WO2020211045A1 - 一种设备控制方法及设备控制系统 - Google Patents

一种设备控制方法及设备控制系统 Download PDF

Info

Publication number
WO2020211045A1
WO2020211045A1 PCT/CN2019/083269 CN2019083269W WO2020211045A1 WO 2020211045 A1 WO2020211045 A1 WO 2020211045A1 CN 2019083269 W CN2019083269 W CN 2019083269W WO 2020211045 A1 WO2020211045 A1 WO 2020211045A1
Authority
WO
WIPO (PCT)
Prior art keywords
operating
parameters
scenario
basic
sewage
Prior art date
Application number
PCT/CN2019/083269
Other languages
English (en)
French (fr)
Inventor
李文生
张松涛
丁经国
Original Assignee
云南合续环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云南合续环境科技有限公司 filed Critical 云南合续环境科技有限公司
Priority to PCT/CN2019/083269 priority Critical patent/WO2020211045A1/zh
Publication of WO2020211045A1 publication Critical patent/WO2020211045A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage

Definitions

  • This application belongs to the technical field of sewage treatment, and in particular relates to an equipment control method and an equipment control system.
  • each sewage treatment equipment in the initial stage of the sewage treatment project needs to initialize the equipment through the following process: the field instrument collects the basic parameters of the sewage to be treated, and then professional technical engineers based on the above basic parameters and their own accumulation Experience calculates and revises the operating parameters of each equipment, and finally sets the corresponding sewage treatment equipment manually according to the obtained operating parameters and triggers the operation of each sewage treatment equipment.
  • the initialization method of this device proposed in the prior art is not an automated control mode, but a control mode that relies heavily on the personal expertise of professional technical engineers and the ability to handle changes in upstream conditions in a timely manner. Moreover, this control mode also brings risks such as difficulty in initializing sewage treatment equipment, higher operating costs, and poor operating stability.
  • the present application provides an equipment control method and equipment control system, which can help users realize intelligent setting of operating parameters of sewage treatment equipment, and can save labor costs to a certain extent.
  • the first aspect of this application provides a device control method, including:
  • Acquire basic parameters of the sewage to be treated where the basic parameters include the water quality, water temperature and/or water quality of the sewage to be treated;
  • the above-mentioned treatment equipment is the equipment currently to be controlled and used to treat the above-mentioned sewage to be treated;
  • the above operating parameters are transmitted to the above processing equipment to trigger or maintain the operation of the above processing equipment based on the above operating parameters.
  • the second aspect of this application provides a device control system, including:
  • the basic parameter acquisition module is used to acquire the basic parameters of the sewage to be treated, where the basic parameters include the water quality, water temperature and/or water quality of the sewage to be treated;
  • the operation scenario determination module is used to determine the operation scenario of the processing equipment according to the above-mentioned basic parameters, where the above-mentioned processing equipment is currently to be controlled and used to process the above-mentioned sewage to be treated;
  • the operating parameter determination module is used to determine the operating parameters of the processing equipment in the operating scenario
  • the processing equipment control module is used to transmit the above operating parameters to the above processing equipment to trigger or maintain the operation of the above processing equipment based on the above operating parameters.
  • the basic parameters of the sewage to be treated are first obtained, where the basic parameters include the water quality, temperature and/or water quality of the sewage to be treated, and then the operation scenario of the treatment equipment is determined according to the basic parameters.
  • the above-mentioned processing equipment is the equipment currently to be controlled for processing the above-mentioned sewage to be treated, and then the operating parameters of the above-mentioned processing equipment in the above-mentioned operating scenario are determined, and the above-mentioned operating parameters are finally transmitted to the above-mentioned processing equipment to trigger or maintain
  • the above processing equipment operates based on the above operating parameters.
  • the operating parameters of the sewage treatment equipment are scene-based, which can help users realize the intelligent setting of the operating parameters of the sewage treatment equipment, and can save labor costs to a certain extent.
  • FIG. 1 is a schematic diagram of the implementation process of a device control method provided by an embodiment of the present application
  • FIG. 2 is an example diagram of the architecture of a device control system provided by an embodiment of the present application
  • Fig. 3 is a structural block diagram of a device control system provided by an embodiment of the present application.
  • the following describes an equipment control method provided by an embodiment of the present application.
  • the above equipment control method can be applied to an equipment control system to realize control of various sewage treatment equipment. Please refer to Figure 1.
  • the above device control method includes:
  • step 101 basic parameters of the sewage to be treated are obtained.
  • the basic parameters of the sewage to be treated to be processed by the sewage treatment equipment are first obtained, where the basic parameters include the water quality, water temperature and/or water quality of the sewage to be treated.
  • the above-mentioned basic parameters are studied as variables in the field of sewage treatment, these three variables are actually only changes according to different sewage treatment projects or seasons. Based on this, for the currently determined sewage treatment project and the determined season, from the essence of the operation of the sewage treatment project, the above three variables can be regarded as non-variables, and the above three variables can be regarded as the initial stage of the sewage treatment project.
  • Input parameters that is, the basic parameters mentioned above).
  • step 102 the operating scenario of the processing device is determined according to the above-mentioned basic parameters
  • the above-mentioned processing equipment is the equipment currently to be controlled for processing the above-mentioned sewage to be processed. Since the above-mentioned basic parameters are used as input parameters in the initialization phase of the sewage treatment project, after the above-mentioned basic parameters are determined, it can be considered to a certain extent that the current operating scenario of each processing device is also determined, that is, it can be determined that each processing device will be What kind of sewage environment to treat sewage. Based on this, the operating scenario of the processing device can be determined according to the above-mentioned basic parameters.
  • step 103 the operating parameters of the processing device in the operating scenario are determined
  • the operating scenario where the processing device is located is determined, then on the basis that the operating scenario has been stabilized, it can be considered to a certain extent that the operating parameters of the processing device in the operating scenario can also remain relatively stable. . Therefore, after the operating scenario of the processing device is determined in step 102, the operating parameters of the processing device in the operating scenario can be determined accordingly. It should be noted that in a sewage treatment project, there may be multiple sewage treatment equipment; therefore, if there are multiple treatment equipment mentioned above, it is necessary to obtain the operating parameters of each treatment equipment in the above operation scenario respectively.
  • step 104 the above-mentioned operating parameters are transmitted to the above-mentioned processing device to trigger or maintain the operation of the above-mentioned processing device based on the above-mentioned operating parameters.
  • the operating parameters determined in step 103 may be further transmitted to the processing device. It should be noted that if there are multiple processing devices described above, in this step, the corresponding operating parameters can be transmitted to each processing device; or, based on the operating parameters determined in step 103, the corresponding operating parameters can also be transmitted to each processing device. Broadcasting, the above-mentioned processing device searches for operating parameters suitable for its own device among the various operating parameters obtained by broadcasting according to its device type, which is not limited here.
  • the means for sending the above-mentioned operating parameters to the processing device is not limited to broadcasting, which is not limited here.
  • the corresponding operating parameters can be accurately transmitted to each processing device; or, after finding the operating parameters corresponding to each processing device, Firstly, all operating parameters are transmitted to each processing device, and then the processing device screens according to its own device type to obtain the operating parameters suitable for its own device.
  • the transmission process of the above-mentioned operating parameters is not limited here. After transmitting the above operating parameters to the above processing equipment, the operation of each processing equipment can be triggered or maintained.
  • the aforementioned operating parameters include, but are not limited to, the following data types: water intake, water distribution, oxygen supply, reflux, chemical dosing, mixing degree, mud discharge, and slag discharge.
  • a professional technical engineer can sort out a large number of different scenarios based on his own experience and past data cases of various sewage treatment projects, so as to construct a scenario database in advance.
  • the foregoing scenario database may contain the sewage to be treated in each scenario.
  • the basic parameters can also include the most optimal operating parameters of each processing device in each scenario.
  • an association relationship between basic parameters-operation scenarios-operation parameters is formed, and the above-mentioned association relationships are stored in the above-mentioned scene database. Then, in the initialization phase of each sewage treatment project, it is only necessary to preset the basic parameters according to the above-mentioned basic parameters.
  • the above-mentioned scene database may be stored in the automatic control memory unit of the above-mentioned equipment control system.
  • the above device control method can be applied in multiple application scenarios.
  • the basic parameters of the sewage to be treated can be obtained in sequence according to the preset order of acquisition, and then according to the order of obtaining the basic parameters, Step-by-step screening is performed in the preset scene database to determine the operating scene of the processing device.
  • the manufacturer of the treatment equipment can first summarize and develop the reasonable operating parameters of each treatment equipment in a variety of different scenarios based on the cases of each successful sewage treatment project to form a scenario database; At the beginning of a new sewage treatment project, by sequentially inputting the above-mentioned basic parameters, step-by-step filtering is performed in the above-mentioned scene database until the only one operating scene is determined, and then the only certain operating scene is accessed from the scene database.
  • the corresponding operating parameters realize the startup and operation of the processing equipment.
  • non-professionals in the sewage treatment project do not need the professional technical engineers of the above-mentioned sewage treatment equipment manufacturers to be present, and can also determine the operating parameters of each treatment equipment according to the situation of the sewage to be treated on site.
  • the water quality is highly polluted
  • the water volume is 70% of the designed water volume
  • the water temperature is always above 12°C.
  • the sewage treatment equipment manufacturer has successfully summarized and developed the corresponding Corresponding operating parameters such as carbon source allocation ratio, sludge return flow, aerobic tank nitrification liquid return flow, system microbial biomass, dissolved oxygen content, etc., and enter the above scenario database through a solidification process.
  • the new project can directly find and download the corresponding operating parameters from the above scene database during the initialization phase of each device.
  • the manufacturer of sewage treatment equipment sets the corresponding operating parameters in the scene database of the equipment control system in advance according to the preset operating scenarios of the equipment through as many preset operating scenarios as possible. The person only needs to select the appropriate operating scenario to complete the normal use and operation of the processing equipment.
  • the second application scenario after acquiring the basic parameters of the sewage to be treated, all the acquired basic parameters can be input to the above-mentioned equipment control system at one time.
  • the above-mentioned input process can be manual input or After the above basic parameters are collected, they are automatically input, and there is no limitation here. Then, after the calculation of the above-mentioned equipment control system, an operating scenario is directly determined, and the corresponding operating parameters are determined based on the operating scenario.
  • the manufacturer of the treatment equipment can summarize and develop reasonable operating parameters of each treatment equipment in a variety of different scenarios based on the cases of each successful sewage treatment project to form a scene database;
  • the operator inputs the basic parameters at one time, and the above equipment control system automatically calculates based on the preset scene algorithm to determine the corresponding operating scene mode, and then the unique scene is accessed from the scene database.
  • the operating parameters corresponding to the determined operating scenarios realize the startup and operation of the processing equipment.
  • the operating parameters of the processing equipment can be calculated based on the preset algorithm and the basic parameters.
  • the preset algorithm automatically generates the operating parameters corresponding to the operating scenario, that is, the logical algorithm of the human brain calculation of the professional technical engineer is directly converted into the automatic control editing language to directly determine the corresponding operating scenario based on the basic information collected by the equipment control system , And calculate the operating parameters of the processing equipment in the operating scenario to realize the startup and operation of the processing equipment.
  • the logic of the aforementioned preset algorithm can be illustrated by the following example: when the water temperature is greater than 12°C and the reaction vessel (time) is constant, the sewage treatment system removes 1 unit of chemical oxygen demand (Chemical Oxygen Demand, COD), ammonia nitrogen, total nitrogen, total phosphorus, the minimum biological concentration that the sewage treatment project needs to maintain can be calculated by linear deduction, and then the corresponding material consumption (oxygenation) can be calculated by linear deduction.
  • COD chemical Oxygen Demand
  • ammonia nitrogen ammonia nitrogen
  • total nitrogen, total phosphorus the minimum biological concentration that the sewage treatment project needs to maintain
  • the minimum biological concentration that the sewage treatment project needs to maintain can be calculated by linear deduction
  • oxygenation oxygenation
  • the degree of material reaction can be directly deduced and calculated (the more thorough the reaction, the better the quality of the water produced).
  • the development and editing Appropriate computer software can calculate and accurately control all the time.
  • the above operating parameters are not pre-set in the scenario database, but after the equipment control system determines the operating scenario based on the basic parameters of the sewage to be treated, it is directly generated by the relevant background server according to the above preset algorithm. Corresponding operating parameters. Further, the following describes this application scenario with reference to the example diagram of the device control system architecture shown in Figure 2:
  • Processing equipment, sensors, IoT gateways, gateway servers, cloud platform data servers, and AI computing servers constitute the above-mentioned equipment control system; among them, the above-mentioned sensors are used to collect basic parameters such as water quality, water level, and water volume of the sewage to be treated, and integrate The collected basic parameters are sent to the Internet of Things gateway; the above-mentioned Internet of Things gateway is used to collect the basic parameters and forward the above-mentioned basic parameters to the gateway server.
  • the gateway server is the data interaction hub between the processing equipment, sensors and the cloud platform data server;
  • the cloud platform data server is used for data classification, storage, statistics and analysis of all types of basic parameters
  • the above-mentioned AI computing server is used to perform big data analysis operations on the operating parameters of different types of processing equipment based on the currently obtained basic parameters, so as to obtain the optimal operating parameters of each processing equipment that can obtain the target water quality.
  • the sensor collects basic parameters such as water quality, water temperature, and water volume and uploads them to the platform gateway server through the IoT controller;
  • the cloud platform gateway server processes the uploaded basic parameters and submits them to the cloud platform data server;
  • the cloud platform data server receives After the basic parameters are reached, they are classified, stored, counted and analyzed;
  • the AI computing server calls the basic parameters of the cloud platform data server to perform big data statistics, analysis and calculations, and finally obtains the operating parameters that best match each processing device, and passes
  • the gateway server and the Internet of Things gateway are sent to the processing equipment, and each processing equipment operates according to the obtained operating parameters to achieve the goal of reaching the standard for effluent water.
  • the above three application scenarios can be applied in a sewage treatment project, or they can be applied sequentially to complement each other.
  • the above-mentioned first or second application scenario it is difficult for the above-mentioned scenario database to list all possible application scenarios, and the data of the above-mentioned scenario database is relatively solidified.
  • the above-mentioned scenario database cannot be based on The above-mentioned basic parameters determine the operating scenario and operating parameters; in this case, if the operating scenario associated with the above-mentioned basic parameters cannot be found in the above-mentioned scenario database, the above-mentioned third application scenario can be applied, based on the preset The algorithm and the above-mentioned basic parameters calculate the operating parameters of the above-mentioned processing equipment. Moreover, in order to maintain the scene database and continuously enrich the above scene database, it is also possible to correlate the calculated operating parameters with the above basic parameters after calculating the operating parameters of the processing equipment based on the preset algorithm and the above basic parameters.
  • the third application scenario mentioned above can be used to directly calculate the current operating scenario based on the preset algorithm.
  • the calculated operating parameters are associated with the current basic parameters, a new operating scenario is established based on the association relationship, and the new operating scenario is added to the above-mentioned scenario database to realize the continuous update and maintenance of the above-mentioned scenario database .
  • the above-mentioned equipment control method can also update and maintain the above-mentioned scene database in other ways. For example, within a preset time period after the above-mentioned operating parameters are transmitted to the above-mentioned processing equipment, the processing result of the above-mentioned sewage to be treated is performed. Record, and optimize and update the operating parameters of the above-mentioned treatment equipment in the above-mentioned operating scenario based on the recorded treatment results of the above-mentioned sewage to be treated.
  • the sewage treatment project will be monitored and tracked, and the treatment results of the sewage to be treated will be periodically checked and recorded to determine the application Whether the sewage treatment results of the treatment equipment after the above operating parameters meet the expectations; when the treatment results are better and meet the preset treatment results, it indicates that the operating parameters in the current operating scenario are reasonable; when the treatment results do not reach the expected state, When the preset processing results are not met, it indicates that there is still room for improvement in the operating parameters in the current operating scenario.
  • a reminder message can be output to remind the project leader of the sewage treatment project to request on-site support from relevant professional technical engineers to achieve correct Processing equipment re-commissioning.
  • the above-mentioned operating parameters after re-debugging can also be updated to the above-mentioned scene database, and the above-mentioned updating process is not limited here.
  • sewage treatment since sewage treatment is essentially a chemical reaction, it follows the general chemical reaction logic and laws, and also follows the conservation of materials and energy, so the equipment control system can accurately collect the reaction information before and after the materials, and accurately By collecting information on the degree of reaction progress, accurate control of the sewage treatment process can be achieved by following the above-mentioned biochemical reaction logic.
  • the operating parameters of the sewage treatment equipment can be scene-based to help users realize the intelligent setting of the operating parameters of the sewage treatment equipment, which can save labor costs to a certain extent.
  • the embodiments of the present application also propose multiple application scenarios of the device control method to realize integrated intelligent control of distributed devices.
  • the device control system 300 in the embodiment of the present application includes:
  • the basic parameter acquisition module 301 is configured to acquire basic parameters of the sewage to be treated, where the basic parameters include the water quality, water temperature and/or water quality of the sewage to be treated;
  • the operating scenario determination module 302 is configured to determine the operating scenario of the processing equipment according to the above-mentioned basic parameters, where the above-mentioned processing equipment is currently to be controlled and used for processing the above-mentioned sewage to be treated;
  • the operating parameter determination module 303 is configured to determine the operating parameters of the processing device in the above operating scenario
  • the processing device control module 304 is configured to transmit the aforementioned operating parameters to the aforementioned processing device to trigger or maintain the operation of the aforementioned processing device based on the aforementioned operating parameters.
  • the aforementioned operating scenario determination module 302 is specifically configured to search for the operating scenario associated with the aforementioned basic parameter in a preset scenario database according to the aforementioned basic parameter.
  • the aforementioned device control system 300 further includes:
  • the operating parameter calculation module is configured to calculate the operating parameters of the processing equipment based on the preset algorithm and the basic parameters if the operating scenario associated with the basic parameter cannot be found in the scenario database.
  • the aforementioned device control system 300 further includes:
  • the parameter correlation module is used to correlate the calculated operating parameters with the basic parameters
  • the database update module is used to update the scene database based on the associated operating parameters and the aforementioned basic parameters.
  • the aforementioned basic parameter acquisition module 301 is specifically configured to sequentially acquire the aforementioned basic parameters of the sewage to be treated according to a preset acquisition sequence;
  • the aforementioned operating scenario determination module 302 is specifically configured to perform step-by-step screening in a preset scenario database according to the acquisition sequence of the aforementioned basic parameters to determine the operating scenario of the aforementioned processing device.
  • the aforementioned device control system 300 further includes:
  • the result recording module is used to record the processing result of the sewage to be treated in a preset time period after the operating parameters are transmitted to the processing equipment;
  • the database optimization module is used to optimize and update the operating parameters of the processing equipment in the operating scenario based on the recorded processing results of the sewage to be processed.
  • sewage treatment is essentially a chemical reaction, it follows the general chemical reaction logic and laws, and also follows the conservation of materials and energy, so the equipment control system can accurately collect the reaction information before and after the materials, and accurately The collection of reaction progress information can achieve precise control of the sewage treatment process by following the above-mentioned biochemical reaction logic.
  • the operating parameters of the sewage treatment equipment can be scene-based to help users realize the intelligent setting of the operating parameters of the sewage treatment equipment, which can save labor costs to a certain extent.
  • the disclosed system and method may be implemented in other ways.
  • the system embodiment described above is only illustrative.
  • the division of the above-mentioned modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, modules or units, and may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the above integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present invention are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage
  • the medium includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the foregoing methods in each embodiment of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)

Abstract

一种设备控制方法及设备控制系统,设备控制方法包括:获取待处理污水的基础参数(101),基础参数包括待处理污水的水温和/或水质;根据基础参数,确定处理设备的运行场景(102),处理设备为当前待控制的、用于处理待处理污水的设备;确定处理设备在运行场景下的运行参数(103);向处理设备传输运行参数,以触发或保持处理设备基于运行参数的运行(104)。设备控制方法将污水处理设备的运行参数进行场景化,可帮助用户实现对污水处理设备的运行参数智能设置,在一定程度上节约人力成本。

Description

一种设备控制方法及设备控制系统 技术领域
本申请属于污水处理技术领域,尤其涉及一种设备控制方法及设备控制系统。
背景技术
在污水处理领域,各个污水处理设备在污水处理项目的初始阶段,均需要通过以下过程实现设备初始化:现场仪器采集待处理污水的基础参数,随后由专业技术工程师基于上述基础参数及自身所累积的经验对各个设备的运行参数进行运算及修正,最后根据所得到的运行参数对相应污水处理设备进行人工设置并触发各个污水处理设备的运行。
技术问题
现有技术所提出的这种设备的初始化方法并非自动化的控制模式,而是严重依赖专业技术工程师的个人专业能力和及时处理上游情况变化的能力的控制模式。并且这种控制模式,也一定程度上带来了污水处理设备的初始化难度较大、运行成本较高及运行稳定性较差等风险。
技术解决方案
有鉴于此,本申请提供了一种设备控制方法及设备控制系统,可帮助用户实现对污水处理设备的运行参数智能设置,能够一定程度上节约人力成本。
本申请的第一方面提供了一种设备控制方法,包括:
获取待处理污水的基础参数,其中,上述基础参数包括上述待处理污水的水质、水温和/或水质;
根据上述基础参数,确定处理设备的运行场景,其中,上述处理设备为当前待控制的、用于处理上述待处理污水的设备;
确定上述处理设备在上述运行场景下的运行参数;
向上述处理设备传输上述运行参数,以触发或保持上述处理设备基于上述运行参数的运行。
本申请的第二方面提供了一种设备控制系统,包括:
基础参数获取模块,用于获取待处理污水的基础参数,其中,上述基础参数包括上述待处理污水的水质、水温和/或水质;
运行场景确定模块,用于根据上述基础参数,确定处理设备的运行场景,其中,上述处理设备为当前待控制的、用于处理上述待处理污水的设备;
运行参数确定模块,用于确定上述处理设备在上述运行场景下的运行参数;
处理设备控制模块,用于向上述处理设备传输上述运行参数,以触发或保持上述处理设备基于上述运行参数的运行。
有益效果
由上可见,在本申请方案中,首先获取待处理污水的基础参数,其中,上述基础参数包括上述待处理污水的水质、水温和/或水质,然后根据上述基础参数,确定处理设备的运行场景,其中,上述处理设备为当前待控制的、用于处理上述待处理污水的设备,接着确定上述处理设备在上述运行场景下的运行参数,最后向上述处理设备传输上述运行参数,以触发或保持上述处理设备基于上述运行参数的运行。通过本申请方案,将污水的处理设备的运行参数进行场景化,可帮助用户实现对污水处理设备的运行参数智能设置,能够一定程度上节约人力成本。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的设备控制方法的实现流程示意图;
图2是本申请实施例提供的设备控制系统的架构示例图;
图3是本申请实施例提供的设备控制系统的结构框图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请上述的技术方案,下面通过具体实施例来进行说明。
实施例1
下面对本申请实施例提供的一种设备控制方法进行描述,上述设备控制方法可应用于设备控制系统中,实现对各个污水处理设备的控制。请参阅图1,上述设备控制方法包括:
在步骤101中,获取待处理污水的基础参数;
在本申请实施例中,首先获取污水处理设备所要处理的待处理污水的基础参数,其中,上述基础参数包括上述待处理污水的水质、水温和/或水质。其中,上述基础参数虽然在污水处理领域是作为变量被人们所研究,但这三个变量实际上仅仅是根据污水处理项目或季节的不同而呈现出的变化。基于此,针对当前已确定的的污水处理项目及已确定的季节,从污水处理项目的运行本质上,可以将上述三个变量认定为非变量,将上述三个变量作为污水处理项目初始化阶段的输入参数(也即上述基础参数)。
在步骤102中,根据上述基础参数,确定处理设备的运行场景;
在本申请实施例中,上述处理设备为当前待控制的、用于处理上述待处理污水的设备。由于上述基础参数作为污水处理项目初始化阶段的输入参数,在上述基础参数被确定后,可以在一定程度上认为当前各个处理设备所在的运行场景也被确定,也即,可以确定各个处理设备将在怎样的污水环境对污水进行处理。基于此,可以根据上述基础参数,确定处理设备的运行场景。
在步骤103中,确定上述处理设备在上述运行场景下的运行参数;
在本申请实施例中,一旦上述处理设备所在的运行场景被确定,那么在运行场景已经稳定的基础下,可以在一定程度上认为上述处理设备在上述运行场景下的运行参数也能够保持相对稳定。因而,在上述步骤102确定了处理设备的运行场景后,也可以随之确定处理设备在该运行场景下的运行参数。需要注意的是,由于在一个污水处理项目中,可能有多个污水处理设备;因而在上述处理设备有多个的情况下,则需要分别获取各个处理设备在上述运行场景下的运行参数。
在步骤104中,向上述处理设备传输上述运行参数,以触发或保持上述处理设备基于上述运行参数的运行。
在本申请实施例中,在确定了处理设备在上述运行场景下的运行参数后,为了实现处理设备的运行参数智能设置,可以进一步向处理设备传输上述步骤103中所确定的运行参数。需要注意的是,若上述处理设备有多个,则在本步骤中,可以向各个处理设备传输各自所对应的运行参数;或者,也可以基于上述步骤103所确定的运行参数向各个处理设备进行广播,由上述处理设备根据其设备类型在广播所得到的各个运行参数中查找适应自身设备的运行参数,此处不作限定。当然,向处理设备发送上述运行参数的手段不局限于广播,此处不作限定。也即是说,可以是在查找到各个处理设备所对应的运行参数后,精准的向各个处理设备传输对应的运行参数;或者,也可以是在查找到各个处理设备所对应的运行参数后,先将所有运行参数传输给各个处理设备,再由处理设备根据自身设备类型进行筛选得到适应自身设备的运行参数,此处不对上述运行参数的传输过程作出限定。在向上述处理设备传输上述运行参数后,可以触发或保持各个处理设备的运行。具体地,上述运行参数包括但不限于如下几种数据类型:进水量、配水量、供氧量、回流量、加药量、搅拌程度、排泥量、排渣量。
可选地,可以由专业技术工程师根据自身经验及过往各个污水处理项目的数据案例,整理得到大量不同场景,以预先构建得到场景数据库,上述场景数据库中,既可以包含各个场景下的待处理污水的基础参数,还可以包含各个处理设备在各个场景下最优选的运行参数。也即是说,形成基础参数-运行场景-运行参数的关联关系,并将上述关联关系存储于上述场景数据库中,随后在各个污水处理项目的初始化阶段,只需要根据上述基础参数,在预设的场景数据库中查找与上述基础参数相关联的运行场景;随后根据上述运行场景,获取当前污水处理项目中所涉及的各个处理设备的运行参数,即可实现各个污水处理设备的自动化设置及运行,可以有效解决污水处理领域中,项目调试周期长及调试后设备运行不稳定的痛点。具体地,上述场景数据库可以存储于上述设备控制系统的自控存储器单元。
可选地,本申请实施例中,可以通过多种应用场景应用上述设备控制方法。例如,在第一种应用场景下,在获取了待处理污水的基础参数后,可以根据预设的获取顺序,依次获取上述待处理污水的各个基础参数,随后根据上述基础参数的获取顺序,在预设的场景数据库中进行逐级筛选,以确定上述处理设备的运行场景。在这种应用场景下,首先可以由处理设备的厂商在各个已成功的污水处理项目的案例基础上,总结开发出多种不同场景下的各个处理设备的合理运行参数,形成场景数据库;随后在新的污水处理项目开始时,通过依次输入上述基础参数的方式,在上述场景数据库中进行逐级筛选,直到确定唯一的一种运行场景,随之从场景数据库中访问到该唯一确定的运行场景所对应的运行参数,实现处理设备的启动及运行。这样一来,污水处理项目中的非专业人士不需要上述污水处理设备的厂商的专业技术工程师在场,也可以根据现场的待处理污水的情况确定各个处理设备的运行参数。例如,针对上述基础参数中水质是高污染,水量是设计水量的70%,水温常年处于>12℃这一运行场景,经长时间调试和运行,污水处理设备的厂商成功总结开发出了对应的碳源分配比例数、污泥回流量、好氧池硝化液回流量、系统微生物量、溶解氧量等对应的运行参数,并经过固化形成程序进入上述场景数据库,当再有新项目能够对应上述运行场景时,该新项目在各个设备的初始化阶段可以直接从上述场景数据库中查找并下载对应运行参数。在上述应用场景下,污水处理设备的厂商通过尽可能多的预设设备的运行场景,根据各个已预设的运行场景提前在设备控制系统的场景数据库中设定好对应的运行参数,非专业人士仅需要选择合适的运行场景即可完成对处理设备的正常使用及运行。
又例如,在第二种应用场景下,在获取了待处理污水的基础参数后,可以向上述设备控制系统一次性输入所获取到的所有基础参数,上述输入过程可以是人工输入,也可以是采集到上述基础参数后自动输入,此处不作限定。随后经过上述设备控制系统的运算,直接确定一种运行场景,并基于该运行场景确定对应的运行参数。在这种应用场景下,可以由处理设备的厂商在各个已成功的污水处理项目的案例基础上,总结开发出多种不同场景下的各个处理设备的合理运行参数,形成场景数据库;随后在新的污水处理项目开始时,通过操作人员一次性输入基础参数的方式,由上述设备控制系统基于预设的场景算法进行自动计算,以确定对应运行场景模式,随之从场景数据库中访问到该唯一确定的运行场景所对应的运行参数,实现处理设备的启动及运行。
再例如,在第三种应用场景下,在获取了待处理污水的基础参数后,可以基于预设的算法及上述基础参数计算上述处理设备的运行参数。在这种应用场景下,无需预设各个运行场景,直接通过预设的数据采集传感装置获取水量、水温、水质等基础参数,并通过直接采集的上述基础参数自动确定运行场景,然后系统根据预设的算法,自动生成该运行场景对应的运行参数,即,将专业技术工程师的人脑运算的逻辑算法直接换算成自动控制编辑语言,以直接根据设备控制系统采集的基础信息确定相应运行场景,并计算得到该运行场景下的处理设备的运行参数,实现处理设备的启动及运行。具体地,上述预设的算法的逻辑可以通过如下实例进行说明:在水温大于12℃,反应容器(时间)一定的情况下,污水处理系统每去除1个单位的化学需氧量(Chemical Oxygen Demand,COD)、氨氮、总氮、总磷,可以通过线性的推导方式计算出该污水处理项目需要维持的最低生物浓度,进而可以通过线性的推导方式计算出对应的物料消耗量(充氧量、加药量),通过控制回流量、物料混合程度(搅拌),可直接推导计算出物料反应程度(反应越彻底,产水水质越好),根据这些客观的化学反应规律,开发编辑成合适的计算机软件,进行时时计算精确控制。通过本应用场景,上述运行参数并不是预先设置在场景数据库中的,而是设备控制系统根据待处理污水的基础参数确定了运行场景后,直接由相关的后台服务器根据上述预设的算法自动生成对应的运行参数。进一步地,下面结合附图2示出的设备控制系统的架构示例图,对本应用场景进行介绍:
处理设备、传感器、物联网网关、网关服务器、云平台数据服务器和AI运算服务器共同组成了上述设备控制系统;其中,上述传感器用于采集待处理污水的水质、水位、水量等基础参数,并将所采集到的基础参数发送给物联网网关;上述物联网网关用于对基础参数进行收集,并将上述基础参数转发至网关服务器,同时,还用于接收网关服务器下发的运行参数,并将运行参数传输给相应的处理设备;上述网关服务器是处理设备、传感器与云平台数据服务器之间的数据交互枢纽;云平台数据服务器用于对所有类型的基础参数的数据分类、存储、统计和分析;上述AI运算服务器用于基于当前获得的基础参数,对不同类型的处理设备的运行参数进行大数据分析运算,以得到能够获得目标水质的各处理设备的最优运行参数。也即是说,传感器采集了水质、水温、水量等基础参数后通过物联网控制器上传到平台网关服务器;云平台网关服务器处理上传的基础参数并提交到云平台数据服务器;云平台数据服务器接收到基础参数后对其进行分类、存储、统计和分析;AI运算服务器调用云平台数据服务器的基础参数进行大数据统计、分析和运算,最终得出与各个处理设备最为匹配的运行参数,并通过网关服务器和物联网网关发送至处理设备处,各处理设备按得到的运行参数运行,以达到出水达标的目的。
可选地,上述三种应用场景在污水处理项目中可以择一应用,也可以先后应用、互为补充。例如,在应用上述第一种或第二种应用场景时,由于上述场景数据库难以穷举所有可能出现的应用场景,且上述场景数据库的数据较为固化,因而,可能出现无法在上述场景数据库中根据上述基础参数确定运行场景及运行参数的情况;在这种情况下,若无法在上述场景数据库中查找到与上述基础参数相关联的运行场景,则可以应用上述第三种应用场景,基于预设的算法及上述基础参数计算上述处理设备的运行参数。并且,为了实现对场景数据库的维护,不断的充实上述场景数据库,还可以在基于预设的算法及上述基础参数计算上述处理设备的运行参数后,将计算得到的上述运行参数与上述基础参数相关联,并基于相关联的运行参数及上述基础参数,对上述场景数据库进行更新。也即是说,若当前污水处理项目所处的是新的运行场景,无法在场景数据库中查找到最为匹配的运行场景时,可以应用上述第三种应用场景,直接根据预设的算法计算当前的基础参数下的最为合理的处理设备的运行参数。并将该计算得到的运行参数与当前的基础参数相关联,基于该关联关系建立一新的运行场景,将该新的运行场景新增入上述场景数据库中,实现上述场景数据库的不断更新及维护。
可选地,上述设备控制方法还可以通过其他方式对上述场景数据库进行更新及维护,例如,在向上述处理设备传输上述运行参数后的预设时间段内,对上述待处理污水的处理结果进行记录,并基于所记录的上述待处理污水的处理结果,对上述运行场景下的上述处理设备的运行参数进行优化及更新。也即是说,在每一次应用了与场景数据库中的运行场景相关的运行参数后,都会对该污水处理项目进行监控及追踪,周期性的查阅并记录待处理污水的处理结果,以确定应用了上述运行参数后的处理设备对污水的处理结果是否达到预期;当处理结果较佳,满足预设的处理结果时,表明当前运行场景下的运行参数较为合理;当处理结果未达到预期状态,不满足预设的处理结果时,表明当前运行场景下的运行参数仍存在改进的空间,此时可以输出提醒消息,以提醒污水处理项目的项目负责人请求相关专业技术工程师的现场支持,实现对处理设备的再调试。当然,上述再调试后的运行参数也可以被更新到上述场景数据库中,此处不对上述更新过程作出限定。
由上可见,在本申请实施例中,由于污水处理本质上是化学反应,遵循一般的化学反应逻辑及规律,同时遵循物料及能量守恒,因而设备控制系统可以精确采集前后物料反应信息,并精确采集反应进行程度信息,可通过遵循上述生化反应逻辑,实现对污水处理过程的精确控制。基于此,可以将污水的处理设备的运行参数进行场景化,以帮助用户实现对污水处理设备的运行参数智能设置,能够一定程度上节约人力成本。同时本申请实施例还提出了设备控制方法的多种应用场景,实现对分散式设备的一体化智能控制。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
实施例2
下面对本申请实施例提供的一种设备控制系统进行描述,请参阅图3,本申请实施例中的设备控制系统300包括:
基础参数获取模块301,用于获取待处理污水的基础参数,其中,上述基础参数包括上述待处理污水的水质、水温和/或水质;
运行场景确定模块302,用于根据上述基础参数,确定处理设备的运行场景,其中,上述处理设备为当前待控制的、用于处理上述待处理污水的设备;
运行参数确定模块303,用于确定上述处理设备在上述运行场景下的运行参数;
处理设备控制模块304,用于向上述处理设备传输上述运行参数,以触发或保持上述处理设备基于上述运行参数的运行。
可选地,上述运行场景确定模块302,具体用于根据上述基础参数,在预设的场景数据库中查找与上述基础参数相关联的运行场景。
可选地,上述设备控制系统300还包括:
运行参数计算模块,用于若无法在上述场景数据库中查找到与上述基础参数相关联的运行场景,则基于预设的算法及上述基础参数计算上述处理设备的运行参数。
可选地,上述设备控制系统300还包括:
参数关联模块,用于将计算得到的上述运行参数与上述基础参数相关联;
数据库更新模块,用于基于相关联的运行参数及上述基础参数,对上述场景数据库进行更新。
可选地,上述基础参数获取模块301,具体用于根据预设的获取顺序,依次获取上述待处理污水的各个基础参数;
相应地,上述运行场景确定模块302,具体用于根据上述基础参数的获取顺序,在预设的场景数据库中进行逐级筛选,以确定上述处理设备的运行场景。
可选地,上述设备控制系统300还包括:
结果记录模块,用于在向上述处理设备传输上述运行参数后的预设时间段内,对上述待处理污水的处理结果进行记录;
数据库优化模块,用于基于所记录的上述待处理污水的处理结果,对上述运行场景下的上述处理设备的运行参数进行优化及更新。
由上可见,在本申请实施例中,由于污水处理本质上是化学反应,遵循一般的化学反应逻辑及规律,同时遵循物料及能量守恒,因而设备控制系统可以精确采集前后物料反应信息,并精确采集反应进行程度信息,可通过遵循上述生化反应逻辑,实现污水处理过程的精确控制。基于此,可以将污水的处理设备的运行参数进行场景化,以帮助用户实现对污水处理设备的运行参数智能设置,能够一定程度上节约人力成本。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将上述系统的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本发明所提供的实施例中,应该理解到,所揭露的系统和方法,可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,例如,上述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,模块或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明实施例各个实施例上述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上上述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种设备控制方法,其特征在于,包括:
    获取待处理污水的基础参数,其中,所述基础参数包括所述待处理污水的水质、水温和/或水质;
    根据所述基础参数,确定处理设备的运行场景,其中,所述处理设备为当前待控制的、用于处理所述待处理污水的设备;
    确定所述处理设备在所述运行场景下的运行参数;
    向所述处理设备传输所述运行参数,以触发或保持所述处理设备基于所述运行参数的运行。
  2. 如权利要求1所述的设备控制方法,其特征在于,所述根据所述基础参数,确定处理设备的运行场景,包括:
    根据所述基础参数,在预设的场景数据库中查找与所述基础参数相关联的运行场景。
  3. 如权利要求2所述的设备控制方法,其特征在于,所述设备控制方法还包括:
    若无法在所述场景数据库中查找到与所述基础参数相关联的运行场景,则基于预设的算法及所述基础参数计算所述处理设备的运行参数。
  4. 如权利要求3所述的设备控制方法,其特征在于,所述设备控制方法还包括:
    将计算得到的所述运行参数与所述基础参数相关联;
    基于相关联的运行参数及所述基础参数,对所述场景数据库进行更新。
  5. 如权利要求1至4任一项所述的设备控制方法,其特征在于,所述获取待处理污水的基础参数,包括:
    根据预设的获取顺序,依次获取所述待处理污水的各个基础参数;
    相应地,所述根据所述基础参数,确定处理设备的运行场景,包括:
    根据所述基础参数的获取顺序,在预设的场景数据库中进行逐级筛选,以确定所述处理设备的运行场景。
  6. 如权利要求1至4任一项所述的设备控制方法,其特征在于,所述设备控制方法还包括:
    在向所述处理设备传输所述运行参数后的预设时间段内,对所述待处理污水的处理结果进行记录;
    基于所记录的所述待处理污水的处理结果,对所述运行场景下的所述处理设备的运行参数进行优化及更新。
  7. 一种设备控制系统,其特征在于,包括:
    基础参数获取模块,用于获取待处理污水的基础参数,其中,所述基础参数包括所述待处理污水的水质、水温和/或水质;
    运行场景确定模块,用于根据所述基础参数,确定处理设备的运行场景,其中,所述处理设备为当前待控制的、用于处理所述待处理污水的设备;
    运行参数确定模块,用于确定所述处理设备在所述运行场景下的运行参数;
    处理设备控制模块,用于向所述处理设备传输所述运行参数,以触发或保持所述处理设备基于所述运行参数的运行。
  8. 如权利要求7所述的设备控制系统,其特征在于,所述运行场景确定模块,具体用于根据所述基础参数,在预设的场景数据库中查找与所述基础参数相关联的运行场景。
  9. 如权利要求8所述的设备控制系统,其特征在于,所述设备控制系统还包括:
    运行参数计算模块,用于若无法在所述场景数据库中查找到与所述基础参数相关联的运行场景,则基于预设的算法及所述基础参数计算所述处理设备的运行参数。
  10. 如权利要求9所述的设备控制系统,其特征在于,所述设备控制系统还包括:
    参数关联模块,用于将计算得到的所述运行参数与所述基础参数相关联;
    数据库更新模块,用于基于相关联的运行参数及所述基础参数,对所述场景数据库进行更新。
PCT/CN2019/083269 2019-04-18 2019-04-18 一种设备控制方法及设备控制系统 WO2020211045A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/083269 WO2020211045A1 (zh) 2019-04-18 2019-04-18 一种设备控制方法及设备控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/083269 WO2020211045A1 (zh) 2019-04-18 2019-04-18 一种设备控制方法及设备控制系统

Publications (1)

Publication Number Publication Date
WO2020211045A1 true WO2020211045A1 (zh) 2020-10-22

Family

ID=72837682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083269 WO2020211045A1 (zh) 2019-04-18 2019-04-18 一种设备控制方法及设备控制系统

Country Status (1)

Country Link
WO (1) WO2020211045A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030066788A1 (en) * 2001-10-04 2003-04-10 Jiahu Wang Water quality management system
CN103745403A (zh) * 2013-12-05 2014-04-23 铸神科技无锡有限公司 一种建立污水电化处理数据库的方法及其设备
CN103744303A (zh) * 2013-12-05 2014-04-23 铸神科技无锡有限公司 一种基于数据库技术的污水电化处理控制系统
CN105785951A (zh) * 2016-04-15 2016-07-20 王跃军 利用统计建模技术实现污水的处理自动化运行系统
CN106865912A (zh) * 2017-04-11 2017-06-20 盐城工学院 污水处理控制方法及系统
CN108549310A (zh) * 2018-05-29 2018-09-18 重庆工商大学 污水处理云服务器
CN109336199A (zh) * 2018-11-20 2019-02-15 中冶京诚工程技术有限公司 污水处理实时监控方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030066788A1 (en) * 2001-10-04 2003-04-10 Jiahu Wang Water quality management system
CN103745403A (zh) * 2013-12-05 2014-04-23 铸神科技无锡有限公司 一种建立污水电化处理数据库的方法及其设备
CN103744303A (zh) * 2013-12-05 2014-04-23 铸神科技无锡有限公司 一种基于数据库技术的污水电化处理控制系统
CN105785951A (zh) * 2016-04-15 2016-07-20 王跃军 利用统计建模技术实现污水的处理自动化运行系统
CN106865912A (zh) * 2017-04-11 2017-06-20 盐城工学院 污水处理控制方法及系统
CN108549310A (zh) * 2018-05-29 2018-09-18 重庆工商大学 污水处理云服务器
CN109336199A (zh) * 2018-11-20 2019-02-15 中冶京诚工程技术有限公司 污水处理实时监控方法及系统

Similar Documents

Publication Publication Date Title
Yolanda et al. Implementation of real-time fuzzy logic control for NFT-based hydroponic system on Internet of Things environment
Bruggeman et al. The nature of systems biology
CN102902257B (zh) 污水处理工艺优化及节能控制系统和方法
Angione et al. Multiplex methods provide effective integration of multi-omic data in genome-scale models
Grosman et al. Automated nonlinear model predictive control using genetic programming
CN110078140A (zh) 一种设备控制方法及设备控制系统
US20160340206A1 (en) System and method of predicting water quality in a decentralized treatment system
CN202041828U (zh) 生物废水处理进水量非稳态变化模拟控制系统
Udugama et al. Towards digitalization in bio-manufacturing operations: a survey on application of big data and digital twin concepts in Denmark
JP2006523531A5 (zh)
Todorovski et al. Modelling and prediction of phytoplankton growth with equation discovery
WO2020211045A1 (zh) 一种设备控制方法及设备控制系统
Nair et al. A cost-effective IoT strategy for remote deployment of soft sensors–a case study on implementing a soft sensor in a multistage MBBR plant
TW201717143A (zh) 堆肥控制系統與控制方法
CN108886935B (zh) 管道施肥系统施肥过程中施肥方案的确定方法、装置及系统
CN112288309A (zh) 一种水质调控系统、方法、装置、计算机设备和存储介质
Bhandari et al. Continuous-time multiple-input, multiple-output Wiener modeling method
CN114693036A (zh) 基于知识图谱的建筑系统的智慧化管理方法、装置及介质
CN115759399A (zh) 投加控制方法、装置、设备及存储介质
JP3603182B2 (ja) 排水処理プロセスシミュレータ
CN117725995B (zh) 一种基于大模型的知识图谱构建方法、装置及介质
Moolenaar et al. Design and implementation of a forecasting tool of justice chains
Tran Reasoning and hypothesizing about signaling networks
CN114249437B (zh) 一种应用于污水处理的控制方法和装置
WO2023071653A1 (zh) 污水处理方法、装置及清洁设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924872

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24-02-2022)