WO2020209379A1 - Pharmaceutical composition for administration to pregnant women or women who may be pregnant - Google Patents
Pharmaceutical composition for administration to pregnant women or women who may be pregnant Download PDFInfo
- Publication number
- WO2020209379A1 WO2020209379A1 PCT/JP2020/016186 JP2020016186W WO2020209379A1 WO 2020209379 A1 WO2020209379 A1 WO 2020209379A1 JP 2020016186 W JP2020016186 W JP 2020016186W WO 2020209379 A1 WO2020209379 A1 WO 2020209379A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pharmaceutical composition
- group
- drug
- integer
- block copolymer
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/351—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom not condensed with another ring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
- A61K31/405—Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/32—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/06—Antiabortive agents; Labour repressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention relates to a pharmaceutical composition for administration to a pregnant woman or a woman who may become pregnant.
- Medications for pregnant women are avoided as much as possible to avoid affecting the fetus. Effects on the fetus include teratogenicity, miscarriage, premature birth and fetal stunting.
- the number of drugs for which safety has been established is limited, and it is necessary to discontinue medication when pregnancy is known. Pregnant women may also suffer from excessive labor due to the discovery of pregnancy during medication. On the other hand, discontinuation of medication often has an adverse effect on pregnant women, and development of a drug that can be used even during pregnancy is desired.
- Cancer is one of the diseases that becomes a problem during pregnancy. Approximately 200,000 pregnant women worldwide suffer from cancer, of which breast cancer has been reported to be associated with exposure to endogenous estrogen and progesterone and develops with pregnancy. There is also.
- breast cancer The risk of breast cancer increases with age, but the number of cases of breast cancer in pregnant women increases with increasing age of pregnancy. Generally, for breast cancer, anticancer agents, hormone therapy, antibody therapeutic agents, radiation therapy, surgery, etc. are performed, but the anticancer agents that can be used for pregnant women are limited.
- Inflammation during pregnancy especially bacterial inflammation, is known to increase the risk of preterm birth, and non-steroidal anti-inflammatory drugs such as indomethacin can be used for treatment.
- non-steroidal anti-inflammatory drugs such as indomethacin affect the fetus and cause renal failure and digestive failure, and sufficient caution is required for their use.
- Preeclampsia is known as a disease that occurs frequently in pregnant women, and it occurs in about 1 in 20 people. Preeclampsia impairs renal and hepatic function, is dangerous to the mother, and can also cause fetal growth restriction. Antihypertensive agents such as hydralazine, methyldopa, labetalol, and nifedipine are commonly used to treat preeclampsia. Recent studies have reported that statins are useful for the treatment and / or prevention of preeclampsia (Non-Patent Document 1: Plos One (2010) vol. 5, Issue 10, e13663). The use of statins in pregnant women is contraindicated. In addition, some psychiatric drugs administered for the treatment of psychiatric disorders may cause teratogenicity or neonatal maladaptation syndrome, and the medication may be discontinued.
- the purpose is to develop a drug that can be used during pregnancy.
- the present inventors conducted research focusing on the placental permeability of the drug for the purpose of developing a drug that can be used during pregnancy.
- placental permeability can be controlled by controlling the size with a hydrophilic polymer, and have reached the present invention. Therefore, the present invention relates to the following:
- a pharmaceutical composition for administration to a pregnant woman or a woman of childbearing potential which comprises particles having a hydrophilic polymer on the surface to which a therapeutic agent is bound or coordinated, and has a dynamic particle size.
- the pharmaceutical composition having a diameter of 10 to 100 nm as measured by a light scattering method.
- the pharmaceutical composition according to item 1, wherein the particles are micelles containing a polyethylene glycol-polyamino acid block copolymer.
- the polyethylene glycol-polyamino acid block copolymer has the following general formula (I) or (II):
- R 1a and R 1b represent hydrogen atoms, hydroxyl groups or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12 alkoxy groups.
- L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
- L 2 represents ⁇ (CH 2 ) c ⁇ CO ⁇ , and c is an integer from 1 to 5.
- R 2a , and R 2c independently on each appearance, either do not exist or represent a methylene group.
- R 2b and R 2d represent a carboxy group or any amino acid side chain.
- R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
- R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue, where a is an integer of 1-5 and X is a primary, secondary, An amine compound residue containing one or more of the tertiary amine or quaternary ammonium salt, or a compound residue that is not an amine.
- m is an integer from 20 to 2,000
- n is an integer from 1 to 200) Item 2.
- [4] The pharmaceutical composition according to any one of items 1 to 3, wherein the particle size is 25 to 75 nm.
- the therapeutic agent is administered at a dosage and / or dosage that is contraindicated for pregnant women when administered only with the therapeutic agent.
- the therapeutic agent is selected from the group consisting of an anticancer drug, an anti-inflammatory drug, an antihypertensive drug, and a psychotropic drug.
- the anticancer drug is a platinum preparation.
- the therapeutic agent is an anti-inflammatory agent and is used for preventing miscarriage.
- the anti-inflammatory drug is a non-steroidal anti-inflammatory drug.
- the therapeutic agent is an antihypertensive agent and is for the treatment of a gestational hypertension agent.
- the antihypertensive drug is a statin-based antihypertensive drug.
- R 2a and R 2c independently exist for each occurrence or represent a methylene group.
- R 2b and R 2d represent a carboxy group or any amino acid side chain.
- R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
- R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue, where a is an integer of 1-5 and X is a primary, secondary, An amine compound residue containing one or more of the tertiary amine or quaternary ammonium salt, or a compound residue that is not an amine.
- a drug is a drug-combined block copolymer in which a drug is bound to the block copolymer represented by (1) via R 2b and R 2d of the block copolymer, directly or via a linker, and the drug is , Indomethacin or simvastatin, said drug complex block copolymer.
- Pharmaceutical composition [17] The pharmaceutical composition according to item 16, wherein the drug contains indomethacin, and the pharmaceutical composition is a miscarriage-preventing pharmaceutical composition.
- a method for producing micelles which comprises a polyethylene glycol-polyamino acid block copolymer to which a therapeutic agent is bound or coordinated and is to be administered to a pregnant woman or a woman of childbearing potential.
- the production method is a method for producing micelles, which comprises a polyethylene glycol-polyamino acid block copolymer to which a therapeutic agent is bound or coordinated and is to be administered to a pregnant woman or a woman of childbearing potential.
- the polyethylene glycol-polyamino acid block copolymer has the following general formula (1-a) or (1-b): (During the ceremony R 1a and R 1b represent hydrogen atoms, hydroxyl groups or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12 alkoxy groups.
- L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
- L 2 represents ⁇ (CH 2 ) c ⁇ CO ⁇ , and c is an integer from 1 to 5.
- R 2a and R 2c independently exist for each occurrence or represent a methylene group.
- R 2b and R 2d represent a carboxy group or any amino acid side chain.
- R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
- R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue.
- a is an integer of 1 to 5
- X is an amine compound residue containing one or more of primary, secondary, tertiary amines or quaternary ammonium salts, or a compound that is not an amine.
- Is a residue m is an integer from 20 to 2,000 n is an integer from 1 to 200)
- the manufacturing method according to 20. Particles having a hydrophilic polymer on the surface to which a therapeutic agent for use in the treatment or prevention of a disease in a pregnant woman or a woman of childbearing potential is bound or coordinated, and the particle size is dynamic light. The particles having a diameter of 10 to 100 nm as measured by a scattering method.
- Particles having a hydrophilic polymer on the surface to which an anti-inflammatory drug for use in the prevention, prevention or treatment of miscarriage or premature birth is bound or coordinated in a pregnant woman or a woman of childbearing potential.
- particles having a hydrophilic polymer on the surface to which an antihypertensive drug for use in the prevention or treatment of preeclampsia is bound or coordinated, and having a particle size of The particles having a diameter of 10 to 100 nm as measured by a dynamic light scattering method.
- a method for preventing, preventing or treating miscarriage or premature birth in which particles having a hydrophilic polymer on the surface to which an anti-inflammatory agent is bound or coordinated are provided.
- the method described above comprising administering to a pregnant woman or a woman of childbearing potential, wherein the particle size is 10-100 nm as measured by dynamic light scattering.
- a method for preventing or treating preeclampsia in which particles having a hydrophilic polymer on the surface to which an antihypertensive drug is bound or coordinated are provided on the surface of the pregnant woman or pregnant woman.
- the method described above comprising administering to a potential woman, wherein the particle size is 10-100 nm as measured by dynamic light scattering.
- the surface has a hydrophilic polymer to which a therapeutic agent is bound or coordinated and has a particle size for the manufacture of a medicament for use in the treatment or prevention of a disease in a pregnant woman or a woman of childbearing potential. Use of particles that are 10-100 nm as measured by dynamic light scattering.
- the hydrophilic polymer In pregnant women or women of childbearing potential, particles to which a therapeutic agent is bound or coordinated to produce a drug for the prevention, prevention or treatment of miscarriage or preterm birth, the hydrophilic polymer. Use of particles on the surface that have a particle size of 10-100 nm as measured by dynamic light scattering. [34] In pregnant women or women of childbearing potential, particles to which a therapeutic agent is bound or coordinated for the manufacture of a pharmaceutical for the prevention or treatment of preeclampsia, with a hydrophilic polymer on the surface. However, the use of particles whose particle size is 10 to 100 nm when measured by dynamic light scattering. [35] The use according to any one of items 32 to 34, wherein the fetal phytotoxicity is reduced. [36] The use according to any one of items 32 to 34, wherein the placental barrier permeability is reduced.
- the pharmaceutical composition of the present invention has low placental permeability and can reduce the effect of the drug on the fetus. This makes it possible to provide a medicine that can be administered to a pregnant woman or a woman who may become pregnant.
- FIG. 1 is a photograph showing the accumulation of high molecular weight micelles in the placenta and fetus.
- FIG. 2 is a photograph showing the analysis of elements (Pt, Fe, K, Ca) after administration of micelles having a size of 30 nm.
- FIG. 3 is a graph showing the platinum content in the fetus of pregnant mice treated with oxaliplatin and dahaplatin-encapsulating micelles (particle size 30 nm and 70 nm).
- FIG. 4 is a graph showing the platinum content in the placenta of pregnant mice treated with oxaliplatin and dahaplatin-encapsulating micelles (particle size 30 nm and 70 nm).
- FIG. 1 is a photograph showing the accumulation of high molecular weight micelles in the placenta and fetus.
- FIG. 2 is a photograph showing the analysis of elements (Pt, Fe, K, Ca) after administration of micelles having a size of 30 nm.
- FIG. 5 is a graph showing placental permeability of a drug by a human placental perfusion model.
- FIG. 5A shows the results for oxaliplatin, 30 nm dahaplatin-encapsulating micelles, 70 nm dahaplatin-encapsulating micelles, and 8-armPEG.
- FIG. 5B shows the results for 10 nm, 20 nm, and 30 nm PEG-coated gold nanoparticles.
- FIG. 6 is a graph showing the amount of drug accumulated in the human placenta.
- FIG. 7 shows the 1 H-NMR spectrum of PEG-poly (Asp-Furan-OH).
- FIG. 8 is a graph showing the stability of micelles in blood and endosome pH.
- FIG. 9 is a graph showing the amount of indomethacin released in macrophages.
- FIG. 10 is a graph showing placental permeability of a drug by a human placental perfusion model.
- FIG. 11 is a diagram showing the tissue transferability of indomethacin-encapsulating polymer micelles.
- FIG. 11A shows the location of the recovered organs, and
- FIGS. 11B-E show the fluorescence of indomethacin-encapsulating polymer micelles at 1, 4, 8 and 24 hours after administration.
- FIG. 12 is a diagram showing an evaluation of tissue migration of indomethacin-encapsulating polymer micelles.
- the amount of indomethacin transferred to (A) kidney, (B) liver, (C) spleen, (D) placenta, and (E) fetus after administration of indomethacin-encapsulating polymer micelles to pregnant mice is shown.
- It is a graph which shows the survival rate by administration of indomethacin, indomethacin-encapsulating polymer micelle in a preterm mouse model.
- FIG. 14 is a graph showing changes in blood pressure after administration of a drug in a preeclampsia model mouse.
- FIG. 15 is a graph showing changes in fetal body weight after administration of a drug in a preeclampsia model mouse.
- FIG. 16 is a graph showing the amount of urinary albumin after drug administration in a preeclampsia model mouse.
- the present invention relates to a pharmaceutical composition for administration to a pregnant woman or a woman who may become pregnant.
- the pharmaceutical composition of the present invention contains particles having a hydrophilic polymer to which a therapeutic agent is bound or coordinated on the surface, and the particle size thereof is 10 to 100 nm when measured by a dynamic light scattering method. It is a feature. From the viewpoint of placental permeability, the particle size is usually 10 nm or more, preferably 20 nm or more, and more preferably 25 nm or more. From the viewpoint of exerting the efficacy of the therapeutic agent, the particle size is usually 100 nm or less, preferably 90 nm or less, more preferably 80 nm or less, and even more preferably 75 nm or less.
- the polydispersity (PDI) of the particle size of the particles is preferably 0.2 or less, and even more preferably 0.1 or less. Since the particles contained in the pharmaceutical composition of the present invention have reduced placental permeability, they can be used as a pharmaceutical composition for reducing fetal phytotoxicity or reducing placental barrier penetration.
- any particles may be used as long as the particles have a hydrophilic polymer on the surface, and may be micelles or vesicles formed by a block copolymer, liposomes whose surface is covered with a hydrophilic polymer, or the like.
- hydrophilic polymer any polymer can be used as long as it is a hydrophilic polymer generally used in medicines, particularly drug delivery systems.
- polyethylene glycol, polylactic acid, polyglycolic acid, polypeptide, polysaccharide and the like can be mentioned.
- polyethylene glycol-polyamino acid block copolymers can be used.
- polyethylene glycol-polyamino acid block copolymer any known in the art can be used.
- amino acid of the polyethylene glycol-polyamino acid block copolymer glutamic acid or aspartic acid having a carboxy group in the side chain can be used.
- R 1a and R 1b represent a hydrogen atom, a hydroxyl group, or an unsubstituted or substituted linear or branched C 1-12 alkyl group or C 1-12 alkoxy group.
- L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
- L 2 represents ⁇ (CH 2 ) c ⁇ CO ⁇ , and c is an integer from 1 to 5.
- R 2a and R 2c independently exist on each occurrence or represent a methylene group.
- R 2b and R 2d represent a carboxy group or any amino acid side chain.
- R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
- R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue, where a is an integer of 1-5 and X is a primary, secondary, An amine compound residue containing one or more of the tertiary amine or quaternary ammonium salt, or a compound residue that is not an amine.
- m is an integer from 20 to 2,000
- n is an integer from 1 to 200)
- Block copolymers represented by can be used. Therapeutic agents are bound or coordinated in R 2b and R 2d either directly or via a linker.
- R 1a and R 1b are independently hydrogen atoms, hydroxyl groups, or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12, respectively. Represents an alkoxy group.
- Linear or branched C 1-12 include, for example, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, decyl, undecyl. And so on.
- the substituents include acetalized formyl group, cyano group, formyl group, carboxyl group, amino group, C 1-6 alkoxycarbonyl group, C 2-7 acylamide group, and the same or different tri-C 1 -6 Alkylsiloxy group, siloxy group or silylamino group can be mentioned.
- acetalization refers to the reaction of the carbonyl of formyl with, for example, two molecules of an alkanol having 1 to 6 carbon atoms or a branched alkylene diol having 2 to 6 carbon atoms. It means formation and is also a method of protecting the carbonyl group.
- the substituent when the substituent is an acetalized formyl group, it can be hydrolyzed under mild acidic conditions and converted to another substituent, a formyl group (-CHO) (or aldehyde group).
- L 1 and L 2 represent a linking group.
- L 1 is preferably ⁇ (CH 2 ) b ⁇ NH ⁇ (where b is an integer of 1 to 5), and L 2 is ⁇ (CH 2 ) c ⁇ CO ⁇ (here). And c is an integer of 1 to 5).
- R 2a and R 2c do not exist independently at each appearance or represent a methylene group.
- aspartic acid is used as the amino acid
- dehydration condensation occurs between the carboxy group in the side chain of aspartic acid and the nitrogen in the main chain, and a succinimide intermediate is produced. Cleavage of this intermediate can then result in isomerization to isoaspartic acid. Therefore, when aspartic acid is isomerized to isoaspartic acid, a methylene group is generated at the positions of R 2a and R 2c , and R 2b and R 2d become carboxy groups.
- R 2a and R 2c In the absence of R 2a and R 2c, isomerization does not occur, indicating that the amino acid has a peptide bond in the main chain.
- the rate of isomerization in the block copolymer can be arbitrary.
- R 2a and R 2c R 2b and R 2d represent any amino acid side and the drug is coordinated through these groups or the drug, either directly or via a linker.
- the amino acid side chain may be a side chain of any biological constituent amino acid, but from the viewpoint of binding a drug, it may be a side chain of serine, threonine, arginine, histidine, lysine, cysteine, glutamic acid and aspartic acid. preferable.
- R 2a and R 2c are present, R 2b and R 2d are carboxy groups. Since the isomerization of aspartic acid to isoaspartic acid in the polyamino acid segment can occur accidentally, the above description is made even when the formula representing only the amide bond between the main chains is described in the present specification. It is not intended to exclude isomerized polymers as in formulas (I) and (II) of. Repetitive units of amino acids can be present in blocks, or can be randomly present.
- R 3 represents a hydrogen atom, a protecting group, a hydrophobic group or a polymerizable group. Specifically, R 3 is preferably an acetyl group, an acryloyl group, or a methacryloyl group.
- R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue.
- a is an integer of 1 to 5
- X is an amine compound residue containing one or more of primary, secondary, tertiary amines or quaternary ammonium salts, or a compound that is not an amine. It is preferably a residue.
- n is an integer of 1 to 200, preferably an integer of 20 to 100, and more preferably an integer of 30 to 50.
- each repeating unit in the general formulas (I) and (II) is shown in the order specified for convenience of description, but each repeating unit can exist in a random order. In particular, it is preferred that only each repeating unit in the polyamino acid segment can be present in random order as described above.
- the molecular weight (Mw) of the block copolymer represented by the general formulas (I) and (II) is not limited, but is preferably 5,000 to 40,000, more preferably 8,000 to 22,000. is there.
- the molecular weight (Mw) of the PEG segment is preferably 1,000 to 20,000, more preferably 2,000 to 12,000, and the molecular weight of the polyamino acid segment (Mw). ) Is preferably 4,000 to 20,000 as a whole, and more preferably 6,000 to 10,000.
- Method for producing a block copolymer represented by the general formula (I) and (II) include, but are not limited to, for example, R 1a - or R 1b - and previously synthesized segment (PEG segment) comprising a block portion of the PEG chain ; then, one end of the PEG segment (R 1a - - or R 1b opposite ends), and polymerizing a prescribed monomers in sequence, substitution or to include an anionic group to the side chain then optionally Examples thereof include a method of conversion, a method of synthesizing the PEG segment and a block portion having a side chain containing an anionic group in advance, and connecting them to each other.
- the methods and conditions of various reactions in the production method can be appropriately selected or set in consideration of the conventional method.
- the PEG segment is a method for producing a PEG segment portion of a block copolymer described in, for example, Patent Document 1: WO96 / 32434, Patent Document 2: WO96 / 33233, and Patent Document 3: WO97 / 06202. Can be prepared using.
- the bond between the PEG segment portion and the polyamino acid segment portion thus formed can also take an appropriate linking mode depending on the method for producing the block copolymer represented by the general formula (I) or (II), and the present invention As long as it meets the object of the invention, it may be bonded by any linking group.
- the production method is not particularly limited, but as one method for producing the polymer of the general formula (I) or (II), a PEG derivative having an amino group at the terminal is used, for example, from the amino terminal thereof.
- ⁇ -benzyl-L-aspartate (BLA), ⁇ -benzyl-L-glutamate and other protected amino acids N-carboxylic acid anhydrides are ring-open polymerized to synthesize block copolymers, followed by Examples thereof include a method of converting a chain benzyl group into another ester group, or partially or completely hydrolyzing the chain benzyl group to obtain the desired block copolymer.
- the structure of the copolymer is the general formula (I)
- the linking group L1 is a structure derived from the terminal structure of the PEG segment used, but is preferably ⁇ (CH 2 ) b ⁇ NH ⁇ (here).
- B is an integer from 1 to 5).
- the copolymer of the present invention can also be produced by a method of synthesizing a polyamino acid segment portion and then binding it to a PEG segment portion prepared in advance, and in this case, the result is the same as that produced by the above method.
- the linking group L 2 is not particularly limited, but is preferably ⁇ (CH 2 ) c ⁇ CO ⁇ , as it may have a structure corresponding to the general formula (II). Yes (where c is an integer from 1 to 5).
- Drugs can be bound or coordinated to the hydrophilic polymers of the present invention.
- the agent can be attached to or coordinated with the hydrophilic polymer via a linker or directly.
- the hydrophilic polymer is a block copolymer of formula (I) or (II)
- the agent can be coordinated or attached at R 2b and R 2d .
- the drug contains a heavy metal such as platinum, the carboxylate group formed by liberating the proton of the carboxy group of the amino acid side chain coordinates with the heavy metal of the drug.
- the drug is directly bound, it can be bound via the carboxy group, amino group, thiol group of the amino acid side chain.
- the linker L 3 can be any linker used in the art, such as C 1-6 alkylene.
- a drug in which a hydrazine is reacted with a carboxy group of a polyamino acid or a derivative thereof to form a hydrazide group in this case, M is -NH-NH 2
- M is -NH-NH 2
- the linker L becomes a hydrazone bond.
- any linker known in the art can be used from the viewpoint of producing desired particles.
- the therapeutic agent contained in the pharmaceutical composition of the present invention may be any therapeutic agent. Particularly in pregnant women, the required therapeutic agents are mentioned, and as an example, anticancer agents, anti-inflammatory agents, antihypertensive agents, psychotropic agents and the like can be used.
- anticancer agents include anticancer agents for treating cancer in any organ such as stomach, skin, larynx, mouth, pharynx, esophagus, digestive organs, pancreas, lung, brain, bone, bone marrow, and breast. Drugs for the treatment of breast cancer, which are more likely to occur in pregnant women.
- alkylating agent examples include nitrogen mustards such as cyclophosphamide, ifosfamide, melphalan, busulfan and thiotepa, and nitrosoureas such as nimustine, ranimustine, dacarbazine, procarbazine, temozolomide, carmustine, streptozotocin and bendamstin.
- Antimetabolites include fluorouracil, 6-mercaptopurine, azathioprine, hydroxyurea, thioguanine, fludarabine, cladribine, silatabin, gemcitabine and the like.
- topoisomerase inhibitors examples include camptothecin, irinotecan, nogitecan, anthracycline, doxorubicin, epirubicin, daunorubicin, bleomycin, levofloxacin, cyprofloxacin and the like.
- microtubule polymerization inhibitor examples include vincristine, vindesine, paclitaxel, docetaxel and the like.
- endocrine therapeutic agents include anastrozole, exemestane, tamoxifen, toremifene, fulvestrant, letrozole and the like.
- an endocrine therapeutic agent and the like can be mentioned.
- doxorubicin, cyclophosphamide, fluorouracil, etc. which have been proven to have less effect on the fetus, may be used.
- the present invention relates to a pharmaceutical composition for administration to a pregnant woman or a woman of childbearing potential, which comprises a dahaplatin derivative micelle coordinated to a polyethylene glycol polyamino acid block copolymer.
- a dahaplatin derivative micelle which is a partial structure in which the oxalate group of oxaliplatin is removed, is coordinated to the carboxylate group of a polyamino acid (particularly glutamic acid or aspartic acid) instead of the oxalate group, and the micelle size is large. It is characterized in that it is 10 to 100 nm, preferably 20 to 90 nm, and more preferably 25 to 75 nm.
- compositions containing such dahaplatin derivative micelles may be administered in contraindicated doses and dosages to pregnant or potentially pregnant women when the active agent dahaplatin is administered.
- dahaplatin derivative micelles can be administered at 90-120 mg / m 2 once weekly to pregnant or potentially pregnant women.
- Anti-inflammatory drugs are non-steroidal anti-inflammatory drugs such as indomethacin, ketoprofen, loxoprofen, diclofenac, ibuprofen, acetylsalicylic acid, selecoxib, etodolac, and meloxicam.
- the pharmaceutical composition of the present invention containing an anti-inflammatory agent can be used as an analgesic and antipyretic drug, a therapeutic agent for rheumatoid arthritis, and can be used for the treatment or prevention of premature birth or miscarriage.
- Indomethacin and the like can be designed to be released in response to low pH in the inflamed area, as it is desired to act in the inflamed area.
- the drug may be designed to be released by the action of esterase possessed by the macrophage by being phagocytosed by the macrophage in the inflamed area.
- the therapeutic agents for diseases that lead to inflammation such as endometriosis, the therapeutic agents for inflammation associated with infectious diseases, and the therapeutic agents for inflammation associated with immunity are also included in the anti-inflammatory agents in this document. be able to.
- Examples of antihypertensive drugs include Ca antagonists, ARBs, ACE inhibitors, diuretics, ⁇ -blockers, ⁇ -blockers, and statin-based hyperlipidemia drugs.
- Calcium channel blockers include dihydropyridines such as amlodipine, nifedipine, nicardipine, benidipine, balnidipine, nitrendipine, nisoldipine, azelnidipine, manidipine, ephonidipine, silnidipine and alanidipine, benzothiazepines such as diltiazem, and phenyl such as verapamil. Examples include alkylamine-based agents.
- Examples of ARB include valsartan, losartan, candesartan, irbesartan, azilsartan and the like.
- Examples of the ACE inhibitor include imidapril, enalapril, delapril, silazapril, quinapril, temocapril, perindopril, lisinopril, trandolapril and the like.
- Examples of diuretics include trichloromethiazide, hydrochlorothiazide, furosemide, torasemide, azosemide, spironolactone, triamterene, eplerenone and the like.
- Examples of ⁇ -blockers include atenololol, bisoprolol, betaxolol, metoprolol, propranolol, nadolol, nipradilol, carteolol, bindrol, amosularol, arotinolol, carvedilol, labetalol, and bevantolol.
- Examples of the ⁇ blocker include uravidyl, terazosin, prazosin, doxazosin, and bunazosin.
- Examples of statins include simvastatin, pravastatin, lovastatin, pitavastatin, and atorvastatin.
- the invention in another aspect of the invention, relates to a drug bound to a polyethylene glycol / polyamino acid block copolymer and micelles formed from the block copolymer.
- the polyethylene glycol / polyamino acid block copolymer is a polyethylene glycol / polyamino acid block copolymer of the formula (I) or (II) defined in the present specification.
- the drug bound to the polyethylene glycol / polyamino acid block copolymer any of the above-mentioned drugs may be used, in particular, indomethacin and simvastatin.
- indomethacin is bound via linker L 3 in R 2b and R 2d of the block copolymers described above, and the carboxyl group of indomethacin is bound to linker L 3 .
- R 2b and R 2d are aspartic acid side chains or glutamine side chains, and the chemical formulas in that case are shown below: (In the formula, R 1a , R 1b , R 3 , R 4 , m, n, b are as defined herein. c is 1 or 2 and L 3 represents C 1- C 6 alkylene)
- the indomethacin-bound block copolymer according to the present invention can self-assemble in water to form micelles.
- furan may be introduced into some drug binding moieties for crosslinking.
- the furfuryl group in the crosslinked portion can be further crosslinked in the formation of micelles by further acting on a crosslinking agent such as bismaleimide.
- a crosslinking agent such as bismaleimide.
- the compound of the present invention in which the therapeutic agent is indomethacin and a furfuryl group is introduced has the following structure as an example: (During the ceremony R 1a , R 3 , R 4 , m, n, b are as already defined herein. k represents the number of bridges introduced, k is an integer from 0 to 199, c is 1 or 2 and L 3 represents C 1- C 6 alkylene. ).
- the compound of the present invention having a flufuryl group introduced therein is made into micelles and crosslinked by the addition of 1,1- (methylenedi-4,1-phenylene) bismaleimide (BMI). Good.
- simvastatin can be attached directly to the carboxy group of the side chain of the amino acid by an ester bond.
- Simvastatin-binding block copolymers are, for example: (During the ceremony R 1a , R 3 , R 4 , m, n, b are as already defined herein. c is 1 or 2).
- Another aspect of the present invention relates to micelles formed by self-assembling the simvastatin-binding block copolymer according to the present invention in water.
- the present invention also relates to a method for producing micelles containing a polyethylene glycol-polyamino acid block copolymer to which a therapeutic agent is bound or coordinated.
- the micelles are predominantly composed of polyethylene glycol-polyamino acid block copolymers to which the therapeutic agent is bound or coordinated, but may contain any other component as long as the desired size can be achieved. Good.
- the method for producing micelles of the present invention is as follows: A step of reconstitution of a polyethylene glycol-polyamino acid block copolymer to which a therapeutic agent is bound or coordinated in water, and A step of obtaining micelles having a particle size of 20 to 100 nm by performing ultrafiltration using a fractionated molecular weight of 10,000 to 100,000 dialysis membranes. including. Further, a step of purifying through a filter having a membrane size of 0.15 to 0.3 may be included. The size of micelles can be measured by using the dynamic scattering method.
- Example 1 Evaluation of accumulation in placenta and fetus using polymer micelles of different sizes
- the accumulation of polymer micelles and low molecular weight compounds of different sizes in placenta and fetus was determined by using a pregnancy model mouse. It was evaluated by the fluorescence analysis, element analysis and mass spectrometry used.
- Example 2-1 Evaluation of permeability to human placenta
- the permeability of polymer micelles, low molecular weight compounds, and polymers of different sizes in human placenta was evaluated using a human placenta perfusion model.
- Non-Patent Document 3 K. Shintaku et. Al., Drug Metab. Dispos. 37 (2009) 962
- Non-Patent Document 4 J. R. Huston et. Al., Clin. Pharmacol. Ther . 90 (2011) 67.
- a needle (18 gauge) was introduced into the maternal side of the human placenta provided by the Department of Obstetrics and Gynecology at the University of Tokyo Hospital, and a needle (18 gauge) was introduced into the vein and artery on the fetal side, respectively.
- Krebs-Ringer carbonate buffer prepared according to M. Nagai et. Al., Drug Metab. Dispos.
- the platinum content in the collected samples was measured by inductively coupled plasmon mass spectrometry.
- the fluorescence intensity was quantified by the HPLC method. The ratio of the permeation amount to the dose of each drug was calculated and shown in FIG.
- 2 mL of 90% nitric acid aqueous solution was added to the placenta, dissolved in 2 mL of 1% nitric acid aqueous solution, and the platinum content in the placenta was quantified by inductively coupled plasmon mass spectrometry.
- Example 2-2 Assessment of permeability to human placenta
- PEG-coated gold nanoparticles 10 mL, Nanocs, Inc.
- an ex vivo human placenta perfusion experiment was performed in the same manner as in Example 2-1.
- 10 nm gold NP was perfused
- the amount of gold nanoparticles detected from the fetal side increased in a time-dependent manner, reaching 4.58% of the dose after 60 minutes.
- 20 nm Gold NP was perfused, the detected dose from the fetal side was 2.21%.
- Example 3 Preparation of indomethacin-encapsulating micelles for the treatment of preterm birth
- block copolymers were synthesized and micelles were prepared for the construction of indomethacin-encapsulating micelles.
- Experimental Method According to a previously reported report (Non-Patent Document 6: M. Yokoyama et. Al., Makromol. Chem. 190 (1989) 2041-2054), an NCA polymerization method using PEG (molecular weight: 12,000 Da) primary amine as an initiator. PEG-poly ( ⁇ -benzyl-L-apartate) (PEG-PVLA) was synthesized.
- PEG-poly (Asp-Furan-OH) (PEG-P (Asp-furan-OH)) is produced by an aminolysis reaction of 4-amino-1-butanol and 2-aminomethylfuran with the BPLA chain. Synthesized.
- DMAP dimethylaminopyridine
- WSC water-soluble carbodiimide
- indomethacin 2: 3: 1 (mass ratio)
- DMF dimethylaminopyridine
- WSC water-soluble carbodiimide
- indomethacin 2: 3: 1 (mass ratio)
- DMF dimethylaminopyridine
- DMF water-soluble carbodiimide
- the solution was added to PEG-P (Asp-furan-OH) so that the molar ratio of indomethacin to the BPLA chain was 4, and the reaction was carried out overnight at room temperature.
- the reaction solution was added to an excess amount of diethyl ether to obtain a polymer.
- the composition of the obtained polymer was measured by 1 1 H-NMR. From 1 1 H-NMR, it was confirmed that the introduction rate of 4-amino-1-butanol was 80% and the introduction rate of 2-aminomethylfuran was 20%.
- Indomethacin-encapsulating micelles were prepared by dialysis. The polymer was dissolved in DMSO (2,7,14 mg / mL), dialyzed against pure water (MWCO: 3,500 Da), and purified by a filter (0.22 ⁇ m). Then, 1,1- (methylenedi-4,1-phenylene) bismaleimide (BMI) was added to the micelle solution, and the reaction was carried out at 50 ° C. for 2 days. After the reaction, it was purified by ultrafiltration (MWCO: 100,000 Da) and a filter (0.22 ⁇ m). The size and polydispersity (PDI) of the prepared micelles were measured by dynamic light scattering (DLS). From FIG.
- Example 4 Stability test of indomethacin-encapsulating micelles
- the scattered light intensity of the micelle after the addition of the surfactant, and the physiological salt condition and the pH condition in the endosome are used as an index of the stability of indomethacin-encapsulating micelles.
- Indomethacin release amount was measured.
- Experimental method Sodium dodecylsulfonate (SDS), which is one of the surfactants, was added to the micelle solution as an index of stability. Specifically, SDS (20 g) was dissolved in pure water (80 mL) and stirred at 65 ° C. Then, pure water (100 mL) was added to the SDS solution to prepare a 20% SDS aqueous solution.
- SDS sodium dodecylsulfonate
- the prepared 20% SDS aqueous solution (10 ⁇ L) was added to the micellar solution (70 ⁇ L), and after stirring, the size, polydispersity and scattered light intensity (divided count rate (DCR)) were measured by DLS.
- DCR divided count rate
- the amount of indomethacin released under physiological salt conditions and endosome pH conditions was used as an index of stability.
- indomethacin-encapsulating micelles were dialyzed against pure water (MWCO: 3,500 Da), and the amount of indomethacin in the sample after dialysis was measured by the HPLC method.
- Example 5 Indomethacin release test in macrophages
- the release of indomethacin from indomethacin-encapsulating micelles was evaluated by measuring the amount of indomethacin in macrophage cells.
- the amount of indomethacin in the solution was measured by the HPLC method (Fig. 9). From FIG. 9, since the amount of indomethacin released from the indomethacin-encapsulating micelle (CL) is about the same as the amount of uptake of indomethacin alone (FD), the ester bond in the micelle is cleaved by the ester-degrading enzyme in macrophages, and as a result. Efficient release of indomethacin was suggested.
- Non-Patent Document 3 K. Shintaku et. Al., Drug Metab. Dispos. 37 (2009) 962
- Non-Patent Document 4 JR Huston et. Al., Clin. Pharmacol. Ther. It was prepared according to 90 (2011) 67). Specifically, a needle (18 gauge) was introduced into the maternal side of the human placenta provided by the Department of Obstetrics and Gynecology at the University of Tokyo Hospital, and a needle (18 gauge) was introduced into the vein and artery on the fetal side, respectively.
- the Krebs-Ringer carbonate buffer prepared according to M. Nagai et. Al., Drug Metab. Dispos.
- Example 6-2 Evaluation of tissue migration of indomethacin-encapsulating polymer micelles
- fluorescently labeled indomethacin micelles IND dose / kg, 10 mg
- mice are euthanized and the brain, lungs, heart, liver, spleen, pancreas, both kidneys, fetus, umbilical cord, placenta, amniotic membrane, cervix, The cervix, fetus muscle, and femur were harvested and drug distribution was evaluated using the IVIS imaging system.
- FIG. 11A shows the location of the recovered organs.
- 11B-E show fluorescence at 1 hour, 4 hours, 8 hours, and 24 hours after administration.
- Example 6-3 Evaluation of tissue migration of indomethacin-encapsulating polymer micelles Indomethacin (IND dose / kg as 1 mg) and was administered from the tail vein of pregnant mice on the morning of the 18th and 19th days of pregnancy. After 1 hour, 4 hours, 8 hours, and 24 hours, the mice were euthanized and the fetus, placenta, uterine body, uterus, kidneys, liver and spleen were collected. Samples were homogenized and indomethacin concentrations in tissues were measured by HPLC. In the indomethacin micelle-administered group, free indomethacin in tissues and indomethacin in micelle state were detected as the total amount.
- Indomethacin IND dose / kg as 1 mg
- indomethacin micelles decompose when sodium hydroxide is used for homogenization.
- the free indomethacin group 0.57% of the maternal dose was detected in the fetus after 24 hours, which was the maximum.
- the indomethacin micelle group only 0.013% of the maternal dose was distributed to the fetus, which was also the maximum after 24 hours. Therefore, administration of indomethacin micelles significantly reduced (E) distribution to the fetus compared to administration of free indomethacin (p ⁇ 0.05), thereby preventing indomethacin micelles from crossing the mouse placenta. It has been shown. Furthermore, in organs such as (A) kidney, (B) liver, (C) spleen, and (D) placenta, the amount of indomethacin detected within 24 hours was not sufficient to cause organ damage (Fig. 12A-E).
- Example 7 Therapeutic effect of indomethacin-encapsulating micelles using preterm birth model mice
- the preterm birth inhibitory effect and toxicity of indomethacin-encapsulating micelles were evaluated using preterm birth model mice.
- LPS lipopolysaccharide
- Table 3 showed that administration of micelles and indomethacin alone reduced the number of preterm mice, suggesting that indomethacin suppresses inflammation in the cervix.
- administration of micelles increased the survival rate of the fetus, suggesting that the increase in drug size decreased the amount of accumulation in the fetus.
- Example 8 Preparation of simvastatin-encapsulating micelles for the treatment of preeclampsia
- simvastatin was introduced into a block copolymer and micelles were prepared for the treatment of preeclampsia.
- Non-Patent Document 7 A. Harada and K. Kataoka, Macromolecules 28 (1995) 5294-5299
- PEG-poly ( ⁇ ) was produced by an NCA polymerization method using a primary amine of PEG (molecular weight: 12,000 Da) as an initiator.
- -Benzyl-L-aspartate) PEG-PVLA
- PEG-poly (L-aspartate) PEG-PAsp
- Simvastatin was introduced into the polymer by esterifying the carboxyl group of PEG-PAsp and the hydroxyl group of simvastatin according to the scheme below.
- PEG-PAsp was dissolved in DMF (10 mg / mL), 10 equivalents of DMAP, EDC and simvastatin were added to the carboxyl group of the PAsp chain, and the reaction was carried out at room temperature for 24 hours. Then, the reaction solution was added to an excess amount of diethyl ether to obtain PEG-P (Asp-simvastatin). 1 From 1 H-NMR, the amount of simvastatin introduced was 1.2 mg / (mg polymer).
- Simvastatin-encapsulating micelles were prepared by the dialysis method.
- the polymer was dissolved in DMAc (1 mg / mL), dialyzed against pure water (MWCO: 3,500 Da), and purified by a filter (0.22 ⁇ m).
- the size and polydispersity (PDI) of the prepared micelles were measured by dynamic light scattering (DLS).
- the amount of simvastatin introduced was 1.2 mg / (mg polymer). Further, it was confirmed by DLS measurement that micelles having a size of 35 nm and a PDI of 0.23 were obtained.
- Example 9 Therapeutic effect and toxicity test of simvastatin-encapsulating micelles using preeclampsia model mice
- the antihypertensive effect and toxicity of simvastatin-encapsulating micelles were evaluated using preeclampsia model mice.
- AngII angiotensin II
- Simvastatin-encapsulating micelles (20 ⁇ g / kg: Simvastain Micelle), simvastatin alone (20 ⁇ g / kg: Simvastatin), and pravastatin (20 ⁇ g / kg: Pravastatin) were administered on the 10th to 17th days of pregnancy, and the drug-free group (NS)
- the maternal blood pressure, urinary protein content and fetal weight were evaluated in comparison with. Blood pressure was evaluated by a sphygmomanometer on days 10, 13, 15, and 17 of pregnancy (Fig. 14).
- FBW (g) body weight of the fetus
- the fetus was removed on the 17th day of pregnancy and the body weight was measured (FIG. 15).
- For urinary protein the amount of albumin in urine on days 10, 11, 16 and 17 of pregnancy was measured (Fig. 16).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Endocrinology (AREA)
- Inorganic Chemistry (AREA)
- Reproductive Health (AREA)
- Biomedical Technology (AREA)
- Pain & Pain Management (AREA)
- Pregnancy & Childbirth (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Molecular Biology (AREA)
- Psychiatry (AREA)
- Gynecology & Obstetrics (AREA)
- Rheumatology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Polyamides (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
The purpose of the invention is to develop a pharmaceutical product that can be used during pregnancy. Inventors have found that placental permeability can be controlled by controlling, in particles having on the surface thereof a hydrophilic polymer to which a therapeutic drug is bonded or coordinated, the particle size of the particles by the hydrophilic polymer. The problem is solved by particles having a particle size of 10-100 nm when measured by dynamic light scattering.
Description
本発明は、妊婦又は妊娠可能性のある女性に対して投与するための医薬組成物に関する。
The present invention relates to a pharmaceutical composition for administration to a pregnant woman or a woman who may become pregnant.
妊娠中の女性に対しての投薬は、胎児に対する影響を避けるため極力避けられている。胎児に対する影響として、催奇性、流産、早産や胎児発育不良などが挙げられる。安全性が確立されている薬剤は限定的であり、妊娠の判明により投薬の中止が必要となる。また、投薬治療中に妊娠が判明することにより、妊婦は過度の心労に苛まれることもある。一方で、投薬の中止が、妊婦に対して悪影響を及ぼすことが多く、妊娠中にも使用できる医薬の開発が望まれている。妊娠中において問題となる疾患の一つとして、癌が挙げられる。世界では、約200,000人もの妊娠女性が癌を患っており、その中でも特に乳癌は、内在性のエストロゲンおよびプロゲステロンへの暴露と関連することが報告されており、妊娠に伴って発症することもある。乳癌リスクは年齢とともに増加するが、妊娠年齢の増加とともに妊婦における乳癌の症例数が増えている。一般に乳癌に対しては、抗癌剤、ホルモン療法、抗体治療薬、放射線療法、手術などが行われるが、妊婦に使用可能な抗癌剤は限られている。
Medications for pregnant women are avoided as much as possible to avoid affecting the fetus. Effects on the fetus include teratogenicity, miscarriage, premature birth and fetal stunting. The number of drugs for which safety has been established is limited, and it is necessary to discontinue medication when pregnancy is known. Pregnant women may also suffer from excessive labor due to the discovery of pregnancy during medication. On the other hand, discontinuation of medication often has an adverse effect on pregnant women, and development of a drug that can be used even during pregnancy is desired. Cancer is one of the diseases that becomes a problem during pregnancy. Approximately 200,000 pregnant women worldwide suffer from cancer, of which breast cancer has been reported to be associated with exposure to endogenous estrogen and progesterone and develops with pregnancy. There is also. The risk of breast cancer increases with age, but the number of cases of breast cancer in pregnant women increases with increasing age of pregnancy. Generally, for breast cancer, anticancer agents, hormone therapy, antibody therapeutic agents, radiation therapy, surgery, etc. are performed, but the anticancer agents that can be used for pregnant women are limited.
妊娠中における炎症、特に細菌性の炎症は、早産のリスクを高めることが知られており、インドメタシンなどの非ステロイド性抗炎症剤を治療に用いることができる。一方で、インドメタシンなどの非ステロイド性抗炎症剤は胎児に影響し、腎不全や消化器不全を引き起こすことが報告されており、その使用には十分な注意が必要とされている。
Inflammation during pregnancy, especially bacterial inflammation, is known to increase the risk of preterm birth, and non-steroidal anti-inflammatory drugs such as indomethacin can be used for treatment. On the other hand, it has been reported that non-steroidal anti-inflammatory drugs such as indomethacin affect the fetus and cause renal failure and digestive failure, and sufficient caution is required for their use.
妊婦において頻発する疾患として、妊娠高血圧症が知られており、約20人に1人の割合で生じる。妊娠高血圧症では、腎機能や肝機能に障害を与え、母体に対して危険であるうえ、胎児発育不全も引き起こしうる。妊娠高血圧症の治療には、ヒドララジン、メチルドパ、ラベタロール、ニフェジピンなどの降圧剤が一般に使用されている。近年の研究では、スタチン系の薬剤が、妊娠高血圧症の治療及び/又は予防に有用であるという報告もあるが(非特許文献1:Plos One (2010)vol. 5, Issue 10, e13663)、スタチン系の薬剤は妊婦への使用は禁忌とされている。また、精神疾患の治療のために投与される精神病薬の中には、催奇性や新生児不適応症候群を引き起こす可能性が否定できず、投薬が中断される場合もある。
Preeclampsia is known as a disease that occurs frequently in pregnant women, and it occurs in about 1 in 20 people. Preeclampsia impairs renal and hepatic function, is dangerous to the mother, and can also cause fetal growth restriction. Antihypertensive agents such as hydralazine, methyldopa, labetalol, and nifedipine are commonly used to treat preeclampsia. Recent studies have reported that statins are useful for the treatment and / or prevention of preeclampsia (Non-Patent Document 1: Plos One (2010) vol. 5, Issue 10, e13663). The use of statins in pregnant women is contraindicated. In addition, some psychiatric drugs administered for the treatment of psychiatric disorders may cause teratogenicity or neonatal maladaptation syndrome, and the medication may be discontinued.
妊娠中に使用できる医薬を開発することを目的とする。
The purpose is to develop a drug that can be used during pregnancy.
本発明者らは、妊娠中に使用できる医薬の開発を目的として、医薬の胎盤透過性に着目して研究を行った。親水性ポリマーにより大きさを制御することにより、胎盤透過性を制御することができることを見出し、本発明に至った。そこで、本発明は以下に関する:
The present inventors conducted research focusing on the placental permeability of the drug for the purpose of developing a drug that can be used during pregnancy. We have found that placental permeability can be controlled by controlling the size with a hydrophilic polymer, and have reached the present invention. Therefore, the present invention relates to the following:
[1] 治療薬が結合又は配位された親水性ポリマーを表面に有する粒子を含む、妊婦又は妊娠可能性のある女性に対し投与するための医薬組成物であって、粒径が、動的光散乱法により測定した場合に10~100nmである、前記医薬組成物。
[2] 前記粒子が、ポリエチレングリコール-ポリアミノ酸ブロック共重合体を含むミセルである、項目1に記載の医薬組成物。
[3] 前記ポリエチレングリコール-ポリアミノ酸ブロック共重合体が、以下の一般式(I)または(II):
(式中、
R1a及びR1bは、水素原子、水酸基又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基又はC1-12アルコキシ基を表し、
L1は-(CH2)b-NH-を表し、bは1~5の整数であり、
L2は-(CH2)c-CO-を表し、cは1~5の整数であり、
R2a、及びR2cは、出現ごとに独立して、存在しないか、又はメチレン基を表し、
R2b及びR2dは、カルボキシ基又は任意のアミノ酸側鎖を表し、
R3は、水素原子、保護基、疎水性基又は重合性基を表し、
R4は、水酸基、オキシベンジル基、-NH-(CH2)a-X基又は開始剤残基を表し、ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であり、
mは20~2,000の整数であり、
nは1~200の整数である)
で表されるブロック共重合体であり、前記治療薬が、該ブロック共重合体のR2b及びR2dを介して配位されるか、又は直接若しくはリンカーを介して結合される、項目2に記載の医薬組成物。
[4] 前記粒径が、25~75nmである、項目1~3のいずれか一項に記載の医薬組成物。
[5] 前記治療薬のみで投与された場合に妊婦に対して禁忌となる用法及び/又は用量で前記治療薬が投与される、項目1~4のいずれか一項に記載の医薬組成物。
[6] 前記治療薬が、抗癌薬、抗炎症薬、抗高血圧薬、向精神薬からなる群から選ばれる、項目1~5のいずれか一項に記載の医薬組成物。
[7] 前記抗癌薬が、白金製剤である、項目6に記載の医薬組成物。
[8] 前記白金製剤が、前記ブロック共重合体の1又は2個のカルボキシレート基との配位結合を介して形成される、項目7に記載の医薬組成物。
[9] 前記治療薬が抗炎症薬であり、流産防止用である、項目1~6のいずれか一項に記載の医薬組成物。
[10] 前記抗炎症薬が、非ステロイド性抗炎症剤である、項目9に記載の医薬組成物。
[11] 前記治療薬が抗高血圧薬であり、妊娠高血圧薬治療用である、項目1~6のいずれか一項に記載の医薬組成物。
[12] 前記抗高血圧薬が、スタチン系抗高血圧薬である、項目11に記載の医薬組成物。
[13] 前記医薬組成物が、胎児薬害低減用医薬組成物である、項目1~12のいずれか一項に記載の医薬組成物。
[14] 前記医薬組成物が、胎盤関門透過低減用医薬組成物である、項目1~12のいずれか一項に記載の医薬組成物。
[15] 以下の一般式(I)または(II):
(式中、
R1a及びR1bは水素原子、水酸基又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基又はC1-12アルコキシ基を表し、
L1は-(CH2)b-NH-を表し、bは1~5の整数であり、
L2は-(CH2)c-CO-を表し、cは1~5の整数であり、
R2a及びR2cは、各出現ごとに独立して、存在しないか、又はメチレン基を表し、
R2b及びR2dは、カルボキシ基又は任意のアミノ酸側鎖を表し、
R3は、水素原子、保護基、疎水性基又は重合性基を表し、
R4は、水酸基、オキシベンジル基、-NH-(CH2)a-X基又は開始剤残基を表し、ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であり、
mは20~2,000の整数であり、
nは1~200の整数である)
で表されるブロック共重合体に、薬物が、該ブロック共重合体のR2b及びR2dを介し、直接またはリンカーを介して結合された薬物複合化ブロック共重合体であって、前記薬物が、インドメタシン又はシンバスタチンである、前記薬物複合化ブロック共重合体。
[16] 項目15に記載音薬物複合化ブロック共重合体により形成されたミセルを含む医薬組成物であって、粒径が、動的光散乱法により測定した場合に20~100nmである、前記医薬組成物。
[17] 前記薬物としてインドメタシンを含み、前記医薬組成物が、流産防止用の医薬組成物である、項目16に記載の医薬組成物。
[18] 前記薬物としてシンバスタチンを含み、前記医薬組成物が、妊娠高血圧治療用の医薬組成物である、項目16に記載の医薬組成物。
[19] 治療薬が結合又は配位されたポリエチレングリコール-ポリアミノ酸ブロック共重合体を含み、妊婦又は妊娠可能性のある女性に対し投与するためのミセルの製造方法であって、
前記ポリエチレングリコール-ポリアミノ酸ブロック共重合体を、水中で再構成する工程、及び、
分画分子量10,000~100,000の透析膜を用いて限外ろ過を行って、20~100nmの粒径を有するミセルを取得する工程、
を含む、前記製造方法。
[20] 前記治療薬が、抗癌薬、抗炎症薬、抗高血圧薬、向精神薬からなる群から選ばれる、項目19に記載の製造方法。
[21] 前記ポリエチレングリコール-ポリアミノ酸ブロック共重合体が、以下の一般式(1-a)または(1-b):
(式中、
R1a及びR1bは水素原子、水酸基又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基又はC1-12アルコキシ基を表し、
L1は-(CH2)b-NH-を表し、bは1~5の整数であり、
L2は-(CH2)c-CO-を表し、cは1~5の整数であり、
R2a及びR2cは、各出現ごとに独立して、存在しないか、又はメチレン基を表し、
R2b及びR2dは、カルボキシ基又は任意のアミノ酸側鎖を表し、
R3は、水素原子、保護基、疎水性基又は重合性基を表し、
R4は、水酸基、オキシベンジル基、-NH-(CH2)a-X基又は開始剤残基を表し、
ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であり、
mは20~2,000の整数であり、
nは1~200の整数である)
で表されるブロック共重合体であり、前記治療薬が、前記ブロック共重合体のR2b又はR2dを介して配位されるか、あるいは直接又はリンカーを介して結合される、項目19又は20に記載の製造方法。
[22] 妊婦又は妊娠可能性のある女性における疾患の治療又は予防に使用するための治療薬が結合又は配位された親水性ポリマーを表面に有する粒子であって、粒径が、動的光散乱法により測定した場合に10~100nmである、前記粒子。
[23]妊婦又は妊娠可能性のある女性において、流産又は早産の防止、予防又は治療に使用するための抗炎症薬が結合又は配位された親水性ポリマーを表面に有する粒子であって、粒径が、動的光散乱法により測定した場合に10~100nmである、前記粒子。
[24]妊婦又は妊娠可能性のある女性において、妊娠高血圧の予防又は治療に使用するための抗高血圧薬が結合又は配位された親水性ポリマーを表面に有する粒子であって、粒径が、動的光散乱法により測定した場合に10~100nmである、前記粒子。
[25] 胎児の薬害が低減される、項目22~24のいずれか一項に記載の粒子。
[26] 胎盤関門透過性が低減される、項目22~24のいずれか一項に記載の粒子。
[27] 妊婦又は妊娠可能性のある女性において疾患を治療又は予防する方法であって、妊婦又は妊娠可能性のある女性に、治療薬が結合又は配位された親水性ポリマーを表面に有する粒子を投与することを含み、ここで前記粒子の粒径が、動的光散乱法により測定した場合に10~100nmである、前記方法。
[28] 妊婦又は妊娠可能性のある女性において、流産又は早産の防止、予防又は治療するための方法であって、抗炎症薬が結合又は配位された親水性ポリマーを表面に有する粒子を、妊婦又は妊娠可能性のある女性に投与することを含み、ここで粒径が、動的光散乱法により測定した場合に10~100nmである、前記方法。
[29] 妊婦又は妊娠可能性のある女性において、妊娠高血圧の予防又は治療するための方法であって、抗高血圧薬が結合又は配位された親水性ポリマーを表面に有する粒子を、妊婦又は妊娠可能性のある女性に投与することを含み、ここで粒径が、動的光散乱法により測定した場合に10~100nmである、前記方法。
[30] 胎児の薬害が低減される、項目27~29のいずれか一項に記載の方法。
[31] 胎盤関門透過性が低減される、項目27~29のいずれか一項に記載の方法。
[32] 妊婦又は妊娠可能性のある女性における疾患の治療又は予防に使用するための医薬の製造のための、治療薬が結合又は配位された親水性ポリマーを表面に有し、粒径が動的光散乱法により測定した場合に10~100nmである粒子の使用。
[33] 妊婦又は妊娠可能性のある女性において、流産又は早産の防止、予防又は治療するための医薬の製造のための、治療薬が結合又は配位された粒子であって、親水性ポリマーを表面に有し、粒径が動的光散乱法により測定した場合に10~100nmである粒子の使用。
[34]妊婦又は妊娠可能性のある女性において、妊娠高血圧の予防又は治療するための医薬の製造のための、治療薬が結合又は配位された粒子であって、親水性ポリマーを表面に有し、粒径が動的光散乱法により測定した場合に10~100nmである粒子の使用。
[35] 胎児の薬害が低減される、項目32~34のいずれか一項に記載の使用。
[36] 胎盤関門透過性が低減される、項目32~34のいずれか一項に記載の使用。 [1] A pharmaceutical composition for administration to a pregnant woman or a woman of childbearing potential, which comprises particles having a hydrophilic polymer on the surface to which a therapeutic agent is bound or coordinated, and has a dynamic particle size. The pharmaceutical composition having a diameter of 10 to 100 nm as measured by a light scattering method.
[2] The pharmaceutical composition according toitem 1, wherein the particles are micelles containing a polyethylene glycol-polyamino acid block copolymer.
[3] The polyethylene glycol-polyamino acid block copolymer has the following general formula (I) or (II):
(During the ceremony
R 1a and R 1b represent hydrogen atoms, hydroxyl groups or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12 alkoxy groups.
L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
L 2 represents − (CH 2 ) c −CO−, and c is an integer from 1 to 5.
R 2a , and R 2c , independently on each appearance, either do not exist or represent a methylene group.
R 2b and R 2d represent a carboxy group or any amino acid side chain.
R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue, where a is an integer of 1-5 and X is a primary, secondary, An amine compound residue containing one or more of the tertiary amine or quaternary ammonium salt, or a compound residue that is not an amine.
m is an integer from 20 to 2,000
n is an integer from 1 to 200)
Item 2. The block copolymer represented by, wherein the therapeutic agent is coordinated via R 2b and R 2d of the block copolymer, or is bound directly or via a linker. The pharmaceutical composition described.
[4] The pharmaceutical composition according to any one ofitems 1 to 3, wherein the particle size is 25 to 75 nm.
[5] The pharmaceutical composition according to any one ofitems 1 to 4, wherein the therapeutic agent is administered at a dosage and / or dosage that is contraindicated for pregnant women when administered only with the therapeutic agent.
[6] The pharmaceutical composition according to any one ofitems 1 to 5, wherein the therapeutic agent is selected from the group consisting of an anticancer drug, an anti-inflammatory drug, an antihypertensive drug, and a psychotropic drug.
[7] The pharmaceutical composition according to item 6, wherein the anticancer drug is a platinum preparation.
[8] The pharmaceutical composition according to item 7, wherein the platinum preparation is formed through a coordination bond with one or two carboxylate groups of the block copolymer.
[9] The pharmaceutical composition according to any one ofitems 1 to 6, wherein the therapeutic agent is an anti-inflammatory agent and is used for preventing miscarriage.
[10] The pharmaceutical composition according toitem 9, wherein the anti-inflammatory drug is a non-steroidal anti-inflammatory drug.
[11] The pharmaceutical composition according to any one ofitems 1 to 6, wherein the therapeutic agent is an antihypertensive agent and is for the treatment of a gestational hypertension agent.
[12] The pharmaceutical composition according to item 11, wherein the antihypertensive drug is a statin-based antihypertensive drug.
[13] The pharmaceutical composition according to any one ofitems 1 to 12, wherein the pharmaceutical composition is a pharmaceutical composition for reducing fetal phytotoxicity.
[14] The pharmaceutical composition according to any one ofitems 1 to 12, wherein the pharmaceutical composition is a pharmaceutical composition for reducing placental barrier permeation.
[15] The following general formula (I) or (II):
(During the ceremony
R 1a and R 1b represent hydrogen atoms, hydroxyl groups or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12 alkoxy groups.
L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
L 2 represents − (CH 2 ) c −CO−, and c is an integer from 1 to 5.
R 2a and R 2c independently exist for each occurrence or represent a methylene group.
R 2b and R 2d represent a carboxy group or any amino acid side chain.
R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue, where a is an integer of 1-5 and X is a primary, secondary, An amine compound residue containing one or more of the tertiary amine or quaternary ammonium salt, or a compound residue that is not an amine.
m is an integer from 20 to 2,000
n is an integer from 1 to 200)
A drug is a drug-combined block copolymer in which a drug is bound to the block copolymer represented by (1) via R 2b and R 2d of the block copolymer, directly or via a linker, and the drug is , Indomethacin or simvastatin, said drug complex block copolymer.
[16] The pharmaceutical composition containing micelles formed from the sound drug complex block copolymer according toitem 15, wherein the particle size is 20 to 100 nm when measured by a dynamic light scattering method. Pharmaceutical composition.
[17] The pharmaceutical composition according toitem 16, wherein the drug contains indomethacin, and the pharmaceutical composition is a miscarriage-preventing pharmaceutical composition.
[18] The pharmaceutical composition according toitem 16, wherein the drug contains simvastatin, and the pharmaceutical composition is a pharmaceutical composition for the treatment of preeclampsia.
[19] A method for producing micelles, which comprises a polyethylene glycol-polyamino acid block copolymer to which a therapeutic agent is bound or coordinated and is to be administered to a pregnant woman or a woman of childbearing potential.
A step of reconstitution of the polyethylene glycol-polyamino acid block copolymer in water, and
A step of obtaining micelles having a particle size of 20 to 100 nm by performing ultrafiltration using a dialysis membrane having a molecular weight cut off of 10,000 to 100,000.
The production method.
[20] The production method according to item 19, wherein the therapeutic agent is selected from the group consisting of an anticancer drug, an anti-inflammatory drug, an antihypertensive drug, and a psychotropic drug.
[21] The polyethylene glycol-polyamino acid block copolymer has the following general formula (1-a) or (1-b):
(During the ceremony
R 1a and R 1b represent hydrogen atoms, hydroxyl groups or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12 alkoxy groups.
L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
L 2 represents − (CH 2 ) c −CO−, and c is an integer from 1 to 5.
R 2a and R 2c independently exist for each occurrence or represent a methylene group.
R 2b and R 2d represent a carboxy group or any amino acid side chain.
R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue.
Here, a is an integer of 1 to 5, and X is an amine compound residue containing one or more of primary, secondary, tertiary amines or quaternary ammonium salts, or a compound that is not an amine. Is a residue
m is an integer from 20 to 2,000
n is an integer from 1 to 200)
Item 19 or item 19 or the block copolymer represented by, wherein the therapeutic agent is coordinated via R 2b or R 2d of the block copolymer, or is bound directly or via a linker. The manufacturing method according to 20.
[22] Particles having a hydrophilic polymer on the surface to which a therapeutic agent for use in the treatment or prevention of a disease in a pregnant woman or a woman of childbearing potential is bound or coordinated, and the particle size is dynamic light. The particles having a diameter of 10 to 100 nm as measured by a scattering method.
[23] Particles having a hydrophilic polymer on the surface to which an anti-inflammatory drug for use in the prevention, prevention or treatment of miscarriage or premature birth is bound or coordinated in a pregnant woman or a woman of childbearing potential. The particles having a diameter of 10 to 100 nm as measured by a dynamic light scattering method.
[24] In pregnant women or women of childbearing potential, particles having a hydrophilic polymer on the surface to which an antihypertensive drug for use in the prevention or treatment of preeclampsia is bound or coordinated, and having a particle size of The particles having a diameter of 10 to 100 nm as measured by a dynamic light scattering method.
[25] The particle according to any one of items 22 to 24, which reduces fetal phytotoxicity.
[26] The particle according to any one of items 22 to 24, wherein the placental barrier permeability is reduced.
[27] A method of treating or preventing a disease in a pregnant woman or a woman of childbearing potential, in which particles having a hydrophilic polymer on the surface to which a therapeutic agent is bound or coordinated to the pregnant woman or woman of childbearing potential. The method, wherein the particle size of the particles is 10 to 100 nm as measured by a dynamic light scattering method.
[28] In pregnant women or women of childbearing potential, a method for preventing, preventing or treating miscarriage or premature birth, in which particles having a hydrophilic polymer on the surface to which an anti-inflammatory agent is bound or coordinated are provided. The method described above, comprising administering to a pregnant woman or a woman of childbearing potential, wherein the particle size is 10-100 nm as measured by dynamic light scattering.
[29] In a pregnant woman or a woman of childbearing potential, a method for preventing or treating preeclampsia, in which particles having a hydrophilic polymer on the surface to which an antihypertensive drug is bound or coordinated are provided on the surface of the pregnant woman or pregnant woman. The method described above, comprising administering to a potential woman, wherein the particle size is 10-100 nm as measured by dynamic light scattering.
[30] The method according to any one of items 27 to 29, wherein the phytotoxicity of the fetus is reduced.
[31] The method according to any one of items 27-29, wherein the placental barrier permeability is reduced.
[32] The surface has a hydrophilic polymer to which a therapeutic agent is bound or coordinated and has a particle size for the manufacture of a medicament for use in the treatment or prevention of a disease in a pregnant woman or a woman of childbearing potential. Use of particles that are 10-100 nm as measured by dynamic light scattering.
[33] In pregnant women or women of childbearing potential, particles to which a therapeutic agent is bound or coordinated to produce a drug for the prevention, prevention or treatment of miscarriage or preterm birth, the hydrophilic polymer. Use of particles on the surface that have a particle size of 10-100 nm as measured by dynamic light scattering.
[34] In pregnant women or women of childbearing potential, particles to which a therapeutic agent is bound or coordinated for the manufacture of a pharmaceutical for the prevention or treatment of preeclampsia, with a hydrophilic polymer on the surface. However, the use of particles whose particle size is 10 to 100 nm when measured by dynamic light scattering.
[35] The use according to any one of items 32 to 34, wherein the fetal phytotoxicity is reduced.
[36] The use according to any one of items 32 to 34, wherein the placental barrier permeability is reduced.
[2] 前記粒子が、ポリエチレングリコール-ポリアミノ酸ブロック共重合体を含むミセルである、項目1に記載の医薬組成物。
[3] 前記ポリエチレングリコール-ポリアミノ酸ブロック共重合体が、以下の一般式(I)または(II):
R1a及びR1bは、水素原子、水酸基又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基又はC1-12アルコキシ基を表し、
L1は-(CH2)b-NH-を表し、bは1~5の整数であり、
L2は-(CH2)c-CO-を表し、cは1~5の整数であり、
R2a、及びR2cは、出現ごとに独立して、存在しないか、又はメチレン基を表し、
R2b及びR2dは、カルボキシ基又は任意のアミノ酸側鎖を表し、
R3は、水素原子、保護基、疎水性基又は重合性基を表し、
R4は、水酸基、オキシベンジル基、-NH-(CH2)a-X基又は開始剤残基を表し、ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であり、
mは20~2,000の整数であり、
nは1~200の整数である)
で表されるブロック共重合体であり、前記治療薬が、該ブロック共重合体のR2b及びR2dを介して配位されるか、又は直接若しくはリンカーを介して結合される、項目2に記載の医薬組成物。
[4] 前記粒径が、25~75nmである、項目1~3のいずれか一項に記載の医薬組成物。
[5] 前記治療薬のみで投与された場合に妊婦に対して禁忌となる用法及び/又は用量で前記治療薬が投与される、項目1~4のいずれか一項に記載の医薬組成物。
[6] 前記治療薬が、抗癌薬、抗炎症薬、抗高血圧薬、向精神薬からなる群から選ばれる、項目1~5のいずれか一項に記載の医薬組成物。
[7] 前記抗癌薬が、白金製剤である、項目6に記載の医薬組成物。
[8] 前記白金製剤が、前記ブロック共重合体の1又は2個のカルボキシレート基との配位結合を介して形成される、項目7に記載の医薬組成物。
[9] 前記治療薬が抗炎症薬であり、流産防止用である、項目1~6のいずれか一項に記載の医薬組成物。
[10] 前記抗炎症薬が、非ステロイド性抗炎症剤である、項目9に記載の医薬組成物。
[11] 前記治療薬が抗高血圧薬であり、妊娠高血圧薬治療用である、項目1~6のいずれか一項に記載の医薬組成物。
[12] 前記抗高血圧薬が、スタチン系抗高血圧薬である、項目11に記載の医薬組成物。
[13] 前記医薬組成物が、胎児薬害低減用医薬組成物である、項目1~12のいずれか一項に記載の医薬組成物。
[14] 前記医薬組成物が、胎盤関門透過低減用医薬組成物である、項目1~12のいずれか一項に記載の医薬組成物。
[15] 以下の一般式(I)または(II):
R1a及びR1bは水素原子、水酸基又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基又はC1-12アルコキシ基を表し、
L1は-(CH2)b-NH-を表し、bは1~5の整数であり、
L2は-(CH2)c-CO-を表し、cは1~5の整数であり、
R2a及びR2cは、各出現ごとに独立して、存在しないか、又はメチレン基を表し、
R2b及びR2dは、カルボキシ基又は任意のアミノ酸側鎖を表し、
R3は、水素原子、保護基、疎水性基又は重合性基を表し、
R4は、水酸基、オキシベンジル基、-NH-(CH2)a-X基又は開始剤残基を表し、ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であり、
mは20~2,000の整数であり、
nは1~200の整数である)
で表されるブロック共重合体に、薬物が、該ブロック共重合体のR2b及びR2dを介し、直接またはリンカーを介して結合された薬物複合化ブロック共重合体であって、前記薬物が、インドメタシン又はシンバスタチンである、前記薬物複合化ブロック共重合体。
[16] 項目15に記載音薬物複合化ブロック共重合体により形成されたミセルを含む医薬組成物であって、粒径が、動的光散乱法により測定した場合に20~100nmである、前記医薬組成物。
[17] 前記薬物としてインドメタシンを含み、前記医薬組成物が、流産防止用の医薬組成物である、項目16に記載の医薬組成物。
[18] 前記薬物としてシンバスタチンを含み、前記医薬組成物が、妊娠高血圧治療用の医薬組成物である、項目16に記載の医薬組成物。
[19] 治療薬が結合又は配位されたポリエチレングリコール-ポリアミノ酸ブロック共重合体を含み、妊婦又は妊娠可能性のある女性に対し投与するためのミセルの製造方法であって、
前記ポリエチレングリコール-ポリアミノ酸ブロック共重合体を、水中で再構成する工程、及び、
分画分子量10,000~100,000の透析膜を用いて限外ろ過を行って、20~100nmの粒径を有するミセルを取得する工程、
を含む、前記製造方法。
[20] 前記治療薬が、抗癌薬、抗炎症薬、抗高血圧薬、向精神薬からなる群から選ばれる、項目19に記載の製造方法。
[21] 前記ポリエチレングリコール-ポリアミノ酸ブロック共重合体が、以下の一般式(1-a)または(1-b):
R1a及びR1bは水素原子、水酸基又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基又はC1-12アルコキシ基を表し、
L1は-(CH2)b-NH-を表し、bは1~5の整数であり、
L2は-(CH2)c-CO-を表し、cは1~5の整数であり、
R2a及びR2cは、各出現ごとに独立して、存在しないか、又はメチレン基を表し、
R2b及びR2dは、カルボキシ基又は任意のアミノ酸側鎖を表し、
R3は、水素原子、保護基、疎水性基又は重合性基を表し、
R4は、水酸基、オキシベンジル基、-NH-(CH2)a-X基又は開始剤残基を表し、
ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であり、
mは20~2,000の整数であり、
nは1~200の整数である)
で表されるブロック共重合体であり、前記治療薬が、前記ブロック共重合体のR2b又はR2dを介して配位されるか、あるいは直接又はリンカーを介して結合される、項目19又は20に記載の製造方法。
[22] 妊婦又は妊娠可能性のある女性における疾患の治療又は予防に使用するための治療薬が結合又は配位された親水性ポリマーを表面に有する粒子であって、粒径が、動的光散乱法により測定した場合に10~100nmである、前記粒子。
[23]妊婦又は妊娠可能性のある女性において、流産又は早産の防止、予防又は治療に使用するための抗炎症薬が結合又は配位された親水性ポリマーを表面に有する粒子であって、粒径が、動的光散乱法により測定した場合に10~100nmである、前記粒子。
[24]妊婦又は妊娠可能性のある女性において、妊娠高血圧の予防又は治療に使用するための抗高血圧薬が結合又は配位された親水性ポリマーを表面に有する粒子であって、粒径が、動的光散乱法により測定した場合に10~100nmである、前記粒子。
[25] 胎児の薬害が低減される、項目22~24のいずれか一項に記載の粒子。
[26] 胎盤関門透過性が低減される、項目22~24のいずれか一項に記載の粒子。
[27] 妊婦又は妊娠可能性のある女性において疾患を治療又は予防する方法であって、妊婦又は妊娠可能性のある女性に、治療薬が結合又は配位された親水性ポリマーを表面に有する粒子を投与することを含み、ここで前記粒子の粒径が、動的光散乱法により測定した場合に10~100nmである、前記方法。
[28] 妊婦又は妊娠可能性のある女性において、流産又は早産の防止、予防又は治療するための方法であって、抗炎症薬が結合又は配位された親水性ポリマーを表面に有する粒子を、妊婦又は妊娠可能性のある女性に投与することを含み、ここで粒径が、動的光散乱法により測定した場合に10~100nmである、前記方法。
[29] 妊婦又は妊娠可能性のある女性において、妊娠高血圧の予防又は治療するための方法であって、抗高血圧薬が結合又は配位された親水性ポリマーを表面に有する粒子を、妊婦又は妊娠可能性のある女性に投与することを含み、ここで粒径が、動的光散乱法により測定した場合に10~100nmである、前記方法。
[30] 胎児の薬害が低減される、項目27~29のいずれか一項に記載の方法。
[31] 胎盤関門透過性が低減される、項目27~29のいずれか一項に記載の方法。
[32] 妊婦又は妊娠可能性のある女性における疾患の治療又は予防に使用するための医薬の製造のための、治療薬が結合又は配位された親水性ポリマーを表面に有し、粒径が動的光散乱法により測定した場合に10~100nmである粒子の使用。
[33] 妊婦又は妊娠可能性のある女性において、流産又は早産の防止、予防又は治療するための医薬の製造のための、治療薬が結合又は配位された粒子であって、親水性ポリマーを表面に有し、粒径が動的光散乱法により測定した場合に10~100nmである粒子の使用。
[34]妊婦又は妊娠可能性のある女性において、妊娠高血圧の予防又は治療するための医薬の製造のための、治療薬が結合又は配位された粒子であって、親水性ポリマーを表面に有し、粒径が動的光散乱法により測定した場合に10~100nmである粒子の使用。
[35] 胎児の薬害が低減される、項目32~34のいずれか一項に記載の使用。
[36] 胎盤関門透過性が低減される、項目32~34のいずれか一項に記載の使用。 [1] A pharmaceutical composition for administration to a pregnant woman or a woman of childbearing potential, which comprises particles having a hydrophilic polymer on the surface to which a therapeutic agent is bound or coordinated, and has a dynamic particle size. The pharmaceutical composition having a diameter of 10 to 100 nm as measured by a light scattering method.
[2] The pharmaceutical composition according to
[3] The polyethylene glycol-polyamino acid block copolymer has the following general formula (I) or (II):
R 1a and R 1b represent hydrogen atoms, hydroxyl groups or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12 alkoxy groups.
L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
L 2 represents − (CH 2 ) c −CO−, and c is an integer from 1 to 5.
R 2a , and R 2c , independently on each appearance, either do not exist or represent a methylene group.
R 2b and R 2d represent a carboxy group or any amino acid side chain.
R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue, where a is an integer of 1-5 and X is a primary, secondary, An amine compound residue containing one or more of the tertiary amine or quaternary ammonium salt, or a compound residue that is not an amine.
m is an integer from 20 to 2,000
n is an integer from 1 to 200)
[4] The pharmaceutical composition according to any one of
[5] The pharmaceutical composition according to any one of
[6] The pharmaceutical composition according to any one of
[7] The pharmaceutical composition according to item 6, wherein the anticancer drug is a platinum preparation.
[8] The pharmaceutical composition according to item 7, wherein the platinum preparation is formed through a coordination bond with one or two carboxylate groups of the block copolymer.
[9] The pharmaceutical composition according to any one of
[10] The pharmaceutical composition according to
[11] The pharmaceutical composition according to any one of
[12] The pharmaceutical composition according to item 11, wherein the antihypertensive drug is a statin-based antihypertensive drug.
[13] The pharmaceutical composition according to any one of
[14] The pharmaceutical composition according to any one of
[15] The following general formula (I) or (II):
R 1a and R 1b represent hydrogen atoms, hydroxyl groups or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12 alkoxy groups.
L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
L 2 represents − (CH 2 ) c −CO−, and c is an integer from 1 to 5.
R 2a and R 2c independently exist for each occurrence or represent a methylene group.
R 2b and R 2d represent a carboxy group or any amino acid side chain.
R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue, where a is an integer of 1-5 and X is a primary, secondary, An amine compound residue containing one or more of the tertiary amine or quaternary ammonium salt, or a compound residue that is not an amine.
m is an integer from 20 to 2,000
n is an integer from 1 to 200)
A drug is a drug-combined block copolymer in which a drug is bound to the block copolymer represented by (1) via R 2b and R 2d of the block copolymer, directly or via a linker, and the drug is , Indomethacin or simvastatin, said drug complex block copolymer.
[16] The pharmaceutical composition containing micelles formed from the sound drug complex block copolymer according to
[17] The pharmaceutical composition according to
[18] The pharmaceutical composition according to
[19] A method for producing micelles, which comprises a polyethylene glycol-polyamino acid block copolymer to which a therapeutic agent is bound or coordinated and is to be administered to a pregnant woman or a woman of childbearing potential.
A step of reconstitution of the polyethylene glycol-polyamino acid block copolymer in water, and
A step of obtaining micelles having a particle size of 20 to 100 nm by performing ultrafiltration using a dialysis membrane having a molecular weight cut off of 10,000 to 100,000.
The production method.
[20] The production method according to item 19, wherein the therapeutic agent is selected from the group consisting of an anticancer drug, an anti-inflammatory drug, an antihypertensive drug, and a psychotropic drug.
[21] The polyethylene glycol-polyamino acid block copolymer has the following general formula (1-a) or (1-b):
R 1a and R 1b represent hydrogen atoms, hydroxyl groups or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12 alkoxy groups.
L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
L 2 represents − (CH 2 ) c −CO−, and c is an integer from 1 to 5.
R 2a and R 2c independently exist for each occurrence or represent a methylene group.
R 2b and R 2d represent a carboxy group or any amino acid side chain.
R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue.
Here, a is an integer of 1 to 5, and X is an amine compound residue containing one or more of primary, secondary, tertiary amines or quaternary ammonium salts, or a compound that is not an amine. Is a residue
m is an integer from 20 to 2,000
n is an integer from 1 to 200)
Item 19 or item 19 or the block copolymer represented by, wherein the therapeutic agent is coordinated via R 2b or R 2d of the block copolymer, or is bound directly or via a linker. The manufacturing method according to 20.
[22] Particles having a hydrophilic polymer on the surface to which a therapeutic agent for use in the treatment or prevention of a disease in a pregnant woman or a woman of childbearing potential is bound or coordinated, and the particle size is dynamic light. The particles having a diameter of 10 to 100 nm as measured by a scattering method.
[23] Particles having a hydrophilic polymer on the surface to which an anti-inflammatory drug for use in the prevention, prevention or treatment of miscarriage or premature birth is bound or coordinated in a pregnant woman or a woman of childbearing potential. The particles having a diameter of 10 to 100 nm as measured by a dynamic light scattering method.
[24] In pregnant women or women of childbearing potential, particles having a hydrophilic polymer on the surface to which an antihypertensive drug for use in the prevention or treatment of preeclampsia is bound or coordinated, and having a particle size of The particles having a diameter of 10 to 100 nm as measured by a dynamic light scattering method.
[25] The particle according to any one of items 22 to 24, which reduces fetal phytotoxicity.
[26] The particle according to any one of items 22 to 24, wherein the placental barrier permeability is reduced.
[27] A method of treating or preventing a disease in a pregnant woman or a woman of childbearing potential, in which particles having a hydrophilic polymer on the surface to which a therapeutic agent is bound or coordinated to the pregnant woman or woman of childbearing potential. The method, wherein the particle size of the particles is 10 to 100 nm as measured by a dynamic light scattering method.
[28] In pregnant women or women of childbearing potential, a method for preventing, preventing or treating miscarriage or premature birth, in which particles having a hydrophilic polymer on the surface to which an anti-inflammatory agent is bound or coordinated are provided. The method described above, comprising administering to a pregnant woman or a woman of childbearing potential, wherein the particle size is 10-100 nm as measured by dynamic light scattering.
[29] In a pregnant woman or a woman of childbearing potential, a method for preventing or treating preeclampsia, in which particles having a hydrophilic polymer on the surface to which an antihypertensive drug is bound or coordinated are provided on the surface of the pregnant woman or pregnant woman. The method described above, comprising administering to a potential woman, wherein the particle size is 10-100 nm as measured by dynamic light scattering.
[30] The method according to any one of items 27 to 29, wherein the phytotoxicity of the fetus is reduced.
[31] The method according to any one of items 27-29, wherein the placental barrier permeability is reduced.
[32] The surface has a hydrophilic polymer to which a therapeutic agent is bound or coordinated and has a particle size for the manufacture of a medicament for use in the treatment or prevention of a disease in a pregnant woman or a woman of childbearing potential. Use of particles that are 10-100 nm as measured by dynamic light scattering.
[33] In pregnant women or women of childbearing potential, particles to which a therapeutic agent is bound or coordinated to produce a drug for the prevention, prevention or treatment of miscarriage or preterm birth, the hydrophilic polymer. Use of particles on the surface that have a particle size of 10-100 nm as measured by dynamic light scattering.
[34] In pregnant women or women of childbearing potential, particles to which a therapeutic agent is bound or coordinated for the manufacture of a pharmaceutical for the prevention or treatment of preeclampsia, with a hydrophilic polymer on the surface. However, the use of particles whose particle size is 10 to 100 nm when measured by dynamic light scattering.
[35] The use according to any one of items 32 to 34, wherein the fetal phytotoxicity is reduced.
[36] The use according to any one of items 32 to 34, wherein the placental barrier permeability is reduced.
本発明の医薬組成物は、胎盤透過性が低く、医薬の胎児への影響を低減することができる。これにより、妊婦又は妊娠の可能性のある女性に対して投与可能な医薬を提供することができる。
The pharmaceutical composition of the present invention has low placental permeability and can reduce the effect of the drug on the fetus. This makes it possible to provide a medicine that can be administered to a pregnant woman or a woman who may become pregnant.
本発明は、妊婦又は妊娠可能性のある女性に対し投与するための医薬組成物に関する。本発明の医薬組成物は、治療薬が結合又は配位された親水性ポリマーを表面に有する粒子を含み、その粒径が、動的光散乱法により測定した場合に10~100nmであることを特徴とする。胎盤透過性の観点から、通常、粒径は10nm以上であり、好ましくは20nm以上であり、さらに好ましくは25nm以上である。治療薬の効能を発揮する観点から、通常、粒径は100nm以下であり、好ましくは90nm以下であり、より好ましくは80nm以下、さらにより好ましくは75nm以下である。このサイズの粒子であれば、胎盤透過性が低く、胎児への毒性を低減することができる。本発明の組成物において、粒子の粒径の多分散度(PDI)は、0.2以下が好ましく、さらにより好ましくは0.1以下である。本発明の医薬組成物に含まれる粒子は、胎盤透過性が低減されていることから、胎児薬害低減用又は胎盤関門透過低減用の医薬組成物として使用しうる。
The present invention relates to a pharmaceutical composition for administration to a pregnant woman or a woman who may become pregnant. The pharmaceutical composition of the present invention contains particles having a hydrophilic polymer to which a therapeutic agent is bound or coordinated on the surface, and the particle size thereof is 10 to 100 nm when measured by a dynamic light scattering method. It is a feature. From the viewpoint of placental permeability, the particle size is usually 10 nm or more, preferably 20 nm or more, and more preferably 25 nm or more. From the viewpoint of exerting the efficacy of the therapeutic agent, the particle size is usually 100 nm or less, preferably 90 nm or less, more preferably 80 nm or less, and even more preferably 75 nm or less. Particles of this size have low placental permeability and can reduce fetal toxicity. In the composition of the present invention, the polydispersity (PDI) of the particle size of the particles is preferably 0.2 or less, and even more preferably 0.1 or less. Since the particles contained in the pharmaceutical composition of the present invention have reduced placental permeability, they can be used as a pharmaceutical composition for reducing fetal phytotoxicity or reducing placental barrier penetration.
親水性ポリマーを表面に有する粒子であれば、任意の粒子が使用されてよく、ブロック共重合体により形成されるミセルやベシクル、表面を親水性ポリマーで覆われたリポソームなどであってもよい。
Any particles may be used as long as the particles have a hydrophilic polymer on the surface, and may be micelles or vesicles formed by a block copolymer, liposomes whose surface is covered with a hydrophilic polymer, or the like.
親水性ポリマーとしては、医薬、特にドラッグデリバリーシステムに一般的に使用される親水性ポリマーであれば任意のポリマーを使用することができる。一例として、ポリエチレングリコール、ポリ乳酸、ポリグリコール酸、ポリペプチド、多糖などが挙げられうる。ミセルを製造する観点では、ポリエチレングリコール-ポリアミノ酸ブロック共重合体を使用することができる。ポリエチレングリコール-ポリアミノ酸ブロック共重合体としては、本技術分野に既知の任意のものを使用しうる。ポリエチレングリコール-ポリアミノ酸ブロック共重合体のアミノ酸として、側鎖にカルボキシ基を有するグルタミン酸又はアスパラギン酸を使用することができる。一例として、以下の一般式(I)または(II):
(式中、
R1a及びR1bは水素原子、水酸基、又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基又はC1-12アルコキシ基を表し、
L1は-(CH2)b-NH-を表し、bは1~5の整数であり、
L2は-(CH2)c-CO-を表し、cは1~5の整数であり、
R2a、及びR2cは、出現ごとに独立して、存在しないか、又はメチレン基を表し、
R2b及びR2dは、カルボキシ基又は任意のアミノ酸側鎖を表し、
R3は、水素原子、保護基、疎水性基又は重合性基を表し、
R4は、水酸基、オキシベンジル基、-NH-(CH2)a-X基又は開始剤残基を表し、ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であり、
mは20~2,000の整数であり、
nは1~200の整数である)
で表されるブロック共重合体を使用することができる。治療薬は、R2b及びR2dにおいて、直接またはリンカーを介して結合されるか、又は配位される。 As the hydrophilic polymer, any polymer can be used as long as it is a hydrophilic polymer generally used in medicines, particularly drug delivery systems. As an example, polyethylene glycol, polylactic acid, polyglycolic acid, polypeptide, polysaccharide and the like can be mentioned. From the viewpoint of producing micelles, polyethylene glycol-polyamino acid block copolymers can be used. As the polyethylene glycol-polyamino acid block copolymer, any known in the art can be used. As the amino acid of the polyethylene glycol-polyamino acid block copolymer, glutamic acid or aspartic acid having a carboxy group in the side chain can be used. As an example, the following general formula (I) or (II):
(During the ceremony
R 1a and R 1b represent a hydrogen atom, a hydroxyl group, or an unsubstituted or substituted linear or branched C 1-12 alkyl group or C 1-12 alkoxy group.
L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
L 2 represents − (CH 2 ) c −CO−, and c is an integer from 1 to 5.
R 2a and R 2c independently exist on each occurrence or represent a methylene group.
R 2b and R 2d represent a carboxy group or any amino acid side chain.
R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue, where a is an integer of 1-5 and X is a primary, secondary, An amine compound residue containing one or more of the tertiary amine or quaternary ammonium salt, or a compound residue that is not an amine.
m is an integer from 20 to 2,000
n is an integer from 1 to 200)
Block copolymers represented by can be used. Therapeutic agents are bound or coordinated in R 2b and R 2d either directly or via a linker.
R1a及びR1bは水素原子、水酸基、又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基又はC1-12アルコキシ基を表し、
L1は-(CH2)b-NH-を表し、bは1~5の整数であり、
L2は-(CH2)c-CO-を表し、cは1~5の整数であり、
R2a、及びR2cは、出現ごとに独立して、存在しないか、又はメチレン基を表し、
R2b及びR2dは、カルボキシ基又は任意のアミノ酸側鎖を表し、
R3は、水素原子、保護基、疎水性基又は重合性基を表し、
R4は、水酸基、オキシベンジル基、-NH-(CH2)a-X基又は開始剤残基を表し、ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であり、
mは20~2,000の整数であり、
nは1~200の整数である)
で表されるブロック共重合体を使用することができる。治療薬は、R2b及びR2dにおいて、直接またはリンカーを介して結合されるか、又は配位される。 As the hydrophilic polymer, any polymer can be used as long as it is a hydrophilic polymer generally used in medicines, particularly drug delivery systems. As an example, polyethylene glycol, polylactic acid, polyglycolic acid, polypeptide, polysaccharide and the like can be mentioned. From the viewpoint of producing micelles, polyethylene glycol-polyamino acid block copolymers can be used. As the polyethylene glycol-polyamino acid block copolymer, any known in the art can be used. As the amino acid of the polyethylene glycol-polyamino acid block copolymer, glutamic acid or aspartic acid having a carboxy group in the side chain can be used. As an example, the following general formula (I) or (II):
R 1a and R 1b represent a hydrogen atom, a hydroxyl group, or an unsubstituted or substituted linear or branched C 1-12 alkyl group or C 1-12 alkoxy group.
L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
L 2 represents − (CH 2 ) c −CO−, and c is an integer from 1 to 5.
R 2a and R 2c independently exist on each occurrence or represent a methylene group.
R 2b and R 2d represent a carboxy group or any amino acid side chain.
R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue, where a is an integer of 1-5 and X is a primary, secondary, An amine compound residue containing one or more of the tertiary amine or quaternary ammonium salt, or a compound residue that is not an amine.
m is an integer from 20 to 2,000
n is an integer from 1 to 200)
Block copolymers represented by can be used. Therapeutic agents are bound or coordinated in R 2b and R 2d either directly or via a linker.
ここで、一般式(I)及び(II)の構造式中、繰り返し単位数(重合度)が「m」のセグメントがPEG由来の非荷電性親水性セグメント(以降「PEGセグメント」と表示する場合がある)であり、繰り返し単位数が「n」のセグメントがアミノ酸由来のセグメント(以降「ポリアミノ酸セグメント」と表示する場合がある)である。
Here, in the structural formulas of the general formulas (I) and (II), when the segment having the number of repeating units (degree of polymerization) of "m" is displayed as a PEG-derived uncharged hydrophilic segment (hereinafter referred to as "PEG segment"). The segment whose number of repeating units is "n" is an amino acid-derived segment (hereinafter, may be referred to as "polyamino acid segment").
一般式(I)及び(II)中、R1a及びR1bは、それぞれ独立して水素原子、水酸基又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基又はC1-12アルコキシ基を表す。直鎖もしくは分枝のC1-12としては、例えば、メチル、エチル、n-プロピル、iso-プロピル、n-ブチル、sec-ブチル、tert-ブチル、n-ペンチル、n-ヘキシル、デシル、ウンデシル等を挙げることができる。また置換された場合の置換基としては、アセタール化ホルミル基、シアノ基、ホルミル基、カルボキシル基、アミノ基、C1-6アルコキシカルボニル基、C2-7アシルアミド基、同一もしくは異なるトリ-C1-6アルキルシロキシ基、シロキシ基又はシリルアミノ基を挙げることができる。ここで、アセタール化とは、ホルミルのカルボニルと、例えば、炭素数1~6個のアルカノールの2分子又は炭素原子数2~6個の分岐していてもよいアルキレンジオールとの反応によるアセタール部の形成を意味し、当該カルボニル基の保護方法でもある。例えば、置換基がアセタール化ホルミル基であるときは、酸性の温和な条件下で加水分解して、他の置換基であるホルミル基(-CHO)(又はアルデヒド基)に転化できる。
In the general formulas (I) and (II), R 1a and R 1b are independently hydrogen atoms, hydroxyl groups, or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12, respectively. Represents an alkoxy group. Linear or branched C 1-12 include, for example, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, decyl, undecyl. And so on. When substituted, the substituents include acetalized formyl group, cyano group, formyl group, carboxyl group, amino group, C 1-6 alkoxycarbonyl group, C 2-7 acylamide group, and the same or different tri-C 1 -6 Alkylsiloxy group, siloxy group or silylamino group can be mentioned. Here, acetalization refers to the reaction of the carbonyl of formyl with, for example, two molecules of an alkanol having 1 to 6 carbon atoms or a branched alkylene diol having 2 to 6 carbon atoms. It means formation and is also a method of protecting the carbonyl group. For example, when the substituent is an acetalized formyl group, it can be hydrolyzed under mild acidic conditions and converted to another substituent, a formyl group (-CHO) (or aldehyde group).
一般式(I)及び(II)中、L1及びL2は、連結基を表す。具体的には、L1は-(CH2)b-NH-(ここでbは1~5の整数である)であることが好ましく、L2は-(CH2)c-CO-(ここでcは1~5の整数である)であることが好ましい。
In the general formulas (I) and (II), L 1 and L 2 represent a linking group. Specifically, L 1 is preferably − (CH 2 ) b −NH− (where b is an integer of 1 to 5), and L 2 is − (CH 2 ) c −CO− (here). And c is an integer of 1 to 5).
一般式(I)及び(II)中、R2a及びR2cは、出現ごとに独立して存在しないか、又はメチレン基を表す。アミノ酸としてアスパラギン酸を用いた場合、アスパラギン酸の側鎖のカルボキシ基と主鎖の窒素との間で脱水縮合が生じ、スクシンイミド中間体が生成する。次にこの中間体が開裂することで、イソアスパラギン酸への異性化が生じうる。したがって、アスパラギン酸がイソアスパラギン酸へと異性化した場合には、R2a及びR2cの位置にメチレン基が生じ、R2b及びR2dはカルボキシ基となる。R2a及びR2cが存在しない場合は異性化が生じずに、アミノ酸が主鎖でペプチド結合をしていることを示す。ブロック共重合体における異性化の割合は任意でありうる。したがって、R2a及びR2cが存在しない場合には、R2b及びR2dは、任意のアミノ酸側を表し、これらの基を介して薬剤が配位されるか、又は直接若しくはリンカーを介して薬剤が結合されうる。アミノ酸側鎖としては、任意の生体構成アミノ酸の側鎖であってよいが、薬剤を結合させる観点から、セリン、スレオニン、アルギニン、ヒスチジン、リジン、システイン、グルタミン酸及びアスパラギン酸の側鎖であることが好ましい。R2a及びR2cが存在する場合、R2b及びR2dは、カルボキシ基となる。ポリアミノ酸セグメント中におけるアスパラギン酸のイソアスパラギン酸への異性化は偶発的に生じうることから、本明細書において、主鎖同士のアミド結合のみを表す式が記載される場合であっても、上述の式(I)及び(II)のように異性化が生じたポリマーを排除することを意図するものではない。アミノ酸の反復単位は、それぞれブロックを形成して存在するか、あるいはランダムに存在できる。
In the general formulas (I) and (II), R 2a and R 2c do not exist independently at each appearance or represent a methylene group. When aspartic acid is used as the amino acid, dehydration condensation occurs between the carboxy group in the side chain of aspartic acid and the nitrogen in the main chain, and a succinimide intermediate is produced. Cleavage of this intermediate can then result in isomerization to isoaspartic acid. Therefore, when aspartic acid is isomerized to isoaspartic acid, a methylene group is generated at the positions of R 2a and R 2c , and R 2b and R 2d become carboxy groups. In the absence of R 2a and R 2c, isomerization does not occur, indicating that the amino acid has a peptide bond in the main chain. The rate of isomerization in the block copolymer can be arbitrary. Thus, in the absence of R 2a and R 2c , R 2b and R 2d represent any amino acid side and the drug is coordinated through these groups or the drug, either directly or via a linker. Can be combined. The amino acid side chain may be a side chain of any biological constituent amino acid, but from the viewpoint of binding a drug, it may be a side chain of serine, threonine, arginine, histidine, lysine, cysteine, glutamic acid and aspartic acid. preferable. When R 2a and R 2c are present, R 2b and R 2d are carboxy groups. Since the isomerization of aspartic acid to isoaspartic acid in the polyamino acid segment can occur accidentally, the above description is made even when the formula representing only the amide bond between the main chains is described in the present specification. It is not intended to exclude isomerized polymers as in formulas (I) and (II) of. Repetitive units of amino acids can be present in blocks, or can be randomly present.
一般式(I)及び(II)中、R3は、水素原子、保護基、疎水性基又は重合性基を表す。具体的には、R3は、アセチル基、アクリロイル基又はメタクリロイル基であることが好ましい。
In the general formulas (I) and (II), R 3 represents a hydrogen atom, a protecting group, a hydrophobic group or a polymerizable group. Specifically, R 3 is preferably an acetyl group, an acryloyl group, or a methacryloyl group.
一般式(I)及び(II)中、R4は水酸基、オキシベンジル基、-NH-(CH2)a-X基又は開始剤残基を表す。ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であることが好ましい。
In the general formulas (I) and (II), R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue. Here, a is an integer of 1 to 5, and X is an amine compound residue containing one or more of primary, secondary, tertiary amines or quaternary ammonium salts, or a compound that is not an amine. It is preferably a residue.
一般式(I)及び(II)中、mは20~2,000の整数であり、40~500の整数であることが好ましく、より好ましくは45~300の整数である。また、nは1~200の整数であり、20~100の整数であることが好ましく、より好ましくは30~50の整数である。
In the general formulas (I) and (II), m is an integer of 20 to 2,000, preferably an integer of 40 to 500, and more preferably an integer of 45 to 300. Further, n is an integer of 1 to 200, preferably an integer of 20 to 100, and more preferably an integer of 30 to 50.
一般式(I)及び(II)における各繰り返し単位は、記載の便宜上特定した順で示しているが、各繰り返し単位はランダムな順で存在することができる。特に、ポリアミノ酸セグメント中における各繰り返し単位についてのみ、上記の通りランダムな順で存在し得ることが好ましい。
Each repeating unit in the general formulas (I) and (II) is shown in the order specified for convenience of description, but each repeating unit can exist in a random order. In particular, it is preferred that only each repeating unit in the polyamino acid segment can be present in random order as described above.
一般式(I)及び(II)で示されるブロックコポリマーの分子量(Mw)は、限定はされないが、5,000~40,000であることが好ましく、より好ましくは8,000~22,000である。また、個々のセグメントについては、PEGセグメントの分子量(Mw)は、1,000~20,000であることが好ましく、より好ましくは2,000~12,000であり、ポリアミノ酸セグメントの分子量(Mw)は、全体で4,000~20,000であることが好ましく、より好ましくは6,000~10,000である。
The molecular weight (Mw) of the block copolymer represented by the general formulas (I) and (II) is not limited, but is preferably 5,000 to 40,000, more preferably 8,000 to 22,000. is there. For each segment, the molecular weight (Mw) of the PEG segment is preferably 1,000 to 20,000, more preferably 2,000 to 12,000, and the molecular weight of the polyamino acid segment (Mw). ) Is preferably 4,000 to 20,000 as a whole, and more preferably 6,000 to 10,000.
一般式(I)及び(II)で示されるブロックコポリマーの製造方法は、限定はされないが、例えば、R1a-又はR1b-とPEG鎖のブロック部分とを含むセグメント(PEGセグメント)を予め合成しておき、このPEGセグメントの片末端(R1a-又はR1b-と反対の末端)に、所定のモノマーを順に重合し、その後必要に応じて側鎖をアニオン性基を含むように置換又は変換する方法、あるいは、上記PEGセグメントと、アニオン性基を含む側鎖を有するブロック部分とを予め合成しておき、これらを互いに連結する方法などが挙げられる。当該製法における各種反応の方法及び条件は、常法を考慮し適宜選択又は設定することができる。上記PEGセグメントは、例えば、特許文献1:WO96/32434号公報、特許文献2:WO96/33233号公報及び特許文献3:WO97/06202号公報等に記載のブロック共重合体のPEGセグメント部分の製法を用いて調製することができる。
Method for producing a block copolymer represented by the general formula (I) and (II) include, but are not limited to, for example, R 1a - or R 1b - and previously synthesized segment (PEG segment) comprising a block portion of the PEG chain ; then, one end of the PEG segment (R 1a - - or R 1b opposite ends), and polymerizing a prescribed monomers in sequence, substitution or to include an anionic group to the side chain then optionally Examples thereof include a method of conversion, a method of synthesizing the PEG segment and a block portion having a side chain containing an anionic group in advance, and connecting them to each other. The methods and conditions of various reactions in the production method can be appropriately selected or set in consideration of the conventional method. The PEG segment is a method for producing a PEG segment portion of a block copolymer described in, for example, Patent Document 1: WO96 / 32434, Patent Document 2: WO96 / 33233, and Patent Document 3: WO97 / 06202. Can be prepared using.
こうして形成されるPEGセグメント部分とポリアミノ酸セグメント部分との結合は、一般式(I)又は(II)で示されるブロック共重合体の製造方法に応じて、適当な連結様式をもとり得、そして本発明の目的に沿う限り、どのような連結基で結合されていてもよい。製造方法は特に限定されるものではないが、一般式(I)又は(II)のポリマーを製造する場合の一方法として、末端にアミノ基を有するPEG誘導体を用いて、そのアミノ末端から、例えば、β-ベンジル-L-アスパルテート(BLA)やγ-ベンジル-L-グルタメート等の保護アミノ酸のN-カルボン酸無水物(NCA)を開環重合させてブロック共重合体を合成し、その後側鎖ベンジル基を他のエステル基に変換するか、又は部分もしくは完全加水分解することにより目的のブロック共重合体を得る方法が挙げられる。この場合共重合体の構造は一般式(I)となり、連結基L1は用いたPEGセグメントの末端構造に由来する構造となるが、好ましくは-(CH2)b-NH-である(ここで、bは1~5の整数である。)。
The bond between the PEG segment portion and the polyamino acid segment portion thus formed can also take an appropriate linking mode depending on the method for producing the block copolymer represented by the general formula (I) or (II), and the present invention As long as it meets the object of the invention, it may be bonded by any linking group. The production method is not particularly limited, but as one method for producing the polymer of the general formula (I) or (II), a PEG derivative having an amino group at the terminal is used, for example, from the amino terminal thereof. , Β-benzyl-L-aspartate (BLA), γ-benzyl-L-glutamate and other protected amino acids N-carboxylic acid anhydrides (NCA) are ring-open polymerized to synthesize block copolymers, followed by Examples thereof include a method of converting a chain benzyl group into another ester group, or partially or completely hydrolyzing the chain benzyl group to obtain the desired block copolymer. In this case, the structure of the copolymer is the general formula (I), and the linking group L1 is a structure derived from the terminal structure of the PEG segment used, but is preferably − (CH 2 ) b −NH− (here). , B is an integer from 1 to 5).
また、ポリアミノ酸セグメント部分を合成してから、予め用意したPEGセグメント部分と結合させる方法でも、本発明の共重合体は製造可能であり、この場合結果的に上記の方法で製造したものと同一の構造となることもあるが、一般式(II)に対応する構造となることもあり、連結基L2は特に限定されるものではないが、好ましくは-(CH2)c-CO-である(ここで、cは1~5の整数である。)。
Further, the copolymer of the present invention can also be produced by a method of synthesizing a polyamino acid segment portion and then binding it to a PEG segment portion prepared in advance, and in this case, the result is the same as that produced by the above method. However, the linking group L 2 is not particularly limited, but is preferably − (CH 2 ) c −CO−, as it may have a structure corresponding to the general formula (II). Yes (where c is an integer from 1 to 5).
本発明の親水性ポリマーには、薬剤が結合又は配位されうる。薬剤は、リンカーを介して又は直接親水性ポリマーに結合するか、又は親水性ポリマーに配位されうる。親水性ポリマーが式(I)又は(II)のブロック共重合体である場合に、R2b及びR2dにおいて、薬剤が配位又は結合されうる。薬物に白金などの重金属が含まれる場合には、薬物の重金属に対して、アミノ酸側鎖のカルボキシ基のプロトンが遊離して形成したカルボキシレート基が配位する。薬物が直接結合される場合、アミノ酸側鎖のカルボキシ基、アミノ基、チオール基を介して結合されうる。薬物の任意の基を結合に用いることができるが、一例としてカルボキシ基、アミノ基、チオール基などを利用することができる。リンカーを介して結合する場合、リンカーL3は、本技術分野において使用される任意のリンカーを用いることができ、例えばC1-6アルキレンである。さらに別の態様では、ポリアミノ酸のカルボキシ基又はその誘導体に対しヒドラジンを反応させて、ヒドラジド基(この場合、Mは、-NH-NH2)を形成させ、ヒドラジド基を介してケトンを有する薬物と結合されてもよい。この場合リンカーLは、ヒドラゾン結合となる。薬物とポリアミノ酸とを結合するリンカーは、所望の粒子を製造できる観点で、本技術分野に既知の任意のリンカーを用いることができる。
Drugs can be bound or coordinated to the hydrophilic polymers of the present invention. The agent can be attached to or coordinated with the hydrophilic polymer via a linker or directly. When the hydrophilic polymer is a block copolymer of formula (I) or (II), the agent can be coordinated or attached at R 2b and R 2d . When the drug contains a heavy metal such as platinum, the carboxylate group formed by liberating the proton of the carboxy group of the amino acid side chain coordinates with the heavy metal of the drug. When the drug is directly bound, it can be bound via the carboxy group, amino group, thiol group of the amino acid side chain. Any group of the drug can be used for binding, but carboxy groups, amino groups, thiol groups and the like can be used as an example. When attached via a linker, the linker L 3 can be any linker used in the art, such as C 1-6 alkylene. In yet another embodiment, a drug in which a hydrazine is reacted with a carboxy group of a polyamino acid or a derivative thereof to form a hydrazide group (in this case, M is -NH-NH 2 ) and has a ketone via the hydrazide group. May be combined with. In this case, the linker L becomes a hydrazone bond. As the linker that binds the drug to the polyamino acid, any linker known in the art can be used from the viewpoint of producing desired particles.
本発明の医薬組成物に含まれる治療薬は、任意の治療薬であってよい。特に妊婦において、必要とされる治療薬が挙げられ、一例として、抗がん剤、抗炎症薬、抗高血圧薬、向精神薬などを使用しうる。抗がん剤としては、胃、皮膚、喉頭、口内、咽頭、食道、消化器、すい臓、肺、脳、骨、骨髄、乳など任意の臓器における癌の治療用の抗癌剤が挙げられるが、特に妊婦においてかかりやすい乳癌の治療用の薬剤が挙げられる。
The therapeutic agent contained in the pharmaceutical composition of the present invention may be any therapeutic agent. Particularly in pregnant women, the required therapeutic agents are mentioned, and as an example, anticancer agents, anti-inflammatory agents, antihypertensive agents, psychotropic agents and the like can be used. Examples of anticancer agents include anticancer agents for treating cancer in any organ such as stomach, skin, larynx, mouth, pharynx, esophagus, digestive organs, pancreas, lung, brain, bone, bone marrow, and breast. Drugs for the treatment of breast cancer, which are more likely to occur in pregnant women.
抗癌薬として使用される薬剤としては、白金製剤、アルキル化薬、代謝拮抗薬、トポイソメラーゼ阻害薬、微小管阻害薬、内分泌治療薬などが使用されうる。白金製剤としては、ダハプラチン、オキサリプラチン、シスプラチン、カルボプラチン、ネダプラチンが挙げられる。白金製剤は、胎児への集積の検出が容易であり、製品開発の点で優れている。アルキル化薬としては、シクロホスファミド、イホスファミド、メルファラン、ブスルファン、チオテパなどのナイトロジェンマスタード系、ニムスチン、ラニムスチン、ダカルバジン、プロカルバシン、テモゾロマイド、カルムスチン、ストレプトゾトシン、ベンダムスチンなどのニトロソウレア系が挙げられる。代謝拮抗薬として、フルオロウラシル、6-メルカプトプリン、アザチオプリン、ヒドロキシウレア、チオグアニン、フルダラビン、クラドリビン、シラタビン、ゲムシタビンなどが挙げられる。トポイソメラーゼ阻害薬としては、カンプトテシン、イリノテカン、ノギテカン、アントラサイクリン、ドキソルビシン、エピルビシン、ダウノルビシン、ブレオマイシン、レボフロキサシン、シプロフロキサインなどが挙げられる。微小管重合阻害剤としては、ビンクリスチン、ビンデシン、パクリタキセル、ドセタキセルなどが挙げ荒れる。内分泌治療薬としては、アナストロゾール、エキセメスタン、タモキシフェン、トレミフェン、フルベストラント、レトロゾールなどが挙げられる。特に妊婦に頻発する乳癌に対する治療薬として用いる観点から、内分泌治療薬などがあげられる。より安全性を高める観点から、胎児への影響が少ないことが実証されているドキソルビシン、シクロホスファミド、フルオロウラシルなどが使用されてもよい。
As the drug used as an anticancer drug, a platinum preparation, an alkylating drug, an antimetabolite, a topoisomerase inhibitor, a microtubule inhibitor, an endocrine therapeutic drug, etc. can be used. Platinum preparations include dahaplatin, oxaliplatin, cisplatin, carboplatin and nedaplatin. Platinum preparations are excellent in terms of product development because they can easily detect accumulation in the fetus. Examples of the alkylating agent include nitrogen mustards such as cyclophosphamide, ifosfamide, melphalan, busulfan and thiotepa, and nitrosoureas such as nimustine, ranimustine, dacarbazine, procarbazine, temozolomide, carmustine, streptozotocin and bendamstin. Antimetabolites include fluorouracil, 6-mercaptopurine, azathioprine, hydroxyurea, thioguanine, fludarabine, cladribine, silatabin, gemcitabine and the like. Examples of topoisomerase inhibitors include camptothecin, irinotecan, nogitecan, anthracycline, doxorubicin, epirubicin, daunorubicin, bleomycin, levofloxacin, cyprofloxacin and the like. Examples of the microtubule polymerization inhibitor include vincristine, vindesine, paclitaxel, docetaxel and the like. Examples of endocrine therapeutic agents include anastrozole, exemestane, tamoxifen, toremifene, fulvestrant, letrozole and the like. In particular, from the viewpoint of being used as a therapeutic agent for breast cancer that frequently occurs in pregnant women, an endocrine therapeutic agent and the like can be mentioned. From the viewpoint of increasing safety, doxorubicin, cyclophosphamide, fluorouracil, etc., which have been proven to have less effect on the fetus, may be used.
本発明の具体的な態様では、本発明は、ポリエチレングリコール・ポリアミノ酸ブロックコポリマーに配位されたダハプラチン誘導体ミセルを含む妊婦又は妊娠可能性のある女性に対し投与するための医薬組成物に関する。このダハプラチン誘導体ミセルでは、オキサリプラチンのオキサレート基が離脱した部分構造であるダハプラチンは、オキサレート基の代わりにポリアミノ酸(特にグルタミン酸又はアスパラギン酸)のカルボキシレート基に配位しており、ミセルサイズが、10~100nm、好ましくは20~90nm、より好ましくは25~75nmであることを特徴とする。このようなダハプラチン誘導体ミセルを含む医薬組成物は、作用薬剤であるダハプラチンが投与された場合には、妊婦又は妊娠可能性のある女性に対し禁忌となる用量及び用法で投与されうる。一例として、ダハプラチン誘導体ミセルは、90~120 mg/m2で、週1回で、妊婦又は妊娠可能性のある女性に投与しうる。
In a specific aspect of the present invention, the present invention relates to a pharmaceutical composition for administration to a pregnant woman or a woman of childbearing potential, which comprises a dahaplatin derivative micelle coordinated to a polyethylene glycol polyamino acid block copolymer. In this dahaplatin derivative micelle, dahaplatin, which is a partial structure in which the oxalate group of oxaliplatin is removed, is coordinated to the carboxylate group of a polyamino acid (particularly glutamic acid or aspartic acid) instead of the oxalate group, and the micelle size is large. It is characterized in that it is 10 to 100 nm, preferably 20 to 90 nm, and more preferably 25 to 75 nm. Pharmaceutical compositions containing such dahaplatin derivative micelles may be administered in contraindicated doses and dosages to pregnant or potentially pregnant women when the active agent dahaplatin is administered. As an example, dahaplatin derivative micelles can be administered at 90-120 mg / m 2 once weekly to pregnant or potentially pregnant women.
抗炎症薬は、インドメタシン、ケトプロフェン、ロキソプロフェン、ジクロフェナク、イブプロフェン、アセチルサリチル酸、セレコキシブ、エトドラク、メロキシカムなどの非ステロイド性抗炎症剤である。抗炎症薬を含む本発明の医薬組成物は、鎮痛解熱薬、関節リウマチの治療薬として使用しうるとともに、早産や流産の治療又は予防用途として使用しうる。インドメタシンなどは、炎症領域で作用することが所望されることから、炎症領域の低pHに応答して放出されるように設計されうる。また、炎症部のマクロファージにより貪食されることで、マクロファージが有しているエステラーゼの作用により薬物が放出されるように設計されてもよい。また子宮内膜症のような炎症につながる疾患の治療薬、感染症に伴う炎症、免疫に伴う炎症の治療薬についても妊婦が罹患するする炎症の治療薬については、本書における抗炎症薬に含めることができる。
Anti-inflammatory drugs are non-steroidal anti-inflammatory drugs such as indomethacin, ketoprofen, loxoprofen, diclofenac, ibuprofen, acetylsalicylic acid, selecoxib, etodolac, and meloxicam. The pharmaceutical composition of the present invention containing an anti-inflammatory agent can be used as an analgesic and antipyretic drug, a therapeutic agent for rheumatoid arthritis, and can be used for the treatment or prevention of premature birth or miscarriage. Indomethacin and the like can be designed to be released in response to low pH in the inflamed area, as it is desired to act in the inflamed area. Further, the drug may be designed to be released by the action of esterase possessed by the macrophage by being phagocytosed by the macrophage in the inflamed area. In addition, the therapeutic agents for diseases that lead to inflammation such as endometriosis, the therapeutic agents for inflammation associated with infectious diseases, and the therapeutic agents for inflammation associated with immunity are also included in the anti-inflammatory agents in this document. be able to.
高血圧薬として、Ca拮抗薬、ARB、ACE阻害薬、利尿薬、β遮断薬、α遮断薬、及びスタチン系高脂血症薬が挙げられる。Ca拮抗薬としては、アムロジピン、ニフェジピン、ニカルジピン、ベニジピン、バルニジピン、ニトレンジピン、ニソルジピン、アゼルニジピン、マニジピン、エフォニジピン、シルニジピン、アラニジピンなどのジヒドロピリジン系の薬剤、ジルチアゼムなどのベンゾチアゼピン系の薬剤、ベラパミルなどのフェニルアルキルアミン系の薬剤が挙げられる。ARBとしては、バルサルタン、ロサルタン、カンデサルタン、イルベサルタン、アジルサルタンなどが挙げられる。ACE阻害薬としては、イミダプリル、エナラプリル、デラプリル、シラザプリル、キナプリル、テモカプリル、ペリンドプリル、リシノプリル、トランドラプリルなどが挙げられる。利尿薬としてはトリクロロメチアジド、ヒドロクロロチアジド、フロセミド、トラセミド、アゾセミド、スピロノラクトン、トリアムテレン、エプレレノンなどが挙げられる。β遮断薬としては、アテノロール、ビソプロロール、ベタキソロール、メトプロロール、プロプラノロール、ナドロール、ニプラジロール、カルテオロール、ビンドロール、アモスラロール、アロチノロール、カルベジロール、ラベタロール、ベバントロールなどが挙げられる。α遮断薬としては、ウラビジル、テラゾシン、プラゾシン、ドキサゾシン、ブナゾシンなどが挙げられる。スタチン系薬剤としては、シンバスタチン、プラバスタチン、ロバスタチン、ピタバスタチン、アトルバスタチンなどが挙げられる。スタチン系薬剤を包含する本発明の医薬組成物は、抗高血圧薬、抗高脂血症薬、妊娠高血圧症治療又は予防薬として使用しうる。スタチン系薬剤は、主に肝臓においてコレステロール合成を阻害することから、肝臓において作用するように設計することが好ましい。
Examples of antihypertensive drugs include Ca antagonists, ARBs, ACE inhibitors, diuretics, β-blockers, α-blockers, and statin-based hyperlipidemia drugs. Calcium channel blockers include dihydropyridines such as amlodipine, nifedipine, nicardipine, benidipine, balnidipine, nitrendipine, nisoldipine, azelnidipine, manidipine, ephonidipine, silnidipine and alanidipine, benzothiazepines such as diltiazem, and phenyl such as verapamil. Examples include alkylamine-based agents. Examples of ARB include valsartan, losartan, candesartan, irbesartan, azilsartan and the like. Examples of the ACE inhibitor include imidapril, enalapril, delapril, silazapril, quinapril, temocapril, perindopril, lisinopril, trandolapril and the like. Examples of diuretics include trichloromethiazide, hydrochlorothiazide, furosemide, torasemide, azosemide, spironolactone, triamterene, eplerenone and the like. Examples of β-blockers include atenololol, bisoprolol, betaxolol, metoprolol, propranolol, nadolol, nipradilol, carteolol, bindrol, amosularol, arotinolol, carvedilol, labetalol, and bevantolol. Examples of the α blocker include uravidyl, terazosin, prazosin, doxazosin, and bunazosin. Examples of statins include simvastatin, pravastatin, lovastatin, pitavastatin, and atorvastatin. The pharmaceutical composition of the present invention including a statin drug can be used as an antihypertensive drug, an antihyperlipidemic drug, a therapeutic or prophylactic drug for preeclampsia. Since statins mainly inhibit cholesterol synthesis in the liver, it is preferable to design them to act in the liver.
本発明の別の態様では、本発明は、ポリエチレングリコール・ポリアミノ酸ブロック共重合体に結合された薬物、及び当該ブロック共重合体から形成されるミセルに関する。ここで、ポリエチレングリコール・ポリアミノ酸ブロック共重合体は、本明細書中で定義される式(I)又は(II)のポリエチレングリコール・ポリアミノ酸ブロック共重合体である。ポリエチレングリコール・ポリアミノ酸ブロック共重合体に結合された薬物としては、上述の任意の薬物が使用されうるが、特に、インドメタシン及びシンバスタチンである。
In another aspect of the invention, the invention relates to a drug bound to a polyethylene glycol / polyamino acid block copolymer and micelles formed from the block copolymer. Here, the polyethylene glycol / polyamino acid block copolymer is a polyethylene glycol / polyamino acid block copolymer of the formula (I) or (II) defined in the present specification. As the drug bound to the polyethylene glycol / polyamino acid block copolymer, any of the above-mentioned drugs may be used, in particular, indomethacin and simvastatin.
治療薬がインドメタシンである場合、インドメタシンは、上述のブロック共重合体のR2b及びR2dにおいて、リンカーL3を介して結合され、インドメタシンのカルボキシル基がリンカーL3に結合される。一例として、R2b及びR2dはアスパラギン酸側鎖又はグルタミン側鎖であり、その場合の化学式を下記に示す:
(式中、R1a、R1b、R3、R4、m、n、bは、本明細書中に定義された通りであり、
cは1又は2であり、L3は、C1-C6アルキレンを表す)
本発明に係るインドメタシン結合ブロック共重合体は、水中で自己組織化し、ミセルを形成することができる。 When the therapeutic agent is indomethacin, indomethacin is bound via linker L 3 in R 2b and R 2d of the block copolymers described above, and the carboxyl group of indomethacin is bound to linker L 3 . As an example, R 2b and R 2d are aspartic acid side chains or glutamine side chains, and the chemical formulas in that case are shown below:
(In the formula, R 1a , R 1b , R 3 , R 4 , m, n, b are as defined herein.
c is 1 or 2 and L 3 represents C 1- C 6 alkylene)
The indomethacin-bound block copolymer according to the present invention can self-assemble in water to form micelles.
cは1又は2であり、L3は、C1-C6アルキレンを表す)
本発明に係るインドメタシン結合ブロック共重合体は、水中で自己組織化し、ミセルを形成することができる。 When the therapeutic agent is indomethacin, indomethacin is bound via linker L 3 in R 2b and R 2d of the block copolymers described above, and the carboxyl group of indomethacin is bound to linker L 3 . As an example, R 2b and R 2d are aspartic acid side chains or glutamine side chains, and the chemical formulas in that case are shown below:
c is 1 or 2 and L 3 represents C 1- C 6 alkylene)
The indomethacin-bound block copolymer according to the present invention can self-assemble in water to form micelles.
ミセル内で架橋を形成する観点から、架橋のために一部の薬剤結合部分にフランが導入されていてもよい。架橋部のフルフリル基は、さらにビスマレイミドなどの架橋剤を作用されることで、ミセル形成にあたり架橋を形成することができる。治療薬がインドメタシンであり、フルフリル基が導入された本発明の化合物は、一例として下記の構造を有する:
(式中、
R1a、R3、R4、m、n、bは、本明細書において既に定義された通りであり、
kは、導入される架橋の数を表し、kは、0~199の整数であり、
cは1又は2であり、L3は、C1-C6アルキレンを表す。)。また本発明の別の態様では、フルフリル基が導入された本発明の化合物をミセル化し、1,1-(メチレンジ-4,1-フェニレン)ビスマレイミド(BMI)の添加により架橋されたミセルに関してもよい。 From the perspective of forming crosslinks within the micelles, furan may be introduced into some drug binding moieties for crosslinking. The furfuryl group in the crosslinked portion can be further crosslinked in the formation of micelles by further acting on a crosslinking agent such as bismaleimide. The compound of the present invention in which the therapeutic agent is indomethacin and a furfuryl group is introduced has the following structure as an example:
(During the ceremony
R 1a , R 3 , R 4 , m, n, b are as already defined herein.
k represents the number of bridges introduced, k is an integer from 0 to 199,
c is 1 or 2 and L 3 represents C 1- C 6 alkylene. ). In another aspect of the present invention, the compound of the present invention having a flufuryl group introduced therein is made into micelles and crosslinked by the addition of 1,1- (methylenedi-4,1-phenylene) bismaleimide (BMI). Good.
R1a、R3、R4、m、n、bは、本明細書において既に定義された通りであり、
kは、導入される架橋の数を表し、kは、0~199の整数であり、
cは1又は2であり、L3は、C1-C6アルキレンを表す。)。また本発明の別の態様では、フルフリル基が導入された本発明の化合物をミセル化し、1,1-(メチレンジ-4,1-フェニレン)ビスマレイミド(BMI)の添加により架橋されたミセルに関してもよい。 From the perspective of forming crosslinks within the micelles, furan may be introduced into some drug binding moieties for crosslinking. The furfuryl group in the crosslinked portion can be further crosslinked in the formation of micelles by further acting on a crosslinking agent such as bismaleimide. The compound of the present invention in which the therapeutic agent is indomethacin and a furfuryl group is introduced has the following structure as an example:
R 1a , R 3 , R 4 , m, n, b are as already defined herein.
k represents the number of bridges introduced, k is an integer from 0 to 199,
c is 1 or 2 and L 3 represents C 1- C 6 alkylene. ). In another aspect of the present invention, the compound of the present invention having a flufuryl group introduced therein is made into micelles and crosslinked by the addition of 1,1- (methylenedi-4,1-phenylene) bismaleimide (BMI). Good.
治療薬がシンバスタチンである場合、シンバスタチンは、アミノ酸の側鎖のカルボキシ基に直接エステル結合により結合されうる。シンバスタチン結合ブロック共重合体は、一例として下記のとおりである:
(式中、
R1a、R3、R4、m、n、bは、本明細書において既に定義された通りであり、
cは1又は2である)。
本発明の別の態様は、本発明に係るシンバスタチン結合ブロック共重合体を水中で自己組織化して形成させたミセルに関する。 If the therapeutic agent is simvastatin, simvastatin can be attached directly to the carboxy group of the side chain of the amino acid by an ester bond. Simvastatin-binding block copolymers are, for example:
(During the ceremony
R 1a , R 3 , R 4 , m, n, b are as already defined herein.
c is 1 or 2).
Another aspect of the present invention relates to micelles formed by self-assembling the simvastatin-binding block copolymer according to the present invention in water.
R1a、R3、R4、m、n、bは、本明細書において既に定義された通りであり、
cは1又は2である)。
本発明の別の態様は、本発明に係るシンバスタチン結合ブロック共重合体を水中で自己組織化して形成させたミセルに関する。 If the therapeutic agent is simvastatin, simvastatin can be attached directly to the carboxy group of the side chain of the amino acid by an ester bond. Simvastatin-binding block copolymers are, for example:
R 1a , R 3 , R 4 , m, n, b are as already defined herein.
c is 1 or 2).
Another aspect of the present invention relates to micelles formed by self-assembling the simvastatin-binding block copolymer according to the present invention in water.
本発明は、治療薬が結合又は配位されたポリエチレングリコール-ポリアミノ酸ブロック共重合体を含むミセルの製造方法にも関する。このミセルは、治療薬が結合又は配位されたポリエチレングリコール-ポリアミノ酸ブロック共重合体から主に構成されるが、所望のサイズを達成することができれば、他の任意の成分が含まれてもよい。本発明のミセルの製造方法は、具体的に、以下の:
治療薬が結合又は配位されたポリエチレングリコール-ポリアミノ酸ブロック共重合体を、水中で再構成する工程、及び、
分画分子量10,000~100,000透析膜を用いて限外ろ過を行って、20~100nmの粒径を有するミセルを取得する工程、
を含む。さらに膜サイズ0.15~0.3のフィルターを通して精製する工程を含んでもよい。ミセルのサイズは、動的散乱法を用いることにより測定することができる。 The present invention also relates to a method for producing micelles containing a polyethylene glycol-polyamino acid block copolymer to which a therapeutic agent is bound or coordinated. The micelles are predominantly composed of polyethylene glycol-polyamino acid block copolymers to which the therapeutic agent is bound or coordinated, but may contain any other component as long as the desired size can be achieved. Good. Specifically, the method for producing micelles of the present invention is as follows:
A step of reconstitution of a polyethylene glycol-polyamino acid block copolymer to which a therapeutic agent is bound or coordinated in water, and
A step of obtaining micelles having a particle size of 20 to 100 nm by performing ultrafiltration using a fractionated molecular weight of 10,000 to 100,000 dialysis membranes.
including. Further, a step of purifying through a filter having a membrane size of 0.15 to 0.3 may be included. The size of micelles can be measured by using the dynamic scattering method.
治療薬が結合又は配位されたポリエチレングリコール-ポリアミノ酸ブロック共重合体を、水中で再構成する工程、及び、
分画分子量10,000~100,000透析膜を用いて限外ろ過を行って、20~100nmの粒径を有するミセルを取得する工程、
を含む。さらに膜サイズ0.15~0.3のフィルターを通して精製する工程を含んでもよい。ミセルのサイズは、動的散乱法を用いることにより測定することができる。 The present invention also relates to a method for producing micelles containing a polyethylene glycol-polyamino acid block copolymer to which a therapeutic agent is bound or coordinated. The micelles are predominantly composed of polyethylene glycol-polyamino acid block copolymers to which the therapeutic agent is bound or coordinated, but may contain any other component as long as the desired size can be achieved. Good. Specifically, the method for producing micelles of the present invention is as follows:
A step of reconstitution of a polyethylene glycol-polyamino acid block copolymer to which a therapeutic agent is bound or coordinated in water, and
A step of obtaining micelles having a particle size of 20 to 100 nm by performing ultrafiltration using a fractionated molecular weight of 10,000 to 100,000 dialysis membranes.
including. Further, a step of purifying through a filter having a membrane size of 0.15 to 0.3 may be included. The size of micelles can be measured by using the dynamic scattering method.
本明細書において言及される全ての文献はその全体が引用により本明細書に取り込まれる。
以下に説明する本発明の実施例は例示のみを目的とし、本発明の技術的範囲を限定するものではない。本発明の技術的範囲は特許請求の範囲の記載によってのみ限定される。本発明の趣旨を逸脱しないことを条件として、本発明の変更、例えば、本発明の構成要件の追加、削除及び置換を行うことができる。 All references referred to herein are incorporated herein by reference in their entirety.
The examples of the present invention described below are for illustration purposes only and do not limit the technical scope of the present invention. The technical scope of the present invention is limited only by the description of the claims. Changes to the present invention, for example, addition, deletion and replacement of the constituent elements of the present invention can be made provided that the gist of the present invention is not deviated.
以下に説明する本発明の実施例は例示のみを目的とし、本発明の技術的範囲を限定するものではない。本発明の技術的範囲は特許請求の範囲の記載によってのみ限定される。本発明の趣旨を逸脱しないことを条件として、本発明の変更、例えば、本発明の構成要件の追加、削除及び置換を行うことができる。 All references referred to herein are incorporated herein by reference in their entirety.
The examples of the present invention described below are for illustration purposes only and do not limit the technical scope of the present invention. The technical scope of the present invention is limited only by the description of the claims. Changes to the present invention, for example, addition, deletion and replacement of the constituent elements of the present invention can be made provided that the gist of the present invention is not deviated.
実施例1:サイズの異なる高分子ミセルを用いた胎盤および胎児に対する集積性の評価
この実施例では、サイズの異なる高分子ミセルおよび低分子化合物の胎盤および胎児への集積性を、妊娠モデルマウスを用いた蛍光分析、元素分析および質量分析により評価した。 Example 1: Evaluation of accumulation in placenta and fetus using polymer micelles of different sizes In this example, the accumulation of polymer micelles and low molecular weight compounds of different sizes in placenta and fetus was determined by using a pregnancy model mouse. It was evaluated by the fluorescence analysis, element analysis and mass spectrometry used.
この実施例では、サイズの異なる高分子ミセルおよび低分子化合物の胎盤および胎児への集積性を、妊娠モデルマウスを用いた蛍光分析、元素分析および質量分析により評価した。 Example 1: Evaluation of accumulation in placenta and fetus using polymer micelles of different sizes In this example, the accumulation of polymer micelles and low molecular weight compounds of different sizes in placenta and fetus was determined by using a pregnancy model mouse. It was evaluated by the fluorescence analysis, element analysis and mass spectrometry used.
ダハプラチン内包ミセルの調製
蛍光標識された2種類(粒径30nm及び70nm、粒径30nmのミセルはAlexa-555標識、粒径70nmのミセルはAlexa647標識)のダハプラチン内包ミセルを調製した(非特許文献2:H. Cabral et. al., Nat. Nanotech. 6 (2011) 815-823)。 Preparation of Dahaplatin-encapsulating micelles Two types of fluorescent-labeled dahaplatin-encapsulating micelles (Alexa-555 labeled micelles having a particle size of 30 nm and 70 nm and 30 nm particle size and Alexa647-labeled micelles having a particle size of 70 nm) were prepared (Non-Patent Document 2). : H. Cabral et. Al., Nat. Nanotech. 6 (2011) 815-823).
蛍光標識された2種類(粒径30nm及び70nm、粒径30nmのミセルはAlexa-555標識、粒径70nmのミセルはAlexa647標識)のダハプラチン内包ミセルを調製した(非特許文献2:H. Cabral et. al., Nat. Nanotech. 6 (2011) 815-823)。 Preparation of Dahaplatin-encapsulating micelles Two types of fluorescent-labeled dahaplatin-encapsulating micelles (Alexa-555 labeled micelles having a particle size of 30 nm and 70 nm and 30 nm particle size and Alexa647-labeled micelles having a particle size of 70 nm) were prepared (Non-Patent Document 2). : H. Cabral et. Al., Nat. Nanotech. 6 (2011) 815-823).
妊娠モデルマウスへの投与
妊娠後14日目のマウスに2種類のダハプラチン内包ミセル(粒径30nm及び70nm)の混合溶液を投与した。投与48時間後に胎盤と胎児と摘出し、凍結サンプルを調製した。その後、凍結切片(厚さ:10mm)を作製し、ヘキストにより核染色を行った。ヘキスト由来の蛍光(図1A)、及びミセルの標識(Alexa 555及びAlexa647)由来の蛍光(図1B及びC)を測定した。次いで、ダハプラチン内包ミセル(粒径30nm)が投与された妊娠マウスから取得された胎児の凍結切片中における白金、鉄、カリウム、カルシウムの分布をシンクロトロン(Spring-8)により測定した(図2)。図1の結果から、2種類のダハプラチン内包ミセル(粒径30nm及び70nm)が胎児(F)に集積していないことが確認された。粒径30nmのダハプラチン内包ミセルでは、胎児(F)への集積は見られなかったものの、胎盤の胎児側のラビリンス(labyrinth)(L)層までミセルの集積がみられた。粒径70nmのダハプラチン内包ミセルでは、胎盤の母体側の脱落膜(dedidua)(D)層までの集積がみられたが、D層とL層の間にある海綿状栄養膜細胞(spongiotrophoblast)(S)層への集積は見られなかった。この結果より、薬剤のサイズを精密に設計することにより胎盤内分布を制御できることが示された。図2のからは、ダハプラチン由来の白金元素が胎児内に見られないことから、薬剤のサイズを30nm以上にすることにより胎盤の通過が抑制されたことが示された。 Administration to Pregnancy Model Mice A mixed solution of two types of dahaplatin-encapsulating micelles (particle size 30 nm and 70 nm) was administered to mice 14 days after pregnancy. 48 hours after administration, the placenta and fetus were removed and frozen samples were prepared. Then, a frozen section (thickness: 10 mm) was prepared and nuclear-stained with Hoechst. Fluorescence from Hoechst (FIG. 1A) and fluorescence from micelle labels (Alexa 555 and Alexa 647) (FIGS. 1B and C) were measured. Next, the distribution of platinum, iron, potassium, and calcium in frozen sections of the fetus obtained from pregnant mice administered with dahaplatin-encapsulated micelles (particle size 30 nm) was measured by a synchrotron (Spring-8) (Fig. 2). .. From the results shown in FIG. 1, it was confirmed that two types of dahaplatin-encapsulating micelles (particle size 30 nm and 70 nm) were not accumulated in the fetus (F). In the dahaplatin-encapsulated micelles having a particle size of 30 nm, accumulation in the fetus (F) was not observed, but accumulation of micelles was observed up to the labyrinth (L) layer on the fetal side of the placenta. In dahaplatin-encapsulated micelles with a particle size of 70 nm, accumulation up to the maternal dedidua (D) layer of the placenta was observed, but spongy trophoblast cells (spongiotrophoblast) between the D and L layers ( No accumulation in the S) layer was observed. From this result, it was shown that the distribution in the placenta can be controlled by precisely designing the size of the drug. From FIG. 2, since the platinum element derived from dahaplatin was not found in the fetus, it was shown that the passage of the placenta was suppressed by increasing the size of the drug to 30 nm or more.
妊娠後14日目のマウスに2種類のダハプラチン内包ミセル(粒径30nm及び70nm)の混合溶液を投与した。投与48時間後に胎盤と胎児と摘出し、凍結サンプルを調製した。その後、凍結切片(厚さ:10mm)を作製し、ヘキストにより核染色を行った。ヘキスト由来の蛍光(図1A)、及びミセルの標識(Alexa 555及びAlexa647)由来の蛍光(図1B及びC)を測定した。次いで、ダハプラチン内包ミセル(粒径30nm)が投与された妊娠マウスから取得された胎児の凍結切片中における白金、鉄、カリウム、カルシウムの分布をシンクロトロン(Spring-8)により測定した(図2)。図1の結果から、2種類のダハプラチン内包ミセル(粒径30nm及び70nm)が胎児(F)に集積していないことが確認された。粒径30nmのダハプラチン内包ミセルでは、胎児(F)への集積は見られなかったものの、胎盤の胎児側のラビリンス(labyrinth)(L)層までミセルの集積がみられた。粒径70nmのダハプラチン内包ミセルでは、胎盤の母体側の脱落膜(dedidua)(D)層までの集積がみられたが、D層とL層の間にある海綿状栄養膜細胞(spongiotrophoblast)(S)層への集積は見られなかった。この結果より、薬剤のサイズを精密に設計することにより胎盤内分布を制御できることが示された。図2のからは、ダハプラチン由来の白金元素が胎児内に見られないことから、薬剤のサイズを30nm以上にすることにより胎盤の通過が抑制されたことが示された。 Administration to Pregnancy Model Mice A mixed solution of two types of dahaplatin-encapsulating micelles (
妊娠後14日目に2種類のダハプラチン内包ミセル(粒径30nm及び70nm)、およびダハプラチンの活性体であるオキサリプラチン(8mg/kg)をそれぞれ投与した。投与48時間後に胎盤と胎児と摘出し、摘出後の胎盤と胎児に1mLのlysis buffer(Promega, USA)を添加し、ホモジェナイズ後に誘導結合プラズモン質量分析により組織内の白金元素を定量した(図3:胎児、図4:胎盤)。図3の結果から、オキサリプラチンを投与された妊娠マウスの胎児において、ダハプラチン内包ミセルを投与された妊娠マウスの胎児と比較して、白金の胎児への集積性が有意に高く、粒子サイズを30nm以上にすることにより粒子の胎盤通過が抑制されたことが示された。図4の結果から、オキサリプラチンを投与された妊娠マウスの胎児と、ダハプラチン内包ミセル(粒径30nm及び70nm)を投与された妊娠マウスの胎児とにおいて、白金の胎盤への集積がみられたが、オキサリプラチン投与群と比較して、粒径30nmのミセルの投与群で集積が低下し、さらに粒径70nmのミセルの投与群で低下した。このことから、薬剤のサイズを精密に設計することにより胎盤への集積性を制御できることが示された。
On the 14th day after pregnancy, two types of dahaplatin-encapsulating micelles (particle size 30 nm and 70 nm) and oxaliplatin (8 mg / kg), which is an active form of dahaplatin, were administered, respectively. 48 hours after administration, the placenta and fetus were removed, 1 mL of lysis buffer (Promega, USA) was added to the removed placenta and fetus, and after homogenization, platinum elements in the tissue were quantified by inductively coupled plasmon mass spectrometry (Fig. 3). : Fetus, Figure 4: Placenta). From the results shown in FIG. 3, in the fetuses of pregnant mice treated with oxaliplatin, the accumulation of platinum in the fetuses of platinum was significantly higher than that of the fetuses of pregnant mice treated with dahaplatin-encapsulated micelles, and the particle size was 30 nm. It was shown that the above results suppressed the passage of particles through the placenta. From the results shown in FIG. 4, platinum was accumulated in the placenta between the fetuses of pregnant mice treated with oxaliplatin and the fetuses of pregnant mice treated with dahaplatin-encapsulated micelles (particle size 30 nm and 70 nm). Compared with the oxaliplatin administration group, the accumulation was decreased in the administration group of micelle having a particle size of 30 nm, and further decreased in the administration group of micelle having a particle size of 70 nm. From this, it was shown that the placental accumulation can be controlled by precisely designing the size of the drug.
実施例2-1:ヒト胎盤に対する透過性の評価
この実施例では、サイズの異なる高分子ミセルおよび低分子化合物、ポリマーのヒト胎盤における透過性を、ヒト胎盤灌流モデルを用いて評価した。 Example 2-1: Evaluation of permeability to human placenta In this example, the permeability of polymer micelles, low molecular weight compounds, and polymers of different sizes in human placenta was evaluated using a human placenta perfusion model.
この実施例では、サイズの異なる高分子ミセルおよび低分子化合物、ポリマーのヒト胎盤における透過性を、ヒト胎盤灌流モデルを用いて評価した。 Example 2-1: Evaluation of permeability to human placenta In this example, the permeability of polymer micelles, low molecular weight compounds, and polymers of different sizes in human placenta was evaluated using a human placenta perfusion model.
薬剤の調製
実施例1のダハプラチン内包ミセルの調製に従い、蛍光標識された粒径30nm及び70nmのダハプラチン内包ミセルを調製した。末端にアジド基を有する8分岐PEG(分子量:40kDa、10nmサイズ(動的光散乱法)、20mg、0.50μmol)をDMSO(1.0mL、20mg/mL)に溶解し、Cy3-DBCO(7.0mg、6.0μmol)を添加し-20°Cで一晩反応させた。その後、純水に対する透析(MWCO:6,000-8,000)および凍結乾燥によりCy3標識8armPEGを得た。 Preparation of Drugs According to the preparation of dahaplatin-encapsulating micelles of Example 1, fluorescent-labeled dahaplatin-encapsulating micelles having particle sizes of 30 nm and 70 nm were prepared. 8-branched PEG (molecular weight: 40 kDa, 10 nm size (dynamic light scattering method), 20 mg, 0.50 μmol) having an azide group at the terminal was dissolved in DMSO (1.0 mL, 20 mg / mL) and Cy3-DBCO (7). (0.0 mg, 6.0 μmol) was added and reacted at −20 ° C. overnight. Then, dialysis (MWCO: 6,000-8,000) with pure water and freeze-drying gave Cy3-labeled 8armPEG.
実施例1のダハプラチン内包ミセルの調製に従い、蛍光標識された粒径30nm及び70nmのダハプラチン内包ミセルを調製した。末端にアジド基を有する8分岐PEG(分子量:40kDa、10nmサイズ(動的光散乱法)、20mg、0.50μmol)をDMSO(1.0mL、20mg/mL)に溶解し、Cy3-DBCO(7.0mg、6.0μmol)を添加し-20°Cで一晩反応させた。その後、純水に対する透析(MWCO:6,000-8,000)および凍結乾燥によりCy3標識8armPEGを得た。 Preparation of Drugs According to the preparation of dahaplatin-encapsulating micelles of Example 1, fluorescent-labeled dahaplatin-encapsulating micelles having particle sizes of 30 nm and 70 nm were prepared. 8-branched PEG (molecular weight: 40 kDa, 10 nm size (dynamic light scattering method), 20 mg, 0.50 μmol) having an azide group at the terminal was dissolved in DMSO (1.0 mL, 20 mg / mL) and Cy3-DBCO (7). (0.0 mg, 6.0 μmol) was added and reacted at −20 ° C. overnight. Then, dialysis (MWCO: 6,000-8,000) with pure water and freeze-drying gave Cy3-labeled 8armPEG.
ヒト胎盤灌流モデルについては非特許文献3(K. Shintaku et. al., Drug Metab. Dispos. 37 (2009) 962) 非特許文献4(J. R. Huston et. al., Clin. Pharmacol. Ther. 90 (2011) 67)に従い作製した。具体的には、東大病院の産婦人科から提供されたヒト胎盤の母体側にニードル(18ゲージ)を、胎児側の静脈と動脈にそれぞれニードル(18ゲージ)を導入し、非特許文献5(M. Nagai et. al., Drug Metab. Dispos. 41 (2013) 2124)に従い作製したKrebs-Ringer炭酸バッファーを37°Cで30分間灌流した(母体側の流速:15mL/min、胎児側の流速:3ml/min)。ここで、バッファーは過酸化水素水と塩化鉄の酸化還元反応により生成した酸素により飽和させた。その後、ダハプラチン内包ミセル(粒径30nm及び70nm)(ダハプラチンの投与量:85.4mg/L)、オキサリプラチン(2.7mg/L)およびCy3標識8armPEG(蛍光強度:3,000(RFU))を60分間灌流し、胎児側の静脈からの溶液を5分ごとに1 mLずつ回収した。オキサリプラチンおよびダハプラチン内包ミセル投与群については回収したサンプル中の白金含有量を誘導結合プラズモン質量分析により測定した。ポリマーについては、蛍光強度をHPLC法により定量した。各薬剤の投与量に対する透過量の割合を算出して図5に示した。また、オキサリプラチンおよびダハプラチン内包ミセル投与群については、実験後、胎盤に90%硝酸水溶液を2mL添加し、1%硝酸水溶液2mLに溶解し、胎盤中の白金含有量を誘導結合プラズモン質量分析により定量した。得られた白金含有量については胎盤の質量により規格化した(図6)。図5の結果から、オキサリプラチンは胎盤を透過したが、ダハプラチン内包ミセル(粒径30nm及び70nm)はともに胎盤を透過しなかったことから、薬剤のサイズを30nm以上にすることにより胎盤の透過が抑制されたことが示唆された。また、8‐armPEGにおいて、オキサリプラチンに比較して低下しているものの、胎盤の透過が見られたことから、薬剤のサイズに関して10nmから30nmの間に閾値が存在することが示唆された。図6の結果より、オキサリプラチンが胎盤に集積しミセルが胎盤に集積しなかったことから、マウスとヒトの胎盤構造の違いによりミセルの胎盤への集積が抑制されたことが示された。その結果、薬剤のサイズを30nm以上にすることにより胎盤への集積および透過を抑制できることが確認された。
Regarding the human placental perfusion model, Non-Patent Document 3 (K. Shintaku et. Al., Drug Metab. Dispos. 37 (2009) 962) Non-Patent Document 4 (J. R. Huston et. Al., Clin. Pharmacol. Ther . 90 (2011) 67). Specifically, a needle (18 gauge) was introduced into the maternal side of the human placenta provided by the Department of Obstetrics and Gynecology at the University of Tokyo Hospital, and a needle (18 gauge) was introduced into the vein and artery on the fetal side, respectively. Krebs-Ringer carbonate buffer prepared according to M. Nagai et. Al., Drug Metab. Dispos. 41 (2013) 2124) was perfused at 37 ° C for 30 minutes (maternal flow velocity: 15 mL / min, fetal flow velocity). : 3 ml / min). Here, the buffer was saturated with oxygen generated by the redox reaction of hydrogen peroxide solution and iron chloride. Then, dahaplatin-encapsulating micelles (particle size 30 nm and 70 nm) (dahaplatin dose: 85.4 mg / L), oxaliplatin (2.7 mg / L) and Cy3-labeled 8 armPEG (fluorescence intensity: 3,000 (RFU)). Perfusion was performed for 60 minutes, and 1 mL of the solution from the vein on the fetal side was collected every 5 minutes. For the oxaliplatin and dahaplatin-encapsulated micelle-administered groups, the platinum content in the collected samples was measured by inductively coupled plasmon mass spectrometry. For the polymer, the fluorescence intensity was quantified by the HPLC method. The ratio of the permeation amount to the dose of each drug was calculated and shown in FIG. For the oxaliplatin and dahaplatin-encapsulating micelle-administered groups, after the experiment, 2 mL of 90% nitric acid aqueous solution was added to the placenta, dissolved in 2 mL of 1% nitric acid aqueous solution, and the platinum content in the placenta was quantified by inductively coupled plasmon mass spectrometry. did. The platinum content obtained was standardized by the mass of the placenta (Fig. 6). From the results shown in FIG. 5, oxaliplatin permeated the placenta, but neither dahaplatin-encapsulating micelles (particle size 30 nm and 70 nm) permeated the placenta. Therefore, by increasing the drug size to 30 nm or more, the placenta permeated. It was suggested that it was suppressed. In addition, placental permeation was observed in 8-armPEG, although it was lower than that in oxaliplatin, suggesting that there was a threshold between 10 nm and 30 nm for drug size. From the results of FIG. 6, it was shown that oxaliplatin accumulated in the placenta and micelles did not accumulate in the placenta, and thus the accumulation of micelles in the placenta was suppressed due to the difference in placenta structure between mice and humans. As a result, it was confirmed that the accumulation and permeation into the placenta can be suppressed by increasing the size of the drug to 30 nm or more.
実施例2-2:ヒト胎盤に対する透過性の評価
胎盤を通過する物質の大きさを同定するために、PEG被覆金ナノ粒子(NP)の10、20、及び30nm(5 mL, Nanocs, Inc., USA)を用いて、実施例2-1と同様にex vivoヒト胎盤潅流実験を行った。10nm金NPを潅流すると、胎児側からの金ナノ粒子の検出量は時間依存的に増加し、60分後に投与量の4.58%に達した。また、20nmのGold NPを潅流した場合、胎児側からの検出線量は2.21%であった。一方、30nmのGoldナノ粒子を潅流した場合、胎児側からの検出線量は60分後に投与線量の0.05%であった。結果を図5Bに示す。これらの結果は、材料が胎盤を通過するために20nmから30nmの間のサイズのカットオフがあり得ることを示唆する。 Example 2-2: Assessment of permeability to human placenta To identify the size of material that passes through the placenta, PEG-coated gold nanoparticles (NPs) at 10, 20, and 30 nm (5 mL, Nanocs, Inc.). , USA), an ex vivo human placenta perfusion experiment was performed in the same manner as in Example 2-1. When 10 nm gold NP was perfused, the amount of gold nanoparticles detected from the fetal side increased in a time-dependent manner, reaching 4.58% of the dose after 60 minutes. In addition, when 20 nm Gold NP was perfused, the detected dose from the fetal side was 2.21%. On the other hand, when 30 nm Gold nanoparticles were perfused, the detected dose from the fetal side was 0.05% of the administered dose after 60 minutes. The results are shown in FIG. 5B. These results suggest that there may be a size cutoff between 20 nm and 30 nm for the material to pass through the placenta.
胎盤を通過する物質の大きさを同定するために、PEG被覆金ナノ粒子(NP)の10、20、及び30nm(5 mL, Nanocs, Inc., USA)を用いて、実施例2-1と同様にex vivoヒト胎盤潅流実験を行った。10nm金NPを潅流すると、胎児側からの金ナノ粒子の検出量は時間依存的に増加し、60分後に投与量の4.58%に達した。また、20nmのGold NPを潅流した場合、胎児側からの検出線量は2.21%であった。一方、30nmのGoldナノ粒子を潅流した場合、胎児側からの検出線量は60分後に投与線量の0.05%であった。結果を図5Bに示す。これらの結果は、材料が胎盤を通過するために20nmから30nmの間のサイズのカットオフがあり得ることを示唆する。 Example 2-2: Assessment of permeability to human placenta To identify the size of material that passes through the placenta, PEG-coated gold nanoparticles (NPs) at 10, 20, and 30 nm (5 mL, Nanocs, Inc.). , USA), an ex vivo human placenta perfusion experiment was performed in the same manner as in Example 2-1. When 10 nm gold NP was perfused, the amount of gold nanoparticles detected from the fetal side increased in a time-dependent manner, reaching 4.58% of the dose after 60 minutes. In addition, when 20 nm Gold NP was perfused, the detected dose from the fetal side was 2.21%. On the other hand, when 30 nm Gold nanoparticles were perfused, the detected dose from the fetal side was 0.05% of the administered dose after 60 minutes. The results are shown in FIG. 5B. These results suggest that there may be a size cutoff between 20 nm and 30 nm for the material to pass through the placenta.
実施例3:早産治療に向けたインドメタシン内包ミセルの調製
この実施例では、インドメタシン内包ミセルの構築に向けて、ブロック共重合体の合成およびミセルの調製を行った。
実験方法
既報(非特許文献6:M. Yokoyama et. al., Makromol. Chem. 190 (1989) 2041-2054)に従い、PEG(分子量:12,000Da)の一級アミンを開始剤とするNCA重合法によりPEG-poly(β-benzyl-L-aspartate)(PEG-PBLA)を合成した。その後、下記のスキームに従い4-アミノ-1-ブタノールおよび2-アミノメチルフランとPBLA鎖とのアミノリシス反応によりPEG-poly(Asp-Furan-OH)(PEG-P(Asp-furan-OH))を合成した。
Example 3: Preparation of indomethacin-encapsulating micelles for the treatment of preterm birth In this example, block copolymers were synthesized and micelles were prepared for the construction of indomethacin-encapsulating micelles.
Experimental Method According to a previously reported report (Non-Patent Document 6: M. Yokoyama et. Al., Makromol. Chem. 190 (1989) 2041-2054), an NCA polymerization method using PEG (molecular weight: 12,000 Da) primary amine as an initiator. PEG-poly (β-benzyl-L-apartate) (PEG-PVLA) was synthesized. Then, according to the following scheme, PEG-poly (Asp-Furan-OH) (PEG-P (Asp-furan-OH)) is produced by an aminolysis reaction of 4-amino-1-butanol and 2-aminomethylfuran with the BPLA chain. Synthesized.
この実施例では、インドメタシン内包ミセルの構築に向けて、ブロック共重合体の合成およびミセルの調製を行った。
実験方法
既報(非特許文献6:M. Yokoyama et. al., Makromol. Chem. 190 (1989) 2041-2054)に従い、PEG(分子量:12,000Da)の一級アミンを開始剤とするNCA重合法によりPEG-poly(β-benzyl-L-aspartate)(PEG-PBLA)を合成した。その後、下記のスキームに従い4-アミノ-1-ブタノールおよび2-アミノメチルフランとPBLA鎖とのアミノリシス反応によりPEG-poly(Asp-Furan-OH)(PEG-P(Asp-furan-OH))を合成した。
Experimental Method According to a previously reported report (Non-Patent Document 6: M. Yokoyama et. Al., Makromol. Chem. 190 (1989) 2041-2054), an NCA polymerization method using PEG (molecular weight: 12,000 Da) primary amine as an initiator. PEG-poly (β-benzyl-L-apartate) (PEG-PVLA) was synthesized. Then, according to the following scheme, PEG-poly (Asp-Furan-OH) (PEG-P (Asp-furan-OH)) is produced by an aminolysis reaction of 4-amino-1-butanol and 2-aminomethylfuran with the BPLA chain. Synthesized.
具体的には、PEG-PBLAをベンゼン凍結乾燥法により脱水し、蒸留したDMF(100mg/mL)に溶解した。その後、蒸留した4-アミノ-1-ブタノールおよび2-アミノメチルフランをPBLA鎖に対して2当量添加し、室温で6時間反応した。反応後、反応溶液を過剰量のジエチルエーテルに添加し、ポリマーを得た。次に、ポリマー中のヒドロキシル基をインドメタシンのエステル化によりポリマーへのインドメタシンの導入を行った。具体的には、ジメチルアミノピリジン(DMAP)、水溶性カルボジイミド(WSC)およびインドメタシンを混合し(DMAP/WSC/インドメタシン=2:3:1(質量比))、DMF(1mg/mL)に溶解した。その後、溶液をインドメタシンとPBLA鎖のモル比が4になるようにPEG-P(Asp-furan-OH)に加え、室温で1晩反応した。その後、反応溶液を過剰量のジエチルエーテルに添加し、ポリマーを得た。得られたポリマーの組成については1H-NMRにより測定した。1H-NMRより4-アミノ-1-ブタノールの導入率が80%、2-アミノメチルフランの導入率が20%であることが確認された。
Specifically, PEG-PVLA was dehydrated by the benzene freeze-drying method and dissolved in distilled DMF (100 mg / mL). Then, 2 equivalents of distilled 4-amino-1-butanol and 2-aminomethylfuran were added to the BPLA chain, and the mixture was reacted at room temperature for 6 hours. After the reaction, the reaction solution was added to an excess amount of diethyl ether to give a polymer. Next, indomethacin was introduced into the polymer by esterifying the hydroxyl group in the polymer with indomethacin. Specifically, dimethylaminopyridine (DMAP), water-soluble carbodiimide (WSC) and indomethacin were mixed (DMAP / WSC / indomethacin = 2: 3: 1 (mass ratio)) and dissolved in DMF (1 mg / mL). .. Then, the solution was added to PEG-P (Asp-furan-OH) so that the molar ratio of indomethacin to the BPLA chain was 4, and the reaction was carried out overnight at room temperature. Then, the reaction solution was added to an excess amount of diethyl ether to obtain a polymer. The composition of the obtained polymer was measured by 1 1 H-NMR. From 1 1 H-NMR, it was confirmed that the introduction rate of 4-amino-1-butanol was 80% and the introduction rate of 2-aminomethylfuran was 20%.
インドメタシン内包ミセルについては透析法により調製した。ポリマーをDMSO(2、7、14mg/mL)に溶解し、純水に対して透析(MWCO:3,500Da)し、フィルター(0.22μm)により精製した。その後、1,1-(メチレンジ-4,1-フェニレン)ビスマレイミド(BMI)をミセル溶液に添加し、50°Cで2日間反応した。反応後に限外ろ過法(MWCO:100,000Da)およびフィルター(0.22μm)により精製した。調製したミセルのサイズおよび多分散度(PDI)を動的光散乱法(DLS)により測定した。
図7より、PAsp鎖の重合度が32、インドメタシンの導入量が16(/polymer)、フランの導入量が6(/polymer)であることが確認された。DLS測定より、2、7、14mg/mLのポリマー濃度で調製したミセルがそれぞれ41nm(PDI:0.09)、37nm(PDI:0.04)、39nm(PDI:0.04)サイズであることが確認され、ミセル調製時のポリマー濃度がミセルのサイズに大きな影響を与えないことが示唆された。また、表1よりBMI架橋後のサイズが40nmであったことから、架橋前後でサイズが変化しないことを確認した。
Indomethacin-encapsulating micelles were prepared by dialysis. The polymer was dissolved in DMSO (2,7,14 mg / mL), dialyzed against pure water (MWCO: 3,500 Da), and purified by a filter (0.22 μm). Then, 1,1- (methylenedi-4,1-phenylene) bismaleimide (BMI) was added to the micelle solution, and the reaction was carried out at 50 ° C. for 2 days. After the reaction, it was purified by ultrafiltration (MWCO: 100,000 Da) and a filter (0.22 μm). The size and polydispersity (PDI) of the prepared micelles were measured by dynamic light scattering (DLS).
From FIG. 7, it was confirmed that the degree of polymerization of the PAsp chain was 32, the amount of indomethacin introduced was 16 (/ polymer), and the amount of furan introduced was 6 (/ polymer). According to DLS measurement, micelles prepared at polymer concentrations of 2, 7, and 14 mg / mL are 41 nm (PDI: 0.09), 37 nm (PDI: 0.04), and 39 nm (PDI: 0.04) sizes, respectively. Was confirmed, suggesting that the polymer concentration during micelle preparation does not significantly affect the size of micelles. Moreover, since the size after BMI cross-linking was 40 nm from Table 1, it was confirmed that the size did not change before and after the cross-linking.
実施例4:インドメタシン内包ミセルの安定性試験
この実施例では、インドメタシン内包ミセルの安定性の指標として、界面活性剤の添加後のミセルの散乱光強度、および生理塩条件とエンドソーム内pH条件下でのインドメタシン放出量を測定した。
実験方法
界面活性剤の1つであるドデシルスルホン酸ナトリウム(SDS)をミセル溶液に添加することにより安定性の指標とした。具体的には、SDS(20g)を純水(80mL)に溶解し65°Cで撹拌した。その後、SDS溶液に純水(100mL)を添加し、20%SDS水溶液とした。調製した20%SDS水溶液(10μL)をミセル溶液(70μL)に添加し、撹拌後にDLSによりサイズ、多分散度および散乱光強度(derived count rate (DCR))を測定した。
また、生理塩条件およびエンドソーム内pH条件下でのインドメタシン放出量を測定することにより安定性の指標とした。具体的には、インドメタシン内包ミセルを純水に対して透析(MWCO:3,500Da)し、透析後のサンプル内のインドメタシン量をHPLC法により測定した。
Example 4: Stability test of indomethacin-encapsulating micelles In this example, as an index of the stability of indomethacin-encapsulating micelles, the scattered light intensity of the micelle after the addition of the surfactant, and the physiological salt condition and the pH condition in the endosome are used. Indomethacin release amount was measured.
Experimental method Sodium dodecylsulfonate (SDS), which is one of the surfactants, was added to the micelle solution as an index of stability. Specifically, SDS (20 g) was dissolved in pure water (80 mL) and stirred at 65 ° C. Then, pure water (100 mL) was added to the SDS solution to prepare a 20% SDS aqueous solution. The prepared 20% SDS aqueous solution (10 μL) was added to the micellar solution (70 μL), and after stirring, the size, polydispersity and scattered light intensity (divided count rate (DCR)) were measured by DLS.
In addition, the amount of indomethacin released under physiological salt conditions and endosome pH conditions was used as an index of stability. Specifically, indomethacin-encapsulating micelles were dialyzed against pure water (MWCO: 3,500 Da), and the amount of indomethacin in the sample after dialysis was measured by the HPLC method.
この実施例では、インドメタシン内包ミセルの安定性の指標として、界面活性剤の添加後のミセルの散乱光強度、および生理塩条件とエンドソーム内pH条件下でのインドメタシン放出量を測定した。
実験方法
界面活性剤の1つであるドデシルスルホン酸ナトリウム(SDS)をミセル溶液に添加することにより安定性の指標とした。具体的には、SDS(20g)を純水(80mL)に溶解し65°Cで撹拌した。その後、SDS溶液に純水(100mL)を添加し、20%SDS水溶液とした。調製した20%SDS水溶液(10μL)をミセル溶液(70μL)に添加し、撹拌後にDLSによりサイズ、多分散度および散乱光強度(derived count rate (DCR))を測定した。
また、生理塩条件およびエンドソーム内pH条件下でのインドメタシン放出量を測定することにより安定性の指標とした。具体的には、インドメタシン内包ミセルを純水に対して透析(MWCO:3,500Da)し、透析後のサンプル内のインドメタシン量をHPLC法により測定した。
Experimental method Sodium dodecylsulfonate (SDS), which is one of the surfactants, was added to the micelle solution as an index of stability. Specifically, SDS (20 g) was dissolved in pure water (80 mL) and stirred at 65 ° C. Then, pure water (100 mL) was added to the SDS solution to prepare a 20% SDS aqueous solution. The prepared 20% SDS aqueous solution (10 μL) was added to the micellar solution (70 μL), and after stirring, the size, polydispersity and scattered light intensity (divided count rate (DCR)) were measured by DLS.
In addition, the amount of indomethacin released under physiological salt conditions and endosome pH conditions was used as an index of stability. Specifically, indomethacin-encapsulating micelles were dialyzed against pure water (MWCO: 3,500 Da), and the amount of indomethacin in the sample after dialysis was measured by the HPLC method.
表2より、BMI架橋前のミセル(NCL)がSDS添加により散乱光強度が減少した一方で、架橋後のミセル(CL)がSDS添加後も散乱光強度が減少しなかったことから、架橋によりミセルの安定性が向上したことが示唆された。また、図8より、血中pH(pH7.4)およびエンドソームpH(pH5.3)においてインドメタシンの放出がみられなかったことから、血中およびエンドソーム内においてインドメタシンを安定に内包できることが示唆された。
From Table 2, while the scattered light intensity of micelles (NCL) before BMI cross-linking decreased due to the addition of SDS, the scattered light intensity of micelles (CL) after cross-linking did not decrease even after the addition of SDS. It was suggested that the stability of micelles was improved. In addition, FIG. 8 showed no release of indomethacin at blood pH (pH 7.4) and endosome pH (pH 5.3), suggesting that indomethacin can be stably included in blood and endosomes. ..
実施例5:マクロファージ内におけるインドメタシンの放出試験
この実施例では、インドメタシン内包ミセルからのインドメタシンの放出を、マクロファージ細胞内におけるインドメタシン量を測定することにより評価した。 Example 5: Indomethacin release test in macrophages In this example, the release of indomethacin from indomethacin-encapsulating micelles was evaluated by measuring the amount of indomethacin in macrophage cells.
この実施例では、インドメタシン内包ミセルからのインドメタシンの放出を、マクロファージ細胞内におけるインドメタシン量を測定することにより評価した。 Example 5: Indomethacin release test in macrophages In this example, the release of indomethacin from indomethacin-encapsulating micelles was evaluated by measuring the amount of indomethacin in macrophage cells.
実験方法
マクロファージ細胞(RAW246.7細胞)の培養については、細胞培養用6ウェルプレートに200,000cells/mLの濃度で細胞を播種し、10%ウシ胎児血清(FBS)および1%ペニシリン/ストレプトマイシン含有DMEM内で24時間培養した。その後、実施例4で作成されたインドメタシン内包ミセル(インドメタシン量:0.5mg/mL:ミセル径:約40nm、架橋有)とインドメタシン単体(0.5mg/mL)をそれぞれ添加し、24、48、72時間後に細胞をPBSにより洗浄し、2%SDS(1mL)を添加し細胞懸濁液を作製した。溶液中のインドメタシン量をHPLC法により測定した(図9)。図9より、インドメタシン内包ミセル(CL)からのインドメタシン放出量がインドメタシン単体(FD)の取り込み量と同程度であることから、マクロファージ内のエステル分解酵素によるミセル内のエステル結合の開裂、その結果としての効率的なインドメタシンの放出が示唆された。 Experimental method For culturing macrophage cells (RAW246.7 cells), cells were seeded at a concentration of 200,000 cells / mL in a 6-well plate for cell culture, and contained 10% fetal bovine serum (FBS) and 1% penicillin / streptomycin. The cells were cultured in DMEM for 24 hours. Then, indomethacin-encapsulating micelles prepared in Example 4 (indomethacin amount: 0.5 mg / mL: micelle diameter: about 40 nm, crosslinked) and indomethacin alone (0.5 mg / mL) were added, respectively, 24, 48, After 72 hours, the cells were washed with PBS and 2% SDS (1 mL) was added to prepare a cell suspension. The amount of indomethacin in the solution was measured by the HPLC method (Fig. 9). From FIG. 9, since the amount of indomethacin released from the indomethacin-encapsulating micelle (CL) is about the same as the amount of uptake of indomethacin alone (FD), the ester bond in the micelle is cleaved by the ester-degrading enzyme in macrophages, and as a result. Efficient release of indomethacin was suggested.
マクロファージ細胞(RAW246.7細胞)の培養については、細胞培養用6ウェルプレートに200,000cells/mLの濃度で細胞を播種し、10%ウシ胎児血清(FBS)および1%ペニシリン/ストレプトマイシン含有DMEM内で24時間培養した。その後、実施例4で作成されたインドメタシン内包ミセル(インドメタシン量:0.5mg/mL:ミセル径:約40nm、架橋有)とインドメタシン単体(0.5mg/mL)をそれぞれ添加し、24、48、72時間後に細胞をPBSにより洗浄し、2%SDS(1mL)を添加し細胞懸濁液を作製した。溶液中のインドメタシン量をHPLC法により測定した(図9)。図9より、インドメタシン内包ミセル(CL)からのインドメタシン放出量がインドメタシン単体(FD)の取り込み量と同程度であることから、マクロファージ内のエステル分解酵素によるミセル内のエステル結合の開裂、その結果としての効率的なインドメタシンの放出が示唆された。 Experimental method For culturing macrophage cells (RAW246.7 cells), cells were seeded at a concentration of 200,000 cells / mL in a 6-well plate for cell culture, and contained 10% fetal bovine serum (FBS) and 1% penicillin / streptomycin. The cells were cultured in DMEM for 24 hours. Then, indomethacin-encapsulating micelles prepared in Example 4 (indomethacin amount: 0.5 mg / mL: micelle diameter: about 40 nm, crosslinked) and indomethacin alone (0.5 mg / mL) were added, respectively, 24, 48, After 72 hours, the cells were washed with PBS and 2% SDS (1 mL) was added to prepare a cell suspension. The amount of indomethacin in the solution was measured by the HPLC method (Fig. 9). From FIG. 9, since the amount of indomethacin released from the indomethacin-encapsulating micelle (CL) is about the same as the amount of uptake of indomethacin alone (FD), the ester bond in the micelle is cleaved by the ester-degrading enzyme in macrophages, and as a result. Efficient release of indomethacin was suggested.
実施例6:インドメタシン内包高分子ミセルを用いたヒト胎盤に対する透過性の評価
この実施例では、サイズの異なる高分子ミセルおよび低分子化合物、ポリマーのヒト胎盤における透過性を、ヒト胎盤灌流モデルを用いて評価した。 Example 6: Evaluation of permeability to human placenta using indomethacin-encapsulating polymer micelles In this example, the permeability of polymer micelles, low molecular weight compounds, and polymers of different sizes in human placenta was measured using a human placenta perfusion model. Evaluated.
この実施例では、サイズの異なる高分子ミセルおよび低分子化合物、ポリマーのヒト胎盤における透過性を、ヒト胎盤灌流モデルを用いて評価した。 Example 6: Evaluation of permeability to human placenta using indomethacin-encapsulating polymer micelles In this example, the permeability of polymer micelles, low molecular weight compounds, and polymers of different sizes in human placenta was measured using a human placenta perfusion model. Evaluated.
実験方法
ヒト胎盤灌流モデルについては非特許文献3(K. Shintaku et. al., Drug Metab. Dispos. 37 (2009) 962)非特許文献4(J. R. Huston et. al., Clin. Pharmacol. Ther. 90 (2011) 67)に従い作製した。具体的には、東大病院の産婦人科から提供されたヒト胎盤の母体側にニードル(18ゲージ)を、胎児側の静脈と動脈にそれぞれニードル(18ゲージ)を導入し、非特許文献5(M. Nagai et. al., Drug Metab. Dispos. 41 (2013) 2124)に従い作製したKrebs-Ringer炭酸バッファーを37°Cで30分間灌流した(母体側の流速:15mL/min、胎児側の流速:3ml/min)。ここで、バッファーは過酸化水素水と塩化鉄の酸化還元反応により生成した酸素により飽和させた。その後、実施例4で作成されたインドメタシン内包ミセル(インドメタシン量:2mg/L:ミセル径:約40nm、架橋有)とインドメタシン単体(2mg/L)を60分間灌流し、胎児側の静脈からの溶液を5分ごとに回収した。回収したサンプル中のインドメタシン量をHPLC法により定量した(図10)。インドメタシン(IND)を還流させた場合、60分後の通過率は17.6%であった(n=3)。一方、インドメタシン内包ミセル(IND/m)を還流させた場合、60分後の通過率は0.03%であった(n=3)(p<0.05)。図10の結果より、インドメタシン単体が胎盤を透過したがミセルが胎盤を透過しなかったことから、薬剤のサイズを30nm以上にすることにより、薬剤のヒト胎盤の通過が抑制されたことが示唆された。 Experimental method For the human placental perfusion model, Non-Patent Document 3 (K. Shintaku et. Al., Drug Metab. Dispos. 37 (2009) 962) Non-Patent Document 4 (JR Huston et. Al., Clin. Pharmacol. Ther. It was prepared according to 90 (2011) 67). Specifically, a needle (18 gauge) was introduced into the maternal side of the human placenta provided by the Department of Obstetrics and Gynecology at the University of Tokyo Hospital, and a needle (18 gauge) was introduced into the vein and artery on the fetal side, respectively. The Krebs-Ringer carbonate buffer prepared according to M. Nagai et. Al., Drug Metab. Dispos. 41 (2013) 2124) was perfused at 37 ° C for 30 minutes (maternal flow velocity: 15 mL / min, fetal flow velocity). : 3 ml / min). Here, the buffer was saturated with oxygen generated by the redox reaction of hydrogen peroxide solution and iron chloride. Then, the indomethacin-encapsulating micelle (indomethacin amount: 2 mg / L: micelle diameter: about 40 nm, crosslinked) prepared in Example 4 and indomethacin alone (2 mg / L) were perfused for 60 minutes, and the solution from the vein on the fetal side. Was collected every 5 minutes. The amount of indomethacin in the collected sample was quantified by the HPLC method (Fig. 10). When indomethacin (IND) was refluxed, the pass rate after 60 minutes was 17.6% (n = 3). On the other hand, when indomethacin-encapsulating micelles (IND / m) were refluxed, the passage rate after 60 minutes was 0.03% (n = 3) (p <0.05). From the results of FIG. 10, since indomethacin alone penetrated the placenta but micelles did not penetrate the placenta, it was suggested that the passage of the drug through the human placenta was suppressed by increasing the size of the drug to 30 nm or more. It was.
ヒト胎盤灌流モデルについては非特許文献3(K. Shintaku et. al., Drug Metab. Dispos. 37 (2009) 962)非特許文献4(J. R. Huston et. al., Clin. Pharmacol. Ther. 90 (2011) 67)に従い作製した。具体的には、東大病院の産婦人科から提供されたヒト胎盤の母体側にニードル(18ゲージ)を、胎児側の静脈と動脈にそれぞれニードル(18ゲージ)を導入し、非特許文献5(M. Nagai et. al., Drug Metab. Dispos. 41 (2013) 2124)に従い作製したKrebs-Ringer炭酸バッファーを37°Cで30分間灌流した(母体側の流速:15mL/min、胎児側の流速:3ml/min)。ここで、バッファーは過酸化水素水と塩化鉄の酸化還元反応により生成した酸素により飽和させた。その後、実施例4で作成されたインドメタシン内包ミセル(インドメタシン量:2mg/L:ミセル径:約40nm、架橋有)とインドメタシン単体(2mg/L)を60分間灌流し、胎児側の静脈からの溶液を5分ごとに回収した。回収したサンプル中のインドメタシン量をHPLC法により定量した(図10)。インドメタシン(IND)を還流させた場合、60分後の通過率は17.6%であった(n=3)。一方、インドメタシン内包ミセル(IND/m)を還流させた場合、60分後の通過率は0.03%であった(n=3)(p<0.05)。図10の結果より、インドメタシン単体が胎盤を透過したがミセルが胎盤を透過しなかったことから、薬剤のサイズを30nm以上にすることにより、薬剤のヒト胎盤の通過が抑制されたことが示唆された。 Experimental method For the human placental perfusion model, Non-Patent Document 3 (K. Shintaku et. Al., Drug Metab. Dispos. 37 (2009) 962) Non-Patent Document 4 (JR Huston et. Al., Clin. Pharmacol. Ther. It was prepared according to 90 (2011) 67). Specifically, a needle (18 gauge) was introduced into the maternal side of the human placenta provided by the Department of Obstetrics and Gynecology at the University of Tokyo Hospital, and a needle (18 gauge) was introduced into the vein and artery on the fetal side, respectively. The Krebs-Ringer carbonate buffer prepared according to M. Nagai et. Al., Drug Metab. Dispos. 41 (2013) 2124) was perfused at 37 ° C for 30 minutes (maternal flow velocity: 15 mL / min, fetal flow velocity). : 3 ml / min). Here, the buffer was saturated with oxygen generated by the redox reaction of hydrogen peroxide solution and iron chloride. Then, the indomethacin-encapsulating micelle (indomethacin amount: 2 mg / L: micelle diameter: about 40 nm, crosslinked) prepared in Example 4 and indomethacin alone (2 mg / L) were perfused for 60 minutes, and the solution from the vein on the fetal side. Was collected every 5 minutes. The amount of indomethacin in the collected sample was quantified by the HPLC method (Fig. 10). When indomethacin (IND) was refluxed, the pass rate after 60 minutes was 17.6% (n = 3). On the other hand, when indomethacin-encapsulating micelles (IND / m) were refluxed, the passage rate after 60 minutes was 0.03% (n = 3) (p <0.05). From the results of FIG. 10, since indomethacin alone penetrated the placenta but micelles did not penetrate the placenta, it was suggested that the passage of the drug through the human placenta was suppressed by increasing the size of the drug to 30 nm or more. It was.
実施例6‐2:インドメタシン内包高分子ミセルの組織移行性の評価
妊娠18日及び19日目の朝に、蛍光標識インドメタシンミセル(IND用量/kgとして10mg)を妊娠マウスの尾静脈から投与した。1時間後、4時間後、8時間後、及び24時間後に、マウスを安楽死させ、脳、肺、心臓、肝臓、脾臓、膵臓、両腎臓、胎児、臍帯、胎盤、羊膜、子宮体部、子宮頸部、大腿筋、大腿骨を回収し、そしてIVISイメージングシステムを用いて薬剤分布を評価した。図11Aは、回収された臓器の配置位置を示す。図11B~Eは、投与の1時間後、4時間後、8時間後、及び24時間後における蛍光を示す。これらの実験により、インドメタシンミセルが、肝臓、腎臓、脾臓、子宮体、及び胎盤に分布し、そして各時点で胎児には到達していないことが示された。 Example 6-2: Evaluation of tissue migration of indomethacin-encapsulating polymer micelles On the morning of the 18th and 19th days of pregnancy, fluorescently labeled indomethacin micelles (IND dose / kg, 10 mg) were administered from the tail vein of pregnant mice. After 1 hour, 4 hours, 8 hours, and 24 hours, mice are euthanized and the brain, lungs, heart, liver, spleen, pancreas, both kidneys, fetus, umbilical cord, placenta, amniotic membrane, cervix, The cervix, fetus muscle, and femur were harvested and drug distribution was evaluated using the IVIS imaging system. FIG. 11A shows the location of the recovered organs. 11B-E show fluorescence at 1 hour, 4 hours, 8 hours, and 24 hours after administration. These experiments showed that indomethacin micelles were distributed in the liver, kidneys, spleen, uterine body, and placenta, and did not reach the fetus at each point in time.
妊娠18日及び19日目の朝に、蛍光標識インドメタシンミセル(IND用量/kgとして10mg)を妊娠マウスの尾静脈から投与した。1時間後、4時間後、8時間後、及び24時間後に、マウスを安楽死させ、脳、肺、心臓、肝臓、脾臓、膵臓、両腎臓、胎児、臍帯、胎盤、羊膜、子宮体部、子宮頸部、大腿筋、大腿骨を回収し、そしてIVISイメージングシステムを用いて薬剤分布を評価した。図11Aは、回収された臓器の配置位置を示す。図11B~Eは、投与の1時間後、4時間後、8時間後、及び24時間後における蛍光を示す。これらの実験により、インドメタシンミセルが、肝臓、腎臓、脾臓、子宮体、及び胎盤に分布し、そして各時点で胎児には到達していないことが示された。 Example 6-2: Evaluation of tissue migration of indomethacin-encapsulating polymer micelles On the morning of the 18th and 19th days of pregnancy, fluorescently labeled indomethacin micelles (IND dose / kg, 10 mg) were administered from the tail vein of pregnant mice. After 1 hour, 4 hours, 8 hours, and 24 hours, mice are euthanized and the brain, lungs, heart, liver, spleen, pancreas, both kidneys, fetus, umbilical cord, placenta, amniotic membrane, cervix, The cervix, fetus muscle, and femur were harvested and drug distribution was evaluated using the IVIS imaging system. FIG. 11A shows the location of the recovered organs. 11B-E show fluorescence at 1 hour, 4 hours, 8 hours, and 24 hours after administration. These experiments showed that indomethacin micelles were distributed in the liver, kidneys, spleen, uterine body, and placenta, and did not reach the fetus at each point in time.
実施例6‐3:インドメタシン内包高分子ミセルの組織移行性の評価
妊娠18日及び19日目の朝に、インドメタシン(IND用量/kgとして1mg)及びを妊娠マウスの尾静脈から投与した。1時間後、4時間後、8時間後、及び24時間後に、マウスを安楽死させ、胎児、胎盤、子宮体部、子宮、腎臓、肝臓及び脾臓を回収した。サンプルをホモジナイズし、そして組織中のインドメタシン濃度をHPLCにより計測した。インドメタシンミセル投与群では、組織中における遊離インドメタシンと、ミセル状態のインドメタシンを合計量として検出した。なぜなら、インドメタシンミセルはホモジナイズするために水酸化ナトリウムを使用した場合に分解するからである。遊離インドメタシン群では、24時間後に母体への投与量の0.57%が胎児から検出され、これが最大値であった。一方、インドメタシンミセル群では、母体への投与量の0.013%のみが胎児に分布し、これも24時間後が最大値であった。したがって、インドメタシンミセル投与は、遊離インドメタシン投与に比較して、(E)胎児への分布量を有意に低下させ(p<0.05)、そしてこれによりインドメタシンミセルが、マウスの胎盤を通過しないことが示された。さらに、(A)腎臓、(B)肝臓、(C)脾臓、及び(D)胎盤などの臓器では、24時間内で検出されたインドメタシン量は、臓器ダメージを引き起こすほどの量ではなかった(図12A~E)。 Example 6-3: Evaluation of tissue migration of indomethacin-encapsulating polymer micelles Indomethacin (IND dose / kg as 1 mg) and was administered from the tail vein of pregnant mice on the morning of the 18th and 19th days of pregnancy. After 1 hour, 4 hours, 8 hours, and 24 hours, the mice were euthanized and the fetus, placenta, uterine body, uterus, kidneys, liver and spleen were collected. Samples were homogenized and indomethacin concentrations in tissues were measured by HPLC. In the indomethacin micelle-administered group, free indomethacin in tissues and indomethacin in micelle state were detected as the total amount. This is because indomethacin micelles decompose when sodium hydroxide is used for homogenization. In the free indomethacin group, 0.57% of the maternal dose was detected in the fetus after 24 hours, which was the maximum. On the other hand, in the indomethacin micelle group, only 0.013% of the maternal dose was distributed to the fetus, which was also the maximum after 24 hours. Therefore, administration of indomethacin micelles significantly reduced (E) distribution to the fetus compared to administration of free indomethacin (p <0.05), thereby preventing indomethacin micelles from crossing the mouse placenta. It has been shown. Furthermore, in organs such as (A) kidney, (B) liver, (C) spleen, and (D) placenta, the amount of indomethacin detected within 24 hours was not sufficient to cause organ damage (Fig. 12A-E).
妊娠18日及び19日目の朝に、インドメタシン(IND用量/kgとして1mg)及びを妊娠マウスの尾静脈から投与した。1時間後、4時間後、8時間後、及び24時間後に、マウスを安楽死させ、胎児、胎盤、子宮体部、子宮、腎臓、肝臓及び脾臓を回収した。サンプルをホモジナイズし、そして組織中のインドメタシン濃度をHPLCにより計測した。インドメタシンミセル投与群では、組織中における遊離インドメタシンと、ミセル状態のインドメタシンを合計量として検出した。なぜなら、インドメタシンミセルはホモジナイズするために水酸化ナトリウムを使用した場合に分解するからである。遊離インドメタシン群では、24時間後に母体への投与量の0.57%が胎児から検出され、これが最大値であった。一方、インドメタシンミセル群では、母体への投与量の0.013%のみが胎児に分布し、これも24時間後が最大値であった。したがって、インドメタシンミセル投与は、遊離インドメタシン投与に比較して、(E)胎児への分布量を有意に低下させ(p<0.05)、そしてこれによりインドメタシンミセルが、マウスの胎盤を通過しないことが示された。さらに、(A)腎臓、(B)肝臓、(C)脾臓、及び(D)胎盤などの臓器では、24時間内で検出されたインドメタシン量は、臓器ダメージを引き起こすほどの量ではなかった(図12A~E)。 Example 6-3: Evaluation of tissue migration of indomethacin-encapsulating polymer micelles Indomethacin (IND dose / kg as 1 mg) and was administered from the tail vein of pregnant mice on the morning of the 18th and 19th days of pregnancy. After 1 hour, 4 hours, 8 hours, and 24 hours, the mice were euthanized and the fetus, placenta, uterine body, uterus, kidneys, liver and spleen were collected. Samples were homogenized and indomethacin concentrations in tissues were measured by HPLC. In the indomethacin micelle-administered group, free indomethacin in tissues and indomethacin in micelle state were detected as the total amount. This is because indomethacin micelles decompose when sodium hydroxide is used for homogenization. In the free indomethacin group, 0.57% of the maternal dose was detected in the fetus after 24 hours, which was the maximum. On the other hand, in the indomethacin micelle group, only 0.013% of the maternal dose was distributed to the fetus, which was also the maximum after 24 hours. Therefore, administration of indomethacin micelles significantly reduced (E) distribution to the fetus compared to administration of free indomethacin (p <0.05), thereby preventing indomethacin micelles from crossing the mouse placenta. It has been shown. Furthermore, in organs such as (A) kidney, (B) liver, (C) spleen, and (D) placenta, the amount of indomethacin detected within 24 hours was not sufficient to cause organ damage (Fig. 12A-E).
実施例7:早産モデルマウスを用いたインドメタシン内包ミセルの治療効果
この実施例では、インドメタシン内包ミセルによる早産抑制効果および毒性を、早産モデルマウスを用いて評価した。 Example 7: Therapeutic effect of indomethacin-encapsulating micelles using preterm birth model mice In this example, the preterm birth inhibitory effect and toxicity of indomethacin-encapsulating micelles were evaluated using preterm birth model mice.
この実施例では、インドメタシン内包ミセルによる早産抑制効果および毒性を、早産モデルマウスを用いて評価した。 Example 7: Therapeutic effect of indomethacin-encapsulating micelles using preterm birth model mice In this example, the preterm birth inhibitory effect and toxicity of indomethacin-encapsulating micelles were evaluated using preterm birth model mice.
実験方法
早産モデルマウスは既報 (L. L. Reznikov et. al., Biol. Reprod. 60 (1999) 1231-1238)に従い、リポ多糖 (LPS)を子宮頸管に投与する方法により作成した。具体的には、妊娠15日目にLPS(3μg/mouse)をマウス経口投与用のソフトチューブを介して膣内腔に投与した。
その後、妊娠15、16、17、18日目にインドメタシン内包ミセル(10mg/kg:ミセル径:約40nm、架橋有/無)とインドメタシン単体(1mg/kg)と投与し、妊娠19日目までの分娩を早産とした。また、妊娠19日目に開腹し、胎児の生存率を測定した。結果を図13に示す。 Experimental method Preterm model mice were prepared by administering lipopolysaccharide (LPS) to the cervix according to the previous report (L. L. Reznikov et. Al., Biol. Reprod. 60 (1999) 1231-1238). Specifically, on the 15th day of pregnancy, LPS (3 μg / mouse) was administered to the vaginal lumen via a soft tube for oral administration of mice.
Then, on days 15, 16, 17 and 18 of pregnancy, indomethacin-encapsulating micelles (10 mg / kg: micelle diameter: about 40 nm, with / without cross-linking) and indomethacin alone (1 mg / kg) were administered until the 19th day of pregnancy. Delivery was premature. In addition, the abdomen was opened on the 19th day of pregnancy, and the survival rate of the fetus was measured. The results are shown in FIG.
早産モデルマウスは既報 (L. L. Reznikov et. al., Biol. Reprod. 60 (1999) 1231-1238)に従い、リポ多糖 (LPS)を子宮頸管に投与する方法により作成した。具体的には、妊娠15日目にLPS(3μg/mouse)をマウス経口投与用のソフトチューブを介して膣内腔に投与した。
その後、妊娠15、16、17、18日目にインドメタシン内包ミセル(10mg/kg:ミセル径:約40nm、架橋有/無)とインドメタシン単体(1mg/kg)と投与し、妊娠19日目までの分娩を早産とした。また、妊娠19日目に開腹し、胎児の生存率を測定した。結果を図13に示す。 Experimental method Preterm model mice were prepared by administering lipopolysaccharide (LPS) to the cervix according to the previous report (L. L. Reznikov et. Al., Biol. Reprod. 60 (1999) 1231-1238). Specifically, on the 15th day of pregnancy, LPS (3 μg / mouse) was administered to the vaginal lumen via a soft tube for oral administration of mice.
Then, on
表3より、ミセルおよびインドメタシン単体の投与により早産マウスの数が減少したことから、子宮頸管におけるインドメタシンによる炎症の抑制が示唆された。また、ミセルの投与により胎児の生存率が増加したことから、薬物のサイズの増加により胎児への集積量が減少したことが示唆された。
Table 3 showed that administration of micelles and indomethacin alone reduced the number of preterm mice, suggesting that indomethacin suppresses inflammation in the cervix. In addition, the administration of micelles increased the survival rate of the fetus, suggesting that the increase in drug size decreased the amount of accumulation in the fetus.
実施例8:妊娠高血圧の治療に向けた、シンバスタチン内包ミセルの調製
この実施例では、妊娠高血圧の治療に向けて、ブロック共重合体へのシンバスタチンの導入およびミセルの調製を行った。 Example 8: Preparation of simvastatin-encapsulating micelles for the treatment of preeclampsia In this example, simvastatin was introduced into a block copolymer and micelles were prepared for the treatment of preeclampsia.
この実施例では、妊娠高血圧の治療に向けて、ブロック共重合体へのシンバスタチンの導入およびミセルの調製を行った。 Example 8: Preparation of simvastatin-encapsulating micelles for the treatment of preeclampsia In this example, simvastatin was introduced into a block copolymer and micelles were prepared for the treatment of preeclampsia.
実験方法
非特許文献7 (A. Harada and K. Kataoka, Macromolecules 28 (1995) 5294-5299)に従い、PEG (分子量: 12,000 Da)の一級アミンを開始剤とするNCA重合法によりPEG-ポリ(β-ベンジル-L-アスパラテート)(PEG-PBLA)を合成し、側鎖構造のベンジル基を脱保護することによりPEG-poly(L-aspartate) (PEG-PAsp)を合成した。下記のスキームの通り、PEG-PAspのカルボキシル基とシンバスタチンのヒドロキシル基のエステル化によりポリマーへのシンバスタチンの導入を行った。
PEG-PAspをDMF(10mg/mL)に溶解し、PAsp鎖のカルボキシル基に対して10当量のDMAP、EDCおよびシンバスタチンを添加し、室温で24時間反応した。その後、反応溶液を過剰量のジエチルエーテルに添加し、PEG-P(Asp-simvastatin)を得た。1H-NMRよりシンバスタチンの導入量は1.2mg/(mg polymer)であった。
Experimental method According to Non-Patent Document 7 (A. Harada and K. Kataoka, Macromolecules 28 (1995) 5294-5299), PEG-poly (β) was produced by an NCA polymerization method using a primary amine of PEG (molecular weight: 12,000 Da) as an initiator. -Benzyl-L-aspartate) (PEG-PVLA) was synthesized, and PEG-poly (L-aspartate) (PEG-PAsp) was synthesized by deprotecting the benzyl group of the side chain structure. Simvastatin was introduced into the polymer by esterifying the carboxyl group of PEG-PAsp and the hydroxyl group of simvastatin according to the scheme below.
PEG-PAsp was dissolved in DMF (10 mg / mL), 10 equivalents of DMAP, EDC and simvastatin were added to the carboxyl group of the PAsp chain, and the reaction was carried out at room temperature for 24 hours. Then, the reaction solution was added to an excess amount of diethyl ether to obtain PEG-P (Asp-simvastatin). 1 From 1 H-NMR, the amount of simvastatin introduced was 1.2 mg / (mg polymer).
非特許文献7 (A. Harada and K. Kataoka, Macromolecules 28 (1995) 5294-5299)に従い、PEG (分子量: 12,000 Da)の一級アミンを開始剤とするNCA重合法によりPEG-ポリ(β-ベンジル-L-アスパラテート)(PEG-PBLA)を合成し、側鎖構造のベンジル基を脱保護することによりPEG-poly(L-aspartate) (PEG-PAsp)を合成した。下記のスキームの通り、PEG-PAspのカルボキシル基とシンバスタチンのヒドロキシル基のエステル化によりポリマーへのシンバスタチンの導入を行った。
シンバスタチン内包ミセルについては透析法により調製した。ポリマーをDMAc(1mg/mL)に溶解し、純水に対して透析(MWCO:3,500Da)し、フィルター(0.22μm)により精製した。調製したミセルのサイズおよび多分散度(PDI)を動的光散乱法(DLS)により測定した。
Simvastatin-encapsulating micelles were prepared by the dialysis method. The polymer was dissolved in DMAc (1 mg / mL), dialyzed against pure water (MWCO: 3,500 Da), and purified by a filter (0.22 μm). The size and polydispersity (PDI) of the prepared micelles were measured by dynamic light scattering (DLS).
結果
1H-NMRよりシンバスタチンの導入量は1.2mg/(mg polymer)であった。また、DLS測定よりサイズが35nm、PDIが0.23のミセルが得られたことが確認された。 Result 1 From 1 H-NMR, the amount of simvastatin introduced was 1.2 mg / (mg polymer). Further, it was confirmed by DLS measurement that micelles having a size of 35 nm and a PDI of 0.23 were obtained.
1H-NMRよりシンバスタチンの導入量は1.2mg/(mg polymer)であった。また、DLS測定よりサイズが35nm、PDIが0.23のミセルが得られたことが確認された。 Result 1 From 1 H-NMR, the amount of simvastatin introduced was 1.2 mg / (mg polymer). Further, it was confirmed by DLS measurement that micelles having a size of 35 nm and a PDI of 0.23 were obtained.
実施例9:妊娠高血圧モデルマウスを用いたシンバスタチン内包ミセルの治療効果および毒性試験
この実施例では、シンバスタチン内包ミセルによる降圧効果および毒性を、妊娠高血圧モデルマウスを用いて評価した。 Example 9: Therapeutic effect and toxicity test of simvastatin-encapsulating micelles using preeclampsia model mice In this example, the antihypertensive effect and toxicity of simvastatin-encapsulating micelles were evaluated using preeclampsia model mice.
この実施例では、シンバスタチン内包ミセルによる降圧効果および毒性を、妊娠高血圧モデルマウスを用いて評価した。 Example 9: Therapeutic effect and toxicity test of simvastatin-encapsulating micelles using preeclampsia model mice In this example, the antihypertensive effect and toxicity of simvastatin-encapsulating micelles were evaluated using preeclampsia model mice.
実験方法
妊娠高血圧モデルマウスは既報 (C. C. Zhou et. al., Nat. Med. 14 (2008) 855-862)に従い、アンギオテンシンII(AngII)を投与する方法により作成した。具体的には、妊娠10日目から17日目まで、妊娠マウスに皮下ポンプ(流速:1.0μL/h)を介してAngII(1.5g/kg)を投与し、高血圧のモデルとした。 Experimental method Preeclampsia model mice were prepared by the method of administering angiotensin II (AngII) according to the previously reported (C.C. Zhou et. Al., Nat. Med. 14 (2008) 855-862). Specifically, from the 10th to the 17th day of pregnancy, AngII (1.5 g / kg) was administered to pregnant mice via a subcutaneous pump (flow velocity: 1.0 μL / h) to prepare a model of hypertension.
妊娠高血圧モデルマウスは既報 (C. C. Zhou et. al., Nat. Med. 14 (2008) 855-862)に従い、アンギオテンシンII(AngII)を投与する方法により作成した。具体的には、妊娠10日目から17日目まで、妊娠マウスに皮下ポンプ(流速:1.0μL/h)を介してAngII(1.5g/kg)を投与し、高血圧のモデルとした。 Experimental method Preeclampsia model mice were prepared by the method of administering angiotensin II (AngII) according to the previously reported (C.C. Zhou et. Al., Nat. Med. 14 (2008) 855-862). Specifically, from the 10th to the 17th day of pregnancy, AngII (1.5 g / kg) was administered to pregnant mice via a subcutaneous pump (flow velocity: 1.0 μL / h) to prepare a model of hypertension.
妊娠10日目から17日目にシンバスタチン内包ミセル(20μg/kg:Simvastain Micelle)とシンバスタチン単体(20μg/kg:Simvastatin)、プラバスタチン(20μg/kg:Plavastatin)と投与し、薬剤非投与群(NS)と比較して、母体における血圧、尿タンパク量および胎児の体重を評価した。血圧については妊娠10、13、15、17日目に血圧計により評価した(図14)。胎児の体重(FBW(g))については妊娠17日目に胎児を摘出し、その体重を測定した(図15)。尿タンパク質については妊娠10、11、16、17日目の尿中のアルブミン量を測定した(図16)。
Simvastatin-encapsulating micelles (20 μg / kg: Simvastain Micelle), simvastatin alone (20 μg / kg: Simvastatin), and pravastatin (20 μg / kg: Pravastatin) were administered on the 10th to 17th days of pregnancy, and the drug-free group (NS) The maternal blood pressure, urinary protein content and fetal weight were evaluated in comparison with. Blood pressure was evaluated by a sphygmomanometer on days 10, 13, 15, and 17 of pregnancy (Fig. 14). Regarding the body weight of the fetus (FBW (g)), the fetus was removed on the 17th day of pregnancy and the body weight was measured (FIG. 15). For urinary protein, the amount of albumin in urine on days 10, 11, 16 and 17 of pregnancy was measured (Fig. 16).
結果
図14より、薬剤投与群において未投与群よりも血圧が低下していることから、スタチン製剤による血圧低下が確認された。また、シンバスタチン内包ミセル群においてAng II投与前と同程度の血圧を示したことから、ミセル内のエステル結合の開裂、その結果としての薬剤の徐放性の効果が示唆された。図15より、シンバスタチン内包ミセル群(AngiI-Simvastatin Micelle)において胎児の体重がAng II未投与群(NS-NS)と同程度であったことから、高血圧の解消による胎盤機能の改善が示唆され、ミセル化によるサイズの増大、その結果としての胎児への集積量の減少も示唆された。図16より、シンバスタチン内包ミセル群において尿中アルブミン量の増加が抑制されたことから、高血圧の解消による腎機能の改善が示唆された。 Results From FIG. 14, since the blood pressure in the drug-administered group was lower than that in the non-administered group, it was confirmed that the statin preparation reduced the blood pressure. In addition, the blood pressure in the simvastatin-encapsulated micelle group was similar to that before the administration of Ang II, suggesting the effect of cleavage of the ester bond in the micelle and the resulting sustained release of the drug. From FIG. 15, the weight of the fetus in the simvastatin-encapsulating micelle group (AngiI-Simvastatin Micelle) was similar to that in the Ang II-non-administered group (NS-NS), suggesting that the placental function was improved by eliminating hypertension. It was also suggested that the size increased due to micelle formation, and as a result, the amount accumulated in the fetus decreased. From FIG. 16, the increase in urinary albumin level was suppressed in the simvastatin-encapsulating micelle group, suggesting improvement of renal function by eliminating hypertension.
図14より、薬剤投与群において未投与群よりも血圧が低下していることから、スタチン製剤による血圧低下が確認された。また、シンバスタチン内包ミセル群においてAng II投与前と同程度の血圧を示したことから、ミセル内のエステル結合の開裂、その結果としての薬剤の徐放性の効果が示唆された。図15より、シンバスタチン内包ミセル群(AngiI-Simvastatin Micelle)において胎児の体重がAng II未投与群(NS-NS)と同程度であったことから、高血圧の解消による胎盤機能の改善が示唆され、ミセル化によるサイズの増大、その結果としての胎児への集積量の減少も示唆された。図16より、シンバスタチン内包ミセル群において尿中アルブミン量の増加が抑制されたことから、高血圧の解消による腎機能の改善が示唆された。 Results From FIG. 14, since the blood pressure in the drug-administered group was lower than that in the non-administered group, it was confirmed that the statin preparation reduced the blood pressure. In addition, the blood pressure in the simvastatin-encapsulated micelle group was similar to that before the administration of Ang II, suggesting the effect of cleavage of the ester bond in the micelle and the resulting sustained release of the drug. From FIG. 15, the weight of the fetus in the simvastatin-encapsulating micelle group (AngiI-Simvastatin Micelle) was similar to that in the Ang II-non-administered group (NS-NS), suggesting that the placental function was improved by eliminating hypertension. It was also suggested that the size increased due to micelle formation, and as a result, the amount accumulated in the fetus decreased. From FIG. 16, the increase in urinary albumin level was suppressed in the simvastatin-encapsulating micelle group, suggesting improvement of renal function by eliminating hypertension.
Claims (21)
- 治療薬が結合又は配位された親水性ポリマーを表面に有する粒子を含む、妊婦又は妊娠可能性のある女性に対し投与するための医薬組成物であって、粒径が、動的光散乱法により測定した場合に10~100nmである、前記医薬組成物。 A pharmaceutical composition for administration to a pregnant woman or a woman of childbearing potential, which comprises particles having a hydrophilic polymer on the surface to which a therapeutic agent is bound or coordinated, and has a particle size of a dynamic light scattering method. The pharmaceutical composition having a diameter of 10 to 100 nm as measured by.
- 前記粒子が、ポリエチレングリコール-ポリアミノ酸ブロック共重合体を含むミセルである、請求項1に記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the particles are micelles containing a polyethylene glycol-polyamino acid block copolymer.
- 前記ポリエチレングリコール-ポリアミノ酸ブロック共重合体が、以下の一般式(I)または(II):
R1a及びR1bは水素原子、水酸基又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基又はC1-12アルコキシ基を表し、
L1は-(CH2)b-NH-を表し、bは1~5の整数であり、
L2は-(CH2)c-CO-を表し、cは1~5の整数であり、
R2a及びR2cは、それぞれ出現ごとに独立して、存在しないか、又はメチレン基を表し、
R2b及びR2dは、カルボキシ基又は任意のアミノ酸側鎖を表し、
R3は、水素原子、保護基、疎水性基又は重合性基を表し、
R4は、水酸基、オキシベンジル基、-NH-(CH2)a-X基又は開始剤残基を表し、ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であり、
mは20~2,000の整数であり、
nは1~200の整数である)
で表されるブロック共重合体であり、前記治療薬が、該ブロック共重合体のR2b及びR2dを介して配位されるか、あるいは直接またはリンカーを介して結合される、請求項2に記載の医薬組成物。 The polyethylene glycol-polyamino acid block copolymer has the following general formula (I) or (II):
R 1a and R 1b represent hydrogen atoms, hydroxyl groups or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12 alkoxy groups.
L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
L 2 represents − (CH 2 ) c −CO−, and c is an integer from 1 to 5.
R 2a and R 2c , respectively, independently exist at each appearance or represent a methylene group.
R 2b and R 2d represent a carboxy group or any amino acid side chain.
R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue, where a is an integer of 1-5 and X is a primary, secondary, An amine compound residue containing one or more of the tertiary amine or quaternary ammonium salt, or a compound residue that is not an amine.
m is an integer from 20 to 2,000
n is an integer from 1 to 200)
2. The block copolymer represented by, wherein the therapeutic agent is coordinated via R 2b and R 2d of the block copolymer, or is bound directly or via a linker. The pharmaceutical composition according to. - 前記粒径が、25~75nmである、請求項1~3のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 3, wherein the particle size is 25 to 75 nm.
- 前記治療薬のみで投与された場合に妊婦に対して禁忌となる用法及び/又は用量で前記治療薬が投与される、請求項1~4のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 4, wherein the therapeutic agent is administered in a dosage and / or dosage contraindicated for a pregnant woman when administered only with the therapeutic agent.
- 前記治療薬が、抗癌薬、抗炎症薬、抗高血圧薬、及び向精神薬からなる群から選ばれる、請求項1~5のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 5, wherein the therapeutic agent is selected from the group consisting of an anticancer drug, an anti-inflammatory drug, an antihypertensive drug, and a psychotropic drug.
- 前記抗癌薬が、白金製剤である、請求項6に記載の医薬組成物。 The pharmaceutical composition according to claim 6, wherein the anticancer drug is a platinum preparation.
- 前記白金製剤が、前記アミノ酸側鎖の1又は2個のカルボキシレート基との配位結合を介して形成される、請求項7に記載の医薬組成物。 The pharmaceutical composition according to claim 7, wherein the platinum preparation is formed through a coordination bond with one or two carboxylate groups of the amino acid side chain.
- 前記治療薬が抗炎症薬であり、流産防止用である、請求項1~6のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 6, wherein the therapeutic agent is an anti-inflammatory agent and is for preventing miscarriage.
- 前記抗炎症薬が、非ステロイド性抗炎症剤である、請求項9に記載の医薬組成物。 The pharmaceutical composition according to claim 9, wherein the anti-inflammatory drug is a non-steroidal anti-inflammatory drug.
- 前記治療薬が抗高血圧薬であり、妊娠高血圧薬治療用である、請求項1~6のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 6, wherein the therapeutic agent is an antihypertensive agent and is for the treatment of a gestational hypertension agent.
- 前記抗高血圧薬が、スタチン系抗高血圧薬である、請求項11に記載の医薬組成物。 The pharmaceutical composition according to claim 11, wherein the antihypertensive drug is a statin-based antihypertensive drug.
- 前記医薬組成物が、胎児薬害低減用医薬組成物である、請求項1~12のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 12, wherein the pharmaceutical composition is a pharmaceutical composition for reducing fetal phytotoxicity.
- 前記医薬組成物が、胎盤関門透過低減用医薬組成物である、請求項1~12のいずれか一項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 12, wherein the pharmaceutical composition is a pharmaceutical composition for reducing placental barrier permeation.
- 以下の一般式(I)または(II):
R1a及びR1bは、水素原子、水酸基又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基又はC1-12アルコキシ基を表し、
L1は-(CH2)b-NH-を表し、bは1~5の整数であり、
L2は-(CH2)c-CO-を表し、cは1~5の整数であり、
R2a及びR2cは、それぞれ出現ごとに独立して、存在しないか、又はメチレン基を表し、
R2b及びR2dは、カルボキシ基又は任意のアミノ酸側鎖を表し、
R3は、水素原子、保護基、疎水性基又は重合性基を表し、
R4は、水酸基、オキシベンジル基、-NH-(CH2)a-X基又は開始剤残基を表し、ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であり、
mは20~2,000の整数であり、
nは1~200の整数である)
で表されるブロック共重合体に、薬物が、該ブロック共重合体のR2b及びR2dを介し、直接またはリンカーを介して結合された薬物複合化ブロック共重合体であって、前記薬物が、インドメタシン又はシンバスタチンである、前記薬物複合化ブロック共重合体。 The following general formula (I) or (II):
R 1a and R 1b represent hydrogen atoms, hydroxyl groups or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12 alkoxy groups.
L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
L 2 represents − (CH 2 ) c −CO−, and c is an integer from 1 to 5.
R 2a and R 2c , respectively, independently exist at each appearance or represent a methylene group.
R 2b and R 2d represent a carboxy group or any amino acid side chain.
R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue, where a is an integer of 1-5 and X is a primary, secondary, An amine compound residue containing one or more of the tertiary amine or quaternary ammonium salt, or a compound residue that is not an amine.
m is an integer from 20 to 2,000
n is an integer from 1 to 200)
A drug is a drug-combined block copolymer in which a drug is bound to the block copolymer represented by (1) via R 2b and R 2d of the block copolymer, directly or via a linker, and the drug is , Indomethacin or simvastatin, said drug complex block copolymer. - 請求項15に記載音薬物複合化ブロック共重合体により形成されたミセルを含む医薬組成物であって、粒径が、動的光散乱法により測定した場合に20~100nmである、前記医薬組成物。 15. The pharmaceutical composition comprising micelles formed from the sound drug complex block copolymer according to claim 15, wherein the particle size is 20 to 100 nm when measured by a dynamic light scattering method. object.
- 前記薬物としてインドメタシンを含み、前記医薬組成物が、流産防止用の医薬組成物である、請求項16に記載の医薬組成物。 The pharmaceutical composition according to claim 16, which contains indomethacin as the drug and the pharmaceutical composition is a miscarriage-preventing pharmaceutical composition.
- 前記薬物としてシンバスタチンを含み、前記医薬組成物が、妊娠高血圧治療用の医薬組成物である、請求項16に記載の医薬組成物。 The pharmaceutical composition according to claim 16, which contains simvastatin as the drug and the pharmaceutical composition is a pharmaceutical composition for the treatment of preeclampsia.
- 治療薬が結合又は配位されたポリエチレングリコール-ポリアミノ酸ブロック共重合体を含み、妊婦又は妊娠可能性のある女性に対し投与するためのミセルの製造方法であって、
前記ポリエチレングリコール-ポリアミノ酸ブロック共重合体を、水中で再構成する工程、及び、
分画分子量10,000~100,000の透析膜を用いて限外ろ過を行って、20~100nmの粒径を有するミセルを取得する工程、
を含む、前記製造方法。 A method for producing micelles containing a polyethylene glycol-polyamino acid block copolymer to which a therapeutic agent is bound or coordinated and for administration to a pregnant woman or a woman of childbearing potential.
A step of reconstitution of the polyethylene glycol-polyamino acid block copolymer in water, and
A step of obtaining micelles having a particle size of 20 to 100 nm by performing ultrafiltration using a dialysis membrane having a molecular weight cut off of 10,000 to 100,000.
The production method. - 前記治療薬が、抗癌薬、抗炎症薬、抗高血圧薬、及び向精神薬からなる群から選ばれる、請求項19に記載の製造方法。 The production method according to claim 19, wherein the therapeutic agent is selected from the group consisting of an anticancer drug, an anti-inflammatory drug, an antihypertensive drug, and a psychotropic drug.
- 前記ポリエチレングリコール-ポリアミノ酸ブロック共重合体が、以下の一般式(I)または(II):
R1a及びR1bは水素原子、水酸基又は未置換もしくは置換された直鎖もしくは分枝のC1-12アルキル基又はC1-12アルコキシ基を表し、
L1は-(CH2)b-NH-を表し、bは1~5の整数であり、
L2は-(CH2)c-CO-を表し、cは1~5の整数であり、
R2a及びR2cは、それぞれ出現ごとに独立して、存在しないか、又はメチレン基を表し、
R2b及びR2dは、カルボキシ基又は任意のアミノ酸側鎖を表し、
R3は、水素原子、保護基、疎水性基又は重合性基を表し、
R4は、水酸基、オキシベンジル基、-NH-(CH2)a-X基又は開始剤残基を表し、ここで、aは1~5の整数であり、Xは、一級、二級、三級アミン又は四級アンモニウム塩の内の1種類又は2種類以上を含むアミン化合物残基、又は、アミンでない化合物残基であり、
mは20~2,000の整数であり、
nは1~200の整数である)
で表されるブロック共重合体であり、前記治療薬が、前記ブロック共重合体のR2b及びR2d基との配位結合、あるいは直接又はリンカーを介した結合を介して結合される、請求項19又は20に記載の製造方法。 The polyethylene glycol-polyamino acid block copolymer has the following general formula (I) or (II):
R 1a and R 1b represent hydrogen atoms, hydroxyl groups or unsubstituted or substituted linear or branched C 1-12 alkyl groups or C 1-12 alkoxy groups.
L 1 represents-(CH 2 ) b- NH-, and b is an integer of 1 to 5.
L 2 represents − (CH 2 ) c −CO−, and c is an integer from 1 to 5.
R 2a and R 2c , respectively, independently exist at each appearance or represent a methylene group.
R 2b and R 2d represent a carboxy group or any amino acid side chain.
R 3 represents a hydrogen atom, protecting group, hydrophobic group or polymerizable group.
R 4 represents a hydroxyl group, an oxybenzyl group, an -NH- (CH 2 ) a- X group or an initiator residue, where a is an integer of 1-5 and X is a primary, secondary, An amine compound residue containing one or more of the tertiary amine or quaternary ammonium salt, or a compound residue that is not an amine.
m is an integer from 20 to 2,000
n is an integer from 1 to 200)
A block copolymer represented by, wherein the therapeutic agent is bound to the R 2b and R 2d groups of the block copolymer, or is bound directly or via a link via a linker. Item 19. The production method according to Item 19.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021513726A JP7289155B2 (en) | 2019-04-10 | 2020-04-10 | Pharmaceutical composition for administration to pregnant women or women of childbearing potential |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019074944 | 2019-04-10 | ||
JP2019-074944 | 2019-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020209379A1 true WO2020209379A1 (en) | 2020-10-15 |
Family
ID=72750723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/016186 WO2020209379A1 (en) | 2019-04-10 | 2020-04-10 | Pharmaceutical composition for administration to pregnant women or women who may be pregnant |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7289155B2 (en) |
WO (1) | WO2020209379A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009116509A1 (en) * | 2008-03-18 | 2009-09-24 | 日本化薬株式会社 | Polymer conjugate of physiologically active substance |
JP2011105792A (en) * | 2009-11-12 | 2011-06-02 | Japan Science & Technology Agency | Block copolymer, block copolymer-metal complex composite material, and hollow structure carrier using the same |
-
2020
- 2020-04-10 JP JP2021513726A patent/JP7289155B2/en active Active
- 2020-04-10 WO PCT/JP2020/016186 patent/WO2020209379A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009116509A1 (en) * | 2008-03-18 | 2009-09-24 | 日本化薬株式会社 | Polymer conjugate of physiologically active substance |
JP2011105792A (en) * | 2009-11-12 | 2011-06-02 | Japan Science & Technology Agency | Block copolymer, block copolymer-metal complex composite material, and hollow structure carrier using the same |
Non-Patent Citations (9)
Title |
---|
"Development of a nano-pharmaceutical strategy for safely and effectively treating pregnant cancer patients", 2016 ANNUAL RESEARCH REPORT, 16 January 2018 (2018-01-16), pages 1 - 4, Retrieved from the Internet <URL:https://kaken.nii.ac.jp/ja/report/KAKENHI-PROJECT-16H03179/16H031792016jisseki> [retrieved on 20200604] * |
"Development of a nano-pharmaceutical strategy for safely and effectively treating pregnant cancer patients", 2017 ANNUAL RESEARCH REPORT, 17 December 2018 (2018-12-17), pages 1 - 4, Retrieved from the Internet <URL:https://kaken.nii.ac.jp/ja/report/KAKENHI-PROJECT-16H03179/16H031792017jisseki> [retrieved on 20200604] * |
CABRAL, H. ET AL.: "Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size", NATURE NANOTECHNOLOGY, vol. 6, 2011, pages 815 - 823, XP055243966, DOI: 10.1038/nnano.2011.166 * |
CABRAL, H. ET AL.: "Block Copolymer Micelles in Nanomedicine Applications", CHEM. REV., vol. 118, 2018, pages 6844 - 6892, XP055690059, DOI: 10.1021/acs.chemrev.8b00199 * |
KULVIETIS, V. ET AL.: "Transport of Nanoparticles through the Placental Barrier", TOHOKU J. EXP. MED., vol. 225, 2011, pages 225 - 234, XP055609780, DOI: 10.1620/tjem.225.225 * |
MIZUNO, KAZUE: "Evaluation of placental transport of drug-loaded polymeric micelles", GRANTS-IN AID FOR SCIENTIFIC RESEARCH, FINAL RESEARCH REPORT, 5 June 2017 (2017-06-05), pages 1 - 2 * |
ODA, H. ET AL.: "The Development of Placenta Targeting Simvastatin Nano-Micelle Treatment in the Mouse Model of Preeclampsia-Challenge for clinical application of drug delivery system to avoid the adverse effect on fetus during pregnancy", PURPOSE, METHODS, RESULTS, vol. 71, 4 February 2019 (2019-02-04), pages S-144, XP055503115 * |
SEZGIN-BAYINDIR, Z . ET AL.: "Investigations on clonazepam-loaded polymeric micelle-like nanoparticles for safe drug administration during pregnancy", JOURNAL OF MICROENCAPSULATION, vol. 35, no. 2, 2018, pages 149 - 164, XP055243966 * |
YOKOYAMA, M. ET AL.: "Molecular design for missile drug: Synthesis of Adriamycin conjugated with immunoglobulin G using poly(ethylene glycol)- block-poly(aspartic acid) as intermediate carrier", MAKROMOL. CHEM., vol. 190, 1989 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020209379A1 (en) | 2021-12-23 |
JP7289155B2 (en) | 2023-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7311901B2 (en) | Amphiphilic block copolymer and polymeric composition comprising the same for drug delivery | |
JP5349318B2 (en) | Steroids polymer conjugates | |
JP5037684B2 (en) | Docetaxel polymer derivative, production method thereof and use thereof | |
EP1670838B1 (en) | Amphiphilic block copolymer and polymeric composition comprising the same for drug delivery | |
JP2011105792A (en) | Block copolymer, block copolymer-metal complex composite material, and hollow structure carrier using the same | |
JP2005505675A (en) | PH-responsive biodegradable polylactic acid derivatives forming polymeric micelles and use of such derivatives in poorly soluble drug carriers | |
JP2013543887A (en) | Drug delivery device | |
US20220008543A1 (en) | Macromolecular prodrug-based thermosensitive injectable gel as a novel drug delivery platform | |
WO2006118278A1 (en) | Temperature-sensitive liposome and temperature-sensitive drug release system | |
Mignani et al. | Dendrimer nanoplatforms for veterinary medicine applications: A concise overview | |
WO2020209379A1 (en) | Pharmaceutical composition for administration to pregnant women or women who may be pregnant | |
Qi et al. | Supramolecular Lipid Nanoparticles Based on Host–Guest Recognition: A New Generation Delivery System of mRNA Vaccines For Cancer Immunotherapy | |
KR102384003B1 (en) | Polymeric nanoparticle composition for delivering virus and preparation method thereof | |
Feng et al. | Construction of efficacious hepatoma-targeted nanomicelles non-covalently functionalized with galactose for drug delivery | |
CN107106693B (en) | Amphiphilic block copolymers for active agent delivery | |
JP2018030932A (en) | Polymer, method for producing polymer, and drug complex | |
WO2015168614A2 (en) | Polymer compositions of histone deacetylase inhibitors and methods of use thereof | |
RU2676680C2 (en) | Novel polymer-based hydrotropes for hydrophobic drug delivery | |
WO2019163942A1 (en) | Polymer, method for producing polymer, drug complex, and micelle | |
JP7555827B2 (en) | Combination medicine of anthracycline compound-containing micellar agent and immunostimulant | |
EP4226925A1 (en) | Nicotinamide-encapsulating micelles, and pregnancy-induced hypertension syndrome therapy composition containing nicotinamide-encapsulating micelles | |
EP4098252A1 (en) | Poly amphiphilic complexes for the delivery of a hydrophobic active agent, compositions and methods | |
US20240099977A1 (en) | Small molecular drug-loaded polymer vesicle, preparation method therefor and use thereof | |
JP6654057B2 (en) | Composition for controlling local pain comprising a polyion complex containing a local anesthetic as an active ingredient | |
WO2019163958A1 (en) | Drug composite, micelle, and pharmaceutical composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20788117 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021513726 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20788117 Country of ref document: EP Kind code of ref document: A1 |