WO2020208869A1 - Control device for aerosol inhaler, control method for aerosol inhaler, program, and aerosol inhaler - Google Patents

Control device for aerosol inhaler, control method for aerosol inhaler, program, and aerosol inhaler Download PDF

Info

Publication number
WO2020208869A1
WO2020208869A1 PCT/JP2019/049351 JP2019049351W WO2020208869A1 WO 2020208869 A1 WO2020208869 A1 WO 2020208869A1 JP 2019049351 W JP2019049351 W JP 2019049351W WO 2020208869 A1 WO2020208869 A1 WO 2020208869A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
load
sensor
temperature
correlation
Prior art date
Application number
PCT/JP2019/049351
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 赤尾
一真 水口
山田 学
典幸 大石
太一 佐々木
Original Assignee
日本たばこ産業株式会社
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社, 株式会社村田製作所 filed Critical 日本たばこ産業株式会社
Publication of WO2020208869A1 publication Critical patent/WO2020208869A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/85Maintenance, e.g. cleaning
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present disclosure relates to a control device for an aerosol aspirator that produces an aerosol to be aspirated by a user, a control of the aerosol aspirator, a program, and an aerosol aspirator.
  • the aerosol aspirator may also be referred to as an aerosol generator.
  • an aerosol source that becomes an aerosol by atomization (hereinafter referred to as an aerosol-forming substrate). If the user performs suction when there is a shortage of (there is also), sufficient aerosol cannot be supplied to the user. In addition, in the case of electronic cigarettes and heat-not-burn tobacco, there may be a problem that an aerosol having an intended flavor cannot be produced.
  • Patent Document 1 discloses a technique for determining a decrease in the liquid aerosol-forming substrate heated by the heater based on the relationship between the temperature of the heating element and the electric power applied to the heating element. (See summary etc.).
  • Patent Document 2 discloses a technique for monitoring the operation of an electric heater and estimating the amount of liquid aerosol-forming substrate remaining in the liquid storage portion based on the monitored operation (see abstract and the like).
  • Patent Document 3 discloses a technique for determining the liquid level of the liquid storage portion based on the temperature measurement value of the heater (see summary and the like).
  • Patent Documents 1 to 3 do not disclose or suggest calibration for deriving the heater temperature in order to deal with such a point.
  • the aerosol-forming substrate may be temporarily emptied depending on the supply rate of the aerosol source, and Patent Documents 1 to 3 also suggest that a plurality of different determination conditions for dealing with such a point are disclosed. Not even.
  • the first problem to be solved by the present disclosure is an aerosol capable of accurately estimating the heater temperature and accurately detecting the remaining amount of the aerosol source even when the physical properties of the heater fluctuate, for example, deterioration occurs. It is to provide a control device for an aspirator and the like.
  • the second problem to be solved by the present disclosure is to provide a control device for an aerosol aspirator that can perform calibration at various timings to improve the estimation accuracy of the heater temperature and the detection accuracy of the remaining amount of the aerosol source. It is to be.
  • the third problem to be solved by the present disclosure is to provide a control device for an aerosol aspirator and the like with improved detection accuracy of the remaining amount of the aerosol source.
  • the aerosol source is heated and the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated is output.
  • a first value which is an output value of one sensor, a second sensor that outputs an aerosol generation request, and the first sensor after detecting the generation request and before supplying an amount of power capable of generating an aerosol to the load.
  • a control circuit configured to determine the depletion of the aerosol source or the temperature of the load based on the second value, which is the output value of the first sensor when the load is capable of producing an aerosol.
  • a control device for an aerosol aspirator is provided.
  • control circuit is configured to calibrate the correlation based on the first value and determine the depletion of the aerosol source or the temperature of the load based on the calibrated correlation and the second value. can do. According to this configuration, since the heater temperature is estimated based on the heater resistance value acquired immediately after the puff detection and during the aerosol generation, the heater temperature can be accurately estimated even if the heater deteriorates.
  • control circuit can be configured to calibrate the correlation based on the first value when the first value is obtained when the temperature of the load can be considered to be at the reference temperature. .. According to such a configuration, since the reference resistance value is acquired only when the heater temperature can be regarded as the reference temperature, for example, room temperature, the accuracy of temperature estimation is lowered due to the deviation between the heater temperature and the reference temperature at the time of acquiring the reference resistance value. Can be suppressed.
  • the reference temperature is based on the temperature of the environment in which the aerosol aspirator is expected to be used
  • the control device for the aerosol aspirator according to the embodiment includes a third sensor that outputs the temperature of the power supply.
  • the control circuit can be configured to determine whether or not the load can be considered to be at the reference temperature based on the output value of the third sensor. According to such a configuration, a more accurate reference resistance value can be obtained in order to determine whether or not the heater temperature has reached a reference temperature, for example, a temperature that can be regarded as being at room temperature, using the temperature of the battery.
  • the reference temperature is based on the temperature of the environment in which the aerosol aspirator is expected to be used, and is the elapsed time until the control circuit detects the generation request, which is the elapsed time until the generation request is detected. It is configured to determine whether to calibrate the correlation based on the elapsed time since the end of the detection of or the end of the previous supply of electric energy for the load to be able to generate an aerosol. can do.
  • the heater temperature is used as a reference in a simpler method for determining whether or not the heater temperature has reached a reference temperature, for example, a temperature that can be regarded as being at room temperature, based on the elapsed time from the previous aerosol generation. It is possible to judge whether or not it can be regarded as being at temperature.
  • the control circuit calibrates the correlation only if the elapsed time is greater than or equal to the time required to cool the load from a temperature at which the aerosol can be produced to a temperature that can be considered to be at the reference temperature.
  • the elapsed time is a predetermined time greater than or equal to the time required to cool the load from a temperature at which the aerosol can be produced to a temperature that can be considered to be at the reference temperature, and when the aerosol source is depleted.
  • the control circuit may be configured to calibrate the correlation only if it is greater than or equal to the predetermined time, which is shorter than the time required to cool the load from a temperature that can only be reached to a temperature that can be considered to be at the reference temperature. it can. According to such a configuration, a sufficient calibration opportunity can be ensured because the threshold value to be compared with the elapsed time does not become an extremely long value.
  • the temperature that can be considered to be at the reference temperature can be equal to or higher than the reference temperature and lower than the reference temperature + 15 ° C.
  • control circuit can be configured to calibrate the correlation only if the elapsed time is 10 seconds or longer. According to such a configuration, since the reference resistance value is acquired only when the heater temperature can be regarded as the reference temperature, for example, room temperature, the accuracy of temperature estimation is lowered due to the deviation between the heater temperature and the reference temperature at the time of acquiring the reference resistance value. Can be suppressed.
  • the control device for the aerosol aspirator is connected in series between the load and the power supply, is connected in parallel to the first circuit including the first switch and the first circuit, and has a known resistance and a second switch.
  • the control circuit includes a first sensor that outputs a value related to an electric resistance value of a load having a correlation or an electric resistance value, a second sensor that outputs an aerosol generation request, and a control circuit, and the control circuit detects the generation request.
  • a method is provided that includes a step of acquiring a second value, which is an output value, and a step of determining the depletion of the aerosol source or the temperature of the load based on the first value and the second value.
  • a value related to the electric resistance value or an electric resistance value of a load in which the temperature and the electric resistance value are correlated with each other is output. It includes one sensor, a second sensor that outputs an aerosol generation request, and a control circuit configured to calibrate the correlation based on the output value of the first sensor acquired when the generation request is detected.
  • a control device for the aerosol aspirator is provided.
  • a method of operating a control device for an aerosol suction device wherein the control device heats an aerosol source and has a temperature and an electric resistance value.
  • the control circuit includes a first sensor that outputs a value related to an electric resistance value of a load having a correlation or an electric resistance value, a second sensor that outputs an aerosol generation request, and a control circuit, and the control circuit detects the generation request.
  • a method including a step of acquiring the output value of the first sensor and a step of calibrating the correlation based on the output value of the first sensor is provided.
  • a program for causing a processor to execute the above method is provided. According to this configuration, since the heater temperature is estimated based on the heater resistance value acquired immediately after the puff detection and during the aerosol generation, the heater temperature can be accurately estimated even if the heater deteriorates.
  • the aerosol source is heated and a value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated is output.
  • the control circuit includes one sensor and a control circuit configured to determine the exhaustion of the aerosol source or the temperature of the load based on the correlation and the output value of the sensor, and the control circuit is the first at a plurality of timings.
  • a control device for an aerosol aspirator that can acquire the output value of the sensor and can calibrate the correlation based on the output value of the first sensor acquired at any of the plurality of timings. .. According to such a configuration, since the plurality of calibration timings are provided, the accuracy of the remaining amount estimation and the temperature estimation using the PTC characteristics is improved.
  • control circuit is configured to detect the replacement of the load, and the plurality of timings may include at or immediately after the replacement. According to such a configuration, since the timing of acquiring the value for calibration includes the time of cartridge replacement, the influence of the product tolerance of PTC characteristics on the liquid remaining amount estimation and the temperature estimation can be reduced.
  • the control device for an aerosol aspirator includes a second sensor that outputs a voltage or resistance value between terminals to which the load is electrically connected, and the control circuit includes an output value of the second sensor. It can be configured to detect the replacement of the load based on. According to such a configuration, in order to detect the replacement of the cartridge based on the voltage of the connector or the like, the replacement of the cartridge can be detected by a simpler method.
  • the control device for an aerosol aspirator includes a third sensor that outputs an aerosol generation request, and the plurality of timings are applied to the load of the amount of electric energy that can generate the aerosol after the detection of the generation request. Pre-supply timing can be included. According to this configuration, since the acquisition timing of the value for calibration includes the time when the aerosol generation is requested, the accuracy of the liquid remaining amount estimation and the temperature estimation can be ensured even if the heater deteriorates.
  • control circuit can be configured to calibrate the correlation based on the output value of the first sensor acquired at any one of the plurality of timings. According to such a configuration, in order to obtain a value for calibration at any timing, it is possible to obtain a value for calibration at an appropriate timing according to the situation of the aerosol aspirator.
  • the control device for an aerosol aspirator includes a third sensor that outputs an aerosol generation request, the control circuit is configured to be able to detect the exchange of the load, and the plurality of timings are the exchange.
  • the first timing which is at or immediately after the time of, and the second timing after the detection of the generation request and before the supply of the amount of power capable of generating the aerosol to the load can be included.
  • the control circuit acquires the output value of the first sensor and calibrates the correlation based on the output value.
  • the reference resistance value when the heater temperature can be regarded as the reference temperature, for example, room temperature when the aerosol generation is requested, the temperature is estimated by the deviation between the heater temperature and the reference temperature at the time of acquiring the reference resistance value. It is possible to suppress the decrease in accuracy.
  • the control circuit calibrates the correlation based on the output value of the first sensor acquired at the first timing.
  • the control circuit is the elapsed time until the generation request is detected, and is the power for the previous detection of the generation request to be completed or the load to be able to generate an aerosol. Based on the elapsed time since the end of the previous supply of the quantity, it can be configured to determine whether the load can be considered to be at the reference temperature at the second timing. According to this configuration, the heater temperature can be determined in a simpler way to determine whether the heater temperature has reached a reference temperature, eg, a temperature that can be considered to be at room temperature, based on the elapsed time since the last aerosol formation. It is possible to judge whether or not it can be regarded as being at the reference temperature.
  • a reference temperature eg, a temperature that can be considered to be at room temperature
  • control circuit is said at the second timing only if the elapsed time is greater than or equal to the time required to cool the load from a temperature at which the aerosol can be generated to a temperature that can be considered to be at the reference temperature. It can be configured to determine that the load is at reference temperature. According to such a configuration, can the heater temperature be considered to be at the reference temperature in order to compare the elapsed time and the cooling time and determine whether the heater temperature has reached a reference temperature, for example, a temperature that can be considered to be at room temperature? The accuracy of judging whether or not it can be improved.
  • the elapsed time is a predetermined time greater than or equal to the time required to cool the load from a temperature at which the aerosol can be produced to a temperature at which the aerosol can be considered to be at a reference temperature, which is greater than or equal to the time required to cool the load. Only when the predetermined time or more, which is shorter than the time required to cool the load from the temperature that can be reached only when the aerosol source is depleted to the temperature that can be regarded as being at the reference temperature, is the second timing. It can be configured to determine that the load is at the reference temperature. According to such a configuration, since the threshold value to be compared with the elapsed time does not become an extremely large value, a sufficient calibration opportunity can be secured.
  • control circuit can be configured to determine that the load is at the reference temperature at the second timing only when the elapsed time is 10 seconds or longer.
  • the control circuit in order to acquire the reference resistance value when the heater temperature can be regarded as the reference temperature, for example, room temperature when the aerosol generation is requested, the temperature is estimated by the deviation between the heater temperature and the reference temperature at the time of acquiring the reference resistance value. It is possible to suppress the decrease in accuracy.
  • the control circuit either does not calibrate the correlation or outputs the first sensor used during the previous calibration of the correlation. It can be configured to calibrate the correlation based on the value.
  • the control circuit will calibrate the correlation based on the output value of the first sensor at the second timing prior to the previous time.
  • the control device for the aerosol aspirator is connected in series between the load and the power supply, is connected in parallel to the first circuit including the first switch and the first circuit, and has a known resistance and a second switch.
  • a method of operating a control device for an aerosol aspirator wherein the control device heats an aerosol source and has a temperature and an electric resistance value. It is configured to determine the depletion of the aerosol source or the temperature of the load based on the first sensor that outputs the value related to the electric resistance value of the load having a correlation or the electric resistance value, and the correlation and the output value of the sensor.
  • the aerosol source is heated and the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated is output.
  • the control circuit includes one sensor and a control circuit configured to determine the depletion or shortage of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor, and the control circuit has the correlation.
  • a control device for an aerosol aspirator is provided that is configured to be capable of performing calibration that can reduce errors due to product tolerances and calibration that can reduce errors due to changes in the correlation over time. According to such a configuration, since the plurality of calibration timings are provided, the accuracy of the remaining amount estimation and the temperature estimation using the PTC characteristics is improved.
  • control circuit is configured to detect the replacement of the load, and the calibration capable of reducing the error due to the product tolerance of the correlation is the calibration of the first sensor acquired at the time of or immediately after the replacement. It can be executed based on the output value. According to such a configuration, since the timing of acquiring the value for calibration includes the time of cartridge replacement, the influence of the product tolerance of PTC characteristics on the liquid remaining amount estimation and the temperature estimation can be reduced.
  • the control device for an aerosol aspirator includes a third sensor that outputs an aerosol generation request, and calibration capable of reducing an error due to a change in the correlation over time generates an aerosol after the detection of the generation request. It can be executed based on the output value of the first sensor acquired before supplying the possible amount of electric energy to the load. According to this configuration, since the acquisition timing of the value for calibration includes the time when the aerosol generation is requested, the accuracy of the liquid remaining amount estimation and the temperature estimation can be ensured even if the heater deteriorates.
  • a method of operating a control device for an aerosol suction device wherein the control device heats an aerosol source and has a temperature and an electric resistance value. Based on the first sensor that outputs the value related to the electric resistance value of the load having a correlation or the electric resistance value, and the correlation and the output value of the first sensor, the depletion or shortage of the aerosol source or the temperature of the load is determined.
  • a method comprising a control circuit configured such as that the control circuit performs a calibration capable of reducing at least one of the error due to the product tolerance of the correlation and the error due to the aging of the correlation. Tolerant.
  • a program for causing a processor to execute the above method is provided. According to such a configuration, since the plurality of calibration timings are provided, the accuracy of the remaining amount estimation and the temperature estimation using the PTC characteristics is improved.
  • a sensor that outputs a value or temperature related to the temperature of a load that heats the aerosol source, and a sensor that outputs the temperature, and the aerosol source based on the output value of the sensor.
  • the control circuit includes a control circuit configured to determine depletion, the control circuit performs a first process of comparing the output value of the sensor with a first threshold value to determine depletion of the aerosol source, and the sensor.
  • the second process of comparing the output value with the second threshold value different from the first threshold value is executably configured, and the frequency of executing the first process and the frequency of executing the second process are different.
  • a control device for an aerosol aspirator characterized in that one or both of the phases in which the first process is executed and the phase in which the second process is executed are different. According to this configuration, in order to detect liquid depletion with two temperature thresholds, the detection accuracy is improved as compared with the case where one temperature threshold is used.
  • the frequency of executing the first process and the frequency of executing the second process are different, and the phase of executing the first process and the phase of executing the second process can be different. According to this configuration, the detection accuracy is further improved because the situations where the two temperature threshold values are used are different.
  • the first threshold is higher than the second threshold
  • the control circuit can be configured to perform the first process more frequently than the second process. According to such a configuration, the determination using the higher temperature threshold value is executed more frequently, so that a state in which liquid depletion is strongly suspected can be quickly detected.
  • the first threshold is higher than the second threshold
  • the control circuit can be configured to perform the first process in a phase earlier than the second process. According to such a configuration, the determination using the higher temperature threshold value is executed earlier, so that a state in which liquid depletion is strongly suspected can be quickly detected.
  • the first threshold is higher than the second threshold so that the control circuit performs only the first of the first and second processes in the heating phase of the aerosol source.
  • the first threshold is higher than the second threshold, and the control circuit performs only the second of the first and second processes after the heating phase of the aerosol source.
  • the control circuit performs only the second of the first and second processes after the heating phase of the aerosol source.
  • the control circuit determines in the first process whether the output value of the sensor is equal to or greater than the first threshold value, and in the second process, the output value of the sensor is the second threshold value.
  • N is a natural number of 1 or more
  • the exhaustion of the aerosol source is judged, and the affirmation in the second treatment is made.
  • M is a natural number of 1 or more
  • N can be less than M. According to such a configuration, it is necessary to judge that more liquid depletion is suspected for a low temperature threshold value in order to judge liquid depletion, so that false detection of liquid depletion can be reduced.
  • N can be 1. According to this configuration, if it is determined that liquid depletion is suspected even once for a high temperature threshold value, it can be determined that liquid depletion is suspected. Therefore, a state in which liquid depletion is strongly suspected can be quickly detected. ..
  • the control circuit can be configured to immediately stop the power supply and prohibit the power supply to the load until the first condition, which is not satisfied with the passage of time, is satisfied. According to such a configuration, the power supply can be immediately stopped and prohibited by the determination using the high temperature threshold value, so that the heater can be prevented from overheating.
  • the control is performed.
  • the circuit can be configured to continue the feeding. According to this configuration, even if it is determined that liquid depletion is suspected for a low temperature threshold, power supply is not stopped immediately, so it is not possible to determine whether the liquid is depleted or the wick is temporarily dry. In the state, aerosol generation does not stop, improving user convenience.
  • the control circuit when the first threshold value is higher than the second threshold value and the output value of the sensor is determined to be equal to or higher than the second threshold value in the second process, the control circuit supplies power to the load.
  • a method of operating a control device for an aerosol aspirator wherein the control device is a value or temperature related to the temperature of a load for heating an aerosol source.
  • the method includes a sensor that outputs a sensor and a control circuit configured to determine the exhaustion of the aerosol source based on the output value of the sensor, in the method for the control circuit to determine the exhaustion of the aerosol source.
  • a step of executing a first process of comparing the output value of the sensor with the first threshold value and a step of executing a second process of comparing the output value of the sensor with a second threshold value different from the first threshold value.
  • the frequency of executing the first process and the frequency of executing the second process are different, and one or both of the phases in which the first process is executed and the phase in which the second process is executed are different.
  • a method characterized by is provided. According to this configuration, in order to detect liquid depletion with two temperature thresholds, the detection accuracy is improved as compared with the case where one temperature threshold is used.
  • a sensor that outputs a value or temperature related to the temperature of the load that heats the aerosol source and a sensor that outputs the power supply to the load are configured to be controlled.
  • the control circuit includes a control circuit, and when the output value of the sensor in the heating phase of the aerosol source is equal to or higher than the first threshold value, the control circuit prohibits the power supply until the first condition, which is not satisfied with the passage of time, is satisfied.
  • the output value of the sensor in the heating phase of the aerosol source is less than the first threshold value and greater than or equal to the second threshold value smaller than the first threshold value, the second condition that the power supply is satisfied with the passage of time is satisfied.
  • a control device for an aerosol aspirator is provided that is configured to prohibit up to.
  • the control device is a value or temperature related to the temperature of a load for heating an aerosol source.
  • the control circuit includes a sensor for outputting the above and a control circuit configured to control the power supply to the load. A step of prohibiting power supply until the first condition, which is not satisfied with the passage of time, is satisfied, and a second threshold value in which the output value of the sensor in the heating phase of the aerosol source is less than the first threshold value and smaller than the first threshold value.
  • a method including a step of prohibiting the power supply until the second condition satisfied with the passage of time is satisfied is provided. According to such a configuration, it is possible to more appropriately prevent the heater from overheating because the power supply is prohibited under different conditions by using the two temperature threshold values.
  • a program for causing a processor to execute the above method is provided.
  • the detection accuracy is improved as compared with the case where one temperature threshold is used.
  • Embodiments of the present disclosure include, but are not limited to, electronic cigarettes, heat-not-burn tobacco and nebulizers.
  • Embodiments of the present disclosure may include various aerosol aspirators for producing aerosols to be aspirated by the user.
  • FIG. 1A is a schematic block diagram of a configuration of an aerosol aspirator 100A according to an embodiment of the present disclosure.
  • FIG. 1A shows roughly and conceptually each component included in the aerosol aspirator 100A, and does not show the exact arrangement, shape, dimensions, positional relationship, etc. of each component and the aerosol aspirator 100A. Please note.
  • the aerosol aspirator 100A includes a first member 102 (hereinafter referred to as "main body 102") and a second member 104A (hereinafter referred to as “cartridge 104A").
  • the main body 102 may include a control unit 106, a notification unit 108, a power supply 110, a sensor 112, and a memory 114.
  • the aerosol aspirator 100A may include sensors such as a flow velocity sensor, a flow rate sensor, a pressure sensor, a voltage sensor, a current sensor, and a temperature sensor, and these are collectively referred to as "sensor 112" in the present disclosure.
  • the main body 102 may also include a circuit 134 described later.
  • the cartridge 104A may include a storage section 116A, an atomizing section 118A, an air intake flow path 120, an aerosol flow path 121, a mouthpiece 122, a holding section 130 and a load 132.
  • a part of the components contained in the main body 102 may be contained in the cartridge 104A.
  • a part of the components contained in the cartridge 104A may be contained in the main body 102.
  • the cartridge 104A may be configured to be removable from the main body 102. Alternatively, all the components contained in the main body 102 and the cartridge 104A may be contained in the same housing instead of the main body 102 and the cartridge 104A.
  • the storage unit 116A may be configured as a tank for accommodating the aerosol source.
  • the aerosol source is, for example, a polyhydric alcohol such as glycerin or propylene glycol, a liquid such as water, or a mixed liquid thereof.
  • the aerosol aspirator 100A is an electronic cigarette
  • the aerosol source in the reservoir 116A may contain a component that releases a flavoring component upon heating.
  • the holding unit 130 holds the aerosol source supplied by the storage unit 116A at a position where the load 132 can be heated.
  • the holding portion 130 is made of a fibrous or porous material, and holds an aerosol source as a liquid in the gaps between the fibers and the pores of the porous material.
  • the aerosol aspirator 100A is a medical inhaler such as a nebulizer
  • the aerosol source may also contain a drug for the patient to inhale.
  • the reservoir 116A may have a configuration capable of replenishing the consumed aerosol source.
  • the reservoir 116A may be configured so that the reservoir 116A itself can be replaced when the aerosol source is consumed.
  • the aerosol source is not limited to a liquid, and may be a solid. When the aerosol source is a solid, the reservoir 116A may be a hollow container.
  • the atomizing unit 118A is configured to atomize the aerosol source to generate an aerosol.
  • the sensor 112 detects a suction operation or another operation by the user, the atomizing unit 118A generates an aerosol.
  • the holding unit 130 is provided so as to connect the storage unit 116A and the atomizing unit 118A. In this case, a part of the holding portion 130 communicates with the inside of the storage portion 116A and comes into contact with the aerosol source. The other part of the holding portion 130 extends to the atomizing portion 118A.
  • the other part of the holding portion 130 extending to the atomizing portion 118A may be housed in the atomizing portion 118A, or may be passed through the atomizing portion 118A and passed through the storage portion 116A again. ..
  • the aerosol source is carried from the reservoir 116A to the atomizing section 118A by the capillary effect of the holding section 130.
  • the atomizing unit 118A includes a heater including a load 132 electrically connected to the power supply 110. The heater is arranged so as to be in contact with or close to the holding portion 130.
  • the control unit 106 controls the power supply to the heater of the atomizing unit 118A and heats the aerosol source carried through the holding unit 130 to heat the aerosol source.
  • An air intake flow path 120 is connected to the atomizing portion 118A, and the air intake flow path 120 leads to the outside of the aerosol aspirator 100A.
  • the aerosol produced in the atomizing section 118A is mixed with the air taken in through the air intake flow path 120.
  • the mixed fluid of aerosol and air is pumped into the aerosol flow path 121, as indicated by arrow 124.
  • the aerosol flow path 121 has a tubular structure for transporting a mixed fluid of aerosol and air generated in the atomizing portion 118A to the mouthpiece 122.
  • the mouthpiece 122 is located at the end of the aerosol flow path 121, and is configured to open the aerosol flow path 121 to the outside of the aerosol aspirator 100A.
  • the user takes in air containing an aerosol into the oral cavity by sucking the mouthpiece 122 by holding it.
  • the notification unit 108 may include a light emitting element such as an LED, a display, a speaker, a vibrator, and the like.
  • the notification unit 108 is configured to give some notification to the user by light emission, display, vocalization, vibration, or the like, if necessary.
  • the cartridge 104A can be configured as an outer pipe, and one or both of the air intake flow path 120 and the aerosol flow path 121 can be configured as an inner pipe arranged in the outer pipe. Further, the load 132 can be arranged in the air intake flow path 120 or the aerosol flow path 121, which is an inner pipe.
  • the storage portion 116A can be arranged or formed between the cartridge 104A which is an outer pipe and the air intake flow path 120 or the aerosol flow path 121 which is an inner pipe.
  • the power supply 110 supplies electric power to each component of the aerosol aspirator 100A such as the notification unit 108, the sensor 112, the memory 114, the load 132, and the circuit 134.
  • the power supply 110 may be a primary battery or a secondary battery that can be charged by connecting to an external power source via a predetermined port (not shown) of the aerosol aspirator 100A. Only the power supply 110 may be removed from the body 102 or the aerosol aspirator 100A or may be replaced with a new power supply 110. Further, the power supply 110 may be replaced with a new power supply 110 by replacing the entire main body 102 with a new main body 102.
  • the power supply 110 may be composed of a lithium ion secondary battery, a nickel hydrogen secondary battery, a lithium ion capacitor, or the like.
  • the power supply 110 which is a secondary battery, may include a temperature sensor for detecting the temperature of the battery.
  • the sensor 112 has a voltage value applied to the whole circuit 134 or a specific part, a current value flowing through the whole circuit 134 or a specific part, a value related to the resistance value of the load 132, a value related to the temperature, and the like. May include one or more sensors used to obtain the.
  • the sensor 112 may be incorporated in the circuit 134.
  • the function of the sensor 112 may be incorporated in the control unit 106.
  • the sensor 112 also includes one or more of a pressure sensor that detects pressure fluctuations in one or both of the air intake flow path 120 and the aerosol flow path 121, a flow velocity sensor that detects the flow velocity, and a flow rate sensor that detects the flow rate. It may be included.
  • the sensor 112 may also include a weight sensor that detects the weight of a component such as the reservoir 116A.
  • the sensor 112 may also be configured to count the number of puffs by the user using the aerosol aspirator 100A.
  • the sensor 112 may also be configured to integrate the energization time on the atomizing section 118A.
  • the sensor 112 may also be configured to detect the height of the liquid level in the reservoir 116A.
  • the sensor 112 may also be configured to obtain or detect the SOC (System of Charge, charging state), current integrated value, voltage, etc. of the power supply 110.
  • the SOC may be obtained by a current integration method (Coulomb counting method), an SOC-OCV (Open Circuit Voltage, open circuit voltage) method, or the like.
  • the sensor 112 may also include the temperature sensor in the power supply 110 described above.
  • the sensor 112 may also be capable of detecting an operation on a user-operable operation button or the like.
  • the control unit 106 may be an electronic circuit module configured as a microprocessor or a microcomputer.
  • the control unit 106 may be configured to control the operation of the aerosol aspirator 100A according to a computer executable instruction stored in the memory 114.
  • the memory 114 is a storage medium such as a ROM, RAM, or flash memory.
  • the memory 114 may store setting data and the like necessary for controlling the aerosol aspirator 100A.
  • the memory 114 has various control methods of the notification unit 108 (modes such as light emission, vocalization, vibration, etc.), values obtained and / or detected by the sensor 112, heating history of the atomizing unit 118A, and the like. Data may be stored.
  • the control unit 106 reads data from the memory 114 as needed and uses it for controlling the aerosol aspirator 100A, and stores the data in the memory 114 as needed.
  • FIG. 1B is a schematic block diagram of the configuration of the aerosol aspirator 100B according to the embodiment of the present disclosure.
  • the aerosol aspirator 100B has a configuration similar to that of the aerosol aspirator 100A of FIG. 1A.
  • the configuration of the second member 104B (hereinafter referred to as "aerosol generating article 104B" or “stick 104B") is different from the configuration of the second member 104A.
  • the aerosol generating article 104B may include an aerosol base material 116B, an atomizing portion 118B, an air intake flow path 120, an aerosol flow path 121, and a mouthpiece portion 122. A part of the components contained in the main body 102 may be contained in the aerosol generating article 104B.
  • a part of the components contained in the aerosol-generating article 104B may be contained in the main body 102.
  • the aerosol-generating article 104B may be configured to be removable with respect to the main body 102.
  • all the components contained in the main body 102 and the aerosol-generating article 104B may be contained in the same housing instead of the main body 102 and the aerosol-generating article 104B.
  • the aerosol base material 116B may be configured as a solid supporting an aerosol source.
  • the aerosol source may be, for example, a polyhydric alcohol such as glycerin or propylene glycol, a liquid such as water, or a mixed liquid thereof.
  • the aerosol source in the aerosol base material 116B may contain a tobacco raw material or an extract derived from the tobacco raw material that releases a flavor component by heating.
  • the aerosol base material 116B itself may be composed of a tobacco raw material. If the aerosol aspirator 100B is a medical inhaler such as a nebulizer, the aerosol source may also contain a drug for the patient to inhale.
  • the aerosol substrate 116B may be configured such that the aerosol substrate 116B itself can be replaced when the aerosol source is consumed.
  • the aerosol source is not limited to liquids, but may be solids.
  • the atomizing unit 118B is configured to atomize the aerosol source to generate an aerosol.
  • the sensor 112 detects a suction operation or another operation by the user
  • the atomizing unit 118B generates an aerosol.
  • the atomizing unit 118B includes a heater (not shown) including a load electrically connected to the power supply 110.
  • the control unit 106 controls the power supply to the heater of the atomizing unit 118B and heats the aerosol source supported in the aerosol base material 116B. Atomize the aerosol source.
  • An air intake flow path 120 is connected to the atomizing portion 118B, and the air intake flow path 120 leads to the outside of the aerosol aspirator 100B.
  • the aerosol produced in the atomizing section 118B is mixed with the air taken in through the air intake flow path 120.
  • the mixed fluid of aerosol and air is pumped into the aerosol flow path 121, as indicated by arrow 124.
  • the aerosol flow path 121 has a tubular structure for transporting a mixed fluid of aerosol and air generated in the atomizing portion 118B to the mouthpiece 122.
  • the control unit 106 is configured to control the aerosol aspirators 100A and 100B (hereinafter, collectively referred to as “aerosol aspirator 100”) according to the embodiment of the present disclosure by various methods.
  • FIG. 2 is a diagram showing an exemplary circuit configuration for a part of the aerosol aspirator 100 according to one embodiment of the present disclosure.
  • the circuit 200 shown in FIG. 2 includes a power supply 110, a control unit 106, sensors 112A to 112D (hereinafter collectively referred to as “sensor 112”), a load 132 (hereinafter also referred to as “heater resistance”), and a first circuit 202. It includes a second circuit 204, a switch Q1 including a first field effect transistor (FET) 206, a conversion unit 208, a switch Q2 including a second FET 210, and a resistor 212 (hereinafter, also referred to as “shunt resistor”).
  • the electrical resistance value of the load 132 changes with temperature.
  • the load 132 may include a PTC heater.
  • the shunt resistor 212 is connected in series with the load 132 and has a known electrical resistance value.
  • the electrical resistance value of the shunt resistor 212 may be almost or completely invariant with respect to temperature.
  • the shunt resistor 212 has an electrical resistance value greater than that of the load 132.
  • the sensors 112C and 112D may be omitted.
  • the first FET 206 included in the switch Q1 and the second FET 210 included in the switch Q2 each serve as a switch for opening and closing an electric circuit. It will be apparent to those skilled in the art that not only FETs but also various elements such as IGBTs and contactors can be used as switches Q1 and Q2 as switches. Further, the switches Q1 and Q2 preferably have the same characteristics, but may not be so. Therefore, the FETs, IGBTs, contactors, etc. used as the switches Q1 and Q2 preferably have the same characteristics, but they do not have to.
  • the conversion unit 208 is, for example, a switching converter and may include an FET 214, a diode 216, an inductor 218 and a capacitor 220.
  • the control unit 106 may control the conversion unit 208 so that the conversion unit 208 converts the output voltage of the power supply 110 and the converted output voltage is applied to the entire circuit.
  • the conversion unit 208 is preferably configured to output a constant voltage under the control of the control unit 106, at least while the switch Q2 is in the ON state. Further, the conversion unit 208 may be configured to output a constant voltage even while the switch Q1 is in the ON state under the control of the control unit 106.
  • the voltages of may be the same or different.
  • the constant voltage output by the conversion unit 208 under the control of the control unit 106 while the switch Q1 is on is controlled by the conversion unit 208 under the control of the control unit 106 while the switch Q2 is on. It may be higher or lower than the constant output voltage. According to such a configuration, the voltage and other parameters are stabilized, so that the accuracy of estimating the remaining amount of the aerosol is improved.
  • the conversion unit 208 may be configured so that the output voltage of the power supply 110 is directly applied to the first circuit while only the switch Q1 is in the ON state under the control of the control unit 106. Such an embodiment may be realized by the control unit 106 controlling the switching converter in a direct connection mode in which the switching operation is stopped.
  • the conversion unit 208 is not an essential component and can be omitted.
  • the circuit 134 shown in FIGS. 1A and 1B may include the first circuit 202 and the second circuit 204 by electrically connecting the power supply 110 and the load 132.
  • the first circuit 202 and the second circuit 204 are connected in parallel to the power supply 110 and the load 132.
  • the first circuit 202 may include the switch Q1.
  • the second circuit 204 may include a switch Q2 and a resistor 212 (and optionally a sensor 112D).
  • the first circuit 202 may have a resistance value smaller than that of the second circuit 204.
  • the sensors 112B and 112D are voltage sensors, respectively, configured to detect a potential difference (hereinafter, also referred to as “voltage” or “voltage value”) between both ends of the load 132 and the resistor 212, respectively. ..
  • the configuration of the sensor 112 is not limited to this.
  • the sensor 112 may be a current sensor and may detect the value of the current flowing through one or both of the load 132 and the resistor 212.
  • the control unit 106 can control the switch Q1, the switch Q2, and the like, and can acquire the value detected by the sensor 112. Even if the control unit 106 is configured to function the first circuit 202 by switching the switch Q1 from the off state to the on state, and to function the second circuit 204 by switching the switch Q2 from the off state to the on state. Good.
  • the control unit 106 may be configured so that the first circuit 202 and the second circuit 204 function alternately by alternately switching the switches Q1 and Q2.
  • the first circuit 202 is mainly used for atomizing the aerosol source.
  • the switch Q1 When the switch Q1 is switched to the ON state and the first circuit 202 functions, power is supplied to the heater (that is, the load 132 in the heater), and the load 132 is heated.
  • the aerosol source held in the holding portion 130 in the atomizing portion 118A in the case of the aerosol aspirator 100B in FIG. 1B, the aerosol source supported on the aerosol base material 116B) is atomized and the aerosol Is generated.
  • the second circuit 204 is used to acquire the value of the voltage applied to the load 132, the value of the current flowing through the load 132, the value of the voltage applied to the resistor 212, the value of the current flowing through the resistor 212, and the like.
  • the acquired voltage or current value can be used to acquire the resistance value of the load 132.
  • the switch Q1 is in the off state and the first circuit 202 is not functioning, and the switch Q2 is in the on state and the second circuit 204 is functioning.
  • the resistance value R HTR of the load 132 can be obtained by calculation using, for example, the following equation.
  • V out is a voltage that can be detected by the sensor 112C or a predetermined target voltage output by the conversion unit 208, and represents a voltage applied to the entire first circuit 202 and the second circuit 204. ..
  • the voltage V out may be a voltage V Batt that can be detected by the sensor 112A.
  • the V HTR represents the voltage applied to the load 132 that can be detected by the sensor 112B
  • the V shunt represents the voltage applied to the shunt resistor 212 that can be detected by the sensor 112D.
  • I HTR represents a current flowing through a load 132 (in this case, the same as a current flowing through a shunt resistor 212) that can be detected by a sensor (for example, a Hall element) (not shown).
  • R shunt represents a known resistance value of a predeterminable shunt resistor 212.
  • the resistance value of the load 132 can be obtained by using at least the equation (1) even when the switch Q1 is in the ON state, regardless of whether the switch Q2 is functioning or not. This means that in the embodiment of the present disclosure, it is possible to use the output value of the sensor 112 acquired when the switch Q1 is in the ON state, or to use a circuit in which the second circuit 204 does not exist. are doing. Further, it should be noted that the above-mentioned method is merely an example, and the resistance value of the load 132 may be obtained by any method.
  • the acquired resistance value of the load 132 can be used to acquire the temperature of the load 132.
  • the load 132 has a positive or negative temperature coefficient characteristic (the positive temperature coefficient characteristic may be referred to as "PTC characteristic") whose resistance value changes depending on the temperature, it is known in advance.
  • the temperature THTR of the load 132 can be estimated based on the relationship between the resistance value and the temperature of the load 132, that is, the correlation, and the resistance value R HTR of the load 132 obtained by the equation (1). it can. More specifically, there is the following relationship between the resistance value R HTR of the load 132 and the temperature THTR .
  • T ref is a predetermined reference temperature
  • R ref is a reference resistance value
  • ⁇ TCR is a known constant that depends on the material of the load 132.
  • the reference resistance value R ref in order to accurately obtain the temperature THTR of the load 132, the reference resistance value R ref must be equal to the resistance value of the load 132 when the reference temperature T ref is used. That is, if the load 132 is set to a desired reference temperature Tref in advance and the resistance value of the load 132 at that time is acquired as the reference resistance value R ref , the unknown temperature of the load 132 at an arbitrary time point is obtained.
  • the THTR can be obtained by calculation using the equation (3) by giving the resistance value R HTR of the load 132 obtained by the equation (1) at that time.
  • the aerosol aspirator 100 determines the occurrence of the depletion or deficiency of the aerosol source.
  • depleted of the remaining amount of the aerosol source means a state in which the remaining amount of the aerosol source is zero or almost zero.
  • insufficient remaining amount of the aerosol source may mean a state in which the remaining amount of the aerosol source is not sufficient but is not exhausted. Alternatively, it may mean that the remaining amount of the aerosol source is sufficient for instantaneous aerosol production but insufficient for continuous aerosol production. Alternatively, the remaining amount of the aerosol source may mean an insufficient state in which an aerosol having a sufficient flavor and taste cannot be produced.
  • the temperature of the load 132 is the temperature at which the aerosol is generated by the boiling point of the aerosol source or the evaporation of the aerosol source (hereinafter, referred to as “boiling point or the like”). .) Is the steady state. This event can be understood from the fact that the heat generated at the load 132 by the electric power supplied from the power supply 110 is used for evaporation of the aerosol source and generation of the aerosol instead of raising the temperature of the aerosol source at these temperatures.
  • the temperature of the load 132 becomes a steady state at the boiling point or the like even when the remaining amount thereof is a certain amount or more.
  • “sufficient” means that the remaining amount of the aerosol source in the aerosol base material 116B or the holding portion 130 is “sufficient” means that the remaining amount of the aerosol source in the aerosol base material 116B or the holding part 130 is equal to or more than the certain amount.
  • the remaining amount of the aerosol source in the aerosol base material 116B or the holding portion 130 means a state (including a saturated state) in which the temperature of the load 132 becomes a steady state at the boiling point or the like.
  • the boiling point of the aerosol source and the temperature at which the aerosol is formed coincide with each other when the aerosol source is a liquid of a single composition.
  • the boiling point of the theoretical mixed liquid obtained by Raoult's law may be regarded as the temperature at which the aerosol is produced, or the boiling of the aerosol source produces the aerosol. The temperature may be determined experimentally.
  • the aerosol source in the storage unit 116A is not supplied from the storage unit 116A to the holding unit 130 (a very small amount of aerosol source is used). Some supply may be made by being supplied or by tilting or shaking the aerosol aspirator 100).
  • “sufficient” means that the remaining amount of the aerosol source in the storage unit 116A is "sufficient” means that the remaining amount of the aerosol source in the storage unit 116A is equal to or more than the certain amount, or the aerosol source in the holding unit 130 is saturated. Alternatively, it means a state in which it is possible to supply the remaining amount of the aerosol source to the above-mentioned certain amount or more.
  • the aerosol source in the storage unit 116A can be estimated or determined. It should be noted that it is not necessary to specify the specific remaining amount of. Further, in this case, when the remaining amount of the aerosol source in the holding unit 130 is insufficient (that is, insufficient or depleted), the remaining amount of the aerosol source in the storage unit 116A is insufficient (that is, insufficient or depleted). ) Can be presumed or judged.
  • FIG. 3 schematically shows a time-series change (hereinafter, also referred to as “temperature profile”) of the temperature of the load 132 (hereinafter, also referred to as “heater temperature”) after the start of power supply to the load 132.
  • the graph 300 represented and the temperature change 350 of the load 132 per predetermined time or per predetermined power supplied are illustrated.
  • Reference numeral 310 in the graph 300 shows a schematic temperature profile of the load 132 when the remaining amount of the aerosol source in the holding portion or the like is sufficient .
  • P. Indicates the boiling point of the aerosol source and the like.
  • the temperature profile 310 when the remaining amount of the aerosol source in the holding portion or the like is sufficient, after the temperature of the load 132 starts to rise, the boiling point of the aerosol source and the like TB .
  • the temperature profile 310 is merely a schematic representation, and in reality, the temperature of the load 132 includes local vertical movement, and some transient change (not shown) may occur. Please note that there is. These transient changes may occur due to a temperature bias that may temporarily occur in the load 132, chattering that occurs in a sensor that detects the temperature of the load 132 itself or an electrical parameter corresponding to the temperature of the load 132, and the like. ..
  • Reference numeral 320 in the graph 300 shows a schematic temperature profile of the load 132 when the remaining amount of the aerosol source in the holding portion or the like is not sufficient.
  • the temperature profile 320 when the remaining amount of the aerosol source in the holding portion or the like is not sufficient, the temperature of the load 132 starts to rise, and then the boiling point of the aerosol source and the like TB .
  • the temperature of the load 132 may not reach a steady state when the remaining amount of the aerosol source in the holding portion or the like is insufficient, but even at this time, the temperature of the load 132 is the aerosol source. Boiling point, etc. TB . P. It will still reach higher temperatures.
  • the temperature change 350 of the load 132 per predetermined time indicates the temperature change of the load 132 per predetermined time ⁇ t between the time point t1 and the time point t2 in the graph 300.
  • Each of 360 and 370 corresponds to a temperature change when the remaining amount of the aerosol source in the holding portion or the like is sufficient and when it is not sufficient, respectively.
  • the temperature change 360 indicates that the temperature of the load 132 rises by ⁇ T sat per predetermined time ⁇ t when the remaining amount of the aerosol source in the holding portion or the like is sufficient.
  • the temperature change 370 indicates that when the remaining amount of the aerosol source in the holding portion or the like is not sufficient, the temperature of the load 132 rises by ⁇ T dep larger than ⁇ T sat per predetermined time ⁇ t.
  • ⁇ T sat and ⁇ T dep change depending on the length of ⁇ t for a predetermined time, and even if the length is fixed, it changes when t1 (and t2) is changed.
  • ⁇ T sat and ⁇ T dep are assumed to be the maximum temperature changes that can be taken when t1 (and t2) are changed in a predetermined time ⁇ t of a certain length.
  • the temperature change per predetermined time ⁇ t is ⁇ T sat or more.
  • the remaining amount of the aerosol source in the holding portion or the like is sufficient or insufficient (that is, insufficient or depleted) by determining whether or not the predetermined temperature change threshold ⁇ T thre equal to or less than ⁇ T dep is exceeded . It is possible to judge.
  • the remaining amount of the aerosol source in the holding portion or the like is sufficient or not sufficient by using the temperature change of the load 132 per the predetermined power ⁇ W supplied to the load 132 instead of the temperature change per the predetermined time ⁇ t. It will be understood that it can be judged.
  • the resistance value of the load 132 at the same temperature may differ from individual to individual.
  • T ref a reference temperature between the advance resistance of the obtained load 132 at a heater, the resistance value of another heater definitive load 132, there may be an error epsilon product by product tolerance ..
  • the resistance value of the load 132 when the reference temperature is Tr which is acquired in advance at the time of shipment from the factory, and the reference temperature after being used. There may be an error ⁇ deterioration due to aging with the resistance value of the load 132 when it is T ref .
  • the resistance value is acquired as the reference resistance value in advance, if the temperature of the load 132 actually deviates from the reference temperature Tref , the resistance value acquired in advance and the reference temperature T are accurate. There may be an error ⁇ temperature due to the temperature shift between the resistance value of the load 132 when it is ref .
  • the reference resistance value R ref obtained in advance, in the heater is not a pre-acquired heater reference resistance R ref, is later than a time point (the time of the pre-acquired the reference resistance value R ref. ), There may be the following error ⁇ with the resistance value when the reference temperature is exactly Tref .
  • R * ref is the resistance value at the time when the resistance value R HTR is acquired in the heater for which the temperature of the load 132 is to be acquired by the equation (3), when the reference temperature is exactly T ref (hereinafter, the resistance value). , "True reference resistance value").
  • the relationship between the reference resistance value R ref acquired in advance and the true reference resistance value R * ref is as follows.
  • FIGS. 4A and 4B are flowcharts of an exemplary main treatment 400 for measuring the temperature of the load 132 and determining the depletion or shortage of the aerosol source.
  • the main treatment 400 is repeated while the aerosol aspirator 100 is operating.
  • step 410 indicates a step of determining whether the first condition and the second condition are satisfied. If it is determined that the first condition and the second condition are satisfied, the process proceeds to step 420, and if not, step 410 is repeated.
  • the first condition and the second condition will be described later.
  • step 450 a signal for turning on the switch Q1 in order to atomize the aerosol source is transmitted. If at least one of the first condition and the second condition is not satisfied by step 410, the process does not proceed to step 450, and therefore it is prohibited to turn on the switch Q1.
  • step 420 indicates a step of determining whether or not an aerosol generation request has been detected. If it is determined that the aerosol production request has been detected, the process proceeds to step 430, otherwise it repeats step 420.
  • the control unit 106 may determine that the aerosol generation request has been detected when the user detects the start of suction based on the information obtained from the pressure sensor, the flow velocity sensor, the flow rate sensor, or the like. More specifically, for example, the control unit 106 can determine that the start of suction by the user has been detected when the output value of the pressure sensor, that is, the pressure falls below a predetermined threshold value. Further, for example, the control unit 106 can determine that the start of suction by the user is detected when the output value of the flow velocity sensor or the flow rate sensor, that is, the flow velocity or the flow rate exceeds a predetermined threshold value.
  • a flow velocity sensor or a flow rate sensor is particularly suitable because it is possible to generate an aerosol that suits the user's feeling.
  • the control unit 106 may determine that the start of suction by the user has been detected when the output values of these sensors start to change continuously.
  • the control unit 106 may determine that the start of suction by the user has been detected based on the fact that a button for starting the generation of the aerosol is pressed or the like.
  • the control unit 106 may determine that the start of suction by the user has been detected based on both the information obtained from the pressure sensor, the flow velocity sensor, or the flow rate sensor and the pressing of the button.
  • step 430 indicates a step of determining whether the counter is equal to or less than a predetermined counter threshold value. If the counter is less than or equal to a predetermined counter threshold, the process proceeds to step 440, otherwise the process proceeds to step 464 of FIG. 4B, which will be described later.
  • the predetermined counter threshold value may be a predetermined value of 1 or more. The significance of step 430 will be described later.
  • step 440 indicates a step of determining whether the temperature of the load 132 can be regarded as being at the reference temperature Tref . If it is determined that the temperature of the load 132 can be considered to be at the reference temperature Tref , the process proceeds to step 442, otherwise the process proceeds to step 448. Details of step 440 will be described later.
  • 442 indicates a step of transmitting a signal for turning on the switch Q2 in order to acquire the resistance value of the load 132.
  • R 2 shows the step of storing the resistance value of the load 132 according to the principle described above using equation (1) was obtained as R 2, at least temporarily memory 114. As will be described later, this resistance value R 2 is used to calibrate the correlation between the temperature of the load 132 and the resistance value.
  • 445 is a variable representing the reference resistance value R ref in order to calibrate the correlation between the temperature of the load 132 and the resistance value, and the resistance acquired in the immediately preceding step 443.
  • the step of substituting the value R 2 is shown.
  • variable representing the reference resistance value R ref either of the resistance value R 2 obtained in the previous the previous step 443, or the value of the resistance value R 1 of the load 132 obtained when replacing the cartridge 104A to be described later Shows the steps to substitute.
  • step 448 corresponds to the case where the value of the variable representing the reference resistance value R ref is not set. It assigns the value of resistance R 1 to the variable, or may be a step that does nothing otherwise.
  • steps 445 and 448 improve the accuracy of the temperature THTR of the load 132 calculated by the equation used in step 455 described later, which represents the correlation between the temperature of the load 132 and the electrical resistance value. This is an example of the process of calibrating the correlation.
  • 450 indicates a step of transmitting a signal for turning on the switch Q1 in order to atomize the aerosol source.
  • Reference numeral 451 indicates a step of transmitting a signal for turning on the switch Q2 in order to acquire the resistance value of the load 132
  • 452 indicates a switch for accurately acquiring the resistance value of the load 132.
  • the step of transmitting the signal for turning off Q1 is shown.
  • the order of steps 451 and 452 may be either earlier or simultaneous, but step 451 precedes step 452, considering the delay from sending the signal to the switch to the actual change of state. Is preferable.
  • Reference numeral 453 indicates a step of acquiring the resistance value of the load 132 as R 3 by the above-mentioned principle using the equation (1).
  • 455 shows a step of acquiring the temperature THTR of the load 132 by the above-mentioned principle using the equation (3).
  • Reference numeral 460 indicates a step of adding the temperature THTR of the load 132 acquired in the immediately preceding step 455 to the list of data structures for later reference.
  • the list is merely an example, and in step 460, an arbitrary data structure capable of holding a plurality of data such as an array may be used. Unless it is determined in step 470 to be described later that the process proceeds to step 480, the process of step 460 is executed a plurality of times. If step 460 is executed multiple times, the temperature THTR of the load 132 in the data structure is not overwritten and is added as many times as the process of step 460 is executed.
  • Reference numeral 462 indicates a step of determining whether the temperature THTR of the load 132 acquired in the immediately preceding step 455 is less than a predetermined first threshold value. If the temperature THTR of the load 132 is less than the first threshold, the process proceeds to step 470, otherwise the process proceeds to step 464.
  • the first threshold is preferably a temperature at which depletion of the aerosol source is strongly suspected when the temperature of the load 132 is exceeded, for example, 300 ° C.
  • Reference numeral 464 indicates a step for prohibiting the switch Q1 from being turned on.
  • This step may be a step of setting a flag according to the first condition in the memory 114, and this flag may be released when the cartridge 104A is replaced. That is, in this example, the first condition is that the cartridge 104A is replaced, and the first condition is not satisfied until the flag is cleared, that is, until the cartridge 104A is replaced, and the determination in step 410 is Be false.
  • Reference numeral 466 indicates a step of performing a predetermined notification in the UI (user interface) on the notification unit 108.
  • This notification may be a notification indicating that the cartridge 104A should be replaced.
  • Reference numeral 470 indicates a step of determining whether the aerosol generation request has been completed. If it is determined that the aerosol generation request is complete, the process proceeds to step 480, otherwise the process returns to step 450.
  • the control unit 106 may determine that the aerosol generation request has been completed when the control unit 106 detects the end of suction by the user, for example, based on the information obtained from the pressure sensor, the flow velocity sensor, the flow rate sensor, or the like.
  • the control unit 106 determines that the end of suction by the user is detected when the output value of the pressure sensor, that is, the pressure exceeds a predetermined threshold value, in other words, the generation of aerosol is not required. be able to.
  • the control unit 106 is required to generate an aerosol, that is, the end of suction by the user is detected when the output value of the flow velocity sensor or the flow rate sensor, that is, the flow velocity or the flow rate falls below a predetermined threshold value.
  • the threshold value may be larger than the threshold value in step 420, equal to the threshold value, or smaller than the threshold value.
  • the control unit 106 determines that the end of suction by the user is detected based on the release of the button for starting the aerosol generation, in other words, the aerosol generation is not required. May be.
  • the control unit 106 detects the end of suction by the user when a predetermined condition such as a predetermined time elapses after the button for starting the aerosol generation is pressed, in other words, the aerosol. May be determined that the generation of is not required.
  • Reference numeral 480 indicates a step of determining whether the maximum value in the list in which one or more temperature THTRs of the load 132 are held is less than a predetermined second threshold value. If the maximum value is less than the second threshold, the process proceeds to step 488, otherwise the process proceeds to step 482.
  • the second threshold is a temperature at which the aerosol source is suspected to be depleted when the temperature of the load 132 is exceeded, but there is a possibility of a temporary shortage of the aerosol source in the holding portion 130 due to insufficient supply or the like. Is preferable. Therefore, the second threshold value may be smaller than the first threshold value, for example, 250 ° C.
  • Reference numeral 482 indicates a step of temporarily prohibiting the switch Q1 from being turned on.
  • This step may be a step of setting a flag according to the second condition in the memory 114, and this flag may be released when a predetermined time has elapsed from the setting of the flag. That is, in this example, the second condition is that a predetermined time elapses after the flag is set, and the second condition is not satisfied until the flag is released, that is, until the predetermined time elapses from the setting of the flag. Therefore, the determination in step 410 is temporarily false.
  • the predetermined time may be 10 seconds or more, for example, 11 seconds.
  • Reference numeral 484 indicates a step of performing a predetermined notification in the UI on the notification unit 108.
  • This notification may be a notification prompting you to wait for a while to inhale the aerosol.
  • 486 indicates a step of incrementing the counter, for example, adding 1 to the counter.
  • the counter may be 0 and the list may be empty.
  • the temperature THTR of the load 132 and the second threshold are compared in step 480 after the aerosol generation request is completed.
  • the temperature THTR of the load 132 and the second threshold may be compared before the aerosol production request is completed. In this case, if the temperature T HTR load 132 is determined to a second threshold value or more, until aerosol generation request is completed, the comparison of the temperature T HTR and the second threshold load 132 may not be performed any more.
  • FIG. 5 is a flowchart of an exemplary process 500 that assists the main process 400.
  • the auxiliary process 500 can be executed simultaneously with or in parallel with the main process 400.
  • Reference numeral 510 indicates a step of determining whether or not the replacement of the cartridge 104A has been detected. If it detects a cartridge replacement, the process proceeds to step 520, otherwise it repeats step 510.
  • Reference numeral 520 indicates a step of transmitting a signal for turning on the switch Q2 in order to acquire the resistance value of the load 132.
  • Reference numeral 550 indicates a step of initializing the above-mentioned counter and list used in the process 400.
  • Resistance R 1 in step 530 has been obtained for a load 132 connected cartridge contains the temperature T HTR in step 455 are those obtained for the load 132 connected the cartridge contains. Therefore, by using the resistance value R 1 as the reference resistance value R ref , the error ⁇ product due to the product tolerance in the reference resistance value R ref becomes zero.
  • step 443 is a step immediately prior to producing the aerosol. Therefore, when the resistance value R 2 as the reference resistance value R ref, rather than using the resistance value R 1, the error epsilon Deterioration decreases due to aging of the reference resistance R ref.
  • FIG. 6 is a graph 600 showing the time change of the temperature of the load 132 after the heating of the load 132, that is, the power supply is stopped.
  • the horizontal axis of the graph 600 shows the time after the power supply to the load 132 is stopped, and the vertical axis shows the temperature of the load 132.
  • 610 is a plot showing an exemplary temperature change of the load 132 when the remaining amount of the aerosol source is sufficient, and 620 shows an exemplary temperature change of the load 132 when the remaining amount of the aerosol source is insufficient 3 Two plots are shown.
  • the reference temperature Tref is set to room temperature TR . T. Then, by using the resistance value of the load 132 acquired after a longer time has passed since the energization of the load 132 was stopped as the reference resistance value R ref , the error ⁇ temperature due to the temperature shift becomes smaller. Tend.
  • the reference temperature Tref is set to a temperature based on the environment in which the aerosol aspirator 100 is expected to be used, for example, room temperature TR . T.
  • the determination as to whether the temperature of the load 132 in step 440 can be regarded as being in the reference temperature Tref is the elapsed time until the aerosol generation request is detected in step 420, and the aerosol in step 470 executed last time. It may be based on the elapsed time since the detection of the generation request of the above is completed or the power supply of the electric energy to the load 132 is completed by the previously executed step 452.
  • the environment in which the aerosol aspirator 100 is expected to be used may include a user having the aerosol aspirator 100. Therefore, the temperature based on the environment in which the aerosol aspirator 100 is assumed to be used may be a temperature considering the temperature of the body temperature or the exhaled breath transmitted from the user to the aerosol aspirator 100.
  • the temperature of the load 132 when acquiring the reference resistance value R ref does not need to be strictly at the reference temperature T ref for the purpose of determining the shortage or depletion of the aerosol source according to the principle described above. That is, the temperature THTR of the load 132 is T'R . T. Or the temperature THTR of the load 132 is T'R . T. Drives out it is now near, the temperature T HTR load 132 may be considered to be in a reference temperature T ref.
  • the temperature of the load 132 is greater than or equal to the time required to cool the load 132 from a temperature at which the aerosol can be generated to a temperature that can be considered to be at the reference temperature Tref. May be determined to be at the reference temperature Tref .
  • the temperature that can be regarded as being at the reference temperature Tref is the purpose of determining the shortage or depletion of the aerosol source by the principle explained above when the resistance value of the load 132 at that temperature is used as the reference resistance value R ref.
  • the temperature of the load 132 which is unknown with sufficient accuracy, may be a temperature at which THTR can be obtained.
  • the reference temperature T ref is set to 25 ° C.
  • the resistance value of the load 132 when the temperature of the load 132 is about 35 ° C. may be used as the reference resistance value R ref.
  • the temperature THTR of the load 132 which is unknown with sufficient accuracy for the purpose of determining the shortage or depletion of the aerosol source by the principle explained above.
  • 25 ° C. is the room temperature TR at the time of the above experiment .
  • the elapsed time is a predetermined time equal to or longer than the time required to cool the load 132 from the temperature at which the aerosol can be generated to the temperature that can be regarded as being at the reference temperature Tref , and the load 132.
  • the temperature of the load 132 reaches the reference temperature Tref when it is greater than or equal to the predetermined time, which is shorter than the time required to cool from a temperature that can only be reached when the aerosol source is depleted to a temperature that can be considered to be at the reference temperature Tref . It may be determined that there is.
  • the determination as to whether the temperature of the load 132 in step 440 can be regarded as being at the reference temperature Tref may be based on the output of the temperature sensor included in the power supply 110. For example, the temperature of the power supply 110 rises when the power supply to the load 132 is stopped, decreases when the power supply is stopped, and converges near the temperature of the ambient environment. In other words, when the change of the power supply 110 has settled down after the temperature has dropped, it can be estimated that a sufficient time has passed since the end of the power supply.
  • step 440 the determination as to whether the temperature of the load 132 can be regarded as being at the reference temperature Tref is determined based on the output of the temperature sensor included in the power supply 110, and the temperature change rate is within a predetermined range after the temperature of the power supply 110 is lowered. It can be a judgment as to whether or not it is inside.
  • the reference temperature Tref may be set based on the output of the temperature sensor included in the power supply 110 or the temperature of the power supply 110 when the temperature change rate falls within a predetermined range after the temperature of the power supply 110 drops. ..
  • the switch Q1 being turned on is when the temperature of the load 132 is not determined to be below the first threshold in step 462. It is prohibited until the first condition is met through step 464. Further, the fact that the switch Q1 is turned on means that even if it is determined in step 480 that the maximum value of the past one or more temperatures of the load 132 is not less than the second threshold value, the second condition is set via step 482. Banned until satisfied.
  • the determination process in step 462 is repeated one or more times, usually a plurality of times, during the detection of the aerosol generation request, that is, in the heating phase of the aerosol source, while the determination process in step 480 ends the detection of the aerosol generation request. It is performed only once later, i.e. in the phase after the heating phase of the aerosol source.
  • the subsequent phase is the phase in which the heating of the aerosol source is completed. That is, the frequency of execution differs between the former process and the latter process. Further, the former process and the latter process have different execution phases.
  • the determination process in step 480 is executed only once after the detection of the aerosol generation request is completed, that is, in the phase after the heating phase of the aerosol source. In another embodiment alternative to this embodiment, the determination process in step 480 may be performed during the detection of the aerosol production request, i.e. in the heating phase of the aerosol source.
  • step 480 if the determination process in step 480 is negatively determined, the determination process in step 480 may not be executed thereafter. Further, in the other embodiment, even if the determination process in step 480 is negatively determined, the processes after step 482 may be executed after the detection of the aerosol generation request is completed (step 470). It should be noted that also in the other embodiment, the determination process in step 462 and the determination process in step 480 are executed at different frequencies. Further, in the other embodiment, step 480 may be executed after step 462 and before step 470.
  • the remaining amount of the aerosol source in the storage unit 116A is sufficient, but the remaining amount of the aerosol source in the holding unit 130 is insufficient because the supply is not in time. There will be a shortage situation. In such a case, since the shortage of the remaining amount of the aerosol source in the holding unit 130 is resolved with the passage of time, it is sufficient to temporarily prohibit the ON state of the switch Q1. Further, in such a case, the temperature of the load 132 becomes higher than the boiling point of the aerosol source or the like, but it may exhibit unstable behavior without being in a steady state.
  • Step 480 is for identifying such a case, and for that purpose, it is determined whether the maximum value of the past one or more temperatures of the load 132 is less than the second threshold value. Further, for that purpose, it is preferable that the second condition imposed via step 482 to enable the switch Q1 to be turned on again is a condition that is satisfied with the passage of time.
  • Step 462 is for identifying such a case, and for that purpose, it is determined whether the temperature of the load 132 is greater than the second threshold and less than the first threshold. Also, for that reason, the first condition imposed via step 464 to allow the switch Q1 to be turned on again is not met over time, essentially the exhaustion of the aerosol source. It is preferable that the condition is satisfied by being eliminated, for example, the condition satisfied by replacing the cartridge 104A itself including the reservoir 116A of the aerosol source.
  • Step 430 is for identifying such a case, and therefore, in step 486, the number of times that the switch Q1 is temporarily prohibited from being turned on is counted.
  • step 462 if it is not determined even once that the temperature of the load 132 is not less than the first threshold value in step 462, it is prohibited that the switch Q1 is immediately turned on, but the temperature of the load 132. It may be prohibited that the switch Q1 is turned on when it is determined a plurality of times that is not less than the first threshold value.
  • FIG. 4C is a partial flowchart of another exemplary main process 400'that prohibits the switch Q1 from being turned on when it is determined multiple times that the temperature of the load 132 is not less than the first threshold. ..
  • the steps indicated by the same reference numerals are the same in the main process 400 and the main process 400'.
  • step 463 shows the same step as step 462, except that the process proceeds to step 468 when the temperature THTR of the load 132 is not less than the first threshold.
  • step 468 indicates a step of determining whether the second counter is equal to or less than a predetermined second counter threshold value. If the second counter is less than or equal to a predetermined second counter threshold, the process proceeds to step 469, otherwise the process proceeds to step 464.
  • 469 indicates a step of incrementing the second counter, for example, adding 1 to the second counter.
  • the number of times it is determined that the temperature of the load 132 is not less than the second threshold value, which is necessary to prohibit the switch Q1 from being turned on (the number of times that the switch Q1 is temporarily prohibited from being turned on).
  • the temperature of the load 132 is larger than the number of determinations that the temperature is not less than the first threshold value. Making the number of times of the former larger than the number of times of the latter can be realized by making the counter threshold value in step 430 larger than the second counter threshold value in step 468.
  • the step corresponding to step 550 of the auxiliary process 500 may include a step of initializing the second counter.
  • the electronic circuit included in the cartridge 104A is electrically connected to the electronic circuit of the main body 102 via at least two terminals included in the main body 102. Will be.
  • the resistance value between the terminals when the cartridge 104A is attached to the main body 102 is a value according to the resistance value of the load 132 included in the cartridge 104A, while the resistance value when the cartridge 104A is removed from the main body 102.
  • the resistance value between the terminals will be infinite or extremely large. This is because when the cartridge 104A is removed from the main body 102, the terminals are insulated from each other by air.
  • the cartridge 104A was replaced by detecting that the resistance value between the terminals exceeded a predetermined value larger than the value according to the resistance value of the load 132 and then fell below the predetermined value again. It is possible to detect that.
  • the potential difference (voltage) between the terminals when the cartridge 104A is attached to the main body 102 becomes the resistance value of the load 132 included in the cartridge 104A.
  • the potential difference (voltage) between the terminals when the cartridge 104A is removed from the main body 102 can be configured to be larger than the above value according to the resistance value of the load 132.
  • a predetermined voltage is applied to the electronic circuit of the main body 102, and the potential difference (voltage) between the terminals is a predetermined value larger than the value according to the resistance value of the load 132 (generally, the electrons of the main body 102). It is possible to detect that the cartridge 104A has been replaced by detecting that the voltage has exceeded the voltage applied to the circuit) and then has fallen below the predetermined value again.
  • the embodiment of the present disclosure has been described as a control device for an aerosol aspirator and a method of operating the control device.
  • the present disclosure may be implemented as a program that causes the processor to perform the method when executed by the processor, or as a computer-readable storage medium containing the program.

Abstract

Provided are a control device, etc., for an aerosol inhaler that make it possible to perform calibrations at various timings in order to more accurately estimate the temperature of a heater and detect the amount of an aerosol source remaining. In this operating method for the control device of an aerosol inhaler: the control device comprises a first sensor that outputs an electric resistance value, or a value pertaining to the electric resistance value, of a load which heats an aerosol source and of which the electric resistance value is correlated with the temperature, and a control circuit that is configured to assess the depletion of the aerosol source or the temperature of the load on the basis of the correlation and the value output from the first sensor; and the control circuit includes a step (443) in which the value output from the first sensor is acquired at a plurality of timings, and steps (445; 448) in which the correlation is calibrated on the basis of one of the output values.

Description

エアロゾル吸引器用の制御装置、エアロゾル吸引器の制御方法、プログラム及びエアロゾル吸引器Control device for aerosol aspirator, control method for aerosol aspirator, program and aerosol aspirator
 本開示は、ユーザが吸引するエアロゾルを生成するエアロゾル吸引器用の制御装置、エアロゾル吸引器の制御、プログラム及びエアロゾル吸引器に関する。なお、エアロゾル吸引器は、エアロゾル生成装置とも呼ばれることがある。 The present disclosure relates to a control device for an aerosol aspirator that produces an aerosol to be aspirated by a user, a control of the aerosol aspirator, a program, and an aerosol aspirator. The aerosol aspirator may also be referred to as an aerosol generator.
 一般的な電子たばこ、加熱式たばこ、ネブライザーなどの、ユーザが吸引するエアロゾルを生成するためのエアロゾル吸引器においては、霧化されることでエアロゾルとなるエアロゾル源(以下、エアロゾル形成基質と呼ぶこともある)が不足しているときにユーザが吸引を行うと、ユーザに対して十分なエアロゾルを供給できない。加えて、電子たばこや加熱式たばこの場合、意図した香喫味を有するエアロゾルを生成できないという問題が生じうる。 In an aerosol aspirator for generating an aerosol to be sucked by a user, such as general electronic cigarettes, heat-not-burn tobacco, and nebulizer, an aerosol source that becomes an aerosol by atomization (hereinafter referred to as an aerosol-forming substrate). If the user performs suction when there is a shortage of (there is also), sufficient aerosol cannot be supplied to the user. In addition, in the case of electronic cigarettes and heat-not-burn tobacco, there may be a problem that an aerosol having an intended flavor cannot be produced.
 この問題に対する解決策として、特許文献1には、加熱要素の温度と加熱要素に印加される電力との関係に基づいて、ヒータにより加熱される液体エアロゾル形成基質の減少を判断する技術が開示されている(要約等を参照)。特許文献2には、電気ヒータの作動をモニタし、このモニタした作動に基づいて、液体貯蔵部に残っている液体エアロゾル形成基質の量を推定する技術が開示されている(要約等を参照)。特許文献3には、ヒータの温度測定値に基づき、液体貯蔵部分の液体レベルを求める技術が開示されている(要約等を参照)。 As a solution to this problem, Patent Document 1 discloses a technique for determining a decrease in the liquid aerosol-forming substrate heated by the heater based on the relationship between the temperature of the heating element and the electric power applied to the heating element. (See summary etc.). Patent Document 2 discloses a technique for monitoring the operation of an electric heater and estimating the amount of liquid aerosol-forming substrate remaining in the liquid storage portion based on the monitored operation (see abstract and the like). .. Patent Document 3 discloses a technique for determining the liquid level of the liquid storage portion based on the temperature measurement value of the heater (see summary and the like).
 しかしながら、ヒータの物理的性質は変動する可能性があるところ、特許文献1~3は、このような点に対処するためのヒータ温度の導出に関する較正を開示も示唆もしていない。 However, the physical properties of the heater may fluctuate, and Patent Documents 1 to 3 do not disclose or suggest calibration for deriving the heater temperature in order to deal with such a point.
 また、エアロゾル形成基質は、エアロゾル源の供給速度により一時的に空になる可能性があるところ、特許文献1~3は、このような点に対処するための複数の異なる判定条件を開示も示唆もしていない。 Further, the aerosol-forming substrate may be temporarily emptied depending on the supply rate of the aerosol source, and Patent Documents 1 to 3 also suggest that a plurality of different determination conditions for dealing with such a point are disclosed. Not even.
国際公開第2012/085203号International Publication No. 2012/085203 国際公開第2012/085207号International Publication No. 2012/085207 国際公開第2017/144191号International Publication No. 2017/144191
 本開示は、上記の点に鑑みてなされたものである。 This disclosure has been made in view of the above points.
 本開示が解決しようとする第1の課題は、ヒータの物理的性質の変動、例えば劣化が生じた場合であっても、ヒータ温度を正確に推定しエアロゾル源の残量を正確に検知できるエアロゾル吸引器用の制御装置等を提供することである。 The first problem to be solved by the present disclosure is an aerosol capable of accurately estimating the heater temperature and accurately detecting the remaining amount of the aerosol source even when the physical properties of the heater fluctuate, for example, deterioration occurs. It is to provide a control device for an aspirator and the like.
 本開示が解決しようとする第2の課題は、ヒータ温度の推定精度やエアロゾル源の残量の検知精度を向上させるための較正を様々なタイミングで実施可能なエアロゾル吸引器用の制御装置等を提供することである。 The second problem to be solved by the present disclosure is to provide a control device for an aerosol aspirator that can perform calibration at various timings to improve the estimation accuracy of the heater temperature and the detection accuracy of the remaining amount of the aerosol source. It is to be.
 本開示が解決しようとする第3の課題は、エアロゾル源の残量の検知精度が向上したエアロゾル吸引器用の制御装置等を提供することである。 The third problem to be solved by the present disclosure is to provide a control device for an aerosol aspirator and the like with improved detection accuracy of the remaining amount of the aerosol source.
 上述した第1の課題を解決するため、本開示の実施形態によれば、エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、エアロゾルの生成要求を出力する第2センサと、前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前の前記第1センサの出力値である第1値と、前記負荷がエアロゾルを生成可能な時の前記第1センサの出力値である第2値とに基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するよう構成される制御回路とを含むエアロゾル吸引器用の制御装置が提供される。 In order to solve the first problem described above, according to the embodiment of the present disclosure, the aerosol source is heated and the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated is output. A first value, which is an output value of one sensor, a second sensor that outputs an aerosol generation request, and the first sensor after detecting the generation request and before supplying an amount of power capable of generating an aerosol to the load. And a control circuit configured to determine the depletion of the aerosol source or the temperature of the load based on the second value, which is the output value of the first sensor when the load is capable of producing an aerosol. A control device for an aerosol aspirator is provided.
 一実施形態において、前記制御回路は、前記第1値に基づき、前記相関を較正し、前記較正した相関と前記第2値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するよう構成することができる。
 かかる構成によれば、パフ検知直後とエアロゾル生成中に取得したヒータ抵抗値に基づき、ヒータ温度を推定するために、ヒータの劣化等が発生しても、ヒータ温度を正確に推定できる。
In one embodiment, the control circuit is configured to calibrate the correlation based on the first value and determine the depletion of the aerosol source or the temperature of the load based on the calibrated correlation and the second value. can do.
According to this configuration, since the heater temperature is estimated based on the heater resistance value acquired immediately after the puff detection and during the aerosol generation, the heater temperature can be accurately estimated even if the heater deteriorates.
 一実施形態において、前記負荷の温度が基準温度にあるとみなせる時に前記第1値を取得した場合に、前記制御回路は、前記第1値に基づき、前記相関を較正するよう構成することができる。
 かかる構成によれば、ヒータ温度が基準温度、例えば室温にあるとみなせる場合のみ基準抵抗値を取得するために、基準抵抗値取得時のヒータ温度と基準温度のズレにより温度推定の精度が落ちることを抑制できる。
In one embodiment, the control circuit can be configured to calibrate the correlation based on the first value when the first value is obtained when the temperature of the load can be considered to be at the reference temperature. ..
According to such a configuration, since the reference resistance value is acquired only when the heater temperature can be regarded as the reference temperature, for example, room temperature, the accuracy of temperature estimation is lowered due to the deviation between the heater temperature and the reference temperature at the time of acquiring the reference resistance value. Can be suppressed.
 一実施形態において、前記基準温度は、前記エアロゾル吸引器の使用が想定される環境の温度に基づき、一実施形態であるエアロゾル吸引器用の制御装置は、電源の温度を出力する第3センサを含み、前記制御回路は、前記第3センサの出力値に基づき、前記負荷が基準温度にあるとみなせるか否かを判断するよう構成することができる。
 かかる構成によれば、バッテリーの温度を利用してヒータ温度が基準温度、例えば室温にあるとみなせる温度に至ったか否かを判断するために、より正確な基準抵抗値を取得できる。
In one embodiment, the reference temperature is based on the temperature of the environment in which the aerosol aspirator is expected to be used, and the control device for the aerosol aspirator according to the embodiment includes a third sensor that outputs the temperature of the power supply. The control circuit can be configured to determine whether or not the load can be considered to be at the reference temperature based on the output value of the third sensor.
According to such a configuration, a more accurate reference resistance value can be obtained in order to determine whether or not the heater temperature has reached a reference temperature, for example, a temperature that can be regarded as being at room temperature, using the temperature of the battery.
 一実施形態において、前記基準温度は、前記エアロゾル吸引器の使用が想定される環境の温度に基づき、前記制御回路は、前記生成要求を検知するまでの経過時間であって、前回の前記生成要求の検知が終了するか、又は、前記負荷がエアロゾルを生成可能とするための電力量の前回の供給が終了してからの経過時間に基づき、前記相関を較正するか否かを判断するよう構成することができる。
 かかる構成によれば、前回のエアロゾル生成からの経過時間に基づき、ヒータ温度が基準温度、例えば室温にあるとみなせる温度に至ったか否かを判断するため、より簡便な方法で、ヒータ温度が基準温度にあるとみなせるか否かを判断できる。
In one embodiment, the reference temperature is based on the temperature of the environment in which the aerosol aspirator is expected to be used, and is the elapsed time until the control circuit detects the generation request, which is the elapsed time until the generation request is detected. It is configured to determine whether to calibrate the correlation based on the elapsed time since the end of the detection of or the end of the previous supply of electric energy for the load to be able to generate an aerosol. can do.
According to this configuration, the heater temperature is used as a reference in a simpler method for determining whether or not the heater temperature has reached a reference temperature, for example, a temperature that can be regarded as being at room temperature, based on the elapsed time from the previous aerosol generation. It is possible to judge whether or not it can be regarded as being at temperature.
 一実施形態において、前記経過時間がエアロゾルを生成可能な温度から前記基準温度にあるとみなせる温度まで前記負荷を冷却するために必要な時間以上の場合のみ、前記制御回路は、前記相関を較正するよう構成することができる。
 かかる構成によれば、経過時間と冷却時間を比較して、ヒータ温度が基準温度、例えば室温にあるとみなせる温度に至ったか否かを判断するために、ヒータが基準温度にあるとみなせるか否かの判断の精度を向上できる。
In one embodiment, the control circuit calibrates the correlation only if the elapsed time is greater than or equal to the time required to cool the load from a temperature at which the aerosol can be produced to a temperature that can be considered to be at the reference temperature. Can be configured as
According to such a configuration, whether or not the heater can be regarded as being at the reference temperature in order to compare the elapsed time and the cooling time and determine whether or not the heater temperature has reached a reference temperature, for example, a temperature that can be considered to be at room temperature. The accuracy of the judgment can be improved.
 一実施形態において、前記経過時間が、エアロゾルを生成可能な温度から前記基準温度にあるとみなせる温度まで前記負荷を冷却するために必要な時間以上の既定時間であって、前記エアロゾル源の枯渇時のみ到達可能な温度から前記基準温度にあるとみなせる温度まで前記負荷を冷却するために必要な時間より短い前記既定時間以上の場合のみ、前記制御回路は、前記相関を較正するよう構成することができる。
 かかる構成によれば、経過時間と比較する閾値が極端に長い値にならないために、十分な較正の機会を担保できる。
In one embodiment, the elapsed time is a predetermined time greater than or equal to the time required to cool the load from a temperature at which the aerosol can be produced to a temperature that can be considered to be at the reference temperature, and when the aerosol source is depleted. The control circuit may be configured to calibrate the correlation only if it is greater than or equal to the predetermined time, which is shorter than the time required to cool the load from a temperature that can only be reached to a temperature that can be considered to be at the reference temperature. it can.
According to such a configuration, a sufficient calibration opportunity can be ensured because the threshold value to be compared with the elapsed time does not become an extremely long value.
 一実施形態において、前記基準温度にあるとみなせる温度は、前記基準温度以上前記基準温度+15℃以下であることができる。 In one embodiment, the temperature that can be considered to be at the reference temperature can be equal to or higher than the reference temperature and lower than the reference temperature + 15 ° C.
 一実施形態において、前記経過時間が10秒以上の場合のみ、前記制御回路は、前記相関を較正するよう構成することができる。
 かかる構成によれば、ヒータ温度が基準温度、例えば室温にあるとみなせる場合のみ基準抵抗値を取得するために、基準抵抗値取得時のヒータ温度と基準温度のズレにより温度推定の精度が落ちることを抑制できる。
In one embodiment, the control circuit can be configured to calibrate the correlation only if the elapsed time is 10 seconds or longer.
According to such a configuration, since the reference resistance value is acquired only when the heater temperature can be regarded as the reference temperature, for example, room temperature, the accuracy of temperature estimation is lowered due to the deviation between the heater temperature and the reference temperature at the time of acquiring the reference resistance value. Can be suppressed.
 一実施形態であるエアロゾル吸引器用の制御装置は、前記負荷と電源の間に直列接続され、第1開閉器を含む第1回路と、前記第1回路へ並列接続され、既知抵抗と第2開閉器を含み、前記第1回路よりも電気抵抗値が高い第2回路と、を含み、前記制御回路は、前記第1開閉器と前記第2開閉器を制御可能であり、前記第1開閉器と前記第2開閉器のうち前記第2開閉器のみがオン状態である間に、前記第1値と前記第2値を取得するよう構成することができる。
 かかる構成によれば、抵抗値計測用の専用回路を有するために、既知抵抗により抵抗値の計測制度が向上するとともに、エアロゾル生成時に当該既知抵抗が邪魔にならず、リチウムイオンバッテリの蓄電容量の利用効率が向上する。
The control device for the aerosol aspirator according to one embodiment is connected in series between the load and the power supply, is connected in parallel to the first circuit including the first switch and the first circuit, and has a known resistance and a second switch. A second circuit including a device and having a higher electric resistance value than the first circuit, and the control circuit can control the first switch and the second switch, and the first switch And the second switch can be configured to acquire the first value and the second value while only the second switch is in the ON state.
According to this configuration, since the dedicated circuit for measuring the resistance value is provided, the resistance value measurement system is improved by the known resistance, and the known resistance does not interfere with the generation of the aerosol, and the storage capacity of the lithium ion battery is increased. Utilization efficiency is improved.
 上述した第1の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置の動作方法であって、前記制御装置は、エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、エアロゾルの生成要求を出力する第2センサと、制御回路とを含み、前記制御回路が、前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前の前記第1センサの出力値である第1値を取得するステップと、前記負荷がエアロゾルを生成可能な時の前記第1センサの出力値である第2値を取得するステップと、前記第1値と前記第2値とに基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するステップとを含む方法が提供される。 In order to solve the first problem described above, according to the embodiment of the present disclosure, there is a method of operating a control device for an aerosol suction device, wherein the control device heats an aerosol source and has a temperature and an electric resistance value. The control circuit includes a first sensor that outputs a value related to an electric resistance value of a load having a correlation or an electric resistance value, a second sensor that outputs an aerosol generation request, and a control circuit, and the control circuit detects the generation request. A step of acquiring a first value which is an output value of the first sensor after and before supplying an amount of electric power capable of generating an aerosol to the load, and a step of the first sensor when the load can generate an aerosol. A method is provided that includes a step of acquiring a second value, which is an output value, and a step of determining the depletion of the aerosol source or the temperature of the load based on the first value and the second value.
 上述した第1の課題を解決するため、本開示の実施形態によれば、エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、エアロゾルの生成要求を出力する第2センサと、前記生成要求の検知を契機に取得した前記第1センサの出力値に基づき、前記相関を較正するよう構成される制御回路とを含むエアロゾル吸引器用の制御装置が提供される。 In order to solve the first problem described above, according to the embodiment of the present disclosure, a value related to the electric resistance value or an electric resistance value of a load in which the temperature and the electric resistance value are correlated with each other is output. It includes one sensor, a second sensor that outputs an aerosol generation request, and a control circuit configured to calibrate the correlation based on the output value of the first sensor acquired when the generation request is detected. A control device for the aerosol aspirator is provided.
 上述した第1の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置の動作方法であって、前記制御装置は、エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、エアロゾルの生成要求を出力する第2センサと、制御回路とを含み、前記制御回路が、前記生成要求の検知を契機に前記第1センサの出力値を取得するステップと、前記第1センサの前記出力値に基づき、前記相関を較正するステップとを含む方法が提供される。 In order to solve the first problem described above, according to the embodiment of the present disclosure, there is a method of operating a control device for an aerosol suction device, wherein the control device heats an aerosol source and has a temperature and an electric resistance value. The control circuit includes a first sensor that outputs a value related to an electric resistance value of a load having a correlation or an electric resistance value, a second sensor that outputs an aerosol generation request, and a control circuit, and the control circuit detects the generation request. A method including a step of acquiring the output value of the first sensor and a step of calibrating the correlation based on the output value of the first sensor is provided.
 上述した第1の課題を解決するため、本開示の実施形態によれば、上記方法をプロセッサに実行させるプログラムが提供される。
 かかる構成によれば、パフ検知直後とエアロゾル生成中に取得したヒータ抵抗値に基づき、ヒータ温度を推定するために、ヒータの劣化等が発生しても、ヒータ温度を正確に推定できる。
In order to solve the first problem described above, according to the embodiment of the present disclosure, a program for causing a processor to execute the above method is provided.
According to this configuration, since the heater temperature is estimated based on the heater resistance value acquired immediately after the puff detection and during the aerosol generation, the heater temperature can be accurately estimated even if the heater deteriorates.
 上述した第2の課題を解決するため、本開示の実施形態によれば、エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、前記相関及び前記センサの出力値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するよう構成される制御回路とを含み、前記制御回路は、複数のタイミングで前記第1センサの出力値を取得可能であり、前記複数のタイミングのいずれかで取得した前記第1センサの出力値に基づき、前記相関を較正可能に構成される、エアロゾル吸引器用の制御装置が提供される。
 かかる構成によれば、複数の較正タイミングを持つために、PTC特性を利用した液残量推定や温度推定の精度が向上する。
In order to solve the second problem described above, according to the embodiment of the present disclosure, the aerosol source is heated and a value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated is output. The control circuit includes one sensor and a control circuit configured to determine the exhaustion of the aerosol source or the temperature of the load based on the correlation and the output value of the sensor, and the control circuit is the first at a plurality of timings. Provided is a control device for an aerosol aspirator that can acquire the output value of the sensor and can calibrate the correlation based on the output value of the first sensor acquired at any of the plurality of timings. ..
According to such a configuration, since the plurality of calibration timings are provided, the accuracy of the remaining amount estimation and the temperature estimation using the PTC characteristics is improved.
 一実施形態において、前記制御回路は、前記負荷の交換を検出可能に構成され、前記複数のタイミングは、前記交換の時又は直後を含むことができる。
 かかる構成によれば、較正するための値の取得のタイミングがカートリッジ交換時を含むために、PTC特性の製品公差が液残量推定や温度推定に与える影響を低減できる。
In one embodiment, the control circuit is configured to detect the replacement of the load, and the plurality of timings may include at or immediately after the replacement.
According to such a configuration, since the timing of acquiring the value for calibration includes the time of cartridge replacement, the influence of the product tolerance of PTC characteristics on the liquid remaining amount estimation and the temperature estimation can be reduced.
 一実施形態であるエアロゾル吸引器用の制御装置は、前記負荷が電気的に接続される端子間の電圧又は抵抗値を出力する第2センサを含み、前記制御回路は、前記第2センサの出力値に基づき前記負荷の交換を検出するよう構成することができる。
 かかる構成によれば、コネクタの電圧などに基づいてカートリッジの交換を検出するために、より簡便な方法でカートリッジの交換を検出できる。
The control device for an aerosol aspirator according to one embodiment includes a second sensor that outputs a voltage or resistance value between terminals to which the load is electrically connected, and the control circuit includes an output value of the second sensor. It can be configured to detect the replacement of the load based on.
According to such a configuration, in order to detect the replacement of the cartridge based on the voltage of the connector or the like, the replacement of the cartridge can be detected by a simpler method.
 一実施形態であるエアロゾル吸引器用の制御装置は、エアロゾルの生成要求を出力する第3センサを含み、前記複数のタイミングは、前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前のタイミングを含むことができる。
 かかる構成によれば、較正するための値の取得タイミングがエアロゾル生成要求時を含むために、ヒータが劣化しても、液残量推定や温度推定の精度を担保できる。
The control device for an aerosol aspirator according to one embodiment includes a third sensor that outputs an aerosol generation request, and the plurality of timings are applied to the load of the amount of electric energy that can generate the aerosol after the detection of the generation request. Pre-supply timing can be included.
According to this configuration, since the acquisition timing of the value for calibration includes the time when the aerosol generation is requested, the accuracy of the liquid remaining amount estimation and the temperature estimation can be ensured even if the heater deteriorates.
 一実施形態において、前記制御回路は、前記複数のタイミングのうちいずれか1つで取得した前記第1センサの出力値に基づき、前記相関を較正するよう構成することができる。
 かかる構成によれば、いずれかのタイミングで較正するための値の取得を行うために、エアロゾル吸引器の状況に応じた適切なタイミングで較正するための値を取得できる。
In one embodiment, the control circuit can be configured to calibrate the correlation based on the output value of the first sensor acquired at any one of the plurality of timings.
According to such a configuration, in order to obtain a value for calibration at any timing, it is possible to obtain a value for calibration at an appropriate timing according to the situation of the aerosol aspirator.
 一実施形態であるエアロゾル吸引器用の制御装置は、エアロゾルの生成要求を出力する第3センサを含み、前記制御回路は、前記負荷の交換を検出可能に構成され、前記複数のタイミングは、前記交換の時又は直後である第1タイミングと、前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前である第2タイミングとを含むことができる。
 かかる構成によれば、較正するための値の取得のタイミングがカートリッジ交換時及びエアロゾル生成要求時を含むために、PTC特性の製品公差が液残量推定や温度推定に与える影響を低減できるとともに、ヒータが劣化しても、液残量推定や温度推定の精度を担保できる。
The control device for an aerosol aspirator according to one embodiment includes a third sensor that outputs an aerosol generation request, the control circuit is configured to be able to detect the exchange of the load, and the plurality of timings are the exchange. The first timing, which is at or immediately after the time of, and the second timing after the detection of the generation request and before the supply of the amount of power capable of generating the aerosol to the load can be included.
According to this configuration, since the timing of acquiring the value for calibration includes the time of cartridge replacement and the time of aerosol generation request, the influence of the product tolerance of PTC characteristics on the liquid remaining amount estimation and the temperature estimation can be reduced. Even if the heater deteriorates, the accuracy of liquid remaining amount estimation and temperature estimation can be guaranteed.
 一実施形態において、前記第2タイミングにおいて前記負荷の温度が基準温度にあるとみなせる場合、前記制御回路は、前記第1センサの出力値を取得し、当該出力値に基づき、前記相関を較正するよう構成することができる。
 かかる構成によれば、エアロゾル生成要求時にヒータ温度が基準温度、例えば室温にあるとみなせる場合に基準抵抗値を取得するために、基準抵抗値取得時のヒータ温度と基準温度のズレにより温度推定の精度が落ちることを抑制できる。
In one embodiment, if the temperature of the load can be considered to be at the reference temperature at the second timing, the control circuit acquires the output value of the first sensor and calibrates the correlation based on the output value. Can be configured as
According to this configuration, in order to acquire the reference resistance value when the heater temperature can be regarded as the reference temperature, for example, room temperature when the aerosol generation is requested, the temperature is estimated by the deviation between the heater temperature and the reference temperature at the time of acquiring the reference resistance value. It is possible to suppress the decrease in accuracy.
 一実施形態において、前記第2タイミングにおいて前記負荷の温度が基準温度にあるとみなせない場合、前記制御回路は、前記第1タイミングで取得した前記第1センサの出力値に基づき、前記相関を較正するよう構成することができる。
 かかる構成によれば、エアロゾル生成要求時にヒータ温度が基準温度、例えば室温にあるとみなせないならば、カートリッジ交換時に取得した基準抵抗値を用いるために、エアロゾル生成要求時のヒータ温度と基準温度のズレの影響を受けずに、且つ、製品公差が与える影響を低減できる。
In one embodiment, if the temperature of the load cannot be considered to be at the reference temperature at the second timing, the control circuit calibrates the correlation based on the output value of the first sensor acquired at the first timing. Can be configured to.
According to this configuration, if the heater temperature cannot be considered to be at the reference temperature, for example, room temperature when the aerosol generation is requested, the heater temperature and the reference temperature at the time of the aerosol generation request are used in order to use the reference resistance value obtained at the time of cartridge replacement. It is possible to reduce the influence of product tolerance without being affected by the deviation.
 一実施形態において、前記制御回路は、前記生成要求を検知するまでの経過時間であって、前回の前記生成要求の検知が終了するか、又は、前記負荷がエアロゾルを生成可能とするための電力量の前回の供給が終了してからの経過時間に基づき、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせるかを判断するよう構成することができる。
 かかる構成によれば、前回のエアロゾル生成からの経過時間に基づき、ヒータ温度が基準温度、例えば室温にあるとみなせる温度に至ったか否かを判断するために、より簡便な方法で、ヒータ温度が基準温度にあるとみなせるか否かを判断できる。
In one embodiment, the control circuit is the elapsed time until the generation request is detected, and is the power for the previous detection of the generation request to be completed or the load to be able to generate an aerosol. Based on the elapsed time since the end of the previous supply of the quantity, it can be configured to determine whether the load can be considered to be at the reference temperature at the second timing.
According to this configuration, the heater temperature can be determined in a simpler way to determine whether the heater temperature has reached a reference temperature, eg, a temperature that can be considered to be at room temperature, based on the elapsed time since the last aerosol formation. It is possible to judge whether or not it can be regarded as being at the reference temperature.
 一実施形態において、前記経過時間がエアロゾルを生成可能な温度から基準温度にあるとみなせる温度まで前記負荷を冷却するために必要な時間以上の場合のみ、前記制御回路は、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせると判断するよう構成することができる。
 かかる構成によれば、経過時間と冷却時間を比較して、ヒータ温度が基準温度、例えば室温にあるとみなせる温度に至ったか否かを判断するために、ヒータ温度が基準温度にあるとみなせるか否かの判断の精度を向上できる。
In one embodiment, the control circuit is said at the second timing only if the elapsed time is greater than or equal to the time required to cool the load from a temperature at which the aerosol can be generated to a temperature that can be considered to be at the reference temperature. It can be configured to determine that the load is at reference temperature.
According to such a configuration, can the heater temperature be considered to be at the reference temperature in order to compare the elapsed time and the cooling time and determine whether the heater temperature has reached a reference temperature, for example, a temperature that can be considered to be at room temperature? The accuracy of judging whether or not it can be improved.
 一実施形態において、前記経過時間が、エアロゾルを生成可能な温度から基準温度にあるとみなせる温度まで前記負荷を冷却するために必要な時間以上の既定時間であって、前記貯留部又は前記基材における前記エアロゾル源の枯渇時のみ到達可能な温度から基準温度にあるとみなせる温度まで前記負荷を冷却するために必要な時間より短い前記既定時間以上の場合のみ、前記制御回路は、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせると判断するよう構成することができる。
 かかる構成によれば、経過時間と比較する閾値が極端に大きな値にならないために、十分な較正の機会を担保できる。
In one embodiment, the elapsed time is a predetermined time greater than or equal to the time required to cool the load from a temperature at which the aerosol can be produced to a temperature at which the aerosol can be considered to be at a reference temperature, which is greater than or equal to the time required to cool the load. Only when the predetermined time or more, which is shorter than the time required to cool the load from the temperature that can be reached only when the aerosol source is depleted to the temperature that can be regarded as being at the reference temperature, is the second timing. It can be configured to determine that the load is at the reference temperature.
According to such a configuration, since the threshold value to be compared with the elapsed time does not become an extremely large value, a sufficient calibration opportunity can be secured.
 一実施形態において、前記経過時間が10秒以上の場合のみ、前記制御回路は、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせると判断するよう構成することができる。
 かかる構成によれば、エアロゾル生成要求時にヒータ温度が基準温度、例えば室温にあるとみなせる場合に基準抵抗値を取得するために、基準抵抗値取得時のヒータ温度と基準温度のズレにより温度推定の精度が落ちることを抑制できる。
In one embodiment, the control circuit can be configured to determine that the load is at the reference temperature at the second timing only when the elapsed time is 10 seconds or longer.
According to this configuration, in order to acquire the reference resistance value when the heater temperature can be regarded as the reference temperature, for example, room temperature when the aerosol generation is requested, the temperature is estimated by the deviation between the heater temperature and the reference temperature at the time of acquiring the reference resistance value. It is possible to suppress the decrease in accuracy.
 一実施形態において、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせない場合、前記制御回路は、前記相関を較正しないか、又は、前記相関の前回較正時に用いた前記第1センサの出力値に基づき前記相関を較正するよう構成することができる。 In one embodiment, if the load cannot be considered to be at the reference temperature at the second timing, the control circuit either does not calibrate the correlation or outputs the first sensor used during the previous calibration of the correlation. It can be configured to calibrate the correlation based on the value.
 一実施形態において、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせない場合、前記制御回路は、前回以前の前記第2タイミングにおける前記第1センサの出力値に基づき前記相関を較正するよう構成することができる。
 かかる構成によれば、エアロゾル生成要求時にヒータ温度が基準温度、例えば室温にあるとみなせないならば、前回用いた値を用いるために、最新の基準抵抗値を取得できない場合でも、ヒータの劣化が与える影響を低減した相関を得ることができる。
In one embodiment, if the load cannot be considered to be at the reference temperature at the second timing, the control circuit will calibrate the correlation based on the output value of the first sensor at the second timing prior to the previous time. Can be configured.
According to this configuration, if the heater temperature cannot be considered to be at the reference temperature, for example, room temperature when the aerosol generation is requested, the value used last time is used, so that the heater deteriorates even if the latest reference resistance value cannot be obtained. It is possible to obtain a correlation with reduced influence.
 一実施形態であるエアロゾル吸引器用の制御装置は、前記負荷と電源の間に直列接続され、第1開閉器を含む第1回路と、前記第1回路へ並列接続され、既知抵抗と第2開閉器を含み、前記第1回路よりも電気抵抗値が高い第2回路と、を含み、前記制御回路は、前記第1開閉器と前記第2開閉器を制御可能であり、前記第1開閉器と前記第2開閉器のうち前記第2開閉器のみがオン状態である間に取得した前記第1センサの出力値に基づき、前記相関を較正するよう構成することができる。
 かかる構成によれば、抵抗値計測用の専用回路を有するために、既知抵抗により抵抗値の計測制度が向上するとともに、エアロゾル生成時に当該既知抵抗が邪魔にならず、リチウムイオンバッテリの蓄電容量の利用効率が向上する。
The control device for the aerosol aspirator according to one embodiment is connected in series between the load and the power supply, is connected in parallel to the first circuit including the first switch and the first circuit, and has a known resistance and a second switch. A second circuit including a device and having a higher electric resistance value than the first circuit, and the control circuit can control the first switch and the second switch, and the first switch And, among the second switches, the correlation can be calibrated based on the output value of the first sensor acquired while only the second switch is in the ON state.
According to this configuration, since the dedicated circuit for measuring the resistance value is provided, the resistance value measurement system is improved by the known resistance, and the known resistance does not interfere with the generation of the aerosol, and the storage capacity of the lithium ion battery is increased. Utilization efficiency is improved.
 上述した第2の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置の動作方法であって、前記制御装置は、エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、前記相関及び前記センサの出力値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するよう構成される制御回路とを含み、前記制御回路が、複数のタイミングで前記第1センサの出力値を取得するステップと、前記出力値のうちの1つに基づき、前記相関を較正するステップとを含む方法が提供される。 In order to solve the second problem described above, according to the embodiment of the present disclosure, there is a method of operating a control device for an aerosol aspirator, wherein the control device heats an aerosol source and has a temperature and an electric resistance value. It is configured to determine the depletion of the aerosol source or the temperature of the load based on the first sensor that outputs the value related to the electric resistance value of the load having a correlation or the electric resistance value, and the correlation and the output value of the sensor. A method including a control circuit, wherein the control circuit includes a step of acquiring an output value of the first sensor at a plurality of timings and a step of calibrating the correlation based on one of the output values. Provided.
 上述した第2の課題を解決するため、本開示の実施形態によれば、エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇若しくは不足又は前記負荷の温度を判断するよう構成される制御回路とを含み、前記制御回路は、前記相関の製品公差による誤差を低減可能な較正と、前記相関の経時変化による誤差を低減可能な較正を実行可能に構成される、エアロゾル吸引器用の制御装置が提供される。
 かかる構成によれば、複数の較正タイミングを持つために、PTC特性を利用した液残量推定や温度推定の精度が向上する。
In order to solve the second problem described above, according to the embodiment of the present disclosure, the aerosol source is heated and the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated is output. The control circuit includes one sensor and a control circuit configured to determine the depletion or shortage of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor, and the control circuit has the correlation. A control device for an aerosol aspirator is provided that is configured to be capable of performing calibration that can reduce errors due to product tolerances and calibration that can reduce errors due to changes in the correlation over time.
According to such a configuration, since the plurality of calibration timings are provided, the accuracy of the remaining amount estimation and the temperature estimation using the PTC characteristics is improved.
 一実施形態において、前記制御回路は、前記負荷の交換を検出可能に構成され、前記相関の製品公差による誤差を低減可能な較正は、前記交換の時又は直後に取得された前記第1センサの出力値に基づき実行することができる。
 かかる構成によれば、較正するための値の取得のタイミングがカートリッジ交換時を含むために、PTC特性の製品公差が液残量推定や温度推定に与える影響を低減できる。
In one embodiment, the control circuit is configured to detect the replacement of the load, and the calibration capable of reducing the error due to the product tolerance of the correlation is the calibration of the first sensor acquired at the time of or immediately after the replacement. It can be executed based on the output value.
According to such a configuration, since the timing of acquiring the value for calibration includes the time of cartridge replacement, the influence of the product tolerance of PTC characteristics on the liquid remaining amount estimation and the temperature estimation can be reduced.
 一実施形態であるエアロゾル吸引器用の制御装置は、エアロゾルの生成要求を出力する第3センサを含み、前記相関の経時変化による誤差を低減可能な較正は、前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前に取得された前記第1センサの出力値に基づき実行することができる。
 かかる構成によれば、較正するための値の取得タイミングがエアロゾル生成要求時を含むために、ヒータが劣化しても、液残量推定や温度推定の精度を担保できる。
The control device for an aerosol aspirator according to one embodiment includes a third sensor that outputs an aerosol generation request, and calibration capable of reducing an error due to a change in the correlation over time generates an aerosol after the detection of the generation request. It can be executed based on the output value of the first sensor acquired before supplying the possible amount of electric energy to the load.
According to this configuration, since the acquisition timing of the value for calibration includes the time when the aerosol generation is requested, the accuracy of the liquid remaining amount estimation and the temperature estimation can be ensured even if the heater deteriorates.
 上述した第2の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置の動作方法であって、前記制御装置は、エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇若しくは不足又は前記負荷の温度を判断するよう構成される制御回路とを含み、前記制御回路が、前記相関の製品公差による誤差及び前記相関の経時変化による誤差のうちの少なくとも一方を低減可能な較正を実行するステップを含む方法が提供される。 In order to solve the second problem described above, according to the embodiment of the present disclosure, there is a method of operating a control device for an aerosol suction device, wherein the control device heats an aerosol source and has a temperature and an electric resistance value. Based on the first sensor that outputs the value related to the electric resistance value of the load having a correlation or the electric resistance value, and the correlation and the output value of the first sensor, the depletion or shortage of the aerosol source or the temperature of the load is determined. Provided is a method comprising a control circuit configured such as that the control circuit performs a calibration capable of reducing at least one of the error due to the product tolerance of the correlation and the error due to the aging of the correlation. Tolerant.
 上述した第2の課題を解決するため、本開示の実施形態によれば、上記方法をプロセッサに実行させるプログラムが提供される。
 かかる構成によれば、複数の較正タイミングを持つために、PTC特性を利用した液残量推定や温度推定の精度が向上する。
In order to solve the second problem described above, according to the embodiment of the present disclosure, a program for causing a processor to execute the above method is provided.
According to such a configuration, since the plurality of calibration timings are provided, the accuracy of the remaining amount estimation and the temperature estimation using the PTC characteristics is improved.
 上述した第3の課題を解決するため、本開示の実施形態によれば、エアロゾル源を加熱する負荷の温度に関する値又は温度を出力するセンサと、前記センサの出力値に基づき、前記エアロゾル源の枯渇を判断するよう構成される制御回路とを含み、前記制御回路は、前記エアロゾル源の枯渇を判断するために、前記センサの出力値を第1閾値と比較する第1処理と、前記センサの出力値を前記第1閾値とは異なる第2閾値と比較する第2処理とを実行可能に構成され、前記第1処理を実行する頻度と前記第2処理を実行する頻度は異なること、及び、前記第1処理を実行するフェーズと前記第2処理を実行するフェーズは異なることの一方又は双方を特徴とするエアロゾル吸引器用の制御装置が提供される。
 かかる構成によれば、2つの温度閾値で液枯渇を検知するために、1つの温度閾値を用いた場合より検知精度が向上する。
In order to solve the third problem described above, according to the embodiment of the present disclosure, a sensor that outputs a value or temperature related to the temperature of a load that heats the aerosol source, and a sensor that outputs the temperature, and the aerosol source based on the output value of the sensor. The control circuit includes a control circuit configured to determine depletion, the control circuit performs a first process of comparing the output value of the sensor with a first threshold value to determine depletion of the aerosol source, and the sensor. The second process of comparing the output value with the second threshold value different from the first threshold value is executably configured, and the frequency of executing the first process and the frequency of executing the second process are different. A control device for an aerosol aspirator is provided, characterized in that one or both of the phases in which the first process is executed and the phase in which the second process is executed are different.
According to this configuration, in order to detect liquid depletion with two temperature thresholds, the detection accuracy is improved as compared with the case where one temperature threshold is used.
 一実施形態において、前記第1処理を実行する頻度と前記第2処理を実行する頻度は異なり、前記第1処理を実行するフェーズと前記第2処理を実行するフェーズは異なることができる。
 かかる構成によれば、2つの温度閾値を用いる場面が異なるために、より検知精度が向上する。
In one embodiment, the frequency of executing the first process and the frequency of executing the second process are different, and the phase of executing the first process and the phase of executing the second process can be different.
According to this configuration, the detection accuracy is further improved because the situations where the two temperature threshold values are used are different.
 一実施形態において、前記第1閾値は、前記第2閾値より高く、前記制御回路は、前記第1処理を前記第2処理よりも高い頻度で実行するよう構成することができる。
 かかる構成によれば、高い温度閾値を用いた判定ほど高頻度に実行されるために、液枯渇が強く疑われる状態を迅速に検知できる。
In one embodiment, the first threshold is higher than the second threshold, and the control circuit can be configured to perform the first process more frequently than the second process.
According to such a configuration, the determination using the higher temperature threshold value is executed more frequently, so that a state in which liquid depletion is strongly suspected can be quickly detected.
 一実施形態において、前記第1閾値は、前記第2閾値より高く、前記制御回路は、前記第1処理を前記第2処理よりも早いフェーズで実行するよう構成することができる。
 かかる構成によれば、高い温度閾値を用いた判定ほど早く実行されるために、液枯渇が強く疑われる状態を迅速に検知できる。
In one embodiment, the first threshold is higher than the second threshold, and the control circuit can be configured to perform the first process in a phase earlier than the second process.
According to such a configuration, the determination using the higher temperature threshold value is executed earlier, so that a state in which liquid depletion is strongly suspected can be quickly detected.
 一実施形態において、前記第1閾値は、前記第2閾値より高く、前記制御回路は、前記第1処理と前記第2処理のうち前記第1処理のみを前記エアロゾル源の加熱フェーズに実行するよう構成することができる。
 かかる構成によれば、高い温度閾値を用いた判定がエアロゾル生成中に実行されるために、液枯渇が強く疑われる状態を迅速に検知できる。
In one embodiment, the first threshold is higher than the second threshold so that the control circuit performs only the first of the first and second processes in the heating phase of the aerosol source. Can be configured.
According to such a configuration, since the determination using the high temperature threshold value is executed during the aerosol generation, the state in which the liquid depletion is strongly suspected can be quickly detected.
 一実施形態において、前記第1閾値は、前記第2閾値より高く、前記制御回路は、前記第1処理と前記第2処理のうち前記第2処理のみを前記エアロゾル源の加熱フェーズの後に実行するよう構成することができる。
 かかる構成によれば、低い温度閾値を用いた判定がエアロゾル生成後に実行されるために、液が枯渇したのかウィックが一時的に乾燥したのかを見極められない状態ではエアロゾル生成が停止せず、ユーザの利便性が向上する。
In one embodiment, the first threshold is higher than the second threshold, and the control circuit performs only the second of the first and second processes after the heating phase of the aerosol source. Can be configured as
According to such a configuration, since the determination using the low temperature threshold value is performed after the aerosol generation, the aerosol production does not stop in a state where it cannot be determined whether the liquid is depleted or the wick is temporarily dried, and the user does not stop. Convenience is improved.
 一実施形態において、前記制御回路は、前記第1処理で、前記センサの出力値が前記第1閾値以上か否かを判断し、前記第2処理で、前記センサの出力値が前記第2閾値以上か否かを判断し、前記第1処理での肯定的な判断がN(Nは1以上の自然数)回なされた場合に、前記エアロゾル源の枯渇を判断し、前記第2処理での肯定的な判断がNとは異なるM(Mは1以上の自然数)回なされた場合に、前記エアロゾル源の枯渇を判断するように構成することができる。
 かかる構成によれば、2つの温度閾値で液枯渇を検知するために、1つの温度閾値を用いた場合より検知精度が向上する。
In one embodiment, the control circuit determines in the first process whether the output value of the sensor is equal to or greater than the first threshold value, and in the second process, the output value of the sensor is the second threshold value. When it is judged whether or not it is the above, and when the positive judgment in the first treatment is made N times (N is a natural number of 1 or more), the exhaustion of the aerosol source is judged, and the affirmation in the second treatment is made. It can be configured to determine the depletion of the aerosol source when the determination is made M (M is a natural number of 1 or more) different from N.
According to this configuration, in order to detect liquid depletion with two temperature thresholds, the detection accuracy is improved as compared with the case where one temperature threshold is used.
 一実施形態において、NはMより小さいことができる。
 かかる構成によれば、液枯渇と判断するために、低い温度閾値についてはより多くの液枯渇が疑われるとの判断が必要になるために、液枯渇の誤検知を減らすことができる。
In one embodiment, N can be less than M.
According to such a configuration, it is necessary to judge that more liquid depletion is suspected for a low temperature threshold value in order to judge liquid depletion, so that false detection of liquid depletion can be reduced.
 一実施形態において、Nは1であることができる。
 かかる構成によれば、高い温度閾値については1回でも液枯渇が疑われるとの判断がなされたならば液枯渇と判断することができるために、液枯渇が強く疑われる状態を迅速に検知できる。
In one embodiment, N can be 1.
According to this configuration, if it is determined that liquid depletion is suspected even once for a high temperature threshold value, it can be determined that liquid depletion is suspected. Therefore, a state in which liquid depletion is strongly suspected can be quickly detected. ..
 一実施形態において、前記第1閾値は、前記第2閾値より高く、前記エアロゾル源の加熱フェーズに前記第1処理で前記センサの出力値が前記第1閾値以上と判断された場合、前記制御回路は、前記給電を即時に停止し、且つ、前記負荷への給電を、時間の経過によっては満たされない第1条件が満たされるまで禁止するよう構成することができる。
 かかる構成によれば、高い温度閾値を用いた判定により給電を即時停止且つ禁止できるために、ヒータの過熱を防ぐことができる。
In one embodiment, when the first threshold value is higher than the second threshold value and the output value of the sensor is determined to be equal to or higher than the first threshold value in the first process during the heating phase of the aerosol source, the control circuit Can be configured to immediately stop the power supply and prohibit the power supply to the load until the first condition, which is not satisfied with the passage of time, is satisfied.
According to such a configuration, the power supply can be immediately stopped and prohibited by the determination using the high temperature threshold value, so that the heater can be prevented from overheating.
 一実施形態において、前記第1閾値は、前記第2閾値より高く、前記エアロゾル源の加熱フェーズに前記センサの出力値が前記第1閾値未満且つ前記第2閾値以上と判断された場合、前記制御回路は、前記給電を継続するよう構成することができる。
 かかる構成によれば、低い温度閾値については液枯渇が疑われるとの判断がなされたとしてもすぐに給電が停止されないために、液が枯渇したのかウィックが一時的に乾燥したのかを見極められない状態ではエアロゾル生成が停止せず、ユーザの利便性が向上する。
In one embodiment, when the first threshold value is higher than the second threshold value and the output value of the sensor is determined to be less than the first threshold value and greater than or equal to the second threshold value during the heating phase of the aerosol source, the control is performed. The circuit can be configured to continue the feeding.
According to this configuration, even if it is determined that liquid depletion is suspected for a low temperature threshold, power supply is not stopped immediately, so it is not possible to determine whether the liquid is depleted or the wick is temporarily dry. In the state, aerosol generation does not stop, improving user convenience.
 一実施形態において、前記第1閾値は、前記第2閾値より高く、前記第2処理で前記センサの出力値が前記第2閾値以上と判断された場合、前記制御回路は、前記負荷への給電を、時間の経過によって満たされる第2条件が満たされるまで禁止するよう構成することができる。
 かかる構成によれば、低い温度閾値について液枯渇が疑われるとの判断がなされた場合には通電の禁止が一時的となるために、ウィックが一時的に乾燥している場合に対処することができる。
In one embodiment, when the first threshold value is higher than the second threshold value and the output value of the sensor is determined to be equal to or higher than the second threshold value in the second process, the control circuit supplies power to the load. Can be configured to be banned until the second condition, which is met over time, is met.
According to this configuration, if it is determined that liquid depletion is suspected for a low temperature threshold, energization is temporarily prohibited, so it is possible to deal with the case where the wick is temporarily dry. it can.
 上述した第3の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置の動作方法であって、前記制御装置は、エアロゾル源を加熱する負荷の温度に関する値又は温度を出力するセンサと、前記センサの出力値に基づき、前記エアロゾル源の枯渇を判断するよう構成される制御回路とを含み、前記方法は、前記制御回路が、前記エアロゾル源の枯渇を判断するために、前記センサの出力値を第1閾値と比較する第1処理を実行するステップと、前記センサの出力値を前記第1閾値とは異なる第2閾値と比較する第2処理を実行するステップとを含み、前記第1処理を実行する頻度と前記第2処理を実行する頻度は異なること、及び、前記第1処理を実行するフェーズと前記第2処理を実行するフェーズは異なることの一方又は双方を特徴とする方法が提供される。
 かかる構成によれば、2つの温度閾値で液枯渇を検知するために、1つの温度閾値を用いた場合より検知精度が向上する。
In order to solve the third problem described above, according to the embodiment of the present disclosure, there is a method of operating a control device for an aerosol aspirator, wherein the control device is a value or temperature related to the temperature of a load for heating an aerosol source. The method includes a sensor that outputs a sensor and a control circuit configured to determine the exhaustion of the aerosol source based on the output value of the sensor, in the method for the control circuit to determine the exhaustion of the aerosol source. In addition, a step of executing a first process of comparing the output value of the sensor with the first threshold value and a step of executing a second process of comparing the output value of the sensor with a second threshold value different from the first threshold value. The frequency of executing the first process and the frequency of executing the second process are different, and one or both of the phases in which the first process is executed and the phase in which the second process is executed are different. A method characterized by is provided.
According to this configuration, in order to detect liquid depletion with two temperature thresholds, the detection accuracy is improved as compared with the case where one temperature threshold is used.
 上述した第3の課題を解決するため、本開示の実施形態によれば、エアロゾル源を加熱する負荷の温度に関する値又は温度を出力するセンサと、前記負荷への給電を制御するよう構成される制御回路とを含み、前記制御回路は、前記エアロゾル源の加熱フェーズにおける前記センサの出力値が第1閾値以上の場合、前記給電を、時間の経過によっては満たされない第1条件が満たされるまで禁止し、前記エアロゾル源の加熱フェーズにおける前記センサの出力値が前記第1閾値未満且つ前記第1閾値より小さい第2閾値以上の場合、前記給電を、時間の経過によって満たされる第2条件が満たされるまで禁止するように構成される、エアロゾル吸引器用の制御装置が提供される。 In order to solve the third problem described above, according to the embodiment of the present disclosure, a sensor that outputs a value or temperature related to the temperature of the load that heats the aerosol source and a sensor that outputs the power supply to the load are configured to be controlled. The control circuit includes a control circuit, and when the output value of the sensor in the heating phase of the aerosol source is equal to or higher than the first threshold value, the control circuit prohibits the power supply until the first condition, which is not satisfied with the passage of time, is satisfied. When the output value of the sensor in the heating phase of the aerosol source is less than the first threshold value and greater than or equal to the second threshold value smaller than the first threshold value, the second condition that the power supply is satisfied with the passage of time is satisfied. A control device for an aerosol aspirator is provided that is configured to prohibit up to.
 上述した第3の課題を解決するため、本開示の実施形態によれば、エアロゾル吸引器用の制御装置の動作方法であって、前記制御装置は、エアロゾル源を加熱する負荷の温度に関する値又は温度を出力するセンサと、前記負荷への給電を制御するよう構成される制御回路とを含み、前記制御回路が、前記エアロゾル源の加熱フェーズにおける前記センサの出力値が第1閾値以上の場合、前記給電を、時間の経過によっては満たされない第1条件が満たされるまで禁止するステップと、前記エアロゾル源の加熱フェーズにおける前記センサの出力値が前記第1閾値未満且つ前記第1閾値より小さい第2閾値以上の場合、前記給電を、時間の経過によって満たされる第2条件が満たされるまで禁止するステップとを含む方法が提供される。
 かかる構成によれば、2つの温度閾値を用いて異なる条件にて給電を禁止させるために、より適切にヒータの過熱を防ぐことができる。
In order to solve the third problem described above, according to the embodiment of the present disclosure, there is a method of operating a control device for an aerosol aspirator, wherein the control device is a value or temperature related to the temperature of a load for heating an aerosol source. When the output value of the sensor in the heating phase of the aerosol source is equal to or higher than the first threshold value, the control circuit includes a sensor for outputting the above and a control circuit configured to control the power supply to the load. A step of prohibiting power supply until the first condition, which is not satisfied with the passage of time, is satisfied, and a second threshold value in which the output value of the sensor in the heating phase of the aerosol source is less than the first threshold value and smaller than the first threshold value. In the above case, a method including a step of prohibiting the power supply until the second condition satisfied with the passage of time is satisfied is provided.
According to such a configuration, it is possible to more appropriately prevent the heater from overheating because the power supply is prohibited under different conditions by using the two temperature threshold values.
 上述した第3の課題を解決するため、本開示の実施形態によれば、上記方法をプロセッサに実行させるプログラムが提供される。
 かかる構成によれば、2つの温度閾値で液枯渇を検知するために、1つの温度閾値を用いた場合より検知精度が向上する。また、かかる構成によれば、2つの温度閾値を用いて異なる条件にて給電を禁止させるために、より適切にヒータの過熱を防ぐことができる。
In order to solve the third problem described above, according to the embodiment of the present disclosure, a program for causing a processor to execute the above method is provided.
According to this configuration, in order to detect liquid depletion with two temperature thresholds, the detection accuracy is improved as compared with the case where one temperature threshold is used. Further, according to such a configuration, it is possible to more appropriately prevent the heater from overheating because the power supply is prohibited under different conditions by using the two temperature threshold values.
本開示の一実施形態による、エアロゾル吸引器の構成の概略的なブロック図である。It is a schematic block diagram of the structure of the aerosol aspirator according to one Embodiment of this disclosure. 本開示の一実施形態による、エアロゾル吸引器の構成の概略的なブロック図である。It is a schematic block diagram of the structure of the aerosol aspirator according to one Embodiment of this disclosure. 本開示の一実施形態による、エアロゾル吸引器の一部に関する例示的な回路構成を示す図である。It is a figure which shows an exemplary circuit structure with respect to a part of an aerosol aspirator according to one Embodiment of this disclosure. エアロゾル吸引器の負荷の温度プロファイルを概略的に表すグラフと、所定時間又は所定電力量あたりの負荷の温度変化を示す図である。It is a graph which shows the temperature profile of the load of an aerosol aspirator schematically, and the figure which shows the temperature change of the load per predetermined time or a predetermined electric energy. 負荷の温度を測定し、エアロゾル源の枯渇又は不足を判断するための例示の主処理のフローチャートである。It is a flowchart of an exemplary main process for measuring the temperature of a load and determining the exhaustion or shortage of an aerosol source. 負荷の温度を測定し、エアロゾル源の枯渇又は不足を判断するための例示の主処理のフローチャートである。It is a flowchart of an exemplary main process for measuring the temperature of a load and determining the exhaustion or shortage of an aerosol source. 負荷の温度を測定し、エアロゾル源の枯渇又は不足を判断するための別の例示の主処理のフローチャートの一部である。It is part of another exemplary main processing flowchart for measuring the temperature of a load and determining the exhaustion or deficiency of an aerosol source. 主処理を補助する例示の処理のフローチャートである。It is a flowchart of an exemplary process that assists the main process. 負荷に対する加熱を停止してからの負荷の温度の時間変化を表すグラフである。It is a graph which shows the time change of the temperature of a load after stopping heating with respect to a load.
 以下、図面を参照しながら本開示の実施形態について詳しく説明する。なお、本開示の実施形態は、電子たばこ、加熱式たばこ及びネブライザーを含むが、これらに限定されない。本開示の実施形態は、ユーザが吸引するエアロゾルを生成するための様々なエアロゾル吸引器を含みうる。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiments of the present disclosure include, but are not limited to, electronic cigarettes, heat-not-burn tobacco and nebulizers. Embodiments of the present disclosure may include various aerosol aspirators for producing aerosols to be aspirated by the user.
  1 エアロゾル吸引器の概要
 図1Aは、本開示の一実施形態に係るエアロゾル吸引器100Aの構成の概略的なブロック図である。図1Aは、エアロゾル吸引器100Aが備える各コンポーネントを概略的且つ概念的に示すものであり、各コンポーネント及びエアロゾル吸引器100Aの厳密な配置、形状、寸法、位置関係等を示すものではないことに留意されたい。
1 Outline of Aerosol Aspirator FIG. 1A is a schematic block diagram of a configuration of an aerosol aspirator 100A according to an embodiment of the present disclosure. FIG. 1A shows roughly and conceptually each component included in the aerosol aspirator 100A, and does not show the exact arrangement, shape, dimensions, positional relationship, etc. of each component and the aerosol aspirator 100A. Please note.
 図1Aに示されるように、エアロゾル吸引器100Aは、第1の部材102(以下、「本体102」という)及び第2の部材104A(以下、「カートリッジ104A」という)を備える。図示されるように、一例として、本体102は、制御部106、通知部108、電源110、センサ112及びメモリ114を含んでもよい。エアロゾル吸引器100Aは、流速センサ、流量センサ、圧力センサ、電圧センサ、電流センサ、温度センサなどのセンサを有してもよく、本開示においてはこれらをまとめて「センサ112」ともいう。本体102はまた、後述する回路134を含んでもよい。一例として、カートリッジ104Aは、貯留部116A、霧化部118A、空気取込流路120、エアロゾル流路121、吸口部122、保持部130及び負荷132を含んでもよい。本体102内に含まれるコンポーネントの一部がカートリッジ104A内に含まれてもよい。カートリッジ104A内に含まれるコンポーネントの一部が本体102内に含まれてもよい。カートリッジ104Aは、本体102に対して着脱可能に構成されてもよい。あるいは、本体102及びカートリッジ104A内に含まれるすべてのコンポーネントが、本体102及びカートリッジ104Aに代えて、同一の筐体内に含まれてもよい。 As shown in FIG. 1A, the aerosol aspirator 100A includes a first member 102 (hereinafter referred to as "main body 102") and a second member 104A (hereinafter referred to as "cartridge 104A"). As shown, as an example, the main body 102 may include a control unit 106, a notification unit 108, a power supply 110, a sensor 112, and a memory 114. The aerosol aspirator 100A may include sensors such as a flow velocity sensor, a flow rate sensor, a pressure sensor, a voltage sensor, a current sensor, and a temperature sensor, and these are collectively referred to as "sensor 112" in the present disclosure. The main body 102 may also include a circuit 134 described later. As an example, the cartridge 104A may include a storage section 116A, an atomizing section 118A, an air intake flow path 120, an aerosol flow path 121, a mouthpiece 122, a holding section 130 and a load 132. A part of the components contained in the main body 102 may be contained in the cartridge 104A. A part of the components contained in the cartridge 104A may be contained in the main body 102. The cartridge 104A may be configured to be removable from the main body 102. Alternatively, all the components contained in the main body 102 and the cartridge 104A may be contained in the same housing instead of the main body 102 and the cartridge 104A.
 貯留部116Aは、エアロゾル源を収容するタンクとして構成されてもよい。この場合、エアロゾル源は、例えば、グリセリンやプロピレングリコールといった多価アルコール、水などの液体やこれらの混合液体である。エアロゾル吸引器100Aが電子たばこである場合、貯留部116A内のエアロゾル源は、加熱することによって香喫味成分を放出する成分を含んでいてもよい。保持部130は、貯留部116Aが供給するエアロゾル源を負荷132が加熱可能な位置で保持する。例えば、保持部130は、繊維状又は多孔質性の素材から構成され、繊維間の隙間や多孔質材料の細孔に液体としてのエアロゾル源を保持する。前述した繊維状又は多孔質性の素材には、例えばコットンやガラス繊維やセラミック、またはたばこ原料などを用いることができる。エアロゾル吸引器100Aがネブライザー等の医療用吸入器である場合、エアロゾル源はまた、患者が吸入するための薬剤を含んでもよい。別の例として、貯留部116Aは、消費されたエアロゾル源を補充することができる構成を有してもよい。あるいは、貯留部116Aは、エアロゾル源が消費された際に貯留部116A自体を交換することができるように構成されてもよい。また、エアロゾル源は液体に限られるものではなく、固体でも良い。エアロゾル源が固体の場合の貯留部116Aは、空洞の容器であってもよい。 The storage unit 116A may be configured as a tank for accommodating the aerosol source. In this case, the aerosol source is, for example, a polyhydric alcohol such as glycerin or propylene glycol, a liquid such as water, or a mixed liquid thereof. When the aerosol aspirator 100A is an electronic cigarette, the aerosol source in the reservoir 116A may contain a component that releases a flavoring component upon heating. The holding unit 130 holds the aerosol source supplied by the storage unit 116A at a position where the load 132 can be heated. For example, the holding portion 130 is made of a fibrous or porous material, and holds an aerosol source as a liquid in the gaps between the fibers and the pores of the porous material. For the fibrous or porous material described above, for example, cotton, glass fiber, ceramic, or a tobacco raw material can be used. If the aerosol aspirator 100A is a medical inhaler such as a nebulizer, the aerosol source may also contain a drug for the patient to inhale. As another example, the reservoir 116A may have a configuration capable of replenishing the consumed aerosol source. Alternatively, the reservoir 116A may be configured so that the reservoir 116A itself can be replaced when the aerosol source is consumed. Further, the aerosol source is not limited to a liquid, and may be a solid. When the aerosol source is a solid, the reservoir 116A may be a hollow container.
 霧化部118Aは、エアロゾル源を霧化してエアロゾルを生成するように構成される。センサ112によって吸引動作やユーザによる他の操作が検知されると、霧化部118Aはエアロゾルを生成する。例えば、保持部130は、貯留部116Aと霧化部118Aとを連結するように設けられる。この場合、保持部130の一部は貯留部116Aの内部に通じ、エアロゾル源と接触する。保持部130の他の一部は霧化部118Aへ延びる。なお、霧化部118Aへ延びた保持部130の他の一部は、霧化部118Aに収められてもよく、あるいは、霧化部118Aを通って再び貯留部116Aの内部に通じてもよい。エアロゾル源は、保持部130の毛細管効果によって貯留部116Aから霧化部118Aへと運ばれる。一例として、霧化部118Aは、電源110に電気的に接続された負荷132を含むヒータを備える。ヒータは、保持部130と接触又は近接するように配置される。吸引動作やユーザによる他の操作が検知されると、制御部106は、霧化部118Aのヒータへの電力供給を制御し、保持部130を通じて運ばれたエアロゾル源を加熱することによって当該エアロゾル源を霧化する。霧化部118Aには空気取込流路120が接続され、空気取込流路120はエアロゾル吸引器100Aの外部へ通じている。霧化部118Aにおいて生成されたエアロゾルは、空気取込流路120を介して取り込まれた空気と混合される。エアロゾルと空気の混合流体は、矢印124で示されるように、エアロゾル流路121へと送り出される。エアロゾル流路121は、霧化部118Aにおいて生成されたエアロゾルと空気との混合流体を吸口部122まで輸送するための管状構造を有する。 The atomizing unit 118A is configured to atomize the aerosol source to generate an aerosol. When the sensor 112 detects a suction operation or another operation by the user, the atomizing unit 118A generates an aerosol. For example, the holding unit 130 is provided so as to connect the storage unit 116A and the atomizing unit 118A. In this case, a part of the holding portion 130 communicates with the inside of the storage portion 116A and comes into contact with the aerosol source. The other part of the holding portion 130 extends to the atomizing portion 118A. The other part of the holding portion 130 extending to the atomizing portion 118A may be housed in the atomizing portion 118A, or may be passed through the atomizing portion 118A and passed through the storage portion 116A again. .. The aerosol source is carried from the reservoir 116A to the atomizing section 118A by the capillary effect of the holding section 130. As an example, the atomizing unit 118A includes a heater including a load 132 electrically connected to the power supply 110. The heater is arranged so as to be in contact with or close to the holding portion 130. When a suction operation or another operation by the user is detected, the control unit 106 controls the power supply to the heater of the atomizing unit 118A and heats the aerosol source carried through the holding unit 130 to heat the aerosol source. To atomize. An air intake flow path 120 is connected to the atomizing portion 118A, and the air intake flow path 120 leads to the outside of the aerosol aspirator 100A. The aerosol produced in the atomizing section 118A is mixed with the air taken in through the air intake flow path 120. The mixed fluid of aerosol and air is pumped into the aerosol flow path 121, as indicated by arrow 124. The aerosol flow path 121 has a tubular structure for transporting a mixed fluid of aerosol and air generated in the atomizing portion 118A to the mouthpiece 122.
 吸口部122は、エアロゾル流路121の終端に位置し、エアロゾル流路121をエアロゾル吸引器100Aの外部に対して開放するように構成される。ユーザは、吸口部122を咥えて吸引することにより、エアロゾルを含んだ空気を口腔内へ取り込む。 The mouthpiece 122 is located at the end of the aerosol flow path 121, and is configured to open the aerosol flow path 121 to the outside of the aerosol aspirator 100A. The user takes in air containing an aerosol into the oral cavity by sucking the mouthpiece 122 by holding it.
 通知部108は、LEDなどの発光素子、ディスプレイ、スピーカ、バイブレータなどを含んでもよい。通知部108は、必要に応じて、発光、表示、発声、振動などによって、ユーザに対して何らかの通知を行うように構成される。 The notification unit 108 may include a light emitting element such as an LED, a display, a speaker, a vibrator, and the like. The notification unit 108 is configured to give some notification to the user by light emission, display, vocalization, vibration, or the like, if necessary.
 なお、カートリッジ104Aは外管として、空気取込流路120及びエアロゾル流路121の一方又は双方は外管内に配置される内管として構成することができる。また、負荷132は、内管である空気取込流路120又はエアロゾル流路121内に配置することができる。貯留部116Aは、外管であるカートリッジ104Aと内管である空気取込流路120又はエアロゾル流路121の間に配置又は形成することができる。 The cartridge 104A can be configured as an outer pipe, and one or both of the air intake flow path 120 and the aerosol flow path 121 can be configured as an inner pipe arranged in the outer pipe. Further, the load 132 can be arranged in the air intake flow path 120 or the aerosol flow path 121, which is an inner pipe. The storage portion 116A can be arranged or formed between the cartridge 104A which is an outer pipe and the air intake flow path 120 or the aerosol flow path 121 which is an inner pipe.
 電源110は、通知部108、センサ112、メモリ114、負荷132、回路134などのエアロゾル吸引器100Aの各コンポーネントに電力を供給する。電源110は、一次電池であるか、又は、エアロゾル吸引器100Aの所定のポート(図示せず)を介して外部電源に接続することにより充電することができる二次電池であってよい。電源110のみを本体102又はエアロゾル吸引器100Aから取り外すことができてもよく、新しい電源110と交換することができてもよい。また、本体102全体を新しい本体102と交換することによって電源110を新しい電源110と交換することができてもよい。一例として、電源110は、リチウムイオン二次電池やニッケル水素二次電池やリチウムイオンキャパシタなどから構成されていてよい。二次電池である電源110は、当該電池の温度を検知するための温度センサを含むことがある。 The power supply 110 supplies electric power to each component of the aerosol aspirator 100A such as the notification unit 108, the sensor 112, the memory 114, the load 132, and the circuit 134. The power supply 110 may be a primary battery or a secondary battery that can be charged by connecting to an external power source via a predetermined port (not shown) of the aerosol aspirator 100A. Only the power supply 110 may be removed from the body 102 or the aerosol aspirator 100A or may be replaced with a new power supply 110. Further, the power supply 110 may be replaced with a new power supply 110 by replacing the entire main body 102 with a new main body 102. As an example, the power supply 110 may be composed of a lithium ion secondary battery, a nickel hydrogen secondary battery, a lithium ion capacitor, or the like. The power supply 110, which is a secondary battery, may include a temperature sensor for detecting the temperature of the battery.
 センサ112は、回路134の全体又は特定の部分に印加される電圧の値、回路134の全体又は特定の部分に流れる電流の値、負荷132の抵抗値に関連する値又は温度に関連する値などを取得するために用いられる1つ又は複数のセンサを含んでもよい。センサ112は回路134に組み込まれてもよい。センサ112の機能が制御部106に組み込まれてもよい。センサ112はまた、空気取込流路120及びエアロゾル流路121の一方又は双方内の圧力の変動を検知する圧力センサ、流速を検知する流速センサ及び流量を検知する流量センサのうちの1以上を含んでもよい。センサ112はまた、貯留部116Aなどのコンポーネントの重量を検知する重量センサを含んでもよい。センサ112はまた、エアロゾル吸引器100Aを用いたユーザによるパフの回数を計数するように構成されてもよい。センサ112はまた、霧化部118Aへの通電時間を積算するように構成されてもよい。センサ112はまた、貯留部116A内の液面の高さを検知するように構成されてもよい。センサ112はまた、電源110のSOC(State of Charge,充電状態)、電流積算値、電圧などを求める又は検知するように構成されてもよい。SOCは、電流積算法(クーロン・カウンティング法)やSOC-OCV(Open Circuit Voltage,開回路電圧)法等によって求められてもよい。センサ112はまた、上述した電源110内の温度センサを含んでいてよい。センサ112はまた、ユーザが操作可能な操作ボタンなどに対する操作を検出可能であってもよい。 The sensor 112 has a voltage value applied to the whole circuit 134 or a specific part, a current value flowing through the whole circuit 134 or a specific part, a value related to the resistance value of the load 132, a value related to the temperature, and the like. May include one or more sensors used to obtain the. The sensor 112 may be incorporated in the circuit 134. The function of the sensor 112 may be incorporated in the control unit 106. The sensor 112 also includes one or more of a pressure sensor that detects pressure fluctuations in one or both of the air intake flow path 120 and the aerosol flow path 121, a flow velocity sensor that detects the flow velocity, and a flow rate sensor that detects the flow rate. It may be included. The sensor 112 may also include a weight sensor that detects the weight of a component such as the reservoir 116A. The sensor 112 may also be configured to count the number of puffs by the user using the aerosol aspirator 100A. The sensor 112 may also be configured to integrate the energization time on the atomizing section 118A. The sensor 112 may also be configured to detect the height of the liquid level in the reservoir 116A. The sensor 112 may also be configured to obtain or detect the SOC (System of Charge, charging state), current integrated value, voltage, etc. of the power supply 110. The SOC may be obtained by a current integration method (Coulomb counting method), an SOC-OCV (Open Circuit Voltage, open circuit voltage) method, or the like. The sensor 112 may also include the temperature sensor in the power supply 110 described above. The sensor 112 may also be capable of detecting an operation on a user-operable operation button or the like.
 制御部106は、マイクロプロセッサ又はマイクロコンピュータとして構成された電子回路モジュールであってもよい。制御部106は、メモリ114に格納されたコンピュータ実行可能命令に従ってエアロゾル吸引器100Aの動作を制御するように構成されてもよい。メモリ114は、ROM、RAM、フラッシュメモリなどの記憶媒体である。メモリ114には、上記のようなコンピュータ実行可能命令のほか、エアロゾル吸引器100Aの制御に必要な設定データ等が格納されてもよい。例えば、メモリ114は、通知部108の制御方法(発光、発声、振動等の態様等)、センサ112により取得及び検知の一方又は双方がされた値、霧化部118Aの加熱履歴等の様々なデータを格納してもよい。制御部106は、必要に応じてメモリ114からデータを読み出してエアロゾル吸引器100Aの制御に利用し、必要に応じてデータをメモリ114に格納する。 The control unit 106 may be an electronic circuit module configured as a microprocessor or a microcomputer. The control unit 106 may be configured to control the operation of the aerosol aspirator 100A according to a computer executable instruction stored in the memory 114. The memory 114 is a storage medium such as a ROM, RAM, or flash memory. In addition to the computer-executable instructions as described above, the memory 114 may store setting data and the like necessary for controlling the aerosol aspirator 100A. For example, the memory 114 has various control methods of the notification unit 108 (modes such as light emission, vocalization, vibration, etc.), values obtained and / or detected by the sensor 112, heating history of the atomizing unit 118A, and the like. Data may be stored. The control unit 106 reads data from the memory 114 as needed and uses it for controlling the aerosol aspirator 100A, and stores the data in the memory 114 as needed.
 図1Bは、本開示の一実施形態に係るエアロゾル吸引器100Bの構成の概略的なブロック図である。 FIG. 1B is a schematic block diagram of the configuration of the aerosol aspirator 100B according to the embodiment of the present disclosure.
 図示されるように、エアロゾル吸引器100Bは、図1Aのエアロゾル吸引器100Aと類似した構成を有する。但し、第2の部材104B(以下、「エアロゾル発生物品104B」又は「スティック104B」という)の構成は第2の部材104Aの構成とは異なっている。一例として、エアロゾル発生物品104Bは、エアロゾル基材116B、霧化部118B、空気取込流路120、エアロゾル流路121、吸口部122を含んでもよい。本体102内に含まれるコンポーネントの一部がエアロゾル発生物品104B内に含まれてもよい。エアロゾル発生物品104B内に含まれるコンポーネントの一部が本体102内に含まれてもよい。エアロゾル発生物品104Bは、本体102に対して挿抜可能に構成されてもよい。あるいは、本体102及びエアロゾル発生物品104B内に含まれるすべてのコンポーネントが、本体102及びエアロゾル発生物品104Bに代えて、同一の筐体内に含まれてもよい。 As shown, the aerosol aspirator 100B has a configuration similar to that of the aerosol aspirator 100A of FIG. 1A. However, the configuration of the second member 104B (hereinafter referred to as "aerosol generating article 104B" or "stick 104B") is different from the configuration of the second member 104A. As an example, the aerosol generating article 104B may include an aerosol base material 116B, an atomizing portion 118B, an air intake flow path 120, an aerosol flow path 121, and a mouthpiece portion 122. A part of the components contained in the main body 102 may be contained in the aerosol generating article 104B. A part of the components contained in the aerosol-generating article 104B may be contained in the main body 102. The aerosol-generating article 104B may be configured to be removable with respect to the main body 102. Alternatively, all the components contained in the main body 102 and the aerosol-generating article 104B may be contained in the same housing instead of the main body 102 and the aerosol-generating article 104B.
 エアロゾル基材116Bは、エアロゾル源を担持する固体として構成されてもよい。図1Aの貯留部116Aの場合と同様に、エアロゾル源は、例えば、グリセリンやプロピレングリコールといった多価アルコール、水などの液体やこれらの混合液体であってもよい。エアロゾル基材116B内のエアロゾル源は、加熱することによって香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいてもよい。なお、エアロゾル基材116Bそのものがたばこ原料から構成されていてもよい。エアロゾル吸引器100Bがネブライザー等の医療用吸入器である場合、エアロゾル源はまた、患者が吸入するための薬剤を含んでもよい。エアロゾル基材116Bは、エアロゾル源が消費された際にエアロゾル基材116B自体を交換することができるように構成されてもよい。エアロゾル源は液体に限られるものではなく、固体でも良い。 The aerosol base material 116B may be configured as a solid supporting an aerosol source. As in the case of the reservoir 116A of FIG. 1A, the aerosol source may be, for example, a polyhydric alcohol such as glycerin or propylene glycol, a liquid such as water, or a mixed liquid thereof. The aerosol source in the aerosol base material 116B may contain a tobacco raw material or an extract derived from the tobacco raw material that releases a flavor component by heating. The aerosol base material 116B itself may be composed of a tobacco raw material. If the aerosol aspirator 100B is a medical inhaler such as a nebulizer, the aerosol source may also contain a drug for the patient to inhale. The aerosol substrate 116B may be configured such that the aerosol substrate 116B itself can be replaced when the aerosol source is consumed. The aerosol source is not limited to liquids, but may be solids.
 霧化部118Bは、エアロゾル源を霧化してエアロゾルを生成するように構成される。センサ112によって吸引動作やユーザによる他の操作が検知されると、霧化部118Bはエアロゾルを生成する。霧化部118Bは、電源110に電気的に接続された負荷を含むヒータ(図示せず)を備える。吸引動作やユーザによる他の操作が検知されると、制御部106は、霧化部118Bのヒータへの電力供給を制御し、エアロゾル基材116B内に担持されたエアロゾル源を加熱することによって当該エアロゾル源を霧化する。霧化部118Bには空気取込流路120が接続され、空気取込流路120はエアロゾル吸引器100Bの外部へ通じている。霧化部118Bにおいて生成されたエアロゾルは、空気取込流路120を介して取り込まれた空気と混合される。エアロゾルと空気の混合流体は、矢印124で示されるように、エアロゾル流路121へと送り出される。エアロゾル流路121は、霧化部118Bにおいて生成されたエアロゾルと空気との混合流体を吸口部122まで輸送するための管状構造を有する。 The atomizing unit 118B is configured to atomize the aerosol source to generate an aerosol. When the sensor 112 detects a suction operation or another operation by the user, the atomizing unit 118B generates an aerosol. The atomizing unit 118B includes a heater (not shown) including a load electrically connected to the power supply 110. When a suction operation or another operation by the user is detected, the control unit 106 controls the power supply to the heater of the atomizing unit 118B and heats the aerosol source supported in the aerosol base material 116B. Atomize the aerosol source. An air intake flow path 120 is connected to the atomizing portion 118B, and the air intake flow path 120 leads to the outside of the aerosol aspirator 100B. The aerosol produced in the atomizing section 118B is mixed with the air taken in through the air intake flow path 120. The mixed fluid of aerosol and air is pumped into the aerosol flow path 121, as indicated by arrow 124. The aerosol flow path 121 has a tubular structure for transporting a mixed fluid of aerosol and air generated in the atomizing portion 118B to the mouthpiece 122.
 制御部106は、本開示の実施形態に係るエアロゾル吸引器100A及び100B(以下、まとめて「エアロゾル吸引器100」ともいう)を様々な方法で制御するように構成される。 The control unit 106 is configured to control the aerosol aspirators 100A and 100B (hereinafter, collectively referred to as “aerosol aspirator 100”) according to the embodiment of the present disclosure by various methods.
 図2は、本開示の一実施形態による、エアロゾル吸引器100の一部に関する例示的な回路構成を示す図である。 FIG. 2 is a diagram showing an exemplary circuit configuration for a part of the aerosol aspirator 100 according to one embodiment of the present disclosure.
 図2に示す回路200は、電源110、制御部106、センサ112A~112D(以下、まとめて「センサ112」ともいう)、負荷132(以下、「ヒータ抵抗」ともいう)、第1回路202、第2回路204、第1電界効果トランジスタ(FET)206を含むスイッチQ1、変換部208、第2FET210を含むスイッチQ2、抵抗212(以下、「シャント抵抗」ともいう)を備える。負荷132の電気抵抗値は温度に応じて変化する。換言すれば、負荷132はPTCヒータを含んでいてよい。シャント抵抗212は、負荷132と直列に接続され、既知の電気抵抗値を有する。シャント抵抗212の電気抵抗値は温度に対して殆ど又は完全に不変であってもよい。シャント抵抗212は負荷132より大きな電気抵抗値を有する。実施形態に応じて、センサ112C、112Dは省略されてもよい。スイッチQ1に含まれる第1FET206とスイッチQ2に含まれる第2FET210は、それぞれ電気回路を開閉する開閉器の役割を果たす。開閉器としては、FETだけでなく、IGBT、コンタクタなどの様々な素子をスイッチQ1及びQ2として用いることができることは当業者にとって明らかであろう。また、スイッチQ1及びQ2は、同一の特性を有していることが好ましいが、そうでなくてもよい。従って、スイッチQ1及びQ2として用いるFET、IGBT、コンタクタ等は、同一の特性を有していることが好ましいが、そうでなくてもよい。 The circuit 200 shown in FIG. 2 includes a power supply 110, a control unit 106, sensors 112A to 112D (hereinafter collectively referred to as “sensor 112”), a load 132 (hereinafter also referred to as “heater resistance”), and a first circuit 202. It includes a second circuit 204, a switch Q1 including a first field effect transistor (FET) 206, a conversion unit 208, a switch Q2 including a second FET 210, and a resistor 212 (hereinafter, also referred to as “shunt resistor”). The electrical resistance value of the load 132 changes with temperature. In other words, the load 132 may include a PTC heater. The shunt resistor 212 is connected in series with the load 132 and has a known electrical resistance value. The electrical resistance value of the shunt resistor 212 may be almost or completely invariant with respect to temperature. The shunt resistor 212 has an electrical resistance value greater than that of the load 132. Depending on the embodiment, the sensors 112C and 112D may be omitted. The first FET 206 included in the switch Q1 and the second FET 210 included in the switch Q2 each serve as a switch for opening and closing an electric circuit. It will be apparent to those skilled in the art that not only FETs but also various elements such as IGBTs and contactors can be used as switches Q1 and Q2 as switches. Further, the switches Q1 and Q2 preferably have the same characteristics, but may not be so. Therefore, the FETs, IGBTs, contactors, etc. used as the switches Q1 and Q2 preferably have the same characteristics, but they do not have to.
 変換部208は、例えばスイッチング・コンバータであり、FET214、ダイオード216、インダクタ218及びキャパシタ220を含みうる。変換部208が電源110の出力電圧を変換して、変換された出力電圧が回路全体に印加されるように、制御部106は変換部208を制御してもよい。ここで、変換部208は、制御部106による制御により、少なくともスイッチQ2がオン状態である間は、一定の電圧を出力するよう構成されていることが好ましい。また、変換部208は、制御部106による制御により、スイッチQ1がオン状態である間も、一定の電圧を出力するように構成されていてもよい。なお、スイッチQ1がオン状態である間に制御部106による制御により変換部208が出力する一定の電圧と、スイッチQ2がオン状態である間に制御部106による制御により変換部208が出力する一定の電圧は、同じでもよいし異なっていてもよい。これらが異なる場合、スイッチQ1がオン状態である間に制御部106による制御により変換部208が出力する一定の電圧は、スイッチQ2がオン状態である間に制御部106による制御により変換部208が出力する一定の電圧より、高くてもよいし低くてもよい。かかる構成によれば、電圧や他のパラメータが安定するため、エアロゾルの残量の推定精度が向上することになる。更に、変換部208は、制御部106による制御により、スイッチQ1のみがオン状態である間は、電源110の出力電圧が直接第1回路に印加されるように構成されていてもよい。このような態様は、制御部106が、スイッチング・コンバータをスイッチング動作が停止する直結モードで制御することによって実現されてもよい。なお、変換部208は必須のコンポーネントではなく、省略することも可能である。 The conversion unit 208 is, for example, a switching converter and may include an FET 214, a diode 216, an inductor 218 and a capacitor 220. The control unit 106 may control the conversion unit 208 so that the conversion unit 208 converts the output voltage of the power supply 110 and the converted output voltage is applied to the entire circuit. Here, the conversion unit 208 is preferably configured to output a constant voltage under the control of the control unit 106, at least while the switch Q2 is in the ON state. Further, the conversion unit 208 may be configured to output a constant voltage even while the switch Q1 is in the ON state under the control of the control unit 106. The constant voltage output by the conversion unit 208 under the control of the control unit 106 while the switch Q1 is on, and the constant voltage output by the conversion unit 208 under the control of the control unit 106 while the switch Q2 is on. The voltages of may be the same or different. When these are different, the constant voltage output by the conversion unit 208 under the control of the control unit 106 while the switch Q1 is on is controlled by the conversion unit 208 under the control of the control unit 106 while the switch Q2 is on. It may be higher or lower than the constant output voltage. According to such a configuration, the voltage and other parameters are stabilized, so that the accuracy of estimating the remaining amount of the aerosol is improved. Further, the conversion unit 208 may be configured so that the output voltage of the power supply 110 is directly applied to the first circuit while only the switch Q1 is in the ON state under the control of the control unit 106. Such an embodiment may be realized by the control unit 106 controlling the switching converter in a direct connection mode in which the switching operation is stopped. The conversion unit 208 is not an essential component and can be omitted.
 図1A及び図1Bに示される回路134は、電源110と負荷132とを電気的に接続し、第1回路202及び第2回路204を含みうる。第1回路202及び第2回路204は、電源110及び負荷132に対して並列接続される。第1回路202はスイッチQ1を含みうる。第2回路204はスイッチQ2及び抵抗212(及び、オプションとして、センサ112D)を含みうる。第1回路202は第2回路204よりも小さい抵抗値を有してもよい。この例において、センサ112B及び112Dは電圧センサであり、それぞれ、負荷132及び抵抗212の両端の電位差(以下、「電圧」又は「電圧値」ということもある。)を検知するように構成される。しかし、センサ112の構成はこれに限定されない。例えば、センサ112は電流センサであってもよく、負荷132及び抵抗212の一方又は双方を流れる電流の値を検知してもよい。 The circuit 134 shown in FIGS. 1A and 1B may include the first circuit 202 and the second circuit 204 by electrically connecting the power supply 110 and the load 132. The first circuit 202 and the second circuit 204 are connected in parallel to the power supply 110 and the load 132. The first circuit 202 may include the switch Q1. The second circuit 204 may include a switch Q2 and a resistor 212 (and optionally a sensor 112D). The first circuit 202 may have a resistance value smaller than that of the second circuit 204. In this example, the sensors 112B and 112D are voltage sensors, respectively, configured to detect a potential difference (hereinafter, also referred to as “voltage” or “voltage value”) between both ends of the load 132 and the resistor 212, respectively. .. However, the configuration of the sensor 112 is not limited to this. For example, the sensor 112 may be a current sensor and may detect the value of the current flowing through one or both of the load 132 and the resistor 212.
 図2において点線矢印で示すように、制御部106は、スイッチQ1、スイッチQ2等を制御することができ、センサ112により検知された値を取得することができる。制御部106は、スイッチQ1をオフ状態からオン状態に切り替えることにより第1回路202を機能させ、スイッチQ2をオフ状態からオン状態に切り替えることにより第2回路204を機能させるように構成されてもよい。制御部106は、スイッチQ1及びQ2を交互に切り替えることにより、第1回路202及び第2回路204を交互に機能させるように構成されてもよい。 As shown by the dotted arrow in FIG. 2, the control unit 106 can control the switch Q1, the switch Q2, and the like, and can acquire the value detected by the sensor 112. Even if the control unit 106 is configured to function the first circuit 202 by switching the switch Q1 from the off state to the on state, and to function the second circuit 204 by switching the switch Q2 from the off state to the on state. Good. The control unit 106 may be configured so that the first circuit 202 and the second circuit 204 function alternately by alternately switching the switches Q1 and Q2.
 第1回路202はエアロゾル源の霧化に主に用いられる。スイッチQ1がオン状態に切り替えられて第1回路202が機能するとき、ヒータ(すなわち、ヒータ内の負荷132)に電力が供給され、負荷132は加熱される。負荷132の加熱により、霧化部118A内の保持部130に保持されているエアロゾル源(図1Bのエアロゾル吸引器100Bの場合、エアロゾル基材116Bに担持されたエアロゾル源)が霧化されてエアロゾルが生成される。 The first circuit 202 is mainly used for atomizing the aerosol source. When the switch Q1 is switched to the ON state and the first circuit 202 functions, power is supplied to the heater (that is, the load 132 in the heater), and the load 132 is heated. By heating the load 132, the aerosol source held in the holding portion 130 in the atomizing portion 118A (in the case of the aerosol aspirator 100B in FIG. 1B, the aerosol source supported on the aerosol base material 116B) is atomized and the aerosol Is generated.
 第2回路204は、負荷132に印加される電圧の値、負荷132に流れる電流の値、抵抗212に印加される電圧の値、抵抗212に流れる電流の値等を取得するために用いられる。 The second circuit 204 is used to acquire the value of the voltage applied to the load 132, the value of the current flowing through the load 132, the value of the voltage applied to the resistor 212, the value of the current flowing through the resistor 212, and the like.
  2 基本的原理
  2-1 負荷132の抵抗値の取得について
 取得された電圧又は電流の値は、負荷132の抵抗値を取得するために用いることができる。以下、スイッチQ1がオフ状態であり第1回路202が機能しておらず、スイッチQ2がオン状態であり第2回路204が機能している場合を考える。この場合、電流はスイッチQ2、シャント抵抗212及び負荷132を流れるため、負荷132の抵抗値RHTRは、例えば以下の式を用いて計算により取得することが可能である。
2 Basic Principle 2-1 Acquisition of Resistance Value of Load 132 The acquired voltage or current value can be used to acquire the resistance value of the load 132. Hereinafter, consider a case where the switch Q1 is in the off state and the first circuit 202 is not functioning, and the switch Q2 is in the on state and the second circuit 204 is functioning. In this case, since the current flows through the switch Q2, the shunt resistor 212, and the load 132, the resistance value R HTR of the load 132 can be obtained by calculation using, for example, the following equation.
Figure JPOXMLDOC01-appb-M000001
ここで、Voutは、センサ112Cより検知されうる電圧又は変換部208が出力する予め定められた目標電圧であって、第1回路202及び第2回路204全体に印加される電圧を表している。なお、変換部208を用いない場合には、電圧Voutはセンサ112Aにより検知されうる電圧VBattであってもよい。VHTRはセンサ112Bにより検知されうる負荷132に印加される電圧を表しており、Vshuntはセンサ112Dにより検知されうるシャント抵抗212に印加される電圧を表している。IHTRは、図示しないセンサ(例えば、ホール素子)等により検知されうる負荷132に流れる電流(この場合にはシャント抵抗212に流れる電流と同じ)を表している。Rshuntは予め決定可能なシャント抵抗212の既知の抵抗値を表している。
Figure JPOXMLDOC01-appb-M000001
Here, V out is a voltage that can be detected by the sensor 112C or a predetermined target voltage output by the conversion unit 208, and represents a voltage applied to the entire first circuit 202 and the second circuit 204. .. When the conversion unit 208 is not used, the voltage V out may be a voltage V Batt that can be detected by the sensor 112A. The V HTR represents the voltage applied to the load 132 that can be detected by the sensor 112B, and the V shunt represents the voltage applied to the shunt resistor 212 that can be detected by the sensor 112D. I HTR represents a current flowing through a load 132 (in this case, the same as a current flowing through a shunt resistor 212) that can be detected by a sensor (for example, a Hall element) (not shown). R shunt represents a known resistance value of a predeterminable shunt resistor 212.
 なお、負荷132の抵抗値は、スイッチQ1がオン状態である場合にも、スイッチQ2が機能しているか否かに関わらず、少なくとも式(1)を用いれば求めることが可能である。このことは、本開示の実施形態は、スイッチQ1がオン状態であるときに取得したセンサ112の出力値を用いることや、第2回路204が存在しない回路を用いることが可能であることを意味している。また、上述した手法は例示にすぎず、負荷132の抵抗値は任意の手法により求めてよいことに留意されたい。 The resistance value of the load 132 can be obtained by using at least the equation (1) even when the switch Q1 is in the ON state, regardless of whether the switch Q2 is functioning or not. This means that in the embodiment of the present disclosure, it is possible to use the output value of the sensor 112 acquired when the switch Q1 is in the ON state, or to use a circuit in which the second circuit 204 does not exist. are doing. Further, it should be noted that the above-mentioned method is merely an example, and the resistance value of the load 132 may be obtained by any method.
  2-2 負荷132の温度の取得について
 取得した負荷132の抵抗値は、負荷132の温度を取得するために用いることができる。詳細には、負荷132が温度に応じて抵抗値が変わる正又は負の温度係数特性(正の温度係数特性は、「PTC特性」と呼ばれることがある。)を有している場合、予め知られている負荷132の抵抗値と温度との間の関係即ち相関と、式(1)により求められた負荷132の抵抗値RHTRとに基づいて、負荷132の温度THTRを推定することができる。詳述すると、負荷132の抵抗値RHTRと温度THTRの間には、以下の関係がある。
2-2 Acquisition of the temperature of the load 132 The acquired resistance value of the load 132 can be used to acquire the temperature of the load 132. Specifically, if the load 132 has a positive or negative temperature coefficient characteristic (the positive temperature coefficient characteristic may be referred to as "PTC characteristic") whose resistance value changes depending on the temperature, it is known in advance. The temperature THTR of the load 132 can be estimated based on the relationship between the resistance value and the temperature of the load 132, that is, the correlation, and the resistance value R HTR of the load 132 obtained by the equation (1). it can. More specifically, there is the following relationship between the resistance value R HTR of the load 132 and the temperature THTR .
Figure JPOXMLDOC01-appb-M000002
従って、
Figure JPOXMLDOC01-appb-M000002
Therefore,
Figure JPOXMLDOC01-appb-M000003
ここで、Trefは所定の基準温度であり、Rrefは基準抵抗値であり、αTCRは、負荷132の材質に依存する既知の定数である。ここで、負荷132の温度THTRを正確に求めるためには、基準抵抗値Rrefは、基準温度Trefであるときの負荷132の抵抗値に等しい必要がある。即ち、予め、負荷132を所望の基準温度Trefに設定し、その時点での負荷132の抵抗値を基準抵抗値Rrefとして取得しておけば、任意の時点での負荷132の未知の温度THTRを、その時点での式(1)により求められた負荷132の抵抗値RHTRを与えることで、式(3)を用いて計算により取得することが可能である。
Figure JPOXMLDOC01-appb-M000003
Here, T ref is a predetermined reference temperature, R ref is a reference resistance value, and α TCR is a known constant that depends on the material of the load 132. Here, in order to accurately obtain the temperature THTR of the load 132, the reference resistance value R ref must be equal to the resistance value of the load 132 when the reference temperature T ref is used. That is, if the load 132 is set to a desired reference temperature Tref in advance and the resistance value of the load 132 at that time is acquired as the reference resistance value R ref , the unknown temperature of the load 132 at an arbitrary time point is obtained. The THTR can be obtained by calculation using the equation (3) by giving the resistance value R HTR of the load 132 obtained by the equation (1) at that time.
  2-3 エアロゾル源の枯渇又は不足の判断について
 本開示の一実施形態によるエアロゾル吸引器100は、エアロゾル源の枯渇又は不足の発生を判断する。
2-3 Determining the depletion or deficiency of the aerosol source The aerosol aspirator 100 according to the embodiment of the present disclosure determines the occurrence of the depletion or deficiency of the aerosol source.
 本開示において、エアロゾル源の残量が「枯渇」しているとは、エアロゾル源の残量がゼロ又はほぼゼロである状態を意味している。 In the present disclosure, "depleted" of the remaining amount of the aerosol source means a state in which the remaining amount of the aerosol source is zero or almost zero.
 また、本開示において、エアロゾル源の残量が「不足」しているとは、エアロゾル源の残量が十分ではないが枯渇はしていない状態を意味していてもよい。あるいは、エアロゾル源の残量が瞬時的なエアロゾル生成には十分ではあるが、継続的なエアロゾル生成には不十分な状態を意味していてもよい。あるいは、エアロゾル源の残量が十分な香喫味を有するエアロゾルを生成できない不十分な状態を意味していてもよい。 Further, in the present disclosure, "insufficient" remaining amount of the aerosol source may mean a state in which the remaining amount of the aerosol source is not sufficient but is not exhausted. Alternatively, it may mean that the remaining amount of the aerosol source is sufficient for instantaneous aerosol production but insufficient for continuous aerosol production. Alternatively, the remaining amount of the aerosol source may mean an insufficient state in which an aerosol having a sufficient flavor and taste cannot be produced.
 更に、エアロゾル基材116B又は保持部130においてエアロゾル源が飽和状態にあるときには、負荷132の温度は、エアロゾル源の沸点やエアロゾル源の蒸発によりエアロゾルの生成が生じる温度(以下、「沸点等」という。)で定常状態となる。この事象は、電源110から供給される電力によって負荷132で発生する熱が、これらの温度を境にエアロゾル源の昇温ではなくエアロゾル源の蒸発やエアロゾルの生成に用いられることから理解されよう。ここで、エアロゾル基材116B又は保持部130においてエアロゾル源が飽和状態ではないが、その残量が一定量以上ある場合にも、負荷132の温度は沸点等で定常状態となる。本開示においてエアロゾル基材116B又は保持部130におけるエアロゾル源の残量が「十分」であるとは、エアロゾル基材116B若しくは保持部130におけるエアロゾル源の残量が当該一定量以上であるか、又は、エアロゾル基材116B若しくは保持部130におけるエアロゾル源の残量が、負荷132の温度が沸点等で定常状態となる程度である状態(飽和状態を含む)を意味している。なお、後者の場合、エアロゾル基材116B又は保持部130におけるエアロゾル源の具体的な残量を特定する必要はないことに留意されたい。また、エアロゾル源の沸点とエアロゾルの生成が生じる温度とは、エアロゾル源が単一の組成の液体である場合には一致する。一方で、エアロゾル源が混合液である場合には、ラウールの法則で求めた理論的な混合液体の沸点をエアロゾルの生成が生じる温度にみなしてもよいし、エアロゾル源の沸騰によってエアロゾルが生成される温度を実験で求めてもよい。 Further, when the aerosol source is saturated in the aerosol base material 116B or the holding portion 130, the temperature of the load 132 is the temperature at which the aerosol is generated by the boiling point of the aerosol source or the evaporation of the aerosol source (hereinafter, referred to as “boiling point or the like”). .) Is the steady state. This event can be understood from the fact that the heat generated at the load 132 by the electric power supplied from the power supply 110 is used for evaporation of the aerosol source and generation of the aerosol instead of raising the temperature of the aerosol source at these temperatures. Here, although the aerosol source is not saturated in the aerosol base material 116B or the holding portion 130, the temperature of the load 132 becomes a steady state at the boiling point or the like even when the remaining amount thereof is a certain amount or more. In the present disclosure, "sufficient" means that the remaining amount of the aerosol source in the aerosol base material 116B or the holding portion 130 is "sufficient" means that the remaining amount of the aerosol source in the aerosol base material 116B or the holding part 130 is equal to or more than the certain amount. , The remaining amount of the aerosol source in the aerosol base material 116B or the holding portion 130 means a state (including a saturated state) in which the temperature of the load 132 becomes a steady state at the boiling point or the like. It should be noted that in the latter case, it is not necessary to specify the specific remaining amount of the aerosol source in the aerosol base material 116B or the holding portion 130. Also, the boiling point of the aerosol source and the temperature at which the aerosol is formed coincide with each other when the aerosol source is a liquid of a single composition. On the other hand, when the aerosol source is a mixed liquid, the boiling point of the theoretical mixed liquid obtained by Raoult's law may be regarded as the temperature at which the aerosol is produced, or the boiling of the aerosol source produces the aerosol. The temperature may be determined experimentally.
 更にまた、貯留部116Aにおけるエアロゾル源の残量が一定量未満である場合には、原則的には、貯留部116Aから保持部130へのエアロゾル源の供給がなされなくなる(極めて少量のエアロゾル源が供給されることや、エアロゾル吸引器100を傾けたり、振ったりすることによって多少の供給がなされることはある)。本開示において貯留部116Aについてエアロゾル源の残量が「十分」であるとは、貯留部116Aにおけるエアロゾル源の残量が当該一定量以上あるか、又は、保持部130におけるエアロゾル源を飽和状態に若しくはエアロゾル源の残量を上記一定量以上にする供給が可能な程度である状態を意味している。なお、後者の場合、負荷132の温度が沸点等で定常状態となっていることによって貯留部116Aにおけるエアロゾル源の残量が十分であることを推定又は判断できるために、貯留部116Aにおけるエアロゾル源の具体的な残量を特定する必要はないことに留意されたい。また、この場合、保持部130におけるエアロゾル源の残量が十分でない(即ち、不足又は枯渇している)ときには、貯留部116Aにおけるエアロゾル源の残量が十分でない(即ち、不足又は枯渇している)と推定する又は判断することができる。 Furthermore, when the remaining amount of the aerosol source in the storage unit 116A is less than a certain amount, in principle, the aerosol source is not supplied from the storage unit 116A to the holding unit 130 (a very small amount of aerosol source is used). Some supply may be made by being supplied or by tilting or shaking the aerosol aspirator 100). In the present disclosure, "sufficient" means that the remaining amount of the aerosol source in the storage unit 116A is "sufficient" means that the remaining amount of the aerosol source in the storage unit 116A is equal to or more than the certain amount, or the aerosol source in the holding unit 130 is saturated. Alternatively, it means a state in which it is possible to supply the remaining amount of the aerosol source to the above-mentioned certain amount or more. In the latter case, since it can be estimated or determined that the remaining amount of the aerosol source in the storage unit 116A is sufficient because the temperature of the load 132 is in a steady state at the boiling point or the like, the aerosol source in the storage unit 116A can be estimated or determined. It should be noted that it is not necessary to specify the specific remaining amount of. Further, in this case, when the remaining amount of the aerosol source in the holding unit 130 is insufficient (that is, insufficient or depleted), the remaining amount of the aerosol source in the storage unit 116A is insufficient (that is, insufficient or depleted). ) Can be presumed or judged.
 図3は、負荷132に給電を開始してからの負荷132の温度(以下、「ヒータ温度」ともいう。)の時系列的な変化(以下、「温度プロファイル」ともいう。)を概略的に表すグラフ300と、所定時間あたり又は供給される所定電力あたりの負荷132の温度変化350を図解している。 FIG. 3 schematically shows a time-series change (hereinafter, also referred to as “temperature profile”) of the temperature of the load 132 (hereinafter, also referred to as “heater temperature”) after the start of power supply to the load 132. The graph 300 represented and the temperature change 350 of the load 132 per predetermined time or per predetermined power supplied are illustrated.
 グラフ300における310は、保持部等におけるエアロゾル源の残量が十分であるときの負荷132の概略的な温度プロファイルを示しており、TB.P.は、エアロゾル源の沸点等を示している。温度プロファイル310は、保持部等におけるエアロゾル源の残量が十分であるときには、負荷132の温度が、上昇を開始した後、エアロゾル源の沸点等TB.P.に又は沸点等TB.P.の近傍おいて定常状態となることを示している。これは、最終的に、負荷132に供給される電力のほぼ全てが保持部等におけるエアロゾル源の霧化に費やされるために、供給電力による負荷132の温度上昇が生じなくなるためであると考えられる。 Reference numeral 310 in the graph 300 shows a schematic temperature profile of the load 132 when the remaining amount of the aerosol source in the holding portion or the like is sufficient . P. Indicates the boiling point of the aerosol source and the like. In the temperature profile 310, when the remaining amount of the aerosol source in the holding portion or the like is sufficient, after the temperature of the load 132 starts to rise, the boiling point of the aerosol source and the like TB . P. Ni or boiling point, etc. TB . P. It is shown that the steady state is reached in the vicinity of. It is considered that this is because, in the end, almost all of the electric power supplied to the load 132 is spent for atomizing the aerosol source in the holding portion and the like, so that the temperature of the load 132 does not rise due to the supplied electric power. ..
 なお、温度プロファイル310はあくまで概略を模式的に表したものであり、実際には、負荷132の温度には、局所的な上下動が含まれ、図示されていない何らかの過渡的変化が生じる場合もあることに留意されたい。これらの過渡的変化は、負荷132において一時的に発生し得る温度の偏りや、負荷132の温度そのものや負荷132の温度に相当する電気的なパラメータを検出するセンサなどに生じるチャタリングなどによって生じ得る。 It should be noted that the temperature profile 310 is merely a schematic representation, and in reality, the temperature of the load 132 includes local vertical movement, and some transient change (not shown) may occur. Please note that there is. These transient changes may occur due to a temperature bias that may temporarily occur in the load 132, chattering that occurs in a sensor that detects the temperature of the load 132 itself or an electrical parameter corresponding to the temperature of the load 132, and the like. ..
 グラフ300における320は、保持部等におけるエアロゾル源の残量が十分でないときの負荷132の概略的な温度プロファイルを示している。温度プロファイル320は、保持部等におけるエアロゾル源の残量が十分でないときには、負荷132の温度が、上昇を開始した後、エアロゾル源の沸点等TB.P.よりも高い平衡温度Tequi.において定常状態となる場合があることを示している。これは、最終的に、負荷132に印加される電力による昇温と、負荷132付近の物質(負荷132の周りの気体や、エアロゾル吸引器100の構造の一部等を含む)への熱移動による降温と、場合によっては、エアロゾル基材116B又は保持部130における少量のエアロゾル源の気化熱による降温とが釣り合うためであると考えられる。なお、保持部等におけるエアロゾル源の残量が十分でないときには、エアロゾル基材116B又は保持部130におけるエアロゾル源の残量や貯留部116Aにおけるエアロゾル源の残量(保持部130へのエアロゾル源の供給速度に影響を与えうる。)、エアロゾル基材116B又は保持部130におけるエアロゾル源の分布等に応じて、負荷132は異なる温度で定常状態となる場合があることが確認されている。平衡温度Tequi.は、そのような温度のうちの1つ、好ましくは、そのような温度のうちの1つであって、最も高い温度(エアロゾル基材116B又は保持部130におけるエアロゾル源の残量が完全にゼロであるときの温度)ではない温度である。なお、保持部等におけるエアロゾル源の残量が十分でない場合、負荷132の温度が定常状態にならないときがあることも確認されているが、このときであっても、負荷132の温度がエアロゾル源の沸点等TB.P.よりも高い温度に達することに変わりはない。 Reference numeral 320 in the graph 300 shows a schematic temperature profile of the load 132 when the remaining amount of the aerosol source in the holding portion or the like is not sufficient. In the temperature profile 320, when the remaining amount of the aerosol source in the holding portion or the like is not sufficient, the temperature of the load 132 starts to rise, and then the boiling point of the aerosol source and the like TB . P. Equilibrium temperature higher than Tequi. It shows that it may be in a steady state. This is finally due to the temperature rise due to the electric power applied to the load 132 and the heat transfer to the substance near the load 132 (including the gas around the load 132 and a part of the structure of the aerosol aspirator 100). It is considered that this is because the temperature drop due to the above is balanced with the temperature drop due to the heat of vaporization of a small amount of the aerosol source in the aerosol base material 116B or the holding portion 130 in some cases. When the remaining amount of the aerosol source in the holding part or the like is not sufficient, the remaining amount of the aerosol source in the aerosol base material 116B or the holding part 130 or the remaining amount of the aerosol source in the storage part 116A (supply of the aerosol source to the holding part 130). It has been confirmed that the load 132 may be in a steady state at different temperatures depending on the distribution of the aerosol source in the aerosol base material 116B or the holding portion 130, etc., which may affect the speed.) Equilibrium temperature T equi. Is one of such temperatures, preferably one of such temperatures, and the highest temperature (the remaining amount of the aerosol source in the aerosol substrate 116B or the retainer 130 is completely zero. It is a temperature that is not (the temperature when it is). It has also been confirmed that the temperature of the load 132 may not reach a steady state when the remaining amount of the aerosol source in the holding portion or the like is insufficient, but even at this time, the temperature of the load 132 is the aerosol source. Boiling point, etc. TB . P. It will still reach higher temperatures.
 以上に述べた保持部等におけるエアロゾル源が十分であるとき及び十分でないときの負荷132の概略的な温度プロファイルに基づくと、基本的には、負荷132の温度が、エアロゾル源の沸点等TB.P.以上平衡温度Tequi.以下の所定の温度閾値Tthreを越えたか否かを判定することによって、保持部等におけるエアロゾル源の残量が十分であること又は十分でないこと(即ち、不足又は枯渇していること)を判断可能である。 Based on schematic temperature profile of the load 132 when and not sufficient when the aerosol source is sufficient in holder, etc. as mentioned above, basically, the temperature of the load 132, the aerosol source boiling like T B .. P. Above equilibrium temperature T equi. By determining whether or not the following predetermined temperature threshold Tthre has been exceeded , it is determined whether the remaining amount of the aerosol source in the holding portion or the like is sufficient or insufficient (that is, insufficient or depleted). It is possible.
 所定時間あたりの負荷132の温度変化350は、グラフ300における時点t1から時点t2までの間の所定時間Δtあたりの負荷132の温度変化を示している。360及び370は、それぞれ、保持部等におけるエアロゾル源の残量が十分であるとき及び十分でないときの温度変化に対応する。温度変化360は、保持部等におけるエアロゾル源の残量が十分であるときには、負荷132の温度が、所定時間ΔtあたりΔTsatだけ上昇することを示している。また、温度変化370は、保持部等におけるエアロゾル源の残量が十分でないときには、負荷132の温度が、所定時間ΔtあたりΔTsatより大きなΔTdepだけ上昇することを示している。なお、ΔTsat及びΔTdepは、所定時間Δtの長さにより変化し、また、長さを固定したとしても、t1(及びt2)を変化させると変化する。以下、ΔTsat及びΔTdepは、ある長さの所定時間Δtにおいてt1(及びt2)を変化させたときにとりうる最大の温度変化であるものとする。 The temperature change 350 of the load 132 per predetermined time indicates the temperature change of the load 132 per predetermined time Δt between the time point t1 and the time point t2 in the graph 300. Each of 360 and 370 corresponds to a temperature change when the remaining amount of the aerosol source in the holding portion or the like is sufficient and when it is not sufficient, respectively. The temperature change 360 indicates that the temperature of the load 132 rises by ΔT sat per predetermined time Δt when the remaining amount of the aerosol source in the holding portion or the like is sufficient. Further, the temperature change 370 indicates that when the remaining amount of the aerosol source in the holding portion or the like is not sufficient, the temperature of the load 132 rises by ΔT dep larger than ΔT sat per predetermined time Δt. It should be noted that ΔT sat and ΔT dep change depending on the length of Δt for a predetermined time, and even if the length is fixed, it changes when t1 (and t2) is changed. Hereinafter, ΔT sat and ΔT dep are assumed to be the maximum temperature changes that can be taken when t1 (and t2) are changed in a predetermined time Δt of a certain length.
 以上に述べた保持部等におけるエアロゾル源が十分であるとき及び十分でないときの負荷132の所定時間あたりの温度変化に基づくと、基本的には、所定時間Δtあたりの温度変化が、ΔTsat以上ΔTdep以下の所定の温度変化閾値ΔTthreを越えたか否かを判定することによっても、保持部等におけるエアロゾル源の残量が十分であること又は十分でないこと(即ち、不足又は枯渇していること)を判断可能である。 Based on the temperature change of the load 132 per predetermined time when the aerosol source in the holding portion and the like described above is sufficient and not sufficient, basically, the temperature change per predetermined time Δt is ΔT sat or more. The remaining amount of the aerosol source in the holding portion or the like is sufficient or insufficient (that is, insufficient or depleted) by determining whether or not the predetermined temperature change threshold ΔT thre equal to or less than ΔT dep is exceeded . It is possible to judge.
 なお、所定時間Δtあたりの温度変化に代えて、負荷132に供給される所定電力ΔWあたりの負荷132の温度変化を用いて、保持部等におけるエアロゾル源の残量が十分であること又は十分でないことを判断できることが理解されるであろう。 It should be noted that the remaining amount of the aerosol source in the holding portion or the like is sufficient or not sufficient by using the temperature change of the load 132 per the predetermined power ΔW supplied to the load 132 instead of the temperature change per the predetermined time Δt. It will be understood that it can be judged.
  3 基本的原理に係る問題点
  3-1 負荷132の抵抗値と温度の相関について
 式(3)により負荷132の温度THTRを取得する場合、上述したように、予め、所定の基準温度Trefであるときの負荷132の抵抗値を基準抵抗値Rrefとして取得し、記憶しておかねばならない。
3 If the correlation of the resistance value of the basic principle according problems 3-1 load 132 and temperature to obtain a temperature T HTR load 132 by Equation (3), as described above, in advance, a predetermined reference temperature T ref The resistance value of the load 132 at the time of is acquired as the reference resistance value R ref and must be stored.
 しかしながら、ヒータの個体差により、同じ温度であるときの負荷132の抵抗値は、個体ごとに異なる場合がある。従って、基準温度Trefであるときの、あるヒータにおける予め取得された負荷132の抵抗値と、別のヒータおける負荷132の抵抗値との間には、製品公差による誤差εproductが存在しうる。 However, due to individual differences in the heater, the resistance value of the load 132 at the same temperature may differ from individual to individual. Thus, when a reference temperature T ref, between the advance resistance of the obtained load 132 at a heater, the resistance value of another heater definitive load 132, there may be an error epsilon product by product tolerance ..
 また、同一のヒータであったとしても、劣化その他の様々な理由により、例えば工場出荷時に予め取得された、基準温度Trefであるときの負荷132の抵抗値と、使い込まれた後の基準温度Trefであるときの負荷132の抵抗値との間には、経時変化による誤差εdeteriorationが存在しうる。 Further, even if the heaters are the same, due to deterioration and other various reasons, for example, the resistance value of the load 132 when the reference temperature is Tr, which is acquired in advance at the time of shipment from the factory, and the reference temperature after being used. There may be an error ε deterioration due to aging with the resistance value of the load 132 when it is T ref .
 更には、予め基準抵抗値として抵抗値を取得したときに、実際には負荷132の温度が基準温度Trefからずれていた場合には、予め取得された当該抵抗値と、正確に基準温度Trefであるときの負荷132の抵抗値との間には、温度のずれによる誤差εtemperatureが存在しうる。 Furthermore, when the resistance value is acquired as the reference resistance value in advance, if the temperature of the load 132 actually deviates from the reference temperature Tref , the resistance value acquired in advance and the reference temperature T are accurate. There may be an error ε temperature due to the temperature shift between the resistance value of the load 132 when it is ref .
 以上を踏まえると、予め取得された基準抵抗値Rrefと、基準抵抗値Rrefを予め取得したヒータではないヒータにおける、ある時点(当該基準抵抗値Rrefを予め取得した時点より後である。)での、正確に基準温度Trefであるときの抵抗値との間には、以下のような誤差εが存在しうる。 Given the above, the reference resistance value R ref obtained in advance, in the heater is not a pre-acquired heater reference resistance R ref, is later than a time point (the time of the pre-acquired the reference resistance value R ref. ), There may be the following error ε with the resistance value when the reference temperature is exactly Tref .
Figure JPOXMLDOC01-appb-M000004
 式(4)における|εproduct|と|εtemperature|と|εdeterioration|は、それぞれ製品公差による誤差が取り得る最大値と温度のずれによる誤差の取り得る最大値と経時変化による誤差が取り得る最大値を示している。|εproduct|と|εtemperature|と|εdeterioration|のそれぞれは正の値も負の値も取り得るため、誤差εの絶対値は、|εproduct|と|εtemperature|と|εdeterioration|の総和以下となる。誤差εを考慮して式(3)を書き直すと、以下のように表せる。
Figure JPOXMLDOC01-appb-M000004
In equation (4), | ε product | and | ε temperature | and | ε deletion | can take the maximum value that can be taken by the error due to the product tolerance, the maximum value that can take the error due to the temperature deviation, and the error due to the change over time, respectively. Shows the maximum value. Since each of | ε product | and | ε temperature | and | ε destruction | can take both positive and negative values, the absolute value of the error ε is | ε product | and | ε emperature | and | ε destruction | Is less than or equal to the sum of. Rewriting Eq. (3) in consideration of the error ε, it can be expressed as follows.
Figure JPOXMLDOC01-appb-M000005
なお、誤差εは、正の値も負の値も取り得る点に留意されたい。ここで、R refは、式(3)により負荷132の温度を取得しようとしているヒータにおける、抵抗値RHTRを取得した時点での、正確に基準温度Trefであるときの抵抗値(以下、「真の基準抵抗値」という。)である。なお、予め取得された基準抵抗値Rrefと真の基準抵抗値R refとの関係は以下の通りである。
Figure JPOXMLDOC01-appb-M000005
It should be noted that the error ε can be either a positive value or a negative value. Here, R * ref is the resistance value at the time when the resistance value R HTR is acquired in the heater for which the temperature of the load 132 is to be acquired by the equation (3), when the reference temperature is exactly T ref (hereinafter, the resistance value). , "True reference resistance value"). The relationship between the reference resistance value R ref acquired in advance and the true reference resistance value R * ref is as follows.
Figure JPOXMLDOC01-appb-M000006
式(5)によれば、誤差εが大きな正の値を持つと、当該式により計算される負荷132の温度THTRが真値より低くなってしまう。逆に、誤差εが大きな負の値を持つと、当該式により計算される負荷132の温度THTRが真値より高くなってしまう。
 従って、原則的には、式(3)に用いられる予め取得された基準抵抗値Rrefにおいて、上述した誤差εproduct、εtemperature及びεdeteriorationの絶対値を可能な限り小さくすることが好ましい。
Figure JPOXMLDOC01-appb-M000006
According to the equation (5), when the error ε has a large positive value, the temperature THTR of the load 132 calculated by the equation becomes lower than the true value. On the contrary, when the error ε has a large negative value, the temperature THTR of the load 132 calculated by the equation becomes higher than the true value.
Therefore, in principle, it is preferable to make the absolute values of the above-mentioned errors ε product , ε temperature, and ε deterioration as small as possible in the pre-acquired reference resistance value R ref used in the equation (3).
  3-2 エアロゾル源の枯渇又は不足の判断について
 ユーザによるエアロゾル吸引の速度が速い場合等には、貯留部116Aのエアロゾル源の残量は十分であるが、供給が間に合わないために、保持部130におけるエアロゾル源の残量が不足する状況が発生する。上述した基本的原理のみでは、このような状況に対処できない。
3-2 Judgment of exhaustion or deficiency of aerosol source When the speed of aerosol suction by the user is high, the remaining amount of the aerosol source in the storage unit 116A is sufficient, but the supply is not in time, so the holding unit 130 A situation occurs in which the remaining amount of the aerosol source is insufficient. The above-mentioned basic principles alone cannot deal with such a situation.
  4 負荷132の温度を測定し、エアロゾル源の枯渇又は不足を判断する処理
 以下、本開示の一実施形態による、負荷132の温度を測定し、エアロゾル源の枯渇又は不足の発生を判断するための処理について説明する。以下に説明する処理については、制御部106がすべてのステップを実行するものと仮定している。しかしながら、一部のステップがエアロゾル吸引器100の別のコンポーネントによって実行されてもよいことに留意されたい。
4 Process for measuring the temperature of the load 132 and determining the depletion or deficiency of the aerosol source Hereinafter, for measuring the temperature of the load 132 and determining the occurrence of the exhaustion or deficiency of the aerosol source according to one embodiment of the present disclosure. The processing will be described. For the processing described below, it is assumed that the control unit 106 executes all steps. However, it should be noted that some steps may be performed by another component of the aerosol aspirator 100.
  4-1 主処理の概要
 図4A及び4Bは、負荷132の温度を測定し、エアロゾル源の枯渇又は不足を判断するための例示の主処理400のフローチャートである。なお、主処理400は、エアロゾル吸引器100が動作している間、繰り返されるものである。
4-1 Outline of main treatment FIGS. 4A and 4B are flowcharts of an exemplary main treatment 400 for measuring the temperature of the load 132 and determining the depletion or shortage of the aerosol source. The main treatment 400 is repeated while the aerosol aspirator 100 is operating.
 410は、第1条件及び第2条件を満たしているかを判定するステップを示している。第1条件及び第2条件を満たしていると判定された場合、処理はステップ420に進み、そうでない場合、ステップ410を繰り返す。第1条件と第2条件については、後述する。 410 indicates a step of determining whether the first condition and the second condition are satisfied. If it is determined that the first condition and the second condition are satisfied, the process proceeds to step 420, and if not, step 410 is repeated. The first condition and the second condition will be described later.
 後述する後続のステップ450において、エアロゾル源を霧化するためにスイッチQ1がオン状態とするための信号が送信される。ステップ410により、第1条件と第2条件の少なくとも一方が満たされない場合には、ステップ450に進まず、従って、スイッチQ1をオン状態とすることが禁止されることになる。 In the subsequent step 450 described later, a signal for turning on the switch Q1 in order to atomize the aerosol source is transmitted. If at least one of the first condition and the second condition is not satisfied by step 410, the process does not proceed to step 450, and therefore it is prohibited to turn on the switch Q1.
 420は、エアロゾルの生成要求を検知したかを判定するステップを示している。エアロゾルの生成要求を検知したと判定した場合、処理はステップ430に進み、そうでない場合、ステップ420を繰り返す。 420 indicates a step of determining whether or not an aerosol generation request has been detected. If it is determined that the aerosol production request has been detected, the process proceeds to step 430, otherwise it repeats step 420.
 制御部106は、例えば、圧力センサや流速センサ、流量センサ等から得られた情報に基づき、ユーザによる吸引開始を検知した場合に、エアロゾルの生成要求を検知したと判定してよい。より詳細には、例えば、制御部106は、圧力センサの出力値即ち圧力が所定の閾値を下回った場合に、ユーザによる吸引開始が検知されたと判定することができる。また、例えば、制御部106は、流速センサ又は流量センサの出力値即ち流速又は流量が所定の閾値を越えた場合に、ユーザによる吸引開始が検知されたと判定することができる。かかる判定手法においては、ユーザの感覚に合ったエアロゾル生成が可能なため、流速センサ又は流量センサは特に好適である。あるいは、制御部106は、これらのセンサの出力値が連続的に変化し始めた場合、ユーザによる吸引開始が検知されたと判定してもよい。あるいは、制御部106は、エアロゾルの生成を開始するためのボタンが押されたことなどに基づいて、ユーザによる吸引開始が検知されたと判定してもよい。あるいは、制御部106は、圧力センサ、流速センサ又は流量センサから得られた情報とボタンの押下の双方に基づいて、ユーザによる吸引開始が検知されたと判定してもよい。 The control unit 106 may determine that the aerosol generation request has been detected when the user detects the start of suction based on the information obtained from the pressure sensor, the flow velocity sensor, the flow rate sensor, or the like. More specifically, for example, the control unit 106 can determine that the start of suction by the user has been detected when the output value of the pressure sensor, that is, the pressure falls below a predetermined threshold value. Further, for example, the control unit 106 can determine that the start of suction by the user is detected when the output value of the flow velocity sensor or the flow rate sensor, that is, the flow velocity or the flow rate exceeds a predetermined threshold value. In such a determination method, a flow velocity sensor or a flow rate sensor is particularly suitable because it is possible to generate an aerosol that suits the user's feeling. Alternatively, the control unit 106 may determine that the start of suction by the user has been detected when the output values of these sensors start to change continuously. Alternatively, the control unit 106 may determine that the start of suction by the user has been detected based on the fact that a button for starting the generation of the aerosol is pressed or the like. Alternatively, the control unit 106 may determine that the start of suction by the user has been detected based on both the information obtained from the pressure sensor, the flow velocity sensor, or the flow rate sensor and the pressing of the button.
 430は、カウンタが所定のカウンタ閾値以下かを判定するステップを示している。カウンタが所定のカウンタ閾値以下である場合、処理はステップ440に進み、そうでない場合、処理は後述する図4Bのステップ464に進む。 430 indicates a step of determining whether the counter is equal to or less than a predetermined counter threshold value. If the counter is less than or equal to a predetermined counter threshold, the process proceeds to step 440, otherwise the process proceeds to step 464 of FIG. 4B, which will be described later.
 所定のカウンタ閾値は、1以上の所定の値であってよい。ステップ430の意義については、後述する。 The predetermined counter threshold value may be a predetermined value of 1 or more. The significance of step 430 will be described later.
 440は、負荷132の温度は基準温度Trefにあるとみなせるかを判定するステップを示している。負荷132の温度は基準温度Trefにあるとみなせると判定した場合、処理はステップ442に進み、そうでない場合、処理はステップ448に進む。ステップ440の詳細は後述する。 440 indicates a step of determining whether the temperature of the load 132 can be regarded as being at the reference temperature Tref . If it is determined that the temperature of the load 132 can be considered to be at the reference temperature Tref , the process proceeds to step 442, otherwise the process proceeds to step 448. Details of step 440 will be described later.
 442は、負荷132の抵抗値を取得するために、スイッチQ2をオン状態にするための信号を送信するステップを示している。 442 indicates a step of transmitting a signal for turning on the switch Q2 in order to acquire the resistance value of the load 132.
 443は、式(1)を用いる上述した原理により負荷132の抵抗値をRとして取得し、少なくとも一時的にメモリ114に記憶するステップを示している。後述するように、この抵抗値Rは、負荷132の温度と抵抗値の相関を較正するために用いられるものである。 443 shows the step of storing the resistance value of the load 132 according to the principle described above using equation (1) was obtained as R 2, at least temporarily memory 114. As will be described later, this resistance value R 2 is used to calibrate the correlation between the temperature of the load 132 and the resistance value.
 444は、スイッチQ2をオフ状態にするための信号を送信するステップを示している。 444 indicates a step of transmitting a signal for turning off the switch Q2.
 445は、後述するステップ455において負荷132の温度を取得するために、負荷132の温度と抵抗値の相関を較正すべく、基準抵抗値Rrefを表す変数に、直前のステップ443において取得した抵抗値Rを代入するステップを示している。 In order to acquire the temperature of the load 132 in step 455 described later, 445 is a variable representing the reference resistance value R ref in order to calibrate the correlation between the temperature of the load 132 and the resistance value, and the resistance acquired in the immediately preceding step 443. The step of substituting the value R 2 is shown.
 448は、基準抵抗値Rrefを表す変数に、前回以前のステップ443において取得した抵抗値Rの何れか、又は、後述するカートリッジ104Aの交換時に取得した負荷132の抵抗値Rの値を代入するステップを示している。 448, the variable representing the reference resistance value R ref, either of the resistance value R 2 obtained in the previous the previous step 443, or the value of the resistance value R 1 of the load 132 obtained when replacing the cartridge 104A to be described later Shows the steps to substitute.
 なお、エアロゾル吸引器100の動作中に基準抵抗値Rrefを表す変数の値が保持されるのであれば、ステップ448は、基準抵抗値Rrefを表す変数の値が設定されていない場合に当該変数に抵抗値Rの値を代入し、そうでない場合に何もしないステップであってもよい。 If the value of the variable representing the reference resistance value R ref is held during the operation of the aerosol aspirator 100, step 448 corresponds to the case where the value of the variable representing the reference resistance value R ref is not set. It assigns the value of resistance R 1 to the variable, or may be a step that does nothing otherwise.
 なお、ステップ445及び448おける代入は、負荷132の温度と電気抵抗値との相関を表す後述するステップ455において用いる式によって計算される負荷132の温度THTRの精度を向上させるものであり、当該相関を較正する処理の一例である。 The substitutions in steps 445 and 448 improve the accuracy of the temperature THTR of the load 132 calculated by the equation used in step 455 described later, which represents the correlation between the temperature of the load 132 and the electrical resistance value. This is an example of the process of calibrating the correlation.
 450は、エアロゾル源を霧化するためにスイッチQ1をオン状態にするための信号を送信するステップを示している。 450 indicates a step of transmitting a signal for turning on the switch Q1 in order to atomize the aerosol source.
 451は、負荷132の抵抗値を取得するために、スイッチQ2をオン状態にするための信号を送信するステップを示しており、452は、精度よく負荷132の抵抗値を取得するために、スイッチQ1をオフ状態にするための信号を送信するステップを示している。ステップ451及び452の順序はどちらが先であっても同時であっても構わないが、スイッチに信号を送ってから実際に状態が変化するまでの遅延を考慮すると、ステップ451はステップ452よりも前であることが好ましい。 Reference numeral 451 indicates a step of transmitting a signal for turning on the switch Q2 in order to acquire the resistance value of the load 132, and 452 indicates a switch for accurately acquiring the resistance value of the load 132. The step of transmitting the signal for turning off Q1 is shown. The order of steps 451 and 452 may be either earlier or simultaneous, but step 451 precedes step 452, considering the delay from sending the signal to the switch to the actual change of state. Is preferable.
 453は、式(1)を用いる上述した原理により負荷132の抵抗値をRとして取得するステップを示している。 Reference numeral 453 indicates a step of acquiring the resistance value of the load 132 as R 3 by the above-mentioned principle using the equation (1).
 454は、スイッチQ2をオフ状態とする信号を送信するステップを示している。 454 indicates a step of transmitting a signal for turning off the switch Q2.
 455は、式(3)を用いる上述した原理により、負荷132の温度THTRを取得するステップを示している。 455 shows a step of acquiring the temperature THTR of the load 132 by the above-mentioned principle using the equation (3).
 460は、直前のステップ455において取得した負荷132の温度THTRをデータ構造であるリストに追加して、後で参照できるようにするステップを示している。なお、リストは例示にすぎず、ステップ460においては配列等複数のデータを保持可能な任意のデータ構造を用いてよい。なお、後述するステップ470において処理がステップ480へ進むと判断されない限り、ステップ460の処理は複数回実行される。ステップ460が複数回実行される場合、データ構造における負荷132の温度THTRは、上書きされず、ステップ460の処理が実行される回数だけ追加される。 Reference numeral 460 indicates a step of adding the temperature THTR of the load 132 acquired in the immediately preceding step 455 to the list of data structures for later reference. The list is merely an example, and in step 460, an arbitrary data structure capable of holding a plurality of data such as an array may be used. Unless it is determined in step 470 to be described later that the process proceeds to step 480, the process of step 460 is executed a plurality of times. If step 460 is executed multiple times, the temperature THTR of the load 132 in the data structure is not overwritten and is added as many times as the process of step 460 is executed.
 462は、直前のステップ455において取得した負荷132の温度THTRが、所定の第1閾値未満であるかを判定するステップを示している。負荷132の温度THTRが第1閾値未満である場合、処理はステップ470に進み、そうでない場合、処理はステップ464に進む。
 第1閾値は、負荷132の温度が超えた場合に、エアロゾル源の枯渇が強く疑われる温度であることが好ましく、例えば300℃である。
Reference numeral 462 indicates a step of determining whether the temperature THTR of the load 132 acquired in the immediately preceding step 455 is less than a predetermined first threshold value. If the temperature THTR of the load 132 is less than the first threshold, the process proceeds to step 470, otherwise the process proceeds to step 464.
The first threshold is preferably a temperature at which depletion of the aerosol source is strongly suspected when the temperature of the load 132 is exceeded, for example, 300 ° C.
 464は、スイッチQ1がオン状態となることを禁止するステップを示している。
 このステップは、第1条件に係るフラグをメモリ114において設定するステップであってよく、このフラグは、カートリッジ104Aが交換されたときに解除されるものであってよい。即ち、この例では、第1条件はカートリッジ104Aが交換されることであり、当該フラグが解除されるまで即ちカートリッジ104Aが交換されるまで第1条件は満たされないことになり、ステップ410における判定は偽となる。
Reference numeral 464 indicates a step for prohibiting the switch Q1 from being turned on.
This step may be a step of setting a flag according to the first condition in the memory 114, and this flag may be released when the cartridge 104A is replaced. That is, in this example, the first condition is that the cartridge 104A is replaced, and the first condition is not satisfied until the flag is cleared, that is, until the cartridge 104A is replaced, and the determination in step 410 is Be false.
 466は、通知部108上のUI(ユーザ・インターフェース)において所定の通知を行うステップを示している。
 この通知は、カートリッジ104Aを交換すべきことを示す通知であってよい。
Reference numeral 466 indicates a step of performing a predetermined notification in the UI (user interface) on the notification unit 108.
This notification may be a notification indicating that the cartridge 104A should be replaced.
 470は、エアロゾル生成要求が終了したかを判定するステップを示している。エアロゾル生成要求が終了したと判定された場合、処理はステップ480に進み、そうでない場合、処理はステップ450に戻る。 Reference numeral 470 indicates a step of determining whether the aerosol generation request has been completed. If it is determined that the aerosol generation request is complete, the process proceeds to step 480, otherwise the process returns to step 450.
 制御部106は、例えば、圧力センサや流速センサ、流量センサ等から得られた情報に基づき、制御部106がユーザによる吸引終了を検知した場合に、エアロゾル生成要求が終了したと判定してよい。ここで、例えば、制御部106は、圧力センサの出力値即ち圧力が所定の閾値を越えた場合に、ユーザによる吸引終了が検知されたと、換言すればエアロゾルの生成が要求されていないと判定することができる。また、例えば、制御部106は、流速センサ又は流量センサの出力値即ち流速又は流量が所定の閾値を下回った場合に、ユーザによる吸引終了が検知されたと、換言すればエアロゾルの生成が要求されていないと判定することができる。なお、この閾値は、ステップ420における閾値より大きくても、当該閾値と等しくても、当該閾値より小さくてもよい。あるいは、制御部106は、エアロゾルの生成を開始するためのボタンが離されたことなどに基づいて、ユーザによる吸引終了が検知された、換言すれば、エアロゾルの生成が要求されていないと判定してもよい。あるいは、制御部106は、エアロゾルの生成を開始するためのボタンが押下されてから、所定時間が経過するなどの所定の条件が満たされたら、ユーザによる吸引終了が検知されたと、換言すればエアロゾルの生成が要求されていないと判定してもよい。 The control unit 106 may determine that the aerosol generation request has been completed when the control unit 106 detects the end of suction by the user, for example, based on the information obtained from the pressure sensor, the flow velocity sensor, the flow rate sensor, or the like. Here, for example, the control unit 106 determines that the end of suction by the user is detected when the output value of the pressure sensor, that is, the pressure exceeds a predetermined threshold value, in other words, the generation of aerosol is not required. be able to. Further, for example, the control unit 106 is required to generate an aerosol, that is, the end of suction by the user is detected when the output value of the flow velocity sensor or the flow rate sensor, that is, the flow velocity or the flow rate falls below a predetermined threshold value. It can be determined that there is no such thing. The threshold value may be larger than the threshold value in step 420, equal to the threshold value, or smaller than the threshold value. Alternatively, the control unit 106 determines that the end of suction by the user is detected based on the release of the button for starting the aerosol generation, in other words, the aerosol generation is not required. May be. Alternatively, the control unit 106 detects the end of suction by the user when a predetermined condition such as a predetermined time elapses after the button for starting the aerosol generation is pressed, in other words, the aerosol. May be determined that the generation of is not required.
 480は、負荷132の1以上の温度THTRが保持されているリストにおける最大値が、所定の第2の閾値未満かを判定するステップを示している。当該最大値が第2閾値未満である場合、処理はステップ488に進み、そうでない場合、処理はステップ482に進む。
 第2閾値は、負荷132の温度が超えた場合に、エアロゾル源の枯渇が疑われるものの、供給が間に合わない等による保持部130におけるエアロゾル源の一時的な不足の可能性もある温度であることが好ましい。従って、第2閾値は第1閾値より小さくてよく、例えば250℃である。
Reference numeral 480 indicates a step of determining whether the maximum value in the list in which one or more temperature THTRs of the load 132 are held is less than a predetermined second threshold value. If the maximum value is less than the second threshold, the process proceeds to step 488, otherwise the process proceeds to step 482.
The second threshold is a temperature at which the aerosol source is suspected to be depleted when the temperature of the load 132 is exceeded, but there is a possibility of a temporary shortage of the aerosol source in the holding portion 130 due to insufficient supply or the like. Is preferable. Therefore, the second threshold value may be smaller than the first threshold value, for example, 250 ° C.
 482は、スイッチQ1がオン状態となることを一時的に禁止するステップを示している。
 このステップは、第2条件に係るフラグをメモリ114において設定するステップであってよく、このフラグは、当該フラグの設定から所定時間経過したときに解除されるものであってよい。即ち、この例では、第2条件はフラグが設定されてから所定時間が経過することであり、当該フラグが解除されるまで即ち当該フラグの設定から所定時間が経過するまで第2条件は満たされないことになり、ステップ410における判定は一時的に偽となる。なお、所定時間は10秒以上、例えば11秒であってよい。
Reference numeral 482 indicates a step of temporarily prohibiting the switch Q1 from being turned on.
This step may be a step of setting a flag according to the second condition in the memory 114, and this flag may be released when a predetermined time has elapsed from the setting of the flag. That is, in this example, the second condition is that a predetermined time elapses after the flag is set, and the second condition is not satisfied until the flag is released, that is, until the predetermined time elapses from the setting of the flag. Therefore, the determination in step 410 is temporarily false. The predetermined time may be 10 seconds or more, for example, 11 seconds.
 484は、通知部108上のUIにおいて所定の通知を行うステップを示している。
 この通知は、エアロゾルの吸引をしばらく待つよう促す通知であってよい。
Reference numeral 484 indicates a step of performing a predetermined notification in the UI on the notification unit 108.
This notification may be a notification prompting you to wait for a while to inhale the aerosol.
 486は、カウンタをインクリメント、例えばカウンタに1を加算するステップを示している。 486 indicates a step of incrementing the counter, for example, adding 1 to the counter.
 488は、カウンタ及びリストを初期化するステップを示している。このステップにより、カウンタは0となり、リストは空となってよい。 488 shows the steps to initialize the counter and the list. By this step, the counter may be 0 and the list may be empty.
 本実施形態においては、エアロゾル生成要求が終了した後のステップ480において、負荷132の温度THTRと第2閾値を比較している。本実施形態に代えて、エアロゾル生成要求が終了する前に負荷132の温度THTRと第2閾値を比較してもよい。この場合、負荷132の温度THTRが第2閾値以上と判断された場合、エアロゾル生成要求が終了するまで、負荷132の温度THTRと第2閾値の比較をこれ以上行わなくてもよい。 In this embodiment, the temperature THTR of the load 132 and the second threshold are compared in step 480 after the aerosol generation request is completed. Instead of this embodiment, the temperature THTR of the load 132 and the second threshold may be compared before the aerosol production request is completed. In this case, if the temperature T HTR load 132 is determined to a second threshold value or more, until aerosol generation request is completed, the comparison of the temperature T HTR and the second threshold load 132 may not be performed any more.
  4-2 補助処理の概要
 図5は、主処理400を補助する例示の処理500のフローチャートである。補助処理500は、主処理400と同時に又は並列に実行することができる。
4-2 Outline of Auxiliary Processing FIG. 5 is a flowchart of an exemplary process 500 that assists the main process 400. The auxiliary process 500 can be executed simultaneously with or in parallel with the main process 400.
 510は、カートリッジ104Aの交換を検知したかを判定するステップを示している。カートリッジの交換を検知した場合、処理はステップ520に進み、そうでない場合、ステップ510を繰り返す。 Reference numeral 510 indicates a step of determining whether or not the replacement of the cartridge 104A has been detected. If it detects a cartridge replacement, the process proceeds to step 520, otherwise it repeats step 510.
 520は、負荷132の抵抗値を取得するために、スイッチQ2をオン状態にするための信号を送信するステップを示している。 Reference numeral 520 indicates a step of transmitting a signal for turning on the switch Q2 in order to acquire the resistance value of the load 132.
 530は、式(1)を用いる上述した原理により負荷132の抵抗値をRとして取得し、少なくとも一時的にメモリ114に記憶するステップを示している。 530 shows the step of storing the resistance value of the principles by the load 132 as described above using equation (1) was obtained as R 1, at least temporarily memory 114.
 540は、スイッチQ2をオフ状態にするための信号を送信するステップを示している。 540 indicates a step of transmitting a signal for turning off the switch Q2.
 550は、処理400において使用される上述したカウンタ及びリストを初期化するステップを示している。 Reference numeral 550 indicates a step of initializing the above-mentioned counter and list used in the process 400.
  4-3 負荷132の抵抗値Rについて
 負荷132は、カートリッジごとに含まれるヒータに含まれるものである。ステップ530における抵抗値Rは、接続されたカートリッジが含む負荷132について取得されたものであり、ステップ455における温度THTRは、接続された当該カートリッジが含む負荷132について取得されるものである。従って、抵抗値Rを基準抵抗値Rrefとして用いることにより、当該基準抵抗値Rrefにおける製品公差による誤差εproductがゼロとなる。
4-3 load the resistance value R 1 of the load 132 132 are intended to be included in the heater included in each cartridge. Resistance R 1 in step 530 has been obtained for a load 132 connected cartridge contains the temperature T HTR in step 455 are those obtained for the load 132 connected the cartridge contains. Therefore, by using the resistance value R 1 as the reference resistance value R ref , the error ε product due to the product tolerance in the reference resistance value R ref becomes zero.
  4-4 負荷132の抵抗値Rについて
 ステップ443における負荷132の抵抗値Rの取得は、ステップ530における抵抗値Rの取得よりも後に実行されるものである。加えて、ステップ443は、エアロゾルを生成する直前のステップである。従って、抵抗値Rを基準抵抗値Rrefとして用いれば、抵抗値Rを用いるよりも、当該基準抵抗値Rrefにおける経時変化による誤差εdeteriorationが小さくなる。
4-4 Regarding the resistance value R 2 of the load 132 The acquisition of the resistance value R 2 of the load 132 in step 443 is executed after the acquisition of the resistance value R 1 in step 530. In addition, step 443 is a step immediately prior to producing the aerosol. Therefore, when the resistance value R 2 as the reference resistance value R ref, rather than using the resistance value R 1, the error epsilon Deterioration decreases due to aging of the reference resistance R ref.
 また、抵抗値Rを基準抵抗値Rrefとして用いることは、当該基準抵抗値Rrefにおける製品公差による誤差εproductをゼロとすることにもなる。 Further, using the resistance value R 2 as the reference resistance value R ref also makes the error ε product due to the product tolerance in the reference resistance value R ref zero.
 なお、ステップ443における負荷132の抵抗値Rの取得は、エアロゾル生成要求の検知中に行われるものであるから、エアロゾル生成要求の検知を契機としたものの例である。 Since the acquisition of the resistance value R 2 of the load 132 in step 443 is performed during the detection of the aerosol generation request, this is an example of the case where the detection of the aerosol generation request is triggered.
  4-5 負荷132の温度は基準温度Trefにあるとみなせるかの判定について
 温度のずれによる誤差εtemperatureは、負荷132の温度が基準温度Tref近傍にあるときに基準抵抗値を取得することによって小さくなる。即ち、ステップ440において負荷132の温度は基準温度Trefにあるとみなせると判定された場合のステップ443において負荷132の抵抗値Rを取得し、当該抵抗値Rを基準抵抗値Rrefとして用いることは、当該基準抵抗値Rrefにおける温度のずれによる誤差εtemperatureを小さくすることを目的とするものでもある。
4-5 error epsilon Temperature due to the deviation of temperature for one of determining the temperature of the load 132 can be regarded to be in the reference temperature T ref may be obtained a reference resistance value when the temperature of the load 132 is in the vicinity of the reference temperature T ref Is reduced by. That is, a resistance value acquired R 2 of the load 132 at step 443 when the temperature of the load 132 is determined to be regarded as being a reference temperature T ref at step 440, the resistance value R 2 as the reference resistance value R ref The purpose of use is also to reduce the error ε temperature due to the temperature shift in the reference resistance value R ref .
 以下、負荷132の温度は基準温度Trefにあるとみなせるかの判定の例について説明する。 Hereinafter, an example of determining whether the temperature of the load 132 can be regarded as being at the reference temperature Tref will be described.
 図6は、負荷132に対する加熱即ち給電を停止してからの負荷132の温度の時間変化を表すグラフ600である。グラフ600の横軸は負荷132への給電を停止してからの時間を示し、縦軸は負荷132の温度を示している。610は、エアロゾル源の残量が十分であるときの負荷132の例示の温度変化を示すプロットであり、620は、エアロゾル源の残量が十分でないときの負荷132の例示の温度変化を示す3つのプロットを示している。 FIG. 6 is a graph 600 showing the time change of the temperature of the load 132 after the heating of the load 132, that is, the power supply is stopped. The horizontal axis of the graph 600 shows the time after the power supply to the load 132 is stopped, and the vertical axis shows the temperature of the load 132. 610 is a plot showing an exemplary temperature change of the load 132 when the remaining amount of the aerosol source is sufficient, and 620 shows an exemplary temperature change of the load 132 when the remaining amount of the aerosol source is insufficient 3 Two plots are shown.
 グラフ600は、負荷132への給電を停止してから十分な時間が経過すれば、負荷132の温度は室温TR.T.に戻ることを示している。従って、基準温度Trefを室温TR.T.とすれば、負荷132への通電が停止してからより長い時間が経過した後に取得した負荷132の抵抗値を基準抵抗値Rrefとして用いることにより、温度のずれによる誤差εtemperatureはより小さくなる傾向がある。 In the graph 600, if a sufficient time elapses after the power supply to the load 132 is stopped, the temperature of the load 132 becomes room temperature TR . T. Indicates to return to. Therefore, the reference temperature Tref is set to room temperature TR . T. Then, by using the resistance value of the load 132 acquired after a longer time has passed since the energization of the load 132 was stopped as the reference resistance value R ref , the error ε temperature due to the temperature shift becomes smaller. Tend.
 従って、基準温度Trefをエアロゾル吸引器100の使用が想定される環境に基づく温度、例えば室温TR.T.とした場合、ステップ440における負荷132の温度は基準温度Trefにあるとみなせるかの判定は、ステップ420においてエアロゾルの生成要求を検知するまでの経過時間であって、前回実行したステップ470においてエアロゾルの生成要求の検知が終了するか、又は、前回実行したステップ452により負荷132への電力量の給電が終了してからの経過時間に基づくものであってよい。 Therefore, the reference temperature Tref is set to a temperature based on the environment in which the aerosol aspirator 100 is expected to be used, for example, room temperature TR . T. In the case of, the determination as to whether the temperature of the load 132 in step 440 can be regarded as being in the reference temperature Tref is the elapsed time until the aerosol generation request is detected in step 420, and the aerosol in step 470 executed last time. It may be based on the elapsed time since the detection of the generation request of the above is completed or the power supply of the electric energy to the load 132 is completed by the previously executed step 452.
 なお、エアロゾル吸引器100の使用が想定される環境はエアロゾル吸引器100を持つユーザを含んでいてよい。従って、エアロゾル吸引器100の使用が想定される環境に基づく温度は、ユーザからエアロゾル吸引器100へと伝わる体温又は呼気の温度を考慮した温度であってもよい。 The environment in which the aerosol aspirator 100 is expected to be used may include a user having the aerosol aspirator 100. Therefore, the temperature based on the environment in which the aerosol aspirator 100 is assumed to be used may be a temperature considering the temperature of the body temperature or the exhaled breath transmitted from the user to the aerosol aspirator 100.
 ここで、出願人の実験によれば、負荷132への給電が停止してから10000ms即ち10s経過した時点での負荷132の抵抗値を基準抵抗値Rrefとし、基準温度Trefを室温TR.T.に設定して式(3)により取得した負荷132の温度THTRは、上に説明した原理によりエアロゾル源の不足又は枯渇を判断する目的では十分な精度があることが判明した。重要なことは、負荷132への給電が停止してから10s経過した時点の負荷132の温度は厳密には室温TR.T.にはなく、T’R.T.にあったということである。即ち、基準抵抗値Rrefを取得する際の負荷132の温度は、上に説明した原理によりエアロゾル源の不足又は枯渇を判断する目的では、厳密に基準温度Trefにあることを要しない。即ち、負荷132の温度THTRがT’R.T.と等しくなったこと、又は負荷132の温度THTRがT’R.T.近傍になったことを以って、負荷132の温度THTRが基準温度Trefにあるとみなしてもよい。 Here, according to the applicant's experiments, the resistance of the load 132 at the time the power supply has passed 10000ms That 10s from the stop to the load 132 as the reference resistance value R ref, room temperature reference temperature T ref T R .. T. It was found that the temperature THTR of the load 132 obtained by the equation (3) set to is sufficiently accurate for the purpose of determining the shortage or depletion of the aerosol source by the principle explained above. What is important is that the temperature of the load 132 at the time when 10 seconds have passed since the power supply to the load 132 was stopped is strictly room temperature TR . T. Not in T'R. T. It means that it was there. That is, the temperature of the load 132 when acquiring the reference resistance value R ref does not need to be strictly at the reference temperature T ref for the purpose of determining the shortage or depletion of the aerosol source according to the principle described above. That is, the temperature THTR of the load 132 is T'R . T. Or the temperature THTR of the load 132 is T'R . T. Drives out it is now near, the temperature T HTR load 132 may be considered to be in a reference temperature T ref.
 従って、ステップ440においては、上記経過時間が、負荷132を、エアロゾルを生成可能な温度から基準温度Trefにあるとみなせる温度まで冷却するために必要な時間以上である場合に、負荷132の温度は基準温度Trefにあるとみなせると判定してよい。 Therefore, in step 440, the temperature of the load 132 is greater than or equal to the time required to cool the load 132 from a temperature at which the aerosol can be generated to a temperature that can be considered to be at the reference temperature Tref. May be determined to be at the reference temperature Tref .
 なお、基準温度Trefにあるとみなせる温度は、当該温度にある負荷132の抵抗値を基準抵抗値Rrefとして用いたときに、上に説明した原理によりエアロゾル源の不足又は枯渇を判断する目的において十分な精度で未知である負荷132の温度THTR取得可能な温度であってよい。例えば、出願人の実験によれば、基準温度Trefを25℃に設定した場合に、負荷132の温度が35℃程度にあるときの負荷132の抵抗値を基準抵抗値Rrefとして用いても、上に説明した原理によりエアロゾル源の不足又は枯渇を判断する目的において十分な精度で未知である負荷132の温度THTR取得可能であった。なお、25℃は、上記実験時の室温TR.T.である。即ち、基準温度Trefにあるとみなせる温度は、基準温度Tref以上基準温度Tref+15℃以下であってよい。 The temperature that can be regarded as being at the reference temperature Tref is the purpose of determining the shortage or depletion of the aerosol source by the principle explained above when the resistance value of the load 132 at that temperature is used as the reference resistance value R ref. The temperature of the load 132, which is unknown with sufficient accuracy, may be a temperature at which THTR can be obtained. For example, according to the applicant's experiment, when the reference temperature T ref is set to 25 ° C., the resistance value of the load 132 when the temperature of the load 132 is about 35 ° C. may be used as the reference resistance value R ref. It was possible to obtain the temperature THTR of the load 132, which is unknown with sufficient accuracy for the purpose of determining the shortage or depletion of the aerosol source by the principle explained above. In addition, 25 ° C. is the room temperature TR at the time of the above experiment . T. Is. That is, the temperature which can be regarded to be in the reference temperature T ref is a reference temperature T ref or a reference temperature T ref + 15 ° C. may be less.
 また、ステップ440においては、上記経過時間が、負荷132を、エアロゾルを生成可能な温度から基準温度Trefにあるとみなせる温度まで冷却するために必要な時間以上の既定時間であって、負荷132を、エアロゾル源の枯渇時のみ到達可能な温度から基準温度Trefにあるとみなせる温度まで冷却するために必要な時間より短い既定時間以上である場合に、負荷132の温度は基準温度Trefにあるとみなせると判定してよい。 Further, in step 440, the elapsed time is a predetermined time equal to or longer than the time required to cool the load 132 from the temperature at which the aerosol can be generated to the temperature that can be regarded as being at the reference temperature Tref , and the load 132. The temperature of the load 132 reaches the reference temperature Tref when it is greater than or equal to the predetermined time, which is shorter than the time required to cool from a temperature that can only be reached when the aerosol source is depleted to a temperature that can be considered to be at the reference temperature Tref . It may be determined that there is.
 更に、ステップ440における負荷132の温度は基準温度Trefにあるとみなせるかの判定は、電源110に含まれる温度センサの出力に基づくものであってもよい。例えば、電源110の温度は、負荷132への給電により上昇し、当該給電の停止により低下して周囲環境の温度近傍に収束する。換言すれば、電源110の温度が低下した後にその変化が落ち着いているときには、給電の終了から十分に時間が経過していると推定できる。従って、ステップ440において負荷132の温度は基準温度Trefにあるとみなせるかの判定は、電源110に含まれる温度センサの出力に基づき、電源110の温度が低下した後にその温度変化率が所定範囲内となったかの判定であることができる。 Further, the determination as to whether the temperature of the load 132 in step 440 can be regarded as being at the reference temperature Tref may be based on the output of the temperature sensor included in the power supply 110. For example, the temperature of the power supply 110 rises when the power supply to the load 132 is stopped, decreases when the power supply is stopped, and converges near the temperature of the ambient environment. In other words, when the change of the power supply 110 has settled down after the temperature has dropped, it can be estimated that a sufficient time has passed since the end of the power supply. Therefore, in step 440, the determination as to whether the temperature of the load 132 can be regarded as being at the reference temperature Tref is determined based on the output of the temperature sensor included in the power supply 110, and the temperature change rate is within a predetermined range after the temperature of the power supply 110 is lowered. It can be a judgment as to whether or not it is inside.
 なお、電源110の温度が低下した後にその温度変化率が所定範囲内となったときの電源110に含まれる温度センサの出力又は電源110の温度に基づき、基準温度Trefを設定してもよい。 The reference temperature Tref may be set based on the output of the temperature sensor included in the power supply 110 or the temperature of the power supply 110 when the temperature change rate falls within a predetermined range after the temperature of the power supply 110 drops. ..
  4-6 スイッチQ1がオン状態となることの少なくとも一時的な禁止について
 スイッチQ1がオン状態となることは、ステップ462において負荷132の温度が第1閾値未満であると判定されなかった場合に、ステップ464を介して第1条件が満たされるまで禁止される。また、スイッチQ1がオン状態となることは、ステップ480において負荷132の過去の1以上の温度の最大値が第2閾値未満でないと判定された場合にも、ステップ482を介して第2条件が満たされるまで禁止される。
4-6 At least for the temporary prohibition of the switch Q1 being turned on The switch Q1 being turned on is when the temperature of the load 132 is not determined to be below the first threshold in step 462. It is prohibited until the first condition is met through step 464. Further, the fact that the switch Q1 is turned on means that even if it is determined in step 480 that the maximum value of the past one or more temperatures of the load 132 is not less than the second threshold value, the second condition is set via step 482. Banned until satisfied.
 ここで、ステップ462における判定処理は、エアロゾル生成要求の検知中即ちエアロゾル源の加熱フェーズにおいて1以上の回数、通常は複数回繰り返される一方で、ステップ480における判定処理は、エアロゾル生成要求の検知終了後即ちエアロゾル源の加熱フェーズの後のフェーズにおいて1回のみ実行される。当該後のフェーズは、エアロゾル源の加熱が終了したフェーズである。即ち、前者の処理と後者の処理とは、実行される頻度が異なる。また、前者の処理と後者の処理とは、実行のフェーズが異なる。 Here, the determination process in step 462 is repeated one or more times, usually a plurality of times, during the detection of the aerosol generation request, that is, in the heating phase of the aerosol source, while the determination process in step 480 ends the detection of the aerosol generation request. It is performed only once later, i.e. in the phase after the heating phase of the aerosol source. The subsequent phase is the phase in which the heating of the aerosol source is completed. That is, the frequency of execution differs between the former process and the latter process. Further, the former process and the latter process have different execution phases.
 本実施形態においては、ステップ480における判定処理は、エアロゾル生成要求の検知終了後即ちエアロゾル源の加熱フェーズの後のフェーズにおいて1回のみ実行される。本実施形態に代えた別の実施形態において、ステップ480における判定処理は、エアロゾル生成要求の検知中即ちエアロゾル源の加熱フェーズにおいて実行されてもよい。 In the present embodiment, the determination process in step 480 is executed only once after the detection of the aerosol generation request is completed, that is, in the phase after the heating phase of the aerosol source. In another embodiment alternative to this embodiment, the determination process in step 480 may be performed during the detection of the aerosol production request, i.e. in the heating phase of the aerosol source.
 当該別の実施形態において、ステップ480における判定処理が否定的に判断された場合は、ステップ480における判定処理をその後は実行されなくてもよい。また当該別の実施形態において、ステップ480における判定処理が否定的に判断された場合でも、ステップ482以降の処理は、エアロゾル生成要求の検知終了後(ステップ470)の後に実行されてもよい。当該別の実施形態においても、ステップ462における判定処理とステップ480における判定処理とは、実行される頻度が異なることに留意されたい。
 また当該別の実施形態において、ステップ480は、ステップ462の後且つステップ470の前に実行されてもよい。
In the other embodiment, if the determination process in step 480 is negatively determined, the determination process in step 480 may not be executed thereafter. Further, in the other embodiment, even if the determination process in step 480 is negatively determined, the processes after step 482 may be executed after the detection of the aerosol generation request is completed (step 470). It should be noted that also in the other embodiment, the determination process in step 462 and the determination process in step 480 are executed at different frequencies.
Further, in the other embodiment, step 480 may be executed after step 462 and before step 470.
 上述したように、ユーザによるエアロゾル吸引の速度が速い場合等には、貯留部116Aのエアロゾル源の残量は十分であるが、供給が間に合わないために、保持部130におけるエアロゾル源の残量が不足する状況が発生する。このような場合、時間の経過によって保持部130におけるエアロゾル源の残量不足は解消するから、一時的にスイッチQ1のオン状態を禁止することで足りる。また、このような場合、負荷132の温度は、エアロゾル源の沸点等より大きくはなるが、定常状態とならずに不安定な挙動を示すことがある。ステップ480は、このような場合を識別するためのものであり、そのために、負荷132の過去の1以上の温度の最大値が第2閾値未満であるかを判定している。また、そのために、ステップ482を介して課される、再びスイッチQ1がオン状態となることを可能にするための第2条件は、時間経過によって満たされるような条件とすることが好ましい。 As described above, when the speed of aerosol suction by the user is high, the remaining amount of the aerosol source in the storage unit 116A is sufficient, but the remaining amount of the aerosol source in the holding unit 130 is insufficient because the supply is not in time. There will be a shortage situation. In such a case, since the shortage of the remaining amount of the aerosol source in the holding unit 130 is resolved with the passage of time, it is sufficient to temporarily prohibit the ON state of the switch Q1. Further, in such a case, the temperature of the load 132 becomes higher than the boiling point of the aerosol source or the like, but it may exhibit unstable behavior without being in a steady state. Step 480 is for identifying such a case, and for that purpose, it is determined whether the maximum value of the past one or more temperatures of the load 132 is less than the second threshold value. Further, for that purpose, it is preferable that the second condition imposed via step 482 to enable the switch Q1 to be turned on again is a condition that is satisfied with the passage of time.
 一方、エアロゾル源が本当に枯渇している場合に負荷132を加熱すると、負荷132が過熱してしまう。そのため、エアロゾル源の枯渇が強く疑われる場合には、直ちに負荷132の加熱が停止されるようにすることが好ましい。ステップ462は、このような場合を識別するためのものであり、そのために負荷132の温度が、第2閾値より大きい第1閾値未満であるかを判定している。また、そのために、ステップ464を介して課される、再びスイッチQ1がオン状態となることを可能にするための第1条件は、時間の経過によっては満たされない、本質的にエアロゾル源の枯渇が解消されることによって満たされる条件、例えば、エアロゾル源の貯留部116Aを含むカートリッジ104A自体を交換することによって満たされる条件であることが好ましい。 On the other hand, if the load 132 is heated when the aerosol source is really depleted, the load 132 will overheat. Therefore, when the exhaustion of the aerosol source is strongly suspected, it is preferable to immediately stop the heating of the load 132. Step 462 is for identifying such a case, and for that purpose, it is determined whether the temperature of the load 132 is greater than the second threshold and less than the first threshold. Also, for that reason, the first condition imposed via step 464 to allow the switch Q1 to be turned on again is not met over time, essentially the exhaustion of the aerosol source. It is preferable that the condition is satisfied by being eliminated, for example, the condition satisfied by replacing the cartridge 104A itself including the reservoir 116A of the aerosol source.
 なお、負荷132が、第1閾値以上の温度を示さないが、多数回第2閾値以上である温度を示す場合には、供給不足によるエアロゾル源の一時的な不足ではなく、エアロゾル源が枯渇している可能性が高い。ステップ430はこのような場合を識別するためのものであり、そのために、ステップ486において、スイッチQ1をオン状態とすることが一時的に禁止された回数をカウントしている。 When the load 132 does not show the temperature above the first threshold value but shows the temperature above the second threshold value many times, the aerosol source is exhausted rather than a temporary shortage of the aerosol source due to insufficient supply. There is a high possibility that it is. Step 430 is for identifying such a case, and therefore, in step 486, the number of times that the switch Q1 is temporarily prohibited from being turned on is counted.
 なお、主処理400では、ステップ462において負荷132の温度が第1閾値未満でないと1回でも判定されなかった場合、直ちにスイッチQ1がオン状態となることを禁止しているが、負荷132の温度が第1閾値未満でないと複数回判定された場合に、スイッチQ1がオン状態となることを禁止してよい。 In the main process 400, if it is not determined even once that the temperature of the load 132 is not less than the first threshold value in step 462, it is prohibited that the switch Q1 is immediately turned on, but the temperature of the load 132. It may be prohibited that the switch Q1 is turned on when it is determined a plurality of times that is not less than the first threshold value.
 図4Cは、負荷132の温度が第1閾値未満でないと複数回判定された場合に、スイッチQ1がオン状態となることを禁止する、別の例示の主処理400’の一部のフローチャートである。同じ符号で示されたステップは、主処理400と主処理400’とで同一である。 FIG. 4C is a partial flowchart of another exemplary main process 400'that prohibits the switch Q1 from being turned on when it is determined multiple times that the temperature of the load 132 is not less than the first threshold. .. The steps indicated by the same reference numerals are the same in the main process 400 and the main process 400'.
 463は、ステップ462と同様のステップを示しているが、負荷132の温度THTRが第1閾値未満でない場合に、ステップ468に進む点が相違する。 463 shows the same step as step 462, except that the process proceeds to step 468 when the temperature THTR of the load 132 is not less than the first threshold.
 468は、第2カウンタが所定の第2カウンタ閾値以下かを判定するステップを示している。第2カウンタが所定の第2カウンタ閾値以下である場合、処理はステップ469に進み、そうでない場合、処理はステップ464に進む。 468 indicates a step of determining whether the second counter is equal to or less than a predetermined second counter threshold value. If the second counter is less than or equal to a predetermined second counter threshold, the process proceeds to step 469, otherwise the process proceeds to step 464.
 469は、第2カウンタをインクリメント、例えば第2カウンタに1を加算するステップを示している。 469 indicates a step of incrementing the second counter, for example, adding 1 to the second counter.
 スイッチQ1がオン状態となることを禁止するために必要な、負荷132の温度が第2閾値未満でないとの判定の回数(スイッチQ1をオン状態とすることが一時的に禁止された回数であってよい。)は、誤検知を低減するために、負荷132の温度が第1閾値未満でないとの判定の回数よりも大きいことが好ましい。前者の回数を後者の回数より大きくすることは、ステップ430におけるカウンタ閾値を、ステップ468における第2カウンタ閾値より大きくすることで実現することが可能である。 The number of times it is determined that the temperature of the load 132 is not less than the second threshold value, which is necessary to prohibit the switch Q1 from being turned on (the number of times that the switch Q1 is temporarily prohibited from being turned on). In order to reduce false positives, it is preferable that the temperature of the load 132 is larger than the number of determinations that the temperature is not less than the first threshold value. Making the number of times of the former larger than the number of times of the latter can be realized by making the counter threshold value in step 430 larger than the second counter threshold value in step 468.
 なお、主処理400’に対応した補助処理における、補助処理500のステップ550に対応するステップは、第2カウンタを初期化するステップを含んでいてよい。 In the auxiliary process corresponding to the main process 400', the step corresponding to step 550 of the auxiliary process 500 may include a step of initializing the second counter.
  4-7 カートリッジ交換の検知について
 カートリッジ104Aが本体102に取り付けられている場合、カートリッジ104Aが含む電子回路は、本体102が含む少なくとも2つの端子を介して本体102の電子回路と電気的に接続されることになる。
4-7 Detection of cartridge replacement When the cartridge 104A is attached to the main body 102, the electronic circuit included in the cartridge 104A is electrically connected to the electronic circuit of the main body 102 via at least two terminals included in the main body 102. Will be.
 カートリッジ104Aが本体102に取り付けられているときの上記端子間の抵抗値は、カートリッジ104Aが含む負荷132の抵抗値に準じた値となる一方で、カートリッジ104Aが本体102から取り外されているときの上記端子間の抵抗値は、無限大又は極めて大きな値を示すことになる。これは、カートリッジ104Aが本体102から取り外されているときは、上記端子間が空気によって絶縁されているためである。 The resistance value between the terminals when the cartridge 104A is attached to the main body 102 is a value according to the resistance value of the load 132 included in the cartridge 104A, while the resistance value when the cartridge 104A is removed from the main body 102. The resistance value between the terminals will be infinite or extremely large. This is because when the cartridge 104A is removed from the main body 102, the terminals are insulated from each other by air.
 従って、例えば、上記端子間の抵抗値が、負荷132の抵抗値に準じた値より大きな所定の値を越えた後に再び所定の値を下回ったことを検知することによって、カートリッジ104Aが交換されたことを検知可能である。 Therefore, for example, the cartridge 104A was replaced by detecting that the resistance value between the terminals exceeded a predetermined value larger than the value according to the resistance value of the load 132 and then fell below the predetermined value again. It is possible to detect that.
 また、本体102の電子回路は、所定の電圧を印加した場合に、カートリッジ104Aが本体102に取り付けられているときの上記端子間の電位差(電圧)が、カートリッジ104Aが含む負荷132の抵抗値に準じた値となる一方で、カートリッジ104Aが本体102から取り外されているときの上記端子間の電位差(電圧)が、負荷132の抵抗値に準じた上記値より大きくなるように構成可能である。 Further, in the electronic circuit of the main body 102, when a predetermined voltage is applied, the potential difference (voltage) between the terminals when the cartridge 104A is attached to the main body 102 becomes the resistance value of the load 132 included in the cartridge 104A. On the other hand, the potential difference (voltage) between the terminals when the cartridge 104A is removed from the main body 102 can be configured to be larger than the above value according to the resistance value of the load 132.
 従って、例えば、本体102の電子回路に所定の電圧を印加し、上記端子間の電位差(電圧)が負荷132の抵抗値に準じた値より大きな所定の値(一般的には、本体102の電子回路に印加された電圧以下である)を上回った後に再び所定の値を下回ったことを検知することによって、カートリッジ104Aが交換されたことを検知可能である。 Therefore, for example, a predetermined voltage is applied to the electronic circuit of the main body 102, and the potential difference (voltage) between the terminals is a predetermined value larger than the value according to the resistance value of the load 132 (generally, the electrons of the main body 102). It is possible to detect that the cartridge 104A has been replaced by detecting that the voltage has exceeded the voltage applied to the circuit) and then has fallen below the predetermined value again.
  5 おわりに
 上述の説明において、本開示の実施形態は、エアロゾル吸引器用の制御装置及び該制御装置の動作方法として説明された。しかし、本開示が、プロセッサにより実行されると当該プロセッサに当該方法を実行させるプログラム、又は当該プログラムを格納したコンピュータ読み取り可能な記憶媒体として実施され得ることが理解されよう。
5 Conclusion In the above description, the embodiment of the present disclosure has been described as a control device for an aerosol aspirator and a method of operating the control device. However, it will be appreciated that the present disclosure may be implemented as a program that causes the processor to perform the method when executed by the processor, or as a computer-readable storage medium containing the program.
 以上、本開示の実施形態が説明されたが、これらが例示にすぎず、本開示の範囲を限定するものではないことが理解されるべきである。本開示の趣旨及び範囲から逸脱することなく、実施形態の変更、追加、改良などを適宜行うことができることが理解されるべきである。本開示の範囲は、上述した実施形態のいずれによっても限定されるべきではなく、特許請求の範囲及びその均等物によってのみ規定されるべきである。 Although the embodiments of the present disclosure have been described above, it should be understood that these are merely examples and do not limit the scope of the present disclosure. It should be understood that modifications, additions, improvements, etc. of embodiments can be made as appropriate without departing from the gist and scope of the present disclosure. The scope of the present disclosure should not be limited by any of the embodiments described above, but should be defined only by the claims and their equivalents.
100A、100B…エアロゾル生成装置
102…本体
104A…カートリッジ
104B…エアロゾル発生物品
106…制御部
108…通知部
110…電源
112A~112D…センサ
114…メモリ
116A…貯留部
116B…エアロゾル基材
118A、118B…霧化部
120…空気取込流路
121…エアロゾル流路
122…吸口部
130…保持部
132…負荷
134…回路
202…第1回路
204…第2回路
206、210、214…FET
208…変換部
212…抵抗
216…ダイオード
218…インダクタ
220…キャパシタ
100A, 100B ... Aerosol generator 102 ... Main body 104A ... Cartridge 104B ... Aerosol generating article 106 ... Control unit 108 ... Notification unit 110 ... Power supply 112A to 112D ... Sensor 114 ... Memory 116A ... Storage unit 116B ... Aerosol base material 118A, 118B ... Atomization unit 120 ... Air intake flow path 121 ... Aerosol flow path 122 ... Mouthpiece 130 ... Holding unit 132 ... Load 134 ... Circuit 202 ... First circuit 204 ... Second circuit 206, 210, 214 ... FET
208 ... Converter 212 ... Resistor 216 ... Diode 218 ... Inductor 220 ... Capacitor

Claims (26)

  1.  エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、
     前記制御回路は、
      前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前である第2タイミングを含む複数のタイミングで前記第1センサの出力値を取得可能であり、
      前記複数のタイミングのいずれかで取得した前記第1センサの出力値に基づき、前記相関を較正可能であり、
      前記第2タイミングにおいて前記負荷が基準温度にあるとみなせる場合、前記第1センサの出力値を取得し、当該出力値に基づき、前記相関を較正するように構成される、
    エアロゾル吸引器用の制御装置。
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    It includes a control circuit configured to determine the exhaustion of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    The control circuit
    It is possible to acquire the output value of the first sensor at a plurality of timings including the second timing after the detection of the generation request and before the supply of the electric energy capable of generating the aerosol to the load.
    The correlation can be calibrated based on the output value of the first sensor acquired at any of the plurality of timings.
    When the load can be regarded as being at the reference temperature at the second timing, the output value of the first sensor is acquired, and the correlation is calibrated based on the output value.
    Control device for aerosol aspirators.
  2.  エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、
     前記制御回路は、
      前記負荷の交換を検出可能であり、
      前記交換の時又は直後である第1タイミングと、前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前である第2タイミングとを含む複数のタイミングで前記第1センサの出力値を取得可能であり、
      前記複数のタイミングのいずれかで取得した前記第1センサの出力値に基づき、前記相関を較正可能であり、
      前記第2タイミングにおいて前記負荷が基準温度にあるとみなせない場合、前記第1タイミングで取得した前記第1センサの出力値に基づき、前記相関を較正する
    ように構成される、
    エアロゾル吸引器用の制御装置。
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    It includes a control circuit configured to determine the exhaustion of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    The control circuit
    The load replacement can be detected and
    The first sensor at a plurality of timings including the first timing at the time of the replacement or immediately after the replacement, and the second timing after the detection of the generation request and before the supply of the electric energy capable of generating the aerosol to the load. Output value of can be obtained,
    The correlation can be calibrated based on the output value of the first sensor acquired at any of the plurality of timings.
    If the load cannot be considered to be at the reference temperature at the second timing, the correlation is calibrated based on the output value of the first sensor acquired at the first timing.
    Control device for aerosol aspirators.
  3.  エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、
     前記制御回路は、
      前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前である第2タイミングを含む複数のタイミングで前記第1センサの出力値を取得可能であり、
      前記複数のタイミングのいずれかで取得した前記第1センサの出力値に基づき、前記相関を較正可能であり、
      前記第2タイミングにおいて前記負荷が基準温度にあるとみなせない場合、前記相関を較正しないか、又は、前記相関の前回較正時に用いた前記第1センサの出力値に基づき前記相関を較正する
    ように構成される、
    エアロゾル吸引器用の制御装置。
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    It includes a control circuit configured to determine the exhaustion of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    The control circuit
    It is possible to acquire the output value of the first sensor at a plurality of timings including the second timing after the detection of the generation request and before the supply of the electric energy capable of generating the aerosol to the load.
    The correlation can be calibrated based on the output value of the first sensor acquired at any of the plurality of timings.
    If the load cannot be considered to be at the reference temperature at the second timing, either do not calibrate the correlation or calibrate the correlation based on the output value of the first sensor used during the previous calibration of the correlation. Composed,
    Control device for aerosol aspirators.
  4.  エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、
     前記制御回路は、
      前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前である第2タイミングを含む複数のタイミングで前記第1センサの出力値を取得可能であり、
      前記複数のタイミングのいずれかで取得した前記第1センサの出力値に基づき、前記相関を較正可能であり、
      前記第2タイミングにおいて前記負荷が基準温度にあるとみなせない場合、前回以前の前記第2タイミングにおける前記第1センサの出力値に基づき前記相関を較正する
    ように構成される、
    エアロゾル吸引器用の制御装置。
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    It includes a control circuit configured to determine the exhaustion of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    The control circuit
    It is possible to acquire the output value of the first sensor at a plurality of timings including the second timing after the detection of the generation request and before the supply of the electric energy capable of generating the aerosol to the load.
    The correlation can be calibrated based on the output value of the first sensor acquired at any of the plurality of timings.
    If the load cannot be considered to be at the reference temperature at the second timing, the correlation is calibrated based on the output value of the first sensor at the second timing before the previous time.
    Control device for aerosol aspirators.
  5.  エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     前記負荷と電源の間に直列接続され、第1開閉器を含む第1回路と、
     前記第1回路へ並列接続され、既知抵抗と第2開閉器を含み、前記第1回路よりも電気抵抗値が高い第2回路と、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、
     前記制御回路は、
      前記第1開閉器と前記第2開閉器を制御可能であり、
      複数のタイミングで前記第1センサの出力値を取得可能であり、
      前記複数のタイミングのいずれかで、前記第1開閉器と前記第2開閉器のうち前記第2開閉器のみがオン状態である間に取得した前記第1センサの出力値に基づき、前記相関を較正する
    ように更に構成される、
    エアロゾル吸引器用の制御装置。
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A first circuit, which is connected in series between the load and the power supply and includes a first switch,
    A second circuit, which is connected in parallel to the first circuit, includes a known resistor and a second switch, and has a higher electrical resistance value than the first circuit.
    It includes a control circuit configured to determine the exhaustion of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    The control circuit
    The first switch and the second switch can be controlled.
    The output value of the first sensor can be acquired at a plurality of timings.
    Based on the output value of the first sensor acquired while only the second switch among the first switch and the second switch is in the ON state at any of the plurality of timings, the correlation is obtained. Further configured to calibrate,
    Control device for aerosol aspirators.
  6.  前記負荷が電気的に接続される端子間の電圧又は抵抗値を出力する第2センサを含み、
     前記制御回路は、前記第2センサの出力値に基づき前記負荷の交換を検出するよう構成される、
    請求項2に記載のエアロゾル吸引器用の制御装置。
    Includes a second sensor that outputs a voltage or resistance value between the terminals to which the load is electrically connected.
    The control circuit is configured to detect the load exchange based on the output value of the second sensor.
    The control device for an aerosol aspirator according to claim 2.
  7.  前記制御回路は、前記生成要求を検知するまでの経過時間であって、前回の前記生成要求の検知が終了するか、又は、前記負荷がエアロゾルを生成可能とするための電力量の前回の供給が終了してからの経過時間に基づき、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせるかを判断するよう構成される、
    請求項1から4のいずれか1項に記載のエアロゾル吸引器用の制御装置。
    The control circuit is an elapsed time until the generation request is detected, and the detection of the previous generation request is completed, or the previous supply of an electric energy for the load to be able to generate an aerosol. Is configured to determine whether the load can be considered to be at the reference temperature at the second timing based on the elapsed time since the end of.
    The control device for an aerosol aspirator according to any one of claims 1 to 4.
  8.  前記経過時間がエアロゾルを生成可能な温度から基準温度にあるとみなせる温度まで前記負荷を冷却するために必要な時間以上の場合のみ、前記制御回路は、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせると判断するよう構成される、
    請求項7に記載のエアロゾル吸引器用の制御装置。
    Only when the elapsed time is greater than or equal to the time required to cool the load from a temperature at which the aerosol can be generated to a temperature that can be considered to be at the reference temperature, the control circuit causes the load to reach the reference temperature at the second timing. Constructed to be considered to be,
    The control device for an aerosol aspirator according to claim 7.
  9.  前記経過時間が、エアロゾルを生成可能な温度から基準温度にあるとみなせる温度まで前記負荷を冷却するために必要な時間以上の既定時間であって、前記エアロゾル源を貯留する貯留部又は前記エアロゾル源を保持する基材における前記エアロゾル源の枯渇時のみ到達可能な温度から基準温度にあるとみなせる温度まで前記負荷を冷却するために必要な時間より短い前記既定時間以上の場合のみ、前記制御回路は、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせると判断するよう構成される、
    請求項7に記載のエアロゾル吸引器用の制御装置。
    The elapsed time is a predetermined time equal to or longer than the time required to cool the load from a temperature at which the aerosol can be generated to a temperature that can be regarded as being at a reference temperature, and is a storage unit for storing the aerosol source or the aerosol source. Only when the predetermined time or more, which is shorter than the time required to cool the load from a temperature that can be reached only when the aerosol source is depleted to a temperature that can be regarded as being at a reference temperature, is used. , It is configured to determine that the load can be considered to be at the reference temperature at the second timing.
    The control device for an aerosol aspirator according to claim 7.
  10.  前記経過時間が10秒以上の場合のみ、前記制御回路は、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせると判断するよう構成される、
    請求項7に記載のエアロゾル吸引器用の制御装置。
    Only when the elapsed time is 10 seconds or more, the control circuit is configured to determine that the load can be considered to be at the reference temperature at the second timing.
    The control device for an aerosol aspirator according to claim 7.
  11. エアロゾル吸引器の制御方法であって、前記エアロゾル吸引器に搭載された制御装置は、
     エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、前記制御回路が、
     前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前である第2タイミングを含む複数のタイミングで前記第1センサの出力値を取得するステップと、
     前記出力値のうちの1つに基づき、前記相関を較正するステップであって、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせる場合、前記第1センサの出力値を取得し、当該出力値に基づき、前記相関を較正するステップを含むステップと
    を含む制御方法。
    A control method for an aerosol aspirator, wherein the control device mounted on the aerosol aspirator is
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    The control circuit includes a control circuit configured to determine the exhaustion of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    A step of acquiring the output value of the first sensor at a plurality of timings including the second timing after the detection of the generation request and before the supply of the electric energy capable of generating the aerosol to the load, and
    In the step of calibrating the correlation based on one of the output values, when the load can be regarded as being at the reference temperature at the second timing, the output value of the first sensor is acquired and the output is obtained. A control method comprising a step including calibrating the correlation based on a value.
  12. エアロゾル吸引器の制御方法であって、前記エアロゾル吸引器に搭載された制御装置は、
     エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断し、前記負荷の交換を検出可能であるよう構成される制御回路と
    を含み、前記制御回路が、
     前記交換の時又は直後である第1タイミングと、前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前である第2タイミングとを含む複数のタイミングで前記第1センサの出力値を取得するステップと、
     前記出力値のうちの1つに基づき、前記相関を較正するステップであって、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせない場合、前記第1タイミングで取得した前記第1センサの出力値に基づき、前記相関を較正するステップを含むステップと
    を含む制御方法。
    A control method for an aerosol aspirator, wherein the control device mounted on the aerosol aspirator is
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    The control circuit includes a control circuit configured to determine the exhaustion of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor and detect the replacement of the load. ,
    The first sensor at a plurality of timings including the first timing at the time of the replacement or immediately after the replacement, and the second timing after the detection of the generation request and before the supply of the electric energy capable of generating the aerosol to the load. And the step to get the output value of
    In the step of calibrating the correlation based on one of the output values, when the load cannot be regarded as being at the reference temperature at the second timing, the first sensor acquired at the first timing A control method including a step including a step of calibrating the correlation based on an output value.
  13. エアロゾル吸引器の制御方法であって、前記エアロゾル吸引器に搭載された制御装置は、
     エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、前記制御回路が、
     前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前である第2タイミングを含む複数のタイミングで前記第1センサの出力値を取得するステップと、
     前記出力値のうちの1つに基づき、前記相関の較正を試みるステップであって、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせない場合、前記相関を較正しないか、又は、前記相関の前回較正時に用いた前記第1センサの出力値に基づき前記相関を較正するステップを含むステップと
    を含む制御方法。
    A control method for an aerosol aspirator, wherein the control device mounted on the aerosol aspirator is
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    The control circuit includes a control circuit configured to determine the exhaustion of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    A step of acquiring the output value of the first sensor at a plurality of timings including the second timing after the detection of the generation request and before the supply of the electric energy capable of generating the aerosol to the load, and
    In the step of trying to calibrate the correlation based on one of the output values, if the load cannot be considered to be at the reference temperature at the second timing, the correlation is not calibrated or the correlation is not calibrated. A control method including a step of calibrating the correlation based on the output value of the first sensor used at the time of the previous calibration.
  14. エアロゾル吸引器の制御方法であって、前記エアロゾル吸引器に搭載された制御装置は、
     エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、前記制御回路が、
     前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前である第2タイミングを含む複数のタイミングで前記第1センサの出力値を取得するステップと、
     前記出力値のうちの1つに基づき、前記相関を較正するステップであって、前記第2タイミングにおいて前記負荷が基準温度にあるとみなせない場合、前回以前の前記第2タイミングにおける前記第1センサの出力値に基づき前記相関を較正するステップを含むステップと
    を含む制御方法。
    A control method for an aerosol aspirator, wherein the control device mounted on the aerosol aspirator is
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    The control circuit includes a control circuit configured to determine the exhaustion of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    A step of acquiring the output value of the first sensor at a plurality of timings including the second timing after the detection of the generation request and before the supply of the electric energy capable of generating the aerosol to the load, and
    In the step of calibrating the correlation based on one of the output values, if the load cannot be considered to be at the reference temperature at the second timing, the first sensor at the second timing before the previous time. A control method including a step including a step of calibrating the correlation based on the output value of.
  15. エアロゾル吸引器の制御方法であって、前記エアロゾル吸引器に搭載された制御装置は、
     エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     前記負荷と電源の間に直列接続され、第1開閉器を含む第1回路と、
     前記第1回路へ並列接続され、既知抵抗と第2開閉器を含み、前記第1回路よりも電気抵抗値が高い第2回路と、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇又は前記負荷の温度を判断し、前記第1開閉器と前記第2開閉器を制御可能であるよう構成される制御回路と
    を含み、前記制御回路が、
     複数のタイミングで前記第1センサの出力値を取得するステップと、
     前記出力値のうちの1つに基づき、前記相関を較正するステップであって、前記第1開閉器と前記第2開閉器のうち前記第2開閉器のみがオン状態である間に取得した前記第1センサの出力値に基づき、前記相関を較正するステップを含むステップと
    を含む制御方法。
    A control method for an aerosol aspirator, wherein the control device mounted on the aerosol aspirator is
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A first circuit, which is connected in series between the load and the power supply and includes a first switch,
    A second circuit, which is connected in parallel to the first circuit, includes a known resistor and a second switch, and has a higher electrical resistance value than the first circuit.
    A control circuit configured to be able to control the first switch and the second switch by determining the exhaustion of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor. The control circuit includes
    A step of acquiring the output value of the first sensor at a plurality of timings, and
    The step of calibrating the correlation based on one of the output values, which was acquired while only the second switch of the first switch and the second switch was on. A control method including a step including a step of calibrating the correlation based on an output value of the first sensor.
  16.  エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇若しくは不足又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、
     前記制御回路は、
      前記相関の製品公差による誤差を低減可能な較正と、前記相関の経時変化による誤差を低減可能な較正を実行可能であり、
      前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前において、前記負荷が基準温度にあるとみなせる場合に取得された前記第1センサの出力値に基づき、少なくとも前記相関の経時変化による誤差を低減可能な較正を実行する
    ように構成される、
    エアロゾル吸引器用の制御装置。
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    A control circuit configured to determine the exhaustion or deficiency of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    The control circuit
    It is possible to perform calibration that can reduce the error due to the product tolerance of the correlation and calibration that can reduce the error due to the aging of the correlation.
    At least the correlation is based on the output value of the first sensor acquired when the load can be regarded as being at the reference temperature after the detection of the generation request and before the supply of the electric energy capable of generating the aerosol to the load. Configured to perform calibration that can reduce errors over time,
    Control device for aerosol aspirators.
  17.  エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇若しくは不足又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、
     前記制御回路は、
      前記相関の製品公差による誤差を低減可能な較正と、前記相関の経時変化による誤差を低減可能な較正を実行可能であり、
      前記負荷の交換を検出可能であり、
      前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前において、前記負荷が基準温度にあるとみなせない場合、前記交換の時又は直後に取得された前記第1センサの出力値に基づき、少なくとも前記相関の製品公差による誤差を低減可能な較正を実行する
    ように構成される、
    エアロゾル吸引器用の制御装置。
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    A control circuit configured to determine the exhaustion or deficiency of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    The control circuit
    It is possible to perform calibration that can reduce the error due to the product tolerance of the correlation and calibration that can reduce the error due to the aging of the correlation.
    The load replacement can be detected and
    When the load cannot be considered to be at the reference temperature after the detection of the generation request and before the supply of the electric energy capable of generating the aerosol to the load, the first sensor acquired at the time of the replacement or immediately after the replacement. Based on the output value, it is configured to perform calibration that can reduce at least the error due to the product tolerance of the correlation.
    Control device for aerosol aspirators.
  18.  エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇若しくは不足又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、
     前記制御回路は、
      前記相関の製品公差による誤差を低減可能な較正と、前記相関の経時変化による誤差を低減可能な較正を実行可能であり、
      前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前において、前記負荷が基準温度にあるとみなせない場合、較正を実行しないか、又は、前記相関の前回較正時に用いた前記第1センサの出力値に基づき、少なくとも前記相関の経時変化による誤差を低減可能な較正を実行する
    ように構成される、
    エアロゾル吸引器用の制御装置。
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    A control circuit configured to determine the exhaustion or deficiency of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    The control circuit
    It is possible to perform calibration that can reduce the error due to the product tolerance of the correlation and calibration that can reduce the error due to the aging of the correlation.
    If the load cannot be considered to be at the reference temperature after the detection of the generation request and before the supply of the amount of power capable of producing the aerosol to the load, the calibration is not performed or is used at the time of the previous calibration of the correlation. Based on the output value of the first sensor, at least the calibration that can reduce the error due to the change of the correlation with time is performed.
    Control device for aerosol aspirators.
  19.  エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇若しくは不足又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、
     前記制御回路は、
      前記相関の製品公差による誤差を低減可能な較正と、前記相関の経時変化による誤差を低減可能な較正を実行可能であり、
      前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前のタイミングにおいて、前記負荷が基準温度にあるとみなせない場合、前回以前の前記タイミングにおける前記第1センサの出力値に基づき、少なくとも前記相関の経時変化による誤差を低減可能な較正を実行する
    ように構成される、
    エアロゾル吸引器用の制御装置。
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    A control circuit configured to determine the exhaustion or deficiency of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    The control circuit
    It is possible to perform calibration that can reduce the error due to the product tolerance of the correlation and calibration that can reduce the error due to the aging of the correlation.
    If the load cannot be considered to be at the reference temperature at the timing after the detection of the generation request and before the supply of the electric energy capable of generating the aerosol to the load, the output value of the first sensor at the timing before the previous time. Based on, at least configured to perform calibration capable of reducing errors due to aging of the correlation.
    Control device for aerosol aspirators.
  20.  エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     前記負荷と電源の間に直列接続され、第1開閉器を含む第1回路と、
     前記第1回路へ並列接続され、既知抵抗と第2開閉器を含み、前記第1回路よりも電気抵抗値が高い第2回路と、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇若しくは不足又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、
     前記制御回路は、
      前記相関の製品公差による誤差を低減可能な較正と、前記相関の経時変化による誤差を低減可能な較正を実行可能であり、
      前記第1開閉器と前記第2開閉器を制御可能であり、
      前記第1開閉器と前記第2開閉器のうち前記第2開閉器のみがオン状態である間に取得した前記第1センサの出力値に基づき、記相関の較正を実行する
    ように構成される、
    エアロゾル吸引器用の制御装置。
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A first circuit, which is connected in series between the load and the power supply and includes a first switch,
    A second circuit, which is connected in parallel to the first circuit, includes a known resistor and a second switch, and has a higher electrical resistance value than the first circuit.
    A control circuit configured to determine the exhaustion or deficiency of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    The control circuit
    It is possible to perform calibration that can reduce the error due to the product tolerance of the correlation and calibration that can reduce the error due to the aging of the correlation.
    The first switch and the second switch can be controlled.
    It is configured to perform the calibration of the correlation based on the output value of the first sensor acquired while only the second switch among the first switch and the second switch is in the ON state. ,
    Control device for aerosol aspirators.
  21. エアロゾル吸引器の制御方法であって、前記エアロゾル吸引器に搭載された制御装置は、
     エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇若しくは不足又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、前記制御回路が、
     前記相関の製品公差による誤差及び前記相関の経時変化による誤差のうちの少なくとも一方を低減可能な較正を実行するステップであって、前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前において、前記負荷が基準温度にあるとみなせる場合に取得された前記第1センサの出力値に基づき、少なくとも前記相関の経時変化による誤差を低減可能な較正を実行するステップを含むステップ
    を含む制御方法。
    A control method for an aerosol aspirator, wherein the control device mounted on the aerosol aspirator is
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    The control circuit includes a control circuit configured to determine the exhaustion or deficiency of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    A step of performing calibration that can reduce at least one of the error due to the product tolerance of the correlation and the error due to the change over time of the correlation, and the load of the electric energy capable of generating the aerosol after the detection of the generation request is detected. A step including a step of performing at least a calibration capable of reducing an error due to a change in the correlation over time based on the output value of the first sensor acquired when the load can be regarded as being at a reference temperature before being supplied to the device. Control method including.
  22. エアロゾル吸引器の制御方法であって、前記エアロゾル吸引器に搭載された制御装置は、
     エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇若しくは不足又は前記負荷の温度を判断し、前記負荷の交換を検出可能であるよう構成される制御回路と
    を含み、前記制御回路が、
     前記相関の製品公差による誤差及び前記相関の経時変化による誤差のうちの少なくとも一方を低減可能な較正を実行するステップであって、前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前において、前記負荷が基準温度にあるとみなせない場合、前記交換の時又は直後に取得された前記第1センサの出力値に基づき、少なくとも前記相関の製品公差による誤差を低減可能な較正を実行するステップを含むステップ
    を含む制御方法。
    A control method for an aerosol aspirator, wherein the control device mounted on the aerosol aspirator is
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    The control includes a control circuit configured to determine the exhaustion or shortage of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor and detect the replacement of the load. The circuit is
    A step of performing calibration that can reduce at least one of the error due to the product tolerance of the correlation and the error due to the aging of the correlation, and the load of the amount of electric energy capable of generating the aerosol after the detection of the generation request is detected. If the load cannot be considered to be at the reference temperature before being supplied to, at least an error due to the product tolerance of the correlation can be reduced based on the output value of the first sensor acquired at the time of the replacement or immediately after the replacement. A control method that includes steps that include performing calibration.
  23. エアロゾル吸引器の制御方法であって、前記エアロゾル吸引器に搭載された制御装置は、
     エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇若しくは不足又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、前記制御回路が、
     前記相関の製品公差による誤差及び前記相関の経時変化による誤差のうちの少なくとも一方を低減可能な較正の実行を試みるステップであって、前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前において、前記負荷が基準温度にあるとみなせない場合、較正を実行しないか、又は、前記相関の前回較正時に用いた前記第1センサの出力値に基づき、少なくとも前記相関の経時変化による誤差を低減可能な較正を実行するステップを含むステップ
    を含む制御方法。
    A control method for an aerosol aspirator, wherein the control device mounted on the aerosol aspirator is
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    The control circuit includes a control circuit configured to determine the exhaustion or deficiency of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    The step of attempting to perform calibration capable of reducing at least one of the error due to the product tolerance of the correlation and the error due to the aging of the correlation, and the amount of power capable of generating the aerosol after the detection of the generation request is detected. If the load cannot be considered to be at the reference temperature before being fed to the load, then no calibration is performed or at least the time of the correlation is based on the output value of the first sensor used during the previous calibration of the correlation. A control method that includes steps that include performing calibrations that can reduce errors due to change.
  24. エアロゾル吸引器の制御方法であって、前記エアロゾル吸引器に搭載された制御装置は、
     エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷の電気抵抗値に関する値又は電気抵抗値を出力する第1センサと、
     エアロゾルの生成要求を出力する第3センサと、
     前記相関及び前記第1センサの出力値に基づき、前記エアロゾル源の枯渇若しくは不足又は前記負荷の温度を判断するよう構成される制御回路と
    を含み、前記制御回路が、
     前記相関の製品公差による誤差及び前記相関の経時変化による誤差のうちの少なくとも一方を低減可能な較正を実行するステップであって、前記生成要求の検知後且つエアロゾルを生成可能な電力量の前記負荷への供給前のタイミングにおいて、前記負荷が基準温度にあるとみなせない場合、前回以前の前記タイミングにおける前記第1センサの出力値に基づき、少なくとも前記相関の経時変化による誤差を低減可能な較正を実行するステップを含むステップ
    を含む制御方法。
    A control method for an aerosol aspirator, wherein the control device mounted on the aerosol aspirator is
    The first sensor that heats the aerosol source and outputs the value related to the electric resistance value or the electric resistance value of the load in which the temperature and the electric resistance value are correlated,
    A third sensor that outputs an aerosol generation request,
    The control circuit includes a control circuit configured to determine the exhaustion or deficiency of the aerosol source or the temperature of the load based on the correlation and the output value of the first sensor.
    A step of performing calibration that can reduce at least one of the error due to the product tolerance of the correlation and the error due to the change over time of the correlation, and the load of the electric energy capable of generating the aerosol after the detection of the generation request is detected. If the load cannot be considered to be at the reference temperature at the timing before supply to, at least calibration that can reduce the error due to the temporal change of the correlation is performed based on the output value of the first sensor at the timing before the previous time. A control method that includes steps, including steps to perform.
  25. 請求項11から15及び21から24のいずれか1項に記載の制御方法をプロセッサに実行させるプログラム。 A program that causes a processor to execute the control method according to any one of claims 11 to 15 and 21 to 24.
  26. 請求項1から10及び16から20のいずれか1項に記載の制御装置を含むエアロゾル吸引器。 An aerosol aspirator comprising the control device according to any one of claims 1 to 10 and 16 to 20.
PCT/JP2019/049351 2019-04-12 2019-12-17 Control device for aerosol inhaler, control method for aerosol inhaler, program, and aerosol inhaler WO2020208869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019076354A JP6695470B1 (en) 2019-04-12 2019-04-12 Control device for aerosol inhaler, control method for aerosol inhaler, program, and aerosol inhaler
JP2019-076354 2019-04-12

Publications (1)

Publication Number Publication Date
WO2020208869A1 true WO2020208869A1 (en) 2020-10-15

Family

ID=70682402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049351 WO2020208869A1 (en) 2019-04-12 2019-12-17 Control device for aerosol inhaler, control method for aerosol inhaler, program, and aerosol inhaler

Country Status (2)

Country Link
JP (1) JP6695470B1 (en)
WO (1) WO2020208869A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102278590B1 (en) * 2019-04-18 2021-07-16 주식회사 케이티앤지 Aerosol Generating Device and Operation Method Thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878211A (en) * 1981-09-02 1983-05-11 オクシメトリツクス・インコ−ポレ−テツド Controller for resistance heat generating element
JP2006505281A (en) * 2002-11-08 2006-02-16 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Electric heating cigarette smoking system with internal manifold for puff detection
JP2014501105A (en) * 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generation system with liquid substrate reduction determination means
JP2018514191A (en) * 2015-03-26 2018-06-07 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Heater management

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878211A (en) * 1981-09-02 1983-05-11 オクシメトリツクス・インコ−ポレ−テツド Controller for resistance heat generating element
JP2006505281A (en) * 2002-11-08 2006-02-16 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Electric heating cigarette smoking system with internal manifold for puff detection
JP2014501105A (en) * 2010-12-24 2014-01-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generation system with liquid substrate reduction determination means
JP2018514191A (en) * 2015-03-26 2018-06-07 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Heater management

Also Published As

Publication number Publication date
JP6695470B1 (en) 2020-05-20
JP2020171253A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2020208868A1 (en) Control device for aerosol inhaler, control method for aerosol inhaler, program, and aerosol inhaler
JP6936414B2 (en) Aerosol generator
JP6625258B1 (en) Aerosol inhaler, control device for aerosol inhaler, control method of aerosol inhaler, and program
CN108135287B (en) Aerosol-generating system with self-exciting electric heater
JP6905073B2 (en) Aerosol generators, aerosol generator control methods, and program rams for the processor to perform these methods.
JP6889345B1 (en) Aerosol generator, control method of aerosol generator and program to make the processor execute the method
US11337462B2 (en) Aerosol generation device, and method and program for operating same
TW201917511A (en) Inhaled-component generating device, method for controlling inhaled-component generating device, and program
JPWO2019146063A1 (en) Aerosol generator, method and program for operating the same
JPWO2019146061A1 (en) Aerosol generator, method and program for operating the same
EA039522B1 (en) Inhalation component generating device, control circuit and control method and control program of inhalation component generating device
JP2020195297A (en) Control device for aerosol suction device and aerosol suction device
TW201916820A (en) Suction component generating apparatus, method of controlling suction component generating apparatus, suction component generating system and program
US20210106064A1 (en) Aerosol generating device, and method and program for operating same
JPWO2019146062A1 (en) Aerosol generator and method for manufacturing aerosol generator
JP2020195295A (en) Control device for aerosol suction device and aerosol suction device
EP3811803B1 (en) Aerosol generation device, and method and program for operating same
WO2020208870A1 (en) Control device for aerosol inhaler, control method for aerosol inhaler, program, and aerosol inhaler
WO2020208869A1 (en) Control device for aerosol inhaler, control method for aerosol inhaler, program, and aerosol inhaler
JP6813701B2 (en) Control device for aerosol aspirator
JP2022008303A (en) Aerosol generator
EA044895B1 (en) AEROSOL DEVICE AND METHOD AND PROGRAM FOR CONTROLLING SUCH DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924572

Country of ref document: EP

Kind code of ref document: A1