WO2020208744A1 - User equipment and base-station device - Google Patents

User equipment and base-station device Download PDF

Info

Publication number
WO2020208744A1
WO2020208744A1 PCT/JP2019/015623 JP2019015623W WO2020208744A1 WO 2020208744 A1 WO2020208744 A1 WO 2020208744A1 JP 2019015623 W JP2019015623 W JP 2019015623W WO 2020208744 A1 WO2020208744 A1 WO 2020208744A1
Authority
WO
WIPO (PCT)
Prior art keywords
scaling factor
base station
user device
data rate
maximum data
Prior art date
Application number
PCT/JP2019/015623
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 秀明
一樹 武田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/015623 priority Critical patent/WO2020208744A1/en
Publication of WO2020208744A1 publication Critical patent/WO2020208744A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a user device and a base station device in a wireless communication system.
  • Non-Patent Document 1 NR (New Radio) (also called “5G”), which is the successor system to LTE (Long Term Evolution), the requirements are a large-capacity system, high-speed data transmission speed, low delay, and simultaneous operation of many terminals. Techniques that satisfy connection, low cost, power saving, etc. are being studied (for example, Non-Patent Document 1).
  • the TBS Transport Block Size
  • the maximum data rate for example, Non-Patent Document 2.
  • a scaling factor is used to calculate the maximum data rate. The scaling factor is reported from the user device to the base station device as UE capacity.
  • the maximum data rate is calculated for each FR (Frequency Range).
  • the scaling factor which is a parameter used to calculate the maximum data rate, can be signaled with a different value for each band. Therefore, the maximum data rate is not shared depending on the band setting, and scheduling cannot be performed flexibly.
  • the present invention has been made in view of the above points, and an object of the present invention is to perform scheduling in which a maximum data rate is composed of a plurality of bands in a wireless communication system.
  • a receiver that receives a first RRC (Radio Resource Control) message inquiring about the capability of the user device from the base station device and a receiver that receives the first RRC message are used to calculate the maximum data rate as a response to the first RRC message.
  • scheduling can be performed in which the maximum data rate is composed of a plurality of bands.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced and later methods (eg, NR) unless otherwise specified.
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical
  • NR-SS NR-SS
  • NR-PBCH Physical broadcast channel
  • PRACH Physical
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other system (for example, Flexible Duplex, etc.). Method may be used.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • Method may be used.
  • “configuring" the radio parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or the base station apparatus 10 Alternatively, the radio parameter notified from the user device 20 may be set.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system according to the embodiment of the present invention includes a base station device 10 and a user device 20 as shown in FIG. Although FIG. 1 shows one base station device 10 and one user device 20, this is an example, and there may be a plurality of each.
  • the base station device 10 is a communication device that provides one or more cells and performs wireless communication with the user device 20.
  • the physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks.
  • the base station apparatus 10 transmits a synchronization signal and system information to the user apparatus 20. Synchronous signals are, for example, NR-PSS and NR-SSS.
  • the system information is transmitted by, for example, NR-PBCH, and is also referred to as broadcast information. As shown in FIG.
  • the base station apparatus 10 transmits a control signal or data to the user apparatus 20 by DL (Downlink), and receives the control signal or data from the user apparatus 20 by UL (Uplink). Both the base station device 10 and the user device 20 can perform beamforming to transmit and receive signals. Further, both the base station device 10 and the user device 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station device 10 and the user device 20 may communicate via SCell (Secondary Cell) and PCell (Primary Cell) by CA (Carrier Aggregation).
  • SCell Secondary Cell
  • PCell Primary Cell
  • the user device 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine).
  • the user apparatus 20 is provided by a wireless communication system by receiving a control signal or data from the base station apparatus 10 by DL and transmitting the control signal or data to the base station apparatus 10 by UL.
  • M2M Machine-to-Machine
  • the base station device 10 determines the TBS so that it is within the maximum feasible data rate based on the UE capability acquired from the user device 20. Is stipulated.
  • the UE capability includes a scaling factor, which is a parameter used to calculate the maximum data rate. For example, the scaling factor takes a value such as 0.4 such as 1, 0.8, 0.75.
  • the maximum data rate is defined for each FR (Frequency Range) and each CC (Component Carrier).
  • the scaling factor which is one of the UE capabilities, can have a different value for each band, and is reported to the base station apparatus 10 by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the scaling factor of the band belonging to the same FR reported as UE Noh is always the same value. That is, when the CA band combination is composed of only FR1 bands, the scaling factor of each band is the same value. When the CA band combination is composed of only FR2 bands, the scaling factor of each band is the same value. When the CA band combination is composed of the band of FR1 and the band of FR2, the band in FR1 has the same scaling factor, the band in FR2 has the same scaling factor, and the FR1 has the same scaling factor. The scaling factor may be different between the band and the FR2 band. As a result, the scaling factor can be set independently for FR1 and FR2.
  • FIG. 2 is a sequence diagram for explaining an operation example according to the embodiment of the present invention. Using FIG. 2, an operation example related to UE capability reporting in which the scaling factors of bands belonging to the same FR are always the same value will be described.
  • step S1 the base station device 10 transmits the "UE Capacity Energy” inquiry of the UE capability to the user device 20. Subsequently, the user apparatus 20 transmits the “UE Capacity Information”, which is a report of the UE capability, to the base station apparatus 10 (S2). The user device 20 always sets the same value for the scaling factor included in the "UE Capability Information" as long as it is a band belonging to the same FR. As the scaling factor, values corresponding to UL and DL may be set independently.
  • step S3 the base station apparatus 10 calculates the maximum data rate for each FR based on the received "UE Capability Information".
  • the UL maximum data rate and the DL maximum data rate may be calculated independently of each other.
  • step S4 the base station apparatus 10 schedules UL or DL to the user apparatus 20 within the maximum data rate calculated for each FR, and performs communication. Since the maximum data rate is specified for each FR, it is possible to share the maximum data rate that can be provided between CCs of multiple bands in the same FR, and flexible scheduling is possible between CCs of different bands. Become.
  • FIG. 3 is a flowchart for explaining an operation example according to the embodiment of the present invention. Step S3 shown in FIG. 2 will be described in detail with reference to FIG.
  • step S31 the base station apparatus 10 calculates the maximum data rate for each CC by using a scaling factor common to each FR. Subsequently, the maximum data rate of each CC is added for each FR to calculate the maximum data rate for each FR (S32). Step S31 and step S32 may be executed in UL or DL respectively. As shown in FIG. 3, the maximum data rate for each FR can be calculated using a common scaling factor for each FR.
  • FIG. 4 is a specification change example (1) according to an operation example according to the embodiment of the present invention.
  • scaling Factor which is one of the parameters of UE capability, is defined.
  • ScalingFactor is a parameter used to calculate the maximum data rate for a band.
  • the "scaling Factor” takes a value such as 0.4, 0.75, and the value used to calculate the maximum data rate is 1 when the parameter does not exist. All bands belonging to the same FR are set to have the same value.
  • ScalingFactor may be set for DL and UL, such as “scalingFactor” included in “FeatureSetDownlink parameters" for DL, and “scalingFactor” included for “FatureSetUplink parameters” for UL, respectively.
  • FIG. 5 is a specification change example (2) according to an operation example according to the embodiment of the present invention. As shown in FIG. 5, the same value is defined in all the bands in the same FR in the "scaling Factor” included in the "FatureSetDownlink parameters” and the “scalingFactor” included in the "FeatureSetUplink parameters” which are the information elements of the RRC message. May be done.
  • the “FeatureSetDownlink parameters” and the “FeatureSetUplink parameters” are transmitted from the user apparatus 20 to the base station apparatus 10 as “UECapacity Information” in step S2 shown in FIG.
  • the user apparatus 20 can provide the base station apparatus 10 among CCs of a plurality of bands in the same FR by setting the scaling factors of the bands belonging to the same FR to the same value. It shares the maximum data rate and allows flexible scheduling between CCs across bands.
  • scheduling can be performed in which the maximum data rate is composed of a plurality of bands.
  • the base station apparatus 10 and the user apparatus 20 include a function of carrying out the above-described embodiment.
  • the base station device 10 and the user device 20 may each have only a part of the functions in the embodiment.
  • FIG. 6 is a diagram showing an example of the functional configuration of the base station device 10.
  • the base station apparatus 10 includes a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 6 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the user device 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the user apparatus 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signals, and the like to the user device 20.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the user device 20 in the storage device, and reads them out from the storage device as needed.
  • the contents of the setting information are, for example, communication settings related to scheduling of the user device 20, UE capability, and the like.
  • control unit 140 performs scheduling based on the UE capability of the user device 20 via the transmission unit 110.
  • the function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120.
  • FIG. 7 is a diagram showing an example of the functional configuration of the user device 20.
  • the user device 20 includes a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 7 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL / UL / SL control signals and the like transmitted from the base station apparatus 10. Further, for example, the transmission unit 210 connects the other user device 20 to the PSCCH (Physical Sidelink Control Channel), PSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) as D2D communication. ) Etc., and the receiving unit 120 receives the PSCCH, PSCH, PSDCH, PSBCH, etc. from the other user device 20.
  • PSCCH Physical Sidelink Control Channel
  • PSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH
  • the setting unit 230 stores various setting information received from the base station device 10 or the user device 20 by the receiving unit 220 in the storage device, and reads it out from the storage device as needed.
  • the setting unit 230 also stores preset setting information.
  • the content of the setting information is, for example, UE capability and the like.
  • the control unit 240 reports the UE capability to the base station device 10 via the transmission unit 210, as described in the embodiment. Further, the control unit 240 controls communication based on the scheduling acquired from the base station apparatus 10.
  • the function unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the function unit related to signal reception in the control unit 240 may be included in the reception unit 220.
  • each functional block may be realized by using one physically or logically connected device, or directly or indirectly (for example, two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't.
  • a functional block that functions transmission is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • transmitting unit transmitting unit
  • transmitter transmitter
  • the base station device 10, the user device 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the base station device 10 and the user device 20 according to the embodiment of the present disclosure.
  • the above-mentioned base station device 10 and user device 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be done.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the base station device 10 and the user device 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 For each function in the base station device 10 and the user device 20, by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, the processor 1001 performs an calculation and the communication device 1004 performs communication. It is realized by controlling or controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • control unit 140, control unit 240, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 140 of the base station device 10 shown in FIG. 6 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the user device 20 shown in FIG. 7 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium, for example, by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. It may be configured.
  • the storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, Blu).
  • -It may be composed of at least one of a ray (registered trademark) disk), a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip and the like.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station device 10 and the user device 20 include a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured to include hardware, and the hardware may realize a part or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the receiving unit that receives the first RRC (Radio Resource Control) message inquiring about the capability of the user device from the base station device, and the first RRC message.
  • a transmitter that sends a second RRC message reporting the UE capability including the scaling factor, which is a parameter used to calculate the maximum data rate, to the base station apparatus, and the calculation based on the scaling factor.
  • It has a communication unit that executes communication with the base station device on an uplink or a downlink scheduled within the maximum data rate, and the transmission unit has the scaling corresponding to a band belonging to the same FR (Frequency Range).
  • a user device is provided that sets the same value for the factor.
  • the user device 20 sets the scaling factor of the band belonging to the same FR to the same value, so that the base station device 10 can provide the maximum between CCs of a plurality of bands in the same FR.
  • Data rates can be shared and flexible scheduling can be performed between CCs across bands. That is, in a wireless communication system, scheduling can be performed in which the maximum data rate is composed of a plurality of bands.
  • the transmitter has the same value as the scaling factor applied to the band belonging to the first FR.
  • the same value may be set for the scaling factor applied to the band belonging to the second FR.
  • the transmission unit may set different values for the scaling factor applied to the band belonging to the first FR and the scaling factor applied to the band belonging to the second FR.
  • the user apparatus 20 can apply a scaling factor for each FR to set a maximum data rate that matches the characteristics of each FR.
  • the transmission unit that transmits the first RRC (Radio Resource Control) message inquiring about the capability of the user device to the user device and the response of the first RRC message are maximum.
  • a base station device that has a communication unit that executes communication with the user device on the uplink or downlink, and the same value is set for the scaling factor corresponding to a band belonging to the same FR (Frequency Range). Is provided.
  • the user device 20 sets the scaling factor of the band belonging to the same FR to the same value, so that the base station device 10 can provide the maximum between CCs of a plurality of bands in the same FR.
  • Data rates can be shared and flexible scheduling can be performed between CCs across bands. That is, in a wireless communication system, scheduling can be performed in which the maximum data rate is composed of a plurality of bands.
  • the boundary of the functional unit or the processing unit in the functional block diagram does not always correspond to the boundary of the physical component.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components. With respect to the processing procedure described in the embodiment, the order of processing may be changed as long as there is no contradiction.
  • the base station apparatus 10 and the user apparatus 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station apparatus 10 according to the embodiment of the present invention and the software operated by the processor of the user apparatus 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read, respectively. It may be stored in a dedicated memory (ROM), EPROM, EEPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. Broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof may be used.
  • RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication).
  • system FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize suitable systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station apparatus 10 in the present specification may be performed by its upper node (upper node).
  • various operations performed for communication with the user device 20 are other than the base station device 10 and the base station device 10. It is clear that this can be done by at least one of the network nodes (eg, MME or S-GW, etc., but not limited to these).
  • the network nodes eg, MME or S-GW, etc., but not limited to these.
  • the other network nodes may be a combination of a plurality of other network nodes (for example, MME and S-GW). Good.
  • the information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be saved in a specific location (for example, memory), or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example). , Comparison with a predetermined value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • base station Base Station
  • wireless base station base station
  • base station device fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • GNB nodeB
  • access point “ transmission point ”,“ reception point ”,“ transmission / reception point (transmission / reception point) ”,“ cell ”,“ sector ”
  • Terms such as “cell group,” “carrier,” and “component carrier” can be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)).
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user devices 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user device 20 may have the functions of the base station device 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the user terminal described above.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as “judgment” or “decision”.
  • judgment and “decision” mean that “resolving”, “selecting”, “choosing”, “establishing”, “comparing”, etc. are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include that some action is regarded as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energies having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot Pilot
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, transmitter / receiver.
  • SCS subcarrier spacing
  • TTI Transmission Time Interval
  • At least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.). Slots may be time units based on new melody.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI.
  • TTI transmission time interval
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user device 20 to allocate radio resources (frequency bandwidth that can be used in each user device 20, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier.
  • the common RB may be specified by an index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • the transmitting unit 210 and the receiving unit 220 are examples of communication units.
  • the transmission unit 110 and the reception unit 120 are examples of communication units.
  • the UECapacityEnquiry is an example of a first RRC message inquiring about the capabilities of a user device.
  • the UECapacity Information is an example of a second RRC message reporting UE capability.
  • Base station device 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 User device 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This user equipment has: a reception unit for receiving, from a base-station device, a first radio resource control (RRC) message for making an enquiry about capabilities of the user equipment; a transmission unit which, in response to the first RCC message, transmits, to the base-station device, a second RCC message for reporting UE capabilities, inclusive of a scaling factor which is a parameter used to calculate a maximum data rate; and a communication unit which carries out communication with the base-station device on an uplink or a downlink that is scheduled within the maximum data rate calculated on the basis of the scaling factor, wherein, in the transmission unit, an identical value is assigned to scaling factors that correspond to bands that belong to the same frequency range (FR).

Description

ユーザ装置及び基地局装置User equipment and base station equipment
 本発明は、無線通信システムにおけるユーザ装置及び基地局装置に関する。 The present invention relates to a user device and a base station device in a wireless communication system.
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。 In NR (New Radio) (also called "5G"), which is the successor system to LTE (Long Term Evolution), the requirements are a large-capacity system, high-speed data transmission speed, low delay, and simultaneous operation of many terminals. Techniques that satisfy connection, low cost, power saving, etc. are being studied (for example, Non-Patent Document 1).
 NRの無線通信システムにおいて、1スロットあたりに割り当て可能なTBS(Transport Block Size)は、最大データレート以内となるように決定される(例えば非特許文献2)。最大データレートの算出には、スケーリングファクタ(scaling factor)が使用される。スケーリングファクタは、UE capabilityとしてユーザ装置から基地局装置に報告される。 In the NR wireless communication system, the TBS (Transport Block Size) that can be allocated per slot is determined to be within the maximum data rate (for example, Non-Patent Document 2). A scaling factor is used to calculate the maximum data rate. The scaling factor is reported from the user device to the base station device as UE capacity.
 NRの無線通信システムにおいて、最大データレートは、FR(Frequency Range)ごとに算出される。一方、最大データレートの算出に使用されるパラメータであるスケーリングファクタは、バンドごとに異なる値がシグナリング可能であった。そのため、最大データレートがバンドの設定によっては共有されないため、スケジューリングを柔軟に行うことができなかった。 In the NR wireless communication system, the maximum data rate is calculated for each FR (Frequency Range). On the other hand, the scaling factor, which is a parameter used to calculate the maximum data rate, can be signaled with a different value for each band. Therefore, the maximum data rate is not shared depending on the band setting, and scheduling cannot be performed flexibly.
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、最大データレートが複数のバンドから構成されたスケジューリングを行うことを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to perform scheduling in which a maximum data rate is composed of a plurality of bands in a wireless communication system.
 開示の技術によれば、ユーザ装置の能力を問い合わせる第1のRRC(Radio Resource Control)メッセージを基地局装置から受信する受信部と、前記第1のRRCメッセージの応答として、最大データレートの算出に使用するパラメータであるスケーリングファクタを含むUE能力を報告する第2のRRCメッセージを前記基地局装置に送信する送信部と、前記スケーリングファクタに基づいて算出された最大データレート以内でスケジューリングされる上りリンク又は下りリンクにおいて前記基地局装置と通信を実行する通信部とを有し、前記送信部は、同一のFR(Frequency Range)に属するバンドに対応する前記スケーリングファクタに同一の値を設定するユーザ装置が提供される。 According to the disclosed technology, a receiver that receives a first RRC (Radio Resource Control) message inquiring about the capability of the user device from the base station device and a receiver that receives the first RRC message are used to calculate the maximum data rate as a response to the first RRC message. A transmitter that sends a second RRC message reporting UE capability, including a scaling factor that is a parameter to use, to the base station equipment and an uplink scheduled within the maximum data rate calculated based on the scaling factor. Alternatively, a user device having the base station device and a communication unit that executes communication on the downlink, and the transmission unit sets the same value for the scaling factor corresponding to a band belonging to the same FR (Frequency Range). Is provided.
 開示の技術によれば、無線通信システムにおいて、最大データレートが複数のバンドから構成されたスケジューリングを行うことができる。 According to the disclosed technology, in a wireless communication system, scheduling can be performed in which the maximum data rate is composed of a plurality of bands.
本発明の実施の形態における無線通信システムを説明するための図である。It is a figure for demonstrating the wireless communication system in embodiment of this invention. 本発明の実施の形態における動作例を説明するためのシーケンス図である。It is a sequence diagram for demonstrating the operation example in Embodiment of this invention. 本発明の実施の形態における動作例を説明するためのフローチャートである。It is a flowchart for demonstrating the operation example in Embodiment of this invention. 本発明の実施の形態における動作例に係る仕様変更例(1)である。It is a specification change example (1) which concerns on the operation example in embodiment of this invention. 本発明の実施の形態における動作例に係る仕様変更例(2)である。It is a specification change example (2) which concerns on the operation example in embodiment of this invention. 本発明の実施の形態における基地局装置10の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the base station apparatus 10 in embodiment of this invention. 本発明の実施の形態におけるユーザ装置20の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the user apparatus 20 in embodiment of this invention. 本発明の実施の形態における基地局装置10又はユーザ装置20のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the base station apparatus 10 or the user apparatus 20 in embodiment of this invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。 Existing technology is appropriately used in the operation of the wireless communication system according to the embodiment of the present invention. However, the existing technology is, for example, an existing LTE, but is not limited to the existing LTE. Further, the term "LTE" used in the present specification shall have a broad meaning including LTE-Advanced and LTE-Advanced and later methods (eg, NR) unless otherwise specified.
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。 Further, in the embodiment of the present invention described below, SS (Synchronization signal), PSS (Primary SS), SSS (Secondary SS), PBCH (Physical broadcast channel), PRACH (Physical) used in the existing LTE. Use terms such as random access channel). This is for convenience of description, and signals, functions, etc. similar to these may be referred to by other names. Further, the above-mentioned terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH and the like. However, even if the signal is used for NR, it is not always specified as "NR-".
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Further, in the embodiment of the present invention, the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other system (for example, Flexible Duplex, etc.). Method may be used.
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局装置10又はユーザ装置20から通知される無線パラメータが設定されることであってもよい。 Further, in the embodiment of the present invention, "configuring" the radio parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or the base station apparatus 10 Alternatively, the radio parameter notified from the user device 20 may be set.
 図1は、本発明の実施の形態における無線通信システムを説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局装置10及びユーザ装置20を含む。図1には、基地局装置10及びユーザ装置20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。 FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention. The wireless communication system according to the embodiment of the present invention includes a base station device 10 and a user device 20 as shown in FIG. Although FIG. 1 shows one base station device 10 and one user device 20, this is an example, and there may be a plurality of each.
 基地局装置10は、1つ以上のセルを提供し、ユーザ装置20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局装置10は、同期信号及びシステム情報をユーザ装置20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。図1に示されるように、基地局装置10は、DL(Downlink)で制御信号又はデータをユーザ装置20に送信し、UL(Uplink)で制御信号又はデータをユーザ装置20から受信する。基地局装置10及びユーザ装置20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局装置10及びユーザ装置20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局装置10及びユーザ装置20はいずれも、CA(Carrier Aggregation)によるSCell(Secondary Cell)及びPCell(Primary Cell)を介して通信を行ってもよい。 The base station device 10 is a communication device that provides one or more cells and performs wireless communication with the user device 20. The physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks. The base station apparatus 10 transmits a synchronization signal and system information to the user apparatus 20. Synchronous signals are, for example, NR-PSS and NR-SSS. The system information is transmitted by, for example, NR-PBCH, and is also referred to as broadcast information. As shown in FIG. 1, the base station apparatus 10 transmits a control signal or data to the user apparatus 20 by DL (Downlink), and receives the control signal or data from the user apparatus 20 by UL (Uplink). Both the base station device 10 and the user device 20 can perform beamforming to transmit and receive signals. Further, both the base station device 10 and the user device 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station device 10 and the user device 20 may communicate via SCell (Secondary Cell) and PCell (Primary Cell) by CA (Carrier Aggregation).
 ユーザ装置20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、ユーザ装置20は、DLで制御信号又はデータを基地局装置10から受信し、ULで制御信号又はデータを基地局装置10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。 The user device 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the user apparatus 20 is provided by a wireless communication system by receiving a control signal or data from the base station apparatus 10 by DL and transmitting the control signal or data to the base station apparatus 10 by UL. Use various communication services.
 基地局装置10は、1スロットあたりのTBS(Transport Block Size)を決定する場合、ユーザ装置20から取得したUE能力(UE capability)に基づいて実現可能な最大データレート以内とするようTBSを決定することが規定されている。当該UE能力は、最大データレートの算出に使用されるパラメータであるスケーリングファクタ(scaling factor)を含む。例えば、スケーリングファクタは、1、0.8、0.75等0.4等の値をとる。最大データレートは、FR(Frequency Range)ごと及びCC(Component Carrier)ごとに規定される。 When determining the TBS (Transport Block Size) per slot, the base station device 10 determines the TBS so that it is within the maximum feasible data rate based on the UE capability acquired from the user device 20. Is stipulated. The UE capability includes a scaling factor, which is a parameter used to calculate the maximum data rate. For example, the scaling factor takes a value such as 0.4 such as 1, 0.8, 0.75. The maximum data rate is defined for each FR (Frequency Range) and each CC (Component Carrier).
 FRごとに最大データレートが規定されることによって、同一のFRにおける複数のバンドのCC間で、提供可能な最大データレートを共有することが可能となり、柔軟に異なるバンドのCC間でスケジューリングが可能となる。しかしながら、UE能力のひとつであるスケーリングファクタは、バンドごとに異なる値を有することが可能であり、RRC(Radio Resource Control)シグナリングで基地局装置10に報告される。同一のFRに属するバンド間においてスケーリングファクタの値が異なる場合、各バンドはスケーリングファクタによって制限されるため、同一のFRの異なるバンド間で柔軟にスケジューリングを行うことが困難になる。 By defining the maximum data rate for each FR, it is possible to share the maximum data rate that can be provided among CCs of multiple bands in the same FR, and it is possible to flexibly schedule between CCs of different bands. It becomes. However, the scaling factor, which is one of the UE capabilities, can have a different value for each band, and is reported to the base station apparatus 10 by RRC (Radio Resource Control) signaling. When the value of the scaling factor is different between the bands belonging to the same FR, each band is limited by the scaling factor, so that it becomes difficult to flexibly schedule between different bands of the same FR.
 そこで、あるCAバンドコンビネーションにおいて、UE能直として報告する同一のFRに属するバンドのスケーリングファクタは必ず同じ値とする。すなわち、CAバンドコンビネーションが、FR1のみのバンドで構成されている場合、各バンドのスケーリングファクタは同じ値とする。また、CAバンドコンビネーションが、FR2のみのバンドで構成されている場合、各バンドのスケーリングファクタは同じ値とする。なお、CAバンドコンビネーションが、FR1のバンドとFR2のバンドとで構成されている場合、FR1内のバンドは同一の値のスケーリングファクタとし、FR2内のバンドは同一の値のスケーリングファクタとし、FR1のバンドとFR2のバンド間ではスケーリングファクタが異なっていてもよい。これにより、FR1とFR2とで独立してスケーリングファクタを設定することができる。 Therefore, in a certain CA band combination, the scaling factor of the band belonging to the same FR reported as UE Noh is always the same value. That is, when the CA band combination is composed of only FR1 bands, the scaling factor of each band is the same value. When the CA band combination is composed of only FR2 bands, the scaling factor of each band is the same value. When the CA band combination is composed of the band of FR1 and the band of FR2, the band in FR1 has the same scaling factor, the band in FR2 has the same scaling factor, and the FR1 has the same scaling factor. The scaling factor may be different between the band and the FR2 band. As a result, the scaling factor can be set independently for FR1 and FR2.
 図2は、本発明の実施の形態における動作例を説明するためのシーケンス図である。図2を用いて、同一のFRに属するバンドのスケーリングファクタは必ず同じ値とするUE能力報告に係る動作例を説明する。 FIG. 2 is a sequence diagram for explaining an operation example according to the embodiment of the present invention. Using FIG. 2, an operation example related to UE capability reporting in which the scaling factors of bands belonging to the same FR are always the same value will be described.
 ステップS1において、基地局装置10は、UE能力の問合せである「UECapabilityEnquiry」をユーザ装置20に送信する。続いて、ユーザ装置20は、UE能力の報告である「UE Capability Information」を基地局装置10に送信する(S2)。ユーザ装置20は、「UE Capability Information」に含まれるスケーリングファクタに、同一のFRに属するバンドであれば必ず同一の値を設定する。スケーリングファクタは、UL及びDLそれぞれに対応する値が独立して設定されてもよい。 In step S1, the base station device 10 transmits the "UE Capacity Energy" inquiry of the UE capability to the user device 20. Subsequently, the user apparatus 20 transmits the “UE Capacity Information”, which is a report of the UE capability, to the base station apparatus 10 (S2). The user device 20 always sets the same value for the scaling factor included in the "UE Capability Information" as long as it is a band belonging to the same FR. As the scaling factor, values corresponding to UL and DL may be set independently.
 ステップS3において、基地局装置10は、受信した「UE Capability Information」に基づいて、FRごとに最大データレートを算出する。UL最大データレート及びDL最大データレートは、それぞれ独立して算出されてもよい。 In step S3, the base station apparatus 10 calculates the maximum data rate for each FR based on the received "UE Capability Information". The UL maximum data rate and the DL maximum data rate may be calculated independently of each other.
 ステップS4において、基地局装置10は、FRごとに算出された最大データレート以内でUL又はDLをユーザ装置20にスケジューリングし、通信を行う。FRごとに最大データレートが規定されるため、同一のFRにおける複数のバンドのCC間で、提供可能な最大データレートを共有することが可能となり、異なるバンドのCC間で柔軟なスケジューリングが可能となる。 In step S4, the base station apparatus 10 schedules UL or DL to the user apparatus 20 within the maximum data rate calculated for each FR, and performs communication. Since the maximum data rate is specified for each FR, it is possible to share the maximum data rate that can be provided between CCs of multiple bands in the same FR, and flexible scheduling is possible between CCs of different bands. Become.
 図3は、本発明の実施の形態における動作例を説明するためのフローチャートである。図3を用いて、図2に示されるステップS3を詳細に説明する。 FIG. 3 is a flowchart for explaining an operation example according to the embodiment of the present invention. Step S3 shown in FIG. 2 will be described in detail with reference to FIG.
 ステップS31において、基地局装置10は、FRごとに共通のスケーリングファクタ(scalingFactor)を使用して、CCごとの最大データレートを算出する。続いて、FRごとに、各CCの最大データレートを加算してFRごとの最大データレートを算出する(S32)。ステップS31及びステップS32は、UL又はDLそれぞれにおいて実行されてもよい。図3に示されるように、FRごとに共通のスケーリングファクタを使用して、FRごとの最大データレートを算出することができる。 In step S31, the base station apparatus 10 calculates the maximum data rate for each CC by using a scaling factor common to each FR. Subsequently, the maximum data rate of each CC is added for each FR to calculate the maximum data rate for each FR (S32). Step S31 and step S32 may be executed in UL or DL respectively. As shown in FIG. 3, the maximum data rate for each FR can be calculated using a common scaling factor for each FR.
 図4は、本発明の実施の形態における動作例に係る仕様変更例(1)である。図4に示されるように、UE能力のパラメータのひとつである「scalingFactor」が定義される。「scalingFactor」は、あるバンドの最大データレートの算出に使用されるパラメータである。「scalingFactor」は、例えば、0.4、0.75等の値をとり、パラメータが存在しない場合最大データレートの算出に使用される値は1となる。同一のFRに属するすべてのバンドは、同一の値が設定されるようにする。 FIG. 4 is a specification change example (1) according to an operation example according to the embodiment of the present invention. As shown in FIG. 4, "scaling Factor", which is one of the parameters of UE capability, is defined. “ScalingFactor” is a parameter used to calculate the maximum data rate for a band. The "scaling Factor" takes a value such as 0.4, 0.75, and the value used to calculate the maximum data rate is 1 when the parameter does not exist. All bands belonging to the same FR are set to have the same value.
 DLには「FeatureSetDownlink parameters」に含まれる「scalingFactor」、ULには「FeatureSetUplink parameters」に含まれる「scalingFactor」のように、DLとULとで「scalingFactor」はそれぞれ設定されてもよい。 "ScalingFactor" may be set for DL and UL, such as "scalingFactor" included in "FeatureSetDownlink parameters" for DL, and "scalingFactor" included for "FatureSetUplink parameters" for UL, respectively.
 図5は、本発明の実施の形態における動作例に係る仕様変更例(2)である。図5に示されるように、RRCメッセージの情報要素である「FeatureSetDownlink parameters」に含まれる「scalingFactor」及び「FeatureSetUplink parameters」に含まれる「scalingFactor」に、同一のFRにおけるすべてのバンドにおいて同じ値が定義されてもよい。「FeatureSetDownlink parameters」及び「FeatureSetUplink parameters」は、図2に示されるステップS2において、「UECapability Information」としてユーザ装置20から基地局装置10に送信される。 FIG. 5 is a specification change example (2) according to an operation example according to the embodiment of the present invention. As shown in FIG. 5, the same value is defined in all the bands in the same FR in the "scaling Factor" included in the "FatureSetDownlink parameters" and the "scalingFactor" included in the "FeatureSetUplink parameters" which are the information elements of the RRC message. May be done. The “FeatureSetDownlink parameters” and the “FeatureSetUplink parameters” are transmitted from the user apparatus 20 to the base station apparatus 10 as “UECapacity Information” in step S2 shown in FIG.
 上述の実施例により、ユーザ装置20は、同一のFRに属するバンドのスケーリングファクタを同一の値にすることで、基地局装置10は、同一のFR内の複数のバンドのCC間で提供可能な最大データレートを共有し、バンドを跨るCC間で柔軟なスケジューリングを実行することができる。 According to the above embodiment, the user apparatus 20 can provide the base station apparatus 10 among CCs of a plurality of bands in the same FR by setting the scaling factors of the bands belonging to the same FR to the same value. It shares the maximum data rate and allows flexible scheduling between CCs across bands.
 すなわち、無線通信システムにおいて、最大データレートが複数のバンドから構成されたスケジューリングを行うことができる。 That is, in a wireless communication system, scheduling can be performed in which the maximum data rate is composed of a plurality of bands.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局装置10及びユーザ装置20の機能構成例を説明する。基地局装置10及びユーザ装置20は上述した実施例を実施する機能を含む。ただし、基地局装置10及びユーザ装置20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
(Device configuration)
Next, a functional configuration example of the base station device 10 and the user device 20 that execute the processes and operations described so far will be described. The base station apparatus 10 and the user apparatus 20 include a function of carrying out the above-described embodiment. However, the base station device 10 and the user device 20 may each have only a part of the functions in the embodiment.
 <基地局装置10>
 図6は、基地局装置10の機能構成の一例を示す図である。図6に示されるように、基地局装置10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図6に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Base station device 10>
FIG. 6 is a diagram showing an example of the functional configuration of the base station device 10. As shown in FIG. 6, the base station apparatus 10 includes a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140. The functional configuration shown in FIG. 6 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
 送信部110は、ユーザ装置20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、ユーザ装置20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、ユーザ装置20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有する。 The transmission unit 110 includes a function of generating a signal to be transmitted to the user device 20 side and transmitting the signal wirelessly. The receiving unit 120 includes a function of receiving various signals transmitted from the user apparatus 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signals, and the like to the user device 20.
 設定部130は、予め設定される設定情報、及び、ユーザ装置20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。設定情報の内容は、例えば、ユーザ装置20のスケジューリングに係る通信設定、UE能力等である。 The setting unit 130 stores preset setting information and various setting information to be transmitted to the user device 20 in the storage device, and reads them out from the storage device as needed. The contents of the setting information are, for example, communication settings related to scheduling of the user device 20, UE capability, and the like.
 制御部140は、実施例において説明したように、送信部110を介してユーザ装置20のUE能力に基づいてスケジューリングを行う。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。 As described in the embodiment, the control unit 140 performs scheduling based on the UE capability of the user device 20 via the transmission unit 110. The function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120.
 <ユーザ装置20>
 図7は、ユーザ装置20の機能構成の一例を示す図である。図7に示されるように、ユーザ装置20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図7に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<User device 20>
FIG. 7 is a diagram showing an example of the functional configuration of the user device 20. As shown in FIG. 7, the user device 20 includes a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240. The functional configuration shown in FIG. 7 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局装置10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他のユーザ装置20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部120は、他のユーザ装置20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。 The transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL / UL / SL control signals and the like transmitted from the base station apparatus 10. Further, for example, the transmission unit 210 connects the other user device 20 to the PSCCH (Physical Sidelink Control Channel), PSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) as D2D communication. ) Etc., and the receiving unit 120 receives the PSCCH, PSCH, PSDCH, PSBCH, etc. from the other user device 20.
 設定部230は、受信部220により基地局装置10又はユーザ装置20から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、UE能力等である。 The setting unit 230 stores various setting information received from the base station device 10 or the user device 20 by the receiving unit 220 in the storage device, and reads it out from the storage device as needed. The setting unit 230 also stores preset setting information. The content of the setting information is, for example, UE capability and the like.
 制御部240は、実施例において説明したように、送信部210を介して基地局装置10にUE能力を報告する。また、制御部240は、基地局装置10から取得したスケジューリングに基づいて、通信を制御する。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。 The control unit 240 reports the UE capability to the base station device 10 via the transmission unit 210, as described in the embodiment. Further, the control unit 240 controls communication based on the scheduling acquired from the base station apparatus 10. The function unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the function unit related to signal reception in the control unit 240 may be included in the reception unit 220.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図6及び図7)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 6 and 7) used in the description of the above embodiment show blocks of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one physically or logically connected device, or directly or indirectly (for example, two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. There are broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't. For example, a functional block (constituent unit) that functions transmission is called a transmitting unit (transmitting unit) or a transmitter (transmitter). As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施の形態における基地局装置10、ユーザ装置20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、本開示の一実施の形態に係る基地局装置10及びユーザ装置20のハードウェア構成の一例を示す図である。上述の基地局装置10及びユーザ装置20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station device 10, the user device 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 8 is a diagram showing an example of the hardware configuration of the base station device 10 and the user device 20 according to the embodiment of the present disclosure. The above-mentioned base station device 10 and user device 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be done.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局装置10及びユーザ装置20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the base station device 10 and the user device 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 基地局装置10及びユーザ装置20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function in the base station device 10 and the user device 20, by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, the processor 1001 performs an calculation and the communication device 1004 performs communication. It is realized by controlling or controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like. For example, the above-mentioned control unit 140, control unit 240, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図6に示した基地局装置10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図7に示したユーザ装置20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 140 of the base station device 10 shown in FIG. 6 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001. Further, for example, the control unit 240 of the user device 20 shown in FIG. 7 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001. Although it has been explained that the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, for example, by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. It may be configured. The storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, Blu). -It may be composed of at least one of a ray (registered trademark) disk), a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip and the like. The storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of. For example, the transmission / reception antenna, the amplifier unit, the transmission / reception unit, the transmission line interface, and the like may be realized by the communication device 1004. The transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局装置10及びユーザ装置20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station device 10 and the user device 20 include a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured to include hardware, and the hardware may realize a part or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、ユーザ装置の能力を問い合わせる第1のRRC(Radio Resource Control)メッセージを基地局装置から受信する受信部と、前記第1のRRCメッセージの応答として、最大データレートの算出に使用するパラメータであるスケーリングファクタを含むUE能力を報告する第2のRRCメッセージを前記基地局装置に送信する送信部と、前記スケーリングファクタに基づいて算出された最大データレート以内でスケジューリングされる上りリンク又は下りリンクにおいて前記基地局装置と通信を実行する通信部とを有し、前記送信部は、同一のFR(Frequency Range)に属するバンドに対応する前記スケーリングファクタに同一の値を設定するユーザ装置が提供される。
(Summary of embodiments)
As described above, according to the embodiment of the present invention, the receiving unit that receives the first RRC (Radio Resource Control) message inquiring about the capability of the user device from the base station device, and the first RRC message. In response to, a transmitter that sends a second RRC message reporting the UE capability including the scaling factor, which is a parameter used to calculate the maximum data rate, to the base station apparatus, and the calculation based on the scaling factor. It has a communication unit that executes communication with the base station device on an uplink or a downlink scheduled within the maximum data rate, and the transmission unit has the scaling corresponding to a band belonging to the same FR (Frequency Range). A user device is provided that sets the same value for the factor.
 上記の構成により、ユーザ装置20は、同一のFRに属するバンドのスケーリングファクタを同一の値にすることで、基地局装置10は、同一のFR内の複数のバンドのCC間で提供可能な最大データレートを共有し、バンドを跨るCC間で柔軟なスケジューリングを実行することができる。すなわち、無線通信システムにおいて、最大データレートが複数のバンドから構成されたスケジューリングを行うことができる。 With the above configuration, the user device 20 sets the scaling factor of the band belonging to the same FR to the same value, so that the base station device 10 can provide the maximum between CCs of a plurality of bands in the same FR. Data rates can be shared and flexible scheduling can be performed between CCs across bands. That is, in a wireless communication system, scheduling can be performed in which the maximum data rate is composed of a plurality of bands.
 前記送信部は、第1のFRに属するバンドと、第2のFRに属するバンドとから構成されるバンドコンビネーションにおいて、前記第1のFRに属するバンドに適用される前記スケーリングファクタに同一の値を設定し、前記第2のFRに属するバンドに適用される前記スケーリングファクタに同一の値を設定してもよい。当該構成により、ユーザ装置20は、バンドが複数のFRに属する場合、FRごとに共通のスケーリングファクタを適用して、各FRの特性に合致する最大データレートを設定することができる。 In a band combination composed of a band belonging to the first FR and a band belonging to the second FR, the transmitter has the same value as the scaling factor applied to the band belonging to the first FR. The same value may be set for the scaling factor applied to the band belonging to the second FR. With this configuration, when the band belongs to a plurality of FRs, the user apparatus 20 can apply a common scaling factor for each FR to set a maximum data rate that matches the characteristics of each FR.
 前記送信部は、前記第1のFRに属するバンドに適用される前記スケーリングファクタと、前記第2のFRに属するバンドに適用される前記スケーリングファクタとに、異なる値を設定してもよい。当該構成により、ユーザ装置20は、バンドが複数のFRに属する場合、FRごとにスケーリングファクタを適用して、各FRの特性に合致する最大データレートを設定することができる。 The transmission unit may set different values for the scaling factor applied to the band belonging to the first FR and the scaling factor applied to the band belonging to the second FR. With this configuration, when the band belongs to a plurality of FRs, the user apparatus 20 can apply a scaling factor for each FR to set a maximum data rate that matches the characteristics of each FR.
 また、本発明の実施の形態によれば、ユーザ装置の能力を問い合わせる第1のRRC(Radio Resource Control)メッセージを前記ユーザ装置に送信する送信部と、前記第1のRRCメッセージの応答として、最大データレートの算出に使用するパラメータであるスケーリングファクタを含むUE能力を報告する第2のRRCメッセージを前記ユーザ装置から受信する受信部と、前記スケーリングファクタに基づいて算出された最大データレート以内でスケジューリングされる上りリンク又は下りリンクにおいて前記ユーザ装置と通信を実行する通信部とを有し、同一のFR(Frequency Range)に属するバンドに対応する前記スケーリングファクタに同一の値が設定される基地局装置が提供される。 Further, according to the embodiment of the present invention, the transmission unit that transmits the first RRC (Radio Resource Control) message inquiring about the capability of the user device to the user device and the response of the first RRC message are maximum. A receiver that receives a second RRC message reporting UE capability including a scaling factor, which is a parameter used to calculate the data rate, from the user device and a schedule within the maximum data rate calculated based on the scaling factor. A base station device that has a communication unit that executes communication with the user device on the uplink or downlink, and the same value is set for the scaling factor corresponding to a band belonging to the same FR (Frequency Range). Is provided.
 上記の構成により、ユーザ装置20は、同一のFRに属するバンドのスケーリングファクタを同一の値にすることで、基地局装置10は、同一のFR内の複数のバンドのCC間で提供可能な最大データレートを共有し、バンドを跨るCC間で柔軟なスケジューリングを実行することができる。すなわち、無線通信システムにおいて、最大データレートが複数のバンドから構成されたスケジューリングを行うことができる。 With the above configuration, the user device 20 sets the scaling factor of the band belonging to the same FR to the same value, so that the base station device 10 can provide the maximum between CCs of a plurality of bands in the same FR. Data rates can be shared and flexible scheduling can be performed between CCs across bands. That is, in a wireless communication system, scheduling can be performed in which the maximum data rate is composed of a plurality of bands.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局装置10及びユーザ装置20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局装置10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従ってユーザ装置20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement to the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art can understand various modifications, modifications, alternatives, substitutions, and the like. There will be. Although explanations have been given using specific numerical examples in order to promote understanding of the invention, these numerical values are merely examples and any appropriate value may be used unless otherwise specified. The classification of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be used in combination with another item. It may be applied (as long as there is no contradiction) to the matters described in. The boundary of the functional unit or the processing unit in the functional block diagram does not always correspond to the boundary of the physical component. The operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components. With respect to the processing procedure described in the embodiment, the order of processing may be changed as long as there is no contradiction. For convenience of processing description, the base station apparatus 10 and the user apparatus 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof. The software operated by the processor of the base station apparatus 10 according to the embodiment of the present invention and the software operated by the processor of the user apparatus 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read, respectively. It may be stored in a dedicated memory (ROM), EPROM, EEPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. Broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof may be used. RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication). system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize suitable systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present specification may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本明細書において基地局装置10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局装置10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置20との通信のために行われる様々な動作は、基地局装置10及び基地局装置10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局装置10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station apparatus 10 in the present specification may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station device 10, various operations performed for communication with the user device 20 are other than the base station device 10 and the base station device 10. It is clear that this can be done by at least one of the network nodes (eg, MME or S-GW, etc., but not limited to these). In the above, the case where there is one network node other than the base station apparatus 10 has been illustrated, but the other network nodes may be a combination of a plurality of other network nodes (for example, MME and S-GW). Good.
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input / output information and the like may be saved in a specific location (for example, memory), or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example). , Comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC: Component Carrier) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "base station (BS: Base Station)", "wireless base station", "base station device", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB" (GNB) ”,“ access point ”,“ transmission point ”,“ reception point ”,“ transmission / reception point (transmission / reception point) ”,“ cell ”,“ sector ”, Terms such as "cell group," "carrier," and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)). Communication services can also be provided by Remote Radio Head). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS: Mobile Station)", "user terminal", "user device (UE: User Equipment)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ装置20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局装置10が有する機能をユーザ装置20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, the communication between the base station and the user terminal is replaced with the communication between a plurality of user devices 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user device 20 may have the functions of the base station device 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station may have the functions of the user terminal described above.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that "resolving", "selecting", "choosing", "establishing", "comparing", etc. are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include that some action is regarded as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be "connected" or "coupled" to each other using electromagnetic energies having wavelengths in the microwave and light (both visible and invisible) regions.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part", "circuit", "device" and the like.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, transmitter / receiver. At least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 The slot may be composed of one or more symbols in the time domain (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.). Slots may be time units based on new melody.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. You may. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ装置20に対して、無線リソース(各ユーザ装置20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user device 20 to allocate radio resources (frequency bandwidth that can be used in each user device 20, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth part (BWP: Bandwidth Part) (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier. Here, the common RB may be specified by an index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 なお、本開示において、送信部210及び受信部220は、通信部の一例である。送信部110及び受信部120は、通信部の一例である。UECapabilityEnquiryは、ユーザ装置の能力を問い合わせる第1のRRCメッセージの一例である。UECapabilityInformationは、UE能力を報告する第2のRRCメッセージの一例である。 In this disclosure, the transmitting unit 210 and the receiving unit 220 are examples of communication units. The transmission unit 110 and the reception unit 120 are examples of communication units. The UECapacityEnquiry is an example of a first RRC message inquiring about the capabilities of a user device. The UECapacity Information is an example of a second RRC message reporting UE capability.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of the present disclosure is for the purpose of exemplary explanation and does not have any restrictive meaning to the present disclosure.
10    基地局装置
110   送信部
120   受信部
130   設定部
140   制御部
20    ユーザ装置
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
10 Base station device 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 User device 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Claims (4)

  1.  ユーザ装置の能力を問い合わせる第1のRRC(Radio Resource Control)メッセージを基地局装置から受信する受信部と、
     前記第1のRRCメッセージの応答として、最大データレートの算出に使用するパラメータであるスケーリングファクタを含むUE能力を報告する第2のRRCメッセージを前記基地局装置に送信する送信部と、
     前記スケーリングファクタに基づいて算出された最大データレート以内でスケジューリングされる上りリンク又は下りリンクにおいて前記基地局装置と通信を実行する通信部とを有し、
     前記送信部は、同一のFR(Frequency Range)に属するバンドに対応する前記スケーリングファクタに同一の値を設定するユーザ装置。
    A receiver that receives the first RRC (Radio Resource Control) message inquiring about the capabilities of the user device from the base station device, and
    In response to the first RRC message, a transmitter that transmits a second RRC message that reports the UE capability including the scaling factor, which is a parameter used to calculate the maximum data rate, to the base station apparatus.
    It has a communication unit that executes communication with the base station apparatus on an uplink or a downlink scheduled within the maximum data rate calculated based on the scaling factor.
    The transmitter is a user device that sets the same value for the scaling factor corresponding to a band belonging to the same FR (Frequency Range).
  2.  前記送信部は、第1のFRに属するバンドと、第2のFRに属するバンドとから構成されるバンドコンビネーションにおいて、前記第1のFRに属するバンドに適用される前記スケーリングファクタに同一の値を設定し、前記第2のFRに属するバンドに適用される前記スケーリングファクタに同一の値を設定する請求項1記載のユーザ装置。 In a band combination composed of a band belonging to the first FR and a band belonging to the second FR, the transmitter has the same value as the scaling factor applied to the band belonging to the first FR. The user device according to claim 1, wherein the scaling factor is set and the same value is set for the scaling factor applied to the band belonging to the second FR.
  3.  前記送信部は、前記第1のFRに属するバンドに適用される前記スケーリングファクタと、前記第2のFRに属するバンドに適用される前記スケーリングファクタとに、異なる値を設定する請求項2記載のユーザ装置。 The second aspect of the present invention, wherein the transmission unit sets different values for the scaling factor applied to the band belonging to the first FR and the scaling factor applied to the band belonging to the second FR. User device.
  4.  ユーザ装置の能力を問い合わせる第1のRRC(Radio Resource Control)メッセージを前記ユーザ装置に送信する送信部と、
     前記第1のRRCメッセージの応答として、最大データレートの算出に使用するパラメータであるスケーリングファクタを含むUE能力を報告する第2のRRCメッセージを前記ユーザ装置から受信する受信部と、
     前記スケーリングファクタに基づいて算出された最大データレート以内でスケジューリングされる上りリンク又は下りリンクにおいて前記ユーザ装置と通信を実行する通信部とを有し、
     同一のFR(Frequency Range)に属するバンドに対応する前記スケーリングファクタに同一の値が設定される基地局装置。
    A transmitter that sends a first RRC (Radio Resource Control) message inquiring about the capability of the user device to the user device,
    In response to the first RRC message, a receiver that receives a second RRC message from the user apparatus that reports the UE capability including the scaling factor, which is a parameter used to calculate the maximum data rate.
    It has a communication unit that executes communication with the user device on an uplink or a downlink scheduled within the maximum data rate calculated based on the scaling factor.
    A base station device in which the same value is set for the scaling factor corresponding to a band belonging to the same FR (Frequency Range).
PCT/JP2019/015623 2019-04-10 2019-04-10 User equipment and base-station device WO2020208744A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/015623 WO2020208744A1 (en) 2019-04-10 2019-04-10 User equipment and base-station device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/015623 WO2020208744A1 (en) 2019-04-10 2019-04-10 User equipment and base-station device

Publications (1)

Publication Number Publication Date
WO2020208744A1 true WO2020208744A1 (en) 2020-10-15

Family

ID=72751143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015623 WO2020208744A1 (en) 2019-04-10 2019-04-10 User equipment and base-station device

Country Status (1)

Country Link
WO (1) WO2020208744A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; User Equipment (UE) radio access capabilities (Release 15", 3GPP TS 38.306 V15.4.0, 17 January 2019 (2019-01-17) *
ERICSSON: "Calculation of DataRate and DataRateCC in 38.214", 3GPP TSG RAN WG1 #96B R1-1905138, 30 March 2019 (2019-03-30), pages 3 - 5, XP051692025 *
INTEL ET AL.: "Way Forward on NR Peak Data Rate Formula", 3GPP TSG RAN WG1 #92B R1-1805641, 24 April 2018 (2018-04-24), XP051435660 *

Similar Documents

Publication Publication Date Title
WO2020194760A1 (en) User device and base station device
JPWO2020090097A1 (en) User equipment and base station equipment
WO2020230201A1 (en) User device and base station device
JPWO2020170405A1 (en) User equipment and base station equipment
WO2020246185A1 (en) Terminal and base station
WO2021140674A1 (en) Terminal and communication method
WO2021140673A1 (en) Terminal and communication method
WO2021149110A1 (en) Terminal and communication method
JP7073529B2 (en) Terminals, base stations and communication methods
WO2021149246A1 (en) Terminal, base station, and communication method
WO2021199415A1 (en) Terminal, and communication method
WO2021140677A1 (en) Terminal and communication method
US12016035B2 (en) User equipment and base station device
JPWO2020157873A1 (en) User equipment and base station equipment
WO2022079781A1 (en) Terminal, base station, and communication method
WO2022029947A1 (en) Terminal, base station device, and feedback method
WO2021161488A1 (en) Terminal, and communication method
WO2021199414A1 (en) Terminal and communication method
WO2020194746A1 (en) User device and base station device
WO2021090462A1 (en) Terminal and communication method
WO2021005763A1 (en) Base station device, terminal, and transmission method
WO2020217366A1 (en) User device
WO2020157874A1 (en) User device and base station device
JPWO2020170445A1 (en) User equipment and base station equipment
JP2022065209A (en) User device and base station device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP