WO2020211116A1 - 一种固定泄放时间的控制电路及控制方法 - Google Patents

一种固定泄放时间的控制电路及控制方法 Download PDF

Info

Publication number
WO2020211116A1
WO2020211116A1 PCT/CN2019/084831 CN2019084831W WO2020211116A1 WO 2020211116 A1 WO2020211116 A1 WO 2020211116A1 CN 2019084831 W CN2019084831 W CN 2019084831W WO 2020211116 A1 WO2020211116 A1 WO 2020211116A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
control
timing
signal
resistor
Prior art date
Application number
PCT/CN2019/084831
Other languages
English (en)
French (fr)
Inventor
李照华
Original Assignee
深圳市明微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920519975.3U external-priority patent/CN209994594U/zh
Priority claimed from CN201910304441.3A external-priority patent/CN109922576A/zh
Application filed by 深圳市明微电子股份有限公司 filed Critical 深圳市明微电子股份有限公司
Priority to EP19861278.0A priority Critical patent/EP3749059B1/en
Priority to US16/652,637 priority patent/US11252801B2/en
Priority to PL19861278.0T priority patent/PL3749059T3/pl
Publication of WO2020211116A1 publication Critical patent/WO2020211116A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3574Emulating the electrical or functional characteristics of incandescent lamps
    • H05B45/3575Emulating the electrical or functional characteristics of incandescent lamps by means of dummy loads or bleeder circuits, e.g. for dimmers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Definitions

  • the solution belongs to the technical field of electronic circuits, and particularly relates to a control circuit and a control method with a fixed discharge time.
  • a minimum maintenance current is required. If the current of the control system is less than the minimum maintenance current, the thyristor will be turned off.
  • the line network voltage is less than the LED turn-on voltage, it is necessary to maintain the normal opening of the thyristor and an additional bleeder is required Current is used to maintain the normal opening of the SCR; if the discharge current path is normally open, the efficiency of the system will be affected.
  • the existing traditional technology has the problem of low efficiency due to the inability to control the time of discharging current.
  • the purpose of this solution is to provide a fixed discharge time control circuit and control method, which aims to solve the problem of low efficiency caused by the inability to control the discharge current time in the existing traditional technology.
  • the first aspect of this solution provides a control circuit with a fixed bleed time, the control circuit includes:
  • the wire network is configured as a detection module that obtains and transmits the trigger signal
  • timing module Connected to the timing module and configured as a control module that outputs a control signal according to the timing end signal;
  • control module It is connected to the control module and configured as a bleeder module configured to bleed current within the preset time according to the control signal.
  • the second aspect of this solution provides a control method for a fixed release time, and the control method includes:
  • Timing module Use a timing module to start timing after receiving the trigger signal, and output a timing end signal after reaching a preset time
  • the discharge module is used to discharge the current within the preset time according to the control signal.
  • This solution provides a control circuit and control method for a fixed release time, including a detection module, a timing module, a control module, and a release module.
  • the trigger signal is acquired through the detection module and transmitted; the timing module starts to perform after receiving the trigger signal Timer, and when the preset time is reached, the timing end signal is output; the control module outputs the control signal according to the timing end signal; the bleeder module bleeds the current within the preset time according to the control signal; and when the control circuit is powered off When the time, the detection module, timing module, control module and bleeder module automatically reset after power failure.
  • FIG. 1 is a schematic diagram of a module structure of a control circuit with a fixed discharge time provided by an embodiment of the present solution.
  • Fig. 2 is a circuit example diagram of a control circuit with a fixed discharge time provided by an embodiment of the solution.
  • Fig. 3 is a schematic flowchart of a method for controlling a fixed discharge time provided by another embodiment of the present solution.
  • the above-mentioned control circuit and control method for a fixed release time include a detection module, a timing module, a control module, and a release module.
  • the trigger signal is acquired through the detection module and transmitted; the timing module starts timing after receiving the trigger signal, And when the preset time is reached, the timing end signal is output; the control module outputs the control signal according to the timing end signal; the bleeder module bleeds the current within the preset time according to the control signal; and when the control circuit is powered off,
  • the detection module, timing module, control module and bleeder module automatically reset after power failure.
  • Fig. 1 shows the module structure of a control circuit with a fixed discharge time provided by an embodiment of this scheme. For ease of description, only the parts related to this embodiment are shown, which are detailed as follows:
  • the above-mentioned control circuit for a fixed discharge time includes a detection module 101, a timing module 102, a control module 103, and a discharge module 104.
  • the detection module 101 is connected to the wire network after the bridge, and is configured to obtain and transmit the trigger signal.
  • the timing module 102 is connected to the detection module 101, and is configured to start timing after receiving the trigger signal, and output a timing end signal after reaching a preset time.
  • the control module 103 is connected to the timing module 102 and is configured to output a control signal according to the timing end signal.
  • the bleeder module 104 is connected to the control module 103 and is configured to bleed the current within the preset time according to the control signal.
  • the above-mentioned timing module 102 is an existing module, in which the preset time can be set according to actual needs.
  • the detection module 101 is connected to the wire network after the bridge, that is, it is indirectly connected to switching elements such as thyristors, and obtains a trigger signal; after the timing module 102 receives the trigger signal, it starts timing to This starts to calculate the start time of the bleeder current, and after the preset time, outputs the timing end signal; after the control module 103 receives the timing end signal, it outputs a control signal to control the bleeder module 104 to discharge the current to the end; and when When the control circuit is powered off, the above-mentioned functional modules (including the detection module 101, the timing module 102, the control module 103, and the discharge module 104) automatically perform a power failure reset.
  • Fig. 2 shows an example circuit of a control circuit with a fixed discharge time provided by an embodiment of this solution.
  • Fig. 2 shows an example circuit of a control circuit with a fixed discharge time provided by an embodiment of this solution.
  • Fig. 2 shows an example circuit of a control circuit with a fixed discharge time provided by an embodiment of this solution.
  • Fig. 2 shows an example circuit of a control circuit with a fixed discharge time provided by an embodiment of this solution.
  • the detection module 101 includes a first resistor R1, a second resistor R2, and a first comparator COMP1;
  • the first end of the first resistor R1 is connected to the back-to-bridge network (indicated by VIN in Figure 2), and the second end of the first resistor R1 is shared with the first end of the second resistor R2 and the non-inverting input end of the first comparator COMP1. Then, the second end of the second resistor R2 is grounded, the inverting input end of the first comparator COMP1 is connected to the third reference voltage signal Vref3, and the output end of the first comparator COMP1 is connected to the timing module 102.
  • the above-mentioned control module 103 is implemented by a latch, which can change the state under the action of a specific input pulse level, or temporarily store the signal to maintain a certain level state.
  • the latch includes any one of a D flip-flop, a buffer, and an SR latch.
  • the control module 103 is implemented by using an SR latch.
  • control module 103 can also be implemented by a main control chip, the input end of the main control chip is connected to the timing module 102, and the output end of the main control chip is connected to the bleeder module 104.
  • the above-mentioned bleeder module 104 includes a switch SW1, a second switch tube Q2, a third operational amplifier COMP3, and a fourth resistor R4;
  • the controlled end of the switch SW1 is connected to the control module 103, the first end of the switch SW1 is grounded through the sixth resistor R6 and the fifth resistor R5, the second end of the switch SW1 is connected to the inverting input end of the third operational amplifier COMP3 and the second switch
  • the output terminal of the tube Q2 is connected in common, the non-inverting input terminal of the third operational amplifier COMP3 is connected to the second reference voltage signal Vref2, the output terminal of the third operational amplifier COMP3 is connected to the controlled terminal of the second switching tube Q2, and the second switching tube Q2
  • the input end of the fourth resistor R4 is connected to the first end, the second end of the fourth resistor R4 is connected to the anode of the first diode D1, the cathode of the first diode D1, the anode of the light emitting diode LED, and the third resistor R3
  • the switch SW1 includes a field effect tube or a triode.
  • the above-mentioned second switching tube Q2 includes a field effect tube or a triode
  • the drain, the gate, and the source of the field effect transistor are respectively the input end, the controlled end and the output end of the second switch Q2;
  • the collector, base and emitter of the triode are the input end, the controlled end and the output end of the second switch tube Q2, respectively.
  • the above-mentioned fixed discharge time control circuit further includes a first switch tube Q1 and a second operational amplifier COMP2;
  • the output terminal of the first switching tube Q1 is connected to the inverting input terminal of the second operational amplifier COMP2, the non-inverting input terminal of the second operational amplifier COMP2 is connected to the first reference voltage signal Vref1, and the output terminal of the second operational amplifier COMP2 is connected to the first switch
  • the controlled end of the tube Q1, and the input end of the first switching tube Q1 is connected to the cathode of the light emitting diode LED.
  • the above-mentioned first switch tube Q1 includes a field effect tube or a triode
  • the drain, the gate, and the source of the field effect transistor are the input terminal, the controlled terminal, and the output terminal of the first switch tube Q1;
  • the collector, base and emitter of the triode are the input terminal, the controlled terminal and the output terminal of the first switching tube Q1, respectively.
  • Fig. 3 shows the step flow of a method for controlling a fixed release time provided by an embodiment of this solution.
  • Fig. 3 shows the step flow of a method for controlling a fixed release time provided by an embodiment of this solution.
  • the parts related to this embodiment are shown, which are detailed as follows:
  • This solution also provides a control method for a fixed release time, including the following steps:
  • the detection point of the detection module 101 can be set at the VIN port (that is, the network after the bridge is connected). After the detection module 101 outputs a timing signal to the timing module 102, the timing module 102 starts to work. After time, send a shutdown signal to the control module 103; where the control module 103 can be connected to the bleeder path, optionally, can also be connected to the EN (enable) end of the third operational amplifier COMP3 in the bleeder module 104, At this point, the logic ends; until the power-down reset, the system enters a new round of logic cycle.
  • the power signal passes through the thyristor, the power signal is rectified by the rectifier bridge DB1, and then passes through the first diode D1 to drive the light-emitting diode LED to light up; because the detection module 101 and the timing module are provided 102.
  • the control module 103 and the bleeder module 104 make the system work more efficient when the opening angle of the thyristor is maximized, and during the thyristor dimming process, when the main circuit current is lower than the holding current of the thyristor, The thyristor is maintained to be normally turned on through the discharge current, so that the system works normally.
  • the control circuit and control method for a fixed discharge time includes a detection module, a timing module, a control module, and a discharge module.
  • the trigger signal is acquired through the detection module and transmitted; the timing module receives Start timing after the trigger signal, and when the preset time is reached, output the timing end signal; the control module outputs the control signal according to the timing end signal; the discharge module discharges the current within the preset time according to the control signal; and
  • the detection module, timing module, control module and bleeder module will automatically perform a power-down reset.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本方案属于电子电路技术领域,提供了一种固定泄放时间的控制电路及控制方法,通过检测模块获取触发信号并进行传输;计时模块接收到触发信号后开始进行计时,并在达到预设时间后,输出计时结束信号;控制模块根据计时结束信号,输出控制信号;泄放模块根据控制信号,在预设时间内对电流进行泄放;并当控制电路掉电时,检测模块、计时模块、控制模块及泄放模块自动进行掉电复位。由此实现了所有模块在掉电复位后,可以进行新一轮的逻辑控制;通过固定泄放时间,可达到在可控硅开启角度最大时,系统工作效率较高,并且在可控硅调光的过程中,当主路电流低于可控硅维持电流时,通过泄放电流维持可控硅正常开启,使得系统正常工作。

Description

一种固定泄放时间的控制电路及控制方法 技术领域
本方案属于电子电路技术领域,尤其涉及一种固定泄放时间的控制电路及控制方法。
背景技术
在电子电路的控制系统中,当接入可控硅并在可控硅进行导通时,需要最小维持电流,如果控制系统的电流小于最小维持电流则会导致可控硅关断。可选的,在LED调光领域,特别是接入可控硅调光的LED调光领域,当线网电压小于LED导通电压时,需要维持可控硅正常开启则需要额外引入一路泄放电流,用于维持可控硅正常开启;如果泄放电流通路常开,系统的效率会受到影响。
因此,现有的传统技术存在着因无法控制泄放电流的时间而导致效率低下的问题。
技术问题
本方案的目的在于提供一种固定泄放时间的控制电路及控制方法,旨在解决现有的传统技术存在着因无法控制泄放电流的时间而导致效率低下的问题。
技术解决方案
本方案第一方面提供了一种固定泄放时间的控制电路,所述控制电路包括:
接桥后线网,被配置为获取触发信号并进行传输的检测模块;
与所述检测模块连接,被配置为接收到所述触发信号后开始进行计时,并在达到预设时间后,输出计时结束信号的计时模块;
与所述计时模块连接,被配置为根据所述计时结束信号,输出控制信号的控制模块;以及
与所述控制模块连接,被配置为根据所述控制信号,在所述预设时间内对电流进行泄放的泄放模块。
本方案第二方面提供了一种固定泄放时间的控制方法,所述控制方法包括:
采用检测模块获取触发信号并进行传输;
采用计时模块接收到所述触发信号后开始进行计时,并在达到预设时间后,输出计时结束信号;
采用控制模块根据所述计时结束信号,输出控制信号;
采用泄放模块根据所述控制信号,在所述预设时间内对电流进行泄放。
有益效果
本方案提供的一种固定泄放时间的控制电路及控制方法,包括检测模块、计时模块、控制模块以及泄放模块,通过检测模块获取触发信号并进行传输;计时模块接收到触发信号后开始进行计时,并在达到预设时间后,输出计时结束信号;控制模块根据计时结束信号,输出控制信号;泄放模块根据控制信号,在预设时间内对电流进行泄放;并当控制电路掉电时,检测模块、计时模块、控制模块及泄放模块自动进行掉电复位。由此实现了所有模块在掉电复位后,可以进行新一轮的逻辑控制;通过固定泄放时间,可达到在可控硅开启角度最大时,系统工作效率较高,并且在可控硅调光的过程中,当主路电流低于可控硅维持电流时,通过泄放电流维持可控硅正常开启,使得系统正常工作,解决了现有的传统技术存在着因无法控制泄放电流的时间而导致效率低下的问题。
附图说明
图1是本方案一实施例提供的一种固定泄放时间的控制电路的模块结构示意图。
图2是本方案一实施例提供的一种固定泄放时间的控制电路的电路示例图。
图3是本方案另一实施例提供的一种固定泄放时间的控制方法的流程步骤示意图。
本发明的实施方式
为了使本方案的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本方案进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本方案,并不用于限定本方案。
上述的一种固定泄放时间的控制电路及控制方法,包括检测模块、计时模块、控制模块以及泄放模块,通过检测模块获取触发信号并进行传输;计时模块接收到触发信号后开始进行计时,并在达到预设时间后,输出计时结束信号;控制模块根据计时结束信号,输出控制信号;泄放模块根据控制信号,在预设时间内对电流进行泄放;并当控制电路掉电时,检测模块、计时模块、控制模块及泄放模块自动进行掉电复位。由此实现了所有模块在掉电复位后,可以进行新一轮的逻辑控制;通过固定泄放时间,可达到在可控硅开启角度最大时,系统工作效率较高,并且在可控硅调光的过程中,当主路电流低于可控硅维持电流时,通过泄放电流维持可控硅正常开启,使得系统正常工作。
图1示出了本方案一实施例提供的一种固定泄放时间的控制电路的模块结构,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
上述一种固定泄放时间的控制电路,包括检测模块101、计时模块102、控制模块103以及泄放模块104。
检测模块101接桥后线网,被配置为获取触发信号并进行传输。
计时模块102与检测模块101连接,被配置为接收到触发信号后开始进行计时,并在达到预设时间后,输出计时结束信号。
控制模块103与计时模块102连接,被配置为根据计时结束信号,输出控制信号。
泄放模块104与控制模块103连接,被配置为根据控制信号,在所述预设时间内对电流进行泄放。
作为本方案一实施例,上述计时模块102为现有模块,其中,预设时间可根据实际需要进行设定。
作为本方案一实施例,上述检测模块101接桥后线网,也即是与可控硅等开关元件间接连接,并获取触发信号;在计时模块102接收到该触发信号后开始进行计时,以此开始计算泄放电流的开始时间,并在预设时间后,输出计时结束信号;控制模块103接收到计时结束信号后,输出控制信号以控制泄放模块104对电流进行泄放结束;并当控制电路掉电时,上述各个功能模块(包括检测模块101、计时模块102、控制模块103及泄放模块104)自动进行掉电复位。由此通过固定泄放时间,可以达到在可控硅开启角度最大时,系统工作效率较高,并且在可控硅调光的过程中,当主路电流低于可控硅维持电流时,通过泄放电流维持可控硅正常开启,使得系统正常工作。
图2示出了本方案一实施例提供的一种固定泄放时间的控制电路的示例电路,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
作为本方案一实施例,上述检测模块101包括第一电阻R1、第二电阻R2以及第一比较器COMP1;
第一电阻R1的第一端接桥后线网(图2采用VIN表示),第一电阻R1的第二端与第二电阻R2的第一端以及第一比较器COMP1的正相输入端共接,第二电阻R2的第二端接地,第一比较器COMP1的反相输入端接第三基准电压信号Vref3,第一比较器COMP1的输出端接计时模块102。
作为本方案一实施例,上述控制模块103采用锁存器实现,其可以在特定输入脉冲电平作用下改变状态,也可以把信号暂存以维持某种电平状态。当然,锁存器包括D触发器、缓冲器以及SR锁存器中的任意一项。具体地,在本实施例中,控制模块103是采用SR锁存器进行实现。
并且,上述控制模块103也可采用主控芯片实现,主控芯片的输入端接计时模块102,主控芯片的输出端接泄放模块104。
作为本方案一实施例,上述泄放模块104包括开关SW1、第二开关管Q2、第三运算放大器COMP3以及第四电阻R4;
开关SW1的受控端接控制模块103,开关SW1的第一端经过第六电阻R6和第五电阻R5接地,开关SW1的第二端与第三运算放大器COMP3的反相输入端以及第二开关管Q2的输出端共接,第三运算放大器COMP3的正相输入端接第二基准电压信号Vref2,第三运算放大器COMP3的输出端接第二开关管Q2的受控端,第二开关管Q2的输入端接第四电阻R4的第一端,第四电阻R4的第二端接第一二极管D1的阳极,第一二极管D1的阴极、发光二极管LED的阳极、第三电阻R3的第一端以及第一电容C1的第一端共接,发光二极管LED的阴极与第三电阻R3的第二端以及第一电容C1的第二端共接。
具体地,上述开关SW1包括场效应管或者三极管。
具体地,上述第二开关管Q2包括场效应管或三极管;
所述场效应管的漏极、栅极以及源极分别为所述第二开关管Q2的输入端、受控端以及输出端;
所述三极管的集电极、基极以及发射极分别为所述第二开关管Q2的输入端、受控端以及输出端。
作为本方案一实施例,上述固定泄放时间的控制电路还包括第一开关管Q1和第二运算放大器COMP2;
第一开关管Q1的输出端接第二运算放大器COMP2的反相输入端,第二运算放大器COMP2的正相输入端接第一基准电压信号Vref1,第二运算放大器COMP2的输出端接第一开关管Q1的受控端,第一开关管Q1的输入端接发光二极管LED的阴极。
具体地,上述第一开关管Q1包括场效应管或三极管;
所述场效应管的漏极、栅极以及源极分别为所述第一开关管Q1的输入端、受控端以及输出端;
所述三极管的集电极、基极以及发射极分别为所述第一开关管Q1的输入端、受控端以及输出端。
图3示出了本方案一实施例提供的一种固定泄放时间的控制方法的步骤流程,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
本方案还提供了一种固定泄放时间的控制方法,包括以下步骤:
S101. 采用检测模块获取触发信号并进行传输;
S102. 采用计时模块接收到所述触发信号后开始进行计时,并在达到预设时间后,输出计时结束信号;
S103. 采用控制模块根据所述计时结束信号,输出控制信号;
S104. 采用泄放模块根据所述控制信号,在所述预设时间内对电流进行泄
放。
以下结合图1-图3对上述一种固定泄放时间的控制电路及控制方法的工作原理进行描述如下:
首先,检测模块101的检测点可设置在VIN端口(也即是接桥后线网),当检测模块101输出计时信号到计时模块102后,计时模块102开始工作,当计时模块计时至预设时间后,发送关闭信号给控制模块103;其中,控制模块103可以接入泄放通路中,可选地,还可以接入泄放模块104中第三运算放大器COMP3的EN(使能)端,至此,逻辑结束;直到掉电复位后,系统进入新一轮的逻辑循环。
具体地,电源信号经过可控硅之后,通过整流桥DB1对电源信号进行整流处理后,再通过第一二极管D1后以驱动发光二极管LED进行发亮;由于设置了检测模块101、计时模块102、控制模块103及泄放模块104,使得在可控硅开启角度最大时,系统工作效率较高,并且在可控硅调光的过程中,当主路电流低于可控硅维持电流时,通过泄放电流维持可控硅正常开启,使得系统正常工作。
综上,本方案实施例提供的一种固定泄放时间的控制电路及控制方法,包括检测模块、计时模块、控制模块以及泄放模块,通过检测模块获取触发信号并进行传输;计时模块接收到触发信号后开始进行计时,并在达到预设时间后,输出计时结束信号;控制模块根据计时结束信号,输出控制信号;泄放模块根据控制信号,在预设时间内对电流进行泄放;并当控制电路掉电时,检测模块、计时模块、控制模块及泄放模块自动进行掉电复位。由此实现了所有模块在掉电复位后,可以进行新一轮的逻辑控制;通过固定泄放时间,可达到在可控硅开启角度最大时,系统工作效率较高,并且在可控硅调光的过程中,当主路电流低于可控硅维持电流时,通过泄放电流维持可控硅正常开启,使得系统正常工作,解决了现有的传统技术存在着因无法控制泄放电流的时间而导致效率低下的问题。
以上所述仅为本方案的较佳实施例而已,并不用以限制本方案,凡在本方案的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本方案的保护范围之内。

Claims (7)

  1. 一种固定泄放时间的控制电路,其特征在于,所述控制电路包括:
    接桥后线网,被配置为获取触发信号并进行传输的检测模块;
    与所述检测模块连接,被配置为接收到所述触发信号后开始进行计时,并在达到预设时间后,输出计时结束信号的计时模块;
    与所述计时模块连接,被配置为根据所述计时结束信号,输出控制信号的控制模块;以及
    与所述控制模块连接,被配置为根据所述控制信号,在所述预设时间内对电流进行泄放的泄放模块。
  2. 如权利要求1所述的控制电路,其特征在于,所述检测模块包括:
    第一电阻、第二电阻以及第一比较器;
    所述第一电阻的第一端接桥后线网,所述第一电阻的第二端与所述第二电阻的第一端以及所述第一比较器的正相输入端共接,所述第二电阻的第二端接地,所述第一比较器的反相输入端接第三基准电压信号,所述第一比较器的输出端接所述计时模块。
  3. 如权利要求1所述的控制电路,其特征在于,所述控制模块采用锁存器实现。
  4. 如权利要求1所述的控制电路,其特征在于,所述泄放模块包括:
    开关、第二开关管、第三运算放大器以及第四电阻;
    所述开关的受控端接所述控制模块,所述开关的第一端经过第六电阻和第五电阻接地,所述开关的第二端与所述第三运算放大器的反相输入端以及所述第二开关管的输出端共接,所述第三运算放大器的正相输入端接第二基准电压信号,所述第三运算放大器的输出端接所述第二开关管的受控端,所述第二开关管的输入端接所述第四电阻的第一端,所述第四电阻的第二端通过第一二极管接发光二极管。
  5. 如权利要求4所述的控制电路,其特征在于,所述第二开关管包括场效应管或三极管;
    所述场效应管的漏极、栅极以及源极分别为所述第二开关管的输入端、受控端以及输出端;
    所述三极管的集电极、基极以及发射极分别为所述第二开关管的输入端、受控端以及输出端。
  6. 如权利要求4所述的控制电路,其特征在于,所述开关包括场效应管或者三极管。
  7. 一种固定泄放时间的控制方法,其特征在于,所述控制方法包括:
    采用检测模块获取触发信号并进行传输;
    采用计时模块接收到所述触发信号后开始进行计时,并在达到预设时间后,输出计时结束信号;
    采用控制模块根据所述计时结束信号,输出控制信号;
    采用泄放模块根据所述控制信号,在所述预设时间内对电流进行泄放。
PCT/CN2019/084831 2019-04-16 2019-04-28 一种固定泄放时间的控制电路及控制方法 WO2020211116A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19861278.0A EP3749059B1 (en) 2019-04-16 2019-04-28 Control circuit and control method capable of fixing discharge duration
US16/652,637 US11252801B2 (en) 2019-04-16 2019-04-28 Control circuit and control method with fixed bleed time
PL19861278.0T PL3749059T3 (pl) 2019-04-16 2019-04-28 Obwód sterujący i sposób sterowania z ustalonym czasem upływu

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201920519975.3U CN209994594U (zh) 2019-04-16 2019-04-16 一种固定泄放时间的控制电路
CN201910304441.3 2019-04-16
CN201910304441.3A CN109922576A (zh) 2019-04-16 2019-04-16 一种固定泄放时间的控制电路及控制方法
CN201920519975.3 2019-04-16

Publications (1)

Publication Number Publication Date
WO2020211116A1 true WO2020211116A1 (zh) 2020-10-22

Family

ID=72836905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084831 WO2020211116A1 (zh) 2019-04-16 2019-04-28 一种固定泄放时间的控制电路及控制方法

Country Status (4)

Country Link
US (1) US11252801B2 (zh)
EP (1) EP3749059B1 (zh)
PL (1) PL3749059T3 (zh)
WO (1) WO2020211116A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332899A (zh) * 2011-11-01 2012-01-25 深圳市力生美半导体器件有限公司 延时电路及具有该延时电路的开关电源控制器
US20180219549A1 (en) * 2017-01-27 2018-08-02 Arm Limited Digital Forward Body Biasing in CMOS Circuits
CN109041348A (zh) * 2018-08-31 2018-12-18 厦门市必易微电子技术有限公司 自适应电路模块、具有可控硅调光器的led驱动电路及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009085244A1 (en) * 2007-12-21 2009-07-09 Cypress Semiconductor Corporation Controlling a light emitting diode fixture
TWI461107B (zh) * 2011-03-22 2014-11-11 Richtek Technology Corp 發光元件電源供應電路、發光元件驅動電路及其控制方法
US9258863B2 (en) * 2011-08-19 2016-02-09 Marvell World Trade Ltd. Method and apparatus for TRIAC applications
US9101015B2 (en) * 2012-03-13 2015-08-04 Dialog Semiconductor Inc. Adaptive bipolar junction transistor gain detection
US9559675B1 (en) * 2014-02-24 2017-01-31 Marvell International Ltd. Current shaping scheme in TRIAC dimmable LED driver
TWI580307B (zh) * 2015-04-30 2017-04-21 立錡科技股份有限公司 發光元件驅動電路及其中之控制電路與控制方法
US10143051B2 (en) * 2016-11-16 2018-11-27 Joulwatt Technology (Hangzhou) Co., Ltd. Bleeder circuit and control method thereof, and LED control circuit
CN106912144B (zh) * 2017-04-06 2018-01-23 矽力杰半导体技术(杭州)有限公司 具有可控硅调光器的led驱动电路、电路模块及控制方法
CN106793352B (zh) 2017-04-06 2018-11-13 矽力杰半导体技术(杭州)有限公司 具有可控硅调光器的led驱动电路、电路模块及控制方法
CN106888524B (zh) * 2017-04-21 2018-01-16 矽力杰半导体技术(杭州)有限公司 具有可控硅调光器的led驱动电路、电路模块及控制方法
CN107645804A (zh) * 2017-07-10 2018-01-30 昂宝电子(上海)有限公司 用于led开关控制的系统
CN107995747B (zh) * 2017-12-28 2019-11-12 矽力杰半导体技术(杭州)有限公司 电路模块、可调光led驱动电路和控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332899A (zh) * 2011-11-01 2012-01-25 深圳市力生美半导体器件有限公司 延时电路及具有该延时电路的开关电源控制器
US20180219549A1 (en) * 2017-01-27 2018-08-02 Arm Limited Digital Forward Body Biasing in CMOS Circuits
CN109041348A (zh) * 2018-08-31 2018-12-18 厦门市必易微电子技术有限公司 自适应电路模块、具有可控硅调光器的led驱动电路及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3749059A4 *

Also Published As

Publication number Publication date
EP3749059B1 (en) 2022-12-07
US11252801B2 (en) 2022-02-15
EP3749059A1 (en) 2020-12-09
EP3749059A4 (en) 2021-07-07
PL3749059T3 (pl) 2023-05-15
US20210243864A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
TWI630842B (zh) System for LED switch control
CN106793246B (zh) 泄放电路及其控制方法及led控制电路
TWI492659B (zh) 開關電源及其控制電路和調光方法
US9543846B2 (en) Switching power source, method and control chip for controlling the same
US11388792B2 (en) Control circuit, LED driving chip, LED driving system and LED driving method thereof
WO2020001262A1 (zh) Led驱动控制器、led驱动电路及led发光装置
CN102804917B (zh) 用于交变电流三极管调光器的具有led的电源接口
US20120217890A1 (en) Driving circuit for led
US9345093B2 (en) Line voltage switch event detection for LED assemblies
CN109392216B (zh) 一种泄放电流自调节的方法及led可控硅调光电路
CN107770901B (zh) 发光二极管驱动装置及驱动装置的短路保护方法
US11528791B2 (en) Driving circuit
WO2019075945A1 (zh) 一种led集鱼灯电源输出切换电路
CN209994594U (zh) 一种固定泄放时间的控制电路
KR102685402B1 (ko) 반도체 장치 및 그 동작 방법
CN111417235A (zh) 一种恒流输出控制系统
WO2020211116A1 (zh) 一种固定泄放时间的控制电路及控制方法
CN102665323B (zh) 发光二极管串的驱动方法、驱动电路及其驱动方法
WO2018024221A1 (zh) 一种基于定时器的保护电路及灯具
CN209982459U (zh) 一种长延时低功耗的二线制延时开关电路
CN104333955B (zh) 一种数字控制的led驱动电路
CN106686850A (zh) 发光二极管软启动电路
EP2934067B1 (en) Dimming drive circuit and illumination apparatus comprising the dimming drive circuit
CN203015238U (zh) 一种离线式led驱动电源
CN211267189U (zh) 一种led驱动电源电路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019861278

Country of ref document: EP

Effective date: 20200608

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE