WO2020209059A1 - Pharmaceutical composition for treating hyperammonemia - Google Patents

Pharmaceutical composition for treating hyperammonemia Download PDF

Info

Publication number
WO2020209059A1
WO2020209059A1 PCT/JP2020/013220 JP2020013220W WO2020209059A1 WO 2020209059 A1 WO2020209059 A1 WO 2020209059A1 JP 2020013220 W JP2020013220 W JP 2020013220W WO 2020209059 A1 WO2020209059 A1 WO 2020209059A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyperammonemia
glucose
acid
ketoglutaric acid
dkg
Prior art date
Application number
PCT/JP2020/013220
Other languages
French (fr)
Japanese (ja)
Inventor
信 芳野
知之 ▲高▼橋
福井 香織
直忠 石原
比呂志 長嶋
Original Assignee
学校法人 久留米大学
学校法人明治大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 久留米大学, 学校法人明治大学 filed Critical 学校法人 久留米大学
Priority to JP2021513555A priority Critical patent/JPWO2020209059A1/ja
Publication of WO2020209059A1 publication Critical patent/WO2020209059A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/194Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/225Polycarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid

Definitions

  • Hyperammonemia is a disease in which blood ammonia concentration increases due to various factors including genetic disorders.
  • liver transplantation can be expected to be stable for a long period of time if engrafted, but its implementation requires a considerable preparation period.
  • hyperammonemia attacks once onset, worsen on an hourly basis and are not uncommon for death, and even if life can be saved, there is a risk of leaving neurological damage. Therefore, improvement of treatment for hyperammonemia is essential.
  • treatments for hyperammonemia include nutritional treatment (restriction of protein intake and supply of non-protein calorie), nitrogen alternative pathway activation therapy, N-carbamylglutamic acid administration, urea cycle intermediate metabolite replacement therapy, There are blood purification therapies, and in many cases, some of them are used together. However, these are often treatments that negatively affect nitrogen equilibrium, and the effect of restoring protein synthesis (anabolism) cannot be expected except for the supply of non-proteinaceous calories.
  • the object of the present disclosure is to provide a therapeutic agent for hyperammonemia.
  • the present disclosure provides a pharmaceutical composition comprising ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof for treating hyperammonemia.
  • the therapeutic agent of the present disclosure can reduce the blood ammonia concentration by a mechanism different from that of existing therapeutic agents and treatment methods, and is an effective option for the treatment of hyperammonemia.
  • FIG. 1 shows the time course of the ammonia concentration in the culture medium of wild-type mouse fetal fibroblasts (WTMEF). Each column shows a cell-free blank concentration, a gross concentration, and a net ammonia concentration.
  • FIG. 2 shows the ammonia concentration in the culture solution of WTMEF in the presence or absence of glucose at each concentration.
  • FIG. 3 is a diagram showing the effect of glucose deficiency on body protein catabolism and amino acid degradation.
  • AMPK AMP-activated protein kinase
  • CPS carbamyl phosphate synthase
  • DAc deacetylation
  • GDH glutamine dehydrogenase
  • GLS glutaminenase
  • GLUL glutamine synthase
  • OTC ornithine transcarbamylase
  • PGC-1 ⁇ peroxysome Growth factor activated receptor ⁇ (PPAR ⁇ ) coactivator-1 ⁇
  • SIRT sirtuin
  • Cit citric acid; ⁇ -KG, ⁇ -ketoglutaric acid
  • OAA oxaloacetate
  • Fum fumaric acid
  • Citr citrulin
  • AS Argininosuccinic acid
  • Orn ornithine
  • Arg arginine
  • Glu glutamine acid
  • Gln glutamine.
  • FIG. 4 shows the ammonia concentration in Atg5 -/- MEF, which is a MEF in which the genes of WT MEF and Atg5 are knocked out, under glucose sufficiency or deficiency conditions.
  • FIG. 5 shows the effect of dimethyl- ⁇ -ketoglutaric acid (DKG) on the ammonia concentration under glucose sufficiency or deficiency conditions in WTMEF.
  • FIG. 6 shows the concentration of each amino acid in the culture medium when DKG was added to WTMEF under glucose-sufficient or deficient conditions.
  • FIG. 7 shows that WTMEF was cultured under the conditions of glucose addition or non-addition and DKG was not added or added, and the cell-free blank values of ammonia and amino acid concentrations in the culture broth were shown.
  • FIG. 8 shows the gene expression levels of glutamate dehydrogenase I (Glud1), glutaminase (Gls), and glutamine synthetase (Glul) in WT MEF and Atg5 -/- MEF. Both are displayed as a relative ratio to the expression level of the Gapdh gene.
  • FIG. 9 shows the effect of rapamycin on the ammonia concentration under glucose sufficiency in WTMEF.
  • FIG. 10 shows the gene expression levels of Sirtuin (Sirt) 3, 4 and 5 in WT MEF and Atg5 -/- MEF with or without glucose.
  • FIG. 11 shows the effect of DKG infusion on blood ammonia concentration in ornithine transcarbamylase (OTC) deficiency model pigs. “Control range” indicates the range of blood ammonia concentration in healthy newborn piglets.
  • FIG. 12 shows changes in plasma ammonia concentration in ammonium chloride-loaded mice.
  • FIG. 13 shows the effect of DKG and ⁇ -ketoglutaric acid (AKG) on plasma ammonia concentration in experimental hyperammonemia model mice. S: Saline, N: Ammonium chloride, D: DKG, A: AKG.
  • FIG. 14 shows changes in amino acids in plasma in experimental hyperammonemia model mice.
  • FIG. 15 shows the activation of AMP-activated protein kinase (AMPK) under glucose-sufficient or deficient conditions in WTMEF and the effect of DKG on it. The results are shown by the ratio of protein concentration between phosphorylated (active) AMPK and non-phosphorylated (inactive) AMPK (pAMPK / AMPK).
  • FIG. 16 shows the activation of S6 kinase 1 (S6K1) under glucose sufficiency or deficiency conditions in WTMEF and the effect of DKG on it. The results are shown by the ratio of protein concentration between phosphorylated (active) S6K1 and non-phosphorylated (inactive) S6K1 (pS6K1 / S6K1).
  • S6 kinase 1 S6 kinase 1
  • FIG. 17 shows the activation of 4E-BP1 under glucose sufficiency or deficiency conditions in WTMEF and the effect of DKG on it. The results are shown by the ratio of protein concentration between phosphorylated (active) 4E-BP1 and non-phosphorylated (inactive) 4E-BP1 (p4E-BP1 / 4E-BP1).
  • FIG. 18 shows the progress of autophagy under glucose sufficiency or deficiency conditions in WTMEF and the effect of DKG on it. The results are shown by the ratio of protein concentration between non-lipidized LC3 (LC3-I) and lipidized LC3 (LC3-II) (LC3-I / LC3-II).
  • Hyperammonemia is a disease in which the concentration of ammonia in the blood increases due to various factors including genetic disorders. Ammonia in the body is produced in the process of protein metabolism and is detoxified by being synthesized into urea and excreted in the urea cycle of the liver. "Hyperammonemia" in the present disclosure is not limited to hyperammonemia due to a specific cause. Hyperammonemia is primary hyperammonemia due to genetic disorders of enzymes and transporters of the urea cycle, and secondary hyperammonemia in which the urea cycle is secondarily affected by disorders of other pathways. It is divided into. Hyperammonemia is caused by inborn errors of metabolism, liver damage, formation of portosystemic shunts, infections, and drugs.
  • Inborn errors of metabolism include urea cycle disorders, citrin deficiency, lysine protein intolerance, hyperornithineemia / hyperammonemia / homocitrullineuria syndrome (HHH syndrome), and organic acid metabolism disorders. Examples include fatty acid metabolism disorders.
  • hyperammonemia results from urea cycle abnormalities.
  • Urea cycle disorders present with hyperammonemia due to a genetic disorder in the process of producing urea in the urea cycle.
  • Enzymes involved in the urea cycle include N-acetylglutamate synthase (NAGS), carbamylphosphate synthase (CPS1), ornithine transcarbamylase (OTC), argininosuccinate synthase (ASS), argininosuccinate degrading enzyme (ASL), Arginase 1 (ARG1) can be mentioned.
  • Urea cycle disorders include NAGS deficiency, CPS1 deficiency, OTC deficiency, citrullinemia type I, argininosuccinic aciduria, and arginineemia.
  • hyperammonemia results from citrine deficiency, lysine urinary protein intolerance, HHH syndrome.
  • hyperammonemia is due to an organic acid metabolism disorder.
  • Organic acid metabolic disorders are diseases in which organic acids, which are intermediate metabolites, accumulate due to enzyme abnormalities related to metabolic pathways such as amino acids and fatty acids, causing various symptoms. Examples of organic acid metabolism disorders include methylmalonic acidemia, propionic acidemia, multiple caboxylase deficiency, isovaleric acidemia, glutaric acidemia type 1 and the like.
  • hyperammonemia results from fatty acid metabolism disorders.
  • Fatty acid metabolism disorders are diseases caused by abnormalities in the carnitine circuit for the uptake of fatty acids into mitochondria or the fatty acid ⁇ -oxidation system.
  • Fatty acid metabolism disorders include very long chain acyl-CoA dehydrogenase deficiency, triad enzyme deficiency, medium chain acyl-CoA dehydrogenase deficiency, CPT1 (carnitine palmitoyl transferase 1) deficiency, and CACT (carnitine acyl).
  • Carnitine translocase deficiency
  • CPT21 carnitine palmitoyl transferase 2
  • OCTN2 deficiency systemic carnitine deficiency
  • glutaricemia type 2 and the like.
  • hyperammonemia is caused by liver damage.
  • Liver disorders as used herein include any disorder that reduces the detoxification of ammonia in the liver. Liver disorders include cirrhosis or fulminant hepatitis.
  • the subject may be a human or non-human animal such as a mouse, hamster, rat, guinea pig, rabbit, dog, monkey, etc., and is preferably a human.
  • a human or non-human animal such as a mouse, hamster, rat, guinea pig, rabbit, dog, monkey, etc.
  • the reference value of the blood ammonia concentration judged to be hyperammonemia is not limited, but for example, in the case of humans, it can be 120 ⁇ g / dL or more in newborns and 60 ⁇ g / dL or more (including adults) thereafter. ..
  • Treatment of hyperammonemia includes reduction of blood ammonia concentration and treatment of diseases or symptoms associated with hyperammonemia.
  • Treatment of a disease or symptom associated with hyperammonemia includes alleviation or elimination of the disease or symptom or suppression of its progression.
  • Symptoms associated with hyperammonemia include impaired consciousness, behavioral abnormalities, coma, cerebral edema, vomiting, and convulsions.
  • the subject may have any of the diseases or symptoms (eg, the diseases or symptoms described herein) that cause or are associated with hyperammonemia.
  • the subject suffers from liver damage (eg, cirrhosis or fulminant hepatitis).
  • the subject suffers from an inborn error of metabolism (eg, urea cycle disorder, citrine deficiency, lysine urinary protein intolerance, HHH syndrome, organic acid metabolism disorder or fatty acid metabolism disorder). There is.
  • compositions of the present disclosure are ⁇ -ketoglutaric acid (also referred to herein as AKG or ⁇ -KG) or dimethyl- ⁇ -ketoglutaric acid (also referred to herein as DKG) or pharmaceutically acceptable thereof. Contains salt to be made. ⁇ -ketoglutaric acid Dimethyl- ⁇ -ketoglutaric acid
  • salts include salts with inorganic acids (eg, hydrochloric acid, hydrobromic acid, phosphoric acid, or sulfuric acid); organic acids (eg, trifluoroacetic acid, propionic acid, maleic acid, fumaric acid, apples).
  • inorganic acids eg, hydrochloric acid, hydrobromic acid, phosphoric acid, or sulfuric acid
  • organic acids eg, trifluoroacetic acid, propionic acid, maleic acid, fumaric acid, apples.
  • Salts with acids citric acid, tartaric acid, lactic acid, benzoic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid or naphthalenedisulfonic acid; alkaline earth metal salts (eg sodium salt, calcium salt, magnesium) Salt, potassium salt); salt with arginine, leucine, isoleucine, pyridoxin, chitosan, creatin or ortinin.
  • the pharmaceutically acceptable salts of ⁇ -ketoglutaric acid are sodium ⁇ -ketoglutarate, calcium ⁇ -ketoglutarate, magnesium ⁇ -ketoglutarate, potassium ⁇ -ketoglutarate.
  • the pharmaceutically acceptable salt of ⁇ -ketoglutaric acid is sodium ⁇ -ketoglutarate.
  • the pharmaceutically acceptable salt of ⁇ -ketoglutaric acid is ornithine ⁇ -ketoglutaric acid.
  • the effective amount of ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof means an amount capable of exerting a desired therapeutic effect on hyperammonemia.
  • ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof is administered in an amount appropriately selected according to the age, body weight, health condition and the like of the subject to be administered.
  • the ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof is not limited, but is, for example, 0.01 mg to 100 g, 0.1 mg to 10 g, 1 mg to 10 g, or 0.01 g to 1 kg of body weight.
  • ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof is continuously administered even if it is administered once or in multiple times (for example, 2, 3 or 4 times) per day. May be administered daily, daily or days (eg 2, 3, 4, 5 or 6 days), week or week (eg 2, 3, 4, 5 or 6 weeks), 1 month Alternatively, it may be administered at intervals of several months (for example, 2, 3, 4, 5 or 6 months).
  • the duration of administration is also not particularly limited, and is 1 day or several days (for example, 2, 3, 4, 5 or 6 days), 1 week or several weeks (for example, 2, 3, 4, 5 or 6 weeks), 1 It can be months or months (eg 2, 3, 4, 5 or 6 months) or more.
  • the pharmaceutical composition of the present disclosure may contain a pharmaceutically acceptable carrier and / or additive in addition to the active ingredient ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof.
  • Pharmaceutically acceptable carriers include sterile water, saline, propylene glycol, polyethylene glycol, vegetable oil, lactose, mannitol, crystalline cellulose, hydroxypropyl cellulose, corn starch, hydroxypropyl methylcellulose and the like.
  • Additives include disintegrants, stabilizers, antioxidants, buffers, preservatives, surfactants, chelating agents, binders, lubricants and the like.
  • Dosage forms include, but are not limited to, tablets, capsules, powders, granules, liquids, suspensions, injections, suppositories and the like.
  • the pharmaceutical composition can be formulated by a conventional method. Examples of the administration method include oral administration and parenteral administration (for example, intravenous administration, rectal administration, oral administration, nasal administration, intramuscular administration) and the like.
  • the present disclosure provides ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof for use in the treatment of hyperammonemia.
  • the present disclosure provides the use of ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating hyperammonemia.
  • the present disclosure is a method of treating hyperammonemia that requires treatment with an effective amount of ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof. Provided are methods that include administration to.
  • ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof is (1) the production of free amino acids by suppressing the degradation of glutamine (glutaminolysis). Decrease, (2) recovery of cell proliferation and recovery of mRNA translation by supply of ⁇ -ketoglutaric acid to the TCA cycle (anaprerotic reaction), and / or (3) excess autophagy through activation of mTORC1 It is thought that the degradation (deamino acid) of amino acids, which are the source of ammonia, is reduced by the stabilization and the promotion of protein synthesis (assimilation) by stimulating translation of mRNA.
  • ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof can treat hyperammonemia by a mechanism different from that of existing therapeutic agents for hyperammonemia.
  • it is considered to be suitable for children who have a special physiological load compared to adults, which is growth, because it can be expected to have an effect of directing the synthesis of body proteins rather than promoting nitrogen excretion.
  • a pharmaceutical composition comprising ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof for treating hyperammonemia.
  • the pharmaceutical composition according to 1 above wherein hyperammonemia is caused by inborn errors of metabolism.
  • the pharmaceutical composition according to 2 above wherein the inborn error of metabolism is a urea cycle disorder.
  • the pharmaceutical composition according to 1 above wherein hyperammonemia is caused by liver damage.
  • the pharmaceutical composition according to 4 above, wherein the liver disorder is cirrhosis.
  • composition according to any one of 1 to 6 above, wherein the pharmaceutically acceptable salt of ⁇ -ketoglutaric acid is sodium ⁇ -ketoglutarate.
  • pharmaceutical composition according to any one of 1 to 6 above, wherein the pharmaceutically acceptable salt of ⁇ -ketoglutaric acid is ornithine ⁇ -ketoglutaric acid.
  • a method of treating hyperammonemia which comprises administering an effective amount of ⁇ -ketoglutaric acid or dimethyl- ⁇ -ketoglutaric acid or a pharmaceutically acceptable salt thereof to a subject in need of the treatment. ..
  • WTMEF wild-type mouse fetal fibroblasts
  • FBS fetal bovine serum
  • Gln 2 mM glutamine
  • D-MEM Dalveco modified Eagle's medium
  • the culture was carried out in (including glutamine), and the ammonia concentration in the culture solution was measured every 24 hours, and this was taken as the total ammonia concentration (gross concentration).
  • the cell-free blank concentration is defined as the ammonia concentration of the cell-free culture medium hatched in parallel, and the net concentration is the value obtained by subtracting the cell-free blank concentration from the total ammonia concentration. ) was displayed.
  • the ammonia concentration was measured by a method using glutamate dehydrogenase using ammonia and ⁇ -ketoglutaric acid as substrates. As a result, since an increase in the net ammonia concentration was observed with time in this WTMEF (Fig. 1), it was judged that the system can observe the increase and decrease in the net ammonia concentration accompanying the metabolism of cells.
  • glucose deficiency could be used as an in vitro model for inducing hyperammonemia due to starvation.
  • body protein catabolism in ammonia concentration involves two steps: the body protein is first broken down into individual amino acids, and then the amino acids are deaminated to produce free ammonia.
  • Autophagy, ubiquitin-proteasome system, intracytoplasmic protease system, etc. are known as the mechanism of body protein catabolism. The latter two of these are generally limited degradation down to the peptide level, whereas autophagy degrades individual amino acids. Therefore, when ammonia concentration is a problem, autophagy is considered to be the most directly related to the body proteolytic mechanism.
  • Atg5 -/- MEF WT MEF and MEF derived from C57BL / 6x129sv mice in which the Atg5 gene, which is one of the essential proteins for inducing autophagy, was knocked out
  • Atg5 -/- MEF provided by Professor Noboru Mizushima of the University of Tokyo. I received it
  • Atg5 -/- MEF was known to have no steady or inductive autophagy.
  • WT MEF and Atg5 -/- MEF were cultured in the same culture medium as in Experiment 1, and after reaching 50% confluency, each was replaced with a culture medium containing or without 25 mM glucose for an additional 24 hours. The culture was continued and the ammonia concentration was determined (Experiment 3).
  • Atg5 -/- MEF had a significantly lower ammonia concentration than WT MEF (Fig. 4).
  • WT MEF was cultured under the condition of glucose 25 mM or 0 mM
  • the ammonia concentration increased significantly at 0 mM.
  • the amino group of an amino acid is transferred to ⁇ -ketoglutaric acid ( ⁇ -KG) by transamination to produce glutamic acid (Glu) (Fig. 3).
  • Glutamic acid is then converted to glutamine (Gln) by 1) fixing another molecule of ammonia by the action of glutamine synthetase (GLUL), and 2) alanine and ⁇ -KG by amino group transfer reaction with pyruvate.
  • Glutamine dehydrogenase (GDH) action (oxidative deamination reaction) produces free ammonia and ⁇ -KG again. From this, the concentration of free ammonia is regulated by the equilibrium relationship between the decomposition and synthesis of glutamic acid and glutamine. Therefore, it is considered that free ammonia production can be suppressed by suppressing the decomposition of Glu or Gln or promoting the synthesis.
  • Gln the series of processes in which Gln is decomposed and its carbon skeleton is supplied to the TCA cycle is called glutaminolysis. This reaction has a physiological function (anaplerotic reaction) of supplying an oxidizing substrate to the TCA cycle.
  • DKG dimethyl- ⁇ -ketoglutaric acid
  • WTMEF was cultivated under the same conditions as in Experiment 3, and then DKG-free (0 mM) or 1.0 mM or 2.0 mM-added culture broth was added to the culture broth containing 25 mM and the culture broth not containing glucose, respectively. A total of 6 groups were set, and after culturing for 24 hours, the ammonia concentration of each was measured (Experiment 4).
  • the combination of the glucose addition concentration A mM added to the culture solution and the DKG addition concentration B mM is shown as Glc A / DKG B or A / B.
  • glucose is 25 mM
  • DKG When DKG is 0 mM, it is indicated as Glc25 / DKG0 or 25/0).
  • the ammonia concentration was significantly reduced by the addition of 2.0 mM DKG under either the condition of glucose 25 mM or 0 mM (Fig. 5).
  • the ammonia concentration was significantly reduced when comparing the DKG-free group with 1.0 mM, or the 1.0 mM-added group with 2.0 mM. This result suggests that ⁇ -KG is a regulator of ammonia production and that DKG may be a therapeutic agent for hyperammonemia.
  • WT-MEF and Atg5 -/- MEF were cultured in the same culture medium as in Experiment 1, and after reaching a confluency of about 50%, the culture medium was changed to a culture medium containing or not containing 25 mM glucose. The cells were further cultured for 24 hours. Cells were collected, cDNA was prepared according to a conventional method, and quantitative PCR was performed using this as a template. Each primer was designed by Primer3. The expression level of each gene was shown as a relative ratio of the glyceraldehyde-3-phosphate dehydrogenase gene (Gapdh) to that of the gene (Experiment 6).
  • Gapdh glyceraldehyde-3-phosphate dehydrogenase gene
  • Glud1 was significantly increased in WT MEF when glucose was deficient, but the same tendency was observed in Atg5 -/- MEF, but no significant difference was observed (Fig. 8).
  • the expression level of Gls was almost constant regardless of the presence or absence of glucose and WT MEF or Atg5 -/- MEF.
  • the expression level of Glul was significantly lower in Atg5 -/- MEF with and without glucose than in WT MEF, but in comparison with glucose 25 mM with and without glucose, WT MEF and Atg5 -/- MEF No significant difference was observed in the expression level in any of the above.
  • Glud1 is a major regulator of glutamine and glutamate degradation and synthesis at gene expression levels.
  • Glul expression in Atg5 -/- MEF was significantly lower than in WT MEF both under glucose sufficiency and under glucose deficiency. The reason is unknown, but it may be meaningful to ensure an anaplerotic response in Atg5 -/- MEF, where autophagy is not induced even during starvation.
  • mTORC1 which is a molecular complex containing mTOR, centrally regulates the reactions of body proteins in both directions of catabolism (induction of autophagy) and assimilation (initiation of translation).
  • mTORC1 suppressively regulates Sirtuin4 (Sirt4) and Sirtuin5 (Sirt5).
  • Sirt4 and Sirt5 are known to suppress glutaminolysis (Fig. 3). Therefore, the effect of rapamycin, an mTORC1 inhibitor, on the ammonia concentration in the culture medium was investigated.
  • WT-MEF was cultured in the same culture solution as in Experiment 1, and after reaching a confluency of about 50%, a culture solution containing no rapamycin or a culture solution containing 12.5 nM or 25 nM was used for an additional 24 hours. It was cultured. After culturing, the ammonia concentration and the number of cells in the culture solution were measured (Experiment 7).
  • the blood ammonia concentration before administration was 292 ⁇ g / 100 mL.
  • DKG 250 mg / kg was intravenously injected bolus, and then continuous injection was performed at 10.4 mg / kg / hr (250 mg / kg / 24 hr) (Fig. 11).
  • the blood ammonia concentration decreased to 168 ⁇ g / 100 mL at 4 hours after the start of infusion, which was 57.5% of the value before administration.
  • the DKG was changed to a glucose-containing electrolyte solution (SOLULACT® D)
  • the blood ammonia level continued to decrease for the next 2 hours, and 147 ⁇ g / 100 mL 6 hours after the start of injection. It decreased to (50.3%) and then started to increase. From the above results, it was shown that DKG has the effect of lowering the ammonia concentration in vivo.
  • mice mice were examined using mice (Experiment 10).
  • mice we attempted to create a model system for experimental hyperammonemia by loading with ammonium chloride using male mice aged 10 to 14 and weighing 23.9 ⁇ 2.3 g.
  • the blood ammonia concentration reached 8.01 mmol / L, which was 100 times the control value, at 15 minutes after loading, but then gradually decreased, and at 120 minutes, it decreased to 0.24 mmol / L, which was 2.97 times the control value. (Fig. 12).
  • the mean value of blood ammonia concentration was 0.10 mmol / L in the S group (control group), while it was as high as 4.38 mmol / L in the N group (ammonium chloride loaded group) (Fig. 13). ).
  • the N + D group showed 2.00 mmol / L and the N + A group 0.43 mmol / L, which were significantly lower values of 45.7% and 9.8%, respectively, in the blood due to ammonium chloride loading.
  • the inhibitory effect of DKG and AKG on the increase in ammonia concentration was demonstrated. From the above results, it was confirmed that both DKG and AKG have an improving effect on acute hyperammonemia in vivo.
  • WTMEF was first cultured in a culture medium containing 25 mM glucose, and then DKG was added to 0, 1, 2, or 5 in a culture medium containing 25 mM glucose or a culture medium containing no glucose, respectively.
  • the cells were replaced with those supplemented with mM, and after further culturing for 24 hours, the cells were collected and analyzed by Western blotting.
  • AMP-activated protein kinase is activated (phosphorylated) when intracellular ADP increases or ATP / ADP ratio decreases due to glucose deficiency or other causes.
  • AMPK is known to suppress the activity of mTORC1.
  • AMPK tended to be activated under glucose-deficient conditions as compared to glucose-sufficient conditions.
  • DKG tended to suppress AMPK activity with the addition of 1 mM under both glucose-sufficient and deficient conditions, but no clear inhibitory effect was observed at higher concentrations (Fig. 15). ).
  • S6 kinase 1 is an enzyme that phosphorylates the ribosomal protein S6 and regulates protein synthesis and cell cycle. Since S6K1 is activated (phosphorylated) by mTORC1, its phosphorylation is an indicator of mTORC1 activity. Phosphorylation of S6K1 was not different between glucose-sufficient and glucose-deficient conditions, but was enhanced by the addition of DKG in both cases (Fig. 16). In addition, activation (phosphorylation) of 4E-BP1, which is another index of mTORC1 activity, was suppressed under glucose-sufficient conditions as compared with glucose-sufficient conditions, but no obvious change was observed with the addition of DKG. (Fig. 17). It was shown that DKG activates S6K1, suggesting that DKG has the effect of promoting protein synthesis.

Abstract

This disclosure provides a pharmaceutical composition for treating hyperammonemia that contains α-ketoglutaric acid or dimethyl-α-ketoglutaric acid, or a pharmaceutically acceptable salt thereof.

Description

高アンモニア血症を治療するための医薬組成物Pharmaceutical composition for treating hyperammonemia
 本出願は、日本国特許出願第2019-075524号について優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本開示は、高アンモニア血症の治療薬に関する。
This application claims priority with respect to Japanese Patent Application No. 2019-075224, which is incorporated herein by reference in its entirety.
The present disclosure relates to therapeutic agents for hyperammonemia.
 高アンモニア血症は、遺伝的障害を含む様々な要因により血中アンモニア濃度が高くなる疾患である。高アンモニア血症の治療法として、肝臓移植は、生着すれば長期的に安定な状態が期待できるが、その実施にはかなりの準備期間が必要である。また、高アンモニア血症の発作は、いったん発症すると時間単位で増悪し、死に至ることもまれではなく、救命できたとしても神経学的障害を遺す危険性がある。したがって、高アンモニア血症の治療法の改善は必須である。 Hyperammonemia is a disease in which blood ammonia concentration increases due to various factors including genetic disorders. As a treatment for hyperammonemia, liver transplantation can be expected to be stable for a long period of time if engrafted, but its implementation requires a considerable preparation period. In addition, hyperammonemia attacks, once onset, worsen on an hourly basis and are not uncommon for death, and even if life can be saved, there is a risk of leaving neurological damage. Therefore, improvement of treatment for hyperammonemia is essential.
 現在、高アンモニア血症の治療法として、栄養学的治療(タンパク質摂取制限および非タンパク質性熱量の供給)、窒素代替経路賦活化療法、N-カルバミルグルタミン酸投与、尿素サイクル中間代謝産物補充療法、血液浄化療法などがあり、多くの場合、そのいくつかが併用されている。しかし、これらはしばしば窒素平衡を負とする治療であり、タンパク合成(同化)を回復させる効果は、非タンパク質性熱量の供給を除けば期待できない。 Currently, treatments for hyperammonemia include nutritional treatment (restriction of protein intake and supply of non-protein calorie), nitrogen alternative pathway activation therapy, N-carbamylglutamic acid administration, urea cycle intermediate metabolite replacement therapy, There are blood purification therapies, and in many cases, some of them are used together. However, these are often treatments that negatively affect nitrogen equilibrium, and the effect of restoring protein synthesis (anabolism) cannot be expected except for the supply of non-proteinaceous calories.
 本開示は、高アンモニア血症の治療薬を提供することを目的とする。 The object of the present disclosure is to provide a therapeutic agent for hyperammonemia.
 ある態様において、本開示は、高アンモニア血症を治療するための、α-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩を含む医薬組成物を提供する。 In some embodiments, the present disclosure provides a pharmaceutical composition comprising α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof for treating hyperammonemia.
 本開示の治療薬は、既存の治療薬や治療方法と異なる機序により血中アンモニア濃度を低下させることができ、高アンモニア血症治療の有効な選択肢となる。 The therapeutic agent of the present disclosure can reduce the blood ammonia concentration by a mechanism different from that of existing therapeutic agents and treatment methods, and is an effective option for the treatment of hyperammonemia.
図1は、野生型マウス胎児線維芽細胞(WT MEF)の培養液中のアンモニア濃度の経時的変化を示す。各カラムは、無細胞ブランク(cell-free blank)濃度、総アンモニア濃度(gross concentration)、正味のアンモニア濃度(net concentration)を示す。FIG. 1 shows the time course of the ammonia concentration in the culture medium of wild-type mouse fetal fibroblasts (WTMEF). Each column shows a cell-free blank concentration, a gross concentration, and a net ammonia concentration. 図2は、各濃度のブドウ糖存在下または非存在下におけるWT MEFの培養液中のアンモニア濃度を示す。FIG. 2 shows the ammonia concentration in the culture solution of WTMEF in the presence or absence of glucose at each concentration. 図3は、ブドウ糖欠乏が体タンパク質異化およびアミノ酸分解に及ぼす影響を示す図である。AMPK, AMP活性化プロテインキナーゼ;CPS1, カルバミルリン酸合成酵素;DAc, 脱アセチル化;GDH, グルタミン酸脱水素酵素;GLS, グルタミナーゼ;GLUL, グルタミン合成酵素;OTC,オルニチントランスカルバミラーゼ;PGC-1α, ペルオキシソーム増殖因子活性化受容体γ(PPARγ)コアクチベーター-1α;SIRT, サーチュイン;Cit, クエン酸;α-KG, α-ケトグルタル酸;OAA, オキサロ酢酸;Fum, フマル酸;Citr, シトルリン;AS, アルギニノコハク酸;Orn, オルニチン;Arg, アルギニン;Glu, グルタミン酸;Gln, グルタミン。FIG. 3 is a diagram showing the effect of glucose deficiency on body protein catabolism and amino acid degradation. AMPK, AMP-activated protein kinase; CPS1, carbamyl phosphate synthase; DAc, deacetylation; GDH, glutamine dehydrogenase; GLS, glutaminenase; GLUL, glutamine synthase; OTC, ornithine transcarbamylase; PGC-1α, peroxysome Growth factor activated receptor γ (PPARγ) coactivator-1α; SIRT, sirtuin; Cit, citric acid; α-KG, α-ketoglutaric acid; OAA, oxaloacetate; Fum, fumaric acid; Citr, citrulin; AS, Argininosuccinic acid; Orn, ornithine; Arg, arginine; Glu, glutamine acid; Gln, glutamine. 図4は、WT MEFおよびAtg5の遺伝子をノックアウトしたMEFであるAtg5-/-MEFにおけるブドウ糖充足または欠乏条件下でのアンモニア濃度を示す。FIG. 4 shows the ammonia concentration in Atg5 -/- MEF, which is a MEF in which the genes of WT MEF and Atg5 are knocked out, under glucose sufficiency or deficiency conditions. 図5は、WT MEFにおけるブドウ糖充足または欠乏条件下でのアンモニア濃度に与えるジメチル-α-ケトグルタル酸(DKG)の効果を示す。FIG. 5 shows the effect of dimethyl-α-ketoglutaric acid (DKG) on the ammonia concentration under glucose sufficiency or deficiency conditions in WTMEF. 図6は、WT MEFにブドウ糖充足または欠乏条件下でDKGを添加したときの培養液中の各アミノ酸の濃度を示す。FIG. 6 shows the concentration of each amino acid in the culture medium when DKG was added to WTMEF under glucose-sufficient or deficient conditions. 図7は、WT MEFをブドウ糖添加または非添加およびDKGを非添加または添加の各条件で培養し、培養液中のアンモニアとアミノ酸濃度のそれぞれの、無細胞ブランク(cell-free blank)値との差(ΔμM)を示す。各アミノ酸およびアンモニアの値は3実験の平均値。FIG. 7 shows that WTMEF was cultured under the conditions of glucose addition or non-addition and DKG was not added or added, and the cell-free blank values of ammonia and amino acid concentrations in the culture broth were shown. The difference (ΔμM) is shown. The values of each amino acid and ammonia are the average values of the three experiments. 図8は、WT MEFおよびAtg5-/-MEFにおける、グルタミン酸脱水素酵素I(Glud1)、グルタミナーゼ(Gls)、およびグルタミン合成酵素(Glul)の遺伝子発現レベルを示す。いずれもGapdh遺伝子の発現レベルに対する相対比で表示。FIG. 8 shows the gene expression levels of glutamate dehydrogenase I (Glud1), glutaminase (Gls), and glutamine synthetase (Glul) in WT MEF and Atg5 -/- MEF. Both are displayed as a relative ratio to the expression level of the Gapdh gene. 図9は、WT MEFにおけるブドウ糖充足下でのアンモニア濃度に与えるラパマイシンの効果を示す。FIG. 9 shows the effect of rapamycin on the ammonia concentration under glucose sufficiency in WTMEF. 図10は、ブドウ糖添加または非添加状態でのWT MEFおよびAtg5-/-MEFにおけるSirtuin(Sirt)3、4および5の遺伝子発現レベルを示す。FIG. 10 shows the gene expression levels of Sirtuin (Sirt) 3, 4 and 5 in WT MEF and Atg5 -/- MEF with or without glucose. 図11は、オルニチントランスカルバミラーゼ(OTC)欠損症モデルブタにおけるDKG輸注が血液中アンモニア濃度に及ぼす影響を示す。「Control range」は、健常な新生仔ブタにおける血中アンモニア濃度の範囲を示す。FIG. 11 shows the effect of DKG infusion on blood ammonia concentration in ornithine transcarbamylase (OTC) deficiency model pigs. “Control range” indicates the range of blood ammonia concentration in healthy newborn piglets. 図12は、塩化アンモニウムを負荷したマウスにおける血漿中のアンモニア濃度の変化を示す。FIG. 12 shows changes in plasma ammonia concentration in ammonium chloride-loaded mice. 図13は、実験的高アンモニア血症モデルマウスにおいてDKGおよびα-ケトグルタル酸(AKG)が血漿中のアンモニア濃度に及ぼす影響を示す。S:生理食塩水、N:塩化アンモニウム、D:DKG、A:AKG。FIG. 13 shows the effect of DKG and α-ketoglutaric acid (AKG) on plasma ammonia concentration in experimental hyperammonemia model mice. S: Saline, N: Ammonium chloride, D: DKG, A: AKG. 図14は、実験的高アンモニア血症モデルマウスにおける血漿中のアミノ酸の変化を示す。FIG. 14 shows changes in amino acids in plasma in experimental hyperammonemia model mice. 図15は、WT MEFにおけるブドウ糖充足または欠乏条件下でのAMP活性化プロテインキナーゼ(AMPK)の活性化およびこれに対するDKGの効果を示す。結果は、リン酸化(活性型)AMPKと非リン酸化(非活性型)AMPKとのタンパク質濃度の比率(pAMPK/AMPK)で示す。FIG. 15 shows the activation of AMP-activated protein kinase (AMPK) under glucose-sufficient or deficient conditions in WTMEF and the effect of DKG on it. The results are shown by the ratio of protein concentration between phosphorylated (active) AMPK and non-phosphorylated (inactive) AMPK (pAMPK / AMPK). 図16は、WT MEFにおけるブドウ糖充足または欠乏条件下でのS6キナーゼ1(S6K1)の活性化およびこれに対するDKGの効果を示す。結果は、リン酸化(活性型)S6K1と非リン酸化(非活性型)S6K1とのタンパク質濃度の比率(pS6K1/S6K1)で示す。FIG. 16 shows the activation of S6 kinase 1 (S6K1) under glucose sufficiency or deficiency conditions in WTMEF and the effect of DKG on it. The results are shown by the ratio of protein concentration between phosphorylated (active) S6K1 and non-phosphorylated (inactive) S6K1 (pS6K1 / S6K1). 図17は、WT MEFにおけるブドウ糖充足または欠乏条件下での4E-BP1の活性化およびこれに対するDKGの効果を示す。結果は、リン酸化(活性型)4E-BP1と非リン酸化(非活性型)4E-BP1とのタンパク質濃度の比率(p4E-BP1/4E-BP1)で示す。FIG. 17 shows the activation of 4E-BP1 under glucose sufficiency or deficiency conditions in WTMEF and the effect of DKG on it. The results are shown by the ratio of protein concentration between phosphorylated (active) 4E-BP1 and non-phosphorylated (inactive) 4E-BP1 (p4E-BP1 / 4E-BP1). 図18は、WT MEFにおけるブドウ糖充足または欠乏条件下でのオートファジー進行状態およびこれに対するDKGの効果を示す。結果は、非脂質化型LC3(LC3-I)と脂質化型LC3(LC3-II)とのタンパク質濃度の比率(LC3-I/LC3-II)で示す。FIG. 18 shows the progress of autophagy under glucose sufficiency or deficiency conditions in WTMEF and the effect of DKG on it. The results are shown by the ratio of protein concentration between non-lipidized LC3 (LC3-I) and lipidized LC3 (LC3-II) (LC3-I / LC3-II).
 特に具体的な定めのない限り、本明細書で使用される用語は、有機化学、医学、薬学、分子生物学、微生物学等の分野における当業者に一般に理解されるとおりの意味を有する。以下にいくつかの本明細書で使用される用語についての定義を記載するが、これらの定義は、本明細書において、一般的な理解に優先する。 Unless otherwise specified, the terms used herein have the meanings commonly understood by those skilled in the art in the fields of organic chemistry, medicine, pharmacy, molecular biology, microbiology and the like. Definitions of some terms used herein are provided below, but these definitions supersede the general understanding herein.
 高アンモニア血症は、遺伝的障害を含む様々な要因により血中のアンモニア濃度が高くなる疾患である。体内のアンモニアは、タンパク質の代謝の過程で作られ、肝臓の尿素サイクルにおいて尿素に合成され排泄されることにより、解毒される。本開示における「高アンモニア血症」は、特定の原因による高アンモニア血症に限定されない。高アンモニア血症は、尿素サイクルの酵素やトランスポーターの遺伝的障害による原発性高アンモニア血症と、尿素サイクルが他の経路の障害などにより二次的に影響をうける二次性高アンモニア血症とに分けられる。高アンモニア血症は、先天代謝異常症、肝障害、門脈大循環短絡路(シャント)の形成、感染、薬物などにより生じる。先天代謝異常症としては、尿素サイクル異常症、シトリン欠損症、リジン尿性蛋白不耐症、高オルニチン血症・高アンモニア血症・ホモシトルリン尿症症候群(HHH症候群)、有機酸代謝異常症、脂肪酸代謝異常症などが挙げられる。 Hyperammonemia is a disease in which the concentration of ammonia in the blood increases due to various factors including genetic disorders. Ammonia in the body is produced in the process of protein metabolism and is detoxified by being synthesized into urea and excreted in the urea cycle of the liver. "Hyperammonemia" in the present disclosure is not limited to hyperammonemia due to a specific cause. Hyperammonemia is primary hyperammonemia due to genetic disorders of enzymes and transporters of the urea cycle, and secondary hyperammonemia in which the urea cycle is secondarily affected by disorders of other pathways. It is divided into. Hyperammonemia is caused by inborn errors of metabolism, liver damage, formation of portosystemic shunts, infections, and drugs. Inborn errors of metabolism include urea cycle disorders, citrin deficiency, lysine protein intolerance, hyperornithineemia / hyperammonemia / homocitrullineuria syndrome (HHH syndrome), and organic acid metabolism disorders. Examples include fatty acid metabolism disorders.
 一実施形態において、高アンモニア血症は、尿素サイクル異常症に起因する。尿素サイクル異常症では、尿素サイクルにおける尿素を生成する過程の遺伝的障害によって高アンモニア血症を呈する。尿素サイクルにかかわる酵素としては、N-アセチルグルタミン酸合成酵素(NAGS)、カルバミルリン酸合成酵素(CPS1)、オルニチントランスカルバミラーゼ(OTC)、アルギニノコハク酸合成酵素(ASS)、アルギニノコハク酸分解酵素(ASL)、アルギナーゼ1(ARG1)が挙げられる。尿素サイクル異常症には、NAGS欠損症、CPS1欠損症、OTC欠損症、シトルリン血症I型、アルギニノコハク酸尿症、アルギニン血症が含まれる。別の実施形態において、高アンモニア血症は、シトリン欠損症、リジン尿性蛋白不耐症、HHH症候群に起因する。 In one embodiment, hyperammonemia results from urea cycle abnormalities. Urea cycle disorders present with hyperammonemia due to a genetic disorder in the process of producing urea in the urea cycle. Enzymes involved in the urea cycle include N-acetylglutamate synthase (NAGS), carbamylphosphate synthase (CPS1), ornithine transcarbamylase (OTC), argininosuccinate synthase (ASS), argininosuccinate degrading enzyme (ASL), Arginase 1 (ARG1) can be mentioned. Urea cycle disorders include NAGS deficiency, CPS1 deficiency, OTC deficiency, citrullinemia type I, argininosuccinic aciduria, and arginineemia. In another embodiment, hyperammonemia results from citrine deficiency, lysine urinary protein intolerance, HHH syndrome.
 一実施形態において、高アンモニア血症は、有機酸代謝異常症に起因する。有機酸代謝異常症は、アミノ酸や脂肪酸などの代謝経路に関わる酵素異常が原因で中間代謝産物ある有機酸が蓄積し、様々な症状をきたす疾患である。有機酸代謝異常症としては、メチルマロン酸血症、プロピオン酸血症、マルチプルカボキシラーゼ欠損症、イソ吉草酸血症、グルタル酸血症1型などが挙げられる。 In one embodiment, hyperammonemia is due to an organic acid metabolism disorder. Organic acid metabolic disorders are diseases in which organic acids, which are intermediate metabolites, accumulate due to enzyme abnormalities related to metabolic pathways such as amino acids and fatty acids, causing various symptoms. Examples of organic acid metabolism disorders include methylmalonic acidemia, propionic acidemia, multiple caboxylase deficiency, isovaleric acidemia, glutaric acidemia type 1 and the like.
 一実施形態において、高アンモニア血症は、脂肪酸代謝異常症に起因する。脂肪酸代謝異常症は、脂肪酸のミトコンドリアへの取り込みのためのカルニチン回路または脂肪酸β酸化系の異常を原因とする疾患である。脂肪酸代謝異常症としては、極長鎖アシル-CoA脱水素酵素欠損症、三頭酵素欠損症、中鎖アシル-CoA脱水素酵素欠損症、CPT1(カルニチンパルミトイルトランスフェラーゼ1)欠損症、CACT(カルニチンアシルカルニチントランスロカーゼ)欠損症、CPT21(カルニチンパルミトイルトランスフェラーゼ2)欠損症、OCTN2欠損症(全身性カルニチン欠乏症)、グルタル酸血症2型などが挙げられる。 In one embodiment, hyperammonemia results from fatty acid metabolism disorders. Fatty acid metabolism disorders are diseases caused by abnormalities in the carnitine circuit for the uptake of fatty acids into mitochondria or the fatty acid β-oxidation system. Fatty acid metabolism disorders include very long chain acyl-CoA dehydrogenase deficiency, triad enzyme deficiency, medium chain acyl-CoA dehydrogenase deficiency, CPT1 (carnitine palmitoyl transferase 1) deficiency, and CACT (carnitine acyl). Carnitine translocase) deficiency, CPT21 (carnitine palmitoyl transferase 2) deficiency, OCTN2 deficiency (systemic carnitine deficiency), glutaricemia type 2 and the like.
 一実施形態において、高アンモニア血症は、肝障害により生じる。本明細書における肝障害には、肝臓におけるアンモニアの解毒が低下するあらゆる障害が含まれる。肝障害としては、肝硬変または劇症肝炎が挙げられる。 In one embodiment, hyperammonemia is caused by liver damage. Liver disorders as used herein include any disorder that reduces the detoxification of ammonia in the liver. Liver disorders include cirrhosis or fulminant hepatitis.
 本開示において、対象は、ヒト、または非ヒト動物、例えばマウス、ハムスター、ラット、モルモット、ウサギ、イヌ、サルなどであってよく、好ましくはヒトである。当業者は、対象の年齢や健康状態、使用する血中アンモニア濃度の測定法などの因子を考慮して、高アンモニア血症の対象を特定することができる。高アンモニア血症と判断される血中アンモニア濃度の基準値は、限定はされないが、例えば、ヒトの場合、新生児では120μg/dL以上、それ以降は(成人を含め)60μg/dL以上でありうる。 In the present disclosure, the subject may be a human or non-human animal such as a mouse, hamster, rat, guinea pig, rabbit, dog, monkey, etc., and is preferably a human. One of ordinary skill in the art can identify the target of hyperammonemia in consideration of factors such as the age and health condition of the subject and the method for measuring the blood ammonia concentration used. The reference value of the blood ammonia concentration judged to be hyperammonemia is not limited, but for example, in the case of humans, it can be 120 μg / dL or more in newborns and 60 μg / dL or more (including adults) thereafter. ..
 高アンモニア血症の治療には、血中アンモニア濃度の低減、および高アンモニア血症と関連する疾患または症状の治療が含まれる。高アンモニア血症と関連する疾患または症状の治療には、当該疾患または症状の軽減もしくは除去または進行の抑制が含まれる。高アンモニア血症と関連する症状としては、意識障害、行動異常、昏睡、脳浮腫、嘔吐、けいれんなどが挙げられる。 Treatment of hyperammonemia includes reduction of blood ammonia concentration and treatment of diseases or symptoms associated with hyperammonemia. Treatment of a disease or symptom associated with hyperammonemia includes alleviation or elimination of the disease or symptom or suppression of its progression. Symptoms associated with hyperammonemia include impaired consciousness, behavioral abnormalities, coma, cerebral edema, vomiting, and convulsions.
 対象は、高アンモニア血症の原因となる、または高アンモニア血症と関連する、疾患または症状(例えば、本明細書に記載の疾患または症状)のいずれかを有しうる。一実施形態において、対象は、肝障害(例えば、肝硬変または劇症肝炎)を患っている。別の実施形態において、対象は、先天代謝異常症(例えば、尿素サイクル異常症、シトリン欠損症、リジン尿性蛋白不耐症、HHH症候群、有機酸代謝異常症または脂肪酸代謝異常症)を患っている。 The subject may have any of the diseases or symptoms (eg, the diseases or symptoms described herein) that cause or are associated with hyperammonemia. In one embodiment, the subject suffers from liver damage (eg, cirrhosis or fulminant hepatitis). In another embodiment, the subject suffers from an inborn error of metabolism (eg, urea cycle disorder, citrine deficiency, lysine urinary protein intolerance, HHH syndrome, organic acid metabolism disorder or fatty acid metabolism disorder). There is.
 本開示の医薬組成物は、α-ケトグルタル酸(本明細書において、AKGまたはα-KGとも記載する)もしくはジメチル-α-ケトグルタル酸(本明細書において、DKGとも記載する)またはその医薬上許容される塩を含む。

α-ケトグルタル酸
Figure JPOXMLDOC01-appb-I000001

ジメチル-α-ケトグルタル酸
Figure JPOXMLDOC01-appb-I000002
The pharmaceutical compositions of the present disclosure are α-ketoglutaric acid (also referred to herein as AKG or α-KG) or dimethyl-α-ketoglutaric acid (also referred to herein as DKG) or pharmaceutically acceptable thereof. Contains salt to be made.

α-ketoglutaric acid
Figure JPOXMLDOC01-appb-I000001

Dimethyl-α-ketoglutaric acid
Figure JPOXMLDOC01-appb-I000002
 医薬上許容される塩としては、無機酸(例えば、塩酸、臭化水素酸、リン酸、または硫酸)との塩;有機酸(例えば、トリフルオロ酢酸、プロピオン酸、マレイン酸、フマル酸、リンゴ酸、クエン酸、酒石酸、乳酸、安息香酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸またはナフタレンジスルホン酸)との塩;アルカリ土類金属塩(例えばナトリウム塩、カルシウム塩、マグネシウム塩、カリウム塩);アルギニン、ロイシン、イソロイシン、ピリドキシン、キトサン、クレアチンまたはオルチニンとの塩が挙げられる。一実施形態において、α-ケトグルタル酸の医薬上許容される塩は、α-ケトグルタル酸ナトリウム、α-ケトグルタル酸カルシウム、α-ケトグルタル酸マグネシウム、α-ケトグルタル酸カリウムである。さらなる実施形態において、α-ケトグルタル酸の医薬上許容される塩は、α-ケトグルタル酸ナトリウムである。別の実施形態において、α-ケトグルタル酸の医薬上許容される塩は、オルニチンα-ケトグルタル酸である。 Pharmaceutically acceptable salts include salts with inorganic acids (eg, hydrochloric acid, hydrobromic acid, phosphoric acid, or sulfuric acid); organic acids (eg, trifluoroacetic acid, propionic acid, maleic acid, fumaric acid, apples). Salts with acids, citric acid, tartaric acid, lactic acid, benzoic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid or naphthalenedisulfonic acid; alkaline earth metal salts (eg sodium salt, calcium salt, magnesium) Salt, potassium salt); salt with arginine, leucine, isoleucine, pyridoxin, chitosan, creatin or ortinin. In one embodiment, the pharmaceutically acceptable salts of α-ketoglutaric acid are sodium α-ketoglutarate, calcium α-ketoglutarate, magnesium α-ketoglutarate, potassium α-ketoglutarate. In a further embodiment, the pharmaceutically acceptable salt of α-ketoglutaric acid is sodium α-ketoglutarate. In another embodiment, the pharmaceutically acceptable salt of α-ketoglutaric acid is ornithine α-ketoglutaric acid.
 本明細書において、α-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩の有効量とは、所望の高アンモニア血症の治療効果を発揮しうる量を意味する。α-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩は、投与対象の年齢、体重、健康状態等によって適宜選択される量で投与される。α-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩は、限定はされないが、例えば、体重1kgあたり、0.01mg~100g、0.1mg~10g、1mg~10g、または0.01g~1gで投与されうる。α-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩は、1日1回または複数回(例えば2、3または4回)に分けて投与しても、持続的に投与してもよく、連日投与しても、1日または数日(例えば2、3、4、5または6日)、1週間または数週間(例えば2、3、4、5または6週間)、1ヶ月または数ヶ月(例えば2、3、4、5または6ヶ月)の間隔をあけて投与してもよい。投与を継続する期間も特に限定されず、1日または数日(例えば2、3、4、5または6日)、1週間または数週間(例えば2、3、4、5または6週間)、1ヶ月または数ヶ月(例えば2、3、4、5または6ヶ月)またはそれ以上でありうる。 In the present specification, the effective amount of α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof means an amount capable of exerting a desired therapeutic effect on hyperammonemia. α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof is administered in an amount appropriately selected according to the age, body weight, health condition and the like of the subject to be administered. The α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof is not limited, but is, for example, 0.01 mg to 100 g, 0.1 mg to 10 g, 1 mg to 10 g, or 0.01 g to 1 kg of body weight. Can be administered in 1 g. α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof is continuously administered even if it is administered once or in multiple times (for example, 2, 3 or 4 times) per day. May be administered daily, daily or days ( eg 2, 3, 4, 5 or 6 days), week or week ( eg 2, 3, 4, 5 or 6 weeks), 1 month Alternatively, it may be administered at intervals of several months (for example, 2, 3, 4, 5 or 6 months). The duration of administration is also not particularly limited, and is 1 day or several days (for example, 2, 3, 4, 5 or 6 days), 1 week or several weeks (for example, 2, 3, 4, 5 or 6 weeks), 1 It can be months or months ( eg 2, 3, 4, 5 or 6 months) or more.
 本開示の医薬組成物は、有効成分であるα-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩に加えて、医薬上許容される担体および/または添加剤を含んでも良い。医薬上許容される担体としては、滅菌水、生理食塩水、プロピレングリコール、ポリエチレングリコール、植物油、ラクトース、マンニトール、結晶セルロース、ヒドロキシプロピルセルロース、トウモロコシデンプン、ヒドロキシプロピルメチルセルロースなどが挙げられる。添加剤としては、崩壊剤、安定剤、酸化防止剤、緩衝剤、防腐剤、界面活性剤、キレート剤、結合剤、滑沢剤などが挙げられる。剤形としては、例えば、錠剤、カプセル剤、散剤、顆粒剤、液剤、懸濁剤、注射剤、坐剤等が挙げられるが、これらに限定されない。医薬組成物は、常法により製剤化することができる。投与方法としては、経口投与および非経口投与(例えば静脈内投与、直腸投与、口腔内投与、経鼻投与、筋肉内投与)などが挙げられる。 The pharmaceutical composition of the present disclosure may contain a pharmaceutically acceptable carrier and / or additive in addition to the active ingredient α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof. .. Pharmaceutically acceptable carriers include sterile water, saline, propylene glycol, polyethylene glycol, vegetable oil, lactose, mannitol, crystalline cellulose, hydroxypropyl cellulose, corn starch, hydroxypropyl methylcellulose and the like. Additives include disintegrants, stabilizers, antioxidants, buffers, preservatives, surfactants, chelating agents, binders, lubricants and the like. Dosage forms include, but are not limited to, tablets, capsules, powders, granules, liquids, suspensions, injections, suppositories and the like. The pharmaceutical composition can be formulated by a conventional method. Examples of the administration method include oral administration and parenteral administration (for example, intravenous administration, rectal administration, oral administration, nasal administration, intramuscular administration) and the like.
 ある態様において、本開示は、高アンモニア血症の治療に用いるためのα-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩を提供する。
 ある態様において、本開示は、高アンモニア血症を治療するための医薬の製造のためのα-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩の使用を提供する。
 ある態様において、本開示は、高アンモニア血症を治療する方法であって、有効量のα-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩をその治療を必要とする対象に投与することを含む方法を提供する。
In some embodiments, the present disclosure provides α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof for use in the treatment of hyperammonemia.
In some embodiments, the present disclosure provides the use of α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating hyperammonemia.
In some embodiments, the present disclosure is a method of treating hyperammonemia that requires treatment with an effective amount of α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof. Provided are methods that include administration to.
 理論に限定されるものではないが、α-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩は、(1)グルタミンの分解(グルタミノリシス)の抑制による遊離アミノ酸の産生の減少、(2)TCAサイクルへのα-ケトグルタル酸の供給(アナプレロティック反応)による細胞増殖の回復とmRNAの翻訳の回復、および/または(3)mTORC1の活性化を介する過剰なオートファジーの定常化と、mRNAの翻訳の刺激によるタンパク質合成(同化)の促進により、アンモニアの源となるアミノ酸の分解(脱アミノ)を減少させると考えられる。このように、α-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩は、既存の高アンモニア血症の治療薬とは異なる機序により、高アンモニア血症を治療しうる。特に、窒素排泄を促すのではなく、体タンパク質の合成に向かわせる効果が期待できることから、成長という成人と比べ特別な生理的負荷をもつ小児に適すると考えられる。 Although not limited to theory, α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof is (1) the production of free amino acids by suppressing the degradation of glutamine (glutaminolysis). Decrease, (2) recovery of cell proliferation and recovery of mRNA translation by supply of α-ketoglutaric acid to the TCA cycle (anaprerotic reaction), and / or (3) excess autophagy through activation of mTORC1 It is thought that the degradation (deamino acid) of amino acids, which are the source of ammonia, is reduced by the stabilization and the promotion of protein synthesis (assimilation) by stimulating translation of mRNA. As described above, α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof can treat hyperammonemia by a mechanism different from that of existing therapeutic agents for hyperammonemia. In particular, it is considered to be suitable for children who have a special physiological load compared to adults, which is growth, because it can be expected to have an effect of directing the synthesis of body proteins rather than promoting nitrogen excretion.
 本開示の例示的実施形態を以下に示す。
[1]
 高アンモニア血症を治療するための、α-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩を含む医薬組成物。
[2]
 高アンモニア血症が、先天代謝異常症に起因する、前記1に記載の医薬組成物。
[3]
 先天代謝異常症が、尿素サイクル異常症である、前記2に記載の医薬組成物。
[4]
 高アンモニア血症が、肝障害に起因する、前記1に記載の医薬組成物。
[5]
 肝障害が、肝硬変である、前記4に記載の医薬組成物。
[6]
 α-ケトグルタル酸またはその医薬上許容される塩を含む、前記1~5のいずれかに記載の医薬組成物。
[7]
 α-ケトグルタル酸の医薬上許容される塩が、α-ケトグルタル酸ナトリウムである、前記1~6のいずれかに記載の医薬組成物。
[8]
 α-ケトグルタル酸の医薬上許容される塩が、オルニチンα-ケトグルタル酸である、前記1~6のいずれかに記載の医薬組成物。
[9]
 ジメチル-α-ケトグルタル酸またはその医薬上許容される塩を含む、前記1~5のいずれかに記載の医薬組成物。
An exemplary embodiment of the present disclosure is shown below.
[1]
A pharmaceutical composition comprising α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof for treating hyperammonemia.
[2]
The pharmaceutical composition according to 1 above, wherein hyperammonemia is caused by inborn errors of metabolism.
[3]
The pharmaceutical composition according to 2 above, wherein the inborn error of metabolism is a urea cycle disorder.
[4]
The pharmaceutical composition according to 1 above, wherein hyperammonemia is caused by liver damage.
[5]
The pharmaceutical composition according to 4 above, wherein the liver disorder is cirrhosis.
[6]
The pharmaceutical composition according to any one of 1 to 5 above, which comprises α-ketoglutaric acid or a pharmaceutically acceptable salt thereof.
[7]
The pharmaceutical composition according to any one of 1 to 6 above, wherein the pharmaceutically acceptable salt of α-ketoglutaric acid is sodium α-ketoglutarate.
[8]
The pharmaceutical composition according to any one of 1 to 6 above, wherein the pharmaceutically acceptable salt of α-ketoglutaric acid is ornithine α-ketoglutaric acid.
[9]
The pharmaceutical composition according to any one of 1 to 5 above, which comprises dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof.
[10]
 高アンモニア血症の治療に用いるための、α-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩。
[10]
Α-Ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof for use in the treatment of hyperammonemia.
[11]
 高アンモニア血症を治療するための医薬の製造のための、α-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩の使用。
[11]
Use of α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof for the manufacture of a drug for treating hyperammonemia.
[12]
 高アンモニア血症を治療する方法であって、有効量のα-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩を、その治療を必要とする対象に投与することを含む方法。
[12]
A method of treating hyperammonemia, which comprises administering an effective amount of α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof to a subject in need of the treatment. ..
 以下、実施例により本発明をさらに説明するが、本発明は如何なる意味においてもこれら実施例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited to these Examples in any sense.
 尿素サイクルの酵素欠損症の患者では、飢餓が高アンモニア血症の発作の誘因となることが知られている。そのin vitroモデルとして、尿素サイクルの酵素が生理的に発現していないC57BL/6x129svマウス由来の細胞をSV40 large T で不死化した野生型マウス胎児線維芽細胞(WT MEF)において、ブドウ糖欠乏によってアンモニアが上昇するか否かを検討した(実験1)。まず、この細胞を10%ウシ胎仔血清(FBS)、2 mMグルタミン(Gln)、1%ペニシリン/ストレプトマイシン、ダルベッコ改変イーグル培地(D-MEM)を含む培養液(本培養液は特記しない限り25 mMのブドウ糖を含む)で培養し、24時間ごとに培養液中のアンモニア濃度を測定し、これを総アンモニア濃度(gross concentration)とした。並行して孵置した、細胞を含まない培養液のアンモニア濃度を無細胞ブランク濃度(cell-free blank concentration)とし、総アンモニア濃度から無細胞ブランク濃度を差し引いた値を正味のアンモニア濃度(net concentration)として表示した。なお、アンモニア濃度の測定は、アンモニアとα-ケトグルタル酸を基質とするグルタミン酸脱水素酵素を用いる方法によった。その結果、このWT MEFでは経時的に正味のアンモニア濃度の上昇が観察されることから(図1)、細胞の代謝に伴う正味のアンモニア濃度の増減を観察できる系と判断した。 It is known that starvation triggers hyperammonemia attacks in patients with enzyme deficiency in the urea cycle. As an in vitro model, ammonia was produced by glucose deficiency in wild-type mouse fetal fibroblasts (WTMEF) in which cells derived from C57BL / 6x129sv mice in which urea cycle enzymes were not physiologically expressed were immortalized with SV40 large T. Was examined (Experiment 1). First, these cells are cultured in a culture medium containing 10% fetal bovine serum (FBS), 2 mM glutamine (Gln), 1% penicillin / streptomycin, and Dalveco modified Eagle's medium (D-MEM) (this culture medium is 25 mM unless otherwise specified). The culture was carried out in (including glutamine), and the ammonia concentration in the culture solution was measured every 24 hours, and this was taken as the total ammonia concentration (gross concentration). The cell-free blank concentration is defined as the ammonia concentration of the cell-free culture medium hatched in parallel, and the net concentration is the value obtained by subtracting the cell-free blank concentration from the total ammonia concentration. ) Was displayed. The ammonia concentration was measured by a method using glutamate dehydrogenase using ammonia and α-ketoglutaric acid as substrates. As a result, since an increase in the net ammonia concentration was observed with time in this WTMEF (Fig. 1), it was judged that the system can observe the increase and decrease in the net ammonia concentration accompanying the metabolism of cells.
 次に、飢餓のモデルとしてブドウ糖欠乏によってアンモニア濃度が上昇するかどうかを検討した(実験2)。WT MEFを培養し、50%のコンフルエンシーに達したのち、25 mM~0 mMの各濃度のブドウ糖を含む培養液に交換した。さらに24時間培養を続けたのち、アンモニア濃度を測定し、正味の濃度を求め細胞数で補正した値(mM/1x106細胞)を「アンモニア濃度」とした。(以下、特記しない限り「アンモニア濃度」とはこの値を指すものとする。) Next, as a model of starvation, it was examined whether glucose deficiency increases the ammonia concentration (Experiment 2). After culturing WT MEF and reaching 50% confluency, the cells were replaced with a culture medium containing glucose at each concentration of 25 mM to 0 mM. After further culturing for 24 hours, the ammonia concentration was measured, the net concentration was calculated, and the value corrected by the number of cells (mM / 1x10 6 cells) was defined as the "ammonia concentration". (Hereinafter, unless otherwise specified, "ammonia concentration" shall refer to this value.)
 その結果、アンモニア濃度は、添加したブドウ糖濃度が25 mMの時に比べ、1.4 mM以下では有意に上昇した(図2)。よって、ブドウ糖欠乏は飢餓による高アンモニア血症誘発のin vitroモデルとして利用可能と考えられた。 As a result, the ammonia concentration increased significantly below 1.4 mM compared to when the added glucose concentration was 25 mM (Fig. 2). Therefore, glucose deficiency could be used as an in vitro model for inducing hyperammonemia due to starvation.
 体タンパク質の異化がアンモニア濃度に反映されるには、まず体タンパク質が個別のアミノ酸まで分解され、ついでアミノ酸が脱アミノを受けて遊離のアンモニアを生じるという二つのステップが関わる。体タンパク質の異化の機構として、オートファジー、ユビキチン-プロテアソーム系および細胞質内プロテアーゼ系などが知られている。これらのうち後二者はおおむねペプチドレベルまでの限定的分解であるのに対して、オートファジーは個々のアミノ酸まで分解する。したがって、アンモニア濃度を問題とする場合、体タンパク質分解機構のなかでもオートファジーが最も直接的に関係すると考えられた。そこで、WT MEFと、オートファジーの誘導に必須のタンパク質の一つであるAtg5遺伝子をノックアウトしたC57BL/6x129svマウス由来のMEF(以下、Atg5-/- MEFと記載、東京大学・水島昇教授から供与いただいた)を以下の実験に使用した。Atg5-/- MEFは定常的にも誘導的にもオートファジーが進行しないことが知られている。 Reflecting body protein catabolism in ammonia concentration involves two steps: the body protein is first broken down into individual amino acids, and then the amino acids are deaminated to produce free ammonia. Autophagy, ubiquitin-proteasome system, intracytoplasmic protease system, etc. are known as the mechanism of body protein catabolism. The latter two of these are generally limited degradation down to the peptide level, whereas autophagy degrades individual amino acids. Therefore, when ammonia concentration is a problem, autophagy is considered to be the most directly related to the body proteolytic mechanism. Therefore, WT MEF and MEF derived from C57BL / 6x129sv mice in which the Atg5 gene, which is one of the essential proteins for inducing autophagy, was knocked out (hereinafter referred to as Atg5 -/- MEF, provided by Professor Noboru Mizushima of the University of Tokyo). I received it) was used in the following experiments. Atg5 -/- MEF is known to have no steady or inductive autophagy.
 WT MEFとAtg5-/- MEFとを実験1と同じ培養液で培養し、50%のコンフルエンシーに達したのち、それぞれをブドウ糖を25 mM含む、または含まない培養液に交換し、さらに24時間培養を続け、アンモニア濃度を求めた(実験3)。 WT MEF and Atg5 -/- MEF were cultured in the same culture medium as in Experiment 1, and after reaching 50% confluency, each was replaced with a culture medium containing or without 25 mM glucose for an additional 24 hours. The culture was continued and the ammonia concentration was determined (Experiment 3).
 その結果、25 mMのブドウ糖を含む培養条件下では、Atg5-/- MEFはWT MEFと比べアンモニア濃度が有意に低かった(図4)。また、WT MEFをブドウ糖25 mMまたは0 mMの条件下で培養した場合を比較すると、0 mMでアンモニア濃度が有意に上昇した。これらの結果は、アンモニア濃度にオートファジーの誘導が関係するという仮説と矛盾しないと考えられた。しかしながら、ブドウ糖0 mMで培養した場合、Atg5-/- MEFのアンモニア濃度はWT MEFのそれと有意差を認めない程度に上昇したことから、ブドウ糖欠乏時のアンモニア濃度の上昇はオートファジーの誘導だけでは説明できず、それ以外のアンモニア濃度を上昇させる機構の関与が考えられた。 As a result, under culture conditions containing 25 mM glucose, Atg5 -/- MEF had a significantly lower ammonia concentration than WT MEF (Fig. 4). In addition, when WT MEF was cultured under the condition of glucose 25 mM or 0 mM, the ammonia concentration increased significantly at 0 mM. These results were considered to be consistent with the hypothesis that the induction of autophagy is associated with ammonia concentration. However, when cultured at 0 mM glucose, the ammonia concentration of Atg5 -/- MEF increased to the extent that it was not significantly different from that of WT MEF. Therefore, the increase in ammonia concentration during glucose deficiency was not due to the induction of autophagy alone. It could not be explained, and the involvement of other mechanisms that increase the ammonia concentration was considered.
 体タンパク質の異化により生じたアミノ酸は脱アミノを受けて遊離のアンモニアを生じる。したがって、上記のブドウ糖欠乏によるアンモニア濃度の上昇の機序の候補として、遊離アミノ酸の脱アミノ機構の関与が考えられる。アミノ酸のアミノ基はアミノ基転移によりα-ケトグルタル酸(α-KG)へ受け渡され、グルタミン酸(Glu)を生じる(図3)。グルタミン酸は、その後、1)グルタミン合成酵素(GLUL)の作用によってさらにもう1分子のアンモニアを固定してグルタミン(Gln)となる、2)ピルビン酸とのアミノ基転移反応によりアラニンとα-KGを生じる、3)グルタミン酸脱水素酵素(GDH)の作用(酸化的脱アミノ反応)によって再度遊離アンモニアとα-KGとを生じる、のいずれかの道をたどる。このことから、遊離アンモニアの濃度はグルタミン酸およびグルタミンの分解と合成の平衡関係によって調節されていることになる。したがって、GluまたはGlnの分解を抑制する、あるいは合成を促進することにより、遊離アンモニア産生を抑制することができると考えられる。一方、Glnが分解され、その炭素骨格がTCAサイクルに供給される一連の過程をグルタミノリシスと呼ぶ。この反応には、酸化基質をTCAサイクルに供給するという生理的機能(アナプレロティック反応)がある。したがって、遊離アンモニア産生を抑止する方策を考えるうえで、単にグルタミンおよびグルタミン酸の過剰な分解を抑制するだけでなく、アナプレロティック反応をも確保することが必要である。そこで、それらの条件を満たす化合物としてα-KGの膜透過性アナログであるジメチル-α-ケトグルタル酸(DKG)を添加し、その効果を検討した。 Amino acids produced by catabolism of body proteins undergo deamination to produce free ammonia. Therefore, the deamination mechanism of free amino acids may be involved as a candidate for the mechanism of increase in ammonia concentration due to glucose deficiency. The amino group of an amino acid is transferred to α-ketoglutaric acid (α-KG) by transamination to produce glutamic acid (Glu) (Fig. 3). Glutamic acid is then converted to glutamine (Gln) by 1) fixing another molecule of ammonia by the action of glutamine synthetase (GLUL), and 2) alanine and α-KG by amino group transfer reaction with pyruvate. It follows either of the following paths: 3) Glutamine dehydrogenase (GDH) action (oxidative deamination reaction) produces free ammonia and α-KG again. From this, the concentration of free ammonia is regulated by the equilibrium relationship between the decomposition and synthesis of glutamic acid and glutamine. Therefore, it is considered that free ammonia production can be suppressed by suppressing the decomposition of Glu or Gln or promoting the synthesis. On the other hand, the series of processes in which Gln is decomposed and its carbon skeleton is supplied to the TCA cycle is called glutaminolysis. This reaction has a physiological function (anaplerotic reaction) of supplying an oxidizing substrate to the TCA cycle. Therefore, in considering measures to suppress free ammonia production, it is necessary not only to suppress the excessive decomposition of glutamine and glutamic acid, but also to secure an anaplerotic reaction. Therefore, dimethyl-α-ketoglutaric acid (DKG), which is a membrane-permeable analog of α-KG, was added as a compound satisfying these conditions, and its effect was examined.
 実験3と同様の条件でWT MEFを培養し、次いでブドウ糖を25 mM含む培養液と含まない培養液のそれぞれに、DKGを非添加の(0 mM)、または1.0 mMもしくは2.0 mM添加した培養液に交換した計6群を設定し、24時間培養後、それぞれのアンモニア濃度を測定した(実験4)。(本明細書および図面において、培養液に添加したブドウ糖の添加濃度A mMとDKGの添加濃度B mMとの組み合わせを、Glc A/DKG BまたはA/Bと示す。例えば、ブドウ糖が25 mM、DKGが0 mMの場合、Glc25/DKG0または25/0と示す)。 WTMEF was cultivated under the same conditions as in Experiment 3, and then DKG-free (0 mM) or 1.0 mM or 2.0 mM-added culture broth was added to the culture broth containing 25 mM and the culture broth not containing glucose, respectively. A total of 6 groups were set, and after culturing for 24 hours, the ammonia concentration of each was measured (Experiment 4). (In the present specification and drawings, the combination of the glucose addition concentration A mM added to the culture solution and the DKG addition concentration B mM is shown as Glc A / DKG B or A / B. For example, glucose is 25 mM, When DKG is 0 mM, it is indicated as Glc25 / DKG0 or 25/0).
 その結果、ブドウ糖25 mMまたは0 mMのいずれの条件下でも、2.0 mMのDKGの添加により、アンモニア濃度は有意に低下した(図5)。また、ブドウ糖が0 mMの条件下では、DKG非添加群と1.0 mM添加群、または1.0 mM添加群と2.0 mM添加群とを比較すると、アンモニア濃度はそれぞれ有意に低下した。この結果から、α-KGがアンモニア産生の調節因子であること、またDKGが高アンモニア血症の治療薬となる可能性が示唆された。 As a result, the ammonia concentration was significantly reduced by the addition of 2.0 mM DKG under either the condition of glucose 25 mM or 0 mM (Fig. 5). In addition, under the condition that glucose was 0 mM, the ammonia concentration was significantly reduced when comparing the DKG-free group with 1.0 mM, or the 1.0 mM-added group with 2.0 mM. This result suggests that α-KG is a regulator of ammonia production and that DKG may be a therapeutic agent for hyperammonemia.
 次に、DKGによるアンモニア濃度の低下の機序を探るため、実験4と同様の6群のおのおのにつき、24時間培養後の培養液について、アンモニア濃度とアミノ酸濃度を測定した(実験5)。アミノ酸濃度は、イオン交換カラムクロマトグラフィーにより測定し、細胞数での補正を行わない値で表示した。 Next, in order to investigate the mechanism of the decrease in ammonia concentration due to DKG, the ammonia concentration and amino acid concentration were measured in the culture solution after culturing for 24 hours for each of the 6 groups similar to Experiment 4 (Experiment 5). The amino acid concentration was measured by ion exchange column chromatography and displayed as a value not not corrected by the number of cells.
 その結果、グルタミン酸(Glu)、アラニン(Ala)およびシトルリン(Cit)はブドウ糖およびDKGの濃度によらずcell-free blank値よりも高値を示し、培養中に産生されることが分かった(図6)。アスパラギン酸(Asp)は、DKGの濃度によってcell-free blank値より高い、または低い値を示した。それ以外のアミノ酸は、グルタミン(Gln)を含め、すべてcell-free blank値より低い値を示し培養中に消費されることが考えられた。 As a result, it was found that glutamic acid (Glu), alanine (Ala) and citrulline (Cit) showed higher values than the cell-free blank value regardless of the glucose and DKG concentrations, and were produced during culture (Fig. 6). ). Aspartic acid (Asp) showed a value higher or lower than the cell-free blank value depending on the concentration of DKG. All other amino acids, including glutamine (Gln), showed values lower than the cell-free blank value and were considered to be consumed during culture.
 上記の結果をもとに、DKG添加によるアンモニア濃度の減少幅と、アミノ基由来の窒素の交換に関係する各アミノ酸の濃度の増減との関係を検討した(図7)。図7では、各アミノ酸とアンモニア濃度(細胞数補正値)の増加幅または減少幅(3実験の平均値)を積み上げて示している。 Based on the above results, the relationship between the decrease in ammonia concentration due to the addition of DKG and the increase / decrease in the concentration of each amino acid related to the exchange of nitrogen derived from the amino group was examined (Fig. 7). In FIG. 7, the increase or decrease (average value of 3 experiments) of each amino acid and the ammonia concentration (cell number correction value) are shown in a stacked manner.
 まず、ブドウ糖25 mM添加と非添加でいずれもDKGは非添加の培養の比較(25/0 vs 0/0)では、ブドウ糖添加(25/0)に比べ非添加(0/0)ではアンモニア濃度が有意に上昇し、またGlnの消費が有意に増加した。一方、Glu濃度は後者(0/0)で軽度ながら有意に上昇した。このことから、ブドウ糖非添加時にはGlnの分解によってアンモニアとGluを生じ、また遊離したアンモニアの一部もGDHによる還元的アミノ化反応によりGluに取り込まれる可能性が考えられた。次に、DKG添加の効果に関してブドウ糖添加群および非添加群の各々の群内で比較すると、2 mMのDKGの添加によって非添加と比べアンモニア濃度は両群内のいずれ(25/0 vs 25/2、 0/0 vs 0/2)の比較でも有意に下がり、一方、Gluの濃度は両群内での比較で有意に上昇した。Glnの濃度は、両群内のいずれの組み合わせについても有意の変化は認めなかった。これらのことから、DKGがアンモニア濃度を下げる機序の少なくとも一部にGDHの還元的アミノ化反応の促進が関与していると考えられた。しかし、それらのアンモニア濃度の減少幅はGlu濃度の上昇幅を上回り、しかもAlaなどの増加も見られないことから、DKGによるアンモニア濃度の減少にはその他の機序の関与もうかがわれた。 First, in the comparison of cultures with and without glucose 25 mM and without DKG (25/0 vs 0/0), the ammonia concentration was higher with no addition (0/0) than with glucose (25/0). Was significantly increased, and Gln consumption was significantly increased. On the other hand, the Glu concentration was slightly but significantly increased in the latter (0/0). From this, it was considered that ammonia and Glu were generated by the decomposition of Gln when glucose was not added, and a part of the liberated ammonia could be incorporated into Glu by the reductive amination reaction by GDH. Next, when comparing the effects of DKG addition in each group of the glucose-added group and the non-added group, the ammonia concentration was higher in either of the two groups (25/0 vs 25 /) than in the non-added group due to the addition of 2 mM DKG. 2, 0/0 vs 0/2) also decreased significantly, while the Glu concentration increased significantly in the comparison between the two groups. The concentration of Gln did not change significantly for either combination in both groups. From these facts, it was considered that the promotion of the reductive amination reaction of GDH is involved in at least a part of the mechanism by which DKG lowers the ammonia concentration. However, the decrease in ammonia concentration exceeded the increase in Glu concentration, and there was no increase in Ala, etc., suggesting that other mechanisms may be involved in the decrease in ammonia concentration due to DKG.
 以上の結果から、ブドウ糖欠乏によるアンモニア濃度の上昇には、グルタミン酸およびグルタミンの分解および合成の活性調節が関わっている可能性が考えられた。これを検証するため、まず、グルタミン酸脱水素酵素I(Gdh1、マウスではGlud1と表記)、グルタミナーゼ(Gls)、およびグルタミン合成酵素(Glul)の遺伝子発現レベルを解析した(図8)。 From the above results, it was considered that the increase in ammonia concentration due to glucose deficiency may be related to the regulation of the activity of decomposition and synthesis of glutamic acid and glutamine. To verify this, we first analyzed the gene expression levels of glutamate dehydrogenase I (Gdh1, labeled Glud1 in mice), glutaminase (Gls), and glutamine synthetase (Glul) (Fig. 8).
 実験3に準じてWT-MEFとAtg5-/- MEFとを実験1と同じ培養液で培養し、50%程度のコンフルエンシーに達したのち、ブドウ糖25 mMを含む、または含まない培養液に変更しさらに24時間培養した。細胞を回収し、常法に従ってcDNAを調製し、これを鋳型として定量PCRを行った。各プライマーはPrimer3によって設計した。各遺伝子の発現レベルは、グリセルアルデヒド-3-リン酸脱水素酵素の遺伝子(Gapdh)のそれに対する相対比で示した(実験6)。 According to Experiment 3, WT-MEF and Atg5 -/- MEF were cultured in the same culture medium as in Experiment 1, and after reaching a confluency of about 50%, the culture medium was changed to a culture medium containing or not containing 25 mM glucose. The cells were further cultured for 24 hours. Cells were collected, cDNA was prepared according to a conventional method, and quantitative PCR was performed using this as a template. Each primer was designed by Primer3. The expression level of each gene was shown as a relative ratio of the glyceraldehyde-3-phosphate dehydrogenase gene (Gapdh) to that of the gene (Experiment 6).
 その結果、Glud1の発現は、WT MEFではブドウ糖が欠乏すると有意に上昇したが、Atg5-/- MEFでは同様の傾向を示したものの有意差は認められなかった(図8)。Glsの発現レベルは、ブドウ糖の有無およびWT MEFまたはAtg5-/- MEFの如何を問わずほぼ一定であった。Glulの発現レベルは、ブドウ糖の有無によらずAtg5-/- MEFではWT MEFに比べ発現が有意に低かったが、ブドウ糖25 mM添加と非添加との比較では、WT MEFおよびAtg5-/- MEFのいずれにおいても発現レベルに有意差は認めなかった。 As a result, the expression of Glud1 was significantly increased in WT MEF when glucose was deficient, but the same tendency was observed in Atg5 -/- MEF, but no significant difference was observed (Fig. 8). The expression level of Gls was almost constant regardless of the presence or absence of glucose and WT MEF or Atg5 -/- MEF. The expression level of Glul was significantly lower in Atg5 -/- MEF with and without glucose than in WT MEF, but in comparison with glucose 25 mM with and without glucose, WT MEF and Atg5 -/- MEF No significant difference was observed in the expression level in any of the above.
 以上のとおり、WT MEFでは、ブドウ糖欠乏によりGlud1の発現が高まるが、他の2遺伝子の発現レベルはブドウ糖の有無による差はみられなかった。このことから、グルタミンおよびグルタミン酸の分解および合成に関して、遺伝子発現レベルではGlud1が主要な調節因子であることが示唆された。 As described above, in WTMEF, the expression of Glud1 was increased due to glucose deficiency, but the expression levels of the other two genes did not differ depending on the presence or absence of glucose. This suggests that Glud1 is a major regulator of glutamine and glutamate degradation and synthesis at gene expression levels.
 Atg5-/- MEFにおけるGlulの発現は、ブドウ糖の充足下および欠乏下のいずれにおいてもWT MEFに比べ有意に低かった。その理由は不明であるが、飢餓時にもオートファジーが誘導されないAtg5-/- MEFにおいてアナプレロティック反応を担保する意義があるのかもしれない。 Glul expression in Atg5 -/- MEF was significantly lower than in WT MEF both under glucose sufficiency and under glucose deficiency. The reason is unknown, but it may be meaningful to ensure an anaplerotic response in Atg5 -/- MEF, where autophagy is not induced even during starvation.
 近年、mTORを含む分子複合体であるmTORC1が、体タンパク質の異化(オートファジーの誘導)と同化(翻訳の開始)の両方向の反応を一元的に調節していることが明らかにされた。また、mTORC1は、Sirtuin4(Sirt4)およびSirtuin5(Sirt5)に対して抑制的に調節を行う。さらに、Sirt4およびSirt5はグルタミノリシスに対して抑制的な調節をすることも知られている(図3)。そこでmTORC1阻害剤であるラパマイシンが培養液中のアンモニア濃度に与える効果を検討した。 In recent years, it has been clarified that mTORC1, which is a molecular complex containing mTOR, centrally regulates the reactions of body proteins in both directions of catabolism (induction of autophagy) and assimilation (initiation of translation). In addition, mTORC1 suppressively regulates Sirtuin4 (Sirt4) and Sirtuin5 (Sirt5). In addition, Sirt4 and Sirt5 are known to suppress glutaminolysis (Fig. 3). Therefore, the effect of rapamycin, an mTORC1 inhibitor, on the ammonia concentration in the culture medium was investigated.
 実験3に準じてWT-MEFを実験1と同じ培養液で培養し、50%程度のコンフルエンシーに達したのち、ラパマイシンを含まない培養液、または12.5 nMもしくは25 nM含む培養液でさらに24時間培養した。培養後、培養液中のアンモニア濃度と細胞数を測定した(実験7)。 According to Experiment 3, WT-MEF was cultured in the same culture solution as in Experiment 1, and after reaching a confluency of about 50%, a culture solution containing no rapamycin or a culture solution containing 12.5 nM or 25 nM was used for an additional 24 hours. It was cultured. After culturing, the ammonia concentration and the number of cells in the culture solution were measured (Experiment 7).
 その結果、25 nMのラパマイシンの添加によりアンモニア濃度は有意に低下した(図9)。この事実は、ラパマイシンの添加によりmTORC1の活性が抑制され、Sirt4およびSirt5に対する抑制的調節が解除される結果、GLSおよびGDH活性が抑制され遊離アンモニア産生が減少するという仮説と矛盾しない。 As a result, the ammonia concentration was significantly reduced by the addition of 25 nM rapamycin (Fig. 9). This fact is consistent with the hypothesis that the addition of rapamycin suppresses mTORC1 activity and releases the inhibitory regulation of Sirt4 and Sirt5, resulting in suppression of GLS and GDH activity and reduced free ammonia production.
 次に、ブドウ糖によるアンモニア濃度の上昇にミトコンドリア局在のSirt3、Sirt4、およびSirt5が関わっているのかを検討するために、これらの遺伝子の発現を検討した(実験8)。その結果、ブドウ糖が欠乏するとSirt3遺伝子の発現が低下し、Sirt4およびSirt5遺伝子の発現は亢進した(図10)。これらの発現パターンは、ブドウ糖欠乏時にこれらのSirtuinがグルタミノリシスに対してむしろ抑制的に作用することを示している。一方、培養液中のアミノ酸濃度の解析によると、ブドウ糖欠乏状態ではGlnの消費はむしろ増大した(図7)。したがって、これらのSirtuinの発現パターンは、Sirtuinが何らかの機序によって引き起こされたGln分解亢進に対して抑制的調節をしていることを反映しているのではないかと考えられた。 Next, in order to investigate whether mitochondrial localization Sirt3, Sirt4, and Sirt5 are involved in the increase in ammonia concentration due to glucose, the expression of these genes was examined (Experiment 8). As a result, when glucose was deficient, the expression of the Sirt3 gene decreased and the expression of the Sirt4 and Sirt5 genes increased (Fig. 10). These expression patterns indicate that these sirtuins act rather suppressively on glutaminolysis during glucose deficiency. On the other hand, according to the analysis of the amino acid concentration in the culture medium, the consumption of Gln was rather increased in the glucose-deficient state (Fig. 7). Therefore, it was considered that the expression pattern of these sirtuins may reflect that sirtuins have a suppressive regulation on the enhanced gln degradation caused by some mechanism.
 続いて、DKGのin vivoにおけるアンモニア濃度に対する効果を、オルニチントランスカルバミラーゼ(OTC)欠損症のモデルブタ(明治大学農学部発生工学・長嶋比呂志教授研究室で作出)の新生仔(雄、体重0.83 kg)を用いて検討した(実験9)。 Next, the effect of DKG on ammonia concentration in vivo was examined for newborns (male, weight 0.83 kg) of ornithine transcarbamylase (OTC) deficiency model pigs (produced in the laboratory of Professor Hiroshi Nagashima, Faculty of Agriculture, Meiji University). ) Was used (Experiment 9).
 投与前の血中アンモニア濃度は292 μg/100 mLであった。まずDKG 250 mg/kgを経静脈的にボーラス注入後、10.4 mg/kg/hr(250 mg/kg/24hr)で持続注入を行った(図11)。血中アンモニア濃度は、注入開始4時間の時点で168 μg/100 mLと、投与前の値の57.5%まで低下した。その時点でDKGをブドウ糖含有電解質液(SOLULACT(登録商標) D)に変更したところ、血中アンモニア値は更に次の2時間にわたり低下し続け、注入開始後6時間の時点で147 μg/100 mL(50.3%)まで低下し、その後上昇に転じた。以上の結果から、DKGはin vivoにおいてアンモニア濃度を低下させる効果があることが示された。 The blood ammonia concentration before administration was 292 μg / 100 mL. First, DKG 250 mg / kg was intravenously injected bolus, and then continuous injection was performed at 10.4 mg / kg / hr (250 mg / kg / 24 hr) (Fig. 11). The blood ammonia concentration decreased to 168 μg / 100 mL at 4 hours after the start of infusion, which was 57.5% of the value before administration. At that time, when the DKG was changed to a glucose-containing electrolyte solution (SOLULACT® D), the blood ammonia level continued to decrease for the next 2 hours, and 147 μg / 100 mL 6 hours after the start of injection. It decreased to (50.3%) and then started to increase. From the above results, it was shown that DKG has the effect of lowering the ammonia concentration in vivo.
 次に、DKGおよびAKGのin vivoにおけるアンモニア濃度に対する効果をマウス用いて検討した(実験10)。まず、週齢10~14、体重23.9±2.3 gの雄マウスを使用し、塩化アンモニウム負荷による実験的高アンモニア血症のモデル系作成を試みた。負荷後の血中アンモニア濃度の経時的な変化を知るために、塩化アンモニウム 10 mmol/kgを腹腔内に投与し、0分(対照群、生理的食塩水のみ投与)、15分、30分、60分、120分(各群ともn=3)に心腔採血で得た血漿のアンモニア濃度を測定した。その結果、血中アンモニア濃度は、負荷後15分で8.01 mmol/Lと対照値の100倍に達したが、その後漸次低下し、120分では0.24 mmol/Lと対照値の2.97倍まで低下した(図12)。 Next, the effects of DKG and AKG on ammonia concentration in vivo were examined using mice (Experiment 10). First, we attempted to create a model system for experimental hyperammonemia by loading with ammonium chloride using male mice aged 10 to 14 and weighing 23.9 ± 2.3 g. In order to know the change over time in blood ammonia concentration after loading, 10 mmol / kg of ammonium chloride was intraperitoneally administered for 0 minutes (control group, physiological saline only), 15 minutes, 30 minutes, Ammonia concentration in plasma obtained by heart chamber blood sampling was measured at 60 minutes and 120 minutes (n = 3 in each group). As a result, the blood ammonia concentration reached 8.01 mmol / L, which was 100 times the control value, at 15 minutes after loading, but then gradually decreased, and at 120 minutes, it decreased to 0.24 mmol / L, which was 2.97 times the control value. (Fig. 12).
 以上の結果を踏まえ、塩化アンモニウム負荷による実験的高アンモニア血症に対するDKGおよびAKGの抑制効果を検討した。以下の4群(各群ともn=4);1群(S群、生理的食塩水50 μL/体重10 gのみ投与)、2群(N群、塩化アンモニウム 10 mmol/kg)、3群(N+D群、塩化アンモニウム 10 mmol/kg + DKG 5 mmol/kg)、4群(N+A群、塩化アンモニウム 10 mmol/kg + AKG 5 mmol/kg)を設定し、それぞれの物質を腹腔内に投与し、30分後に心腔採血を行い血漿中のアンモニア濃度を測定した。その結果、血中アンモニア濃度の平均値は、S群(対照群)では0.10 mmol/Lであるのに対し、N群(塩化アンモニウム負荷群)では4.38 mmol/Lと高値を示した(図13)。それに対して、N+D群では2.00 mmol/L、N+A群では0.43 mmol/Lと、N群の値のそれぞれ45.7%および9.8%と有意に低値を示し、塩化アンモニウム負荷による血中アンモニア濃度上昇に対するDKGおよびAKGの抑制効果が証明された。以上の結果から、DKGおよびAKGともin vivoにおいて急性高アンモニア血症の改善効果があることが確認された。 Based on the above results, the inhibitory effect of DKG and AKG on experimental hyperammonemia caused by ammonium chloride loading was examined. The following 4 groups (n = 4 in each group); 1 group (S group, physiological saline 50 μL / body weight 10 g only), 2 groups (N group, ammonium chloride 10 mmol / kg), 3 groups (group S) N + D group, ammonium chloride 10 mmol / kg + DKG 5 mmol / kg), 4 groups (N + A group, ammonium chloride 10 mmol / kg + AKG 5 mmol / kg) were set, and each substance was intraperitoneally placed. 30 minutes later, cardiac blood was collected and the concentration of ammonia in plasma was measured. As a result, the mean value of blood ammonia concentration was 0.10 mmol / L in the S group (control group), while it was as high as 4.38 mmol / L in the N group (ammonium chloride loaded group) (Fig. 13). ). In contrast, the N + D group showed 2.00 mmol / L and the N + A group 0.43 mmol / L, which were significantly lower values of 45.7% and 9.8%, respectively, in the blood due to ammonium chloride loading. The inhibitory effect of DKG and AKG on the increase in ammonia concentration was demonstrated. From the above results, it was confirmed that both DKG and AKG have an improving effect on acute hyperammonemia in vivo.
 また同じマウスで血漿中のアミノ酸の変化を検討した(図14)。その結果、S群に比べ塩化アンモニウム負荷群では、Ala、Leu、Val、IleuおよびLysが増加傾向を示し、NH3負荷が増大したときのおもな受け皿となっていることが伺われた。また、シトルリン(Cit)も増加したが、これは尿素合成亢進の結果と考えられる。 In addition, changes in plasma amino acids were examined in the same mouse (Fig. 14). As a result, it was found that Ala, Leu, Val, Ileu and Lys tended to increase in the ammonium chloride-loaded group compared to the S group, and they were the main saucers when the NH 3 load increased. Citrulline (Cit) also increased, which is considered to be the result of increased urea synthesis.
 以上述べてきた結果がどのような経路を介して調節を受けているかを明らかにし、またDKGの効果を検証するため、以下の検討を行った。WT MEFを、実験3に準じて、まず25 mMのブドウ糖を含む培養液で培養し、ついでブドウ糖を25 mM含む培養液またはブドウ糖を含まない培養液にそれぞれDKGを0、1、2、または5 mMを添加したものに交換し、さらに24時間培養後に細胞を回収し、ウエスタンブロットで解析を行った。 In order to clarify the route through which the above-mentioned results are regulated and to verify the effect of DKG, the following studies were conducted. According to Experiment 3, WTMEF was first cultured in a culture medium containing 25 mM glucose, and then DKG was added to 0, 1, 2, or 5 in a culture medium containing 25 mM glucose or a culture medium containing no glucose, respectively. The cells were replaced with those supplemented with mM, and after further culturing for 24 hours, the cells were collected and analyzed by Western blotting.
 ブドウ糖欠乏その他の原因により細胞内のADPの増加またはATP/ADP比の低下が起こると、AMP活性化プロテインキナーゼ(AMPK)が活性化(リン酸化)される。また、AMPKはmTORC1の活性を抑制的に調節することが知られている。本実験では、AMPKはブドウ糖欠乏条件下ではブドウ糖充足条件下にくらべて活性化される傾向がみられた。DKGは、ブドウ糖充足条件下および欠乏条件下のいずれにおいても、1 mMの添加でAMPK活性を抑制する傾向を認められたが、それ以上の濃度では明らかな抑制効果は認められなかった(図15)。 AMP-activated protein kinase (AMPK) is activated (phosphorylated) when intracellular ADP increases or ATP / ADP ratio decreases due to glucose deficiency or other causes. In addition, AMPK is known to suppress the activity of mTORC1. In this experiment, AMPK tended to be activated under glucose-deficient conditions as compared to glucose-sufficient conditions. DKG tended to suppress AMPK activity with the addition of 1 mM under both glucose-sufficient and deficient conditions, but no clear inhibitory effect was observed at higher concentrations (Fig. 15). ).
 S6キナーゼ1(S6K1)はリボソームタンパク質S6をリン酸化する酵素であり、タンパク質合成や細胞周期を調節する。S6K1はmTORC1によって活性化(リン酸化)されるため、そのリン酸化はmTORC1の活性の指標となる。S6K1のリン酸化は、ブドウ糖充足条件下および欠乏条件下の間に差は認めなかったが、いずれの場合もDKGの添加により亢進した(図16)。また、mTORC1の活性のもう一つの指標である4E-BP1の活性化(リン酸化)は、ブドウ糖充足条件下に比べ欠乏条件下では抑制されたが、DKGの添加による明らかな変化は認められなかった(図17)。DKGがS6K1を活性化することが示されたことから、DKGはタンパク質合成を促進する効果を有することが示唆された。 S6 kinase 1 (S6K1) is an enzyme that phosphorylates the ribosomal protein S6 and regulates protein synthesis and cell cycle. Since S6K1 is activated (phosphorylated) by mTORC1, its phosphorylation is an indicator of mTORC1 activity. Phosphorylation of S6K1 was not different between glucose-sufficient and glucose-deficient conditions, but was enhanced by the addition of DKG in both cases (Fig. 16). In addition, activation (phosphorylation) of 4E-BP1, which is another index of mTORC1 activity, was suppressed under glucose-sufficient conditions as compared with glucose-sufficient conditions, but no obvious change was observed with the addition of DKG. (Fig. 17). It was shown that DKG activates S6K1, suggesting that DKG has the effect of promoting protein synthesis.
 S6K1と4E-BP1はいずれもmTORC1によって促進的な調節を受けるが、mTORC1の抑制による反応は異なるといわれており、さらに、4E-BP1はPI3キナーゼ(PI3K)系によって調節を受けているという報告もある。今回のわれわれの実験ではS6K1と4E-BP1ではDKG添加に対する反応に差が認められたが、その差は両者の活性化の機序の違いを反映しているのかもしれない。つまり、mTORC1の活性を特異的に反映するのはS6K1である。これに基づけば、DKGはブドウ糖の有無にかかわらずmTORC1を活性化させること、そしてその活性化は、AMPKの活性化抑制を介する間接的な調節と、mTORC1に対する直接的な調節の結果と考えられた。 Both S6K1 and 4E-BP1 are promoted by mTORC1, but the response by suppression of mTORC1 is said to be different, and it is reported that 4E-BP1 is regulated by the PI3 kinase (PI3K) system. There is also. In our experiment, there was a difference in the response to DKG addition between S6K1 and 4E-BP1, but the difference may reflect the difference in the activation mechanism between the two. In other words, it is S6K1 that specifically reflects the activity of mTORC1. Based on this, DKG activates mTORC1 with or without glucose, and that activation is thought to be the result of indirect regulation through suppression of AMPK activation and direct regulation of mTORC1. It was.
 また、オートファジー進行の状態をLC3-I/LC3-II比(この値が低いほどオートファジーの進行を意味する)を基に観察した。その結果、オートファジーは、ブドウ糖充足条件下に比べ欠乏条件下の方がむしろ抑制される傾向が認められた(図18)。さらに、ブドウ糖欠乏条件下でもDKGの添加はオートファジーの進行を抑制する傾向は認めなかった。このことから、完全な栄養素除去培養液とは異なり、ブドウ糖単独の欠乏ではオートファジーは誘導されないか、ごく軽度であると考えられた。 In addition, the state of autophagy progress was observed based on the LC3-I / LC3-II ratio (the lower this value, the more the progress of autophagy). As a result, autophagy tended to be suppressed under glucose-sufficient conditions rather than under glucose-sufficient conditions (Fig. 18). Furthermore, the addition of DKG did not tend to suppress the progression of autophagy even under glucose-deficient conditions. From this, it was considered that autophagy was not induced or was very mild by the deficiency of glucose alone, unlike the complete nutrient-free culture medium.

Claims (9)

  1.  高アンモニア血症を治療するための、α-ケトグルタル酸もしくはジメチル-α-ケトグルタル酸またはその医薬上許容される塩を含む医薬組成物。 A pharmaceutical composition containing α-ketoglutaric acid or dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof for treating hyperammonemia.
  2.  前記高アンモニア血症が、先天代謝異常症に起因する、請求項1に記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the hyperammonemia is caused by an inborn error of metabolism.
  3.  前記先天代謝異常症が、尿素サイクル異常症である、請求項2に記載の医薬組成物。 The pharmaceutical composition according to claim 2, wherein the inborn error of metabolism is a urea cycle disorder.
  4.  前記高アンモニア血症が、肝障害に起因する、請求項1に記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the hyperammonemia is caused by liver damage.
  5.  前記肝障害が、肝硬変である、請求項4に記載の医薬組成物。 The pharmaceutical composition according to claim 4, wherein the liver disorder is cirrhosis.
  6.  α-ケトグルタル酸またはその医薬上許容される塩を含む、請求項1~5のいずれかに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 5, which comprises α-ketoglutaric acid or a pharmaceutically acceptable salt thereof.
  7.  前記α-ケトグルタル酸の医薬上許容される塩が、α-ケトグルタル酸ナトリウムである、請求項1~6のいずれかに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 6, wherein the pharmaceutically acceptable salt of α-ketoglutaric acid is sodium α-ketoglutarate.
  8.  前記α-ケトグルタル酸の医薬上許容される塩が、オルニチンα-ケトグルタル酸である、請求項1~6のいずれかに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 6, wherein the pharmaceutically acceptable salt of the α-ketoglutaric acid is ornithine α-ketoglutaric acid.
  9.  ジメチル-α-ケトグルタル酸またはその医薬上許容される塩を含む、請求項1~5のいずれかに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 5, which comprises dimethyl-α-ketoglutaric acid or a pharmaceutically acceptable salt thereof.
PCT/JP2020/013220 2019-04-11 2020-03-25 Pharmaceutical composition for treating hyperammonemia WO2020209059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021513555A JPWO2020209059A1 (en) 2019-04-11 2020-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-075524 2019-04-11
JP2019075524 2019-04-11

Publications (1)

Publication Number Publication Date
WO2020209059A1 true WO2020209059A1 (en) 2020-10-15

Family

ID=72751547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013220 WO2020209059A1 (en) 2019-04-11 2020-03-25 Pharmaceutical composition for treating hyperammonemia

Country Status (2)

Country Link
JP (1) JPWO2020209059A1 (en)
WO (1) WO2020209059A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441650A (en) * 1965-07-23 1969-04-29 Lab Jacques Logeais Sa Therapy of ammonical intoxications by di-l-ornithine alpha-ketoglutarate
DE19929993A1 (en) * 1999-06-30 2001-01-11 Sueddeutsche Kalkstickstoff New creatine alpha-ketoglutarate compounds, having synergistic activity e.g. in improving sporting strength and endurance, eliminating blood ammonia or treating liver diseases
WO2016083399A1 (en) * 2014-11-24 2016-06-02 Forschungsgesellschaft Für Arbeitsphysiologie Und Arbeitsschutz E. V. Alpha-ketoglutarate in combination with glutamate dehydrogenase for treating hyperammonemia

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441650A (en) * 1965-07-23 1969-04-29 Lab Jacques Logeais Sa Therapy of ammonical intoxications by di-l-ornithine alpha-ketoglutarate
DE19929993A1 (en) * 1999-06-30 2001-01-11 Sueddeutsche Kalkstickstoff New creatine alpha-ketoglutarate compounds, having synergistic activity e.g. in improving sporting strength and endurance, eliminating blood ammonia or treating liver diseases
WO2016083399A1 (en) * 2014-11-24 2016-06-02 Forschungsgesellschaft Für Arbeitsphysiologie Und Arbeitsschutz E. V. Alpha-ketoglutarate in combination with glutamate dehydrogenase for treating hyperammonemia

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAVULURI, G. ET AL.: "Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress", THE JOURNAL OF PHYSIOLOGY, vol. 594, no. 24, 2016, pages 7341 - 7360, XP055748357, ISSN: 1469-7793 *

Also Published As

Publication number Publication date
JPWO2020209059A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
Sedel et al. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis
US11786494B2 (en) Methods of modulation of branched chain acids and uses thereof
Flannery et al. Current status of hyperammonemic syndromes
CN112654264A (en) Using at least one glycine or derivative thereof, at least one N-acetylcysteine or derivative thereof, and at least one nicotinamide riboside or NAD+Composition and method of precursors
KR20020093906A (en) Compositions of Biochemical Compounds Involved in Bioenergy Metabolism of Cells and Method of Use
US11160776B2 (en) Compositions and methods for neuroprotection and treatment of neurodegeneration
JPWO2002034257A1 (en) Central nervous system fatigue recovery or prevention agent and food for fatigue recovery or prevention
Jomura et al. SLC6A and SLC16A family of transporters: contribution to transport of creatine and creatine precursors in creatine biosynthesis and distribution
Lang et al. Alcohol-induced IGF-I resistance is ameliorated in mice deficient for mitochondrial branched-chain aminotransferase
Cui et al. Effects of dietary arginine supplementation on protein turnover and tissue protein synthesis in scald-burn rats
WO2020209059A1 (en) Pharmaceutical composition for treating hyperammonemia
Schjelderup et al. Treatment experience in two adults with creatinfe transporter deficiency
EP1084704B1 (en) Remedies for spinocerebellar ataxia and compositions for treating spinocerebellar ataxia
US11253495B2 (en) Pharmaceutical composition for treating excessive lactate production and acidemia
US20220323479A1 (en) Compositions and methods using adenosylcobalamin
EP4154888A1 (en) Pde5 inhibitor for use in the treatment of medical conditions associated with mitochondrial complex v deficiency
US20240100006A1 (en) Compositions and methods using at least one glycine or derivative thereof and at least one large neutral amino acid and/or cationic amino acid or precursor thereof
US9408865B2 (en) Treatment of huntington'S disease
US20050070606A1 (en) Pharmaceutical agent for mitochondrial disorders
US20120316121A1 (en) Materials and Methods for Modulating Arginine Metabolism
Antošová et al. Therapeutic Uses of Creatine: New Possibilities
Mulla et al. Nutritional Management for Maple Syrup Urine Disease
Martinelli Disorders leading to an impairment of the urea cycle and hyperammonemia
Allen Influence of Chronic Creatine Supplementation on Neurogenesis, Synaptic Plasticity and Affective Behavior: Implications for Sex-Specific Differences
Rathman Effects of oral carbamazepine administration on biotin metabolism in rats

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788239

Country of ref document: EP

Kind code of ref document: A1