WO2020209053A1 - Position estimating method, position estimating system, position estimating server, and position estimating program - Google Patents

Position estimating method, position estimating system, position estimating server, and position estimating program Download PDF

Info

Publication number
WO2020209053A1
WO2020209053A1 PCT/JP2020/013140 JP2020013140W WO2020209053A1 WO 2020209053 A1 WO2020209053 A1 WO 2020209053A1 JP 2020013140 W JP2020013140 W JP 2020013140W WO 2020209053 A1 WO2020209053 A1 WO 2020209053A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinates
rtt
rssi
position estimation
terminal station
Prior art date
Application number
PCT/JP2020/013140
Other languages
French (fr)
Japanese (ja)
Inventor
阿部 直人
瀬下 仁志
宏志 小西
真道 細田
寛 坂本
智明 小川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Publication of WO2020209053A1 publication Critical patent/WO2020209053A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location

Definitions

  • the present invention relates to a position estimation method, a position estimation system, a position estimation server, and a position estimation program for estimating the position of a wireless terminal station based on the known positions of a plurality of antennas.
  • the position of the wireless terminal station is estimated from the round-trip delay time RTT (Round Trip Time) and received signal strength RSSI (Received Signal Strength Indicator) between multiple antennas whose positions are known and the terminal.
  • RTT Round Trip Time
  • RSSI Receiveived Signal Strength Indicator
  • Non-Patent Document 1 the position estimation formula by RTT and the position estimation formula by RSSI are completely independent, and each is a method of obtaining coordinates, and two types of coordinates with different accuracy can be obtained. Furthermore, the calculation process was completely independent, and the position estimation calculation could not be integrated in consideration of the accuracy of both. Further, in order to obtain one position estimation result, it was necessary to obtain the two coordinates separately and then integrate the coordinates.
  • Non-Patent Document 1 does not have a specific formula or calculation method for estimating the position in two or three dimensions.
  • RTT When estimating the 3D position using RTT, it is easy to think of the position estimation by applying the GPS calculation method, but the specific formula and calculation method for estimating the 3D position using RSSI Is not shown. Further, neither RTT / RSSI nor a specific formula or calculation method for estimating the two-dimensional position is shown.
  • Non-Patent Document 1 shows a method using a locus in addition to using a GPS calculation method, and states that when estimating a two-dimensional position by RTT, the intersection of two hyperbolas may be obtained.
  • the number of antennas is 3 or more, the number of hyperbolas is 2 or more, and there may be a case where there is no intersection where all the hyperbolas intersect. In that case, the position cannot be estimated.
  • the number of antennas is 4 or more, the number of hyperboloids rotating in two leaves is 3 or more, and there is no point where all the hyperboloids intersect. In that case, the position could not be estimated.
  • RSSI if the number of antennas is large, there may be a case where all the circles or spheres do not intersect, and in that case, the position cannot be estimated.
  • the coordinates of the position estimation result may deviate significantly, and the coordinates outside the range in which the terminal can move (exist) may be output.
  • Non-Patent Document 1 uses a distributed antenna, a cost for laying a coaxial cable or the like between the known position antenna and the AP is required.
  • An object of the present invention is to provide a position estimation method, a position estimation system, a position estimation server, and a position estimation program capable of accurately estimating the position of a wireless terminal station using RTT and / and RSSI.
  • the first invention transmits and receives a measurement signal and a response signal between a radio station having a plurality of known antennas installed at different known positions and a radio terminal station having a terminal antenna, and delays the round trip.
  • Step 1 to obtain the statistical processing RTT by performing statistical processing for each antenna step 2 to calculate the coordinates of the wireless terminal station from the statistical processing RTT and output as instantaneous value coordinates, and vibration below the threshold value of the instantaneous value coordinates.
  • Step 3 of removing minutes and converting instantaneous value coordinates to stabilized coordinates within a range that does not exceed the threshold for vibrations above the threshold, and round-trip averaging of the stabilized coordinates to output statistical processing stabilized coordinates. Step 4 and the like.
  • a measurement signal and a response signal are transmitted and received between a radio station having a plurality of known antennas installed at different known positions and a radio terminal station having a terminal antenna, and the received radio wave thereof.
  • Step 1 to obtain statistical processing RSSI by performing statistical processing for each antenna step 2 to calculate the coordinates of the wireless terminal station from statistical processing RSSI and output as instantaneous value coordinates, and vibration below the threshold value of instantaneous value coordinates.
  • a third invention is a position estimation system that estimates the position of a radio terminal station by the position estimation methods of the first and second inventions, in which RTT and / and are measured by a radio station having a plurality of n known antennas, respectively.
  • the RSSI is transferred to the position estimation server, and the position estimation server calculates the statistical processing stabilization coordinates to obtain the position of the wireless terminal station.
  • a fourth aspect of the present invention is a position estimation system for estimating the position of a wireless terminal station by the position estimation method of the first to second inventions, wherein a plurality of n known antennas are cables of a known length from a wireless base station. It is a distributed antenna distributed via the radio base station, and the RTT and / and RSSI for each distributed antenna measured by the radio base station are transferred to the position estimation server, and the statistical processing stabilization coordinates are calculated by the position estimation server.
  • the configuration is to find the position of the wireless terminal station.
  • a fifth invention is a position estimation server that estimates the position of a wireless terminal station by the position estimation method of the first to second inventions, and RTT and / and are measured by a radio station having a plurality of n known antennas, respectively.
  • the RSSI is transferred, the statistical processing stabilization coordinates are calculated, and the position of the wireless terminal station is obtained.
  • the position estimation program of the sixth invention causes the computer to execute the process executed by the position estimation server of the fifth invention, calculates the statistical processing stabilization coordinates, and obtains the position of the wireless terminal station.
  • the present invention can accurately estimate the position of a wireless terminal station using RTT and / and RSSI.
  • concrete position estimation can be performed in two dimensions and three dimensions.
  • the coordinates of the position estimation result will not be significantly deviated by taking the moving average of the stabilized coordinates by the coordinate adjustment unit.
  • FIG. 1 shows an overall configuration example of the position estimation system of the present invention.
  • a measurement signal and a response signal are exchanged between two or more known antennas 11 of a radio station 10 whose position is known and a terminal antenna 21 of a radio terminal station 20 whose position is unknown, and RTT or Measure RSSI or both.
  • the measured values are collected from each radio station 10 to the position estimation server 30 via the network.
  • the position estimation server 30 performs position estimation calculation, and calculates and estimates the positions of the wireless terminal station 20 and the terminal antenna 21.
  • FIG. 2 shows a configuration example of the radio station 10 in the present invention.
  • the radio station 10 includes a signal transmitting unit 12 and a signal receiving unit 13 connected to a known antenna 11, an RTT measuring unit 14 and an RSSI measuring unit 15 connected to the signal receiving unit 13, and a clock 16.
  • the position estimation server 30 is connected to the measurement unit 14 and the RSSI measurement unit 15.
  • FIG. 3 shows a configuration example of the wireless terminal station 20 in the present invention.
  • the wireless terminal station 20 includes a signal receiving unit 22, a signal transmitting unit 23, a control unit 24, and a clock 25, if necessary, connected to the terminal antenna 21.
  • FIG. 4 shows Example 1 of the sequence of the measurement signal and the response signal.
  • a measurement signal is transmitted from the radio station 10 to the radio terminal station 20, and the radio terminal station 20 returns a response signal to the radio station.
  • a wireless LAN action frame or management frame can be used for the measurement signal. Since the wireless terminal station 20 that has received them returns ACK, this can be used as a response signal. Of course, other types of frames such as data frames may be used for the measurement signal and the response signal. In addition to the wireless LAN, other wireless communication methods capable of exchanging the measurement signal and the response signal may be used.
  • the radio station 10 records the time t1 using the clock 16 when transmitting the measurement signal from the RTT measurement unit 14 via the signal transmission unit 12.
  • the wireless terminal station 20 transmits a response signal from the signal transmitting unit 23.
  • the clock 25 may be used to record the reception time t2 of the measurement signal and the transmission time t3 of the response signal.
  • the radio station 10 receives the response signal to the signal receiving unit 13
  • the RTT measuring unit 14 records the time t4 using the clock 16.
  • the RTT measurement unit 14 can obtain the RTT including the terminal delay time (t3-t2), which is the delay time of the wireless terminal station 20, by calculating (t4-t1). This is called rawRTT. When measuring only rawRTT, the clock 25 of the wireless terminal station 20 is unnecessary.
  • the wireless terminal station 20 is equipped with a clock 25 and can record t2 and t3, a method such as placing the terminal delay time (t3-t2) or t2 and t3 itself on the response signal or on another signal. May be transmitted to the radio station 10. Then, by calculating ((t4-t1)-(t3-t2)), the RTT excluding the terminal delay time can be obtained. This is referred to as a no-delay RTT.
  • FIG. 5 shows Example 2 of the sequence of the measurement signal and the response signal.
  • FTM Freine Timing Measurement
  • the RTT measurement unit 14 transmits an Initial FTM Request from the signal transmission unit 12 to the radio terminal station 20 as an initiator, and transmits the measurement signal to the radio terminal station 20 a specified number of times. Request.
  • the signal receiving unit 22 receives the Initial FTM Request
  • the wireless terminal station 20 starts the operation of the control unit 24 as a responder.
  • the wireless terminal station 20 transmits FTM1 as the first measurement signal from the signal transmission unit 23, and the control unit 24 records the transmission time as t1 using the clock 25.
  • the radio station 10 receives FTM1, it returns ACK as a response signal.
  • the RTT measurement unit 14 uses the clock 16 to record the reception time as t2 and the transmission time as t3.
  • the wireless terminal station 20 Upon receiving the ACK, the wireless terminal station 20 transmits the next measurement signal FTM2. At this time, the control unit 24 uses the clock 25 to record the reception time t4 and the transmission time t1'. The previous transmission time t1 and reception time t4 are included in the second and subsequent measurement signals.
  • the radio station 10 and the radio terminal station 20 record the transmission / reception time and the measurement signal of the previous time (t1, t4). ) Grant.
  • the radio station 10 can receive the measurement signal including the previous (t1, t4), and together with the previous reception time t2 and transmission time t3 recorded by the RTT measurement unit 14, the (((t1, t4) By calculating t4-t1)-(t3-t2)), it is possible to obtain a non-delayed RTT in the round trip between the previous measurement signal and the response signal.
  • the directions of the measurement signal and the response signal of the sequence of FIG. 4 are opposite to each other, but the radio station 10 triggers the non-delayed RTT between the radio station 10 and the radio terminal station 20. Can be measured.
  • the plurality of sets of radio stations 10 and known antennas 11 in FIG. 1 are combined with one radio base station 40 and a cable as shown in FIG. It may be replaced with a plurality of distributed antennas 42 connected via 41.
  • the measurement value equivalent to the configuration as shown in FIG. 1 can be obtained, and the same position can be obtained.
  • An estimation calculation method can be used.
  • the radio station 10 or radio base station 40 can measure part or all of raw RTT, no-delay RTT, and RSSI, and this can be measured by the location estimation server via the network. Tell 30.
  • FIG. 7 shows a configuration example of the position estimation server 30 in the present invention.
  • the position estimation server 30 includes a measured value statistical processing unit 31, a coordinate calculation unit 32, a coordinate stabilization unit 33, and a coordinate adjustment unit 34 connected to the radio station 10.
  • (2.1) Measured value statistical processing unit 31 Since the wireless terminal station 20 not only processes the measurement signal and the response signal but also performs other processes at the same time, the terminal delay time varies depending on the status of the other processes. Therefore, in the case of a configuration in which only raw RTT can be measured, the measured value statistical processing unit 31 performs statistical processing for each known antenna 11 to obtain a statistical processing RTT from which variations have been removed by methods such as removal of outliers, moving average, and regression. You may. In the case of non-delayed RTT, since the terminal delay time is not included and the variation is small, it is optional to perform statistical processing. It is optional to perform statistical processing on RSSI as well.
  • the coordinates of the known antenna i are (x i , y i ) in the case of two dimensions and (x i , y i , z i ) in the case of three dimensions. These are known and the unit of coordinates is m. Let trti [s] be the RTT measured with the known antenna i. Let RSSI i [dBm] be the RSSI measured by the known antenna i.
  • the cable length, or other measured values for each known antenna i correct it in advance. For example, if the cable length to which the known antenna i is connected is longer than that of other known antennas, the cable delay and cable loss will be larger than those of other known antennas. Therefore, subtract the round trip of the cable delay from trti to obtain another known antenna. Corrects the known antenna conditions equivalent to t rti is obtained by adding the cable loss in RSSI i condition equivalent RSSI i other known antenna previously performed correction obtained.
  • the coordinates of the terminal antenna 21 are (x s , y s ) in the case of two dimensions and (x s , y s , z s ) in the case of three dimensions. These are unknown and the unit of coordinates is m.
  • the wavelength of the radio wave used for wireless communication is ⁇ [m]. This is known because the frequency is determined once the channel is determined.
  • RTT evaluation function trti which is the RTT measured by the known antenna i, is the round-trip time, but the distance equivalent to this one-way distance is defined as the pseudo distance l pi [m].
  • l pi ct rti / 2 And. This is a value that can be calculated from the measured value, but since it is calculated based on tr ti including the delay time t d , it is longer than the true distance l i between the known antenna i and the terminal antenna 21. ing.
  • the unknowns to be obtained are three of the coordinates x s , y s and l d of the terminal antenna 21 in the case of two dimensions, and the coordinates x s , y s , z s and l d of the terminal antenna 21 in the case of three dimensions. There will be four.
  • three variables x, y, l in the case of two dimensions and four variables x, y, z, l in the case of three dimensions are used.
  • the distance between the coordinates and the known antenna i estimates, in the case of 2-dimensional d i (x, y) In the case of three dimensions, di (x, y, z) Will be.
  • the estimated value of the true distance which can be obtained from the estimated value l of the difference between the pseudo distance and the true distance, is l pi -l Will be. If each estimate is correct, they match.
  • f ti for evaluating the estimated value as follows.
  • f ti (x, y, l) d i (x, y) - (l pi -l)
  • f ti (x, y, z, l) d i (x, y, z) - (l pi -l)
  • r B ⁇ / (4 ⁇ ) ⁇ P B ⁇ (1 / ⁇ )
  • R i PRESIi ⁇ (-1 / ⁇ )
  • the coordinates x s , y s and r B of the terminal antenna 21 are three, and when three-dimensional, the coordinates x s , y s , z of the terminal antenna 21 are obtained. There are four, s and r B.
  • s and r B Consider searching for these unknowns to find the coordinates of the terminal antenna.
  • three variables x, y, r in the case of two dimensions and four variables x, y, z, r in the case of three dimensions are used.
  • the RSSI evaluation function fr which evaluates the estimated value in the same way as RTT, is defined as follows.
  • f ri (x, y, r) d i (x, y) -rR i
  • f ri (x, y, z, r) d i (x, y, z) -rR i
  • Range evaluation function Define a range evaluation function to give a penalty to the evaluation value when the estimated value such as coordinates is out of the movable (existing) range of the terminal.
  • the range evaluation function is zero when the estimated value is within the range, and when it is out of the range, the value increases according to the degree of deviation.
  • the estimated value is x min ⁇ x ⁇ x max.
  • the solution can be obtained by Newton's method which also uses the least squares method. In that case, more accurate position estimation is possible by using the weighted least squares method in which the reliability w of the RTT measurement value for each known antenna is weighted and weighted for each corresponding equation. ..
  • the solution can be obtained by Newton's method which also uses the least squares method.
  • a force that keeps the unknown within the specified range works, making it easier to select a solution within the range and not greatly deviating.
  • the equation of the RTT evaluation function more accurate position estimation is possible by using the weighted least squares method, which uses the reliability w of the RTT measurement value of the corresponding known antenna as a weight.
  • weights can also be used for the equation of the range evaluation function, and the strength of the force that tries to keep the coordinates to be the solution within the range can be set by the relative magnitude relation with other weights.
  • the simultaneous equations are non-linear, so it is difficult to solve them analytically, and the solution can be obtained using Newton's method. If it becomes a dominant decision system, a solution can be obtained by using the least squares method together. Further, by using the weighted least squares method weighted by the reliability w of the RSSI measurement value for each known antenna, more accurate position estimation becomes possible.
  • the solution can be obtained by Newton's method which also uses the least squares method.
  • a force is exerted so that the unknown is within the specified range, and the solution within the range is easily selected and does not deviate significantly.
  • the weighted least squares method which uses the reliability w of the RSSI measurement value of the corresponding known antenna as the weight.
  • weights can also be used for the equation of the range evaluation function, and the strength of the force that tries to keep the coordinates to be the solution within the range can be set by the relative magnitude relation with other weights.
  • the solution can be found by Newton's method, which also uses the least squares method. Furthermore, for the equation of the RTT evaluation function, the reliability w of the RTT measurement value of the corresponding known antenna is used as a weight, and for the equation of the RSSI evaluation function, the reliability w of the RSSI measurement value of the corresponding known antenna is used as a weight. By using the weighted least squares method, which is used, more accurate position estimation becomes possible. Further, by increasing or decreasing the weight of RTT and the weight of RSSI relatively, it is possible to adjust which measured value is emphasized.
  • the reliability of the RTT measurement value of the known antenna i is the weight w ti
  • the reliability of the RSSI measurement value is the weight w ri
  • the weight of the range evaluation function is w L.
  • the error evaluation function with that term deleted should be used.
  • the minimum may be searched by the Newton method, the search may be performed by a quasi-Newton method algorithm such as the L-BFGS method, or the search may be performed by Bayesian optimization.
  • All parameters may be searched at the time of search, but there is also a method of not searching for l or r by finding l or r that minimizes the error evaluation function from the estimated values of the coordinates.
  • the estimated value of the coordinates is (x ⁇ , y ⁇ ) in two dimensions, it is sufficient to take the partial differential of l or r of the error evaluation function and find l or r at which it becomes zero.
  • x ⁇ and y ⁇ are x hat and y hat. That is,
  • Coordinate stabilization unit 33 Even if the terminal antenna 21 is stationary, the coordinates obtained by the coordinate calculation unit 32 (hereinafter, instantaneous value coordinates) may vibrate finely. Therefore, the coordinate stabilizing unit 33 obtains the coordinates (hereinafter referred to as the stabilizing coordinates) from which fine vibrations have been removed.
  • the stabilization coordinates are maintained to absorb the fine vibration of the terminal antenna 21, and the threshold value is set. It can be stabilized by updating the stabilization coordinates by regarding it as a change in position only when it exceeds.
  • the instantaneous value coordinates may be passed through an LPF or a Kalman filter to remove fine vibrations as the stabilized coordinates.
  • the coordinate stabilization unit 33 converts the instantaneous value coordinates to the stabilized coordinates, the effect is unavoidable.
  • the instantaneous value coordinates change greatly from the threshold value and the stabilization coordinates also change greatly, and it is estimated as a position that suddenly moves several meters. Will be done. Therefore, it is necessary to adjust the parameters of the LPF and the Kalman filter used as the coordinate stabilizing unit 33, and further, learning data is also required.
  • the coordinate adjusting unit 34 performs moving average processing on the stabilized coordinates obtained by the coordinate stabilizing unit 33, and statistically processes the average value of the stabilized coordinates for the past M times. Calculate the stabilization coordinates.
  • FIG. 8 shows an example of the positioning result calculated using the data measured in the test environment.
  • the test environment is the vicinity of the point A on the return route when reciprocating between the point A as the starting point near the antenna A and the point B near the antenna B 6 m away from the point A.
  • the stabilized coordinate values are delayed according to the length of the moving average interval, and the changes are averaged to reduce the accuracy of the position.
  • the stabilized coordinate values respond to sudden changes in radio waves due to sudden movements such as starting to move or turning around, the intervals between the points in the graph are widened, and it is as if the wireless terminal station 20 has moved significantly. Looks like.
  • each part of the position estimation server 30 described above can be realized by a computer program that operates the computer.
  • the computer program can be stored on a computer-readable storage medium or provided over a network.
  • Radio station 11 Known antenna 12 Signal transmitter 13 Signal receiver 14 RTT measurement unit 15 RSSI measurement unit 16 Clock 20 Wireless terminal station 21 Terminal antenna 22 Signal receiver 23 Signal transmitter 24 Control unit 25 Clock 30 Position estimation server 31 Measurement Value statistics processing unit 32 Coordinate calculation unit 33 Coordinate stabilization unit 34 Coordinate adjustment unit 40 Radio base station 41 Cable 42 Distributed antenna

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

A position estimating method for transmitting and receiving a measurement signal and a response signal between a wireless station provided with a plurality of (n) known antennas installed at known positions different from each other and a wireless terminal station provided with a terminal antenna, and measuring a round-trip time [RTT] or a received signal strength indication [RSSI] to estimate the position of the wireless terminal station, wherein the method comprises, for RTT/RSSI measurement values measured between each known antenna and the wireless terminal station: a step 1 for performing statistical processing for each antenna to obtain statistically processed RTT/RSSI; a step 2 for calculating instantaneous value coordinates of the wireless terminal station from the statistically processed RTT/RSSI; a step 3 for obtaining stabilized coordinates from which the vibration components below the threshold for the instantaneous value coordinates have been removed; and a step 4 for performing a moving average process on the stabilized coordinates and outputting statistically processed stabilized coordinates.

Description

位置推定方法、位置推定システム、位置推定サーバおよび位置推定プログラムPosition estimation method, position estimation system, position estimation server and position estimation program
 本発明は、複数のアンテナの既知の位置に基づいて無線端末局の位置を推定する位置推定方法、位置推定システム、位置推定サーバおよび位置推定プログラムに関する。 The present invention relates to a position estimation method, a position estimation system, a position estimation server, and a position estimation program for estimating the position of a wireless terminal station based on the known positions of a plurality of antennas.
 分散アンテナを利用して、位置が既知である複数のアンテナと端末の間の往復遅延時間RTT(Round Trip Time )や受信電波強度RSSI(Received Signal Strength Indicator)から、無線端末局の位置を推定する方法がある(非特許文献1)。 Using a distributed antenna, the position of the wireless terminal station is estimated from the round-trip delay time RTT (Round Trip Time) and received signal strength RSSI (Received Signal Strength Indicator) between multiple antennas whose positions are known and the terminal. There is a method (Non-Patent Document 1).
 非特許文献1は、RTTによる位置推定式とRSSIによる位置推定式が完全に独立しており、それぞれ座標を求める方法になっており、精度が異なった2種類の座標が得られる。さらに、計算過程も完全に独立しており、双方の精度を考慮して位置推定計算を統合することができなかった。また、1つの位置推定結果を得るには、2つの座標をそれぞれ別々に求めてから座標を統合する必要があった。 In Non-Patent Document 1, the position estimation formula by RTT and the position estimation formula by RSSI are completely independent, and each is a method of obtaining coordinates, and two types of coordinates with different accuracy can be obtained. Furthermore, the calculation process was completely independent, and the position estimation calculation could not be integrated in consideration of the accuracy of both. Further, in order to obtain one position estimation result, it was necessary to obtain the two coordinates separately and then integrate the coordinates.
 非特許文献1には2次元または3次元で位置推定する具体的な式や計算方法がない。RTTを使って3 次元位置推定する場合は、GPSの計算方法を応用することで位置推定することも容易に考えることができるが、RSSIを使って3次元位置推定する具体的な式や計算方法が示されていない。また、RTT/RSSIともに2次元位置推定する具体的な式や計算方法が示されていない。 Non-Patent Document 1 does not have a specific formula or calculation method for estimating the position in two or three dimensions. When estimating the 3D position using RTT, it is easy to think of the position estimation by applying the GPS calculation method, but the specific formula and calculation method for estimating the 3D position using RSSI Is not shown. Further, neither RTT / RSSI nor a specific formula or calculation method for estimating the two-dimensional position is shown.
 非特許文献1のRSSIによる位置推定式では、空間の伝搬損失係数αを実際の空間に合わせてあらかじめ計測するなどして決定しておく必要がある。 In the position estimation formula by RSSI of Non-Patent Document 1, it is necessary to determine the propagation loss coefficient α of the space by measuring it in advance according to the actual space.
 非特許文献1では、GPSの計算方法を用いる以外に、軌跡を使った方法が示されており、RTTで2次元位置推定する際には、2つの双曲線の交点を求めればよいとしている。しかし、アンテナ数が3以上の場合には双曲線が2つ以上となり、すべての双曲線が交わる交点が存在しない場合が発生し得ることとなり、その場合は位置推定できなかった。同様に、RTTで軌跡を使って3次元位置推定する際には、アンテナ数が4以上で二葉回転双曲面が3つ以上となり、すべての双曲面が交わる点が存在しない場合が発生し得ることとなり、その場合は位置推定できなかった。RSSIの場合でも同様に、アンテナ数が多いとすべての円もしくは球が交わる点が存在しない場合が発生し得ることとなり、その場合は位置推定できなかった。 Non-Patent Document 1 shows a method using a locus in addition to using a GPS calculation method, and states that when estimating a two-dimensional position by RTT, the intersection of two hyperbolas may be obtained. However, when the number of antennas is 3 or more, the number of hyperbolas is 2 or more, and there may be a case where there is no intersection where all the hyperbolas intersect. In that case, the position cannot be estimated. Similarly, when estimating the three-dimensional position using the locus in RTT, there may be cases where the number of antennas is 4 or more, the number of hyperboloids rotating in two leaves is 3 or more, and there is no point where all the hyperboloids intersect. In that case, the position could not be estimated. Similarly, in the case of RSSI, if the number of antennas is large, there may be a case where all the circles or spheres do not intersect, and in that case, the position cannot be estimated.
 RTT/RSSIの計測値に誤差があった場合、位置推定結果の座標が大きく外れてしまい、端末が移動(存在)できる範囲よりも外側の座標が出力されてしまうことがあった。 If there is an error in the RTT / RSSI measurement value, the coordinates of the position estimation result may deviate significantly, and the coordinates outside the range in which the terminal can move (exist) may be output.
 非特許文献1は、分散アンテナを使用しているため、位置既知アンテナとAP間に同軸ケーブルなどを敷設するためのコストが必要であった。 Since Non-Patent Document 1 uses a distributed antenna, a cost for laying a coaxial cable or the like between the known position antenna and the AP is required.
 本発明は、RTTまたは/およびRSSIを用いて無線端末局の位置を精度よく推定することができる位置推定方法、位置推定システム、位置推定サーバおよび位置推定プログラムを提供することを目的とする。 An object of the present invention is to provide a position estimation method, a position estimation system, a position estimation server, and a position estimation program capable of accurately estimating the position of a wireless terminal station using RTT and / and RSSI.
 第1の発明は、互いに異なる既知の位置に設置された複数n個の既知アンテナを備える無線局と、端末アンテナを備える無線端末局との間で測定信号と応答信号を送受信し、その往復遅延時間であるRTTを測定して該無線端末局の位置を推定する位置推定方法において、既知アンテナi(i=1,2,…,n)と無線端末局との間で測定されるRTT計測値について、アンテナ毎に統計処理を行って統計処理RTTを求めるステップ1と、統計処理RTTから無線端末局の座標を計算し、瞬時値座標として出力するステップ2と、瞬時値座標の閾値未満の振動分を除去し、閾値以上の振動分に対して閾値を超えない範囲で瞬時値座標を安定化座標に変換するステップ3と、安定化座標について移動平均処理を行って統計処理安定化座標を出力するステップ4とを有する。 The first invention transmits and receives a measurement signal and a response signal between a radio station having a plurality of known antennas installed at different known positions and a radio terminal station having a terminal antenna, and delays the round trip. In the position estimation method for estimating the position of the wireless terminal station by measuring the time RTT, the RTT measurement value measured between the known antenna i (i = 1, 2, ..., N) and the wireless terminal station. Step 1 to obtain the statistical processing RTT by performing statistical processing for each antenna, step 2 to calculate the coordinates of the wireless terminal station from the statistical processing RTT and output as instantaneous value coordinates, and vibration below the threshold value of the instantaneous value coordinates. Step 3 of removing minutes and converting instantaneous value coordinates to stabilized coordinates within a range that does not exceed the threshold for vibrations above the threshold, and round-trip averaging of the stabilized coordinates to output statistical processing stabilized coordinates. Step 4 and the like.
 第2の発明は、互いに異なる既知の位置に設置された複数n個の既知アンテナを備える無線局と、端末アンテナを備える無線端末局との間で測定信号と応答信号を送受信し、その受信電波強度であるRSSIを測定して該無線端末局の位置を推定する位置推定方法において、既知アンテナi(i=1,2,…,n)と無線端末局との間で測定されるRSSI計測値について、アンテナ毎に統計処理を行って統計処理RSSIを求めるステップ1と、統計処理RSSIから無線端末局の座標を計算し、瞬時値座標として出力するステップ2と、瞬時値座標の閾値未満の振動分を除去し、閾値以上の振動分に対して閾値を超えない範囲で瞬時値座標を安定化座標に変換するステップ3と、安定化座標について移動平均処理を行って統計処理安定化座標を出力するステップ4とを有する。 In the second invention, a measurement signal and a response signal are transmitted and received between a radio station having a plurality of known antennas installed at different known positions and a radio terminal station having a terminal antenna, and the received radio wave thereof. In the position estimation method for estimating the position of the wireless terminal station by measuring the intensity RSSI, the RSSI measurement value measured between the known antenna i (i = 1, 2, ..., N) and the wireless terminal station. Step 1 to obtain statistical processing RSSI by performing statistical processing for each antenna, step 2 to calculate the coordinates of the wireless terminal station from statistical processing RSSI and output as instantaneous value coordinates, and vibration below the threshold value of instantaneous value coordinates. Step 3 of removing minutes and converting instantaneous value coordinates to stabilized coordinates within a range that does not exceed the threshold for vibrations above the threshold, and moving averaging processing of the stabilized coordinates to output statistical processing stabilized coordinates. It has step 4 and the like.
 第3の発明は、第1~第2の発明の位置推定方法により無線端末局の位置を推定する位置推定システムにおいて、複数n個の既知アンテナを備える無線局でそれぞれ測定されるRTTまたは/およびRSSIを位置推定サーバに転送し、該位置推定サーバで統計処理安定化座標を算出して無線端末局の位置を求める構成である。 A third invention is a position estimation system that estimates the position of a radio terminal station by the position estimation methods of the first and second inventions, in which RTT and / and are measured by a radio station having a plurality of n known antennas, respectively. The RSSI is transferred to the position estimation server, and the position estimation server calculates the statistical processing stabilization coordinates to obtain the position of the wireless terminal station.
 第4の発明は、第1~第2の発明の位置推定方法により無線端末局の位置を推定する位置推定システムにおいて、複数n個の既知アンテナは、無線基地局から既知の長さのケーブルを介して分散配置された分散アンテナであり、該無線基地局で測定される分散アンテナごとのRTTまたは/およびRSSIを位置推定サーバに転送し、該位置推定サーバで統計処理安定化座標を算出して無線端末局の位置を求める構成である。 A fourth aspect of the present invention is a position estimation system for estimating the position of a wireless terminal station by the position estimation method of the first to second inventions, wherein a plurality of n known antennas are cables of a known length from a wireless base station. It is a distributed antenna distributed via the radio base station, and the RTT and / and RSSI for each distributed antenna measured by the radio base station are transferred to the position estimation server, and the statistical processing stabilization coordinates are calculated by the position estimation server. The configuration is to find the position of the wireless terminal station.
 第5の発明は、第1~第2の発明の位置推定方法により無線端末局の位置を推定する位置推定サーバにおいて、複数n個の既知アンテナを備える無線局でそれぞれ測定されるRTTまたは/およびRSSIが転送され、統計処理安定化座標を算出して無線端末局の位置を求める構成である。 A fifth invention is a position estimation server that estimates the position of a wireless terminal station by the position estimation method of the first to second inventions, and RTT and / and are measured by a radio station having a plurality of n known antennas, respectively. The RSSI is transferred, the statistical processing stabilization coordinates are calculated, and the position of the wireless terminal station is obtained.
 第6の発明の位置推定プログラムは、第5の発明の位置推定サーバが実行する処理をコンピュータに実行させ、統計処理安定化座標を算出して無線端末局の位置を求める。 The position estimation program of the sixth invention causes the computer to execute the process executed by the position estimation server of the fifth invention, calculates the statistical processing stabilization coordinates, and obtains the position of the wireless terminal station.
 本発明は、RTTまたは/およびRSSIを用いて無線端末局の位置を精度よく推定することができる。また、2次元、3次元で具体的な位置推定ができる。 The present invention can accurately estimate the position of a wireless terminal station using RTT and / and RSSI. In addition, concrete position estimation can be performed in two dimensions and three dimensions.
 また、RTTまたは/およびRSSIの計測値に誤差があっても、座標調整部による安定化座標の移動平均をとることにより、位置推定結果の座標が大きく外れてしまうことがなくなる。 Further, even if there is an error in the measured values of RTT or / and RSSI, the coordinates of the position estimation result will not be significantly deviated by taking the moving average of the stabilized coordinates by the coordinate adjustment unit.
 分散アンテナを使用せずに位置推定する構成を採ることも可能で、その場合は位置既知アンテナとAP間にケーブルを敷設する必要がなくなり、コストを低減できる。 It is also possible to adopt a configuration that estimates the position without using a distributed antenna, in which case it is not necessary to lay a cable between the known position antenna and the AP, and the cost can be reduced.
本発明の位置推定システムの全体構成例を示す図である。It is a figure which shows the whole structure example of the position estimation system of this invention. 無線局10の構成例を示す図である。It is a figure which shows the configuration example of a radio station 10. 無線端末局20の構成例を示す図である。It is a figure which shows the configuration example of a wireless terminal station 20. 測定信号と応答信号のシーケンスの例1を示す図である。It is a figure which shows the example 1 of the sequence of the measurement signal and the response signal. 測定信号と応答信号のシーケンスの例2を示す図である。It is a figure which shows the example 2 of the sequence of the measurement signal and the response signal. 本発明の位置推定システムの他の全体構成例を示す図である。It is a figure which shows the other overall configuration example of the position estimation system of this invention. 位置推定サーバ30の構成例を示す図である。It is a figure which shows the configuration example of the position estimation server 30. 試験環境で計測したデータを用いて算出された位置測位結果の例を示す図である。It is a figure which shows the example of the positioning result calculated using the data measured in the test environment.
 図1は、本発明の位置推定システムの全体構成例を示す。
 図1において、位置が既知である無線局10の既知アンテナ11が2本以上あり、位置が未知である無線端末局20の端末アンテナ21との間で測定信号および応答信号をやりとりし、RTTまたはRSSI、もしくはその両方を計測する。計測値は、各無線局10からネットワークを介して位置推定サーバ30へ集められる。位置推定サーバ30では、位置推定計算を行い、無線端末局20および端末アンテナ21の位置を計算して推定する。
FIG. 1 shows an overall configuration example of the position estimation system of the present invention.
In FIG. 1, a measurement signal and a response signal are exchanged between two or more known antennas 11 of a radio station 10 whose position is known and a terminal antenna 21 of a radio terminal station 20 whose position is unknown, and RTT or Measure RSSI or both. The measured values are collected from each radio station 10 to the position estimation server 30 via the network. The position estimation server 30 performs position estimation calculation, and calculates and estimates the positions of the wireless terminal station 20 and the terminal antenna 21.
 図2は、本発明における無線局10の構成例を示す。
 図2において、無線局10は、既知アンテナ11に接続される信号送信部12および信号受信部13、信号受信部13に接続されるRTT測定部14およびRSSI測定部15、時計16を備え、RTT測定部14およびRSSI測定部15に位置推定サーバ30が接続される。
FIG. 2 shows a configuration example of the radio station 10 in the present invention.
In FIG. 2, the radio station 10 includes a signal transmitting unit 12 and a signal receiving unit 13 connected to a known antenna 11, an RTT measuring unit 14 and an RSSI measuring unit 15 connected to the signal receiving unit 13, and a clock 16. The position estimation server 30 is connected to the measurement unit 14 and the RSSI measurement unit 15.
 図3は、本発明における無線端末局20の構成例を示す。
 図3において、無線端末局20は、端末アンテナ21に接続される信号受信部22および信号送信部23、制御部24、必要に応じて時計25を備える。
FIG. 3 shows a configuration example of the wireless terminal station 20 in the present invention.
In FIG. 3, the wireless terminal station 20 includes a signal receiving unit 22, a signal transmitting unit 23, a control unit 24, and a clock 25, if necessary, connected to the terminal antenna 21.
(1) RTT/RSSIの計測
(1.1) RTT/RSSI計測例1
 図4は、測定信号と応答信号のシーケンスの例1を示す。
 図4において、無線局10から無線端末局20に測定信号を送信し、無線端末局20が無線局に応答信号を返信する。
(1) RTT / RSSI measurement
(1.1) RTT / RSSI measurement example 1
FIG. 4 shows Example 1 of the sequence of the measurement signal and the response signal.
In FIG. 4, a measurement signal is transmitted from the radio station 10 to the radio terminal station 20, and the radio terminal station 20 returns a response signal to the radio station.
(1.1.1) 測定信号と応答信号
 測定信号には、無線LANのアクションフレームやマネジメントフレームを使うことができる。それらを受信した無線端末局20はACKを返すので、これを応答信号として使うことができる。もちろん測定信号や応答信号には、データフレームなどの他の種類のフレームを使ってもよい。無線LAN以外でも、測定信号と応答信号のやりとりができる他の無線通信方式を使ってもよい。
(1.1.1) Measurement signal and response signal A wireless LAN action frame or management frame can be used for the measurement signal. Since the wireless terminal station 20 that has received them returns ACK, this can be used as a response signal. Of course, other types of frames such as data frames may be used for the measurement signal and the response signal. In addition to the wireless LAN, other wireless communication methods capable of exchanging the measurement signal and the response signal may be used.
(1.1.2) RTT計測
 RTTを計測する場合、無線局10はRTT測定部14から信号送信部12を介して測定信号を送信する際に、時計16を用いてその時刻t1を記録する。無線端末局20は、制御部24により、信号受信部22が測定信号を受信したら、信号送信部23から応答信号を送信する。この際、時計25を使って測定信号の受信時刻t2および応答信号の送信時刻t3を記録してもよい。無線局10は、信号受信部13に応答信号を受信したら、RTT測定部14が時計16を用いてその時刻t4を記録する。
(1.1.2) RTT measurement When RTT is measured, the radio station 10 records the time t1 using the clock 16 when transmitting the measurement signal from the RTT measurement unit 14 via the signal transmission unit 12. When the signal receiving unit 22 receives the measurement signal by the control unit 24, the wireless terminal station 20 transmits a response signal from the signal transmitting unit 23. At this time, the clock 25 may be used to record the reception time t2 of the measurement signal and the transmission time t3 of the response signal. When the radio station 10 receives the response signal to the signal receiving unit 13, the RTT measuring unit 14 records the time t4 using the clock 16.
 RTT測定部14は、 (t4-t1) を計算することにより、無線端末局20の遅延時間である端末遅延時間 (t3-t2) を含むRTTを得ることができる。これを rawRTTとする。 rawRTTのみを計測する場合、無線端末局20の時計25は不要である。 The RTT measurement unit 14 can obtain the RTT including the terminal delay time (t3-t2), which is the delay time of the wireless terminal station 20, by calculating (t4-t1). This is called rawRTT. When measuring only rawRTT, the clock 25 of the wireless terminal station 20 is unnecessary.
 無線端末局20が時計25を備え、t2およびt3を記録することができる場合は、端末遅延時間 (t3-t2) 、もしくはt2およびt3そのものを応答信号に載せる、他の信号に載せるなどの方法で無線局10へ伝えてもよい。すると、((t4-t1) - (t3-t2))を計算することにより、端末遅延時間を除いたRTTを得ることができる。これを無遅延RTTとする。 If the wireless terminal station 20 is equipped with a clock 25 and can record t2 and t3, a method such as placing the terminal delay time (t3-t2) or t2 and t3 itself on the response signal or on another signal. May be transmitted to the radio station 10. Then, by calculating ((t4-t1)-(t3-t2)), the RTT excluding the terminal delay time can be obtained. This is referred to as a no-delay RTT.
(1.1.3) RSSI計測
 RSSIを計測する場合、無線局10はRSSI測定部15により信号受信部13が応答信号を受信した際のRSSIを取得する。
(1.1.3) RSSI measurement When measuring RSSI, the radio station 10 acquires RSSI when the signal receiving unit 13 receives the response signal by the RSSI measuring unit 15.
(1.2) RTT/RSSI計測例2
 図5は、測定信号と応答信号のシーケンスの例2を示す。ここでは、IEEE Std 802.11-2016のFTM(Fine Timing Measurement )を用いる。
(1.2) RTT / RSSI measurement example 2
FIG. 5 shows Example 2 of the sequence of the measurement signal and the response signal. Here, FTM (Fine Timing Measurement) of IEEE Std 802.11-2016 is used.
(1.2.1) RTT計測
 無線局10は、RTT測定部14がイニシエータとして信号送信部12からInitial FTM Request を無線端末局20へ送信し、無線端末局20に対して測定信号を指定回数送信するよう要求する。無線端末局20は、信号受信部22がInitial FTM Request を受信すると、制御部24がレスポンダとしての動作を開始する。無線端末局20は、信号送信部23から最初の測定信号としてFTM1を送信し、制御部24が時計25を使ってその送信時刻をt1として記録する。無線局10は、FTM1を受信すると応答信号としてACKを返す。このときRTT測定部14は時計16を使い受信時刻をt2、送信時刻をt3として記録する。無線端末局20はACKを受信すると、次の測定信号FTM2を送信する。このとき制御部24は時計25を使い受信時刻t4、送信時刻t1’を記録する。この2回目以降の測定信号には前回の送信時刻t1, 受信時刻t4を含める。
(1.2.1) In the RTT measurement radio station 10, the RTT measurement unit 14 transmits an Initial FTM Request from the signal transmission unit 12 to the radio terminal station 20 as an initiator, and transmits the measurement signal to the radio terminal station 20 a specified number of times. Request. When the signal receiving unit 22 receives the Initial FTM Request, the wireless terminal station 20 starts the operation of the control unit 24 as a responder. The wireless terminal station 20 transmits FTM1 as the first measurement signal from the signal transmission unit 23, and the control unit 24 records the transmission time as t1 using the clock 25. When the radio station 10 receives FTM1, it returns ACK as a response signal. At this time, the RTT measurement unit 14 uses the clock 16 to record the reception time as t2 and the transmission time as t3. Upon receiving the ACK, the wireless terminal station 20 transmits the next measurement signal FTM2. At this time, the control unit 24 uses the clock 25 to record the reception time t4 and the transmission time t1'. The previous transmission time t1 and reception time t4 are included in the second and subsequent measurement signals.
 以下同様に、最初の要求で指定された回数に達するまで測定信号と応答信号の往復が続き、無線局10と無線端末局20はそれぞれの送受信時刻の記録と測定信号へ前回の(t1, t4)付与を行う。これにより、無線局10は前回の(t1, t4)を含んだ測定信号を受信することができ、RTT測定部14で記録していた前回の受信時刻t2, 送信時刻t3とあわせて、((t4-t1) - (t3-t2))を計算することにより、前回の測定信号と応答信号の往復における無遅延RTTを求めることができる。 Similarly, the round trip between the measurement signal and the response signal continues until the number of times specified in the first request is reached, and the radio station 10 and the radio terminal station 20 record the transmission / reception time and the measurement signal of the previous time (t1, t4). ) Grant. As a result, the radio station 10 can receive the measurement signal including the previous (t1, t4), and together with the previous reception time t2 and transmission time t3 recorded by the RTT measurement unit 14, the (((t1, t4) By calculating t4-t1)-(t3-t2)), it is possible to obtain a non-delayed RTT in the round trip between the previous measurement signal and the response signal.
 ここで、本シーケンスは、図4のシーケンスの測定信号と応答信号の向きが逆であるが、無線局10がトリガーとなって、無線局10と無線端末局20との間の無遅延RTTを計測することができる。 Here, in this sequence, the directions of the measurement signal and the response signal of the sequence of FIG. 4 are opposite to each other, but the radio station 10 triggers the non-delayed RTT between the radio station 10 and the radio terminal station 20. Can be measured.
(1.2.2) RSSI計測
 RSSIを計測する場合、無線局10はRSSI測定部15により信号受信部13が測定信号FTM1,FTM2などを受信した際のRSSIを取得する。
(1.2.2) RSSI measurement When measuring RSSI, the radio station 10 acquires RSSI when the signal receiving unit 13 receives the measurement signals FTM1, FTM2, etc. by the RSSI measuring unit 15.
(1.3) 分散アンテナによる構成例
 図1のシステム構成は、無線局10の既知アンテナ11の位置を既知とし、無線端末局20の端末アンテナ21との間で測定信号および応答信号をやりとりしてRTTもしくはRSSIを計測したが、他の構成でも構わない。
(1.3) Configuration example using distributed antennas In the system configuration shown in FIG. 1, the position of the known antenna 11 of the radio station 10 is known, and the measurement signal and the response signal are exchanged with the terminal antenna 21 of the radio terminal station 20 to perform RTT. Alternatively, RSSI was measured, but other configurations may be used.
 例えば、既に分散アンテナが設置済みで新たなケーブル敷設コストがかからない場合は、図1の複数組の無線局10および既知アンテナ11を、図6に示すように、1台の無線基地局40とケーブル41を介して接続される複数の分散アンテナ42に置き換えてもよい。 For example, if a distributed antenna has already been installed and no new cable laying cost is incurred, the plurality of sets of radio stations 10 and known antennas 11 in FIG. 1 are combined with one radio base station 40 and a cable as shown in FIG. It may be replaced with a plurality of distributed antennas 42 connected via 41.
 この場合、ケーブル41を通過することによる損失および遅延を考慮して rawRTT、無遅延RTT、RSSIをそれぞれ補正することにより、図1のような構成と同等の計測値を得ることができ、同じ位置推定計算方法を用いることができる。 In this case, by correcting each of the raw RTT, the non-delayed RTT, and the RSSI in consideration of the loss and the delay due to passing through the cable 41, the measurement value equivalent to the configuration as shown in FIG. 1 can be obtained, and the same position can be obtained. An estimation calculation method can be used.
(1.4) RTT/RSSI計測まとめ
 以上の方法で、無線局10または無線基地局40は rawRTT、無遅延RTT、RSSIの一部または全部を計測することができ、これをネットワークを介して位置推定サーバ30へ伝える。
(1.4) Summary of RTT / RSSI measurement With the above method, the radio station 10 or radio base station 40 can measure part or all of raw RTT, no-delay RTT, and RSSI, and this can be measured by the location estimation server via the network. Tell 30.
(2) 位置推定
 図7は、本発明における位置推定サーバ30の構成例を示す。
 図7において、位置推定サーバ30は、無線局10に接続される測定値統計処理部31、座標計算部32、座標安定化部33、座標調整部34を備える。
(2) Position estimation FIG. 7 shows a configuration example of the position estimation server 30 in the present invention.
In FIG. 7, the position estimation server 30 includes a measured value statistical processing unit 31, a coordinate calculation unit 32, a coordinate stabilization unit 33, and a coordinate adjustment unit 34 connected to the radio station 10.
(2.1) 測定値統計処理部31
 無線端末局20は、測定信号や応答信号の処理だけを実施しているわけではなく、他の処理も同時に行っているため、他の処理の状況によって端末遅延時間にはバラツキが生じる。そこで、 rawRTTしか計測できない構成の場合は、測定値統計処理部31において既知アンテナ11毎に統計処理を行い、外れ値の除去、移動平均や回帰などの方法によりバラツキを取り除いた統計処理RTTを求めてもよい。無遅延RTTの場合は端末遅延時間が含まれておらずバラツキが小さいため、統計処理をする/しないは任意である。RSSIについても同様に統計処理をする/しないは任意である。
(2.1) Measured value statistical processing unit 31
Since the wireless terminal station 20 not only processes the measurement signal and the response signal but also performs other processes at the same time, the terminal delay time varies depending on the status of the other processes. Therefore, in the case of a configuration in which only raw RTT can be measured, the measured value statistical processing unit 31 performs statistical processing for each known antenna 11 to obtain a statistical processing RTT from which variations have been removed by methods such as removal of outliers, moving average, and regression. You may. In the case of non-delayed RTT, since the terminal delay time is not included and the variation is small, it is optional to perform statistical processing. It is optional to perform statistical processing on RSSI as well.
 測定値統計処理部31では、既知アンテナ11毎にRTT計測値やRSSI計測値の、精度の指標となる信頼性を計算してもよい。例えば、過去一定期間における計測回数が多ければその既知アンテナ11の計測値の信頼性が高い、過去一定期間の計測値の分散や標準偏差が小さければその既知アンテナ11の計測値の信頼性が高い、といった基準で計算することができる。また、既知アンテナ11毎の特性や場所、周囲の状況に応じて信頼性を補正することもできる。例えば、過去一定期間の計測回数をs回、標準偏差をσとして、既知アンテナ11毎の補正パラメータとして、計測回数の補正率をasize、補正オフセットをbsize、標準偏差の補正率をasigma 、標準偏差の補正オフセットをbsigma とすると、信頼性wは
  w=(asize・s+bsize)/(asigma・σ+bsigma
で求めることができる。
The measured value statistical processing unit 31 may calculate the reliability of the RTT measured value and the RSSI measured value as an index of accuracy for each known antenna 11. For example, if the number of measurements in the past fixed period is large, the reliability of the measured value of the known antenna 11 is high, and if the variance or standard deviation of the measured values in the past fixed period is small, the reliability of the measured value of the known antenna 11 is high. , Can be calculated. In addition, the reliability can be corrected according to the characteristics, location, and surrounding conditions of each known antenna 11. For example, the number of measurements in the past fixed period is s, the standard deviation is σ, the correction parameter for each known antenna 11 is a size , the correction offset is b size , and the standard deviation is a sigma. If the correction offset of the standard deviation is b sigma , the reliability w is w = (a size · s + b size ) / (a sigma · σ + b sigma ).
Can be obtained at.
(2.2) 座標計算部32
 座標計算部32では、 rawRTT、無遅延RTT、統計処理RTTを区別する必要がないため、いずれかをRTTとして扱って、以下のように無線端末局20の位置を示す座標を計算する。
(2.2) Coordinate calculation unit 32
Since it is not necessary to distinguish between raw RTT, no-delay RTT, and statistical processing RTT, the coordinate calculation unit 32 treats any of them as RTT and calculates the coordinates indicating the position of the wireless terminal station 20 as follows.
(2.2.1) 座標計算の前提
 既知アンテナ11または分散アンテナ42をn本とし、総称して既知アンテナi(i=1,2,…,n)とする。
(2.2.1) Premise of coordinate calculation The number of known antennas 11 or distributed antennas 42 is n, and they are collectively referred to as known antennas i (i = 1, 2, ..., N).
 既知アンテナiの座標を、2次元の場合は(xi,yi)、3次元の場合は(xi,yi,z)とする。これらは既知で座標の単位はmとする。 既知アンテナiで計測したRTTをtrti [s] とする。
 既知アンテナiで計測したRSSIをRSSI[dBm] とする。
The coordinates of the known antenna i are (x i , y i ) in the case of two dimensions and (x i , y i , z i ) in the case of three dimensions. These are known and the unit of coordinates is m. Let trti [s] be the RTT measured with the known antenna i.
Let RSSI i [dBm] be the RSSI measured by the known antenna i.
 既知アンテナiの特性、ケーブル長、その他既知アンテナi毎の計測値に影響を及ぼすものがあれば、あらかじめ補正しておく。例えば、既知アンテナiを接続したケーブル長が他の既知アンテナよりも長い場合、他の既知アンテナよりもケーブル遅延、ケーブル損失が大きくなるため、trti からケーブル遅延の往復分を減算して他の既知アンテナの条件と同等のtrti が得られる補正を行い、RSSIにケーブル損失分を加算して他の既知アンテナの条件と同等のRSSIが得られる補正を行っておく。 If there is something that affects the characteristics of the known antenna i, the cable length, or other measured values for each known antenna i, correct it in advance. For example, if the cable length to which the known antenna i is connected is longer than that of other known antennas, the cable delay and cable loss will be larger than those of other known antennas. Therefore, subtract the round trip of the cable delay from trti to obtain another known antenna. corrects the known antenna conditions equivalent to t rti is obtained by adding the cable loss in RSSI i condition equivalent RSSI i other known antenna previously performed correction obtained.
 端末アンテナ21の座標を、2次元の場合は(xs,ys)、3次元の場合は(xs,ys,z)とする。これらは未知で座標の単位はmとする。 The coordinates of the terminal antenna 21 are (x s , y s ) in the case of two dimensions and (x s , y s , z s ) in the case of three dimensions. These are unknown and the unit of coordinates is m.
 端末遅延時間およびその他の遅延時間の合計をt [s]とする。これも未知である。
 光速cを299792458 [m/s] とする。これはどこの空間であってもまったく同じ定数である。
Let t d [s] be the sum of the terminal delay time and other delay times. This is also unknown.
The speed of light c is 299792458 [m / s]. This is exactly the same constant in any space.
 空間の伝搬損失係数をαとする。これは自由空間ではα=2 となるが、ここでは実際の空間に合わせてあらかじめ計測するなどしておく。そのため既知である。 Let α be the propagation loss coefficient in space. This is α = 2 in the free space, but here it is measured in advance according to the actual space. Therefore it is known.
 無線通信に使用する電波の波長をλ[m] とする。これはチャネルが決まれば周波数が決まるため、既知である。 The wavelength of the radio wave used for wireless communication is λ [m]. This is known because the frequency is determined once the channel is determined.
 2次元の場合、既知アンテナiと任意の地点(x,y)との距離をdi(x,y)とすると、
  di(x,y)=√[(xi-x)2+(yi-y)2
となる。同様に、3次元の場合、既知アンテナiと任意の地点(x,y,z)との距離をdi(x,y,z)とすると、
  di(x,y,z)=√[(xi-x)2+(yi-y)2+(zi-z)2
となる。
In the case of two dimensions, assuming that the distance between the known antenna i and an arbitrary point (x, y) is di (x, y),
d i (x, y) = √ [(x i − x) 2 + (y i − y) 2 ]
Will be. Similarly, in the case of three dimensions, if the distance between the known antenna i and an arbitrary point (x, y, z) is di (x, y, z),
d i (x, y, z ) = √ [(x i -x) 2 + (y i -y) 2 + (z i -z) 2]
Will be.
 既知アンテナiと端末アンテナ21との間の真の距離をl[m] とすると、2次元の場合は、
  l=d(xi,yi
となり、3次元の場合は、
  l=d(xi,yi,zi
となる。
Assuming that the true distance between the known antenna i and the terminal antenna 21 is l i [m], in the case of two dimensions,
l i = d (x i , y i )
In the case of 3D,
l i = d (x i , y i , z i )
Will be.
(2.2.2) RTT評価関数
 既知アンテナiで計測したRTTであるtrti は往復の時間だが、この片道分の距離相当を疑似距離lpi[m] として、
  lpi=ctrti /2
とする。これは計測値から計算できる値であるが、遅延時間tを含んだtrti をもとに計算したものなので、既知アンテナiと端末アンテナ21との間の真の距離lよりは長くなっている。
(2.2.2) RTT evaluation function trti, which is the RTT measured by the known antenna i, is the round-trip time, but the distance equivalent to this one-way distance is defined as the pseudo distance l pi [m].
l pi = ct rti / 2
And. This is a value that can be calculated from the measured value, but since it is calculated based on tr ti including the delay time t d , it is longer than the true distance l i between the known antenna i and the terminal antenna 21. ing.
 lpiとlの差分をl[m] とすると、これは遅延時間tの片道距離相当なので、
  l=ct/2
であり、
  l=lpi-l
である。
If the difference between l pi and l i is l d [m], this is equivalent to the one-way distance of the delay time t d .
l d = ct d / 2
And
l i = l pi -l d
Is.
 ここで、求める未知数は2次元の場合、端末アンテナ21の座標xs,ysとlの3つ、3次元の場合、端末アンテナ21の座標xs,ys,zとlの4つとなる。これらの未知数を探索して端末アンテナ21の座標を求めることを考える。探索中の推定値として2次元の場合x,y,lの3つ、3次元の場合x,y,z,lの4つの変数を用いることとする。推定値の座標と既知アンテナiとの間の距離は、2次元の場合は
  di(x,y)
となり、3次元の場合は
  di(x,y,z)
となる。
Here, the unknowns to be obtained are three of the coordinates x s , y s and l d of the terminal antenna 21 in the case of two dimensions, and the coordinates x s , y s , z s and l d of the terminal antenna 21 in the case of three dimensions. There will be four. Consider searching for these unknowns to obtain the coordinates of the terminal antenna 21. As the estimated value during the search, three variables x, y, l in the case of two dimensions and four variables x, y, z, l in the case of three dimensions are used. The distance between the coordinates and the known antenna i estimates, in the case of 2-dimensional d i (x, y)
In the case of three dimensions, di (x, y, z)
Will be.
 さらに、疑似距離と真の距離との差分の推定値lから求めることができる、真の距離の推定値は、
  lpi-l
となる。それぞれの推定値が正しい値となった場合には、両者が一致する。
Further, the estimated value of the true distance, which can be obtained from the estimated value l of the difference between the pseudo distance and the true distance, is
l pi -l
Will be. If each estimate is correct, they match.
 そこで、これらの差分を取ったものを、推定値を評価するRTT評価関数ftiとして以下のように定義する。
  2次元の場合:fti(x,y,l)=di(x,y)-(lpi-l)
  3次元の場合:fti(x,y,z,l)=di(x,y,z)-(lpi-l)
Therefore, the difference between them is defined as the RTT evaluation function f ti for evaluating the estimated value as follows.
For 2-dimensional: f ti (x, y, l) = d i (x, y) - (l pi -l)
For 3-D: f ti (x, y, z, l) = d i (x, y, z) - (l pi -l)
(2.2.3) RSSI評価関数
 既知アンテナiの直近に端末アンテナ21を近づけて計測したRSSIをB[dBm] とすると、計測されるRSSIが以下のようになるモデルを採用する。
  RSSI=B-10αlog10(4πli/λ)
(2.2.3) RSSI evaluation function If the RSSI measured by bringing the terminal antenna 21 close to the known antenna i is B [dBm], the model in which the measured RSSI i is as follows is adopted.
RSSI i = B-10α log 10 (4πl i / λ)
 ここで、RSSIをmW表記に変換したものをPRSSIi [mW]、BをmW表記にしたものをP[mW]とすると、
  PRSSIi =PB{λ/(4πli)}^α
となる。これをlについて解くと、
  l={λ/(4π)}PB^(1/α) ・PRSSIi^(-1/α) 
Here, if RSSI i is converted into mW notation as PRESIi [mW] and B is converted into mW notation as P B [mW].
P RSSIi = P B {λ / (4πl i )} ^ α
Will be. If you solve this for l i ,
l i = {λ / (4π)} P B ^ (1 / α) ・PRESIi ^ (-1 / α)
 ここで、
    r={λ/(4π)}PB^(1/α) 
  R=PRSSIi^(-1/α) 
とする。rは未知数だが、Rは計測値から計算することができるので、既知である。すると、
  l=r
となる。
here,
r B = {λ / (4π)} P B ^ (1 / α)
R i = PRESIi ^ (-1 / α)
And. r B is unknown, but R i is known because it can be calculated from the measured values. Then
l i = r B R i
Will be.
 これにより、RSSIの場合は、求める未知数は2次元の場合、端末アンテナ21の座標xs,ysとrの3つ、3次元の場合、端末アンテナ21の座標xs,ys,zとrの4つとなる。これらの未知数を探索して端末アンテナの座標を求めることを考える。探索中の推定値として2次元の場合x,y,rの3つ、3次元の場合x,y,z,rの4つの変数を用いることとする。RTTと同様に推定値を評価するRSSI評価関数friを以下のように定義する。
  2次元の場合:fri(x,y,r)=di(x,y)-rR
  3次元の場合:fri(x,y,z,r)=di(x,y,z)-rR
As a result, in the case of RSSI, when the unknown number is two-dimensional, the coordinates x s , y s and r B of the terminal antenna 21 are three, and when three-dimensional, the coordinates x s , y s , z of the terminal antenna 21 are obtained. There are four, s and r B. Consider searching for these unknowns to find the coordinates of the terminal antenna. As the estimated value during the search, three variables x, y, r in the case of two dimensions and four variables x, y, z, r in the case of three dimensions are used. The RSSI evaluation function fr , which evaluates the estimated value in the same way as RTT, is defined as follows.
For 2-dimensional: f ri (x, y, r) = d i (x, y) -rR i
For 3-D: f ri (x, y, z, r) = d i (x, y, z) -rR i
(2.2.4) 範囲評価関数
 座標などの推定値が端末の移動(存在)可能範囲を外れた場合に、評価値にペナルティを与えるための範囲評価関数を定義する。範囲評価関数は推定値が範囲内の場合はゼロとなり、範囲から外れた場合には、外れ度合いに応じて値が大きくなるようにする。
(2.2.4) Range evaluation function Define a range evaluation function to give a penalty to the evaluation value when the estimated value such as coordinates is out of the movable (existing) range of the terminal. The range evaluation function is zero when the estimated value is within the range, and when it is out of the range, the value increases according to the degree of deviation.
 例えば、2次元の場合、推定値が
  xmin <x<xmax 
  ymin <y<ymax 
  lmin <l<lmax 
  rmin <r<rmax 
で示される範囲内になければならない場合、座標の範囲評価関数fは以下のように定義することができる。
  fL(x,y,l,r)=fLx(x)+fLy(y)+fLl(l)+fLr(r)
For example, in the case of two dimensions, the estimated value is x min <x <x max.
y min <y <y max
l min <l <l max
r min <r <r max
If it must be within the range indicated by, the coordinate range evaluation function f L can be defined as follows.
f L (x, y, l, r) = f Lx (x) + f Ly (y) + f Ll (l) + f Lr (r)
ただし、
  fLx(x)=xmin -x  (x<xmin 
       =0      (xmin <x<xmax 
      =x-xmax   (x>xmax 
  fLy(y)=ymin -y  (y<ymin 
      =0      (ymin <y<ymax 
      =y-ymax   (y>ymax 
  fLl(l)=lmin -l  (l<lmin 
      =0      (lmin <l<lmax 
      =l-lmax   (l>lmax 
  fLr(r)=rmin -r  (r<rmin 
      =0      (rmin <r<rmax 
      =r-rmax   (r>rmax 
However,
f Lx (x) = x min -x (x <x min )
= 0 (x min <x <x max )
= X-x max (x> x max )
f Ly (y) = y min −y (y <y min )
= 0 (y min <y <y max )
= Y-y max (y> y max )
f Ll (l) = l min -l (l <l min )
= 0 (l min <l <l max )
= L-l max (l> l max )
f Lr (r) = r min -r (r <r min )
= 0 (r min <r <r max )
= R-r max (r> r max )
(2.2.5) 連立方程式
 各評価関数を連立方程式にして、その解を求めることによって座標を得る方法の例を示す。
(2.2.5) Simultaneous equations An example of a method of obtaining coordinates by making each evaluation function a simultaneous equation and finding the solution is shown.
(2.2.5.1) RTTのみ(GPSと同様)の計算方法例
 既知アンテナ4本で、GPSと同様の方法で座標推定値を計算するには、3次元のRTT評価関数を以下のように組合せて連立方程式を作る。
  ft1(x,y,z,l)=0
  ft2(x,y,z,l)=0
  ft3(x,y,z,l)=0
  ft4(x,y,z,l)=0
(2.2.5.1) Example of calculation method for RTT only (similar to GPS) To calculate coordinate estimates using the same method as GPS with four known antennas, combine the three-dimensional RTT evaluation functions as follows. Create a system of equations.
f t1 (x, y, z, l) = 0
f t2 (x, y, z, l) = 0
f t3 (x, y, z, l) = 0
f t4 (x, y, z, l) = 0
 これを解くことで解x,y,z,lを求めることができ、位置推定ができる。この連立方程式は、非線形なので解析的に解くことは困難だが、ニュートン法を使って解を得ることができる。既知アンテナが4本以上ある場合は、同様の連立方程式を立てるが、未知数が4つに対して方程式が4本以上となる優決定系となるため、解を求めることができない。その場合は、最小二乗法を併用して解を得る。また、その場合は既知アンテナ毎のRTT計測値の信頼性wを重みとして、対応する方程式毎に重みを付けた、重み付き最小二乗法を用いることで、より高精度の位置推定が可能となる。 By solving this, the solutions x, y, z, l can be obtained, and the position can be estimated. This system of equations is non-linear and difficult to solve analytically, but it can be solved using Newton's method. When there are four or more known antennas, a similar simultaneous equation is established, but a solution cannot be obtained because it is a dominant determination system in which four or more equations are used for four unknowns. In that case, the method of least squares is used together to obtain a solution. In that case, more accurate position estimation is possible by using the weighted least squares method in which the reliability w of the RTT measurement value for each known antenna is weighted and weighted for each corresponding equation. ..
 以下、GPSと同様の方法を2次元に適用すると、2次元の座標推定値を計算する例として、以下のような連立方程式を作る。
  ft1(x,y,l)=0
  ft2(x,y,l)=0
  ft3(x,y,l)=0
  ft4(x,y,l)=0
Hereinafter, when the same method as GPS is applied to two dimensions, the following simultaneous equations are created as an example of calculating the two-dimensional coordinate estimates.
f t1 (x, y, l) = 0
ft2 (x, y, l) = 0
f t3 (x, y, l) = 0
f t4 (x, y, l) = 0
 未知数3に対して方程式4本の優決定系のため、最小二乗法を併用したニュートン法で解を求めることができる。また、その場合は既知アンテナ毎のRTT計測値の信頼性wを重みとして、対応する方程式毎に重みを付けた、重み付き最小二乗法を用いることで、より高精度の位置推定が可能となる。 Since it is a superior determination system with 4 equations for 3 unknowns, the solution can be obtained by Newton's method which also uses the least squares method. In that case, more accurate position estimation is possible by using the weighted least squares method in which the reliability w of the RTT measurement value for each known antenna is weighted and weighted for each corresponding equation. ..
(2.2.5.2) RTT評価関数と範囲評価関数を組み合わせた場合の計算方法例
 既知アンテナ4本のRTT計測値を使い、範囲評価関数を組み合わせ、2次元の座標推定値を計算する例として、以下のような連立方程式を作る。
  ft1(x,y,l)=0
  ft2(x,y,l)=0
  ft3(x,y,l)=0
  ft4(x,y,l)=0
  fL (x,y,l)=0
(2.2.5.2) Example of calculation method when RTT evaluation function and range evaluation function are combined As an example of calculating two-dimensional coordinate estimation value by combining range evaluation functions using RTT measurement values of four known antennas, the following Make a system of equations like this.
f t1 (x, y, l) = 0
ft2 (x, y, l) = 0
f t3 (x, y, l) = 0
f t4 (x, y, l) = 0
f L (x, y, l) = 0
 ただし、この場合はRSSI特有の未知数rがないので、範囲評価関数は、
  fL(x,y,l)=fLx(x)+fLy(y)+fLl(l)
などとしてrを使わないようにする。
However, in this case, since there is no unknown number r peculiar to RSSI, the range evaluation function is
f L (x, y, l) = f Lx (x) + f Ly (y) + f Ll (l)
Do not use r as such.
 未知数3に対してRTT評価関数の方程式だけで4本ある優決定系となるので、最小二乗法を併用したニュートン法で解を求めることができる。このとき、範囲評価関数の効果により、未知数が指定された範囲内に収まる力が働き、範囲内の解が選ばれやすくなり、大きく外れることはなくなる。前項と同様、RTT評価関数の方程式については、該当する既知アンテナのRTT計測値の信頼性wを重みとして使う、重み付き最小二乗法を用いることで、より高精度の位置推定が可能となる。さらに、範囲評価関数の方程式に対しても重みを使い、他の重みとの相対的な大小関係によって、解となる座標を範囲内に収めようとする力の強弱を設定することもできる。 Since there are four superior determination systems with only the equation of the RTT evaluation function for unknown number 3, the solution can be obtained by Newton's method which also uses the least squares method. At this time, due to the effect of the range evaluation function, a force that keeps the unknown within the specified range works, making it easier to select a solution within the range and not greatly deviating. As in the previous section, for the equation of the RTT evaluation function, more accurate position estimation is possible by using the weighted least squares method, which uses the reliability w of the RTT measurement value of the corresponding known antenna as a weight. Furthermore, weights can also be used for the equation of the range evaluation function, and the strength of the force that tries to keep the coordinates to be the solution within the range can be set by the relative magnitude relation with other weights.
(2.2.5.3) RSSIのみの計算方法例
 既知アンテナ4本のRSSI計測値を使い、3次元の座標推定値を計算する例として、以下のような連立方程式を作る。
  fr1(x,y,z,r)=0
  fr2(x,y,z,r)=0
  fr3(x,y,z,r)=0
  fr4(x,y,z,r)=0
(2.2.5.3) Example of calculation method for RSSI only As an example of calculating three-dimensional coordinate estimates using RSSI measurement values of four known antennas, the following simultaneous equations are created.
f r1 (x, y, z, r) = 0
f r2 (x, y, z, r) = 0
f r3 (x, y, z, r) = 0
f r4 (x, y, z, r) = 0
 同様に、既知アンテナ4本のRSSI計測値を使い、2次元の座標推定値を計算する例として、以下のような連立方程式を作る。
  fr1(x,y,r)=0
  fr2(x,y,r)=0
  fr3(x,y,r)=0
  fr4(x,y,r)=0
Similarly, the following simultaneous equations are created as an example of calculating a two-dimensional coordinate estimate value using RSSI measurement values of four known antennas.
f r1 (x, y, r) = 0
f r2 (x, y, r) = 0
f r3 (x, y, r) = 0
f r4 (x, y, r) = 0
 RTTの場合と同様、連立方程式は非線形なので解析的に解くことは困難でありニュートン法を使って解を得ることができる。優決定系になる場合は最小二乗法を併用すれば解が得られる。さらに、既知アンテナ毎のRSSI計測値の信頼性wによって重みを付けた、重み付き最小二乗法を用いることで、より高精度の位置推定が可能となる。 As in the case of RTT, the simultaneous equations are non-linear, so it is difficult to solve them analytically, and the solution can be obtained using Newton's method. If it becomes a dominant decision system, a solution can be obtained by using the least squares method together. Further, by using the weighted least squares method weighted by the reliability w of the RSSI measurement value for each known antenna, more accurate position estimation becomes possible.
(2.2.5.4) RSSI評価関数と範囲評価関数を組み合わせた場合の計算方法例
 既知アンテナ4本のRSSI計測値を使い、範囲評価関数を組み合わせ、2次元の座標推定値を計算する例として、以下のような連立方程式を作る。
  fr1(x,y,r)=0
  fr2(x,y,r)=0
  fr3(x,y,r)=0
  fr4(x,y,r)=0
  fL (x,y,r)=0
(2.2.5.4) Example of calculation method when RSSI evaluation function and range evaluation function are combined As an example of calculating two-dimensional coordinate estimates by combining range evaluation functions using RSSI measurement values of four known antennas, the following Make a system of equations like.
f r1 (x, y, r) = 0
f r2 (x, y, r) = 0
f r3 (x, y, r) = 0
f r4 (x, y, r) = 0
f L (x, y, r) = 0
 ただし、この場合はRTT特有の未知数lがないので、範囲評価関数は、
  fL(x,y,r)=fLx(x)+fLy(y)+fLr(r)
などとしてlを使わないようにする。
However, in this case, since there is no unknown number l peculiar to RTT, the range evaluation function is
f L (x, y, r) = f Lx (x) + f Ly (y) + f Lr (r)
Do not use l as such.
 未知数3に対してRSSI評価関数の方程式だけで4本ある優決定系となるので、最小二乗法を併用したニュートン法で解を求めることができる。このとき、範囲評価関数の効果により、未知数が指定された範囲内に収まるような力が働き、範囲内の解が選ばれやすくなり、大きく外れることはなくなる。前項と同様、RSSI評価関数の方程式については、該当する既知アンテナのRSSI計測値の信頼性wを重みとして使う、重み付き最小二乗法を用いることで、より高精度の位置推定が可能となる。さらに、範囲評価関数の方程式に対しても重みを使い、他の重みとの相対的な大小関係によって、解となる座標を範囲内に収めようとする力の強弱を設定することもできる。 Since there are four superior determination systems with only the equations of the RSSI evaluation function for unknown number 3, the solution can be obtained by Newton's method which also uses the least squares method. At this time, due to the effect of the range evaluation function, a force is exerted so that the unknown is within the specified range, and the solution within the range is easily selected and does not deviate significantly. As in the previous section, for the equation of the RSSI evaluation function, more accurate position estimation is possible by using the weighted least squares method, which uses the reliability w of the RSSI measurement value of the corresponding known antenna as the weight. Furthermore, weights can also be used for the equation of the range evaluation function, and the strength of the force that tries to keep the coordinates to be the solution within the range can be set by the relative magnitude relation with other weights.
(2.2.5.5) RTTとRSSIを組み合わせた計算方法例
 既知アンテナ4本のRTT計測値とRSSI計測値の両方を使い、2次元の座標推定値を計算する例として、以下のような連立方程式を作る。
  ft1(x,y,l)=0
  ft2(x,y,l)=0
  ft3(x,y,l)=0
  ft4(x,y,l)=0
  fr1(x,y,r)=0
  fr2(x,y,r)=0
  fr3(x,y,r)=0
  fr4(x,y,r)=0
(2.2.5.5) Example of calculation method combining RTT and RSSI As an example of calculating two-dimensional coordinate estimates using both RTT measurement values and RSSI measurement values of four known antennas, the following simultaneous equations are used. create.
f t1 (x, y, l) = 0
ft2 (x, y, l) = 0
f t3 (x, y, l) = 0
f t4 (x, y, l) = 0
f r1 (x, y, r) = 0
f r2 (x, y, r) = 0
f r3 (x, y, r) = 0
f r4 (x, y, r) = 0
 これも優決定系なので最小二乗法を併用したニュートン法で解を求めることができる。
 さらに、RTT評価関数の方程式については、該当する既知アンテナのRTT計測値の信頼性w を重みとして使い、RSSI評価関数の方程式については、該当する既知アンテナのRSSI計測値の信頼性wを重みとして使う、重み付き最小二乗法を用いることで、より高精度の位置推定が可能となる。さらに、RTTの重みとRSSIの重みを相対的に増減することによって、どちらの計測値を重視するか調整することも可能となる。
Since this is also a dominant decision system, the solution can be found by Newton's method, which also uses the least squares method.
Furthermore, for the equation of the RTT evaluation function, the reliability w of the RTT measurement value of the corresponding known antenna is used as a weight, and for the equation of the RSSI evaluation function, the reliability w of the RSSI measurement value of the corresponding known antenna is used as a weight. By using the weighted least squares method, which is used, more accurate position estimation becomes possible. Further, by increasing or decreasing the weight of RTT and the weight of RSSI relatively, it is possible to adjust which measured value is emphasized.
(2.2.5.6) RTTとRSSIを組み合わせ範囲評価関数も用いた計算方法例
 既知アンテナ4本のRTT計測値とRSSI計測値の両方を使い、範囲評価関数を組み合わせ、2次元の座標推定値を計算する例として、以下のような連立方程式を作る。
  ft1(x,y,l)=0
  ft2(x,y,l)=0
  ft3(x,y,l)=0
  ft4(x,y,l)=0
  fr1(x,y,r)=0
  fr2(x,y,r)=0
  fr3(x,y,r)=0
  fr4(x,y,r)=0
  fL (x,y,l,r)=0
(2.2.5.6) Example of calculation method using RTT and RSSI combined with range evaluation function Using both RTT measurement value and RSSI measurement value of 4 known antennas, combine range evaluation function and calculate 2D coordinate estimation value As an example of doing this, create the following simultaneous equations.
f t1 (x, y, l) = 0
ft2 (x, y, l) = 0
f t3 (x, y, l) = 0
f t4 (x, y, l) = 0
f r1 (x, y, r) = 0
f r2 (x, y, r) = 0
f r3 (x, y, r) = 0
f r4 (x, y, r) = 0
f L (x, y, l, r) = 0
 範囲評価関数の効果により、未知数が指定された範囲内に収まるような力が働き、範囲内の解が選ばれやすくなり、大きく外れることはなくなる。RTT/RSSI計測値の信頼性wを重みとして使った重み付き最小二乗法を用いることで、より高精度の位置推定が可能となるし、範囲評価関数の方程式に対しても重みを使い、他の重みとの相対的な大小関係によって、解となる座標を範囲内に収めようとする力の強弱を設定することもできる。 Due to the effect of the range evaluation function, a force that keeps the unknown within the specified range works, making it easier to select a solution within the range, and it does not deviate significantly. By using the weighted least squares method that uses the reliability w of the RTT / RSSI measurement value as the weight, more accurate position estimation is possible, and the weight is also used for the equation of the range evaluation function. It is also possible to set the strength of the force that tries to keep the coordinates to be the solution within the range by the relative magnitude relationship with the weight of.
(2.2.6) 極小探索
 連立方程式を解くのではなく、各評価関数を1つの誤差評価関数にまとめ、誤差評価関数の値が最小になるような推定値を探索して最適化することにより、座標を得る方法の例を示す。
(2.2.6) Minimal search Instead of solving simultaneous equations, each evaluation function is combined into one error evaluation function, and the estimated value that minimizes the value of the error evaluation function is searched and optimized. An example of how to obtain the coordinates is shown.
(2.2.6.1) 誤差評価関数
 既知アンテナn本のRTT評価関数、RSSI評価関数および範囲評価関数のすべてを組み合わせた誤差評価関数ferror を定義する。
(2.2.6.1) Error evaluation function An error evaluation function f error that combines all of the RTT evaluation function, RSSI evaluation function, and range evaluation function of n known antennas is defined.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ただし、既知アンテナiのRTT計測値の信頼性を重みwti、同じくRSSI計測値の信頼性を重みwri、範囲評価関数の重みをwとする。 However, the reliability of the RTT measurement value of the known antenna i is the weight w ti , the reliability of the RSSI measurement value is the weight w ri , and the weight of the range evaluation function is w L.
 RTT、RSSI、範囲評価関数のうち、使用しないものがあれば、その項を消した誤差評価関数を使えばよい。誤差評価関数のパラメータは最大でx,y,z,l,rの5つとなるが、2次元の場合はzがなくなり、RTTを使わない場合はlがなくなり、RSSIを使わない場合はrがなくなる。RTTとRSSIのどちらかは使わなければならないため、最小ではx,y,lもくしはx,y,rの3つとなる。 If any of the RTT, RSSI, and range evaluation functions are not used, the error evaluation function with that term deleted should be used. There are a maximum of five parameters of the error evaluation function, x, y, z, l, and r, but in the case of two dimensions, z disappears, when RTT is not used, l disappears, and when RSSI is not used, r is. It disappears. Since either RTT or RSSI must be used, the minimum number of x, y, l combs is x, y, r.
(2.2.6.2) 探索
 誤差評価関数が最小になるパラメータの組合せを探索する。ニュートン法で極小を探索してもよいし、L-BFGS法などの準ニュートン法アルゴリズムで検索してもよいし、ベイズ最適化で探索してもよい。もっと単純に、一定の範囲内を一定の間隔で総当たり探索する方法もあるし、最初は荒い間隔で探索してから評価値が低くなりそうな周辺を順次細かい間隔で探索していく方法もある。
(2.2.6.2) Search Search for the combination of parameters that minimizes the error evaluation function. The minimum may be searched by the Newton method, the search may be performed by a quasi-Newton method algorithm such as the L-BFGS method, or the search may be performed by Bayesian optimization. There is a simpler method of brute force search within a certain range at regular intervals, or a method of searching at rough intervals first and then searching around the area where the evaluation value is likely to be low at fine intervals. is there.
 探索の際にはすべてのパラメータを探索してもよいが、座標の推定値から誤差評価関数が最小になるlやrを求めることで、lやrを探索しない方法もある。
 例えば、2次元で座標の推定値を(x^,y^)とした場合、誤差評価関数のlまたはrの偏微分を取り、それがゼロになるlまたはrを見つければよい。なお、x^,y^はxハット、yハットである。すなわち、
All parameters may be searched at the time of search, but there is also a method of not searching for l or r by finding l or r that minimizes the error evaluation function from the estimated values of the coordinates.
For example, when the estimated value of the coordinates is (x ^, y ^) in two dimensions, it is sufficient to take the partial differential of l or r of the error evaluation function and find l or r at which it becomes zero. Note that x ^ and y ^ are x hat and y hat. That is,
Figure JPOXMLDOC01-appb-M000002
を満たすlを見つけ、
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000002
Find l that meets
Figure JPOXMLDOC01-appb-M000003
を満たすrを見つけ、それぞれを座標(x^,y^)の時のlおよびrの推定値として使い、誤差評価関数を評価する。この方法を採ると座標だけを探索すればよいことになり、探索空間を大幅に減らすことができる。 Find r that satisfies, and use each as an estimate of l and r at the coordinates (x ^, y ^) to evaluate the error evaluation function. If this method is adopted, only the coordinates need to be searched, and the search space can be significantly reduced.
(2.3) 空間の伝搬損失係数αを推定する
 ここまで、RSSIから座標を得る方法で必要となる空間の伝搬損失係数αは、あらかじめ計測しておくなどした既知の値であるとしてきた。しかし、多くの既知アンテナを使うことができ、かつ、RTTおよびRSSI双方の計測が可能で、それぞれの計測誤差が小さい場合には、座標だけでなくαも推定することが可能となる。
(2.3) Estimating the spatial propagation loss coefficient α Up to this point, the spatial propagation loss coefficient α required for the method of obtaining coordinates from RSSI has been assumed to be a known value that has been measured in advance. However, if many known antennas can be used, both RTT and RSSI can be measured, and the measurement error of each is small, not only the coordinates but also α can be estimated.
 連立方程式による方法を採る場合は、座標、l、rだけでなくαを未知数として連立方程式を作る。多くの既知アンテナがありRTT/RSSI双方の計測結果が使えるため優決定系となり、最小二乗法を併用したニュートン法で解を求めることができる。RTT/RSSI計測値の信頼性wを重みとして使った重み付き最小二乗法を用いることで、より高精度の位置推定およびα推定が可能となる。範囲評価関数の方程式にもαの範囲を設定することができるし、重みを使い他の重みとの相対的な大小関係によって、αを範囲内に収めようとする力の強弱を設定することもできる。 When adopting the method using simultaneous equations, create simultaneous equations with α as an unknown number as well as coordinates, l and r. Since there are many known antennas and both RTT / RSSI measurement results can be used, it becomes a dominant decision system, and the solution can be obtained by Newton's method using the least squares method. By using the weighted least squares method using the reliability w of the RTT / RSSI measurement value as a weight, more accurate position estimation and α estimation become possible. The range of α can be set in the equation of the range evaluation function, and the strength of the force to keep α within the range can be set by using the weight and the relative magnitude relationship with other weights. it can.
 極小探索による方法を採る場合は、座標、l、rだけでなくαを探索対象としてRSSI評価関数および範囲評価関数を作り、誤差評価関数を組み立てる。そしてαを探索し最適化を行うことで推定することができる。 When adopting the method by the minimum search, create the RSSI evaluation function and the range evaluation function not only for the coordinates, l, and r but also for α, and assemble the error evaluation function. Then, it can be estimated by searching for α and performing optimization.
 これらの方法でαを推定することによって、あらかじめαを計測しておく必要がなくなる。また、一旦、多くの既知アンテナ数を使って高精度の計測を行うことで空間のαを求めておき、実際の運用時にはこのαを既知の値として用い、少ない既知アンテナ、一般的な精度で位置推定するという方法を採ることもできる。 By estimating α by these methods, it is not necessary to measure α in advance. In addition, once the space α is obtained by performing high-precision measurement using a large number of known antennas, this α is used as a known value in actual operation, with a small number of known antennas and general accuracy. The method of estimating the position can also be adopted.
(2.4) 座標安定化部33
 端末アンテナ21が静止していても、座標計算部32で求めた座標(以下、瞬時値座標)は細かく振動することがある。そこで、座標安定化部33で細かい振動を取り除いた座標(以下、安定化座標)を求める。
(2.4) Coordinate stabilization unit 33
Even if the terminal antenna 21 is stationary, the coordinates obtained by the coordinate calculation unit 32 (hereinafter, instantaneous value coordinates) may vibrate finely. Therefore, the coordinate stabilizing unit 33 obtains the coordinates (hereinafter referred to as the stabilizing coordinates) from which fine vibrations have been removed.
 例えば、「あそび」として一定の閾値を定めておき、瞬時値座標と安定化座標の差もしくは距離が閾値より小さい場合は、安定化座標を維持して端末アンテナ21の細かい振動を吸収し、閾値を超えた場合だけ位置の変化と見なして安定化座標を更新することで安定化することができる。 For example, if a certain threshold value is set as "play" and the difference or distance between the instantaneous value coordinates and the stabilization coordinates is smaller than the threshold value, the stabilization coordinates are maintained to absorb the fine vibration of the terminal antenna 21, and the threshold value is set. It can be stabilized by updating the stabilization coordinates by regarding it as a change in position only when it exceeds.
 他にも、瞬時値座標をLPFやカルマンフィルタなどに通して細かい振動を取り除いたものを安定化座標としてもよい。 In addition, the instantaneous value coordinates may be passed through an LPF or a Kalman filter to remove fine vibrations as the stabilized coordinates.
(2.5) 座標調整部34
 位置推定サーバの測定値統計処理部31の測定値に対する統計処理(移動平均処理)では、アンテナ毎に例えばN秒前から現在までの測定値を移動平均した統計処理RTTまたは統計処理RSSIを算出するが、N秒が長くなると実際の動きよりも遅れ、かつ測定値の変化が平均化されて小さくなる。一方、N秒が短くなると、例えば無線端末局20を所持する人物が振り向くなどの急激な動きに伴う電波の変化にも敏感に反応し、測定値の変化が位置の変化と見なされ、移動平均処理にも影響が表れる。
(2.5) Coordinate adjustment unit 34
In the statistical processing (moving average processing) for the measured values of the measured value statistical processing unit 31 of the position estimation server, for example, the statistical processing RTT or the statistical processing RSSI obtained by moving average the measured values from N seconds before to the present is calculated for each antenna. However, when N seconds become longer, the movement is delayed from the actual movement, and the change in the measured value is averaged and becomes smaller. On the other hand, when N seconds are shortened, it reacts sensitively to changes in radio waves due to sudden movements such as turning around by a person who owns the wireless terminal station 20, and changes in measured values are regarded as changes in position, and the moving average. The processing is also affected.
 さらに、座標安定化部33で瞬時値座標を安定化座標に変換しても、その影響は避けられない。例えば、上記のように無線端末局20を所持する人物が振り向いて動き始めると、瞬時値座標が閾値より大きく変化して安定化座標も大きく変化し、急に数メートル移動したような位置として推定されることになる。そのため、座標安定化部33として用いるLPFやカルマンフィルタのパラメータの調整が必要になり、さらに学習用データも必要になる。 Furthermore, even if the coordinate stabilization unit 33 converts the instantaneous value coordinates to the stabilized coordinates, the effect is unavoidable. For example, when the person who owns the wireless terminal station 20 turns around and starts moving as described above, the instantaneous value coordinates change greatly from the threshold value and the stabilization coordinates also change greatly, and it is estimated as a position that suddenly moves several meters. Will be done. Therefore, it is necessary to adjust the parameters of the LPF and the Kalman filter used as the coordinate stabilizing unit 33, and further, learning data is also required.
 座標調整部34は、そのような状況に対応するために、座標安定化部33で得られた安定化座標について移動平均処理を行い、過去M回分の安定化座標の平均値をとって統計処理安定化座標を算出する。 In order to deal with such a situation, the coordinate adjusting unit 34 performs moving average processing on the stabilized coordinates obtained by the coordinate stabilizing unit 33, and statistically processes the average value of the stabilized coordinates for the past M times. Calculate the stabilization coordinates.
 図8は、試験環境で計測したデータを用いて算出された位置測位結果の例を示す。
 図8において、試験環境は、アンテナAの近傍の出発点とするA地点と、A地点から6m離れたアンテナBの近傍のB地点との間を往復するときに、復路上のA地点の近傍に障害物があって迂回するルートである。
FIG. 8 shows an example of the positioning result calculated using the data measured in the test environment.
In FIG. 8, the test environment is the vicinity of the point A on the return route when reciprocating between the point A as the starting point near the antenna A and the point B near the antenna B 6 m away from the point A. There is an obstacle in the route and it is a detour route.
 (1) は、測定値統計処理部31の移動平均区間N=10秒としたときの座標安定化部33が出力する安定化座標の変化を示す。上記のように、安定化座標値は、移動平均区間の長さに応じて遅れと、変化が平均化されて位置の正確さが低下する。 (1) shows the change in the stabilized coordinates output by the coordinate stabilizing unit 33 when the moving average interval N of the measured value statistical processing unit 31 is N = 10 seconds. As described above, the stabilized coordinate values are delayed according to the length of the moving average interval, and the changes are averaged to reduce the accuracy of the position.
 (2) は、測定値統計処理部31の移動平均区間N=2秒としたときの座標安定化部33が出力する安定化座標の変化を示す。上記のように、安定化座標値は、動き始めや振り向くなどの急激な動きに伴う電波の突発的な変化に反応し、グラフの点の間隔が広がり、あたかも無線端末局20が大きく移動したように見える。 (2) shows the change in the stabilized coordinates output by the coordinate stabilizing unit 33 when the moving average interval N of the measured value statistical processing unit 31 is N = 2 seconds. As described above, the stabilized coordinate values respond to sudden changes in radio waves due to sudden movements such as starting to move or turning around, the intervals between the points in the graph are widened, and it is as if the wireless terminal station 20 has moved significantly. Looks like.
  (3) は、測定値統計処理部31の移動平均区間N=2秒、座標調整部34の移動平均区間M=4回としたときの座標調整部34の出力を示す。すなわち、(2) の安定化座標を座標調整部34で移動平均したものとなる。よって、安定化座標が閾値の幅によるステップ状の変化が平均化され、さらに動き始めや振り向くなどの急激な動きに伴う電波の突発的な変化を吸収し、安定化座標の間隔を補間するような座標値を得ることができる。 (3) shows the output of the coordinate adjustment unit 34 when the moving average section N = 2 seconds of the measured value statistical processing unit 31 and the moving average section M = 4 times of the coordinate adjustment unit 34. That is, the stabilized coordinates of (2) are moved and averaged by the coordinate adjusting unit 34. Therefore, the step-like change of the stabilization coordinates due to the width of the threshold value is averaged, and the sudden change of the radio wave due to the sudden movement such as the start of movement or turning around is absorbed, and the interval of the stabilization coordinates is interpolated. Coordinate values can be obtained.
 以上説明した位置推定サーバ30の各部の処理は、コンピュータを機能させるコンピュータプログラムにより実現することができる。このコンピュータプログラムは、コンピュータが読み取り可能な記憶媒体に記憶することも、ネットワークを介して提供することも可能である。 The processing of each part of the position estimation server 30 described above can be realized by a computer program that operates the computer. The computer program can be stored on a computer-readable storage medium or provided over a network.
 10 無線局
 11 既知アンテナ
 12 信号送信部
 13 信号受信部
 14 RTT測定部
 15 RSSI測定部
 16 時計
 20 無線端末局
 21 端末アンテナ
 22 信号受信部
 23 信号送信部
 24 制御部
 25 時計
 30 位置推定サーバ
 31 測定値統計処理部
 32 座標計算部
 33 座標安定化部
 34 座標調整部
 40 無線基地局
 41 ケーブル
 42 分散アンテナ
10 Radio station 11 Known antenna 12 Signal transmitter 13 Signal receiver 14 RTT measurement unit 15 RSSI measurement unit 16 Clock 20 Wireless terminal station 21 Terminal antenna 22 Signal receiver 23 Signal transmitter 24 Control unit 25 Clock 30 Position estimation server 31 Measurement Value statistics processing unit 32 Coordinate calculation unit 33 Coordinate stabilization unit 34 Coordinate adjustment unit 40 Radio base station 41 Cable 42 Distributed antenna

Claims (6)

  1.  互いに異なる既知の位置に設置された複数n個の既知アンテナを備える無線局と、端末アンテナを備える無線端末局との間で測定信号と応答信号を送受信し、その往復遅延時間であるRTTを測定して該無線端末局の位置を推定する位置推定方法において、
     前記既知アンテナi(i=1,2,…,n)と前記無線端末局との間で測定されるRTT計測値について、アンテナ毎に統計処理を行って統計処理RTTを求めるステップ1と、
     前記統計処理RTTから前記無線端末局の座標を計算し、瞬時値座標として出力するステップ2と、
     前記瞬時値座標の閾値未満の振動分を除去し、閾値以上の振動分に対して閾値を超えない範囲で前記瞬時値座標を安定化座標に変換するステップ3と、
     前記安定化座標について移動平均処理を行って統計処理安定化座標を出力するステップ4と
     を有することを特徴とする位置推定方法。
    A measurement signal and a response signal are transmitted and received between a radio station having a plurality of known antennas installed at different known positions and a radio terminal station having a terminal antenna, and the round-trip delay time of the RTT is measured. In the position estimation method for estimating the position of the wireless terminal station,
    Step 1 of obtaining statistical processing RTT by performing statistical processing for each antenna with respect to the RTT measurement value measured between the known antenna i (i = 1, 2, ..., N) and the wireless terminal station.
    Step 2 in which the coordinates of the wireless terminal station are calculated from the statistical processing RTT and output as instantaneous value coordinates, and
    Step 3 of removing vibration components below the threshold value of the instantaneous value coordinates and converting the instantaneous value coordinates into stabilizing coordinates within a range not exceeding the threshold value for vibration components above the threshold value.
    A position estimation method comprising step 4 in which a moving average process is performed on the stabilized coordinates and a statistical process stabilized coordinates are output.
  2.  互いに異なる既知の位置に設置された複数n個の既知アンテナを備える無線局と、端末アンテナを備える無線端末局との間で測定信号と応答信号を送受信し、その受信電波強度であるRSSIを測定して該無線端末局の位置を推定する位置推定方法において、
     前記既知アンテナi(i=1,2,…,n)と前記無線端末局との間で測定されるRSSI計測値について、アンテナ毎に統計処理を行って統計処理RSSIを求めるステップ1と、
     前記統計処理RSSIから前記無線端末局の座標を計算し、瞬時値座標として出力するステップ2と、
     前記瞬時値座標の閾値未満の振動分を除去し、閾値以上の振動分に対して閾値を超えない範囲で前記瞬時値座標を安定化座標に変換するステップ3と、
     前記安定化座標について移動平均処理を行って統計処理安定化座標を出力するステップ4と
     を有することを特徴とする位置推定方法。
    A measurement signal and a response signal are transmitted and received between a radio station having a plurality of known antennas installed at different known positions and a radio terminal station having a terminal antenna, and RSSI, which is the received radio wave intensity, is measured. In the position estimation method for estimating the position of the wireless terminal station,
    Step 1 of obtaining statistical processing RSSI by performing statistical processing for each antenna with respect to the RSSI measurement value measured between the known antenna i (i = 1, 2, ..., N) and the wireless terminal station.
    Step 2 in which the coordinates of the wireless terminal station are calculated from the statistical processing RSSI and output as instantaneous value coordinates, and
    Step 3 of removing vibration components below the threshold value of the instantaneous value coordinates and converting the instantaneous value coordinates into stabilizing coordinates within a range not exceeding the threshold value for vibration components above the threshold value.
    A position estimation method comprising step 4 in which a moving average process is performed on the stabilized coordinates and a statistical process stabilized coordinates are output.
  3.  請求項1または請求項2に記載の位置推定方法により無線端末局の位置を推定する位置推定システムにおいて、
     前記複数n個の既知アンテナを備える無線局でそれぞれ測定される前記RTTまたは/および前記RSSIを位置推定サーバに転送し、該位置推定サーバで前記統計処理安定化座標を算出して前記無線端末局の位置を求める構成である
     ことを特徴とする位置推定システム。
    In the position estimation system that estimates the position of the wireless terminal station by the position estimation method according to claim 1 or 2.
    The RTT and / and the RSSI measured by the radio station having the plurality of n known antennas are transferred to the position estimation server, the position estimation server calculates the statistical processing stabilization coordinates, and the radio terminal station. A position estimation system characterized in that it has a configuration for finding the position of.
  4.  請求項1または請求項2に記載の位置推定方法により無線端末局の位置を推定する位置推定システムにおいて、
     前記複数n個の既知アンテナは、無線基地局から既知の長さのケーブルを介して分散配置された分散アンテナであり、該無線基地局で測定される分散アンテナごとの前記RTTまたは/および前記RSSIを位置推定サーバに転送し、該位置推定サーバで前記統計処理安定化座標を算出して前記無線端末局の位置を求める構成である
     ことを特徴とする位置推定システム。
    In the position estimation system that estimates the position of the wireless terminal station by the position estimation method according to claim 1 or 2.
    The plurality of known antennas are distributed antennas distributed from the radio base station via a cable of a known length, and the RTT and / and the RSSI for each distributed antenna measured at the radio base station. Is transferred to a position estimation server, and the position estimation server calculates the statistical processing stabilization coordinates to obtain the position of the wireless terminal station.
  5.  請求項1または請求項2に記載の位置推定方法により無線端末局の位置を推定する位置推定サーバにおいて、
     前記複数n個の既知アンテナを備える無線局でそれぞれ測定される前記RTTまたは/および前記RSSIが転送され、前記統計処理安定化座標を算出して前記無線端末局の位置を求める構成である
     ことを特徴とする位置推定サーバ。
    In the position estimation server that estimates the position of the wireless terminal station by the position estimation method according to claim 1 or 2.
    The configuration is such that the RTT and / and the RSSI measured by the radio station having the plurality of n known antennas are transferred, the statistical processing stabilization coordinates are calculated, and the position of the radio terminal station is obtained. A featured location estimation server.
  6.  請求項5に記載の位置推定サーバが実行する処理をコンピュータに実行させ、前記統計処理安定化座標を算出して前記無線端末局の位置を求めることを特徴とする位置推定プログラム。 A position estimation program characterized by causing a computer to execute the process executed by the position estimation server according to claim 5 and calculating the statistical processing stabilization coordinates to obtain the position of the wireless terminal station.
PCT/JP2020/013140 2019-04-08 2020-03-24 Position estimating method, position estimating system, position estimating server, and position estimating program WO2020209053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019073774A JP2020173122A (en) 2019-04-08 2019-04-08 Position estimation method, position estimation system, position estimation server, and position estimation program
JP2019-073774 2019-04-08

Publications (1)

Publication Number Publication Date
WO2020209053A1 true WO2020209053A1 (en) 2020-10-15

Family

ID=72751878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013140 WO2020209053A1 (en) 2019-04-08 2020-03-24 Position estimating method, position estimating system, position estimating server, and position estimating program

Country Status (2)

Country Link
JP (1) JP2020173122A (en)
WO (1) WO2020209053A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114521017A (en) * 2022-04-20 2022-05-20 北京度位科技有限公司 Method and device for positioning, electronic equipment and storage medium
US20220360944A1 (en) * 2019-09-25 2022-11-10 Nokia Solutions And Networks Oy Method and apparatus for sensor selection for localization and tracking

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509483A (en) * 2008-11-21 2012-04-19 クアルコム,インコーポレイテッド Radio positioning using coordinated round trip time measurements
JP2012154647A (en) * 2011-01-21 2012-08-16 Furuno Electric Co Ltd Target motion estimation device
US20130170374A1 (en) * 2011-12-28 2013-07-04 Aeroscout Ltd. Methods and systems for locating devices
CN104269659A (en) * 2014-09-25 2015-01-07 成都昂迅电子有限公司 Multi-antenna structure for wireless positioning and designing method thereof
JP2018151190A (en) * 2017-03-10 2018-09-27 株式会社東芝 Cargo storage position detection system and server
WO2019230572A1 (en) * 2018-05-30 2019-12-05 日本電信電話株式会社 Position estimation method and position estimation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509483A (en) * 2008-11-21 2012-04-19 クアルコム,インコーポレイテッド Radio positioning using coordinated round trip time measurements
JP2012154647A (en) * 2011-01-21 2012-08-16 Furuno Electric Co Ltd Target motion estimation device
US20130170374A1 (en) * 2011-12-28 2013-07-04 Aeroscout Ltd. Methods and systems for locating devices
CN104269659A (en) * 2014-09-25 2015-01-07 成都昂迅电子有限公司 Multi-antenna structure for wireless positioning and designing method thereof
JP2018151190A (en) * 2017-03-10 2018-09-27 株式会社東芝 Cargo storage position detection system and server
WO2019230572A1 (en) * 2018-05-30 2019-12-05 日本電信電話株式会社 Position estimation method and position estimation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220360944A1 (en) * 2019-09-25 2022-11-10 Nokia Solutions And Networks Oy Method and apparatus for sensor selection for localization and tracking
US12015966B2 (en) * 2019-09-25 2024-06-18 Nokia Solutions And Networks Oy Method and apparatus for sensor selection for localization and tracking
CN114521017A (en) * 2022-04-20 2022-05-20 北京度位科技有限公司 Method and device for positioning, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP2020173122A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
US9817112B2 (en) Pairwise measurements for improved position determination
EP3173807B1 (en) System and method for robust and accurate rssi based location estimation
KR101213363B1 (en) Wireless localization method using 4 or more anchor nodes based on RSSI at indoor environment and a recording medium in which a program for the method is recorded
US20210223355A1 (en) Distance-based positioning system and method using high-speed and low-speed wireless signals
KR102299605B1 (en) Positioning System and Method with Multipath Mitigation
US20160249316A1 (en) Non-line-of-sight (nlos) and line-of-sight (los) classification techniques for indoor ranging
JP6251930B2 (en) Position estimation system
Mukhopadhyay et al. Novel RSSI evaluation models for accurate indoor localization with sensor networks
KR101163335B1 (en) Wireless localization method based on rssi at indoor environment and a recording medium in which a program for the method is recorded
WO2020209053A1 (en) Position estimating method, position estimating system, position estimating server, and position estimating program
JP2014534427A (en) Distance estimation method based on RSS measurements using a receiver with limited sensitivity
US20120329477A1 (en) Estimating user device location in a wireless network
US10349214B2 (en) Localization using access point
US11349583B2 (en) Prorogation environment recognition method and propagation environment recognition apparatus
JP2010230380A (en) Apparatus and method for location estimation
Baba Calibrating time of flight in two way ranging
Zhao et al. Comparing centralized Kalman filter schemes for indoor positioning in wireless sensor network
Srbinovska et al. Localization techniques in wireless sensor networks using measurement of received signal strength indicator
WO2020162251A1 (en) Position estimating device, position estimating system, position estimating server, and position estimating program
JP6607190B2 (en) POSITION ESTIMATION DEVICE, POSITION ESTIMATION SYSTEM, METHOD, AND RECORDING MEDIUM
US9883342B2 (en) Localization using access point
KR101049512B1 (en) Method and apparatus for maximum likelihood based position estimation in wireless environment including position error of reference device
CN118759452A (en) UWB-based intelligent mold opening positioning control system and method
KR20190079023A (en) Methods for measuring position of jamming node and Apparatuses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787861

Country of ref document: EP

Kind code of ref document: A1