WO2020208825A1 - Power conversion device and air conditioner - Google Patents
Power conversion device and air conditioner Download PDFInfo
- Publication number
- WO2020208825A1 WO2020208825A1 PCT/JP2019/016035 JP2019016035W WO2020208825A1 WO 2020208825 A1 WO2020208825 A1 WO 2020208825A1 JP 2019016035 W JP2019016035 W JP 2019016035W WO 2020208825 A1 WO2020208825 A1 WO 2020208825A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiring
- conversion device
- power conversion
- noise
- converter
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from dc input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
Definitions
- the present invention relates to a power converter and an air conditioner that perform power conversion.
- a power conversion device having a common mode choke coil is known.
- Noise caused by the switching operation of the inverter of the power converter is included in the common mode current that flows in common to the wiring pattern of the power converter due to the presence of floating capacitance between the wiring pattern of the power converter and the ground. There is. Such noise may be conducted to the other device when the power conversion device and the other device use a common power source.
- the common mode choke coil removes common mode noise, which is conduction noise due to the common mode current.
- Patent Document 1 discloses a power conversion device having a common mode choke coil, an AC side phase capacitor, and a DC side phase capacitor.
- the AC side interphase capacitor removes common mode noise on the AC side of the converter of the power converter.
- the DC side interphase capacitor removes common mode noise on the DC side of the converter.
- the AC side-phase capacitor and the DC side-phase capacitor are connected to the ground by using a lead wire.
- the lead wire is connected to a structure having the same potential as the ground, such as the housing of the power conversion device or the housing of the device on which the power conversion device is mounted.
- the power conversion device removes the common mode noise from the wiring pattern of the power conversion device by transmitting the common mode noise from the AC side phase capacitor and the DC side phase capacitor to the ground via the lead wire.
- the inductance component of the lead wire works effectively, and the AC side phase capacitor and the DC side phase capacitor The conduction of noise between them is prevented.
- the number of lead wires increases as the number of AC side-phase capacitors and DC side-phase capacitors mounted on the power conversion device increases.
- the number of lead wires increases, the number of parts required for manufacturing the power converter increases and the number of work steps for installing the lead wires increases, so that the manufacturing cost of the power converter increases.
- many lead wires are routed, which complicates the mode in which noise is transmitted. Therefore, when trying to reduce noise in the device, it becomes difficult to identify the noise source and the noise transmission path.
- the AC side phase capacitor and the DC side phase capacitor are connected. Since there is no appropriate impedance in the damaged part, the noise on the AC side and the noise on the DC side interfere with each other in the wiring pattern. In the power conversion device, the noise on the AC side and the noise on the DC side interfere with each other, so that the noise is further increased. As described above, the conventional power conversion device has a problem that it is difficult to reduce noise with a small number of ground wires.
- the present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device capable of reducing noise with a small number of ground wires.
- the power conversion device is connected between the converter and the inverter connected between the AC power supply and the load, and between the AC power supply and the converter.
- a common ground wire is used for grounding each of the AC side phase capacitor and the DC side phase capacitor.
- An electronic component having an inductance component is provided in each of the wiring between the AC side phase capacitor and the ground wire and the wiring between the DC side phase capacitor and the ground wire.
- the power conversion device according to the present invention has an effect that noise can be reduced with a small number of ground wires.
- FIG. 1 is a diagram showing a configuration example of a power conversion device according to a first embodiment of the present invention.
- the power conversion device 100 includes a converter 4 and an inverter 5 connected between the commercial AC power supply 1 and the load 20.
- An example of the load 20 is a motor for driving a compressor provided in an outdoor unit of an air conditioner. Electric power is supplied to the motor by the electric power converter 100 mounted on the outdoor unit.
- the commercial AC power supply 1 outputs a single-phase AC voltage to the power converter 100.
- the converter 4 converts an AC voltage into a DC voltage by a rectifying action.
- the inverter 5 converts the DC voltage output by the converter 4 into a three-phase AC voltage.
- the power conversion device 100 applies the AC voltage output by the inverter 5 to the load 20.
- Each of the input terminals of the converter 4 is connected to the commercial AC power supply 1 via a power supply line.
- Each of the output terminals of the converter 4 is connected to the input terminal of the inverter 5 via a power supply line.
- the power supply line connecting the commercial AC power supply 1 and the converter 4 may be referred to as an AC line
- the power supply line between the converter 4 and the inverter 5 may be referred to as a DC line.
- the power conversion device 100 has a smoothing capacitor 11 connected in parallel to the converter 4.
- the smoothing capacitor 11 is connected between the DC lines on the inverter 5 side of the converter 4.
- the smoothing capacitor 11 smoothes the DC voltage output by the converter 4.
- a DC voltage smoothed by the smoothing capacitor 11 is applied to the inverter 5.
- the power conversion device 100 includes a common mode choke coil 2 connected between the commercial AC power supply 1 and the converter 4, an X capacitor 6 which is an AC side line capacitor, and Y capacitors 7a and 7b which are AC side phase capacitors. It has 8a and 8b and Y capacitors 9a and 9b which are DC side phase capacitors.
- the common mode choke coil 2, the X capacitor 6, and the Y capacitors 7a, 7b, 8a, and 8b function as a filter circuit for removing noise in the AC line.
- the Y capacitors 9a and 9b function as a filter circuit for removing noise in the DC line.
- the X capacitor 6 is connected between AC lines on the commercial AC power supply 1 side of the common mode choke coil 2.
- the Y capacitor 7a and the Y capacitor 7b are connected between the AC lines on the common mode choke coil 2 side of the AC line from the position where the X capacitor 6 is connected.
- the Y capacitor 7a and the Y capacitor 7b are connected in series with each other via the connection point 16.
- the Y capacitor 8a and the Y capacitor 8b are connected between the AC lines on the converter 4 side of the common mode choke coil 2.
- the Y capacitor 8a and the Y capacitor 8b are connected in series with each other via a connection point 17.
- the Y capacitor 9a and the Y capacitor 9b are connected between the DC lines on the inverter 5 side of the DC line from the position where the smoothing capacitor 11 is connected.
- the Y capacitor 9a and the Y capacitor 9b are connected in series with each other via a connection point 18.
- the power conversion device 100 has an output terminal 22 for outputting a single-phase AC voltage.
- Each of the output terminals 22 is located at the end of a branch line branched from the AC line connecting the commercial AC power supply 1 and the converter 4.
- an indoor unit included in the air conditioner is connected to the output terminal 22.
- the power conversion device 100 has a common mode choke coil 3 connected between the commercial AC power supply 1 and the output terminal 22, and Y capacitors 10a and 10b which are AC side phase capacitors.
- the common mode choke coil 3 and the Y capacitors 10a and 10b function as a filter circuit for removing noise in the branch line.
- the Y capacitor 10a and the Y capacitor 10b are connected between the branch lines on the output terminal 22 side of the common mode choke coil 3 among the branch lines.
- the Y capacitor 10a and the Y capacitor 10b are connected in series with each other via a connection point 19.
- the wiring drawn out from the connection point 16, the wiring drawn out from the connection point 17, the wiring drawn out from the connection point 18, and the wiring drawn out from the connection point 19 are one ground wire 21. It is connected to the. Each wiring is connected to the ground via the ground wire 21. As a result, a common ground wire 21 is used for grounding each of the Y capacitors 7a, 7b, 8a, 8b, 9a, 9b, 10a, and 10b.
- the ground wire 21 is connected to the housing of the power conversion device 100 or the housing of the outdoor unit.
- the power conversion device 100 collectively grounds the Y capacitors 7a, 7b, the Y capacitors 8a, 8b, the Y capacitors 9a, 9b, and the Y capacitors 10a, 10b by using the ground wire 21. To do.
- the power conversion device 100 has ferrite beads 12, 13, 14, and 15 which are electronic components having an inductance component.
- the ferrite beads 12 are provided in the wiring between the connection point 16 and the ground wire 21.
- the ferrite beads 13 are provided in the wiring between the connection point 17 and the ground wire 21.
- the ferrite beads 14 are provided in the wiring between the connection point 18 and the ground wire 21.
- the ferrite beads 15 are provided in the wiring between the connection point 19 and the ground wire 21.
- the ferrite beads 12, 13, 14 and 15 cause the energy of the current in the high frequency region to be lost due to the inductance component.
- the ferrite beads 12, 13, 14, 15 absorb noise by losing the energy of the electric current.
- ferrite beads 12 are provided in the wiring between the Y capacitors 7a and 7b and the ground wire 21.
- Ferrite beads 13 are provided in the wiring between the Y capacitors 8a and 8b and the ground wire 21.
- Ferrite beads 14 are provided in the wiring between the Y capacitors 9a and 9b and the ground wire 21.
- Ferrite beads 15 are provided in the wiring between the Y capacitors 10a and 10b and the ground wire 21. That is, electronic components having an inductance component are provided in each of the wiring between the AC side phase capacitor and the ground wire 21 and the wiring between the DC side phase capacitor and the ground wire 21.
- FIG. 2 is a diagram schematically showing an embodiment of mounting of an AC side-phase capacitor and a DC side-phase capacitor included in the power conversion device shown in FIG. 1.
- the Y capacitors 7a, 7b, 8a, 8b, 9a, 9b, 10a, and 10b are mounted on the electronic circuit board 25.
- the electronic circuit board 25 is a board on which the electronic circuit of the power conversion device 100 is mounted. The inside of the electronic circuit is filled with noise of various frequencies according to the operating state of the converter 4 and the inverter 5 shown in FIG.
- the wiring 23 connects the input terminal of the electronic circuit board 25 to the commercial AC power supply 1.
- the wiring 24 connects the output terminal of the electronic circuit board 25 and the load 20.
- FIG. 2 shows a state in which the components provided on the electronic circuit board 25 are viewed from above the electronic circuit board 25. Note that, in FIG. 2, only the components necessary for explanation among the components mounted on the electronic circuit board 25 are shown, and the illustration of other components is omitted.
- the Y capacitors 7a, 7b, 8a, 8b, 9a, 9b, 10a, 10b and the ground wire 21 are connected to each other via a wiring pattern on the electronic circuit board 25.
- the power conversion device 100 can collectively ground each of the AC side-phase capacitor and the DC side-phase capacitor by using the common grounding wire 21.
- the Y capacitors 7a, 7b, the Y capacitors 8a, 8b, the Y capacitors 9a, 9b, and the Y capacitors 10a, 10b If the configurations are grounded independently of each other, a lead wire for grounding will be provided in each configuration.
- the power converter 100 is connected to the lead wire connecting the connection point 16 and the ground, the lead wire connecting the connection point 17 and the ground, and the connection point 18 and the ground, as in the case of the prior art.
- a lead wire and a lead wire connecting the connection point 19 and the ground are provided.
- the power conversion device 100 eliminates the need for lead wires for each configuration by collectively grounding each configuration by the ground wire 21.
- the power conversion device 100 can reduce the number of parts required for manufacturing the power conversion device 100 as compared with the case where each configuration is grounded independently of each other. Further, in the manufacture of the power conversion device 100, a work process for installing lead wires for each configuration becomes unnecessary. As a result, the power conversion device 100 can reduce the manufacturing cost as compared with the case where each configuration is grounded independently of each other.
- Ferrite beads 12, 13, 14, and 15 are provided on a wiring pattern that connects the Y capacitors 7a, 7b, 8a, 8b, 9a, 9b, 10a, and 10b and the ground wire 21.
- the power conversion device 100 can suppress interference between noise on the AC side and noise on the DC side in the wiring pattern.
- the power conversion device 100 can prevent an increase in noise due to interference between noise on the AC side and noise on the DC side, and can enhance the noise reduction effect.
- the lead wires used when the configurations are grounded independently of each other usually have a length of 10 cm to 20 cm. Further, a general lead wire has an inductance of 1 nH / cm.
- each wiring has an inductance equivalent to that of a lead wire by means of ferrite beads 12, 13, 14, 15 provided in each wiring between each configuration and the ground wire 21. I'm letting you. As a result, the power converter 100 can remove noise in the same manner as when the configurations are grounded independently of each other.
- the number of ground wires 21 provided in the power conversion device 100 is not limited to one, and may be plural.
- the power conversion device 100 grounds at least a part of a plurality of interphase capacitors, which are an AC side-phase capacitor and a DC-side phase capacitor, at once, so that each of the plurality of phase capacitors is grounded independently of each other.
- the number of ground wires 21 can be reduced as compared with the above.
- the electronic circuit configuration of the power converter 100 can be changed according to the performance required in the air conditioner.
- the frequency and intensity of noise generated in the electronic circuit also change.
- the power conversion device 100 is provided with ferrite beads 12, 13, 14, and 15 having characteristics that match the noise generated in the electronic circuit.
- the inductance values of the ferrite beads 12, 13, 14, and 15 can be set to optimum values according to the noise frequency. As a result, the power converter 100 can obtain a higher noise reduction effect.
- the characteristics of the ferrite beads 12, 13, 14, and 15 may be the same as each other. Further, at least one of the ferrite beads 12, 13, 14 and 15 may have different characteristics from the others.
- the characteristics of the ferrite beads 12, 13, 14 and 15 can be determined according to the configuration of the electronic circuit. That is, the inductance values of the ferrite beads 12, 13, 14, and 15 can be appropriately determined according to the configuration of the electronic circuit.
- the inductance values of the ferrite beads 12, 13 and 15 provided on the AC side interphase capacitor and the inductance values of the ferrite beads 14 provided on the DC side interphase capacitor are 20 nH
- the inductance values of the ferrite beads 14 are 10 nH.
- the inductance values of the ferrite beads 12, 13, 14, and 15 focus on either suppressing the generation of noise that can be conducted to other components or preventing the conduction of noise from other components. Can be determined by By appropriately determining the inductance values of the ferrite beads 12, 13, 14, and 15, it is possible to classify a circuit in which noise generation is desired to be reduced and a circuit in which noise transmission from other circuits is desired to be prevented.
- the inductance values of the ferrite beads 12, 13, 14, and 15 can be set in the range of 1 nH to 100 nH.
- the power conversion device 100 may include electronic components having an inductance component other than the ferrite beads 12, 13, 14, and 15.
- an electronic component having an inductance component such as a normal mode choke coil can be used.
- the ferrite beads 12, 13, 14, 15 or the normal mode choke coil is smaller than the common mode choke coils 2 and 3. Therefore, the power conversion device 100 can suppress the enlargement of the electronic circuit as compared with the case where the common mode choke coil similar to the common mode choke coils 2 and 3 is used for the electronic component.
- the power conversion device 100 can reduce the number of ground wires 21 by using a common ground wire 21 for grounding each of the AC side phase capacitor and the DC side phase capacitor. Further, in the power conversion device 100, electronic components having an inductance component are provided in each of the wiring between the AC side phase capacitor and the ground wire 21 and the wiring between the DC side phase capacitor and the ground wire 21. , Noise can be effectively reduced. As described above, the power conversion device 100 has an effect that noise can be reduced by using a small number of ground wires 21.
- FIG. 3 is a diagram showing a schematic configuration of a power conversion device according to a second embodiment of the present invention.
- FIG. 4 is a diagram showing the power conversion device shown in FIG. 3 and a housing used for grounding the power conversion device.
- the second embodiment an example of a housing used for grounding the power conversion device 100 will be described.
- the same components as those in the first embodiment are designated by the same reference numerals, and the configurations different from those in the first embodiment will be mainly described.
- the housing 26 encloses the components in the power conversion device 100 shown in FIG.
- the wall portion 27 is attached to the inside of the housing 26 and partitions the space inside the housing 26.
- the housing 26 and the wall portion 27 are formed by using sheet metal.
- the housing 26 and the wall portion 27 form a shield portion that blocks the conduction of noise.
- the wiring 24 connects the output terminal of the electronic circuit board 25 and the load 20.
- the wiring 23 connects the input terminal of the electronic circuit board 25 to the commercial AC power supply 1.
- the configuration shown in FIG. 3 is the configuration in which the wall portion 27 and the wiring 28 are added to the configuration shown in FIG.
- FIG. 4 shows a side view of the components provided in the housing 26.
- the ground wire 21 is connected to the housing 26.
- the wiring 28 is a wiring for connecting the power conversion device 100 and an external device of the power conversion device 100, and refers to the entire wiring such as communication lines and signal lines other than the wires 23 and 24 and the ground line 21. To do.
- the wiring 28 includes a wiring for supplying electric power from the power conversion device 100 to the indoor unit, a communication line for communicating with an external control system of the power conversion device 100, and a wiring for supplying electric power to the thermista. And wiring for supplying power to the four-way valve.
- the thermistor measures the temperature at each part of the air conditioner.
- the four-way valve switches the refrigerant circuit according to the switching of operation between cooling and heating of the air conditioner.
- the ground wire 21 and the wiring 23 are the first wiring
- the wiring 24 and the wiring 28 are the second wiring.
- the first wiring is a wiring that generates a lot of noise among the wiring provided in the power conversion device 100.
- the second wiring is wiring other than the first wiring among the wirings provided in the power conversion device 100, and is a wiring that generates less noise than the first wiring.
- the first wiring is provided in the area surrounded by the housing 26 and the wall portion 27.
- the second wiring is provided outside the area surrounded by the housing 26 and the wall portion 27.
- the shield portion including the housing 26 and the wall portion 27 blocks the conduction of noise from the first wiring to the second wiring by surrounding the area where the first wiring is provided.
- the power conversion device 100 can suppress the noise radiated from the first wiring from being conducted to the second wiring.
- the power conversion device 100 can prevent problems such as malfunction due to noise conduction from the first wiring to the second wiring.
- grounding of each interphase capacitor can be easily realized by connecting the grounding wire 21 to the shield portion in the region where the first wiring is provided.
- the area where the grounding wire 21 is provided can be easily limited as compared with the case where the grounding wire 21 is distributed to each of the interphase capacitors. be able to.
- the power conversion device 100 can arrange the ground wire 21 away from the wiring that is easily affected by noise. Further, the power conversion device 100 can easily surround the area where the first wiring is provided by the shield portion.
- the wall portion 27 does not reach the electronic circuit board 25, and a gap is provided between the electronic circuit board 25 and the wall portion 27.
- the wall portion 27 may reach the electronic circuit board 25.
- the wall portion 27 may penetrate the electronic circuit board 25.
- the shield portion can enhance the shielding property that suppresses the conduction of noise.
- the housing 26 and the wall portion 27 are not limited to those formed by using sheet metal.
- the housing 26 and the wall portion 27 may be made of a material having a property of suppressing noise conduction.
- the shape of the shield portion is not limited to the shape composed of the housing 26 and the wall portion 27 shown in FIG. 4, and can be freely changed.
- the shield portion is not limited to that realized by the housing 26 and the wall portion 27.
- the shield portion may be realized by components other than the housing 26 and the wall portion 27.
- the shield portion may be realized by the aluminum electrolytic capacitor used for the smoothing capacitor 11 shown in FIG.
- the power conversion device 100 can suppress the conduction of noise from the first wiring to the second wiring by providing the shield portion. As a result, the power converter 100 has the effect of being able to further reduce noise.
- FIG. 5 is a diagram showing a schematic configuration of an air conditioner according to a third embodiment of the present invention.
- the air conditioner 200 adjusts the temperature and humidity of the indoor space by sending an air flow for air conditioning to the indoor space.
- the air conditioner 200 switches operation modes such as cooling, blowing, dehumidifying, and heating so that the room temperature becomes a target temperature.
- the air conditioner 200 is a separate type air conditioner in which the outdoor unit 201 is separated from the indoor unit 202.
- the outdoor unit 201 and the indoor unit 202 are connected via a refrigerant pipe 36.
- the refrigerant is filled in the refrigerant pipe 36, and the refrigerant circulates between the outdoor unit 201 and the indoor unit 202 via the refrigerant pipe 36, so that the air conditioner 200 exchanges heat between the indoor and outdoor units. ..
- the outdoor unit 201 has a compressor 31, a four-way valve 32, an outdoor heat exchanger 33, an expansion valve 34, and a fan 39.
- the compressor 31 is provided with a compression mechanism 37 that compresses the refrigerant and a motor 38 that operates the compression mechanism 37.
- the outdoor unit 201 has a power conversion device 100 according to the first or second embodiment.
- the motor 38 is the load 20 shown in FIG. The motor 38 is driven by the power supply from the power converter 100.
- the indoor unit 202 has an indoor heat exchanger 35 and a fan 40.
- the compressor 31, the four-way valve 32, the outdoor heat exchanger 33, the expansion valve 34, and the indoor heat exchanger 35 are connected via a refrigerant pipe 36.
- the compressor 31, the four-way valve 32, the outdoor heat exchanger 33, the expansion valve 34, and the indoor heat exchanger 35 form a refrigeration cycle that is a closed circuit for circulating the refrigerant.
- the components of the air conditioner 200 can also be applied to equipment such as a refrigerator or a freezer equipped with a refrigeration cycle.
- the fan 39 In the outdoor unit 201, the fan 39 generates an air flow by rotation. By generating an air flow, the outdoor unit 201 sends air into the housing of the outdoor unit 201, and sends the air sent into the housing to the outside of the housing.
- the outdoor heat exchanger 33 causes heat exchange between the air passing through the outdoor heat exchanger 33 and the refrigerant. In FIG. 5, the housing of the outdoor unit 201 is not shown.
- the indoor unit 202 is connected to the output terminal 22 shown in FIG.
- the indoor unit 202 operates by receiving power supply from the power conversion device 100.
- the fan 40 generates an air flow by rotation.
- the indoor unit 202 sends air into the housing of the indoor unit 202 and sends the air sent into the housing to the outside of the housing.
- the indoor heat exchanger 35 exchanges heat between the air passing through the indoor heat exchanger 35 and the refrigerant.
- the housing of the indoor unit 202 is not shown.
- the power conversion device 100 may output a three-phase AC voltage to a motor that rotates the fan 39 or a motor that rotates the fan 40.
- the air conditioner 200 has an effect that noise can be reduced by having a small number of ground wires 21 by having the power conversion device 100 according to the first or second embodiment.
- the power conversion device 100 may be provided in a device other than the air conditioner 200 as long as it is provided in a device connected to the commercial AC power supply 1.
- the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Power Conversion In General (AREA)
- Inverter Devices (AREA)
Abstract
A power conversion device (100) is provided with: a converter (4) and an inverter (5); a common mode choke coil (2) connected between the converter (4) and a commercial AC power source (1) that is an AC power source; Y capacitors (7a, 7b, 8a, 8b), which are AC-side interphase capacitors connected between power lines that connect the AC power source and the converter (4); and Y capacitors (9a, 9b), which are DC-side interphase capacitors connected between power lines that connect the converter (4) and the inverter (5). A shared grounding line (21) is used as the respective grounds of the AC-side interphase capacitors and the DC-side interphase capacitors. Ferrite beads (12, 13, 14), which are electronic parts having an inductance component, are respectively provided to wiring between the AC-side interphase capacitors and the grounding line (21), and to wiring between the DC-side interphase capacitors and the grounding line (21).
Description
本発明は、電力変換を行う電力変換装置および空気調和機に関する。
The present invention relates to a power converter and an air conditioner that perform power conversion.
従来、コモンモードチョークコイルを有する電力変換装置が知られている。電力変換装置の配線パターンとアースとの間における浮遊容量の存在によって電力変換装置の配線パターンに共通に流れるコモンモード電流には、電力変換装置が有するインバータのスイッチング動作に起因するノイズなどが入り込むことがある。かかるノイズは、当該電力変換装置と他の装置とが共通の電源を使用する場合において、当該他の装置へ伝導することもある。コモンモードチョークコイルは、コモンモード電流による伝導ノイズであるコモンモードノイズを除去する。
Conventionally, a power conversion device having a common mode choke coil is known. Noise caused by the switching operation of the inverter of the power converter is included in the common mode current that flows in common to the wiring pattern of the power converter due to the presence of floating capacitance between the wiring pattern of the power converter and the ground. There is. Such noise may be conducted to the other device when the power conversion device and the other device use a common power source. The common mode choke coil removes common mode noise, which is conduction noise due to the common mode current.
特許文献1には、コモンモードチョークコイルと交流側相間コンデンサと直流側相間コンデンサとを有する電力変換装置が開示されている。交流側相間コンデンサは、電力変換装置が有するコンバータの交流側におけるコモンモードノイズを除去する。直流側相間コンデンサは、コンバータの直流側におけるコモンモードノイズを除去する。特許文献1に開示される従来の電力変換装置では、交流側相間コンデンサと直流側相間コンデンサとは、リード線を用いてアースに接続される。リード線は、電力変換装置の筐体あるいは電力変換装置が搭載される機器の筐体といった、アースと同電位の構造物に接続される。電力変換装置は、交流側相間コンデンサおよび直流側相間コンデンサからリード線を介してアースへコモンモードノイズを伝達させることによって、電力変換装置が有する配線パターンからコモンモードノイズを除去する。交流側相間コンデンサおよび直流側相間コンデンサの各々とアースとがリード線を用いて個別に接続されることによって、リード線が有するインダクタンス成分が有効に作用して、交流側相間コンデンサおよび直流側相間コンデンサの間におけるノイズの伝導が防止される。
Patent Document 1 discloses a power conversion device having a common mode choke coil, an AC side phase capacitor, and a DC side phase capacitor. The AC side interphase capacitor removes common mode noise on the AC side of the converter of the power converter. The DC side interphase capacitor removes common mode noise on the DC side of the converter. In the conventional power conversion device disclosed in Patent Document 1, the AC side-phase capacitor and the DC side-phase capacitor are connected to the ground by using a lead wire. The lead wire is connected to a structure having the same potential as the ground, such as the housing of the power conversion device or the housing of the device on which the power conversion device is mounted. The power conversion device removes the common mode noise from the wiring pattern of the power conversion device by transmitting the common mode noise from the AC side phase capacitor and the DC side phase capacitor to the ground via the lead wire. By connecting each of the AC side phase capacitor and the DC side phase capacitor and the ground individually using the lead wire, the inductance component of the lead wire works effectively, and the AC side phase capacitor and the DC side phase capacitor The conduction of noise between them is prevented.
上記従来の電力変換装置では、電力変換装置に搭載される交流側相間コンデンサと直流側相間コンデンサとの数が多くなるほど、リード線の数が多くなる。リード線の数が多くなるほど、電力変換装置の製造に必要となる部品の数が多くなるとともにリード線を設置するための作業工程が多くなることによって、電力変換装置の製造コストが増加する。電力変換装置が搭載される機器では、多くのリード線が引き回されることによって、ノイズが伝達する態様が複雑化することになる。このため、当該機器におけるノイズの低減を図る場合に、ノイズの発生源の特定とノイズの伝達経路の特定とが困難となる。
In the above-mentioned conventional power conversion device, the number of lead wires increases as the number of AC side-phase capacitors and DC side-phase capacitors mounted on the power conversion device increases. As the number of lead wires increases, the number of parts required for manufacturing the power converter increases and the number of work steps for installing the lead wires increases, so that the manufacturing cost of the power converter increases. In a device equipped with a power conversion device, many lead wires are routed, which complicates the mode in which noise is transmitted. Therefore, when trying to reduce noise in the device, it becomes difficult to identify the noise source and the noise transmission path.
交流側相間コンデンサと直流側相間コンデンサとの各々とアースとを、リード線を用いた個別の接続に代えて配線パターンによって接続することとした場合、交流側相間コンデンサと直流側相間コンデンサとが接続された部位に適切なインピーダンスが無いことから、交流側のノイズと直流側のノイズとが配線パターンにおいて干渉し合う。電力変換装置は、交流側のノイズと直流側のノイズとが干渉し合うことによって、さらにノイズが増加することになる。このように、上記従来の電力変換装置では、少ない接地線によりノイズを低減することが困難であるという問題があった。
When each of the AC side phase capacitor, the DC side phase capacitor, and the ground are connected by a wiring pattern instead of individual connection using lead wires, the AC side phase capacitor and the DC side phase capacitor are connected. Since there is no appropriate impedance in the damaged part, the noise on the AC side and the noise on the DC side interfere with each other in the wiring pattern. In the power conversion device, the noise on the AC side and the noise on the DC side interfere with each other, so that the noise is further increased. As described above, the conventional power conversion device has a problem that it is difficult to reduce noise with a small number of ground wires.
本発明は、上記に鑑みてなされたものであって、少ない接地線によってノイズを低減可能とする電力変換装置を得ることを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device capable of reducing noise with a small number of ground wires.
上述した課題を解決し、目的を達成するために、本発明に係る電力変換装置は、交流電源と負荷との間に接続されたコンバータおよびインバータと、交流電源とコンバータとの間に接続されたコモンモードチョークコイルと、交流電源とコンバータとを接続する電源ライン同士の間に接続された交流側相間コンデンサと、コンバータとインバータとを接続する電源ライン同士の間に接続された直流側相間コンデンサと、を備える。交流側相間コンデンサおよび直流側相間コンデンサの各々の接地には、共通の接地線が用いられている。交流側相間コンデンサおよび接地線の間の配線と、直流側相間コンデンサおよび接地線の間の配線との各々に、インダクタンス成分を持つ電子部品が設けられている。
In order to solve the above-mentioned problems and achieve the object, the power conversion device according to the present invention is connected between the converter and the inverter connected between the AC power supply and the load, and between the AC power supply and the converter. A common mode choke coil, an AC side-phase capacitor connected between the power lines connecting the AC power supply and the converter, and a DC side-phase capacitor connected between the power supply lines connecting the converter and the inverter. , Equipped with. A common ground wire is used for grounding each of the AC side phase capacitor and the DC side phase capacitor. An electronic component having an inductance component is provided in each of the wiring between the AC side phase capacitor and the ground wire and the wiring between the DC side phase capacitor and the ground wire.
本発明に係る電力変換装置は、少ない接地線によってノイズを低減することができるという効果を奏する。
The power conversion device according to the present invention has an effect that noise can be reduced with a small number of ground wires.
以下に、本発明の実施の形態にかかる電力変換装置および空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
The power conversion device and the air conditioner according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
図1は、本発明の実施の形態1にかかる電力変換装置の構成例を示す図である。電力変換装置100は、商用交流電源1と負荷20との間に接続されたコンバータ4およびインバータ5を有する。負荷20の例は、空気調和機の室外機に備えられた圧縮機を駆動するモータである。モータには、室外機に搭載された電力変換装置100によって電力が供給される。 Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a power conversion device according to a first embodiment of the present invention. Thepower conversion device 100 includes a converter 4 and an inverter 5 connected between the commercial AC power supply 1 and the load 20. An example of the load 20 is a motor for driving a compressor provided in an outdoor unit of an air conditioner. Electric power is supplied to the motor by the electric power converter 100 mounted on the outdoor unit.
図1は、本発明の実施の形態1にかかる電力変換装置の構成例を示す図である。電力変換装置100は、商用交流電源1と負荷20との間に接続されたコンバータ4およびインバータ5を有する。負荷20の例は、空気調和機の室外機に備えられた圧縮機を駆動するモータである。モータには、室外機に搭載された電力変換装置100によって電力が供給される。 Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a power conversion device according to a first embodiment of the present invention. The
商用交流電源1は、単相交流電圧を電力変換装置100へ出力する。コンバータ4は、整流作用によって交流電圧を直流電圧へ変換する。インバータ5は、コンバータ4により出力された直流電圧を3相交流電圧へ変換する。電力変換装置100は、インバータ5により出力された交流電圧を負荷20へ印加する。コンバータ4の入力端子の各々は、電源ラインを介して商用交流電源1に接続されている。コンバータ4の出力端子の各々は、電源ラインを介してインバータ5の入力端子に接続されている。なお、以下の説明において、商用交流電源1とコンバータ4とを接続する電源ラインを交流ライン、コンバータ4とインバータ5との間の電源ラインを直流ラインと称することがある。
The commercial AC power supply 1 outputs a single-phase AC voltage to the power converter 100. The converter 4 converts an AC voltage into a DC voltage by a rectifying action. The inverter 5 converts the DC voltage output by the converter 4 into a three-phase AC voltage. The power conversion device 100 applies the AC voltage output by the inverter 5 to the load 20. Each of the input terminals of the converter 4 is connected to the commercial AC power supply 1 via a power supply line. Each of the output terminals of the converter 4 is connected to the input terminal of the inverter 5 via a power supply line. In the following description, the power supply line connecting the commercial AC power supply 1 and the converter 4 may be referred to as an AC line, and the power supply line between the converter 4 and the inverter 5 may be referred to as a DC line.
電力変換装置100は、コンバータ4に並列に接続されている平滑コンデンサ11を有する。平滑コンデンサ11は、コンバータ4のインバータ5側において、直流ライン同士の間に接続されている。平滑コンデンサ11は、コンバータ4により出力された直流電圧を平滑化する。インバータ5には、平滑コンデンサ11によって平滑化された直流電圧が印加される。
The power conversion device 100 has a smoothing capacitor 11 connected in parallel to the converter 4. The smoothing capacitor 11 is connected between the DC lines on the inverter 5 side of the converter 4. The smoothing capacitor 11 smoothes the DC voltage output by the converter 4. A DC voltage smoothed by the smoothing capacitor 11 is applied to the inverter 5.
電力変換装置100は、商用交流電源1とコンバータ4との間に接続されたコモンモードチョークコイル2と、交流側線間コンデンサであるXコンデンサ6と、交流側相間コンデンサであるYコンデンサ7a,7b,8a,8bと、直流側相間コンデンサであるYコンデンサ9a,9bとを有する。コモンモードチョークコイル2とXコンデンサ6とYコンデンサ7a,7b,8a,8bとは、交流ラインにおけるノイズを除去するフィルタ回路として機能する。Yコンデンサ9a,9bは、直流ラインにおけるノイズを除去するフィルタ回路として機能する。
The power conversion device 100 includes a common mode choke coil 2 connected between the commercial AC power supply 1 and the converter 4, an X capacitor 6 which is an AC side line capacitor, and Y capacitors 7a and 7b which are AC side phase capacitors. It has 8a and 8b and Y capacitors 9a and 9b which are DC side phase capacitors. The common mode choke coil 2, the X capacitor 6, and the Y capacitors 7a, 7b, 8a, and 8b function as a filter circuit for removing noise in the AC line. The Y capacitors 9a and 9b function as a filter circuit for removing noise in the DC line.
Xコンデンサ6は、コモンモードチョークコイル2の商用交流電源1側において、交流ライン同士の間に接続されている。Yコンデンサ7aとYコンデンサ7bとは、交流ラインのうちXコンデンサ6が接続されている位置よりもコモンモードチョークコイル2側において、交流ライン同士の間に接続されている。Yコンデンサ7aとYコンデンサ7bとは、接続点16を介して互いに直列に接続されている。
The X capacitor 6 is connected between AC lines on the commercial AC power supply 1 side of the common mode choke coil 2. The Y capacitor 7a and the Y capacitor 7b are connected between the AC lines on the common mode choke coil 2 side of the AC line from the position where the X capacitor 6 is connected. The Y capacitor 7a and the Y capacitor 7b are connected in series with each other via the connection point 16.
Yコンデンサ8aとYコンデンサ8bとは、コモンモードチョークコイル2のコンバータ4側において、交流ライン同士の間に接続されている。Yコンデンサ8aとYコンデンサ8bとは、接続点17を介して互いに直列に接続されている。
The Y capacitor 8a and the Y capacitor 8b are connected between the AC lines on the converter 4 side of the common mode choke coil 2. The Y capacitor 8a and the Y capacitor 8b are connected in series with each other via a connection point 17.
Yコンデンサ9aとYコンデンサ9bとは、直流ラインのうち平滑コンデンサ11が接続されている位置よりもインバータ5側において、直流ライン同士の間に接続されている。Yコンデンサ9aとYコンデンサ9bとは、接続点18を介して互いに直列に接続されている。
The Y capacitor 9a and the Y capacitor 9b are connected between the DC lines on the inverter 5 side of the DC line from the position where the smoothing capacitor 11 is connected. The Y capacitor 9a and the Y capacitor 9b are connected in series with each other via a connection point 18.
電力変換装置100は、単相交流電圧を出力するための出力端子22を有する。出力端子22の各々は、商用交流電源1とコンバータ4とを接続する交流ラインから分岐された分岐ラインの端に位置する。例を挙げると、出力端子22には、空気調和機が有する室内機が接続される。
The power conversion device 100 has an output terminal 22 for outputting a single-phase AC voltage. Each of the output terminals 22 is located at the end of a branch line branched from the AC line connecting the commercial AC power supply 1 and the converter 4. For example, an indoor unit included in the air conditioner is connected to the output terminal 22.
電力変換装置100は、商用交流電源1と出力端子22との間に接続されたコモンモードチョークコイル3と、交流側相間コンデンサであるYコンデンサ10a,10bとを有する。コモンモードチョークコイル3とYコンデンサ10a,10bとは、分岐ラインにおけるノイズを除去するフィルタ回路として機能する。
The power conversion device 100 has a common mode choke coil 3 connected between the commercial AC power supply 1 and the output terminal 22, and Y capacitors 10a and 10b which are AC side phase capacitors. The common mode choke coil 3 and the Y capacitors 10a and 10b function as a filter circuit for removing noise in the branch line.
Yコンデンサ10aとYコンデンサ10bとは、分岐ラインのうちコモンモードチョークコイル3の出力端子22側において、分岐ライン同士の間に接続されている。Yコンデンサ10aとYコンデンサ10bとは、接続点19を介して互いに直列に接続されている。
The Y capacitor 10a and the Y capacitor 10b are connected between the branch lines on the output terminal 22 side of the common mode choke coil 3 among the branch lines. The Y capacitor 10a and the Y capacitor 10b are connected in series with each other via a connection point 19.
接続点16から引き出されている配線と、接続点17から引き出されている配線と、接続点18から引き出されている配線と、接続点19から引き出されている配線とは、1つの接地線21に接続されている。各配線は、接地線21を介してアースに接続されている。これにより、Yコンデンサ7a,7b,8a,8b,9a,9b,10a,10bの各々の接地には、共通の接地線21が用いられている。例を挙げると、接地線21は、電力変換装置100の筐体、あるいは室外機の筐体に接続される。このように、電力変換装置100は、接地線21を用いることによって、Yコンデンサ7a,7bとYコンデンサ8a,8bとYコンデンサ9a,9bとYコンデンサ10a,10bとの各構成の接地を一括して行う。
The wiring drawn out from the connection point 16, the wiring drawn out from the connection point 17, the wiring drawn out from the connection point 18, and the wiring drawn out from the connection point 19 are one ground wire 21. It is connected to the. Each wiring is connected to the ground via the ground wire 21. As a result, a common ground wire 21 is used for grounding each of the Y capacitors 7a, 7b, 8a, 8b, 9a, 9b, 10a, and 10b. For example, the ground wire 21 is connected to the housing of the power conversion device 100 or the housing of the outdoor unit. In this way, the power conversion device 100 collectively grounds the Y capacitors 7a, 7b, the Y capacitors 8a, 8b, the Y capacitors 9a, 9b, and the Y capacitors 10a, 10b by using the ground wire 21. To do.
電力変換装置100は、インダクタンス成分を持つ電子部品であるフェライトビーズ12,13,14,15を有する。フェライトビーズ12は、接続点16と接地線21との間の配線に設けられている。フェライトビーズ13は、接続点17と接地線21との間の配線に設けられている。フェライトビーズ14は、接続点18と接地線21との間の配線に設けられている。フェライトビーズ15は、接続点19と接地線21との間の配線に設けられている。フェライトビーズ12,13,14,15は、高周波領域における電流のエネルギーをインダクタンス成分によって損失させる。フェライトビーズ12,13,14,15は、電流のエネルギーを損失させることによってノイズを吸収する。
The power conversion device 100 has ferrite beads 12, 13, 14, and 15 which are electronic components having an inductance component. The ferrite beads 12 are provided in the wiring between the connection point 16 and the ground wire 21. The ferrite beads 13 are provided in the wiring between the connection point 17 and the ground wire 21. The ferrite beads 14 are provided in the wiring between the connection point 18 and the ground wire 21. The ferrite beads 15 are provided in the wiring between the connection point 19 and the ground wire 21. The ferrite beads 12, 13, 14 and 15 cause the energy of the current in the high frequency region to be lost due to the inductance component. The ferrite beads 12, 13, 14, 15 absorb noise by losing the energy of the electric current.
このように、Yコンデンサ7a,7bおよび接地線21の間の配線にはフェライトビーズ12が設けられている。Yコンデンサ8a,8bおよび接地線21の間の配線にはフェライトビーズ13が設けられている。Yコンデンサ9a,9bおよび接地線21の間の配線にはフェライトビーズ14が設けられている。Yコンデンサ10a,10bおよび接地線21の間の配線にはフェライトビーズ15が設けられている。すなわち、交流側相間コンデンサおよび接地線21の間の配線と、直流側相間コンデンサおよび接地線21の間の配線との各々に、インダクタンス成分を持つ電子部品が設けられている。
As described above, ferrite beads 12 are provided in the wiring between the Y capacitors 7a and 7b and the ground wire 21. Ferrite beads 13 are provided in the wiring between the Y capacitors 8a and 8b and the ground wire 21. Ferrite beads 14 are provided in the wiring between the Y capacitors 9a and 9b and the ground wire 21. Ferrite beads 15 are provided in the wiring between the Y capacitors 10a and 10b and the ground wire 21. That is, electronic components having an inductance component are provided in each of the wiring between the AC side phase capacitor and the ground wire 21 and the wiring between the DC side phase capacitor and the ground wire 21.
図2は、図1に示す電力変換装置が有する交流側相間コンデンサと直流側相間コンデンサとの実装の態様を模式的に示す図である。Yコンデンサ7a,7b,8a,8b,9a,9b,10a,10bは、電子回路基板25に実装されている。電子回路基板25は、電力変換装置100の電子回路が実装された基板である。電子回路の内部には、図1に示すコンバータ4とインバータ5との動作の状態にしたがって、さまざまな周波数のノイズが充満する。
FIG. 2 is a diagram schematically showing an embodiment of mounting of an AC side-phase capacitor and a DC side-phase capacitor included in the power conversion device shown in FIG. 1. The Y capacitors 7a, 7b, 8a, 8b, 9a, 9b, 10a, and 10b are mounted on the electronic circuit board 25. The electronic circuit board 25 is a board on which the electronic circuit of the power conversion device 100 is mounted. The inside of the electronic circuit is filled with noise of various frequencies according to the operating state of the converter 4 and the inverter 5 shown in FIG.
配線23は、電子回路基板25が有する入力端子と商用交流電源1とを接続する。配線24は、電子回路基板25が有する出力端子と負荷20とを接続する。図2では、電子回路基板25に設けられている構成要素を電子回路基板25の上方から見た様子を示している。なお、図2では、電子回路基板25に実装されている構成要素のうち説明のために必要な構成要素のみを示すこととし、その他の構成要素についての図示を省略する。
The wiring 23 connects the input terminal of the electronic circuit board 25 to the commercial AC power supply 1. The wiring 24 connects the output terminal of the electronic circuit board 25 and the load 20. FIG. 2 shows a state in which the components provided on the electronic circuit board 25 are viewed from above the electronic circuit board 25. Note that, in FIG. 2, only the components necessary for explanation among the components mounted on the electronic circuit board 25 are shown, and the illustration of other components is omitted.
Yコンデンサ7a,7b,8a,8b,9a,9b,10a,10bと接地線21とは、電子回路基板25上の配線パターンを介して接続されている。これにより、電力変換装置100は、共通の接地線21を用いて、交流側相間コンデンサおよび直流側相間コンデンサの各々の接地を一括して行うことができる。
The Y capacitors 7a, 7b, 8a, 8b, 9a, 9b, 10a, 10b and the ground wire 21 are connected to each other via a wiring pattern on the electronic circuit board 25. As a result, the power conversion device 100 can collectively ground each of the AC side-phase capacitor and the DC side-phase capacitor by using the common grounding wire 21.
仮に、交流側相間コンデンサおよび直流側相間コンデンサの各々が一括して接地される構成に代えて、Yコンデンサ7a,7bとYコンデンサ8a,8bとYコンデンサ9a,9bとYコンデンサ10a,10bとの各構成が互いに独立して接地される場合には、接地のためのリード線が各構成に設けられることになる。電力変換装置100には、従来技術の場合と同様に、接続点16とアースとを接続するリード線と、接続点17とアースとを接続するリード線と、接続点18とアースとを接続するリード線と、接続点19とアースとを接続するリード線とが設けられる。
Assuming that the AC side-phase capacitor and the DC side-phase capacitor are all grounded together, the Y capacitors 7a, 7b, the Y capacitors 8a, 8b, the Y capacitors 9a, 9b, and the Y capacitors 10a, 10b If the configurations are grounded independently of each other, a lead wire for grounding will be provided in each configuration. The power converter 100 is connected to the lead wire connecting the connection point 16 and the ground, the lead wire connecting the connection point 17 and the ground, and the connection point 18 and the ground, as in the case of the prior art. A lead wire and a lead wire connecting the connection point 19 and the ground are provided.
実施の形態1にかかる電力変換装置100は、接地線21によって各構成を一括して接地させることによって、構成ごとのリード線が不要となる。電力変換装置100は、各構成が互いに独立して接地される場合と比較して、電力変換装置100の製造に必要となる部品の数を少なくすることができる。また、電力変換装置100の製造において、構成ごとのリード線の設置のための作業工程が不要となる。これにより、電力変換装置100は、各構成が互いに独立して接地される場合と比較して、製造コストを抑えることができる。
The power conversion device 100 according to the first embodiment eliminates the need for lead wires for each configuration by collectively grounding each configuration by the ground wire 21. The power conversion device 100 can reduce the number of parts required for manufacturing the power conversion device 100 as compared with the case where each configuration is grounded independently of each other. Further, in the manufacture of the power conversion device 100, a work process for installing lead wires for each configuration becomes unnecessary. As a result, the power conversion device 100 can reduce the manufacturing cost as compared with the case where each configuration is grounded independently of each other.
フェライトビーズ12,13,14,15は、Yコンデンサ7a,7b,8a,8b,9a,9b,10a,10bと接地線21とを接続する配線パターン上に設けられている。インダクタンス成分を持つフェライトビーズ12,13,14,15が配線パターン上に設けられることによって、電力変換装置100は、配線パターンにおける交流側のノイズと直流側のノイズとの干渉を抑えることができる。これにより、電力変換装置100は、交流側のノイズと直流側のノイズとの干渉によるノイズの増加を防止することができ、ノイズ低減効果を高めることができる。
Ferrite beads 12, 13, 14, and 15 are provided on a wiring pattern that connects the Y capacitors 7a, 7b, 8a, 8b, 9a, 9b, 10a, and 10b and the ground wire 21. By providing the ferrite beads 12, 13, 14, and 15 having an inductance component on the wiring pattern, the power conversion device 100 can suppress interference between noise on the AC side and noise on the DC side in the wiring pattern. As a result, the power conversion device 100 can prevent an increase in noise due to interference between noise on the AC side and noise on the DC side, and can enhance the noise reduction effect.
各構成が互いに独立して接地される場合において用いられる上記のリード線は、通常、10cmから20cmの長さを有する。また、一般的なリード線は、1nH/cmのインダクタンスを有する。実施の形態1にかかる電力変換装置100では、各構成と接地線21との間の各配線に設けられたフェライトビーズ12,13,14,15によって、リード線と同等のインダクタンスを各配線に持たせている。これにより、電力変換装置100は、各構成が互いに独立して接地される場合と同様にノイズを除去することができる。
The lead wires used when the configurations are grounded independently of each other usually have a length of 10 cm to 20 cm. Further, a general lead wire has an inductance of 1 nH / cm. In the power conversion device 100 according to the first embodiment, each wiring has an inductance equivalent to that of a lead wire by means of ferrite beads 12, 13, 14, 15 provided in each wiring between each configuration and the ground wire 21. I'm letting you. As a result, the power converter 100 can remove noise in the same manner as when the configurations are grounded independently of each other.
なお、電力変換装置100に設けられる接地線21の数は1つに限られず、複数であっても良い。電力変換装置100は、交流側相間コンデンサおよび直流側相間コンデンサである複数の相間コンデンサのうちの少なくとも一部について一括して接地させることによって、複数の相間コンデンサの各々を互いに独立して接地させる場合に比べて接地線21の数を少なくすることができる。
The number of ground wires 21 provided in the power conversion device 100 is not limited to one, and may be plural. When the power conversion device 100 grounds at least a part of a plurality of interphase capacitors, which are an AC side-phase capacitor and a DC-side phase capacitor, at once, so that each of the plurality of phase capacitors is grounded independently of each other. The number of ground wires 21 can be reduced as compared with the above.
空気調和機に搭載される電力変換装置100の場合、電力変換装置100の電子回路構成は、空気調和機において必要とされる性能によって変えられる。電子回路構成が変わると、電子回路において発生するノイズの周波数ならびに強さも変化する。電力変換装置100には、電子回路において発生するノイズに合わせた特性を有するフェライトビーズ12,13,14,15が設けられる。各フェライトビーズ12,13,14,15のインダクタンス値には、ノイズの周波数に合わせて最適な値を設定することができる。これにより、電力変換装置100は、より高いノイズ低減効果を得ることができる。
In the case of the power converter 100 mounted on the air conditioner, the electronic circuit configuration of the power converter 100 can be changed according to the performance required in the air conditioner. When the electronic circuit configuration changes, the frequency and intensity of noise generated in the electronic circuit also change. The power conversion device 100 is provided with ferrite beads 12, 13, 14, and 15 having characteristics that match the noise generated in the electronic circuit. The inductance values of the ferrite beads 12, 13, 14, and 15 can be set to optimum values according to the noise frequency. As a result, the power converter 100 can obtain a higher noise reduction effect.
各フェライトビーズ12,13,14,15の特性は、互いに同じであっても良い。また、フェライトビーズ12,13,14,15の中の少なくとも1つは、その他とは異なる特性を有していても良い。各フェライトビーズ12,13,14,15の特性は、電子回路の構成に合わせて決定することができる。すなわち、各フェライトビーズ12,13,14,15のインダクタンス値は、電子回路の構成に合わせて適宜決定できる。
The characteristics of the ferrite beads 12, 13, 14, and 15 may be the same as each other. Further, at least one of the ferrite beads 12, 13, 14 and 15 may have different characteristics from the others. The characteristics of the ferrite beads 12, 13, 14 and 15 can be determined according to the configuration of the electronic circuit. That is, the inductance values of the ferrite beads 12, 13, 14, and 15 can be appropriately determined according to the configuration of the electronic circuit.
交流側相間コンデンサに設けられるフェライトビーズ12,13,15のインダクタンス値と直流側相間コンデンサに設けられるフェライトビーズ14のインダクタンス値とを互いに異なる値とすることによって、交流側のノイズと直流側のノイズとの干渉を抑えることが可能となる。例を挙げると、フェライトビーズ12,13,15のインダクタンス値は20nH、フェライトビーズ14のインダクタンス値は10nHとされる。
By setting the inductance values of the ferrite beads 12, 13 and 15 provided on the AC side interphase capacitor and the inductance values of the ferrite beads 14 provided on the DC side interphase capacitor to different values, the noise on the AC side and the noise on the DC side It is possible to suppress interference with. For example, the inductance values of the ferrite beads 12, 13 and 15 are 20 nH, and the inductance values of the ferrite beads 14 are 10 nH.
各フェライトビーズ12,13,14,15のインダクタンス値は、他の構成要素へ伝導し得るノイズの発生を抑えることと、他の構成要素からのノイズの伝導を防ぐこととのどちらに重点をおくかによって決定することができる。各フェライトビーズ12,13,14,15のインダクタンス値を適宜決定することによって、ノイズ発生を低減させたい回路と他の回路からのノイズの伝導を防ぎたい回路との分類が実現可能となる。例を挙げると、各フェライトビーズ12,13,14,15のインダクタンス値は、1nHから100nHの範囲において設定することができる。
The inductance values of the ferrite beads 12, 13, 14, and 15 focus on either suppressing the generation of noise that can be conducted to other components or preventing the conduction of noise from other components. Can be determined by By appropriately determining the inductance values of the ferrite beads 12, 13, 14, and 15, it is possible to classify a circuit in which noise generation is desired to be reduced and a circuit in which noise transmission from other circuits is desired to be prevented. For example, the inductance values of the ferrite beads 12, 13, 14, and 15 can be set in the range of 1 nH to 100 nH.
なお、電力変換装置100は、フェライトビーズ12,13,14,15以外の、インダクタンス成分を持つ電子部品を有しても良い。インダクタンス成分を持つ電子部品には、ノーマルモードチョークコイルといった、フェライトビーズ12,13,14,15と同等のインダクタンス成分を持つ電子部品を用いることができる。フェライトビーズ12,13,14,15またはノーマルモードチョークコイルは、コモンモードチョークコイル2,3よりも小型である。このため、かかる電子部品にコモンモードチョークコイル2,3と同様のコモンモードチョークコイルが用いられる場合に比べて、電力変換装置100は、電子回路の大型化を抑制することができる。
The power conversion device 100 may include electronic components having an inductance component other than the ferrite beads 12, 13, 14, and 15. As the electronic component having an inductance component, an electronic component having an inductance component equivalent to that of the ferrite beads 12, 13, 14 and 15 such as a normal mode choke coil can be used. The ferrite beads 12, 13, 14, 15 or the normal mode choke coil is smaller than the common mode choke coils 2 and 3. Therefore, the power conversion device 100 can suppress the enlargement of the electronic circuit as compared with the case where the common mode choke coil similar to the common mode choke coils 2 and 3 is used for the electronic component.
実施の形態1によると、電力変換装置100は、交流側相間コンデンサおよび直流側相間コンデンサの各々の接地に共通の接地線21が用いられることによって、接地線21の数を少なくすることができる。また、電力変換装置100は、交流側相間コンデンサおよび接地線21の間の配線と、直流側相間コンデンサおよび接地線21の間の配線との各々に、インダクタンス成分を持つ電子部品が設けられることによって、ノイズの効果的な低減が可能となる。以上により、電力変換装置100は、少ない接地線21によってノイズを低減することができるという効果を奏する。
According to the first embodiment, the power conversion device 100 can reduce the number of ground wires 21 by using a common ground wire 21 for grounding each of the AC side phase capacitor and the DC side phase capacitor. Further, in the power conversion device 100, electronic components having an inductance component are provided in each of the wiring between the AC side phase capacitor and the ground wire 21 and the wiring between the DC side phase capacitor and the ground wire 21. , Noise can be effectively reduced. As described above, the power conversion device 100 has an effect that noise can be reduced by using a small number of ground wires 21.
実施の形態2.
図3は、本発明の実施の形態2にかかる電力変換装置の概略構成を示す図である。図4は、図3に示す電力変換装置と電力変換装置の接地に用いられる筐体とを示す図である。実施の形態2では、電力変換装置100の接地に用いられる筐体の例について説明する。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。 Embodiment 2.
FIG. 3 is a diagram showing a schematic configuration of a power conversion device according to a second embodiment of the present invention. FIG. 4 is a diagram showing the power conversion device shown in FIG. 3 and a housing used for grounding the power conversion device. In the second embodiment, an example of a housing used for grounding thepower conversion device 100 will be described. In the second embodiment, the same components as those in the first embodiment are designated by the same reference numerals, and the configurations different from those in the first embodiment will be mainly described.
図3は、本発明の実施の形態2にかかる電力変換装置の概略構成を示す図である。図4は、図3に示す電力変換装置と電力変換装置の接地に用いられる筐体とを示す図である。実施の形態2では、電力変換装置100の接地に用いられる筐体の例について説明する。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。 Embodiment 2.
FIG. 3 is a diagram showing a schematic configuration of a power conversion device according to a second embodiment of the present invention. FIG. 4 is a diagram showing the power conversion device shown in FIG. 3 and a housing used for grounding the power conversion device. In the second embodiment, an example of a housing used for grounding the
筐体26は、図1に示す電力変換装置100内の構成要素を囲う。壁部27は、筐体26の内部に取り付けられており、筐体26内部の空間を仕切る。筐体26と壁部27とは、板金を用いて形成されている。筐体26と壁部27とは、ノイズの伝導を遮断するシールド部を構成する。
The housing 26 encloses the components in the power conversion device 100 shown in FIG. The wall portion 27 is attached to the inside of the housing 26 and partitions the space inside the housing 26. The housing 26 and the wall portion 27 are formed by using sheet metal. The housing 26 and the wall portion 27 form a shield portion that blocks the conduction of noise.
配線24は、電子回路基板25が有する出力端子と負荷20とを接続する。配線23は、電子回路基板25が有する入力端子と商用交流電源1とを接続する。なお、図3に示す構成は、図2に示す構成に、壁部27と配線28とが追加されたものである。図4には、筐体26に設けられている構成要素を側方から見た様子を示している。接地線21は、筐体26に接続されている。
The wiring 24 connects the output terminal of the electronic circuit board 25 and the load 20. The wiring 23 connects the input terminal of the electronic circuit board 25 to the commercial AC power supply 1. The configuration shown in FIG. 3 is the configuration in which the wall portion 27 and the wiring 28 are added to the configuration shown in FIG. FIG. 4 shows a side view of the components provided in the housing 26. The ground wire 21 is connected to the housing 26.
配線28は、電力変換装置100と電力変換装置100の外部の装置とを接続するための配線であって、配線23,24および接地線21以外の通信線および信号線といった配線全体を指すものとする。配線28には、電力変換装置100から室内機への電力供給のための配線と、電力変換装置100の外部の制御システムとの通信のための通信線と、サーミスタへの電力供給のための配線と、四方弁への電力供給のための配線とが含まれる。サーミスタは、空気調和機の各部位における温度を計測する。四方弁は、空気調和機の冷房と暖房との運転の切り換えにしたがって冷媒回路を切り換える。
The wiring 28 is a wiring for connecting the power conversion device 100 and an external device of the power conversion device 100, and refers to the entire wiring such as communication lines and signal lines other than the wires 23 and 24 and the ground line 21. To do. The wiring 28 includes a wiring for supplying electric power from the power conversion device 100 to the indoor unit, a communication line for communicating with an external control system of the power conversion device 100, and a wiring for supplying electric power to the thermista. And wiring for supplying power to the four-way valve. The thermistor measures the temperature at each part of the air conditioner. The four-way valve switches the refrigerant circuit according to the switching of operation between cooling and heating of the air conditioner.
ここで、接地線21と配線23とを第1の配線、配線24と配線28とを第2の配線とする。第1の配線は、電力変換装置100に設けられている配線のうち、多くのノイズを発生させる配線である。第2の配線は、電力変換装置100に設けられている配線のうち第1の配線以外の配線であって、第1の配線に比べて発生するノイズが少ない配線である。
Here, the ground wire 21 and the wiring 23 are the first wiring, and the wiring 24 and the wiring 28 are the second wiring. The first wiring is a wiring that generates a lot of noise among the wiring provided in the power conversion device 100. The second wiring is wiring other than the first wiring among the wirings provided in the power conversion device 100, and is a wiring that generates less noise than the first wiring.
第1の配線は、筐体26と壁部27とによって囲われる領域に設けられている。第2の配線は、筐体26と壁部27とによって囲われる領域の外に設けられている。筐体26と壁部27とからなるシールド部は、第1の配線が設けられている領域を囲うことによって、第1の配線から第2の配線へのノイズの伝導を遮断する。電力変換装置100は、シールド部が設けられることによって、第1の配線から放射されたノイズが第2の配線へ伝導することを抑制できる。これにより、電力変換装置100は、第1の配線から第2の配線へノイズが伝導することによる誤作動といった不具合を防ぐことができる。また、各相間コンデンサの接地は、第1の配線が設けられている領域内においてシールド部へ接地線21を接続させることによって容易に実現することができる。
The first wiring is provided in the area surrounded by the housing 26 and the wall portion 27. The second wiring is provided outside the area surrounded by the housing 26 and the wall portion 27. The shield portion including the housing 26 and the wall portion 27 blocks the conduction of noise from the first wiring to the second wiring by surrounding the area where the first wiring is provided. By providing the shield portion, the power conversion device 100 can suppress the noise radiated from the first wiring from being conducted to the second wiring. As a result, the power conversion device 100 can prevent problems such as malfunction due to noise conduction from the first wiring to the second wiring. Further, grounding of each interphase capacitor can be easily realized by connecting the grounding wire 21 to the shield portion in the region where the first wiring is provided.
複数の相間コンデンサの接地を接地線21によって一括化させたことによって、各相間コンデンサの各々に接地線21が分散して設けられる場合に比べて、接地線21が設けられる領域を容易に限定させることができる。これにより、電力変換装置100は、ノイズの影響を受け易い配線から遠ざけて接地線21を配置することが可能となる。さらに、電力変換装置100は、第1の配線が設けられている領域をシールド部によって容易に囲うことが可能となる。
By unifying the grounding of a plurality of interphase capacitors by the grounding wire 21, the area where the grounding wire 21 is provided can be easily limited as compared with the case where the grounding wire 21 is distributed to each of the interphase capacitors. be able to. As a result, the power conversion device 100 can arrange the ground wire 21 away from the wiring that is easily affected by noise. Further, the power conversion device 100 can easily surround the area where the first wiring is provided by the shield portion.
なお、図4に示す例では、壁部27は電子回路基板25にまで達しておらず、電子回路基板25と壁部27との間に隙間が設けられている。壁部27は、電子回路基板25に達していても良い。電子回路基板25に設けられたスリットへ壁部27が挿入されることによって、壁部27が電子回路基板25を貫いていても良い。これにより、シールド部は、ノイズの伝導を抑制させるシールド性を高めることができる。
In the example shown in FIG. 4, the wall portion 27 does not reach the electronic circuit board 25, and a gap is provided between the electronic circuit board 25 and the wall portion 27. The wall portion 27 may reach the electronic circuit board 25. By inserting the wall portion 27 into the slit provided in the electronic circuit board 25, the wall portion 27 may penetrate the electronic circuit board 25. As a result, the shield portion can enhance the shielding property that suppresses the conduction of noise.
筐体26と壁部27とは、板金を用いて形成されたものに限られない。筐体26と壁部27とは、ノイズの伝導を抑制させる性質の材料からなるものであれば良い。シールド部の形状は、図4に示す筐体26と壁部27とによって構成される形状に限られず、自在に変更可能であるものとする。シールド部は、筐体26と壁部27とによって実現されるものに限られない。シールド部は、筐体26および壁部27以外の構成要素によって実現されても良い。シールド部は、図1に示す平滑コンデンサ11に使用されるアルミ電解コンデンサによって実現されても良い。
The housing 26 and the wall portion 27 are not limited to those formed by using sheet metal. The housing 26 and the wall portion 27 may be made of a material having a property of suppressing noise conduction. The shape of the shield portion is not limited to the shape composed of the housing 26 and the wall portion 27 shown in FIG. 4, and can be freely changed. The shield portion is not limited to that realized by the housing 26 and the wall portion 27. The shield portion may be realized by components other than the housing 26 and the wall portion 27. The shield portion may be realized by the aluminum electrolytic capacitor used for the smoothing capacitor 11 shown in FIG.
実施の形態2によると、電力変換装置100は、シールド部が設けられることによって、第1の配線から第2の配線へのノイズの伝導を抑制することができる。これにより、電力変換装置100は、ノイズをより低減することができるという効果を奏する。
According to the second embodiment, the power conversion device 100 can suppress the conduction of noise from the first wiring to the second wiring by providing the shield portion. As a result, the power converter 100 has the effect of being able to further reduce noise.
実施の形態3.
図5は、本発明の実施の形態3にかかる空気調和機の概略構成を示す図である。空気調和機200は、空気調和のための空気流を室内空間へ送り出すことによって、室内空間の温度と湿度とを調整する。空気調和機200は、室内温度が目標温度となるように冷房、送風、除湿および暖房といった運転モードの切り換えを行う。 Embodiment 3.
FIG. 5 is a diagram showing a schematic configuration of an air conditioner according to a third embodiment of the present invention. Theair conditioner 200 adjusts the temperature and humidity of the indoor space by sending an air flow for air conditioning to the indoor space. The air conditioner 200 switches operation modes such as cooling, blowing, dehumidifying, and heating so that the room temperature becomes a target temperature.
図5は、本発明の実施の形態3にかかる空気調和機の概略構成を示す図である。空気調和機200は、空気調和のための空気流を室内空間へ送り出すことによって、室内空間の温度と湿度とを調整する。空気調和機200は、室内温度が目標温度となるように冷房、送風、除湿および暖房といった運転モードの切り換えを行う。 Embodiment 3.
FIG. 5 is a diagram showing a schematic configuration of an air conditioner according to a third embodiment of the present invention. The
空気調和機200は、室外機201が室内機202とは分離されたセパレート型空気調和機である。室外機201と室内機202とは冷媒配管36を介して接続される。冷媒が冷媒配管36に充填されて、冷媒配管36を介して室外機201と室内機202との間を冷媒が循環することによって、空気調和機200は室内と室外との間で熱交換を行う。
The air conditioner 200 is a separate type air conditioner in which the outdoor unit 201 is separated from the indoor unit 202. The outdoor unit 201 and the indoor unit 202 are connected via a refrigerant pipe 36. The refrigerant is filled in the refrigerant pipe 36, and the refrigerant circulates between the outdoor unit 201 and the indoor unit 202 via the refrigerant pipe 36, so that the air conditioner 200 exchanges heat between the indoor and outdoor units. ..
室外機201は、圧縮機31と、四方弁32と、室外熱交換器33と、膨張弁34と、ファン39とを有する。圧縮機31には、冷媒を圧縮する圧縮機構37と、圧縮機構37を動作させるモータ38とが設けられている。また、室外機201は、実施の形態1または2にかかる電力変換装置100を有する。モータ38は、図1に示す負荷20である。モータ38は、電力変換装置100からの電力供給によって駆動する。室内機202は、室内熱交換器35とファン40とを有する。
The outdoor unit 201 has a compressor 31, a four-way valve 32, an outdoor heat exchanger 33, an expansion valve 34, and a fan 39. The compressor 31 is provided with a compression mechanism 37 that compresses the refrigerant and a motor 38 that operates the compression mechanism 37. Further, the outdoor unit 201 has a power conversion device 100 according to the first or second embodiment. The motor 38 is the load 20 shown in FIG. The motor 38 is driven by the power supply from the power converter 100. The indoor unit 202 has an indoor heat exchanger 35 and a fan 40.
圧縮機31と、四方弁32と、室外熱交換器33と、膨張弁34と、室内熱交換器35とは、冷媒配管36を介して接続されている。圧縮機31と、四方弁32と、室外熱交換器33と、膨張弁34と、室内熱交換器35とは、冷媒を循環させる閉回路である冷凍サイクルを構成する。なお、空気調和機200が有する構成要素は、冷凍サイクルを備える冷蔵庫あるいは冷凍庫といった機器にも適用することができる。
The compressor 31, the four-way valve 32, the outdoor heat exchanger 33, the expansion valve 34, and the indoor heat exchanger 35 are connected via a refrigerant pipe 36. The compressor 31, the four-way valve 32, the outdoor heat exchanger 33, the expansion valve 34, and the indoor heat exchanger 35 form a refrigeration cycle that is a closed circuit for circulating the refrigerant. The components of the air conditioner 200 can also be applied to equipment such as a refrigerator or a freezer equipped with a refrigeration cycle.
室外機201において、ファン39は、回転によって空気流を発生させる。室外機201は、空気流を発生させることにより、室外機201の筐体内へ空気を送り込み、かつ、筐体内へ送り込まれた空気を筐体外へ送り出す。室外熱交換器33は、室外熱交換器33を通過する空気と冷媒との熱交換を行わせる。図5では、室外機201の筐体の図示を省略している。
In the outdoor unit 201, the fan 39 generates an air flow by rotation. By generating an air flow, the outdoor unit 201 sends air into the housing of the outdoor unit 201, and sends the air sent into the housing to the outside of the housing. The outdoor heat exchanger 33 causes heat exchange between the air passing through the outdoor heat exchanger 33 and the refrigerant. In FIG. 5, the housing of the outdoor unit 201 is not shown.
室内機202は、図1に示す出力端子22に接続されている。室内機202は、電力変換装置100からの電力供給を受けて動作する。室内機202において、ファン40は、回転によって空気流を発生させる。室内機202は、空気流を発生させることにより、室内機202の筐体内へ空気を送り込み、かつ、筐体内へ送り込まれた空気を筐体外へ送り出す。室内熱交換器35は、室内熱交換器35を通過する空気と冷媒との熱交換を行わせる。図5では、室内機202の筐体の図示を省略している。なお、電力変換装置100は、ファン39を回転させるモータあるいはファン40を回転させるモータへ、3相交流電圧を出力しても良い。
The indoor unit 202 is connected to the output terminal 22 shown in FIG. The indoor unit 202 operates by receiving power supply from the power conversion device 100. In the indoor unit 202, the fan 40 generates an air flow by rotation. By generating an air flow, the indoor unit 202 sends air into the housing of the indoor unit 202 and sends the air sent into the housing to the outside of the housing. The indoor heat exchanger 35 exchanges heat between the air passing through the indoor heat exchanger 35 and the refrigerant. In FIG. 5, the housing of the indoor unit 202 is not shown. The power conversion device 100 may output a three-phase AC voltage to a motor that rotates the fan 39 or a motor that rotates the fan 40.
実施の形態3によると、空気調和機200は、実施の形態1または2にかかる電力変換装置100を有することによって、少ない接地線21によってノイズを低減することができるという効果を奏する。なお、電力変換装置100は、商用交流電源1に接続された機器に設けられるものであれば良く、空気調和機200以外の機器に設けられても良い。
According to the third embodiment, the air conditioner 200 has an effect that noise can be reduced by having a small number of ground wires 21 by having the power conversion device 100 according to the first or second embodiment. The power conversion device 100 may be provided in a device other than the air conditioner 200 as long as it is provided in a device connected to the commercial AC power supply 1.
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
1 商用交流電源、2,3 コモンモードチョークコイル、4 コンバータ、5 インバータ、6 Xコンデンサ、7a,7b,8a,8b,9a,9b,10a,10b Yコンデンサ、11 平滑コンデンサ、12,13,14,15 フェライトビーズ、16,17,18,19 接続点、20 負荷、21 接地線、22 出力端子、23,24,28 配線、25 電子回路基板、26 筐体、27 壁部、31 圧縮機、32 四方弁、33 室外熱交換器、34 膨張弁、35 室内熱交換器、36 冷媒配管、37 圧縮機構、38 モータ、39,40 ファン、100 電力変換装置、200 空気調和機、201 室外機、202 室内機。
1 Commercial AC power supply, 2, 3 common mode choke coil, 4 converter, 5 inverter, 6 X capacitor, 7a, 7b, 8a, 8b, 9a, 9b, 10a, 10b Y capacitor, 11 smoothing capacitor, 12, 13, 14 , 15 ferrite beads, 16, 17, 18, 19 connection points, 20 loads, 21 ground wires, 22 output terminals, 23, 24, 28 wiring, 25 electronic circuit boards, 26 housings, 27 walls, 31 compressors, 32 four-way valve, 33 outdoor heat exchanger, 34 expansion valve, 35 indoor heat exchanger, 36 refrigerant wiring, 37 compression mechanism, 38 motor, 39, 40 fan, 100 power converter, 200 air conditioner, 201 outdoor unit, 202 Indoor unit.
Claims (5)
- 交流電源と負荷との間に接続されたコンバータおよびインバータと、
前記交流電源と前記コンバータとの間に接続されたコモンモードチョークコイルと、
前記交流電源と前記コンバータとを接続する電源ライン同士の間に接続された交流側相間コンデンサと、
前記コンバータと前記インバータとを接続する電源ライン同士の間に接続された直流側相間コンデンサと、
を備え、
前記交流側相間コンデンサおよび前記直流側相間コンデンサの各々の接地には、共通の接地線が用いられており、
前記交流側相間コンデンサおよび前記接地線の間の配線と、前記直流側相間コンデンサおよび前記接地線の間の配線との各々に、インダクタンス成分を持つ電子部品が設けられている電力変換装置。 With converters and inverters connected between the AC power supply and the load,
A common mode choke coil connected between the AC power supply and the converter,
An AC side phase capacitor connected between the power supply lines connecting the AC power supply and the converter,
A DC side phase capacitor connected between the power supply lines connecting the converter and the inverter,
With
A common ground wire is used for grounding each of the AC side phase capacitor and the DC side phase capacitor.
A power conversion device in which an electronic component having an inductance component is provided in each of the wiring between the AC side phase capacitor and the ground wire and the wiring between the DC side phase capacitor and the ground wire. - 前記電力変換装置が有する出力端子と前記負荷とを接続する配線および前記接地線である第1の配線が設けられている領域を囲うことによって、前記第1の配線から前記第1の配線以外の配線である第2の配線へのノイズの伝導を遮断するシールド部を備える請求項1に記載の電力変換装置。 By enclosing the area where the wiring connecting the output terminal of the power conversion device and the load and the first wiring which is the ground wire are provided, the first wiring to other than the first wiring is provided. The power conversion device according to claim 1, further comprising a shield portion that blocks the conduction of noise to the second wiring, which is the wiring.
- 前記接地線は、前記シールド部に接続されている請求項2に記載の電力変換装置。 The power conversion device according to claim 2, wherein the ground wire is connected to the shield portion.
- 前記電子部品は、フェライトビーズである請求項1から3のいずれか1つに記載の電力変換装置。 The power conversion device according to any one of claims 1 to 3, wherein the electronic component is ferrite beads.
- 請求項1から4のいずれか1つに記載の電力変換装置を備える空気調和機。 An air conditioner including the power conversion device according to any one of claims 1 to 4.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/016035 WO2020208825A1 (en) | 2019-04-12 | 2019-04-12 | Power conversion device and air conditioner |
JP2021513148A JP7204894B2 (en) | 2019-04-12 | 2019-04-12 | Power converter and air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/016035 WO2020208825A1 (en) | 2019-04-12 | 2019-04-12 | Power conversion device and air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020208825A1 true WO2020208825A1 (en) | 2020-10-15 |
Family
ID=72751042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/016035 WO2020208825A1 (en) | 2019-04-12 | 2019-04-12 | Power conversion device and air conditioner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7204894B2 (en) |
WO (1) | WO2020208825A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021230137A1 (en) * | 2020-05-15 | 2021-11-18 | ||
JP7421141B1 (en) | 2022-08-01 | 2024-01-24 | ダイキン工業株式会社 | Noise filter and refrigeration cycle equipment |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57192700U (en) * | 1981-05-30 | 1982-12-07 | ||
JPS59159187U (en) * | 1983-04-12 | 1984-10-25 | ティーディーケイ株式会社 | switching power supply |
JPH0898328A (en) * | 1994-09-21 | 1996-04-12 | Fuji Electric Co Ltd | Electric system of electric vehicle |
JPH08191570A (en) * | 1995-01-06 | 1996-07-23 | Yokogawa Electric Corp | Noise filter circuit for switching power supply |
JP2003235269A (en) * | 2002-02-08 | 2003-08-22 | Fuji Electric Co Ltd | Noise reducing apparatus for power converter |
JP2008182784A (en) * | 2007-01-23 | 2008-08-07 | Ntt Advanced Technology Corp | Power supply circuit |
JP2009269579A (en) * | 2008-05-12 | 2009-11-19 | Toyota Industries Corp | Noise reduction structure in electric wire |
JP2015171282A (en) * | 2014-03-10 | 2015-09-28 | 三菱重工オートモーティブサーマルシステムズ株式会社 | Motor compressor |
JP2017188976A (en) * | 2016-04-01 | 2017-10-12 | 株式会社村田製作所 | Electric power conversion system |
WO2017183393A1 (en) * | 2016-04-20 | 2017-10-26 | 株式会社村田製作所 | Power reception device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2868700C (en) | 2012-03-30 | 2016-10-11 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power supply apparatus |
AU2016252991B2 (en) | 2015-04-24 | 2020-04-30 | Epc Power Corporation | Power converter with controllable DC offset |
US10581337B2 (en) | 2015-07-21 | 2020-03-03 | Mitsubishi Electric Corporation | Power converter |
-
2019
- 2019-04-12 WO PCT/JP2019/016035 patent/WO2020208825A1/en active Application Filing
- 2019-04-12 JP JP2021513148A patent/JP7204894B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57192700U (en) * | 1981-05-30 | 1982-12-07 | ||
JPS59159187U (en) * | 1983-04-12 | 1984-10-25 | ティーディーケイ株式会社 | switching power supply |
JPH0898328A (en) * | 1994-09-21 | 1996-04-12 | Fuji Electric Co Ltd | Electric system of electric vehicle |
JPH08191570A (en) * | 1995-01-06 | 1996-07-23 | Yokogawa Electric Corp | Noise filter circuit for switching power supply |
JP2003235269A (en) * | 2002-02-08 | 2003-08-22 | Fuji Electric Co Ltd | Noise reducing apparatus for power converter |
JP2008182784A (en) * | 2007-01-23 | 2008-08-07 | Ntt Advanced Technology Corp | Power supply circuit |
JP2009269579A (en) * | 2008-05-12 | 2009-11-19 | Toyota Industries Corp | Noise reduction structure in electric wire |
JP2015171282A (en) * | 2014-03-10 | 2015-09-28 | 三菱重工オートモーティブサーマルシステムズ株式会社 | Motor compressor |
JP2017188976A (en) * | 2016-04-01 | 2017-10-12 | 株式会社村田製作所 | Electric power conversion system |
WO2017183393A1 (en) * | 2016-04-20 | 2017-10-26 | 株式会社村田製作所 | Power reception device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021230137A1 (en) * | 2020-05-15 | 2021-11-18 | ||
WO2021230137A1 (en) * | 2020-05-15 | 2021-11-18 | 株式会社村田製作所 | Power conversion device |
JP7421141B1 (en) | 2022-08-01 | 2024-01-24 | ダイキン工業株式会社 | Noise filter and refrigeration cycle equipment |
WO2024029413A1 (en) * | 2022-08-01 | 2024-02-08 | ダイキン工業株式会社 | Noise filter, and refrigeration cycle device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020208825A1 (en) | 2021-10-21 |
JP7204894B2 (en) | 2023-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107852103B (en) | Inverter device | |
KR101843375B1 (en) | Vehicle inveter device and motor-driven compressor | |
CN110268618B (en) | Power supply board, power supply unit, and refrigeration device | |
WO2014171023A1 (en) | Inverter device and electric motor with integrated inverter | |
WO2014103482A1 (en) | Inverter-integrated electrical compressor | |
JP5842905B2 (en) | Refrigeration equipment | |
WO2020208825A1 (en) | Power conversion device and air conditioner | |
JP6780726B2 (en) | Air conditioner | |
JP2011139551A (en) | Control board, inverter device, and inverter integrated electric compressor | |
JP6821031B2 (en) | Electric motor drive and air conditioner | |
US20070283708A1 (en) | Low voltage variable speed drive for application on medium/high voltage mains | |
EP3876401B1 (en) | Electronic control assembly and electric appliance | |
EP0661453B1 (en) | Air conditioner and inverter driving circuit therefor | |
JP4363497B1 (en) | Filter circuit mounting unit and power supply unit | |
JP2016201883A (en) | Harmonic suppression device and air conditioner employing the same | |
JP2016109350A (en) | Refrigeration device | |
EP3855611B1 (en) | System for inhibiting electromagnetic interference of refrigerant radiator and household appliance | |
JP7176125B2 (en) | Electric circuit and refrigeration cycle device | |
JP2010139158A (en) | Outdoor unit for heat pump type air conditioner | |
EP3591829B1 (en) | Power conversion device | |
WO2021117121A1 (en) | Heat-source-side unit | |
JPH08298784A (en) | Inverter device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19923778 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021513148 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19923778 Country of ref document: EP Kind code of ref document: A1 |