WO2020209023A1 - Light source device and display device including light source device - Google Patents

Light source device and display device including light source device Download PDF

Info

Publication number
WO2020209023A1
WO2020209023A1 PCT/JP2020/012006 JP2020012006W WO2020209023A1 WO 2020209023 A1 WO2020209023 A1 WO 2020209023A1 JP 2020012006 W JP2020012006 W JP 2020012006W WO 2020209023 A1 WO2020209023 A1 WO 2020209023A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
spacer
source device
light
light emitting
Prior art date
Application number
PCT/JP2020/012006
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 健
里奈 山本
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2020209023A1 publication Critical patent/WO2020209023A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction

Definitions

  • One of the embodiments of the present invention relates to a light source device for a liquid crystal module and a display device including the light source device.
  • the liquid crystal display device has a light source device (backlight) and a liquid crystal display module arranged on the light source device as a basic configuration.
  • a light source device backlight
  • a liquid crystal display module arranged on the light source device as a basic configuration.
  • Patent Documents 1 to 3 disclose a display device in which a light source device having a plurality of light emitting diodes is superimposed on a liquid crystal display module.
  • One of the problems of the embodiment of the present invention is to provide a light source device capable of irradiating a liquid crystal display module with light with uniform brightness, and a display device provided with the light source device.
  • a display device provided with the light source device.
  • one of the embodiments is to provide a display device having a narrow frame area and high design.
  • a light source substrate a light emitting element including a plurality of light emitting diodes on the light source substrate, an optical sheet located on the plurality of light emitting elements and separated from the plurality of light emitting elements, and an optical sheet.
  • a light source device comprising at least one spacer disposed between a light source substrate and an optical sheet, the light source substrate having a through hole, and a part of the at least one spacer being arranged in the through hole. ..
  • the light source device and the liquid crystal display module on the light source device are provided, and the light source device includes a light source substrate, a light emitting element including a plurality of light emitting diodes on the light source substrate, and a plurality of light emitting elements. It has an optical sheet located on the light emitting element and separated from the plurality of light emitting elements, and at least one spacer arranged between the light source substrate and the light diffusing plate optical sheet, and the light source substrate has a through hole.
  • a display device having a portion of at least one spacer disposed in the through hole.
  • the schematic development view of the light source apparatus which concerns on one Embodiment of this invention. Schematic cross-sectional view and top view of the light source device according to the embodiment of the present invention.
  • the schematic cross-sectional view which shows the manufacturing method of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic cross-sectional view which shows the manufacturing method of the light source apparatus which concerns on one Embodiment of this invention.
  • Schematic cross-sectional view and top view of the light source device according to the embodiment of the present invention Schematic cross-sectional view and top view of the light source device according to the embodiment of the present invention.
  • the schematic development view of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic top view of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic top view of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic top view of the light source apparatus which concerns on one Embodiment of this invention The schematic top view of the light source apparatus which concerns on one Embodiment of this invention.
  • the schematic top view of the light source apparatus which concerns on one Embodiment of this invention The schematic top view of the light source apparatus which concerns on one Embodiment of this invention.
  • drawings may schematically represent the width, thickness, shape, etc. of each part as compared with the actual embodiment, but this is merely an example and the interpretation of the present invention is limited. It is not something to do.
  • elements having the same functions as those described with respect to the above-described drawings may be designated by the same reference numerals and duplicate description may be omitted.
  • FIG. 1 is a schematic development view showing the overall configuration of the display device 100.
  • the first direction DX, the second direction DY, and the third direction DZ are orthogonal to each other, but may intersect at an angle other than 90 degrees.
  • the first direction DX and the second direction DY correspond to the directions parallel to the main surface of the substrate constituting the display device 100
  • the third direction DZ corresponds to the thickness direction of the display device 100.
  • viewing the DX-DY plane defined by the first direction DX and the second direction DY is defined as a plan view.
  • viewing a plane including the third direction DZ for example, a DX-DZ plane or a DY-DZ plane is defined as a cross-sectional view.
  • the display device 100 includes a light source device 110 and a liquid crystal display module 200 that superimposes on the light source device 110. Further, the display device 100 may include a touch sensor 220 on the liquid crystal display module 200.
  • the direction from the light source device 110 toward the liquid crystal display module 200 is defined as the upward direction, and the direction from the liquid crystal display module 200 toward the light source device 110 is defined as the downward direction.
  • the liquid crystal display module 200 includes a first substrate 202, a second substrate 214 facing the first substrate 202, a pair of polarizing plates 216 and 218 sandwiching the first substrate 202 and the second substrate 214, and the first substrate 202 and the first substrate 202. It has a liquid crystal layer (not shown) sandwiched between two substrates 214.
  • the first substrate 202 has a plurality of pixels 204, a drive circuit for driving the pixels 204 (scanning line drive circuit 208, signal line drive circuit 210), and a plurality of terminals 212.
  • the pixel 204, the drive circuit, and the terminal 212 have a laminate such as a conductive film, an insulating film, and a semiconductor film.
  • the liquid crystal display module 200 has a display area 206 including a plurality of pixels 204, and a frame area that is an area other than the display area 206.
  • the pair of polarizing plates 216 and 218 are arranged so as to overlap the display area 206.
  • Various signals including a video signal and a power source are supplied to the liquid crystal display module 200 from an external circuit (not shown) via the terminal 212.
  • the drive circuit operates by these signals and power supplies.
  • the orientation of the liquid crystal molecules contained in the liquid crystal layer on the pixel 204 is controlled.
  • the light emitted from the light source device 110 is incident on the liquid crystal display module 200, the incident light is controlled for each pixel 204, and an image is displayed.
  • the touch sensor 220 is arranged so as to overlap the display area 206.
  • the touch sensor 220 for example, the mutual capacitance type capacitive touch sensor shown in FIG. 1 can be used.
  • the touch sensor 220 includes a plurality of first touch electrodes 222 extending in the first direction DX, a plurality of second touch electrodes 224 intersecting with the first touch electrode 222, and an insulating film (illustrated) that electrically insulates them from each other. Does not).
  • a capacitance is formed between the first touch electrode 222 and the second touch electrode 224, and the capacitance changes when an object, for example, a user touches the touch sensor 220 with a finger or the like.
  • touch includes not only contact but also proximity of objects.
  • the light source device 110, the liquid crystal display module 200, and the touch sensor 220 are drawn so as to be separated from each other, but these are fixed to each other by using an adhesive layer, a housing, or the like.
  • the touch sensor 220 of the present embodiment is not limited to the mutual capacitance type touch sensor. As the touch sensor 220, a self-capacitating touch sensor may be used.
  • the touch sensor 220 of the present embodiment is not limited to the so-called out-cell type touch sensor provided separately from the liquid crystal display module 200.
  • the touch sensor 220 may be a touch sensor integrated with the liquid crystal display module 200, a so-called in-cell touch panel.
  • the electrodes and wiring included in the liquid crystal display module 200 function as touch electrodes.
  • FIG. 2 shows a schematic development view of the light source device 110.
  • the light source device 110 has a rear bezel 120 and a front cover 180 that fits into the rear bezel 120.
  • the light source substrate 140 and the optical sheet on the light source substrate 140 are arranged between the rear bezel 120 and the front cover 180.
  • the optical sheet includes a light diffusing plate 170, a prism sheet 174 on the light diffusing plate 170, and a polarizing sheet 176 on the prism sheet 174.
  • a plurality of inorganic light emitting elements 142 are arranged on the light source substrate 140.
  • the optical sheet may have a wavelength conversion film 172 between the light diffusing plate 170 and the prism sheet 174.
  • the wavelength conversion film 172 may not be provided between the light diffusing plate 170 and the prism sheet 174, but may be provided between the light source substrate 140 and the light diffusing plate 170.
  • the rear bezel 120 functions as a storage body for accommodating the light source substrate 140 and the optical sheet (light diffusing plate 170, prism sheet 174, polarizing sheet 176, wavelength conversion film 172, etc.) constituting the light source device 110.
  • the light source substrate 140 and the optical sheet are fixed.
  • the rear bezel 120 is provided with one or more openings 120a.
  • the light source substrate 140 and the external circuit are electrically connected by a flexible printed circuit board (FPC) or the like provided through the opening 120a.
  • FPC flexible printed circuit board
  • FIGS. 3 (A) and 3 (B) A schematic cross-sectional view and top view of a part of the light source device 110 are shown in FIGS. 3 (A) and 3 (B), respectively.
  • the light source substrate 140 is housed in the rear bezel 120.
  • the light source substrate 140 may be in contact with the rear bezel 120.
  • the plurality of inorganic light emitting elements 142 are arranged on the light source substrate 140 and overlap with the display area 206.
  • the inorganic light emitting elements 142 are arranged in a grid pattern, for example.
  • the pitch of the adjacent inorganic light emitting elements 142 can be arbitrarily set according to the size of the display device 100.
  • the pitch between the adjacent inorganic light emitting elements 142 may be selected from, for example, 1 mm or more and 20 mm or less, 3 mm or more and 15 mm or less, or 5 mm or more and 10 mm or less.
  • it is preferable that the plurality of inorganic light emitting elements 142 are arranged at a uniform pitch.
  • the inorganic light emitting element 142 is a light emitting diode having an inorganic light emitting body such as gallium nitride or gallium nitride containing indium sandwiched between a pair of electrodes, and a light emitting element having a protective film for protecting the light emitting diode.
  • the inorganic light emitting element 142 is configured to emit light by electroluminescence.
  • an inorganic compound that gives an emission peak between 400 nm and 530 nm can be selected. Blue light is extracted from the inorganic light emitting element 142 through the protective film.
  • a light emitting diode in which a color conversion material that converts light from an inorganic light emitter is dispersed in a protective film may be used.
  • the light emitting diode emits white light because the light from the inorganic light emitter and the light converted by the color conversion material are mixed.
  • a fluorescent material that emits fluorescence in the green to red region, for example, yellow fluorescence may be used.
  • the wavelength conversion film 172 is not provided, and the light diffusing plate 170 and the prism sheet 174 can be arranged so as to be in contact with each other.
  • each inorganic light emitting element 142 there is no limitation on the size of each inorganic light emitting element 142, for example, each occupied area is 1.0 ⁇ 10 4 ⁇ m 2 or more and 1.0 ⁇ 10 6 ⁇ m 2 or less 4.0 ⁇ 10 4 ⁇ m 2 or more 5.0.
  • a light emitting diode of ⁇ 10 5 ⁇ m 2 or less, or 9.0 ⁇ 10 4 ⁇ m 2 or more and 2.5 ⁇ 10 5 ⁇ m 2 or less can be used.
  • a so-called micro LED having a size of about 320 ⁇ m ⁇ 300 ⁇ m can be used as the inorganic light emitting element 142.
  • the light source device 110 may further have an overcoat 144 that covers the inorganic light emitting element 142.
  • the overcoat 144 may be in contact with the light source substrate 140.
  • the overcoat 144 has a function of protecting the inorganic light emitting element 142 and preventing separation from the light source substrate 140, and also absorbs irregularities caused by the inorganic light emitting element 142 to give a flat surface. Further, although the inorganic light emitting element 142 gives light having relatively high directivity, the light from the inorganic light emitting element 142 can be spread or diffused by the overcoat 144.
  • the overcoat 144 has a high transmittance in the visible light region.
  • the overcoat 144 includes, for example, an acrylic resin, polycarbonate, a polymer material exemplified for polyester such as polyethylene terephthalate, or a silicon-containing inorganic compound such as silicon oxide.
  • the thickness of the overcoat 144 is preferably such that it covers the inorganic light emitting element 142.
  • the thickness of the overcoat 144 may be selected from, for example, 200 ⁇ m or more and 1 mm or less, 400 ⁇ m or more and 1 mm or less, or 500 ⁇ m or more and 800 ⁇ m or less.
  • the light diffusing plate 170 diffuses the light from the inorganic light emitting element 142 to provide a uniform light emitting surface.
  • the thickness of the light diffusing plate 170 can be selected from, for example, 0.5 mm or more and 2 mm or less, or 0.75 mm or more and 1.5 mm or less.
  • the light diffusing plate 170 is arranged apart from the inorganic light emitting element 142. Specifically, the distance from the upper surface of the light source substrate 140 (the surface of the DX-DZ plane that is closer to the liquid crystal display module 200) to the bottom surface of the light diffuser plate 170 (the surface of the DX-DZ plane that is farther from the liquid crystal display module 200). (Also called an optical distance) is 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less. Therefore, the light diffusing plate 170 and the inorganic light emitting element 142, or the light diffusing plate 170 and the overcoat 144 do not come into direct contact with each other.
  • the light source device 110 of the present embodiment has at least one spacer 146 between the light source substrate 140 and the optical sheet.
  • a plurality of spacers 146 may be arranged instead of one.
  • the number of spacers 146 may be smaller than that of the inorganic light emitting element 142.
  • a space 150 is formed between the light source substrate 140 and the light diffusing plate 170 by the spacer 146. As shown in FIG. 3B, the spacer 146 is arranged so as not to overlap the inorganic light emitting element 142 in a plan view.
  • the spacers 146 may be randomly arranged on the light source substrate 140, but are preferably arranged in a grid pattern, for example, as shown in FIG. 3 (B). As a result, the distance GP between the light source substrate 140 and the optical sheet can be kept constant throughout the light source device 110.
  • the spacer 146 is a material applicable to the light diffusing plate 170, for example, a polymer compound such as polyacrylic acid ester, polymethacrylic acid ester, and polystyrene, or calcium carbonate, barium sulfate, titanium dioxide, aluminum hydroxide, and silicon oxide. , Talk, mica, white carbon, magnesium oxide, or inorganic compounds such as zinc oxide may be included. Alternatively, a metal such as aluminum or stainless steel, which has a relatively high reflectance to visible light, may be used.
  • the shape of the spacer 146 can be a pillar shape.
  • the long axis of the spacer 146 is arranged parallel to the third direction DZ, that is, perpendicular to the upper surface of the light source substrate 140, that is, parallel to the normal line of the upper surface of the light source substrate 140.
  • the length of the long axis of the spacer 146 determines the distance GP between the light source substrate 140 and the optical sheet. Therefore, the length of the major axis of the spacer 146 is selected from the range of 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less.
  • the cross-sectional shape of the spacer 146 in the DX-DY plane is not limited, and may be circular, elliptical or polygonal as shown in FIG. 3 (B). Alternatively, a plurality of spacers 146 having different cross-sectional shapes may be arranged.
  • the spacer 146 is in contact with the upper surface of the light source substrate 140 and the bottom surface of the light diffusing plate 170.
  • the overcoat 144 is provided with a through hole, and a part of the spacer 146 is arranged in the through hole.
  • a plurality of through holes 152 penetrating the light source substrate 140 and the overcoat 144 are provided, and the light source device 110 is configured so that a part of the spacer 146 is located in the through hole 152. May be good. In this case, the spacer 146 may penetrate the overcoat 144 and come into contact with the rear bezel 120.
  • the spacer 146 may be arranged so as to be in contact with the wavelength conversion film 172 as shown in FIG. 4 (B).
  • a stopper 154 for fixing the spacer 146 may be provided.
  • the stopper 154 is provided under the light source substrate 140 between the light source substrate 140 and the rear bezel 120 in a cross-sectional view, and is arranged so as to overlap the spacer 146 in a plan view.
  • the stopper 154 may be in contact with the rear bezel 120.
  • the stopper 154 may contain a metal such as aluminum or stainless steel, or may contain a polymer material such as polyimide, polyamide, acrylic resin, or epoxy resin. Further, the stopper 154 and the spacer 146 may be integrated. By providing the stopper 154, the height of the spacer 146 is fixed, and the distance GP between the optical sheet and the light source substrate 140 can be stably maintained.
  • a cushioning material 156 in contact with the spacer 146 may be provided between the spacer 146 and the optical sheet.
  • the cushioning material 156 preferably contains an elastomer exhibiting rubber elasticity. Examples of the material exhibiting rubber elasticity include polysiloxane, polyacrylate, polymethacrylate, polyacrylonitrile, epoxy resin, polybutadiene, polyisoprene, and a copolymer containing these as a basic skeleton.
  • the wavelength conversion film 172 is arranged between the light diffusing plate 170 and the prism sheet 174, the cushioning material 156 comes into contact with the light diffusing plate 170.
  • the cushioning material 156 comes into contact with the wavelength conversion film 172.
  • the cushioning material 156 By arranging the cushioning material 156, it is possible to prevent the optical sheet arranged on the cushioning material 156 from being damaged. Further, it is possible to prevent an adverse effect on the luminance distribution due to the breakage of the optical sheet.
  • the stopper 154 can be manufactured, for example, by going through the following process.
  • an overcoat 144 is formed on the light source substrate 140 so as to cover the inorganic light emitting element 142.
  • the overcoat 144 is formed by applying, for example, the above-mentioned polymer material or a precursor thereof by using a wet film forming method such as a spin coating method, a printing method, an inkjet method, a dipping method, or a spray method, and then applying heat or light. It can be formed by curing with use.
  • an overcoat 144 containing silicon oxide may be formed by using a chemical vapor deposition (CVD) method. If the overcoat 144 is not provided, this step can be omitted.
  • CVD chemical vapor deposition
  • a through hole 152 is formed so as to penetrate the light source substrate 140 and the overcoat 144 (FIG. 6 (B)).
  • the through hole 152 may be formed by etching the overcoat 144, or may be physically formed by laser irradiation, sandblasting, ultrasonic drilling, or the like.
  • the stopper 154 is formed. Specifically, a resist film 158 is formed on the bottom surface of the light source substrate 140 (that is, a surface on which the inorganic light emitting element 142 is not formed) (FIG. 6C), and then the resist film 158 is exposed via a photomask. Then continue to develop. As a result, the stopper 154 is formed so as to selectively close the through hole 152 in the region overlapping the through hole 152 (FIG. 6 (D)).
  • FIG. 7 (A) in which the spacers 146 are arranged in the through holes 152, respectively.
  • the light diffusing plate 170 is placed on the spacer 146.
  • the cushioning material 156 may be formed on the light diffusing plate 170, and then the light diffusing plate 170 may be arranged on the spacer 146 (FIG. 7 (B)).
  • a through hole 152 is formed in the light source substrate 140 before the overcoat 144 is formed.
  • the stopper 154 that closes the through hole 152 may be formed as described above, and the spacer 146 may be continuously inserted into the through hole 152 (FIG. 8 (B)).
  • a spacer 146 integrated with the stopper 154 may be inserted so as to penetrate the through hole 152.
  • an overcoat 144 is formed on the light source substrate 140 so as to cover the inorganic light emitting element 142 (FIG. 8C), and the light diffusing plate 170 is arranged on the overcoat 144 to prevent the stopper 154. Can be produced.
  • the wavelength conversion film 172 is a film having a function of emitting light from the inorganic light emitting element 142 and converting the wavelength of the light diffused by the light diffusing plate 170 to generate white light, and is fluorescent in the polymer material. It has a dispersed structure.
  • the phosphor contains a fluorescent substance that absorbs blue light emitted from the inorganic light emitting element 142 and emits fluorescence in the green to red region, for example, yellow fluorescence.
  • the above-mentioned color conversion material may be used.
  • quantum dots having a particle size of several nm to several tens of nm may be used.
  • the wavelength conversion film 172 may be arranged above or below the light diffusing plate 170 as one separately prepared independent film, or a dispersion liquid containing the above-mentioned polymer material or its precursor and a phosphor or quantum dots. May be formed by applying the above or below the light diffusing plate 170 and then curing.
  • the prism sheet 174 is an optical film for efficiently emitting light after passing through the light diffusing plate 170 and the wavelength conversion film 172 in the upward direction, and has a structure in which a plurality of prism shapes are arranged in parallel on the surface. Has.
  • the polarizing sheet 176 is, for example, an anisotropic reflection polarizer. More specifically, the polarizing sheet 176 reflects light that is circularly polarized or elliptically polarized and does not coincide with the transmission axis of the polarizing sheet 176 by the multilayer film formed in the polarizing sheet 176, and repeatedly recovers the reflected component. .. By efficiently reflecting light, loss of light can be prevented and the brightness of emitted light can be improved. Further, by providing the polarizing sheet 176, the effect of diffusing the highly directional light emitted from the inorganic light emitting element 142 can be obtained.
  • the light source substrate 140 on which the plurality of inorganic light emitting elements 142 are arranged and the optical sheet (light diffusion plate 170, prism sheet 174, polarizing sheet 176, etc.) are placed between the rear bezel 120 and the front cover 180. It is housed in and fixed to each other.
  • a liquid crystal display module 200 is arranged on the light source device 110 to form a display device 100.
  • a spacer 146 is arranged between the light source substrate 140 and the optical sheet, and a constant distance is maintained between them.
  • the emitted light is diffused in the space 150 between the light source substrate 140 and the optical sheet. Further, the directivity is further lowered by repeatedly reflecting the emitted light in the space 150. As a result, the generation of locally high-luminance regions (hot spots) is suppressed on the bottom surface of the light diffusing plate 170. Further, the light whose intensity distribution is lowered by the space 150 is further diffused by the light diffusing plate 170, and the light is incident on the liquid crystal display module 200 with uniform brightness. Therefore, light having uniform brightness is provided for the display area 206, and the display device 100 enables high-quality display.
  • the inorganic light emitting element 142 that functions as a light source is arranged so as to overlap the display area 206 in a plan view.
  • a reflector for reflecting the light toward the liquid crystal display module 200 side becomes unnecessary. Therefore, the number of parts constituting the light source device can be reduced. This contributes to making the display device thinner. Further, since it is not necessary to arrange the light source in the frame area, the frame area can be reduced and the area of the display area 206 with respect to the entire display device 100 can be increased. Therefore, by applying this embodiment, it is possible to provide a display device having excellent design.
  • the light source device 112 having a structure different from that of the light source device 110 of the first embodiment will be described with reference to FIGS. 9 (A) to 10 (B). The description may be omitted for a structure that is the same as or similar to the structure described in the first embodiment.
  • the light source device 112 of the second embodiment has a first aspect in that the spacer 146 has a spherical shape or an ellipsoidal shape (spheroidal shape). It is different from the light source device 110 of the embodiment.
  • the ellipsoidal spacer 146 has a circular or elliptical shape in cross-sectional view. Spherical and ellipsoidal spacers 146 may be mixed in the light source device 112.
  • the number of spacers 146 may be less or more than the number of inorganic light emitting elements 142.
  • the spacer 146 may be arranged so as not to overlap with the inorganic light emitting element 142.
  • the spacer 146 contains a polymer material capable of transmitting visible light
  • a part of the spacer 146 may overlap with the inorganic light emitting element 142 as shown in FIGS. 9A and 9B. .. Further, as shown in FIGS. 10A and 10B, at least two of the plurality of spacers 146 may be in contact with each other.
  • the distance GP between the light source substrate 140 and the optical sheet is determined by the size of the spacer 146. Specifically, if the spacer 146 has a spherical shape, the distance GP is determined by the diameter, and if the spacer 146 has an ellipsoidal spherical shape, the distance GP is determined by the major axis or the minor axis. Therefore, the diameter, major axis, or minor axis of the spacer 146 is selected from the range of 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less.
  • the light source device 112 having such a structure can be formed by arranging the spacer 146 on the inorganic light emitting element 142 or the overcoat 144 when arranging the light diffusing plate 170 on the light source substrate 140.
  • the spacer 146 can be arranged by dispersing the spacer 146 in an organic solvent such as water or alcohol and applying this dispersion.
  • the inorganic light emitting element 142 and the optical sheet can be separated from each other by the spacer 146. Further, the distance GP between the light source substrate 140 and the optical sheet can be kept constant. Therefore, the same effect as that of the first embodiment is obtained.
  • the light source device 114 having a structure different from that of the light source devices 110 and 112 will be described with reference to FIGS. 11 to 15. The description may be omitted for structures that are the same as or similar to the structures described in the first and second embodiments.
  • the light source device 114 of the present embodiment is the first embodiment in that the spacer 146 provided in the light source device 114 may be a single spacer and that the spacer 146 extends in a plane parallel to the upper surface of the light source substrate 140. It is different from the light source device 110 of the embodiment and the light source device 112 of the second embodiment.
  • each of the single or plurality of spacers 146 is in the DX-DY plane in the plane parallel to the upper surface of the light source substrate 140 (DX-DY plane). It has a plurality of straight portions 146a extending in a direction parallel to the above. The plurality of straight portions 146a are connected by the bent portions 146b. Similar to the light source devices 110 and 112, the spacer 146 may be provided so as to extend between the inorganic light emitting elements 142 so as not to overlap with the inorganic light emitting element 142. Alternatively, when the spacer 146 contains a material capable of transmitting visible light, the spacer 146 may be arranged so as to overlap a part of the inorganic light emitting element 142.
  • the two straight portions 146a connected via one bent portion 146b extend in different directions in the DX-DY plane.
  • the angle formed by the stretching direction is arbitrary and is selected from a range greater than 0 ° and less than 180 °. Therefore, the spacer 146 may have a zigzag shape in the DX-DY plane. Alternatively, as shown in FIG. 13, the spacer 146 may have a spiral shape in the DX-DY plane.
  • the light source device 114 may have a plurality of spacers 146 each having a single linear portion 146a.
  • the lengths of the linear portions 146a of the plurality of spacers 146 may be the same or different from each other.
  • the stretching directions of the straight portions 146a of the plurality of spacers 146 may all be the same, or at least two stretching directions may be different from each other as shown in FIG.
  • the spacer 146 of the light source device 114 may have a curved shape (planar shape) in the DX-DY plane.
  • the planar shape of the spacer 146 may be composed only of a curved line, and the proportion of the portion formed by the curved line may be 80% or more and 100% or less, or 90% or more and 100% or less.
  • the inorganic light emitting element 142 and the light diffusing plate 170 can be separated from each other by the spacer 146, and the distance between them can be kept constant. As a result, the same effect as that of the first embodiment is obtained.
  • the distance GP between the light source substrate 140 and the optical sheet is determined by the height H of the spacer 146 (the length in the third direction DZ, see FIG. 11). Therefore, the height H of the spacer 146 is selected from the range of 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less.

Abstract

Provided is a light source device comprising: a light source substrate; a plurality of inorganic light-emitting elements above the light source substrate; an optical sheet that is positioned above the plurality of inorganic light-emitting elements and is separated from the plurality of inorganic light-emitting elements; and at least one spacer disposed between the plurality of inorganic light-emitting elements and the optical sheet. The light source substrate includes through-holes, and a part of the spacer is disposed in the through-holes. The light source device may further include an overcoat that covers the plurality of inorganic light-emitting elements and contacts the light source substrate. The at least one spacer may contact the overcoat.

Description

光源装置、及び光源装置を有する表示装置A light source device and a display device having a light source device
 本発明の実施形態の一つは、液晶モジュール用光源装置、および光源装置を備える表示装置に関する。 One of the embodiments of the present invention relates to a light source device for a liquid crystal module and a display device including the light source device.
 現在最も汎用されている表示装置の一つとして液晶表示装置が挙げられる。液晶表示装置は、光源装置(バックライト)、光源装置上に配置される液晶表示モジュールを基本構成として有している。例えば特許文献1から3では、複数の発光ダイオードを有する光源装置が液晶表示モジュールと重畳する表示装置が開示されている。 One of the most widely used display devices at present is a liquid crystal display device. The liquid crystal display device has a light source device (backlight) and a liquid crystal display module arranged on the light source device as a basic configuration. For example, Patent Documents 1 to 3 disclose a display device in which a light source device having a plurality of light emitting diodes is superimposed on a liquid crystal display module.
特開2013-143240号公報Japanese Unexamined Patent Publication No. 2013-143240 特開2017-173785号公報JP-A-2017-173785 特開2012-104731号公報Japanese Unexamined Patent Publication No. 2012-104731
 本発明に係る実施形態の1つは、液晶表示モジュールを均一な輝度で光照射可能な光源装置、および当該光源装置を備える表示装置を提供することを課題の1つとする。あるいは実施形態の1つは、額縁領域が狭く、デザイン性の高い表示装置を提供することを課題の1つとする。 One of the problems of the embodiment of the present invention is to provide a light source device capable of irradiating a liquid crystal display module with light with uniform brightness, and a display device provided with the light source device. Alternatively, one of the embodiments is to provide a display device having a narrow frame area and high design.
 本発明の実施形態の1つによれば、光源基板と、光源基板上の複数の発光ダイオードを含む発光素子と、複数の発光素子上に位置し、複数の発光素子と離隔する光学シートと、光源基板と光学シートの間に配置された、少なくとも1つのスペーサとを備え、光源基板は貫通孔を有し、少なくとも1つのスペーサの一部は貫通孔内に配置される光源装置が提供される。 According to one of the embodiments of the present invention, a light source substrate, a light emitting element including a plurality of light emitting diodes on the light source substrate, an optical sheet located on the plurality of light emitting elements and separated from the plurality of light emitting elements, and an optical sheet. Provided is a light source device comprising at least one spacer disposed between a light source substrate and an optical sheet, the light source substrate having a through hole, and a part of the at least one spacer being arranged in the through hole. ..
 本発明の実施形態の1つによれば、光源装置、および光源装置上の液晶表示モジュールを備え、光源装置は、光源基板と、光源基板上の複数の発光ダイオードを含む発光素子と、複数の発光素子上に位置し、複数の発光素子と離隔する光学シートと、光源基板と光拡散板光学シートの間に配置された、少なくとも一1つのスペーサと、を有し、光源基板は貫通孔を有し、少なくとも1つのスペーサの一部は前記貫通孔内に配置される表示装置が提供される。 According to one of the embodiments of the present invention, the light source device and the liquid crystal display module on the light source device are provided, and the light source device includes a light source substrate, a light emitting element including a plurality of light emitting diodes on the light source substrate, and a plurality of light emitting elements. It has an optical sheet located on the light emitting element and separated from the plurality of light emitting elements, and at least one spacer arranged between the light source substrate and the light diffusing plate optical sheet, and the light source substrate has a through hole. Provided is a display device having a portion of at least one spacer disposed in the through hole.
本発明の一実施形態に係る表示装置の模式的展開図。The schematic development view of the display device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光源装置の模式的展開図。The schematic development view of the light source apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光源装置の模式的断面図と上面図。Schematic cross-sectional view and top view of the light source device according to the embodiment of the present invention. 本発明の一実施形態に係る光源装置の模式的断面図。The schematic sectional view of the light source apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光源装置の模式的断面図。The schematic sectional view of the light source apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光源装置の製造方法を示す模式的断面図。The schematic cross-sectional view which shows the manufacturing method of the light source apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光源装置の製造方法を示す模式的断面図。The schematic cross-sectional view which shows the manufacturing method of the light source apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光源装置の製造方法を示す模式的断面図。The schematic cross-sectional view which shows the manufacturing method of the light source apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光源装置の模式的断面図と上面図。Schematic cross-sectional view and top view of the light source device according to the embodiment of the present invention. 本発明の一実施形態に係る光源装置の模式的断面図と上面図。Schematic cross-sectional view and top view of the light source device according to the embodiment of the present invention. 本発明の一実施形態に係る光源装置の模式的展開図。The schematic development view of the light source apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光源装置の模式的上面図。The schematic top view of the light source apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光源装置の模式的上面図。The schematic top view of the light source apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光源装置の模式的上面図。The schematic top view of the light source apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光源装置の模式的上面図。The schematic top view of the light source apparatus which concerns on one Embodiment of this invention.
 以下、本発明の各実施形態について、図面などを参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。 Hereinafter, each embodiment of the present invention will be described with reference to drawings and the like. However, the present invention can be implemented in various aspects without departing from the gist thereof, and is not construed as being limited to the description contents of the embodiments exemplified below.
 図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状などについて模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。本明細書と各図において、既出の図に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。 In order to clarify the description, the drawings may schematically represent the width, thickness, shape, etc. of each part as compared with the actual embodiment, but this is merely an example and the interpretation of the present invention is limited. It is not something to do. In this specification and each of the drawings, elements having the same functions as those described with respect to the above-described drawings may be designated by the same reference numerals and duplicate description may be omitted.
 本明細書および請求項において、ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上に」と表記する場合、特に断りの無い限りは、ある構造体に接するように、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。 In the present specification and claims, when expressing an aspect of arranging another structure on one structure, when the term "above" is simply used, the structure should be in contact with the structure unless otherwise specified. It is assumed that both the case where another structure is arranged directly above the one structure and the case where another structure is arranged above the one structure via another structure are included.
<第1実施形態>
 本実施形態では、本発明の実施形態の1つに係る光源装置110、および光源装置110を備える表示装置100について説明する。
<First Embodiment>
In this embodiment, the light source device 110 according to one of the embodiments of the present invention and the display device 100 including the light source device 110 will be described.
1.全体構成
 図1は、表示装置100の全体構成を示す模式的な展開図である。図1では第1方向DX、第2方向DY、および第3方向DZは、互いに直交しているが、90度以外の角度で交差していてもよい。第1方向DXおよび第2方向DYは、表示装置100を構成する基板の主面と平行な方向に相当し、第3方向DZは、表示装置100の厚さ方向に相当する。本実施形態においては、第1方向DXおよび第2方向DYで規定されるDX-DY平面を見ることを平面視とする。また第3方向DZを含む平面、例えばDX-DZ平面又はDY-DZ平面を見ることを、断面視とする。
1. 1. Overall Configuration FIG. 1 is a schematic development view showing the overall configuration of the display device 100. In FIG. 1, the first direction DX, the second direction DY, and the third direction DZ are orthogonal to each other, but may intersect at an angle other than 90 degrees. The first direction DX and the second direction DY correspond to the directions parallel to the main surface of the substrate constituting the display device 100, and the third direction DZ corresponds to the thickness direction of the display device 100. In the present embodiment, viewing the DX-DY plane defined by the first direction DX and the second direction DY is defined as a plan view. Further, viewing a plane including the third direction DZ, for example, a DX-DZ plane or a DY-DZ plane is defined as a cross-sectional view.
 表示装置100は、光源装置110、および光源装置110と重畳する液晶表示モジュール200を有する。更に表示装置100は、液晶表示モジュール200上にタッチセンサ220を備えてもよい。 The display device 100 includes a light source device 110 and a liquid crystal display module 200 that superimposes on the light source device 110. Further, the display device 100 may include a touch sensor 220 on the liquid crystal display module 200.
 本実施形態においては、光源装置110から液晶表示モジュール200に向かう方向を上方向と定義し、液晶表示モジュール200から光源装置110に向かう方向を下方向と定義する。 In the present embodiment, the direction from the light source device 110 toward the liquid crystal display module 200 is defined as the upward direction, and the direction from the liquid crystal display module 200 toward the light source device 110 is defined as the downward direction.
 液晶表示モジュール200は、第1基板202、第1基板202に対向する第2基板214、第1基板202と第2基板214を挟持する一対の偏光板216、218、および第1基板202と第2基板214の間に挟持される液晶層(図示しない)を有する。第1基板202は、複数の画素204、画素204を駆動するための駆動回路(走査線駆動回路208、信号線駆動回路210)、複数の端子212を有する。画素204、駆動回路、端子212は、導電膜、絶縁膜、半導体膜などの積層体を有する。液晶表示モジュール200は、複数の画素204を含む表示領域206、および表示領域206以外の領域である額縁領域を有する。 The liquid crystal display module 200 includes a first substrate 202, a second substrate 214 facing the first substrate 202, a pair of polarizing plates 216 and 218 sandwiching the first substrate 202 and the second substrate 214, and the first substrate 202 and the first substrate 202. It has a liquid crystal layer (not shown) sandwiched between two substrates 214. The first substrate 202 has a plurality of pixels 204, a drive circuit for driving the pixels 204 (scanning line drive circuit 208, signal line drive circuit 210), and a plurality of terminals 212. The pixel 204, the drive circuit, and the terminal 212 have a laminate such as a conductive film, an insulating film, and a semiconductor film. The liquid crystal display module 200 has a display area 206 including a plurality of pixels 204, and a frame area that is an area other than the display area 206.
 一対の偏光板216、218は、表示領域206と重畳して配置される。液晶表示モジュール200には、端子212を介して外部回路(図示しない)から映像信号を含む種々の信号、および電源が供給される。これらの信号や電源により、駆動回路が動作する。駆動回路が画素204を制御することによって、画素204上の液晶層に含まれる液晶分子の配向が制御される。光源装置110から出射された光が液晶表示モジュール200に入射し、入射した光が画素204ごとに制御され、画像が表示される。 The pair of polarizing plates 216 and 218 are arranged so as to overlap the display area 206. Various signals including a video signal and a power source are supplied to the liquid crystal display module 200 from an external circuit (not shown) via the terminal 212. The drive circuit operates by these signals and power supplies. By controlling the pixel 204 by the drive circuit, the orientation of the liquid crystal molecules contained in the liquid crystal layer on the pixel 204 is controlled. The light emitted from the light source device 110 is incident on the liquid crystal display module 200, the incident light is controlled for each pixel 204, and an image is displayed.
 タッチセンサ220は、表示領域206と重畳して配置される。タッチセンサ220として、例えば図1に示す相互容量方式の静電容量方式タッチセンサを用いることができる。タッチセンサ220は、第1方向DXに延在する複数の第1タッチ電極222、第1タッチ電極222と交差する複数の第2タッチ電極224、およびこれらを互いに電気的に絶縁する絶縁膜(図示しない)を有する。第1タッチ電極222および第2タッチ電極224間に静電容量が形成され、物体、例えばユーザが指などでタッチセンサ220をタッチした際に、静電容量が変化する。静電容量変化を検出することでタッチの有無を判断し、かつ、物体の位置(座標)を特定することができる。これによりユーザは種々の命令をタッチセンサ220に対して入力することができる。本明細書において、タッチとは物体が接触することだけでなく近接することも含む。図1では光源装置110や液晶表示モジュール200、タッチセンサ220は離隔するように描かれているが、これらは互いに接着層や筐体などを用いて固定される。本実施形態のタッチセンサ220は、相互容量方式のタッチセンサに限定されない。タッチセンサ220として、自己容量方式のタッチセンサを用いてもよい。さらに本実施形態のタッチセンサ220は、液晶表示モジュール200とは別に設ける、いわゆるアウトセル型タッチセンサに限定されない。タッチセンサ220は、液晶表示モジュール200と一体化されたタッチセンサ、所謂インセル型タッチパネルでもよい。インセル型タッチパネルの場合は、液晶表示モジュール200に含まれる電極や配線が、タッチ電極として機能する。 The touch sensor 220 is arranged so as to overlap the display area 206. As the touch sensor 220, for example, the mutual capacitance type capacitive touch sensor shown in FIG. 1 can be used. The touch sensor 220 includes a plurality of first touch electrodes 222 extending in the first direction DX, a plurality of second touch electrodes 224 intersecting with the first touch electrode 222, and an insulating film (illustrated) that electrically insulates them from each other. Does not). A capacitance is formed between the first touch electrode 222 and the second touch electrode 224, and the capacitance changes when an object, for example, a user touches the touch sensor 220 with a finger or the like. By detecting the change in capacitance, the presence or absence of touch can be determined, and the position (coordinates) of the object can be specified. As a result, the user can input various commands to the touch sensor 220. As used herein, touch includes not only contact but also proximity of objects. In FIG. 1, the light source device 110, the liquid crystal display module 200, and the touch sensor 220 are drawn so as to be separated from each other, but these are fixed to each other by using an adhesive layer, a housing, or the like. The touch sensor 220 of the present embodiment is not limited to the mutual capacitance type touch sensor. As the touch sensor 220, a self-capacitating touch sensor may be used. Further, the touch sensor 220 of the present embodiment is not limited to the so-called out-cell type touch sensor provided separately from the liquid crystal display module 200. The touch sensor 220 may be a touch sensor integrated with the liquid crystal display module 200, a so-called in-cell touch panel. In the case of an in-cell touch panel, the electrodes and wiring included in the liquid crystal display module 200 function as touch electrodes.
2.光源装置
 図2に光源装置110の模式的な展開図を示す。光源装置110は、リアベゼル120、およびリアベゼル120と嵌合するフロントカバー180を有する。リアベゼル120およびフロントカバー180の間に、光源基板140、光源基板140上の光学シートが配置される。光学シートには、光拡散板170、光拡散板170上のプリズムシート174、およびプリズムシート174上の偏光シート176が含まれる。光源基板140上には、複数の無機発光素子142が配置される。更に光学シートは、光拡散板170とプリズムシート174の間に波長変換膜172を有してもよい。図2では示されないが、波長変換膜172を光拡散板170とプリズムシート174の間に設けず、光源基板140と光拡散板170の間に設けてもよい。
2. Light Source Device FIG. 2 shows a schematic development view of the light source device 110. The light source device 110 has a rear bezel 120 and a front cover 180 that fits into the rear bezel 120. The light source substrate 140 and the optical sheet on the light source substrate 140 are arranged between the rear bezel 120 and the front cover 180. The optical sheet includes a light diffusing plate 170, a prism sheet 174 on the light diffusing plate 170, and a polarizing sheet 176 on the prism sheet 174. A plurality of inorganic light emitting elements 142 are arranged on the light source substrate 140. Further, the optical sheet may have a wavelength conversion film 172 between the light diffusing plate 170 and the prism sheet 174. Although not shown in FIG. 2, the wavelength conversion film 172 may not be provided between the light diffusing plate 170 and the prism sheet 174, but may be provided between the light source substrate 140 and the light diffusing plate 170.
2-1.リアベゼルとフロントカバー
 リアベゼル120は、光源装置110を構成する光源基板140や光学シート(光拡散板170、プリズムシート174、偏光シート176、波長変換膜172など)を収容する収納体として機能する。リアベゼル120がフロントカバー180と嵌合することにより、光源基板140、光学シート(光拡散板170、プリズムシート174、偏光シート176、波長変換膜172など)が固定される。リアベゼル120には1つ、あるいは複数の開口120aが設けられる。光源基板140と外部回路は、開口120aを介して設けられるフレキシブルプリント回路基板(FPC)などにより電気的に接続される。
2-1. Rear bezel and front cover The rear bezel 120 functions as a storage body for accommodating the light source substrate 140 and the optical sheet (light diffusing plate 170, prism sheet 174, polarizing sheet 176, wavelength conversion film 172, etc.) constituting the light source device 110. By fitting the rear bezel 120 with the front cover 180, the light source substrate 140 and the optical sheet (light diffusion plate 170, prism sheet 174, polarizing sheet 176, wavelength conversion film 172, etc.) are fixed. The rear bezel 120 is provided with one or more openings 120a. The light source substrate 140 and the external circuit are electrically connected by a flexible printed circuit board (FPC) or the like provided through the opening 120a.
 フロントカバー180は、表示領域206と重畳する開口180aを有する。無機発光素子142からの光は、開口180aから取り出され、液晶表示モジュール200へ入射される。リアベゼル120とフロントカバー180は、アルミニウムや銅、ステンレスなどの金属を含む。リアベゼル120は、例えば厚さが1mm以上3mm以下あるいは1mm以上2mm以下の金属プレートを切削加工、プレス加工して形成することができる。フロントカバー180の厚さは、リアベゼル120の厚さと異なってもよい。フロントカバー180は、例えば0.1mm以上1mm以下あるいは0.1mm以上0.5mm以下、0.1mm以上0.4mm以下の金属板を切削加工、プレス加工して形成してもよい。 The front cover 180 has an opening 180a that overlaps with the display area 206. The light from the inorganic light emitting element 142 is taken out from the opening 180a and incident on the liquid crystal display module 200. The rear bezel 120 and the front cover 180 include metals such as aluminum, copper and stainless steel. The rear bezel 120 can be formed by cutting or pressing a metal plate having a thickness of 1 mm or more and 3 mm or less or 1 mm or more and 2 mm or less, for example. The thickness of the front cover 180 may be different from the thickness of the rear bezel 120. The front cover 180 may be formed by cutting or pressing a metal plate of, for example, 0.1 mm or more and 1 mm or less, 0.1 mm or more and 0.5 mm or less, and 0.1 mm or more and 0.4 mm or less.
 なお、リアベゼル120やフロントカバー180は必ずしも平面形状を有する必要は無く、曲面形状を有していてもよい。この場合、光源基板140や光拡散板170、プリズムシート174なども曲面形状に合致するように配置される。 The rear bezel 120 and the front cover 180 do not necessarily have to have a flat shape, and may have a curved shape. In this case, the light source substrate 140, the light diffusion plate 170, the prism sheet 174, and the like are also arranged so as to match the curved surface shape.
2-2.光源基板と無機発光素子
 光源装置110の一部の模式的断面図と上面図を、それぞれ図3(A)および図3(B)に示す。上述したように光源基板140はリアベゼル120内に収容される。光源基板140はリアベゼル120と接していてもよい。
2-2. Light Source Substrate and Inorganic Light Emitting Element A schematic cross-sectional view and top view of a part of the light source device 110 are shown in FIGS. 3 (A) and 3 (B), respectively. As described above, the light source substrate 140 is housed in the rear bezel 120. The light source substrate 140 may be in contact with the rear bezel 120.
 複数の無機発光素子142は、光源基板140の上に配置され、表示領域206と重なる。無機発光素子142は、例えば格子状に配置する。隣接する無機発光素子142のピッチは、表示装置100の大きさによって任意に設定することができる。隣接する無機発光素子142間のピッチは、例えば1mm以上20mm以下、3mm以上15mm以下、あるいは5mm以上10mm以下の範囲から選択すればよい。表示領域206にわたって均一な輝度の光を供給するため、複数の無機発光素子142は均等なピッチで配置されることが好ましい。 The plurality of inorganic light emitting elements 142 are arranged on the light source substrate 140 and overlap with the display area 206. The inorganic light emitting elements 142 are arranged in a grid pattern, for example. The pitch of the adjacent inorganic light emitting elements 142 can be arbitrarily set according to the size of the display device 100. The pitch between the adjacent inorganic light emitting elements 142 may be selected from, for example, 1 mm or more and 20 mm or less, 3 mm or more and 15 mm or less, or 5 mm or more and 10 mm or less. In order to supply light having uniform brightness over the display region 206, it is preferable that the plurality of inorganic light emitting elements 142 are arranged at a uniform pitch.
 無機発光素子142は、窒化ガリウム、インジウムを含む窒化ガリウムなどの無機発光体を一対の電極で挟持した発光ダイオード、および当該発光ダイオードを保護する保護膜を有する発光素子である。無機発光素子142は、電界発光(Electroluminescence)によって発光するように構成される。無機発光体としては、例えば400nmから530nmの間に発光ピークを与える無機化合物を選択することができる。無機発光素子142からは、青色の発光が保護膜を介して取り出される。あるいは保護膜中に、無機発光体からの光を変換する色変換材料を分散させた発光ダイオードを用いてもよい。当該発光ダイオードは、無機発光体からの光と色変換材料により変換された光が混合されるため、白色光を発光する。色変換材料として、緑から赤色の領域の蛍光、例えば黄色の蛍光を発する蛍光材料を用いればよい。この場合には、波長変換膜172を設けず、光拡散板170とプリズムシート174が互いに接するように配置することができる。 The inorganic light emitting element 142 is a light emitting diode having an inorganic light emitting body such as gallium nitride or gallium nitride containing indium sandwiched between a pair of electrodes, and a light emitting element having a protective film for protecting the light emitting diode. The inorganic light emitting element 142 is configured to emit light by electroluminescence. As the inorganic illuminant, for example, an inorganic compound that gives an emission peak between 400 nm and 530 nm can be selected. Blue light is extracted from the inorganic light emitting element 142 through the protective film. Alternatively, a light emitting diode in which a color conversion material that converts light from an inorganic light emitter is dispersed in a protective film may be used. The light emitting diode emits white light because the light from the inorganic light emitter and the light converted by the color conversion material are mixed. As the color conversion material, a fluorescent material that emits fluorescence in the green to red region, for example, yellow fluorescence may be used. In this case, the wavelength conversion film 172 is not provided, and the light diffusing plate 170 and the prism sheet 174 can be arranged so as to be in contact with each other.
 各無機発光素子142の大きさに制約はなく、例えばそれぞれの占有面積が1.0×104μm2以上1.0×106μm2以下、4.0×104μm2以上5.0×105μm2以下、あるいは9.0×104μm2以上2.5×105μm2以下の発光ダイオードを用いることができる。一例として大きさが320μm×300μm程度の所謂マイクロLEDを無機発光素子142として用いることができる。 There is no limitation on the size of each inorganic light emitting element 142, for example, each occupied area is 1.0 × 10 4 μm 2 or more and 1.0 × 10 6 μm 2 or less 4.0 × 10 4 μm 2 or more 5.0. A light emitting diode of × 10 5 μm 2 or less, or 9.0 × 10 4 μm 2 or more and 2.5 × 10 5 μm 2 or less can be used. As an example, a so-called micro LED having a size of about 320 μm × 300 μm can be used as the inorganic light emitting element 142.
 光源装置110はさらに、無機発光素子142を覆うオーバーコート144を有してもよい。オーバーコート144は光源基板140と接してもよい。オーバーコート144は無機発光素子142を保護し、光源基板140から分離することを防ぐ機能を有するとともに、無機発光素子142に起因する凹凸を吸収して平坦な表面を与える。また、無機発光素子142は比較的指向性の高い光を与えるが、オーバーコート144により無機発光素子142からの光を広げる、あるいは拡散させることができる。 The light source device 110 may further have an overcoat 144 that covers the inorganic light emitting element 142. The overcoat 144 may be in contact with the light source substrate 140. The overcoat 144 has a function of protecting the inorganic light emitting element 142 and preventing separation from the light source substrate 140, and also absorbs irregularities caused by the inorganic light emitting element 142 to give a flat surface. Further, although the inorganic light emitting element 142 gives light having relatively high directivity, the light from the inorganic light emitting element 142 can be spread or diffused by the overcoat 144.
 オーバーコート144は可視光領域の透過率が高いことが好ましい。オーバーコート144は、例えばアクリル系樹脂やポリカルボナート、あるいはポリエチレンテレフタレートなどのポリエステルに例示される高分子材料、あるいは酸化ケイ素などのケイ素含有無機化合物などを含む。オーバーコート144の厚さは、無機発光素子142を覆う程度の厚さが好ましい。オーバーコート144の厚さは、例えば200μm以上1mm以下、400μm以上1mm以下、あるいは500μm以上800μm以下の範囲から選択すればよい。 It is preferable that the overcoat 144 has a high transmittance in the visible light region. The overcoat 144 includes, for example, an acrylic resin, polycarbonate, a polymer material exemplified for polyester such as polyethylene terephthalate, or a silicon-containing inorganic compound such as silicon oxide. The thickness of the overcoat 144 is preferably such that it covers the inorganic light emitting element 142. The thickness of the overcoat 144 may be selected from, for example, 200 μm or more and 1 mm or less, 400 μm or more and 1 mm or less, or 500 μm or more and 800 μm or less.
2-3.光拡散板
 光拡散板170は、無機発光素子142からの光を拡散し、均一な発光面を与える。光拡散板170の厚さは、例えば0.5mm以上2mm以下、あるいは0.75mm以上1.5mm以下の範囲から選択することができる。光拡散板170を配置することで指向性の高い無機発光素子142からの光が効果的に拡散され、光拡散板170が配置される面内における輝度の分布が低下する。その結果、プリズムシート174や波長変換膜172に対して均一な輝度で光を提供することができる。
2-3. Light diffusing plate The light diffusing plate 170 diffuses the light from the inorganic light emitting element 142 to provide a uniform light emitting surface. The thickness of the light diffusing plate 170 can be selected from, for example, 0.5 mm or more and 2 mm or less, or 0.75 mm or more and 1.5 mm or less. By arranging the light diffusing plate 170, the light from the highly directional inorganic light emitting element 142 is effectively diffused, and the distribution of brightness in the plane on which the light diffusing plate 170 is arranged is reduced. As a result, light can be provided to the prism sheet 174 and the wavelength conversion film 172 with uniform brightness.
 光拡散板170は、無機発光素子142から離隔して配置される。具体的には、光源基板140の上面(DX-DZ平面のうち液晶表示モジュール200により近い面)から光拡散板170の底面(DX-DZ平面のうち液晶表示モジュール200により遠い面)までの距離(光学距離とも呼ばれる)は、1mm以上3mm以下、あるいは1.5mm以上2.5mm以下とする。従って、光拡散板170と無機発光素子142、あるいは光拡散板170とオーバーコート144は、直接接しない。 The light diffusing plate 170 is arranged apart from the inorganic light emitting element 142. Specifically, the distance from the upper surface of the light source substrate 140 (the surface of the DX-DZ plane that is closer to the liquid crystal display module 200) to the bottom surface of the light diffuser plate 170 (the surface of the DX-DZ plane that is farther from the liquid crystal display module 200). (Also called an optical distance) is 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less. Therefore, the light diffusing plate 170 and the inorganic light emitting element 142, or the light diffusing plate 170 and the overcoat 144 do not come into direct contact with each other.
 光拡散板170および無機発光素子142間の距離GPを一定に保つために、本実施形態の光源装置110は、光源基板140と光学シートの間に、少なくとも1つのスペーサ146を有する。スペーサ146は、1つではなく複数配置してもよい。スペーサ146の数は、無機発光素子142よりも少なくてもよい。スペーサ146によって、光源基板140と光拡散板170との間に、空間150が形成される。図3(B)に示すように、スペーサ146は無機発光素子142と平面視で重ならないように配置される。スペーサ146は光源基板140上にランダムに配置してもよいが、例えば図3(B)に示すように、格子状に配置することが好ましい。これにより、光源装置110の全体にわたって、光源基板140と光学シートとの距離GPを一定に保持することができる。 In order to keep the distance GP between the light diffusing plate 170 and the inorganic light emitting element 142 constant, the light source device 110 of the present embodiment has at least one spacer 146 between the light source substrate 140 and the optical sheet. A plurality of spacers 146 may be arranged instead of one. The number of spacers 146 may be smaller than that of the inorganic light emitting element 142. A space 150 is formed between the light source substrate 140 and the light diffusing plate 170 by the spacer 146. As shown in FIG. 3B, the spacer 146 is arranged so as not to overlap the inorganic light emitting element 142 in a plan view. The spacers 146 may be randomly arranged on the light source substrate 140, but are preferably arranged in a grid pattern, for example, as shown in FIG. 3 (B). As a result, the distance GP between the light source substrate 140 and the optical sheet can be kept constant throughout the light source device 110.
 スペーサ146に含まれる材料に制約はなく、ポリカルボナートやポリエステル、あるいはアクリル系樹脂などの可視光に対する透過率が高い材料を用いることができる。スペーサ146は、例えば光拡散板170に適用可能な材料、例えばポリアクリル酸エステル、ポリメタクリル酸エステル、ポリスチレンなどの高分子化合物、或いは、炭酸カルシウム、硫酸バリウム、二酸化チタン、水酸化アルミニウム、酸化ケイ素、タルク、マイカ、ホワイトカーボン、酸化マグネシウム、あるいは酸化亜鉛などの無機化合物を含んでもよい。あるいは、可視光に対する反射率が比較的高いアルミニウムやステンレスなどの金属を用いてもよい。 There are no restrictions on the material contained in the spacer 146, and a material having a high transmittance for visible light such as polycarbonate, polyester, or acrylic resin can be used. The spacer 146 is a material applicable to the light diffusing plate 170, for example, a polymer compound such as polyacrylic acid ester, polymethacrylic acid ester, and polystyrene, or calcium carbonate, barium sulfate, titanium dioxide, aluminum hydroxide, and silicon oxide. , Talk, mica, white carbon, magnesium oxide, or inorganic compounds such as zinc oxide may be included. Alternatively, a metal such as aluminum or stainless steel, which has a relatively high reflectance to visible light, may be used.
 スペーサ146の形状に制約はないが、例えば図3(A)および図3(B)に示すように、スペーサ146の形状は柱形状を採用することができる。スペーサ146の長軸は、第3方向DZに平行、即ち光源基板140の上面に対して垂直、即ち光源基板140の上面の法線と平行に配置される。スペーサ146の長軸の長さにより、光源基板140と光学シートの間の距離GPが決定される。従ってスペーサ146の長軸の長さは、1mm以上3mm以下、あるいは1.5mm以上2.5mm以下の範囲から選択される。DX-DY平面におけるスペーサ146の断面形状に制約はなく、図3(B)に示すように円形でも良く、あるいは楕円や多角形でもよい。あるいは異なる断面形状を有する複数のスペーサ146を配置してもよい。 There are no restrictions on the shape of the spacer 146, but as shown in FIGS. 3 (A) and 3 (B), for example, the shape of the spacer 146 can be a pillar shape. The long axis of the spacer 146 is arranged parallel to the third direction DZ, that is, perpendicular to the upper surface of the light source substrate 140, that is, parallel to the normal line of the upper surface of the light source substrate 140. The length of the long axis of the spacer 146 determines the distance GP between the light source substrate 140 and the optical sheet. Therefore, the length of the major axis of the spacer 146 is selected from the range of 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less. The cross-sectional shape of the spacer 146 in the DX-DY plane is not limited, and may be circular, elliptical or polygonal as shown in FIG. 3 (B). Alternatively, a plurality of spacers 146 having different cross-sectional shapes may be arranged.
 図3(A)に示す例では、スペーサ146は光源基板140の上面、および光拡散板170の底面と接する。オーバーコート144を設ける場合には、オーバーコート144には貫通孔が設けられ、スペーサ146の一部が貫通孔内に配置される。 In the example shown in FIG. 3A, the spacer 146 is in contact with the upper surface of the light source substrate 140 and the bottom surface of the light diffusing plate 170. When the overcoat 144 is provided, the overcoat 144 is provided with a through hole, and a part of the spacer 146 is arranged in the through hole.
 あるいは図4(A)に示すように、光源基板140とオーバーコート144を貫通する貫通孔152を複数設け、スペーサ146の一部が貫通孔152内に位置するように光源装置110を構成してもよい。この場合、スペーサ146はオーバーコート144を貫通し、リアベゼル120と接してもよい。 Alternatively, as shown in FIG. 4A, a plurality of through holes 152 penetrating the light source substrate 140 and the overcoat 144 are provided, and the light source device 110 is configured so that a part of the spacer 146 is located in the through hole 152. May be good. In this case, the spacer 146 may penetrate the overcoat 144 and come into contact with the rear bezel 120.
 波長変換膜172を光源基板140と光拡散板170の間に配置する場合は、図4(B)に示すように、波長変換膜172と接するようにスペーサ146を配置してもよい。 When the wavelength conversion film 172 is arranged between the light source substrate 140 and the light diffusing plate 170, the spacer 146 may be arranged so as to be in contact with the wavelength conversion film 172 as shown in FIG. 4 (B).
 また図5(A)に示すように、貫通孔152を設ける場合、スペーサ146を固定するためのストッパ154を設けてもよい。ストッパ154は光源基板140の下、断面視で光源基板140とリアベゼル120の間に設けられ、平面視でスペーサ146と重なるように配置される。ストッパ154はリアベゼル120と接してもよい。ストッパ154は、アルミニウムやステンレスなどの金属を含んでもよく、あるいはポリイミドやポリアミド、アクリル樹脂、エポキシ樹脂などの高分子材料を含んでもよい。また、ストッパ154とスペーサ146は一体化されていてもよい。ストッパ154を設けることでスペーサ146の高さが固定され、光学シートと光源基板140間の距離GPを安定に維持することができる。 Further, as shown in FIG. 5A, when the through hole 152 is provided, a stopper 154 for fixing the spacer 146 may be provided. The stopper 154 is provided under the light source substrate 140 between the light source substrate 140 and the rear bezel 120 in a cross-sectional view, and is arranged so as to overlap the spacer 146 in a plan view. The stopper 154 may be in contact with the rear bezel 120. The stopper 154 may contain a metal such as aluminum or stainless steel, or may contain a polymer material such as polyimide, polyamide, acrylic resin, or epoxy resin. Further, the stopper 154 and the spacer 146 may be integrated. By providing the stopper 154, the height of the spacer 146 is fixed, and the distance GP between the optical sheet and the light source substrate 140 can be stably maintained.
 あるいは図5(B)に示すように、スペーサ146と光学シートの間に、スペーサ146と接する緩衝材156を設けてもよい。緩衝材156はゴム弾性を示すエラストマーを含むことが好ましい。ゴム弾性を示す材料として、ポリシロキサン、ポリアクリレート、ポリメタクリレート、ポリアクリロニトリル、エポキシ樹脂、ポリブタジエン、ポリイソプレン、あるいはこれらを基本骨格として含有する共重合体などが例示される。波長変換膜172を光拡散板170とプリズムシート174の間に配置する場合には、緩衝材156は光拡散板170と接する。図示しないが、波長変換膜172を光源基板140と光拡散板170の間に配置する場合には、緩衝材156は波長変換膜172と接する。緩衝材156を配置することにより、その上に配置される光学シートが破損することを防ぐことができる。さらに、光学シートの破損による輝度分布に対する悪影響を防止することができる。 Alternatively, as shown in FIG. 5B, a cushioning material 156 in contact with the spacer 146 may be provided between the spacer 146 and the optical sheet. The cushioning material 156 preferably contains an elastomer exhibiting rubber elasticity. Examples of the material exhibiting rubber elasticity include polysiloxane, polyacrylate, polymethacrylate, polyacrylonitrile, epoxy resin, polybutadiene, polyisoprene, and a copolymer containing these as a basic skeleton. When the wavelength conversion film 172 is arranged between the light diffusing plate 170 and the prism sheet 174, the cushioning material 156 comes into contact with the light diffusing plate 170. Although not shown, when the wavelength conversion film 172 is arranged between the light source substrate 140 and the light diffusing plate 170, the cushioning material 156 comes into contact with the wavelength conversion film 172. By arranging the cushioning material 156, it is possible to prevent the optical sheet arranged on the cushioning material 156 from being damaged. Further, it is possible to prevent an adverse effect on the luminance distribution due to the breakage of the optical sheet.
 ストッパ154は、例えば以下のようなプロセスを経ることで作製することができる。まず、図6(A)に示すように、無機発光素子142を覆うようにオーバーコート144を光源基板140上に形成する。オーバーコート144は、例えば上述した高分子材料、またはその前駆体をスピンコーティング法や印刷法、インクジェット法、ディッピング法、スプレー法などの湿式成膜法を利用して塗布し、その後熱や光を用いて硬化することで形成することができる。あるいは化学気相堆積(CVD)法を用いることで、酸化ケイ素を含むオーバーコート144を形成してもよい。なお、オーバーコート144を設けない場合にはこの工程は省くことができる。 The stopper 154 can be manufactured, for example, by going through the following process. First, as shown in FIG. 6A, an overcoat 144 is formed on the light source substrate 140 so as to cover the inorganic light emitting element 142. The overcoat 144 is formed by applying, for example, the above-mentioned polymer material or a precursor thereof by using a wet film forming method such as a spin coating method, a printing method, an inkjet method, a dipping method, or a spray method, and then applying heat or light. It can be formed by curing with use. Alternatively, an overcoat 144 containing silicon oxide may be formed by using a chemical vapor deposition (CVD) method. If the overcoat 144 is not provided, this step can be omitted.
 引き続き、光源基板140とオーバーコート144を貫通するように貫通孔152を形成する(図6(B))。貫通孔152は、オーバーコート144をエッチングすることで形成してもよく、あるいはレーザ照射、サンドブラスト加工、超音波ドリル加工などによって物理的に形成してもよい。 Subsequently, a through hole 152 is formed so as to penetrate the light source substrate 140 and the overcoat 144 (FIG. 6 (B)). The through hole 152 may be formed by etching the overcoat 144, or may be physically formed by laser irradiation, sandblasting, ultrasonic drilling, or the like.
 次に、ストッパ154を形成する。具体的には光源基板140の底面(すなわち、無機発光素子142が形成されていない面)上にレジストフィルム158を形成し(図6(C))、その後フォトマスクを介してレジストフィルム158を露光し、引き続き現像を行う。これによりストッパ154は、貫通孔152と重なる領域に選択的に、貫通孔152を塞ぐように形成される(図6(D))。 Next, the stopper 154 is formed. Specifically, a resist film 158 is formed on the bottom surface of the light source substrate 140 (that is, a surface on which the inorganic light emitting element 142 is not formed) (FIG. 6C), and then the resist film 158 is exposed via a photomask. Then continue to develop. As a result, the stopper 154 is formed so as to selectively close the through hole 152 in the region overlapping the through hole 152 (FIG. 6 (D)).
 次いで、スペーサ146をそれぞれ貫通孔152に配置する図7(A))。その後、光拡散板170をスペーサ146上に配置する。緩衝材156を配置する場合には、緩衝材156を光拡散板170上に形成し、その後光拡散板170をスペーサ146上に配置すればよい(図7(B))。 Next, FIG. 7 (A) in which the spacers 146 are arranged in the through holes 152, respectively. After that, the light diffusing plate 170 is placed on the spacer 146. When arranging the cushioning material 156, the cushioning material 156 may be formed on the light diffusing plate 170, and then the light diffusing plate 170 may be arranged on the spacer 146 (FIG. 7 (B)).
 あるいは図8(A)に示すように、オーバーコート144の形成前に光源基板140に貫通孔152を形成する。その後、上述したように貫通孔152を塞ぐストッパ154を形成し、引き続き貫通孔152にスペーサ146を挿入してもよい(図8(B))。あるいは、貫通孔152を貫通するように、ストッパ154と一体化されたスペーサ146を挿入してもよい。この後、上述した方法により、無機発光素子142を覆うようにオーバーコート144を光源基板140上に形成し(図8(C))、その上に光拡散板170を配置することで、ストッパ154を作製することができる。 Alternatively, as shown in FIG. 8A, a through hole 152 is formed in the light source substrate 140 before the overcoat 144 is formed. After that, the stopper 154 that closes the through hole 152 may be formed as described above, and the spacer 146 may be continuously inserted into the through hole 152 (FIG. 8 (B)). Alternatively, a spacer 146 integrated with the stopper 154 may be inserted so as to penetrate the through hole 152. After that, by the above-mentioned method, an overcoat 144 is formed on the light source substrate 140 so as to cover the inorganic light emitting element 142 (FIG. 8C), and the light diffusing plate 170 is arranged on the overcoat 144 to prevent the stopper 154. Can be produced.
2-4.波長変換膜
 波長変換膜172は、無機発光素子142から出射し、光拡散板170で拡散された光の波長を変換して白色光を生成する機能を有する膜であり、高分子材料中に蛍光体が分散した構造を有する。蛍光体は、無機発光素子142から射出される青色の光を吸収し、緑から赤色の領域の蛍光、例えば黄色の蛍光を発する蛍光物質を含む。蛍光物質としては、上述した色変換材料を用いればよい。あるいは、蛍光体に替わり、粒径が数nmから数十nmの量子ドットを用いてもよい。
2-4. Wavelength conversion film The wavelength conversion film 172 is a film having a function of emitting light from the inorganic light emitting element 142 and converting the wavelength of the light diffused by the light diffusing plate 170 to generate white light, and is fluorescent in the polymer material. It has a dispersed structure. The phosphor contains a fluorescent substance that absorbs blue light emitted from the inorganic light emitting element 142 and emits fluorescence in the green to red region, for example, yellow fluorescence. As the fluorescent substance, the above-mentioned color conversion material may be used. Alternatively, instead of the phosphor, quantum dots having a particle size of several nm to several tens of nm may be used.
 波長変換膜172は、別途作製した1つの独立膜として光拡散板170の上、あるいは下に配置してもよく、あるいは上述した高分子材料またはその前駆体および蛍光体または量子ドットを含む分散液を光拡散板170の上または下に塗布し、その後硬化することで形成してもよい。 The wavelength conversion film 172 may be arranged above or below the light diffusing plate 170 as one separately prepared independent film, or a dispersion liquid containing the above-mentioned polymer material or its precursor and a phosphor or quantum dots. May be formed by applying the above or below the light diffusing plate 170 and then curing.
2-5.プリズムシート
 プリズムシート174は、光拡散板170や波長変換膜172を通過した後の光を上方向へ効率よく出射させるための光学フィルムであり、表面に複数のプリズム形状が平行に配置された構造を有する。
2-5. Prism sheet The prism sheet 174 is an optical film for efficiently emitting light after passing through the light diffusing plate 170 and the wavelength conversion film 172 in the upward direction, and has a structure in which a plurality of prism shapes are arranged in parallel on the surface. Has.
2-6.偏光シート
 偏光シート176は、例えば異方性反射偏光子である。より具体的には、偏光シート176は、円偏光又は楕円偏光で偏光シート176の透過軸と一致しない光を、偏光シート176内に形成されている多層膜により反射させ、反射成分を繰り返し回収する。光を効率よく反射することで光の損失を防ぎ、出射光の輝度向上が図れる。また、偏光シート176を設けることで、無機発光素子142から出射する指向性の高い光を拡散するという効果を奏する。
2-6. Polarizing sheet The polarizing sheet 176 is, for example, an anisotropic reflection polarizer. More specifically, the polarizing sheet 176 reflects light that is circularly polarized or elliptically polarized and does not coincide with the transmission axis of the polarizing sheet 176 by the multilayer film formed in the polarizing sheet 176, and repeatedly recovers the reflected component. .. By efficiently reflecting light, loss of light can be prevented and the brightness of emitted light can be improved. Further, by providing the polarizing sheet 176, the effect of diffusing the highly directional light emitted from the inorganic light emitting element 142 can be obtained.
 本実施形態の光源装置110では、複数の無機発光素子142が配置される光源基板140および光学シート(光拡散板170、プリズムシート174、偏光シート176など)が、リアベゼル120とフロントカバー180の間に収容され、互いに固定される。光源装置110の上に液晶表示モジュール200が配置され、表示装置100を構成する。光源装置110内ではスペーサ146が光源基板140と光学シートとの間に配置され、これらの間で一定の間隔が保持される。従って、無機発光素子142から指向性の高い光が出射されても、光源基板140と光学シートとの間の空間150内で出射光が拡散する。また、出射光が空間150内で反射を繰り返すことで、指向性がさらに低下する。その結果、光拡散板170の底面において局所的に輝度の高い領域(ホットスポット)の発生が抑制される。更に、空間150によって強度分布が低下した光が光拡散板170によりさらに拡散し、均一な輝度で液晶表示モジュール200へ光が入射される。このため、表示領域206に対して均一な輝度の光が提供され、表示装置100は高品質な表示が可能となる。 In the light source device 110 of the present embodiment, the light source substrate 140 on which the plurality of inorganic light emitting elements 142 are arranged and the optical sheet (light diffusion plate 170, prism sheet 174, polarizing sheet 176, etc.) are placed between the rear bezel 120 and the front cover 180. It is housed in and fixed to each other. A liquid crystal display module 200 is arranged on the light source device 110 to form a display device 100. In the light source device 110, a spacer 146 is arranged between the light source substrate 140 and the optical sheet, and a constant distance is maintained between them. Therefore, even if highly directional light is emitted from the inorganic light emitting element 142, the emitted light is diffused in the space 150 between the light source substrate 140 and the optical sheet. Further, the directivity is further lowered by repeatedly reflecting the emitted light in the space 150. As a result, the generation of locally high-luminance regions (hot spots) is suppressed on the bottom surface of the light diffusing plate 170. Further, the light whose intensity distribution is lowered by the space 150 is further diffused by the light diffusing plate 170, and the light is incident on the liquid crystal display module 200 with uniform brightness. Therefore, light having uniform brightness is provided for the display area 206, and the display device 100 enables high-quality display.
 さらに本実施形態の表示装置100では、光源として機能する無機発光素子142は、平面視で表示領域206と重畳して配置する。光源を額縁領域に配置する構成と比較すると、光を液晶表示モジュール200側へ反射させるための反射板が不要となる。よって光源装置を構成する部品数を低減することができる。このことは表示装置の薄型化に寄与する。さらに、額縁領域に光源を配置する必要がないため、額縁領域を小さくし、表示装置100全体に対する表示領域206の面積を大きくすることが可能となる。このため、本実施形態を適用することで、デザイン性に優れた表示装置を提供することが可能となる。 Further, in the display device 100 of the present embodiment, the inorganic light emitting element 142 that functions as a light source is arranged so as to overlap the display area 206 in a plan view. Compared with the configuration in which the light source is arranged in the frame region, a reflector for reflecting the light toward the liquid crystal display module 200 side becomes unnecessary. Therefore, the number of parts constituting the light source device can be reduced. This contributes to making the display device thinner. Further, since it is not necessary to arrange the light source in the frame area, the frame area can be reduced and the area of the display area 206 with respect to the entire display device 100 can be increased. Therefore, by applying this embodiment, it is possible to provide a display device having excellent design.
<第2実施形態>
 本実施形態では、第1実施形態の光源装置110と異なる構造を有する光源装置112について、図9(A)乃至図10(B)を用いて説明する。第1実施形態で述べた構造と同一、あるいは類似する構造については説明を割愛することがある。
<Second Embodiment>
In the present embodiment, the light source device 112 having a structure different from that of the light source device 110 of the first embodiment will be described with reference to FIGS. 9 (A) to 10 (B). The description may be omitted for a structure that is the same as or similar to the structure described in the first embodiment.
 図9(A)および図9(B)に示すように、第2実施形態の光源装置112は、スペーサ146の形状が球形状あるいは楕円球形状(回転楕円体形状)である点で、第1実施形態の光源装置110と異なる。楕円球形状のスペーサ146は、断面視で円形状又は楕円形状を有する。光源装置112内で球形状と楕円球形状のスペーサ146が混在していてもよい。スペーサ146の数は、無機発光素子142の数よりも少なくても多くてもよい。スペーサ146は無機発光素子142と重ならないように配置してもよい。またスペーサ146が可視光を透過可能な高分子材料を含む場合には、図9(A)および図9(B)に示すように、一部のスペーサ146が無機発光素子142と重なってもよい。また、図10(A)および図10(B)に示すように、複数のスペーサ146のうちの少なくとも2つのスペーサ146が互いに接してもよい。 As shown in FIGS. 9A and 9B, the light source device 112 of the second embodiment has a first aspect in that the spacer 146 has a spherical shape or an ellipsoidal shape (spheroidal shape). It is different from the light source device 110 of the embodiment. The ellipsoidal spacer 146 has a circular or elliptical shape in cross-sectional view. Spherical and ellipsoidal spacers 146 may be mixed in the light source device 112. The number of spacers 146 may be less or more than the number of inorganic light emitting elements 142. The spacer 146 may be arranged so as not to overlap with the inorganic light emitting element 142. When the spacer 146 contains a polymer material capable of transmitting visible light, a part of the spacer 146 may overlap with the inorganic light emitting element 142 as shown in FIGS. 9A and 9B. .. Further, as shown in FIGS. 10A and 10B, at least two of the plurality of spacers 146 may be in contact with each other.
 スペーサ146の大きさによって光源基板140と光学シート間の距離GPが決定される。具体的には、スペーサ146が球形状であれば直径により、スペーサ146が楕円球形状であれば長軸又は短軸によって、距離GPが決定される。従ってスペーサ146の直径、長軸、又は短軸は1mm以上3mm以下、あるいは1.5mm以上2.5mm以下の範囲から選択される。 The distance GP between the light source substrate 140 and the optical sheet is determined by the size of the spacer 146. Specifically, if the spacer 146 has a spherical shape, the distance GP is determined by the diameter, and if the spacer 146 has an ellipsoidal spherical shape, the distance GP is determined by the major axis or the minor axis. Therefore, the diameter, major axis, or minor axis of the spacer 146 is selected from the range of 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less.
 このような構造を有する光源装置112は、光源基板140上に光拡散板170を配置する際に無機発光素子142上、あるいはオーバーコート144上にスペーサ146を配置させることで形成することができる。例えば水、またはアルコールなどの有機溶媒にスペーサ146を分散させ、この分散液を塗布することで、スペーサ146を配置することができる。 The light source device 112 having such a structure can be formed by arranging the spacer 146 on the inorganic light emitting element 142 or the overcoat 144 when arranging the light diffusing plate 170 on the light source substrate 140. The spacer 146 can be arranged by dispersing the spacer 146 in an organic solvent such as water or alcohol and applying this dispersion.
 本実施形態の光源装置112においても、スペーサ146によって無機発光素子142と光学シートを互いに離隔することができる。また、光源基板140と光学シート間の距離GPを一定に保つことができる。このため、第1実施形態と同様の効果を奏する。 Also in the light source device 112 of the present embodiment, the inorganic light emitting element 142 and the optical sheet can be separated from each other by the spacer 146. Further, the distance GP between the light source substrate 140 and the optical sheet can be kept constant. Therefore, the same effect as that of the first embodiment is obtained.
<第3実施形態>
 本実施形態では、光源装置110や112と異なる構造を有する光源装置114について、図11乃至図15を用いて説明する。第1および第2実施形態で述べた構造と同一、あるいは類似する構造については説明を割愛することがある。
<Third Embodiment>
In the present embodiment, the light source device 114 having a structure different from that of the light source devices 110 and 112 will be described with reference to FIGS. 11 to 15. The description may be omitted for structures that are the same as or similar to the structures described in the first and second embodiments.
 本実施形態の光源装置114は、光源装置114に設けられるスペーサ146が単一であってもよい点、および光源基板140の上面と平行な面内においてスペーサ146が延伸する点で、第1実施形態の光源装置110および第2実施形態の光源装置112と異なる。 The light source device 114 of the present embodiment is the first embodiment in that the spacer 146 provided in the light source device 114 may be a single spacer and that the spacer 146 extends in a plane parallel to the upper surface of the light source substrate 140. It is different from the light source device 110 of the embodiment and the light source device 112 of the second embodiment.
 例えば図11、図12に示すように、光源装置114においては、単一又は複数のスペーサ146のそれぞれは、光源基板140の上面と平行な面(DX-DY平面)内で、DX-DY平面と平行な方向に延伸する、複数の直線部146aを有する。複数の直線部146aは屈曲部146bによって連結される。光源装置110および112と同様、スペーサ146は無機発光素子142と重ならないように、無機発光素子142間を延伸するように設けてもよい。あるいはスペーサ146が可視光を透過可能な材料を含む場合には、一部の無機発光素子142と重なるようにスペーサ146を配置してもよい。 For example, as shown in FIGS. 11 and 12, in the light source device 114, each of the single or plurality of spacers 146 is in the DX-DY plane in the plane parallel to the upper surface of the light source substrate 140 (DX-DY plane). It has a plurality of straight portions 146a extending in a direction parallel to the above. The plurality of straight portions 146a are connected by the bent portions 146b. Similar to the light source devices 110 and 112, the spacer 146 may be provided so as to extend between the inorganic light emitting elements 142 so as not to overlap with the inorganic light emitting element 142. Alternatively, when the spacer 146 contains a material capable of transmitting visible light, the spacer 146 may be arranged so as to overlap a part of the inorganic light emitting element 142.
 1つの屈曲部146bを介して連結される2つの直線部146aは、DX-DY平面内で互いに異なる方向に延伸する。当該延伸方向がなす角度は任意であり、0°よりも大きく180°未満の範囲から選択される。従ってスペーサ146は、DX-DY平面内において、ジグザグ形状を有してもよい。あるいは図13に示すように、スペーサ146は、DX-DY平面内において渦巻形状を有してもよい。 The two straight portions 146a connected via one bent portion 146b extend in different directions in the DX-DY plane. The angle formed by the stretching direction is arbitrary and is selected from a range greater than 0 ° and less than 180 °. Therefore, the spacer 146 may have a zigzag shape in the DX-DY plane. Alternatively, as shown in FIG. 13, the spacer 146 may have a spiral shape in the DX-DY plane.
 あるいは図14に示すように、光源装置114は、それぞれ単一の直線部146aを有する複数のスペーサ146を有してもよい。複数のスペーサ146は、直線部146aの長さが互いに同一でも良く、異なってもよい。また、複数のスペーサ146の直線部146aの延伸方向はすべて同一でも良く、あるいは図14に示すように少なくとも2つの延伸方向が互いに異なってもよい。 Alternatively, as shown in FIG. 14, the light source device 114 may have a plurality of spacers 146 each having a single linear portion 146a. The lengths of the linear portions 146a of the plurality of spacers 146 may be the same or different from each other. Further, the stretching directions of the straight portions 146a of the plurality of spacers 146 may all be the same, or at least two stretching directions may be different from each other as shown in FIG.
 あるいは図15に示すように、光源装置114のスペーサ146は、DX-DY面内における形状(平面形状)が曲線を有していてもよい。例えばスペーサ146の平面形状は曲線だけで構成されていてもよく、曲線で形成される部分の割合が80%以上100%以下、あるいは90%以上100%以下であってもよい。 Alternatively, as shown in FIG. 15, the spacer 146 of the light source device 114 may have a curved shape (planar shape) in the DX-DY plane. For example, the planar shape of the spacer 146 may be composed only of a curved line, and the proportion of the portion formed by the curved line may be 80% or more and 100% or less, or 90% or more and 100% or less.
 本実施形態の光源装置112においても、スペーサ146によって無機発光素子142と光拡散板170を互いに離隔することができ、また、これらの間の距離を一定に保つことができる。その結果、第1実施形態と同様の効果を奏する。 Also in the light source device 112 of the present embodiment, the inorganic light emitting element 142 and the light diffusing plate 170 can be separated from each other by the spacer 146, and the distance between them can be kept constant. As a result, the same effect as that of the first embodiment is obtained.
 なお、本実施形態では、スペーサ146の高さH(第3方向DZにおける長さ、図11参照)によって、光源基板140と光学シートとの距離GPが決まる。したがってスペーサ146の高さHは、1mm以上3mm以下、あるいは1.5mm以上2.5mm以下の範囲から選択される。 In the present embodiment, the distance GP between the light source substrate 140 and the optical sheet is determined by the height H of the spacer 146 (the length in the third direction DZ, see FIG. 11). Therefore, the height H of the spacer 146 is selected from the range of 1 mm or more and 3 mm or less, or 1.5 mm or more and 2.5 mm or less.
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態の表示装置を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、または、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。 Each of the above-described embodiments of the present invention can be appropriately combined and implemented as long as they do not contradict each other. Further, based on the display device of each embodiment, those skilled in the art have appropriately added, deleted or changed the design of components, or added, omitted or changed the conditions of the process of the present invention. As long as it has a gist, it is included in the scope of the present invention.
 上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。 Of course, other effects different from those brought about by the embodiments of the above-described embodiments that are clear from the description of the present specification or that can be easily predicted by those skilled in the art will naturally occur. It is understood that it is brought about by the present invention.
 100:表示装置、110:光源装置、112:光源装置、114:光源装置、120:リアベゼル、120a:開口、140:光源基板、142:無機発光素子、144:オーバーコート、146:スペーサ、146a:直線部、146b:屈曲部、148:高分子材料またはその前駆体、150:空間、152:貫通孔、154:ストッパ、156:緩衝材、158:レジストフィルム、170:光拡散板、172:波長変換膜、174:プリズムシート、176:偏光シート176、180:フロントカバー、180a:開口、200:液晶表示モジュール、202:第1基板、204:画素、206:表示領域、208:走査線駆動回路、210:信号線駆動回路、212:端子、214:第2基板、216:偏光板、218:偏光板、220:タッチセンサ、222:第1タッチ電極、224:第2タッチ電極 100: Display device, 110: Light source device, 112: Light source device, 114: Light source device, 120: Rear bezel, 120a: Opening, 140: Light source substrate, 142: Inorganic light emitting element, 144: Overcoat, 146: Spacer, 146a: Straight part, 146b: Bent part, 148: Polymer material or precursor thereof, 150: Space, 152: Through hole, 154: Stopper, 156: Buffer material, 158: Resist film, 170: Light diffusing plate, 172: Wavelength Conversion film, 174: Prism sheet, 176: Polarizing sheet 176, 180: Front cover, 180a: Opening, 200: Liquid crystal display module, 202: First substrate, 204: Pixels, 206: Display area, 208: Scan line drive circuit , 210: Signal line drive circuit, 212: Terminal, 214: Second substrate, 216: Polarizing plate, 218: Polarizing plate, 220: Touch sensor, 222: First touch electrode, 224: Second touch electrode

Claims (14)

  1.  光源基板と、
     前記光源基板上の複数の発光ダイオードを含む発光素子と、
     前記複数の発光素子上に位置し、前記複数の発光素子と離隔する光学シートと、
     前記光源基板と前記光学シートの間に配置された、少なくとも1つのスペーサとを備え、
     前記光源基板は貫通孔を有し、
     前記少なくとも1つのスペーサの一部は前記貫通孔内に配置される、光源装置。
    Light source board and
    A light emitting element including a plurality of light emitting diodes on the light source substrate,
    An optical sheet located on the plurality of light emitting elements and separated from the plurality of light emitting elements,
    It comprises at least one spacer disposed between the light source substrate and the optical sheet.
    The light source substrate has a through hole and has a through hole.
    A light source device in which a part of the at least one spacer is arranged in the through hole.
  2.  前記複数の発光素子を覆い、前記光源基板と接するオーバーコートをさらに有し、
     前記少なくとも1つのスペーサは前記オーバーコートと接する、請求項1に記載の光源装置。
    It further has an overcoat that covers the plurality of light emitting elements and is in contact with the light source substrate.
    The light source device according to claim 1, wherein the at least one spacer is in contact with the overcoat.
  3.  前記少なくとも1つのスペーサは、長軸が前記光源基板の上面の法線と平行な方向に延在する柱形状を有する、請求項1に記載の光源装置。 The light source device according to claim 1, wherein the at least one spacer has a pillar shape in which a long axis extends in a direction parallel to a normal on the upper surface of the light source substrate.
  4.  前記光源基板の下に、平面視で前記貫通孔と重なるストッパをさらに有し、
     前記少なくとも1つのスペーサは前記ストッパと接する、請求項1に記載の光源装置。
    Under the light source substrate, a stopper that overlaps with the through hole in a plan view is further provided.
    The light source device according to claim 1, wherein the at least one spacer is in contact with the stopper.
  5.  前記少なくとも1つのスペーサと前記光学シートの間に、前記少なくとも1つのスペーサと接する緩衝材をさらに有する、請求項1に記載の光源装置。 The light source device according to claim 1, further comprising a cushioning material in contact with the at least one spacer between the at least one spacer and the optical sheet.
  6.  光源基板と、
     前記光源基板上の複数の発光ダイオードを含む発光素子と、
     前記複数の発光素子上に位置し、前記複数の発光素子と離隔する光学シートと、
     前記光源基板と前記光学シートの間に配置された、少なくとも1つのスペーサとを有し、
     前記少なくとも1つのスペーサは、断面視で球形状又は楕円形状を有する、光源装置。
    Light source board and
    A light emitting element including a plurality of light emitting diodes on the light source substrate,
    An optical sheet located on the plurality of light emitting elements and separated from the plurality of light emitting elements,
    It has at least one spacer disposed between the light source substrate and the optical sheet.
    The at least one spacer is a light source device having a spherical shape or an elliptical shape in a cross-sectional view.
  7.  前記少なくとも1つのスペーサは複数のスペーサを含み、
     前記複数のスペーサのうち、少なくとも2つのスペーサが互いに接する、請求項6に記載の光源装置。
    The at least one spacer includes a plurality of spacers.
    The light source device according to claim 6, wherein at least two of the plurality of spacers are in contact with each other.
  8.  前記少なくとも1つのスペーサは、前記光源基板の上面と平行な面内で延伸する、請求項6に記載の光源装置。 The light source device according to claim 6, wherein the at least one spacer extends in a plane parallel to the upper surface of the light source substrate.
  9.  前記少なくとも1つのスペーサは、前記光源基板の上面と平行な直線部を有する、請求項6に記載の光源装置。 The light source device according to claim 6, wherein the at least one spacer has a straight portion parallel to the upper surface of the light source substrate.
  10.  前記少なくとも1つのスペーサは複数のスペーサを含み、
     前記複数のスペーサのうち、少なくとも2つのスペーサの前記直線部は、延伸する方向が互いに異なる、請求項9に記載の光源装置。
    The at least one spacer includes a plurality of spacers.
    The light source device according to claim 9, wherein the straight portions of at least two of the plurality of spacers have different stretching directions.
  11.  前記少なくとも1つのスペーサは、延伸する方向が互いに異なる少なくとも2つの直線部を有する、請求項8に記載の光源装置。 The light source device according to claim 8, wherein the at least one spacer has at least two straight portions having different stretching directions.
  12.  前記少なくとも1つのスペーサは、前記面内でジグザグ形状を有する、請求項8に記載の光源装置。 The light source device according to claim 8, wherein the at least one spacer has a zigzag shape in the plane.
  13.  前記少なくとも1つのスペーサは、前記面内で渦巻形状を有する、請求項8に記載の光源装置。 The light source device according to claim 8, wherein the at least one spacer has a spiral shape in the plane.
  14.  光源装置、および
     前記光源装置上の液晶表示モジュールを備え、
     前記光源装置は、
      光源基板と、
      前記光源基板上の複数の発光ダイオードを含む発光素子と、
      前記発光素子上に位置し、前記発光素子と離隔する光学シートと、
      前記光源基板と前記光学シートの間に配置された、少なくとも一1つのスペーサとを有し、
     前記光源基板は貫通孔を有し、
     前記スペーサの一部は前記貫通孔内に配置される、表示装置。
    A light source device and a liquid crystal display module on the light source device are provided.
    The light source device is
    Light source board and
    A light emitting element including a plurality of light emitting diodes on the light source substrate,
    An optical sheet located on the light emitting element and separated from the light emitting element,
    It has at least one spacer disposed between the light source substrate and the optical sheet.
    The light source substrate has a through hole and has a through hole.
    A display device in which a part of the spacer is arranged in the through hole.
PCT/JP2020/012006 2019-04-12 2020-03-18 Light source device and display device including light source device WO2020209023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-076348 2019-04-12
JP2019076348A JP2020174012A (en) 2019-04-12 2019-04-12 Light source device and display device having light source device

Publications (1)

Publication Number Publication Date
WO2020209023A1 true WO2020209023A1 (en) 2020-10-15

Family

ID=72751814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012006 WO2020209023A1 (en) 2019-04-12 2020-03-18 Light source device and display device including light source device

Country Status (2)

Country Link
JP (1) JP2020174012A (en)
WO (1) WO2020209023A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150981A (en) * 2007-12-19 2009-07-09 Toppan Printing Co Ltd Optical sheet, backlight unit and display device
JP2010015853A (en) * 2008-07-04 2010-01-21 Epson Imaging Devices Corp Lighting device, liquid-crystal display device, and electronic equipment
KR20120050284A (en) * 2010-11-10 2012-05-18 삼성엘이디 주식회사 Backlight unit reduced in thickness
JP2014022117A (en) * 2012-07-13 2014-02-03 Sharp Corp Light-emitting device
JP2017045533A (en) * 2015-08-24 2017-03-02 シャープ株式会社 Lighting device, display device, and television receiver
JP2017162726A (en) * 2016-03-10 2017-09-14 キヤノン株式会社 Lighting device and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150981A (en) * 2007-12-19 2009-07-09 Toppan Printing Co Ltd Optical sheet, backlight unit and display device
JP2010015853A (en) * 2008-07-04 2010-01-21 Epson Imaging Devices Corp Lighting device, liquid-crystal display device, and electronic equipment
KR20120050284A (en) * 2010-11-10 2012-05-18 삼성엘이디 주식회사 Backlight unit reduced in thickness
JP2014022117A (en) * 2012-07-13 2014-02-03 Sharp Corp Light-emitting device
JP2017045533A (en) * 2015-08-24 2017-03-02 シャープ株式会社 Lighting device, display device, and television receiver
JP2017162726A (en) * 2016-03-10 2017-09-14 キヤノン株式会社 Lighting device and display device

Also Published As

Publication number Publication date
JP2020174012A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
US9570424B2 (en) Light source module and manufacturing method thereof, and backlight unit
TWI536081B (en) Backlight unit and display apparatus using the same
US20130141667A1 (en) Liquid crystal display device
KR20150145827A (en) Display module and multi desplay device comprising the same
WO2020056912A1 (en) Backlight module
US20090146159A1 (en) Light-emitting device, method of manufacturing the light-emitting device and liquid crystal display having the light-emitting device
JP2008041637A (en) Backlight unit and liquid crystal display equipped with it
KR20170083248A (en) Display device
JP6131068B2 (en) Display device
WO2020209023A1 (en) Light source device and display device including light source device
US11644613B2 (en) Light source device and display device having the light source device
US9128229B2 (en) Backlight device and liquid display device including the same
TW202125032A (en) Light distribution control element, light distribution adjustment means, reflection member, reinforcement plate, illumination unit, display and television receiver
KR20150086759A (en) Light source module, backlight unit and lightting device having the same
WO2020209157A1 (en) Light source device
JP7134126B2 (en) Light source device and display device having light source device
KR20080108753A (en) Light guide plate, back light assembly and liquid crystal display apparatus having the same
US20220003384A1 (en) Backlight module and display device
KR20080029386A (en) Light emitting source, backlight unit and display device having the same
JP2010050013A (en) Illuminating apparatus, liquid crystal display unit and electronic device
KR20060102224A (en) Back-light assembly and display apparatus having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787681

Country of ref document: EP

Kind code of ref document: A1