而且磁性标签传感器自带电源模块,能够产生稳定磁场,进一步地为提高河床冲刷检测的准确性及稳定性奠定了基础。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1是本公开实施例提供的圆筒结构示意图。
图2是本公开实施例提供的导轨和水密封箱结构示意图。
其中,1-圆筒;2-螺纹管;3-第一接线口;4-第二接线口;5-导轨;6-水密封箱;7-电源模块;8-负载;9-继电器。
具体实施方式
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。
本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可 以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。
本实施例的一种磁性标签传感器,包括:
圆筒1,所述圆筒1壁内嵌有螺纹管2,所述螺纹管2用于模拟磁耦极子;所述螺纹管的两个接线口,第一接线口3和第二接线口4分别连接第一电缆和第二电缆并穿过圆筒1的上截面外壁伸出圆筒1,如图1所示;
所述圆筒1套设在导轨5上,圆筒设置在河床与水交界处;导轨5末端插入河床内部,导轨5顶部安装有水密封箱6,如图2所示,所述水密封箱6内部设置有电源模块7、继电器9和负载8,第一电缆连接至电源模块的正极,第二电缆依次通过串接继电器和负载连接至电源模块的负极;圆筒壁内的螺纹管随河床上下移动而产生磁场信号。
需要说明的是,负载可采用电阻或其他电阻性负载来实现。
作为一种实施方式,电源模块为蓄电池。
蓄电池可在所监测河床无法满足供电需求时进行监测工作。
可以理解的是,电源模块也可为其他电源结构,比如锂电池,本领域技术人员可根据实际情况自行选择,此处不再累述。
作为一种实施方式,所述圆筒的材料为防水混凝土,内掺氯化铁增强抗渗性。
作为一种实施方式,圆筒高度范围根据所需螺线管高度而定,圆筒内径与外径根据所需螺线管线圈半径及绕线厚度裁定。
作为一种实施方式,采用螺线管模拟磁偶极子,将螺线管固嵌于圆筒壁内部,这样能够起到准确地定位作用。其中,螺线管内外预留保护层。
具体地,所述螺线管的导体材料均使用防水薄膜保护,并在外部镀环氧富锌防锈漆,以隔绝水的渗入。
作为一种实施方式,圆筒的材料及其表面和收口处都做防水处理。
作为一种实施方式,所述继电器与控制器相连,所述控制器与远程监控终端相连。
本实施例通过继电器可以控制传感器开关,有效分离地球背景磁场及传感器间磁场的互相干扰,提高河床检测的准确性。
作为一种实施方式,所述水密封箱设置在安装平台上,所述安装平台设置在导轨的顶部。
作为一种实施方式,所述安装平台与导轨为一体结构。
这样安装平台的材料与导轨相同,同时又是水密封箱的底座,起到固定水密封箱的作用。
作为一种实施方式,所述导轨为刚性导轨;
所述导轨的材料为刚性防水非导体材料(如:PVC);
所述导轨的形状为圆柱体,导轨的半径小于圆筒的半径,半径要求能使本体圆筒串于且跟随河床下移,高度要求插入河床后能保持稳定且高于河床一定距离。
作为一种实施方式,所述水密封箱的上盖为单面开口长方体。
所述水密封箱的上盖与安装平台底座通过周向螺栓及密封衬垫固定,保证内部与水环境隔离;
所述水密封箱的侧面加工有电缆杯形管节的安装孔,电缆杯形管节与水密封箱的上盖之间密封连接。
本实施例将圆筒套设在导轨上来限制磁性标签传感器的自由度,而且磁性标签传感器自带电源模块,能够产生稳定磁场,进一步地为提高河床冲刷检测的准确性及稳定性奠定了基础。
在另一实施例中,还提供了磁性标签传感器的制作方法。
磁性标签传感器的制作方法,包括:
(1)设定所需螺线管的匝数及半径,绕制螺线管,螺线管两接口可同时置于螺线管上方;
具体地,根据所选采集设备的定位原理(本传感器宜通过磁偶极子单自由度定位原理进行采集)设定所需螺线管的匝数及半径,选用硬质防水电线绕制成螺线管,表面镀环氧富锌防锈漆,螺线管两接口可同时置于螺线管上方(下部接线口可在最后一匝延长返回上方)。
(2)根据螺线管的参数制作圆筒混凝土模具,螺线管上下内外均有保护层;
例如:保护层的厚度为1.5cm。
(3)按照防水混凝土标准级配制混凝土,将螺线管放入模具内,螺线管两接线口与第一电缆和第二电缆连接自上方伸出模具外,浇灌配置好的混凝土,在规定的时间拆模及养护;
具体地,按照防水混凝土标准级来配制混凝土,内加适量氯化铁外加剂,将螺线管放入模具内,螺线管两接线口与防水电缆连接自上方伸出模具外,浇灌配置好的混凝土,在规定的时间拆模、养护。混凝土完全硬化后,在表面镀环氧富锌防锈漆。
(4)根据所制作的本体圆筒内径及高度,选择相应参数的导轨;
(5)选择防水材料制作水密封箱上盖;
另外,在侧面加工有电缆杯形管节的安装孔,电缆杯形管节与封箱上盖间密封连接。
(6)将电源模块与继电器、负载以及密封穿过水密封箱的第一电缆和第二电缆连接,然后通过周向螺栓及密封衬垫将上盖与底座连接,形成水密封箱;
(7)将本体圆筒从导轨底部套入,第一电缆和第二电缆预留足够的长度使圆筒能沿导轨向下运动,将导轨插入所需监测的河床处,使圆筒底面与河床贴合,跟随河床的冲刷下移。
本实施例磁性标签传感器的制作方法简单,且制作的磁性标签传感器形态高度模拟磁偶极子模型,产生的磁场更加稳定,便于后期分析。
在另一实施例中,还提供了一种河床冲刷检测装置。
一种河床冲刷检测装置,包括上述所述的磁性标签传感器;
所述磁性标签传感器与处理器相连;所述处理器,用于:
接收磁性标签传感器所检测到的磁场信号,其中,磁场信号的XOY平面与所述磁性标签传感器的水平截面平行;
根据磁偶极子磁场强度空间分布模式,得到磁偶极子的单自由度定位公式:
Figure PCTCN2019097266-appb-000003
Figure PCTCN2019097266-appb-000004
其中,Bz为磁偶极子在空间某一点P处的轴向磁场强度分量;
Bx为磁偶极子在空间某一点P处的横向磁场强度分量;
By为磁偶极子在空间某一点P处的纵向磁场强度分量;
h为待测高差,R为磁偶极子磁矩半径,a为磁偶极子至待测点P的水平距 离。
本实施例的河床冲刷检测装置,包括形态高度模拟磁偶极子模型的磁性标签传感器,该磁性标签传感器产生的磁场更加稳定,提高了河床冲刷检测的准确性及稳定性。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种磁性标签传感器,其特征在于,包括:
    圆筒,所述圆筒壁内嵌有螺纹管,所述螺纹管用于模拟磁耦极子;所述螺纹管的两个接线口分别连接第一电缆和第二电缆并穿过圆筒的上截面外壁伸出圆筒;所述圆筒套设在导轨上,圆筒设置在河床与水交界处;导轨末端插入河床内部,导轨顶部安装有水密封箱,所述水密封箱内部设置有电源模块、继电器和负载,第一电缆连接至电源模块的正极,第二电缆依次通过串接继电器和负载连接至电源模块的负极;圆筒壁内的螺纹管随河床上下移动而产生磁场信号。
  2. 如权利要求1所述的一种磁性标签传感器,其特征在于,所述继电器与控制器相连,所述控制器与远程监控终端相连。
  3. 如权利要求1所述的一种磁性标签传感器,其特征在于,所述水密封箱设置在安装平台上,所述安装平台设置在导轨的顶部。
  4. 如权利要求3所述的一种磁性标签传感器,其特征在于,所述安装平台与导轨为一体结构。
  5. 如权利要求1所述的一种磁性标签传感器,其特征在于,所述导轨为刚性导轨;
    所述导轨的材料为刚性防水非导体材料;
    所述导轨的形状为圆柱体,导轨的半径小于圆筒的半径。
  6. 如权利要求1所述的一种磁性标签传感器,其特征在于,所述螺线管的导体材料均使用防水薄膜保护,并在外部镀环氧富锌防锈漆,以隔绝水的渗入;
    所述圆筒的材料为防水混凝土,内掺氯化铁增强抗渗性。
  7. 如权利要求1所述的一种磁性标签传感器,其特征在于,所述水密封箱的上盖为单面开口长方体。
  8. 如权利要求7所述的一种磁性标签传感器,其特征在于,所述水密封箱的上盖与安装平台底座通过周向螺栓及密封衬垫固定,保证内部与水环境隔离;
    所述水密封箱的侧面加工有电缆杯形管节的安装孔,电缆杯形管节与水密封箱的上盖之间密封连接。
  9. 一种如权利要求1-8中任一项所述的磁性标签传感器的制作方法,其特征在于,包括:
    (1)设定所需螺线管的匝数及半径,绕制螺线管,螺线管两接口可同时置于螺线管上方;
    (2)根据螺线管的参数制作圆筒混凝土模具,螺线管上下内外均有保护层;
    (3)按照防水混凝土标准级配制混凝土,将螺线管放入模具内,螺线管两接线口与第一电缆和第二电缆连接自上方伸出模具外,浇灌配置好的混凝土,在规定的时间拆模及养护;
    (4)根据所制作的本体圆筒内径及高度,选择相应参数的导轨;
    (5)选择防水材料制作水密封箱上盖;
    (6)将电源模块与继电器、负载以及密封穿过水密封箱的第一电缆和第二电缆连接,然后通过周向螺栓及密封衬垫将上盖与底座连接,形成水密封箱;
    (7)将本体圆筒从导轨底部套入,第一电缆和第二电缆预留足够的长度使圆 筒能沿导轨向下运动,将导轨插入所需监测的河床处,使圆筒底面与河床贴合,跟随河床的冲刷下移。
  10. 一种河床冲刷检测装置,其特征在于,包括如权利要求1-8中任一项所述的磁性标签传感器;
    所述磁性标签传感器与处理器相连;所述处理器,用于:
    接收磁性标签传感器所检测到的磁场信号,其中,磁场信号的XOY平面与所述磁性标签传感器的水平截面平行;
    根据磁偶极子磁场强度空间分布模式,得到磁偶极子的单自由度定位公式:
    Figure PCTCN2019097266-appb-100001
    Figure PCTCN2019097266-appb-100002
    其中,Bz为磁偶极子在空间某一点P处的轴向磁场强度分量;
    Bx为磁偶极子在空间某一点P处的横向磁场强度分量;
    By为磁偶极子在空间某一点P处的纵向磁场强度分量;
    h为待测高差,R为磁偶极子磁矩半径,a为磁偶极子至待测点P的水平距离。
PCT/CN2019/097266 2019-04-16 2019-07-23 一种磁性标签传感器及其制作方法及河床冲刷检测装置 WO2020211208A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/282,962 US11566882B2 (en) 2019-04-16 2019-07-23 Magnetic tag sensor and method for manufacturing same, and riverbed scour detection device
AU2019441279A AU2019441279B2 (en) 2019-04-16 2019-07-23 Magnetic tag sensor and manufacturing method therefor, and river bed scouring measurement device
ZA2021/08226A ZA202108226B (en) 2019-04-16 2021-10-25 Magnetic tag sensor and method for manufacturing same, and riverbed scour detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910305365.8 2019-04-16
CN201910305365.8A CN109883454B (zh) 2019-04-16 2019-04-16 一种磁性标签传感器及其制作方法及河床冲刷检测装置

Publications (1)

Publication Number Publication Date
WO2020211208A1 true WO2020211208A1 (zh) 2020-10-22

Family

ID=66937563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097266 WO2020211208A1 (zh) 2019-04-16 2019-07-23 一种磁性标签传感器及其制作方法及河床冲刷检测装置

Country Status (5)

Country Link
US (1) US11566882B2 (zh)
CN (1) CN109883454B (zh)
AU (1) AU2019441279B2 (zh)
WO (1) WO2020211208A1 (zh)
ZA (1) ZA202108226B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115467290A (zh) * 2022-10-25 2022-12-13 成都市市政工程设计研究院有限公司 一种生态固床件、试验装置及其试验方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109883454B (zh) * 2019-04-16 2020-07-31 山东大学 一种磁性标签传感器及其制作方法及河床冲刷检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532687A (en) * 1992-12-31 1996-07-02 Richardson; Jerry R. Modular magnetic scour monitoring device and method for using the same
CN102071661A (zh) * 2010-12-29 2011-05-25 大连理工大学 基于磁法勘探的冲刷监测方法
CN102622636A (zh) * 2012-02-21 2012-08-01 大连理工大学 一种用于监测、定位的磁性标签及方法
CN107289996A (zh) * 2016-04-11 2017-10-24 林咏彬 复合式水文监测系统
CN107702639A (zh) * 2017-09-19 2018-02-16 西南大学 基于磁场的桥墩冲刷监测系统及监测方法
CN109425724A (zh) * 2017-09-05 2019-03-05 林咏彬 地貌结构监测系统
CN109883454A (zh) * 2019-04-16 2019-06-14 山东大学 一种磁性标签传感器及其制作方法及河床冲刷检测装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858003B2 (ja) * 2003-05-23 2006-12-13 日本ジタン株式会社 磁気探査方法およびその装置
US7973240B2 (en) * 2007-03-23 2011-07-05 Verdant Power Cable jacket sealing, pressurization, and monitoring
CN101334261B (zh) * 2007-06-28 2011-02-16 陈明正 监测河床冲刷深度用监测装置、远程自动监测系统及桥梁
CN201104235Y (zh) * 2007-11-19 2008-08-20 陈士锋 跟踪式桥墩冲刷预警装置
KR101300252B1 (ko) * 2012-03-09 2013-09-10 김병철 계장계측 원방감시 및 수배전제어반 지중승하강 장치
CN204286386U (zh) * 2014-12-25 2015-04-22 西南大学 基于地脉动测量的桥墩冲刷监测系统
CN105696637B (zh) * 2016-04-18 2017-09-15 河海大学 可考虑冲刷影响的桶基侧向动阻抗试验测量装置及方法
CN106052604B (zh) * 2016-05-30 2018-12-18 北京交通大学 测量桥墩周围局部冲刷深度的装置
CN106917420B (zh) * 2017-01-09 2019-11-12 浙江工业大学 一种桩基冲刷监测装置
CN208329020U (zh) * 2018-06-11 2019-01-04 河海大学 一种海上风机动桩下冲刷坑土体位移过程测定试验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532687A (en) * 1992-12-31 1996-07-02 Richardson; Jerry R. Modular magnetic scour monitoring device and method for using the same
CN102071661A (zh) * 2010-12-29 2011-05-25 大连理工大学 基于磁法勘探的冲刷监测方法
CN102622636A (zh) * 2012-02-21 2012-08-01 大连理工大学 一种用于监测、定位的磁性标签及方法
CN107289996A (zh) * 2016-04-11 2017-10-24 林咏彬 复合式水文监测系统
CN109425724A (zh) * 2017-09-05 2019-03-05 林咏彬 地貌结构监测系统
CN107702639A (zh) * 2017-09-19 2018-02-16 西南大学 基于磁场的桥墩冲刷监测系统及监测方法
CN109883454A (zh) * 2019-04-16 2019-06-14 山东大学 一种磁性标签传感器及其制作方法及河床冲刷检测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115467290A (zh) * 2022-10-25 2022-12-13 成都市市政工程设计研究院有限公司 一种生态固床件、试验装置及其试验方法
CN115467290B (zh) * 2022-10-25 2023-09-01 成都市市政工程设计研究院有限公司 一种生态固床件试验装置的试验方法

Also Published As

Publication number Publication date
ZA202108226B (en) 2022-02-23
CN109883454A (zh) 2019-06-14
US20210356248A1 (en) 2021-11-18
CN109883454B (zh) 2020-07-31
US11566882B2 (en) 2023-01-31
AU2019441279B2 (en) 2023-02-16
AU2019441279A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2020211208A1 (zh) 一种磁性标签传感器及其制作方法及河床冲刷检测装置
CN105696540A (zh) 一种基坑深层水平位移与地下水位的测量方法与装置
CN114001801B (zh) 一种长期地下水位观测装置及其观测方法
CN102852166B (zh) 一种高海拔冻土层输电线路铁塔基础在线监测系统及方法
CN202793533U (zh) 一种河道水位尺
CN207031555U (zh) 一种在役储油罐斜井阳极阴极保护装置
CN202706066U (zh) 一种高海拔冻土层输电线路铁塔基础在线监测系统
TWI497038B (zh) 多功能河川水文自動量測系統
CN110455678A (zh) 一种装配式桥梁墩柱节点灌浆密实度检测方法
CN113503852A (zh) 一种冻土区地表形变连续自动监测装置
CN104596477A (zh) 一种变电站地基沉降监测方法
CN203551036U (zh) 地下水位测量装置
CN114908818B (zh) 一种基坑变形观测装置
CN210014809U (zh) 旋桨式在线测流系统
CN213397277U (zh) 一种施工现场基坑水位监测装置
CN209292487U (zh) 一种测量断电电位的电极
CN211504332U (zh) 一种双测头地下水水位监测仪
CN108203833A (zh) 一种钢筋混凝土监测装置
CN207339206U (zh) 一种预制式电缆沟装置
CN105925990A (zh) 一种海上风电基础阴极保护远程监测装置及其监测方法
CN112233387A (zh) 一种沿海风暴潮监测装置及在线监测预警系统
CN201133105Y (zh) 简易水情遥测平台
CN202442711U (zh) 壁嵌式强制归心标安装结构
CN216283812U (zh) 一种水利工程液位计
CN211014340U (zh) 一种喉道流量智能监测及报警装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019441279

Country of ref document: AU

Date of ref document: 20190723

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19924662

Country of ref document: EP

Kind code of ref document: A1