WO2020211011A1 - Methods and apparatus to facilitate fast data transfer resumption after long tune-away gap for msim devices - Google Patents

Methods and apparatus to facilitate fast data transfer resumption after long tune-away gap for msim devices Download PDF

Info

Publication number
WO2020211011A1
WO2020211011A1 PCT/CN2019/083030 CN2019083030W WO2020211011A1 WO 2020211011 A1 WO2020211011 A1 WO 2020211011A1 CN 2019083030 W CN2019083030 W CN 2019083030W WO 2020211011 A1 WO2020211011 A1 WO 2020211011A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
transmission condition
abnormal transmission
detecting
subscription
Prior art date
Application number
PCT/CN2019/083030
Other languages
French (fr)
Inventor
Ling Xie
Arnaud Meylan
Saket BATHWAL
Nan Zhang
Yan Zhang
Yong Hou
Liping Shen
Haizhou LIU
Xuepan GUAN
Peng Hu
Pravin Singh
Anshita Agrawal
Zhenyu Liu
Liang Hong
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/083030 priority Critical patent/WO2020211011A1/en
Publication of WO2020211011A1 publication Critical patent/WO2020211011A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to wireless communications for multiple subscriber identity module MSIM) user equipment.
  • MSIM subscriber identity module
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Third Generation Partnership Project
  • LTE is designed to support mobile broadband access through improved spectral efficiency, lowered costs, and improved services using OFDMA on the downlink, SC-FDMA on the uplink, and multiple-input multiple-output (MIMO) antenna technology.
  • MIMO multiple-input multiple-output
  • a multi-subscription multi-standby (MSMS) user equipment may include one or more Subscriber Identity Module (SIM) cards that provide users with access to multiple separate mobile communication networks.
  • SIM Subscriber Identity Module
  • Each SIM may be associated with a different server provider subscription, enabling the MSMS UE to communicate with one or more communication networks.
  • Each SIM or subscription may also be associated with a respective radio access technology (RAT) .
  • RAT radio access technology
  • the present disclosure provides unique techniques for triggering data transmission (and recovery) when, for example, the UE detects an abnormal transmission condition associated with a first subscription while communication with a second subscription is active.
  • a method, a computer-readable medium, and an apparatus detects an abnormal transmission condition associated with a first subscription of the UE and a first base station while communication associated with a second subscription of the UE and a second base station is active.
  • the example apparatus also, upon the detecting of the abnormal transmission condition, transmits a radio resource control (RRC) connection reestablishment request to the first base station.
  • RRC radio resource control
  • the example apparatus also communicates with the first base station to reestablish the RRC connection based on the transmitted RRC connection reestablishment request.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIGS. 2A, 2B, 2C, and 2D are diagrams illustrating LTE examples of a DL frame structure, DL channels within the DL frame structure, an UL frame structure, and UL channels within the UL frame structure, respectively.
  • FIG. 3 is a diagram illustrating an example of an evolved Node B (eNB) and user equipment (UE) in an access network.
  • eNB evolved Node B
  • UE user equipment
  • FIG. 4 is a diagram illustrating an example of a radio protocol architecture for a user plane and a control plane.
  • FIG. 5 is a diagram illustrating an example communication system including a UE, a first communication network, and a second communication network.
  • FIG. 6 is a diagram illustrating a call flow diagram between a UE, a first base station, and a second base station, as disclosed herein.
  • FIG. 7 is a flowchart of a method of wireless communication.
  • FIG. 8 is a conceptual data flow diagram illustrating the data flow between different means/components in an exemplary apparatus.
  • FIG. 9 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system also referred to as a wireless wide area network (WWAN)
  • WWAN wireless wide area network
  • the base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macro cells include eNBs.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) interface with the EPC 160 through backhaul links 132 (e.g., S1 interface) .
  • UMTS Universal Mobile Telecommunications System
  • E-UTRAN Evolved Universal Mobile Telecommunications System Terrestrial Radio Access Network
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160) with each other over backhaul links 134 (e.g., X2 interface) .
  • the backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macro cells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use MIMO antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20 MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction.
  • the carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) .
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ LTE and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102' , employing LTE in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network. LTE in an unlicensed spectrum may be referred to as LTE-unlicensed (LTE-U) , licensed assisted access (LAA) , or MuLTEfire.
  • LTE-U LTE-unlicensed
  • LAA licensed assisted access
  • MuLTEfire MuLTEfire
  • the millimeter wave (mmW) base station 180 may operate in mmW frequencies and/or near mmW frequencies in communication with the UE 182.
  • Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave.
  • Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band has extremely high path loss and a short range.
  • the mmW base station 180 may utilize beamforming 184 with the UE 182 to compensate for the extremely high path loss and short range.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service (PSS) , and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the base station may also be referred to as a Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 may be configured to facilitate data transfer resumption after a long tune-away gap.
  • the UE 104 of FIG. 1 includes a data transfer resumption component 198 configured to detect an abnormal transmission condition associated with a first subscription of the UE and a first base station while communication associated with a second subscription of the UE and a second base station is active, upon the detecting of the abnormal transmission condition, transmit a radio resource control (RRC) connection reestablishment request to the first base station, and communicate with the first base station to reestablish the RRC connection based on the transmitted RRC connection reestablishment request.
  • RRC radio resource control
  • FIG. 2A is a diagram 200 illustrating an example of a DL frame structure in LTE.
  • FIG. 2B is a diagram 230 illustrating an example of channels within the DL frame structure in LTE.
  • FIG. 2C is a diagram 250 illustrating an example of an UL frame structure in LTE.
  • FIG. 2D is a diagram 280 illustrating an example of channels within the UL frame structure in LTE.
  • Other wireless communication technologies may have a different frame structure and/or different channels.
  • a frame (10 ms) may be divided into 10 equally sized subframes. Each subframe may include two consecutive time slots.
  • a resource grid may be used to represent the two time slots, each time slot including one or more time concurrent resource blocks (RBs) (also referred to as physical RBs (PRBs) ) .
  • the resource grid is divided into multiple resource elements (REs) .
  • REs resource elements
  • an RB contains 12 consecutive subcarriers in the frequency domain and 7 consecutive symbols (for DL, OFDM symbols; for UL, SC-FDMA symbols) in the time domain, for a total of 84 REs.
  • an RB contains 12 consecutive subcarriers in the frequency domain and 6 consecutive symbols in the time domain, for a total of 72 REs.
  • the number of bits carried by each RE depends on the modulation scheme.
  • the DL-RS may include cell-specific reference signals (CRS) (also sometimes called common RS) , UE-specific reference signals (UE-RS) , and channel state information reference signals (CSI-RS) .
  • CRS cell-specific reference signals
  • UE-RS UE-specific reference signals
  • CSI-RS channel state information reference signals
  • FIG. 2A illustrates CRS for antenna ports 0, 1, 2, and 3 (indicated as R0, R1, R2, and R3, respectively) , UE-RS for antenna port 5 (indicated as R5) , and CSI-RS for antenna port 15 (indicated as R) .
  • FIG. 2B illustrates an example of various channels within a DL subframe of a frame.
  • the physical control format indicator channel (PCFICH) is within symbol 0 of slot 0, and carries a control format indicator (CFI) that indicates whether the physical downlink control channel (PDCCH) occupies 1, 2, or 3 symbols (FIG. 2B illustrates a PDCCH that occupies 3 symbols) .
  • the PDCCH carries downlink control information (DCI) within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • DCI downlink control information
  • CCEs control channel elements
  • each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a UE may be configured with a UE-specific enhanced PDCCH (ePDCCH) that also carries DCI.
  • the ePDCCH may have 2, 4, or 8 RB pairs (FIG.
  • the physical hybrid automatic repeat request (ARQ) (HARQ) indicator channel (PHICH) is also within symbol 0 of slot 0 and carries the HARQ indicator (HI) that indicates HARQ acknowledgement (ACK) /negative ACK (NACK) feedback based on the physical uplink shared channel (PUSCH) .
  • the primary synchronization channel (PSCH) is within symbol 6 of slot 0 within subframes 0 and 5 of a frame, and carries a primary synchronization signal (PSS) that is used by a UE to determine subframe timing and a physical layer identity.
  • PSS primary synchronization signal
  • the secondary synchronization channel is within symbol 5 of slot 0 within subframes 0 and 5 of a frame, and carries a secondary synchronization signal (SSS) that is used by a UE to determine a physical layer cell identity group number. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DL-RS.
  • the physical broadcast channel (PBCH) is within symbols 0, 1, 2, 3 of slot 1 of subframe 0 of a frame, and carries a master information block (MIB) .
  • the MIB provides a number of RBs in the DL system bandwidth, a PHICH configuration, and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry demodulation reference signals (DM-RS) for channel estimation at the eNB.
  • the UE may additionally transmit sounding reference signals (SRS) in the last symbol of a subframe.
  • SRS sounding reference signals
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by an eNB for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various channels within an UL subframe of a frame.
  • a physical random access channel (PRACH) may be within one or more subframes within a frame based on the PRACH configuration.
  • the PRACH may include six consecutive RB pairs within a subframe.
  • PRACH physical random access channel
  • the PRACH allows the UE to perform initial system access and achieve UL synchronization.
  • a physical uplink control channel may be located on edges of the UL system bandwidth.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and HARQ ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of an eNB 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the eNB 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the eNB 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the eNB 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the eNB 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • FIG. 4 is a diagram 400 illustrating an example of a radio protocol architecture for the user plane and control plane in LTE.
  • the radio protocol architecture for the UE e.g., the UE 104 of FIG. 1
  • the base station e.g., the base station 102
  • the Layer 1 (L1 layer) is the lowest layer and implements various physical layer signal processing functions.
  • the L1 Layer is referred to as the physical layer 406.
  • the Layer 2 (L2 layer) 408 is above the physical layer 406 and is responsible for the link between the UE and the base station over the physical layer 406.
  • the L2 layer 408 includes a media access control (MAC) sublayer 410, a radio link control (RLC) sublayer 412, and a packet data convergence protocol (PDCP) sublayer 414, which are terminated at the base station on the network side.
  • MAC media access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • the UE may have several upper layers above the L2 layer 408, including a network layer (e.g., an IP layer) that is terminated at the PDN Gateway 172 of FIG. 1 on the network side, and an application layer that is terminated at the other end of the connection.
  • IP layer e.g., an IP layer
  • the PDCP sublayer 414 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 414 may also provide header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between base stations.
  • the RLC sublayer 412 provides a segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ) .
  • the MAC sublayer 410 provides multiplexing between logical and transport channels.
  • the MAC sublayer 410 may also be responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs.
  • the MAC sublayer 410 may also be responsible for HARQ operations.
  • the radio protocol architecture for the UE and the base station is substantially the same for the physical layer 406 and the L2 layer 408 with the exception that there is no header compression function for the control plane.
  • the control plane also includes a radio resource control (RRC) sublayer 416 in the Layer 3 (L3 layer) .
  • the RRC sublayer 416 is responsible for obtaining radio resources (e.g., radio bearers) and for configuring the lower layers using RRC signaling between the base station and the UE.
  • a multi-subscription UE that includes one or more SIMs and connects to two or more separate mobile communication networks using one or more shared radio frequency (RF) resources/radios may be termed a “multi-standby” UE.
  • RF radio frequency
  • One example of an MSMS UE is a dual-SIM-dual-standby (DSDS) UE, which includes two SIM cards that share a set of RF circuitry (referred to as an “RF chain” or an “RF resource chain” ) to communicate with two separate mobile communication networks (or RATs) on behalf of their respective subscriptions.
  • DSDS dual-SIM-dual-standby
  • a multi-subscription UE is a single-radio LTE (SRLTE) UE, which includes one SIM card/subscription associated with two or more subscriptions that share a single shared RF resource chain to communicate with one or more MSMS communication networks on behalf of the multiple subscriptions.
  • SRLTE single-radio LTE
  • only one subscription can use an RF resource chain to communicate with its mobile network at a time. Therefore, the UE periodically interrupts RF operations of an active subscription ( “first subscription” ) so that the idle subscription ( “second subscription” ) can use the shared RF resource (e.g., a “tune-away” or a “tune-away event” as the RF resource tunes away from the frequency bands and/or channels of the RAT associated with the first subscription and tunes to the frequency bands and/or channels of the RAT associated with the second subscription) .
  • the interruption of first subscription communication activity caused by the tune-away e.g., a “tune-away gap”
  • the tune-away from the first subscription communication activity may result in radio resource control (RRC) stat mismatch between the UE and the first subscription, protocol stack layers out-of-sync between the UE and the first subscription, and/or the network may schedule penalties due to, for example, slow lower layer recovery associated with the UE.
  • RRC radio resource control
  • abnormal data ratio bearer status due to the tune-away gap may result in long data stall times.
  • FIG. 5 is a diagram illustrating an example communication system 500 including a UE 502, a first communication network 510, and a second communication network 520.
  • the UE 502 is an MSIM UE that may communicate with the first communication network 510 through a communication link 512 to a first base station 514.
  • the MSIM UE 502 may also communicate with the second communication network 520 through a communication link 522 to a second base station 524.
  • the first base station 514 may communicate with the first communication network 510 via a wired or wireless communication link 516.
  • the second base station 524 may communicate with the second communication network 520 via a wired or wireless communication link 526.
  • Each of the communication networks 510, 520 may support communications using one or more RATs, and each of the wireless communication links 512, 522, may include cellular connections that may be made through two-way wireless communication links using one or more RATs.
  • RATs include 3GPP Long Term Evolution (LTE) , Global System for Mobility (GSM) , Worldwide Interoperability for Microwave Access (Wi-MAX) , Code Division Multiple Access (CDMA) , Wideband CDMA (WCDMA) , Time Division Multiple Access (TDMA) , Single-Carrier Radio Transmission Technology (1xRTT) , Evolution-Data Optimized (EV-DO) , and other RATs, such as members of the Institute of Electrical and Electronics Engineers (IEEE) 802 family of RATs, including Wi-Fi, Bluetooth, ZigBee, and/or other similar RATs.
  • IEEE 802 family of RATs including Wi-Fi, Bluetooth, ZigBee, and/or other similar RATs.
  • each of the communication links 512, 522 are illustrated as single links, it should be appreciated that each of the communication links may include a plurality of frequencies or frequency bands, each of which may include a plurality of logical channels. Additionally, each of the communication links 512, 522 may utilize more than one RAT.
  • the UE 502 is an MSIM UE.
  • the MSIM UE 502 includes a first SIM interface to receive a first SIM module that may be associated with a first subscription.
  • the MSIM UE 502 may also include a second SIM interface to receive a second SIM module that may be associated with a second subscription.
  • Each SIM and/or RAT in the MSIM UE 502 may be associated with or permitted to use an RF resource.
  • the term “RF resource chain” may be used to refer to all of the circuitry used to send and/or receive RF signals.
  • the MSIM device 502 may have a single RF resource that may be shared among two or more SIMs.
  • the MSIM device 502 may include more than one RF resource, but may operate in a mode or modes in which two or more SIMs share access to one RF resource.
  • each of the RF resources may include, for example, transceivers associated with one or more RATs and may perform transmit/receive functions for the MSIM UE 502 on behalf of its respective RATs.
  • a multi-subscription UE may operate in multiple RAT networks by tuning away from one RAT network to operate in another RAT network, and then tuning back to the first RAT network to operate in that RAT network.
  • the MSIM UE 502 may be connected to the first communication network 510 and the second communication network 520.
  • the MSIM UE 502 may tune-away from the first communication network 510 and use radio frequency resources conduct paging and/or channel monitoring in the second communication network 520.
  • the MSIM UE 502 may tune-away to the second communication network 520 for a period referred to as a tune-away gap. After the tune-away gap, the MSIM UE 502 may tune-back to the first communication network 510.
  • SIM subscriber Identity
  • the term “subscription” and “SIM” may be used a shorthand reference to a communication network associated with a particular SIM, since the information stored in a SIM enables the wireless communication device to establish a communication with a particular network, thus the SIM and the communication network, as well as the services and subscriptions supported by that network, correlate to one another.
  • references to “first communication network, ” “first subscription, ” “first SIM, ” “second communication network, ” “second subscription, ” and “second SIM” are arbitrary and are used to refer to two or more subscriptions/networks generally because at any given time, either subscription/network may be in an active mode (e.g., on an active voice or data call) or a standby mode.
  • a first subscription with a first network e.g., the first communication network 510) may be on an active data call while a second subscription with a second network (e.g., the second communication network 520) may be in the standby mode.
  • the second subscription may enter an active mode and the first subscription may enter the standby mode.
  • references to “first” and “second” subscriptions and networks is not intended to imply that the aspects are limited to two subscriptions sharing one radio frequency (RF) resource.
  • RF radio frequency
  • three or more subscriptions may share one RF resource at a time.
  • third and fourth subscriptions may behave similar to a second subscription.
  • operations of subscriptions in the standby mode that share the RF resource during tune-away periods are described generally with reference to the standby mode.
  • the MSIM UE 502 may miss signaling or data scheduled by the first base station 514 of the first communication network 510. For example, communication between the MSIM UE 502 and the first base station 514 may cause a mismatch in configurations between the MSIM UE 502 and the first base station 514. In certain aspects, the mismatch in configuration between the MSIM UE 502 and the first base station 514 negatively impacts communication. Thus, examples disclosed herein enable the MSIM UE 502 to detect an abnormal transmission condition between the MSIM UE 502 and the first base station 514 while communication between the MSIM UE 502 and the second base station 524 is active.
  • the MSIM UE 502 may then try to re-establish an RRC connection between the MSIM UE 502 and the first base station 514. In certain aspects, if, after the RRC connection between the MSIM UE 502 and the first base station 514 are re-established, the MSIM UE 502 detects another abnormal transmission condition, then the MSIM UE 502 may attempt to reset the RRC connection. In certain aspects, by performing the RRC connection reset, the MSIM UE 502 may reset data radio bearers between the MSIM UE 502 and the first fast station 514.
  • FIG. 6 is a diagram 600 illustrating an example call flow between a UE 602, a first base station 604, and a second base station 606, as disclosed herein.
  • Aspects of the UE 602 may be described with respect to the UE 104 of FIG. 1, the UE 350 of FIG. 3, and/or the UE 502 of FIG. 5.
  • Aspects of the base stations 604, 604 may be described with respect to the base station 102 of FIG. 1, the base station 310 of FIG. 3, and/or the base stations 514, 524 of FIG. 5.
  • the UE 602 is initially in standby mode with respect to the first base station 604 and with respect to the second base station 606.
  • the UE 602 transitions to an active mode with respect to the second base station 606.
  • the UE 602 may initiate a voice call, data transfer, etc. via the second base station 606.
  • the UE 602 tunes-away from the first base station 604.
  • an interruption in connectivity between the UE 602 and the first base station 604 occurs due to the tune-away gap.
  • a configuration mismatch occurs where RRC states between the UE 602 and the first base station 604 are not in-synchronization.
  • a downlink data packet 614 transmit by the first base station 604 to the UE 602 may not be received and/or properly decoded by the UE 602.
  • the UE 602 detects an abnormal transmission condition.
  • the abnormal transmission condition corresponds to transmission of invalid data (e.g., data that is out-of-window and/or duplicate data) .
  • the abnormal transmission condition corresponds to the failure to receive a response message to a request. For example, an acknowledgement delay may exceed a threshold time period.
  • the UE 602 may detect the abnormal transmission condition via the physical layer (e.g., the physical layer 406 of FIG. 4) .
  • the UE 602 may determine, via the physical layer 406, that a response delay from the first base station 604 to a scheduling request may exceed a threshold time period (e.g., no response to the scheduling request) .
  • the UE 602 may determine, via the physical layer 406, that a response delay to a random access channel (RACH) procedure from the first base station 604 may exceed a threshold time period (e.g., no response to the RACH procedure) .
  • RACH random access channel
  • the UE 602 may detect, via the physical layer 406, a quantity of uplink or downlink retransmissions under good channel conditions that satisfy a consecutive uplink retransmission threshold or a consecutive downlink retransmissions threshold. In certain aspects, the UE 602 may determine that a retransmission is under good channel conditions based on, for example, a reference signal received power (RSRP) associated with the retransmission, a signal-to-noise ratio (SNR) associated with the retransmission, and/or a consecutive uplink/downlink decoding (e.g., CRC (cyclic redundancy check) ) pass associated with an initial transmission, a second transmission, and/or an nth transmission.
  • RSRP reference signal received power
  • SNR signal-to-noise ratio
  • CRC cyclic redundancy check
  • the UE 602 may detect the abnormal transmission condition via the MAC layer (e.g., the MAC sublayer 410 of FIG. 4) .
  • a buffer status report is a MAC control element from the UE to the base station carrying information on how data much data is in the UE buffer to be sent out (e.g., from the UE to the base station) .
  • the UE 602 may determine, via the MAC sublayer 410, that a response delay to a BSR may exceed a threshold time period (e.g., no response to the BSR) .
  • the UE 602 may determine, via the MAC sublayer 410, that a quantity of responses to buffer status reports that have not been received (e.g., indicating that the UE did not receive a response to one or more BSRs) satisfies a buffer status report request threshold.
  • the UE 602 may detect the abnormal transmission condition via the RLC layer (e.g., the RLC sublayer 412 of FIG. 4) . For example, the UE 602 may determine that a response delay via RLC may exceed a threshold time period (e.g., no response detected via RLC) . In certain aspects, the no response via RLC may include the UE 602 determining, via the RLC sublayer 412, that an acknowledgement (ACK) of acknowledged mode data packet units (PDUs) was not received. In certain aspects, the no response via RLC may include the UE 602 determining that an acknowledgement (ACK) was not received for a threshold quantity of acknowledged mode PDUs.
  • ACK acknowledgement
  • the no response via RLC may include the UE 602 determining that a retransmission of a message did not occur after an RLC negative acknowledgement (NACK) .
  • the no response via RLC may include the UE 602 detecting the transmission of duplicate PDUs after an RLC ACK.
  • the no response via RLC may include the UE 602 detecting the transmission of out-of-window PDUs after an RLC ACK.
  • the UE 602 may detect the abnormal transmission condition via the PDCP layer (e.g., the PDCP sublayer 414 of FIG. 4) .
  • the UE 602 may determine that a quantity of consecutive invalid packet data units (PDUs) received from the first base station 604 satisfies a threshold (e.g., the quantity of consecutive invalid PDUs is greater than or equal to a consecutive invalid PDU threshold) .
  • a threshold e.g., the quantity of consecutive invalid PDUs is greater than or equal to a consecutive invalid PDU threshold
  • the UE 602 may determine that a quantity of out-of-window old PDUs received from the first base station 604 satisfies a threshold (e.g., the quantity of out-of-window old PDUs received from the first base station 604 is greater than or equal to an out-of-window old PDU threshold) .
  • a PDU is an invalid PDU and/or an out-of-window old PDU when, for example, the PDCP sublayer 414 is unable to decipher the PDU.
  • the UE 602 After detecting the abnormal transmission condition, the UE 602 transmits an RRC connection reestablishment request 618 to the first base station 604. By transmitting the RRC connection reestablishment request 618, the UE 602 attempts to prevent performing an RRC connection reset and to recover radio links (e.g., correct configuration mismatches) . The UE 602 may then communicate 620 with the first base station 604 to reestablish the RRC connection. For example, the UE 602 may receive an RRC connection reestablishment message from the first base station 604 and respond by transmitting an RRC connection reestablishment complete message to the first base station 604.
  • RRC connection reestablishment request 618 By transmitting the RRC connection reestablishment request 618, the UE 602 attempts to prevent performing an RRC connection reset and to recover radio links (e.g., correct configuration mismatches) .
  • the UE 602 may then communicate 620 with the first base station 60
  • the UE 602 may then detect another abnormal transmission condition 622. For example, the UE 602 may detect transmission of invalid data (e.g., data that is out-of-window and/or duplicate data) , or may detect a failure to receive a response message to a request. In certain aspects, the UE 602 detects the abnormal transmission condition via the physical layer, the MAC layer, the RLC layer, and/or the PDCP layer.
  • invalid data e.g., data that is out-of-window and/or duplicate data
  • the UE 602 detects the abnormal transmission condition via the physical layer, the MAC layer, the RLC layer, and/or the PDCP layer.
  • the abnormal transmission condition detected before reestablishing the RRC connection (e.g., at 616) and the abnormal transmission conditioned detected after reestablishing the RRC connection (e.g., at 622) may be the same abnormal transmission condition. In other examples, the abnormal transmission condition detected before reestablishing the RRC connection (e.g., at 616) and the abnormal transmission conditioned detected after reestablishing the RRC connection (e.g., at 622) may be different abnormal transmission conditions. In certain examples, a threshold applied when detecting the abnormal transmission condition before reestablishing the RRC connection (e.g., at 616) may be different than a threshold applied when detecting the abnormal transmission condition after reestablishing the RRC connection (e.g., at 622) . For example, at 616, the UE 602 may wait for ten consecutive invalid PDUs and at 622, the UE 602 may wait for three consecutive invalid PDUs before determining that an abnormal transmission condition occurred.
  • the UE 602 After detecting the abnormal transmission condition after reestablishing the RRC connection (e.g., at 622) , the UE 602 transmits an RRC setup request to the first base station 604.
  • the RRC setup request includes a request to reset data radio bearers between the UE 602 and the first base station 604.
  • the UE 602 then communicates with the first base station 604 to setup the RRC connection.
  • the UE 602 may receive an RRC connection setup message 626 from the first base station 604 and respond by transmitting an RRC setup complete message 628 to the first base station 604.
  • FIG. 7 is a flowchart 700 of a method of wireless communication.
  • the method may be performed by a UE, such as the UE 104 of FIG. 1, the UE 350 of FIG. 3, the UE 502 of FIG. 5, the UE 602 of FIG. 6, and/or the apparatus 802/802’ of FIGS. 8 and 9, respectively.
  • One or more of the illustrated operations may be omitted, transposed, or contemporaneous.
  • optional aspects are illustrated with a dashed line.
  • the method may provide for improved communication between an MSIM UE and a plurality of subscriptions and enables the UE to resume data transmission after a long tune-away gap.
  • aspects disclosed herein may improve the efficiency and operability of the UE accessing the plurality of subscriptions for data transmissions.
  • the UE detects an abnormal transmission condition associated with a first subscription of the UE and a base station while communication associated with a second subscription of the UE and a second base station is active.
  • the UE detects the abnormal transmission condition by determining that a quantity of consecutive invalid packet data units (PDUs) received from the first base station satisfies a consecutive invalid PDU threshold. In an aspect, the UE detects the abnormal transmission condition by determining that a quantity of out-of-window old packet data units (PDUs) received from the first base station satisfies an out-of-window old PDU threshold. In an aspect, the UE detects the abnormal transmission condition by determining no response from the first base station to a scheduling request. In an aspect, the UE detects the abnormal transmission condition by determining no response from the first base station to a random access channel (RACH) .
  • RACH random access channel
  • the UE detects the abnormal transmission condition by determining a quantity of consecutive uplink retransmissions satisfies a consecutive uplink retransmissions threshold. In an aspect, the UE detects the abnormal transmission condition by determining a quantity of consecutive downlink retransmissions satisfies a consecutive downlink retransmissions threshold. In an aspect, the UE detects the abnormal transmission condition by determining a quantity of no responses to buffer status reports satisfies a buffer status report request threshold. In an aspect, the UE detects the abnormal transmission condition by determining no response via radio link control (RLC) . In an aspect, the UE detects the abnormal transmission condition by determining that no acknowledgements have been received for a threshold quantity of acknowledged mode packet data units.
  • RLC radio link control
  • the UE detects the abnormal transmission condition by determining no retransmission of a message after an RLC negative acknowledgement (NACK) . In an aspect, the UE detects the abnormal transmission condition by detecting transmittal of duplicate packet data units (PDUs) after an RLC acknowledgement (ACK) . In an aspect, the UE detects the abnormal transmission condition by detecting transmittal of out-of-window packet data units (PDUs) after an RLC acknowledgement (ACK) .
  • NACK RLC negative acknowledgement
  • ACK RLC acknowledgement
  • ACK out-of-window packet data units
  • the UE transmits an RRC connection reestablishment request to the first base station upon the detecting of the abnormal transmission condition.
  • the UE communicates with the first base station to reestablish the RRC connection based on the transmitted RRC connection reestablishment request. For example, the UE may receive an RRC connection reestablishment message from the first base station and respond by transmitting an RRC connection reestablishment complete message to the first base station.
  • the UE may detect, after the reestablishing of the RRC connection, a second abnormal transmission condition associated with the first subscription and the first base station while communication associated with the second subscription and the second base station is active.
  • the UE detects the abnormal transmission condition and the second abnormal transmission condition are the same condition. In an aspect, the UE detects that a threshold associated with the detecting of the abnormal transmission condition is different than a threshold associated with the detecting of the second abnormal transmission condition.
  • the consecutive invalid PDU threshold associated with the abnormal transmission condition may be ten consecutive invalid PDUs, while the consecutive invalid PDU threshold associated with the second abnormal transmission condition may be three consecutive invalid PDUs.
  • the UE may transmit an RRC setup request to the first base station indicating a request to reset the data radio bearer (DRB) upon the detecting of the second abnormal transmission condition.
  • the UE may communicate with the first base station to setup the RRC connection based on the transmitted RRC setup request. For example, the UE may receive an RRC connection setup message from the first base station and respond by transmitting an RRC setup complete message to the first base station.
  • DRB data radio bearer
  • FIG. 8 is a conceptual data flow diagram 800 illustrating the data flow between different means/components in an exemplary apparatus 802.
  • the apparatus may be the apparatus 104.
  • the apparatus includes a reception component 804 configured to receive downlink communication from a base station 850 and a transmission component 806 configured to transmit uplink communication to the base station 850.
  • the apparatus may include an abnormal transmission condition detection component 808 configured to detect an abnormal transmission condition.
  • the abnormal condition detection component 808 may detect an abnormal transmission condition based on transmission of invalid data (e.g., data that is out-of-window and/or duplicate data) , or may detect a failure to receive a response message to a request.
  • the abnormal transmission condition detection component 808 may detect the abnormal transmission condition via the physical layer, the MAC layer, the RLC layer, and/or the PDCP layer.
  • the apparatus may include an RRC reestablishment component 810 configured to reestablish an RRC connection between a UE and a base station.
  • the apparatus may include an RRC Re-setup component 812 configured to re-setup an RRC connection between the UE and the base station.
  • the RRC Re-setup component 812 may be configured to reset data radio bearers between the UE and the base station.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 7. As such, each block in the aforementioned flowchart of FIG. 7 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • FIG. 9 is a diagram 900 illustrating an example of a hardware implementation for an apparatus 802' employing a processing system 914.
  • the processing system 914 may be implemented with a bus architecture, represented generally by the bus 924.
  • the bus 924 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 914 and the overall design constraints.
  • the bus 924 links together various circuits including one or more processors and/or hardware components, represented by the processor 904, the components 804, 806, 808, 810, 812, and the computer-readable medium /memory 906.
  • the bus 924 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 914 may be coupled to a transceiver 910.
  • the transceiver 910 is coupled to one or more antennas 920.
  • the transceiver 910 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 910 receives a signal from the one or more antennas 920, extracts information from the received signal, and provides the extracted information to the processing system 914, specifically the reception component 804.
  • the transceiver 910 receives information from the processing system 914, specifically the transmission component 806, and based on the received information, generates a signal to be applied to the one or more antennas 920.
  • the processing system 914 includes a processor 904 coupled to a computer-readable medium /memory 906.
  • the processor 904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 906.
  • the software when executed by the processor 904, causes the processing system 914 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 906 may also be used for storing data that is manipulated by the processor 904 when executing software.
  • the processing system 914 further includes at least one of the components 804, 806, 808, 810, 812.
  • the components may be software components running in the processor 904, resident/stored in the computer readable medium /memory 906, one or more hardware components coupled to the processor 904, or some combination thereof.
  • the processing system 914 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 802/802' for wireless communication includes means for means for detecting an abnormal transmission condition associated with a first subscription of the UE and a first base station while communication associated with a second subscription of the UE and a second base station is active; means for transmitting a radio resource control (RRC) connection reestablishment request to the first base station upon the detecting of the abnormal transmission condition; means for communicating with the first base station to reestablish the RRC connection based on the transmitted RRC connection reestablishment request; means for detecting, after the reestablishing of the RRC connection, a second abnormal transmission condition associated with the first subscription and the first base station while communication associated with the second subscription and the second base station is active; means for transmitting an RRC setup request to the first base station indicating a request to reset the data radio bearer (DRB) upon the detecting of the second abnormal transmission condition; and means for communication with the first base station to setup the RRC connection based on the transmitted RRC setup request.
  • RRC radio resource control
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 802 and/or the processing system 914 of the apparatus 802' configured to perform the functions recited by the aforementioned means.
  • the processing system 914 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Apparatus, methods, and computer-readable media for facilitating fast data transfer resumption after a long tune-away gap for MSIM devices are disclosed herein. An example method of wireless communication at a user equipment (UE) includes detecting an abnormal transmission condition associated with a first subscription of the UE and a first base station while communication associated with a second subscription of the UE and a second base station is active. The example method also includes, upon the detecting of the abnormal transmission condition, transmitting a radio resource control (RRC) connection reestablishment request to the first base station. The example method also includes communicating with the first base station to reestablish the RRC connection based on the transmitted RRC connection reestablishment request.

Description

[Title established by the ISA under Rule 37.2] METHODS AND APPARATUS TO FACILITATE FAST DATA TRANSFER RESUMPTION AFTER LONG TUNE-AWAY GAP FOR MSIM DEVICES BACKGROUND Field
The present disclosure relates generally to communication systems, and more particularly, to wireless communications for multiple subscriber identity module MSIM) user equipment.
Background
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is Long Term Evolution (LTE) . LTE is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by Third Generation Partnership Project (3GPP) . LTE is designed to support mobile broadband access through improved spectral efficiency, lowered costs, and improved services using OFDMA on the downlink, SC-FDMA on the uplink, and multiple-input multiple-output (MIMO) antenna technology. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies, such as 5G New Radio (NR) , 4G LTE, etc.
A multi-subscription multi-standby (MSMS) user equipment (UE) may include one or more Subscriber Identity Module (SIM) cards that provide users with access to multiple separate mobile communication networks. Each SIM may be associated with a different server provider subscription, enabling the MSMS UE to communicate with one or more communication networks. Each SIM or subscription may also be associated with a respective radio access technology (RAT) .
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
The present disclosure provides unique techniques for triggering data transmission (and recovery) when, for example, the UE detects an abnormal transmission condition associated with a first subscription while communication with a second subscription is active.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. An example apparatus detects an abnormal transmission condition associated with a first subscription of the UE and a first base station while communication associated with a second subscription of the UE and a second base station is active. The example apparatus also, upon the detecting of the abnormal transmission condition, transmits a radio resource control (RRC) connection reestablishment request to the first base station. The example apparatus also communicates with the first base station to reestablish the RRC connection based on the transmitted RRC connection reestablishment request.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be  employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIGS. 2A, 2B, 2C, and 2D are diagrams illustrating LTE examples of a DL frame structure, DL channels within the DL frame structure, an UL frame structure, and UL channels within the UL frame structure, respectively.
FIG. 3 is a diagram illustrating an example of an evolved Node B (eNB) and user equipment (UE) in an access network.
FIG. 4 is a diagram illustrating an example of a radio protocol architecture for a user plane and a control plane.
FIG. 5 is a diagram illustrating an example communication system including a UE, a first communication network, and a second communication network.
FIG. 6 is a diagram illustrating a call flow diagram between a UE, a first base station, and a second base station, as disclosed herein.
FIG. 7 is a flowchart of a method of wireless communication.
FIG. 8 is a conceptual data flow diagram illustrating the data flow between different means/components in an exemplary apparatus.
FIG. 9 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store  computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, and an Evolved Packet Core (EPC) 160. The base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) . The macro cells include eNBs. The small cells include femtocells, picocells, and microcells.
The base stations 102 (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) interface with the EPC 160 through backhaul links 132 (e.g., S1 interface) . In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160) with each other over backhaul links 134 (e.g., X2 interface) . The backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macro cells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base  station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use MIMO antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20 MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ LTE and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102' , employing LTE in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network. LTE in an unlicensed spectrum may be referred to as LTE-unlicensed (LTE-U) , licensed assisted access (LAA) , or MuLTEfire.
The millimeter wave (mmW) base station 180 may operate in mmW frequencies and/or near mmW frequencies in communication with the UE 182. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band  has extremely high path loss and a short range. The mmW base station 180 may utilize beamforming 184 with the UE 182 to compensate for the extremely high path loss and short range.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service (PSS) , and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The base station may also be referred to as a Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, or any other similar functioning device. The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a  subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 may be configured to facilitate data transfer resumption after a long tune-away gap. For example, the UE 104 of FIG. 1 includes a data transfer resumption component 198 configured to detect an abnormal transmission condition associated with a first subscription of the UE and a first base station while communication associated with a second subscription of the UE and a second base station is active, upon the detecting of the abnormal transmission condition, transmit a radio resource control (RRC) connection reestablishment request to the first base station, and communicate with the first base station to reestablish the RRC connection based on the transmitted RRC connection reestablishment request.
FIG. 2A is a diagram 200 illustrating an example of a DL frame structure in LTE. FIG. 2B is a diagram 230 illustrating an example of channels within the DL frame structure in LTE. FIG. 2C is a diagram 250 illustrating an example of an UL frame structure in LTE. FIG. 2D is a diagram 280 illustrating an example of channels within the UL frame structure in LTE. Other wireless communication technologies may have a different frame structure and/or different channels. In LTE, a frame (10 ms) may be divided into 10 equally sized subframes. Each subframe may include two consecutive time slots. A resource grid may be used to represent the two time slots, each time slot including one or more time concurrent resource blocks (RBs) (also referred to as physical RBs (PRBs) ) . The resource grid is divided into multiple resource elements (REs) . In LTE, for a normal cyclic prefix, an RB contains 12 consecutive subcarriers in the frequency domain and 7 consecutive symbols (for DL, OFDM symbols; for UL, SC-FDMA symbols) in the time domain, for a total of 84 REs. For an extended cyclic prefix, an RB contains 12 consecutive subcarriers in the frequency domain and 6 consecutive symbols in the time domain, for a total of 72 REs. The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry DL reference (pilot) signals (DL-RS) for channel estimation at the UE. The DL-RS may include cell-specific reference signals (CRS) (also sometimes called common RS) , UE-specific reference signals  (UE-RS) , and channel state information reference signals (CSI-RS) . FIG. 2A illustrates CRS for  antenna ports  0, 1, 2, and 3 (indicated as R0, R1, R2, and R3, respectively) , UE-RS for antenna port 5 (indicated as R5) , and CSI-RS for antenna port 15 (indicated as R) . FIG. 2B illustrates an example of various channels within a DL subframe of a frame. The physical control format indicator channel (PCFICH) is within symbol 0 of slot 0, and carries a control format indicator (CFI) that indicates whether the physical downlink control channel (PDCCH) occupies 1, 2, or 3 symbols (FIG. 2B illustrates a PDCCH that occupies 3 symbols) . The PDCCH carries downlink control information (DCI) within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A UE may be configured with a UE-specific enhanced PDCCH (ePDCCH) that also carries DCI. The ePDCCH may have 2, 4, or 8 RB pairs (FIG. 2B shows two RB pairs, each subset including one RB pair) . The physical hybrid automatic repeat request (ARQ) (HARQ) indicator channel (PHICH) is also within symbol 0 of slot 0 and carries the HARQ indicator (HI) that indicates HARQ acknowledgement (ACK) /negative ACK (NACK) feedback based on the physical uplink shared channel (PUSCH) . The primary synchronization channel (PSCH) is within symbol 6 of slot 0 within  subframes  0 and 5 of a frame, and carries a primary synchronization signal (PSS) that is used by a UE to determine subframe timing and a physical layer identity. The secondary synchronization channel (SSCH) is within symbol 5 of slot 0 within  subframes  0 and 5 of a frame, and carries a secondary synchronization signal (SSS) that is used by a UE to determine a physical layer cell identity group number. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DL-RS. The physical broadcast channel (PBCH) is within  symbols  0, 1, 2, 3 of slot 1 of subframe 0 of a frame, and carries a master information block (MIB) . The MIB provides a number of RBs in the DL system bandwidth, a PHICH configuration, and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry demodulation reference signals (DM-RS) for channel estimation at the eNB. The UE may additionally transmit sounding  reference signals (SRS) in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by an eNB for channel quality estimation to enable frequency-dependent scheduling on the UL. FIG. 2D illustrates an example of various channels within an UL subframe of a frame. A physical random access channel (PRACH) may be within one or more subframes within a frame based on the PRACH configuration. The PRACH may include six consecutive RB pairs within a subframe. The PRACH allows the UE to perform initial system access and achieve UL synchronization. A physical uplink control channel (PUCCH) may be located on edges of the UL system bandwidth. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and HARQ ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of an eNB 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks  (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a  separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the eNB 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the eNB 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the eNB 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the eNB 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the eNB 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
FIG. 4 is a diagram 400 illustrating an example of a radio protocol architecture for the user plane and control plane in LTE. The radio protocol architecture for the UE (e.g., the UE 104 of FIG. 1) and the base station (e.g., the base station 102) is shown with three layers: Layer 1, Layer 2, and Layer 3. The Layer 1 (L1 layer) is the lowest layer and implements various physical layer signal processing functions. In the illustrated example, the L1 Layer is referred to as the physical layer 406. The Layer 2 (L2 layer) 408 is above the physical layer 406 and is responsible for the link between the UE and the base station over the physical layer 406.
In the user place, the L2 layer 408 includes a media access control (MAC) sublayer 410, a radio link control (RLC) sublayer 412, and a packet data convergence protocol (PDCP) sublayer 414, which are terminated at the base station on the network side. Although now shown, the UE may have several upper layers above the L2 layer 408, including a network layer (e.g., an IP layer) that is terminated at the PDN Gateway 172 of FIG. 1 on the network side, and an application layer that is terminated at the other end of the connection.
The PDCP sublayer 414 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 414 may also provide header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between base stations. The RLC sublayer 412 provides a segmentation and reassembly of upper layer data packets,  retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ) . The MAC sublayer 410 provides multiplexing between logical and transport channels. The MAC sublayer 410 may also be responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs. The MAC sublayer 410 may also be responsible for HARQ operations.
In the control panel, the radio protocol architecture for the UE and the base station is substantially the same for the physical layer 406 and the L2 layer 408 with the exception that there is no header compression function for the control plane. The control plane also includes a radio resource control (RRC) sublayer 416 in the Layer 3 (L3 layer) . The RRC sublayer 416 is responsible for obtaining radio resources (e.g., radio bearers) and for configuring the lower layers using RRC signaling between the base station and the UE.
A multi-subscription UE that includes one or more SIMs and connects to two or more separate mobile communication networks using one or more shared radio frequency (RF) resources/radios may be termed a “multi-standby” UE. One example of an MSMS UE is a dual-SIM-dual-standby (DSDS) UE, which includes two SIM cards that share a set of RF circuitry (referred to as an “RF chain” or an “RF resource chain” ) to communicate with two separate mobile communication networks (or RATs) on behalf of their respective subscriptions. Another example of a multi-subscription UE is a single-radio LTE (SRLTE) UE, which includes one SIM card/subscription associated with two or more subscriptions that share a single shared RF resource chain to communicate with one or more MSMS communication networks on behalf of the multiple subscriptions.
In certain aspects, only one subscription can use an RF resource chain to communicate with its mobile network at a time. Therefore, the UE periodically interrupts RF operations of an active subscription ( “first subscription” ) so that the idle subscription ( “second subscription” ) can use the shared RF resource (e.g., a “tune-away” or a “tune-away event” as the RF resource tunes away from the frequency bands and/or channels of the RAT associated with the first subscription and tunes to the frequency bands and/or channels of the RAT associated with the second subscription) . However, the interruption of first subscription communication activity caused by the tune-away (e.g., a “tune-away gap” ) may prevent critical measurements and/or signaling of the  first subscription. For example, the tune-away from the first subscription communication activity may result in radio resource control (RRC) stat mismatch between the UE and the first subscription, protocol stack layers out-of-sync between the UE and the first subscription, and/or the network may schedule penalties due to, for example, slow lower layer recovery associated with the UE. In certain aspects, abnormal data ratio bearer status due to the tune-away gap may result in long data stall times.
FIG. 5 is a diagram illustrating an example communication system 500 including a UE 502, a first communication network 510, and a second communication network 520. In the illustrated example of FIG. 5, the UE 502 is an MSIM UE that may communicate with the first communication network 510 through a communication link 512 to a first base station 514. The MSIM UE 502 may also communicate with the second communication network 520 through a communication link 522 to a second base station 524. The first base station 514 may communicate with the first communication network 510 via a wired or wireless communication link 516. The second base station 524 may communicate with the second communication network 520 via a wired or wireless communication link 526.
Each of the  communication networks  510, 520 may support communications using one or more RATs, and each of the  wireless communication links  512, 522, may include cellular connections that may be made through two-way wireless communication links using one or more RATs. Examples of RATs include 3GPP Long Term Evolution (LTE) , Global System for Mobility (GSM) , Worldwide Interoperability for Microwave Access (Wi-MAX) , Code Division Multiple Access (CDMA) , Wideband CDMA (WCDMA) , Time Division Multiple Access (TDMA) , Single-Carrier Radio Transmission Technology (1xRTT) , Evolution-Data Optimized (EV-DO) , and other RATs, such as members of the Institute of Electrical and Electronics Engineers (IEEE) 802 family of RATs, including Wi-Fi, Bluetooth, ZigBee, and/or other similar RATs. While the communication links 512, 522 are illustrated as single links, it should be appreciated that each of the communication links may include a plurality of frequencies or frequency bands, each of which may include a plurality of logical channels. Additionally, each of the communication links 512, 522 may utilize more than one RAT.
As disclosed herein, the UE 502 is an MSIM UE. In certain aspects, the MSIM UE 502 includes a first SIM interface to receive a first SIM module that may be associated with a first subscription. The MSIM UE 502 may also include a second SIM interface to receive a second SIM module that may be associated with a second subscription.
Each SIM and/or RAT in the MSIM UE 502 may be associated with or permitted to use an RF resource. As used herein, the term “RF resource chain” may be used to refer to all of the circuitry used to send and/or receive RF signals. In certain aspects, the MSIM device 502 may have a single RF resource that may be shared among two or more SIMs. In certain aspects, the MSIM device 502 may include more than one RF resource, but may operate in a mode or modes in which two or more SIMs share access to one RF resource. In certain such aspects, each of the RF resources may include, for example, transceivers associated with one or more RATs and may perform transmit/receive functions for the MSIM UE 502 on behalf of its respective RATs.
In certain aspects, a multi-subscription UE may operate in multiple RAT networks by tuning away from one RAT network to operate in another RAT network, and then tuning back to the first RAT network to operate in that RAT network. For example, the MSIM UE 502 may be connected to the first communication network 510 and the second communication network 520. The MSIM UE 502 may tune-away from the first communication network 510 and use radio frequency resources conduct paging and/or channel monitoring in the second communication network 520. The MSIM UE 502 may tune-away to the second communication network 520 for a period referred to as a tune-away gap. After the tune-away gap, the MSIM UE 502 may tune-back to the first communication network 510.
As used herein, the term “subscription” and “SIM” may be used a shorthand reference to a communication network associated with a particular SIM, since the information stored in a SIM enables the wireless communication device to establish a communication with a particular network, thus the SIM and the communication network, as well as the services and subscriptions supported by that network, correlate to one another.
It should be appreciated that references to “first communication network, ” “first subscription, ” “first SIM, ” “second communication network, ” “second subscription, ” and “second SIM” are arbitrary and are used to refer to two or more  subscriptions/networks generally because at any given time, either subscription/network may be in an active mode (e.g., on an active voice or data call) or a standby mode. For example, at a first time, a first subscription with a first network (e.g., the first communication network 510) may be on an active data call while a second subscription with a second network (e.g., the second communication network 520) may be in the standby mode. At a second time, the second subscription may enter an active mode and the first subscription may enter the standby mode. Also, references to “first” and “second” subscriptions and networks is not intended to imply that the aspects are limited to two subscriptions sharing one radio frequency (RF) resource. For example, in certain aspects, three or more subscriptions may share one RF resource at a time. In certain such examples, third and fourth subscriptions may behave similar to a second subscription. Thus, in the interest of brevity, operations of subscriptions in the standby mode that share the RF resource during tune-away periods are described generally with reference to the standby mode.
During the tune-away gap, while the MSIM UE 502 is tuned to the second communication network 520, the MSIM UE 502 may miss signaling or data scheduled by the first base station 514 of the first communication network 510. For example, communication between the MSIM UE 502 and the first base station 514 may cause a mismatch in configurations between the MSIM UE 502 and the first base station 514. In certain aspects, the mismatch in configuration between the MSIM UE 502 and the first base station 514 negatively impacts communication. Thus, examples disclosed herein enable the MSIM UE 502 to detect an abnormal transmission condition between the MSIM UE 502 and the first base station 514 while communication between the MSIM UE 502 and the second base station 524 is active. The MSIM UE 502 may then try to re-establish an RRC connection between the MSIM UE 502 and the first base station 514. In certain aspects, if, after the RRC connection between the MSIM UE 502 and the first base station 514 are re-established, the MSIM UE 502 detects another abnormal transmission condition, then the MSIM UE 502 may attempt to reset the RRC connection. In certain aspects, by performing the RRC connection reset, the MSIM UE 502 may reset data radio bearers between the MSIM UE 502 and the first fast station 514.
FIG. 6 is a diagram 600 illustrating an example call flow between a UE 602, a first base station 604, and a second base station 606, as disclosed herein. Aspects of the  UE 602 may be described with respect to the UE 104 of FIG. 1, the UE 350 of FIG. 3, and/or the UE 502 of FIG. 5. Aspects of the  base stations  604, 604 may be described with respect to the base station 102 of FIG. 1, the base station 310 of FIG. 3, and/or the  base stations  514, 524 of FIG. 5. In the illustrated example of FIG. 6, the UE 602 is initially in standby mode with respect to the first base station 604 and with respect to the second base station 606.
At 610, the UE 602 transitions to an active mode with respect to the second base station 606. For example, the UE 602 may initiate a voice call, data transfer, etc. via the second base station 606. As a result of transitioning to the active mode with respect to the second base station 606, the UE 602 tunes-away from the first base station 604. In this example, an interruption in connectivity between the UE 602 and the first base station 604 occurs due to the tune-away gap. For example, a configuration mismatch occurs where RRC states between the UE 602 and the first base station 604 are not in-synchronization. As a result, a downlink data packet 614 transmit by the first base station 604 to the UE 602 may not be received and/or properly decoded by the UE 602.
At 616, the UE 602 detects an abnormal transmission condition. In certain aspects, the abnormal transmission condition corresponds to transmission of invalid data (e.g., data that is out-of-window and/or duplicate data) . In certain aspects, the abnormal transmission condition corresponds to the failure to receive a response message to a request. For example, an acknowledgement delay may exceed a threshold time period.
In certain aspects, the UE 602 may detect the abnormal transmission condition via the physical layer (e.g., the physical layer 406 of FIG. 4) . For example, the UE 602 may determine, via the physical layer 406, that a response delay from the first base station 604 to a scheduling request may exceed a threshold time period (e.g., no response to the scheduling request) . In certain aspects, the UE 602 may determine, via the physical layer 406, that a response delay to a random access channel (RACH) procedure from the first base station 604 may exceed a threshold time period (e.g., no response to the RACH procedure) . In certain aspects, the UE 602 may detect, via the physical layer 406, a quantity of uplink or downlink retransmissions under good channel conditions that satisfy a consecutive uplink retransmission threshold or a consecutive downlink retransmissions threshold. In certain aspects, the UE 602 may determine that a retransmission is under good channel conditions based on, for example, a reference  signal received power (RSRP) associated with the retransmission, a signal-to-noise ratio (SNR) associated with the retransmission, and/or a consecutive uplink/downlink decoding (e.g., CRC (cyclic redundancy check) ) pass associated with an initial transmission, a second transmission, and/or an nth transmission.
In certain aspects, the UE 602 may detect the abnormal transmission condition via the MAC layer (e.g., the MAC sublayer 410 of FIG. 4) . For example, a buffer status report (BSR) is a MAC control element from the UE to the base station carrying information on how data much data is in the UE buffer to be sent out (e.g., from the UE to the base station) . In certain aspects, the UE 602 may determine, via the MAC sublayer 410, that a response delay to a BSR may exceed a threshold time period (e.g., no response to the BSR) . In certain aspects, the UE 602 may determine, via the MAC sublayer 410, that a quantity of responses to buffer status reports that have not been received (e.g., indicating that the UE did not receive a response to one or more BSRs) satisfies a buffer status report request threshold.
In certain aspects, the UE 602 may detect the abnormal transmission condition via the RLC layer (e.g., the RLC sublayer 412 of FIG. 4) . For example, the UE 602 may determine that a response delay via RLC may exceed a threshold time period (e.g., no response detected via RLC) . In certain aspects, the no response via RLC may include the UE 602 determining, via the RLC sublayer 412, that an acknowledgement (ACK) of acknowledged mode data packet units (PDUs) was not received. In certain aspects, the no response via RLC may include the UE 602 determining that an acknowledgement (ACK) was not received for a threshold quantity of acknowledged mode PDUs. In certain aspects, the no response via RLC may include the UE 602 determining that a retransmission of a message did not occur after an RLC negative acknowledgement (NACK) . In certain aspects, the no response via RLC may include the UE 602 detecting the transmission of duplicate PDUs after an RLC ACK. In certain aspects, the no response via RLC may include the UE 602 detecting the transmission of out-of-window PDUs after an RLC ACK.
In certain aspects, the UE 602 may detect the abnormal transmission condition via the PDCP layer (e.g., the PDCP sublayer 414 of FIG. 4) . For example, the UE 602 may determine that a quantity of consecutive invalid packet data units (PDUs) received from the first base station 604 satisfies a threshold (e.g., the quantity of consecutive invalid PDUs is greater than or equal to a consecutive invalid PDU threshold) . In  certain aspects, the UE 602 may determine that a quantity of out-of-window old PDUs received from the first base station 604 satisfies a threshold (e.g., the quantity of out-of-window old PDUs received from the first base station 604 is greater than or equal to an out-of-window old PDU threshold) . In certain aspects, a PDU is an invalid PDU and/or an out-of-window old PDU when, for example, the PDCP sublayer 414 is unable to decipher the PDU.
After detecting the abnormal transmission condition, the UE 602 transmits an RRC connection reestablishment request 618 to the first base station 604. By transmitting the RRC connection reestablishment request 618, the UE 602 attempts to prevent performing an RRC connection reset and to recover radio links (e.g., correct configuration mismatches) . The UE 602 may then communicate 620 with the first base station 604 to reestablish the RRC connection. For example, the UE 602 may receive an RRC connection reestablishment message from the first base station 604 and respond by transmitting an RRC connection reestablishment complete message to the first base station 604.
After reestablishing the RRC connection with the first base station 604, the UE 602 may then detect another abnormal transmission condition 622. For example, the UE 602 may detect transmission of invalid data (e.g., data that is out-of-window and/or duplicate data) , or may detect a failure to receive a response message to a request. In certain aspects, the UE 602 detects the abnormal transmission condition via the physical layer, the MAC layer, the RLC layer, and/or the PDCP layer.
In certain examples, the abnormal transmission condition detected before reestablishing the RRC connection (e.g., at 616) and the abnormal transmission conditioned detected after reestablishing the RRC connection (e.g., at 622) may be the same abnormal transmission condition. In other examples, the abnormal transmission condition detected before reestablishing the RRC connection (e.g., at 616) and the abnormal transmission conditioned detected after reestablishing the RRC connection (e.g., at 622) may be different abnormal transmission conditions. In certain examples, a threshold applied when detecting the abnormal transmission condition before reestablishing the RRC connection (e.g., at 616) may be different than a threshold applied when detecting the abnormal transmission condition after reestablishing the RRC connection (e.g., at 622) . For example, at 616, the UE 602 may wait for ten consecutive invalid PDUs and at 622, the UE 602 may wait for three  consecutive invalid PDUs before determining that an abnormal transmission condition occurred.
After detecting the abnormal transmission condition after reestablishing the RRC connection (e.g., at 622) , the UE 602 transmits an RRC setup request to the first base station 604. In certain aspects, the RRC setup request includes a request to reset data radio bearers between the UE 602 and the first base station 604. The UE 602 then communicates with the first base station 604 to setup the RRC connection. For example, the UE 602 may receive an RRC connection setup message 626 from the first base station 604 and respond by transmitting an RRC setup complete message 628 to the first base station 604.
FIG. 7 is a flowchart 700 of a method of wireless communication. The method may be performed by a UE, such as the UE 104 of FIG. 1, the UE 350 of FIG. 3, the UE 502 of FIG. 5, the UE 602 of FIG. 6, and/or the apparatus 802/802’ of FIGS. 8 and 9, respectively. One or more of the illustrated operations may be omitted, transposed, or contemporaneous. In FIG. 7, optional aspects are illustrated with a dashed line. The method may provide for improved communication between an MSIM UE and a plurality of subscriptions and enables the UE to resume data transmission after a long tune-away gap. Thus, aspects disclosed herein may improve the efficiency and operability of the UE accessing the plurality of subscriptions for data transmissions.
At 702, the UE detects an abnormal transmission condition associated with a first subscription of the UE and a base station while communication associated with a second subscription of the UE and a second base station is active.
In an aspect, the UE detects the abnormal transmission condition by determining that a quantity of consecutive invalid packet data units (PDUs) received from the first base station satisfies a consecutive invalid PDU threshold. In an aspect, the UE detects the abnormal transmission condition by determining that a quantity of out-of-window old packet data units (PDUs) received from the first base station satisfies an out-of-window old PDU threshold. In an aspect, the UE detects the abnormal transmission condition by determining no response from the first base station to a scheduling request. In an aspect, the UE detects the abnormal transmission condition by determining no response from the first base station to a random access channel (RACH) . In an aspect, the UE detects the abnormal transmission condition by determining a quantity of consecutive uplink retransmissions satisfies a consecutive  uplink retransmissions threshold. In an aspect, the UE detects the abnormal transmission condition by determining a quantity of consecutive downlink retransmissions satisfies a consecutive downlink retransmissions threshold. In an aspect, the UE detects the abnormal transmission condition by determining a quantity of no responses to buffer status reports satisfies a buffer status report request threshold. In an aspect, the UE detects the abnormal transmission condition by determining no response via radio link control (RLC) . In an aspect, the UE detects the abnormal transmission condition by determining that no acknowledgements have been received for a threshold quantity of acknowledged mode packet data units. In an aspect, the UE detects the abnormal transmission condition by determining no retransmission of a message after an RLC negative acknowledgement (NACK) . In an aspect, the UE detects the abnormal transmission condition by detecting transmittal of duplicate packet data units (PDUs) after an RLC acknowledgement (ACK) . In an aspect, the UE detects the abnormal transmission condition by detecting transmittal of out-of-window packet data units (PDUs) after an RLC acknowledgement (ACK) .
At 704, the UE transmits an RRC connection reestablishment request to the first base station upon the detecting of the abnormal transmission condition. At 706, the UE communicates with the first base station to reestablish the RRC connection based on the transmitted RRC connection reestablishment request. For example, the UE may receive an RRC connection reestablishment message from the first base station and respond by transmitting an RRC connection reestablishment complete message to the first base station.
At 708, the UE may detect, after the reestablishing of the RRC connection, a second abnormal transmission condition associated with the first subscription and the first base station while communication associated with the second subscription and the second base station is active.
In an aspect, the UE detects the abnormal transmission condition and the second abnormal transmission condition are the same condition. In an aspect, the UE detects that a threshold associated with the detecting of the abnormal transmission condition is different than a threshold associated with the detecting of the second abnormal transmission condition. For example, the consecutive invalid PDU threshold associated with the abnormal transmission condition may be ten consecutive invalid  PDUs, while the consecutive invalid PDU threshold associated with the second abnormal transmission condition may be three consecutive invalid PDUs.
At 710, the UE may transmit an RRC setup request to the first base station indicating a request to reset the data radio bearer (DRB) upon the detecting of the second abnormal transmission condition. At 712, the UE may communicate with the first base station to setup the RRC connection based on the transmitted RRC setup request. For example, the UE may receive an RRC connection setup message from the first base station and respond by transmitting an RRC setup complete message to the first base station.
FIG. 8 is a conceptual data flow diagram 800 illustrating the data flow between different means/components in an exemplary apparatus 802. The apparatus may be the apparatus 104. The apparatus includes a reception component 804 configured to receive downlink communication from a base station 850 and a transmission component 806 configured to transmit uplink communication to the base station 850.
The apparatus may include an abnormal transmission condition detection component 808 configured to detect an abnormal transmission condition. The abnormal condition detection component 808 may detect an abnormal transmission condition based on transmission of invalid data (e.g., data that is out-of-window and/or duplicate data) , or may detect a failure to receive a response message to a request. In certain aspects, the abnormal transmission condition detection component 808 may detect the abnormal transmission condition via the physical layer, the MAC layer, the RLC layer, and/or the PDCP layer.
The apparatus may include an RRC reestablishment component 810 configured to reestablish an RRC connection between a UE and a base station.
The apparatus may include an RRC Re-setup component 812 configured to re-setup an RRC connection between the UE and the base station. The RRC Re-setup component 812 may be configured to reset data radio bearers between the UE and the base station.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 7. As such, each block in the aforementioned flowchart of FIG. 7 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated  processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
FIG. 9 is a diagram 900 illustrating an example of a hardware implementation for an apparatus 802' employing a processing system 914. The processing system 914 may be implemented with a bus architecture, represented generally by the bus 924. The bus 924 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 914 and the overall design constraints. The bus 924 links together various circuits including one or more processors and/or hardware components, represented by the processor 904, the  components  804, 806, 808, 810, 812, and the computer-readable medium /memory 906. The bus 924 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 914 may be coupled to a transceiver 910. The transceiver 910 is coupled to one or more antennas 920. The transceiver 910 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 910 receives a signal from the one or more antennas 920, extracts information from the received signal, and provides the extracted information to the processing system 914, specifically the reception component 804. In addition, the transceiver 910 receives information from the processing system 914, specifically the transmission component 806, and based on the received information, generates a signal to be applied to the one or more antennas 920. The processing system 914 includes a processor 904 coupled to a computer-readable medium /memory 906. The processor 904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 906. The software, when executed by the processor 904, causes the processing system 914 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 906 may also be used for storing data that is manipulated by the processor 904 when executing software. The processing system 914 further includes at least one of the  components  804, 806, 808, 810, 812. The components may be software components running in the processor 904, resident/stored in the computer readable medium /memory 906, one or more hardware components coupled to the  processor 904, or some combination thereof. The processing system 914 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
In one configuration, the apparatus 802/802' for wireless communication includes means for means for detecting an abnormal transmission condition associated with a first subscription of the UE and a first base station while communication associated with a second subscription of the UE and a second base station is active; means for transmitting a radio resource control (RRC) connection reestablishment request to the first base station upon the detecting of the abnormal transmission condition; means for communicating with the first base station to reestablish the RRC connection based on the transmitted RRC connection reestablishment request; means for detecting, after the reestablishing of the RRC connection, a second abnormal transmission condition associated with the first subscription and the first base station while communication associated with the second subscription and the second base station is active; means for transmitting an RRC setup request to the first base station indicating a request to reset the data radio bearer (DRB) upon the detecting of the second abnormal transmission condition; and means for communication with the first base station to setup the RRC connection based on the transmitted RRC setup request. The aforementioned means may be one or more of the aforementioned components of the apparatus 802 and/or the processing system 914 of the apparatus 802' configured to perform the functions recited by the aforementioned means. As described supra, the processing system 914 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
Figure PCTCN2019083030-appb-000001
Figure PCTCN2019083030-appb-000002
Figure PCTCN2019083030-appb-000003
Figure PCTCN2019083030-appb-000004
Figure PCTCN2019083030-appb-000005

Claims (30)

  1. A method of wireless communication at a user equipment (UE) , comprising:
    detecting an abnormal transmission condition associated with a first subscription of the UE and a first base station while communication associated with a second subscription of the UE and a second base station is active;
    upon detection of the abnormal transmission condition, transmitting a radio resource control (RRC) connection reestablishment request to the first base station; and
    communicating with the first base station to reestablish an RRC connection based on the RRC connection reestablishment request transmitted by the UE.
  2. The method of claim 1, further comprising:
    detecting, after the reestablishing of the RRC connection, a second abnormal transmission condition associated with the first subscription and the first base station while communication associated with the second subscription and the second base station is active;
    upon detection of the second abnormal transmission condition, transmitting an RRC setup request to the first base station indicating a request to reset a data radio bearer (DRB) ; and
    communication with the first base station to setup the RRC connection based on the RRC setup request transmitted by the UE.
  3. The method of claim 2, wherein the detecting of the abnormal transmission condition includes determining that a quantity of consecutive invalid packet data units (PDUs) received from the first base station satisfies a consecutive invalid PDU threshold.
  4. The method of claim 2, wherein the detecting of the abnormal transmission condition includes determining that a quantity of out-of-window old packet data units (PDUs) received from the first base station satisfies an out-of-window old PDU threshold.
  5. The method of claim 2, wherein the detecting of the abnormal transmission condition includes determining no response from the first base station to a scheduling request.
  6. The method of claim 2, wherein the detecting of the abnormal transmission condition includes determining no response from the first base station to a random access channel (RACH) .
  7. The method of claim 2, wherein the detecting of the abnormal transmission condition includes determining a quantity of consecutive uplink retransmissions satisfies a consecutive uplink retransmissions threshold.
  8. The method of claim 2, wherein the detecting of the abnormal transmission condition includes determining a quantity of consecutive downlink retransmissions satisfies a consecutive downlink retransmissions threshold.
  9. The method of claim 2, wherein the detecting of the abnormal transmission condition includes determining a quantity of no responses to buffer status reports satisfies a buffer status report request threshold.
  10. The method of claim 2, wherein the abnormal transmission condition and the second abnormal transmission condition are the same condition.
  11. An apparatus for wireless communication, comprising:
    means for detecting an abnormal transmission condition associated with a first subscription of a user equipment (UE) and a first base station while communication associated with a second subscription of the UE and a second base station is active;
    means for transmitting a radio resource control (RRC) connection reestablishment request to the first base station upon detection of the abnormal transmission condition; and
    means for communicating with the first base station to reestablish an RRC connection based on the RRC connection reestablishment request transmitted by the UE.
  12. The apparatus of claim 11, further comprising:
    means for detecting, after the reestablishing of the RRC connection, a second abnormal transmission condition associated with the first subscription and the first base station while communication associated with the second subscription and the second base station is active;
    means for transmitting an RRC setup request to the first base station indicating a request to reset a data radio bearer (DRB) upon detection of the second abnormal transmission condition; and
    means for communication with the first base station to setup the RRC connection based on the RRC setup request transmitted by the UE.
  13. The apparatus of claim 12, wherein the means for detecting the abnormal transmission condition includes means for determining that a quantity of consecutive invalid packet data units (PDUs) received from the first base station satisfies a consecutive invalid PDU threshold.
  14. The apparatus of claim 12, wherein the means for detecting the abnormal transmission condition includes means for determining that a quantity of out-of-window old packet data units (PDUs) received from the first base station satisfies an out-of-window old PDU threshold.
  15. The apparatus of claim 12, wherein the means for detecting the abnormal transmission condition includes means for determining no response from the first base station to a scheduling request.
  16. The apparatus of claim 12, wherein the means for detecting the abnormal transmission condition includes means for determining no response from the first base station to a random access channel (RACH) .
  17. A User Equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    detect an abnormal transmission condition associated with a first subscription of the UE and a first base station while communication associated with a second subscription of the UE and a second base station is active;
    upon detection of the abnormal transmission condition, transmit a radio resource control (RRC) connection reestablishment request to the first base station; and
    communicate with the first base station to reestablish an RRC connection based on the RRC connection reestablishment request transmitted by the UE.
  18. The UE of claim 17, wherein the at least one processor is further configured to:
    detect, after the reestablishing of the RRC connection, a second abnormal transmission condition associated with the first subscription and the first base station while communication associated with the second subscription and the second base station is active;
    upon detection of the second abnormal transmission condition, transmit an RRC setup request to the first base station indicating a request to reset a data radio bearer (DRB) ; and
    communicate with the first base station to setup the RRC connection based on the RRC setup request transmitted by the UE.
  19. The UE of claim 18, wherein the detecting of the abnormal transmission condition includes determining a quantity of consecutive uplink retransmissions satisfies a consecutive uplink retransmissions threshold.
  20. The UE of claim 18, wherein the detecting of the abnormal transmission condition includes determining a quantity of consecutive downlink retransmissions satisfies a consecutive downlink retransmissions threshold.
  21. The UE of claim 18, wherein the detecting of the abnormal transmission condition includes determining no response via radio link control (RLC) .
  22. The UE of claim 21, wherein the determining of the no response via RLC includes determining that no acknowledgements have been received for a threshold quantity of acknowledged mode packet data units.
  23. The UE of claim 21, wherein the determining of the no response via RLC includes determining no retransmission of a message after an RLC negative acknowledgement.
  24. The UE of claim 21, wherein the determining of the no response via RLC includes detecting transmittal of duplicate packet data units (PDUs) after an RLC acknowledgement.
  25. The UE of claim 21, wherein the determining of the no response via RLC includes detecting transmittal of out-of-window packet data units (PDUs) after an RLC acknowledgement.
  26. The UE of claim 18, wherein a first threshold associated with the detecting of the abnormal transmission condition is different than a second threshold associated with the detecting of the second abnormal transmission condition.
  27. A computer-readable medium storing computer executable code for wireless communication at a User Equipment (UE) , comprising code to:
    detect an abnormal transmission condition associated with a first subscription of the UE and a first base station while communication associated with a second subscription of the UE and a second base station is active;
    upon detection of the abnormal transmission condition, transmit a radio resource control (RRC) connection reestablishment request to the first base station; and
    communicate with the first base station to reestablish an RRC connection based on the RRC connection reestablishment request transmitted by the UE.
  28. The computer-readable medium of claim 27, further comprising code to:
    detect, after the reestablishing of the RRC connection, a second abnormal transmission condition associated with the first subscription and the first base station while communication associated with the second subscription and the second base station is active;
    upon detection of the second abnormal transmission condition, transmit an RRC setup request to the first base station indicating a request to reset a data radio bearer (DRB) ; and
    communicate with the first base station to setup the RRC connection based on the RRC setup request transmitted by the UE.
  29. The computer-readable medium of claim 28, further comprising code to:
    detect the abnormal transmission condition by determining a quantity of no responses to buffer status reports satisfies a buffer status report request threshold.
  30. The computer-readable medium of claim 28, further comprising code to:
    detect the abnormal transmission condition by determining no response via radio link control (RLC) .
PCT/CN2019/083030 2019-04-17 2019-04-17 Methods and apparatus to facilitate fast data transfer resumption after long tune-away gap for msim devices WO2020211011A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/083030 WO2020211011A1 (en) 2019-04-17 2019-04-17 Methods and apparatus to facilitate fast data transfer resumption after long tune-away gap for msim devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/083030 WO2020211011A1 (en) 2019-04-17 2019-04-17 Methods and apparatus to facilitate fast data transfer resumption after long tune-away gap for msim devices

Publications (1)

Publication Number Publication Date
WO2020211011A1 true WO2020211011A1 (en) 2020-10-22

Family

ID=72836774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083030 WO2020211011A1 (en) 2019-04-17 2019-04-17 Methods and apparatus to facilitate fast data transfer resumption after long tune-away gap for msim devices

Country Status (1)

Country Link
WO (1) WO2020211011A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959842A (en) * 2013-12-04 2014-07-30 华为技术有限公司 Method and base station for reconstruction of radio resource control connection
WO2016106722A1 (en) * 2014-12-31 2016-07-07 华为技术有限公司 Access method, apparatus and system
US20170265242A1 (en) * 2014-05-13 2017-09-14 Zte Corporation Method, Terminal, Base Station, and Storage Medium for Handling Radio Link Failure
US20170374705A1 (en) * 2015-01-30 2017-12-28 Kyocera Corporation User terminal and base station
US20180160467A1 (en) * 2015-08-04 2018-06-07 Huawei Technologies Co., Ltd. Communication method, network-side device, and user equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959842A (en) * 2013-12-04 2014-07-30 华为技术有限公司 Method and base station for reconstruction of radio resource control connection
US20170265242A1 (en) * 2014-05-13 2017-09-14 Zte Corporation Method, Terminal, Base Station, and Storage Medium for Handling Radio Link Failure
WO2016106722A1 (en) * 2014-12-31 2016-07-07 华为技术有限公司 Access method, apparatus and system
US20170374705A1 (en) * 2015-01-30 2017-12-28 Kyocera Corporation User terminal and base station
US20180160467A1 (en) * 2015-08-04 2018-06-07 Huawei Technologies Co., Ltd. Communication method, network-side device, and user equipment

Similar Documents

Publication Publication Date Title
US11283490B2 (en) Conditional reference signal transmission and measurement
EP3607796B1 (en) Dynamic bandwidth configuration in narrowband communication
US10251172B2 (en) Supporting different numerology configurations
EP3391571B1 (en) Techniques for harq retransmission skipping
US11638190B2 (en) Method and apparatuses for accessing unlicensed and licensed frequency bands
US10070321B2 (en) Method and apparatuses for suspending traffic in a frequency band
US20180359284A1 (en) System and method for signaling by a dual-sim dual-standby device
EP3888416B1 (en) Quick burst tuneaway
US9923610B2 (en) Selective usage of antennas for improved call performance
US10575233B2 (en) Methods and apparatuses for determining the gain of vehicle antennas
CN114600484B (en) UE SIM status network notification
WO2017160854A1 (en) Optimized measurement report order for inter-rat handover
US20170290047A1 (en) Scheduling request collection through license-assisted operation
US20170078865A1 (en) Frequency determination for device-to-device transmissions and receptions
US11246097B2 (en) Method and apparatus for providing link quality based reception sleep mode for narrowband internet of things devices
US10484144B2 (en) Hybrid automatic repeat request management for low latency communications
EP3520474B1 (en) Signaling to indicate whether physical broadcast channel repetition is enabled in a target cell
WO2019161537A1 (en) Paging signal monitoring
WO2020211011A1 (en) Methods and apparatus to facilitate fast data transfer resumption after long tune-away gap for msim devices
US11129059B2 (en) Method and apparatus for providing redirection for reception of broadcast content in a 5G stand alone environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925084

Country of ref document: EP

Kind code of ref document: A1