WO2020207359A1 - 一种网络配置方法及装置 - Google Patents

一种网络配置方法及装置 Download PDF

Info

Publication number
WO2020207359A1
WO2020207359A1 PCT/CN2020/083359 CN2020083359W WO2020207359A1 WO 2020207359 A1 WO2020207359 A1 WO 2020207359A1 CN 2020083359 W CN2020083359 W CN 2020083359W WO 2020207359 A1 WO2020207359 A1 WO 2020207359A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
network
sub
terminal device
network configuration
Prior art date
Application number
PCT/CN2020/083359
Other languages
English (en)
French (fr)
Inventor
郭瑾
赵灿
周凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020207359A1 publication Critical patent/WO2020207359A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • This application relates to the field of Internet of Vehicles, and in particular to a network configuration method and device.
  • Internet of Vehicles services for example, fully automated parking (auto valet parking, AVP), etc.
  • AVP autonomous valet parking
  • one Internet of Vehicles business will contain multiple business processes (that is, multiple sub-services), and the network requirements of each business process are not the same.
  • the AVP service needs to detect obstacles in real time and send it to the vehicle during the application process. It needs low latency, small bandwidth, and the ability to switch services across the network without interruption; the AVP service also needs to plan the path for the vehicle and send it to the vehicle.
  • WIFI wireless fidelity
  • AP cross-access point
  • PC5 vehicle near field communication 5
  • LTE long term evolution
  • PC5 personal area network 5
  • LTE Uu can provide reliable point-to-point connections and large-bandwidth technologies, but the transmission path is too long and the delay is too large, which cannot meet the needs of low-latency services.
  • the present application provides a network configuration method and device to solve the problem that a single network in the prior art cannot meet the service requirements of multiple sub-services of the Internet of Vehicles service.
  • the present application provides a network configuration method.
  • the method may include: a first device receives a service request from a terminal device, the service request includes a service identifier, and the service includes at least one sub-service; The first device obtains the network type supported by the terminal device, and then the first device determines the selected network for each sub-service according to the network type supported by the terminal device, and based on the selection of each sub-service The network initiates the network configuration process.
  • the different network requirements of multiple sub-services of a business can be met through multi-network coordination and complementation, and the reliable continuity of the business can be guaranteed, thereby meeting the business needs of the Internet of Vehicles business.
  • the first device determines the selected network of each sub-service according to the network type supported by the terminal device.
  • the specific method may be: the first device obtains the selected network according to the service identifier. The at least one sub-service corresponding to the service, and at least one candidate network corresponding to each sub-service is determined; the first device determines the at least one candidate network corresponding to each sub-service according to the network type supported by the terminal device Determine the selected network of each sub-service among the to-be-selected networks.
  • the first device can accurately determine the selected network of each sub-service, so that the subsequent selected network based on each sub-service can accurately initiate the network configuration process, so that multiple networks can cooperate and complement each other to meet the requirements of one service. Different network requirements of multiple sub-businesses.
  • the first device before receiving the service request from the terminal device, the first device also obtains the service requirements of each sub-service, and according to the service requirements of each sub-service and the first The available network type of the system where the device is located determines at least one candidate network corresponding to each sub-service.
  • the first device can accurately determine the candidate network corresponding to each sub-service in combination with actual conditions.
  • the first device receives network status information from a second device, where the network status information sent by the second device is network status information of a network deployed by the system where the first device is located;
  • the first device determines the available network type of the system where the first device is located according to the network status information.
  • the second device is a service capability exposure function (SCEF) network element, a policy and charging rules function (PCRF) network element or a router in an AVP business scenario.
  • SCEF service capability exposure function
  • PCRF policy and charging rules function
  • the side unit (road side unit, RSU).
  • the first device can determine the available network type of the system where the first device is located according to the availability of the network, so that the first device can determine the candidate network corresponding to each sub-service.
  • the first device initiating the network configuration process may specifically include: the first device allocates to the terminal device Destination layer two address, and send network configuration information to the terminal device and the second device.
  • the network configuration information includes the destination layer two address and the terminal device identifier.
  • the second device is an RSU in an AVP service scenario.
  • the network configuration process for the PC5 network can be successfully initiated, and then the network configuration is performed based on the PC5 network.
  • the first device receives a first service message from a third device, and the first service message includes the identification of the terminal device and the identification of the first sub-service; the first The device determines the destination layer two address according to the identification of the terminal device and the identification of the first sub-service; the first device sends the second service message to the terminal device through the second device, so The second service message includes the destination layer two address, and the destination layer two address is used to instruct the terminal device to receive and process the second service message.
  • the second device is an RSU in an AVP service scenario
  • the third device is a device deployed by an AVP application in an AVP service scenario.
  • the sub-service can be performed after the network configuration is completed, thereby meeting the service requirements of the sub-service.
  • the first device initiating the network configuration process may specifically include: the first device sends the second device to the second device Sending network configuration information, where the network configuration information includes the IP address of the terminal device and the service requirements of the second sub-service; the first device receives a network configuration success message from the second device.
  • the second device is SCEF or PCRF in an AVP service scenario.
  • the network configuration process for the LTE-Uu network can be successfully initiated, and then the network configuration based on the LTE-Uu network can be performed.
  • the first device initiating a network configuration process may specifically include: the first device according to the first device The service requirements of the three sub-services determine the network slice of the third sub-service; the first device sends network configuration information to the terminal device, and the network configuration information includes the service identifier and the terminal device’s IP address and the identifier of the network slice of each sub-service.
  • the network configuration process for the 5G-Uu network can be successfully initiated, and then the network configuration is performed based on the 5G-Uu network.
  • the first device receives a third service message from the third device, and the third service message includes the identification of the terminal device and the identification of the fourth sub-service; the fourth sub-service Is the second sub-service or the third sub-service; the first device obtains the identity of the terminal device and the destination IP address corresponding to the identity of the fourth sub-service; the first device uses the The destination IP address sends the third service message to the terminal device.
  • the third device is a device deployed by an AVP application in an AVP service scenario.
  • the sub-service can be performed after the network configuration is completed, thereby meeting the service requirements of the sub-service.
  • the first device acquires first information, and the first information is used to indicate the network status of the first network; the first device determines the first network according to the first information Currently unavailable; the first device determines the target sub-service corresponding to the first network, and updates the network configuration information corresponding to the target sub-service, and initiates a network configuration update process.
  • the network configuration information of the sub-service corresponding to the network is updated, so as to avoid the influence on the sub-service, thereby improving service reliability.
  • the first device obtains the first information.
  • the specific method may be: the first device receives data packet statistical information from the terminal device, and the data packet statistical information includes packet loss Number and statistical time; or, the first device receives network congestion information from the second device.
  • the second device is SCEF or PCRF in an AVP service scenario.
  • the first device can accurately acquire the first information, thereby accurately determining the network status of the first network.
  • the first device determines that the first network is currently unavailable according to the first information.
  • the specific method may be: the first device determines according to the number of lost packets and the statistical time When the packet loss rate is greater than the set packet loss rate threshold, it is determined that the first network is currently unavailable; or, based on the network congestion information, the first device determines that the network congestion degree is greater than the set threshold, and determines the first network. A network is currently unavailable.
  • the first device can accurately determine that the first network is currently unavailable, so as to subsequently update the network configuration information of the sub-service corresponding to the first network, so as to improve service reliability.
  • the first device is deployed in an AVP server in a fully automatic passenger parking AVP business scenario.
  • the present application provides a network configuration method.
  • the method includes: a terminal device sends a service request to a first device, the service request includes a service identifier; wherein the service includes at least one sub-service; The terminal device receives network configuration information from the first device, where the network configuration information is used to configure the selected network of the at least one sub-service.
  • the network configuration can be performed based on the selected network of each sub-service, so that the different network requirements of multiple sub-services of a service can be met through multi-network coordination and complementation, and the reliability and continuity of the service are guaranteed to meet the service requirements of the Internet of Vehicles service. .
  • the network configuration information when the selected network of the first sub-service of the service is the PC5 network, the network configuration information includes the destination layer 2 address allocated by the first device for the terminal device and all The identification of the terminal device. In this way, the terminal device can be notified that the destination layer two address is only used for the terminal device, so that the terminal device can process service messages based on the destination layer two address after completing network configuration.
  • the terminal device receives the second service message sent by the first device through the second device, and the second service message includes the destination layer two address; the terminal device determines the The destination layer two address is its own destination layer two address, and processes the second service message.
  • the second device is an RSU in an AVP service scenario.
  • the terminal device can accurately process business messages related to itself.
  • the terminal device receives network configuration information from the first device.
  • the specific method may be: the terminal The device receives the network configuration information sent by the first device through the second device, the IP address of the terminal device and the service requirement of the second sub-service in the network configuration information.
  • the second device is SCEF or PCRF in an AVP service scenario.
  • the terminal device can accurately receive the network configuration information, and then subsequently complete the network configuration based on the LTE-Uu network.
  • the network configuration information includes the service identifier, the IP address of the terminal device, and the The identifier of the network slice of the third sub-service. In this way, the subsequent network configuration based on the 5G-Uu network can be accurately completed.
  • the terminal device receives the third service message from the first device through the IP address. In this way, the terminal device can accurately process business messages related to itself.
  • the terminal device determines data packet statistics information according to received data packets, and the data packet statistics information includes the number of lost packets and the statistical time; the terminal device sends the data packet statistics to the first device information.
  • the first device can determine the network status of the first network according to the data packet statistical information, and when it is determined that the first network is not available, update the network configuration information of the sub-service corresponding to the first network , Which can improve business reliability.
  • the first device is deployed in an AVP server in an AVP service scenario.
  • the present application provides a network configuration method.
  • the method may include: after a second device determines the network status of the network deployed by the system where the monitored first device is located, sending network status information to the first device, where ,
  • the network state information is network state information of the network deployed by the system where the first device is located.
  • the first device can subsequently execute the subsequent network configuration process based on the network status, so that the different network requirements of multiple sub-services of a business can be met through multi-network coordination and complementation, and the reliable continuity of the business can be ensured to meet the Internet of Vehicles Business needs of the business.
  • the second device may be SCEF, PCRF or RSU in the AVP service scenario.
  • the second device when the selected network of the first sub-service of the service is the PC5 network, the second device receives network configuration information from the first device, and the configuration information includes the first A destination layer 2 address allocated to a terminal device by a device and an identifier of the terminal device.
  • the second device is an RSU in an AVP service scenario.
  • the second device can determine that the destination layer two address is only used for the terminal device, and subsequently can identify the service message of the terminal device according to the destination layer two address, and then notify the terminal device Related business news.
  • the second device receives a second service message from the first device, and the second service message includes the destination layer two address; the second device sends to the terminal device For the second service message, the destination layer two address is used to instruct the terminal device to receive and process the second service message.
  • the second device is an RSU in an AVP service scenario.
  • the second device can send the service message to the terminal device, so that the terminal device determines whether the service message needs to be processed according to the destination layer two address and the first address.
  • the second device when the selected network of the second sub-service of the service is an LTE-Uu network, the second device receives network configuration information from the first device, and the network configuration information includes The IP address of the terminal device and the service requirements of the second sub-service; the second device sends a network configuration success message to the first device.
  • the second device is SCEF or PCRF in an AVP service scenario. In this way, the network configuration based on the LTE network can be completed.
  • the second device sends network congestion information to the first device.
  • the second device is SCEF or PCRF in an AVP service scenario.
  • the first device can determine the network status of the first network according to the network congestion information, and when it is determined that the first network is unavailable, update the network configuration information of the sub-service corresponding to the first network, This can improve service reliability.
  • the service request also includes the network type supported by the terminal device.
  • the first device can directly determine the selected network of each sub-service according to the network type supported by the terminal device in the service request.
  • the terminal device sends a registration request to the first device before sending the service request to the first device, and the registration request includes the network type supported by the terminal device.
  • the first device can obtain the network type supported by the terminal device registered by the terminal device after receiving the service request, so that the first device subsequently determines the selection of each sub-service according to the network type supported by the terminal device. Set the network.
  • the first device is deployed in an AVP server in an AVP service scenario.
  • the present application also provides a device for realizing network configuration, and the device for realizing network configuration has the function of realizing the first device in the foregoing method example of the first aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device for realizing network configuration includes a receiving unit and a processing unit, and optionally, a sending unit. These units can perform the corresponding functions in the above-mentioned method examples of the first aspect. For details, see The detailed description in the method example will not be repeated here.
  • the structure of the device for realizing network configuration includes a communication interface, a memory, and a processor.
  • the communication interface is used to send and receive data and communicate with other devices in the system.
  • the processor is configured to support The device for realizing network configuration executes the corresponding function of the first device in the method of the first aspect described above.
  • the memory is coupled with the processor, and it stores the program instructions and data necessary for the device to realize the network configuration.
  • the present application also provides a terminal device, which has the function of the terminal device in the above-mentioned method example of the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the terminal device includes a sending unit and a receiving unit, and optionally a processing unit. These units can perform the corresponding functions in the second method example above. For details, see the method example The detailed description is not repeated here.
  • the structure of the terminal device includes a transceiver, a memory, and a processor.
  • the transceiver is used to send and receive data and communicate with other devices in the system.
  • the processor is configured to support the terminal device to perform the above The corresponding function in the second aspect of the method.
  • the memory is coupled with the processor, and it stores the necessary program instructions and data of the terminal device.
  • the present application also provides a device for implementing network configuration.
  • the device for implementing network configuration has the function of implementing the second device in the method example of the third aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device for realizing network configuration includes a processing unit and a sending unit, and optionally, a receiving unit. These units can perform the corresponding functions in the above-mentioned method examples of the third aspect. For details, see The detailed description in the method example will not be repeated here.
  • the structure of the device for implementing network configuration includes a communication interface, a memory, and a processor.
  • the transceiver is used to send and receive data and communicate with other devices in the system.
  • the processor is configured to support implementation
  • the network-configured device performs the corresponding function of the second device in the method of the third aspect described above.
  • the memory is coupled with the processor, and it stores the program instructions and data necessary for the device to realize the network configuration.
  • the present application also provides a system, which may include at least the first device, terminal device, and second device mentioned in the above-mentioned reference.
  • this application also provides a computer storage medium in which computer-executable instructions are stored, and the computer-executable instructions are used to make the computer execute any of the above methods when called by the computer.
  • the present application also provides a computer program product containing instructions, which when run on a computer, causes the computer to execute any of the above methods.
  • the present application also provides a chip, which is coupled to a memory, and is used to read and execute program instructions stored in the memory to implement any of the above methods.
  • Figure 1 is a schematic diagram of the architecture of a system provided by this application.
  • FIG. 2 is a flowchart of a network configuration method provided by this application.
  • FIG. 3 is a flowchart of an example of a network configuration method provided by this application.
  • FIG. 4 is a flowchart of an example of a network configuration process based on a PC5 network provided by this application;
  • FIG. 5 is a flowchart of an example of a network configuration process based on an LTE network provided by this application;
  • FIG. 6 is a flowchart of an example of a 5G network-based network configuration process provided by this application.
  • FIG. 7 is a flowchart of an example of a process for triggering network reconfiguration provided by a network status change
  • FIG. 8 is a schematic structural diagram of a device for implementing network configuration provided by this application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by this application.
  • FIG. 10 is a schematic structural diagram of another device for implementing network configuration provided by this application.
  • FIG. 11 is a structural diagram of a device for implementing network configuration provided by this application.
  • FIG. 12 is a structural diagram of a terminal device provided by this application.
  • FIG. 13 is a structural diagram of another device for implementing network configuration provided by this application.
  • the embodiments of the present application provide a network configuration method and device to meet the service requirements of the Internet of Vehicles service.
  • the method and device described in the present application are based on the same inventive concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • FIG. 1 shows a possible system architecture to which the network configuration method provided by the embodiment of the present application is applicable.
  • the system architecture includes at least a first device, a second device, and terminal equipment.
  • the system may have multiple application scenarios, for example, AVP business scenarios in the Internet of Vehicles, or platoon scenarios, and other application scenarios. among them:
  • the system where the first device is located includes one or more types of networks, and the first device can manage networks of different access network types (ie, heterogeneous networks) to meet the service requirements of each sub-service.
  • the first device determines the applicable network for each sub-service (referred to as the selected network in this application) according to the network type supported by the terminal equipment and the service requirements of each sub-service, and is based on the selection of each sub-service
  • the network initiates the network configuration process.
  • the first device may be an independently deployed device or device, or it may be integrated on a platform, or it may be integrated into a server or other equipment. In a possible implementation manner, in an AVP service scenario, the first device may be deployed or integrated in an AVP server.
  • the function of the first device may also be split into multiple logical functions, and these logical functions may be uniformly deployed in the same device or device, or separately deployed in different devices or devices.
  • the first device realizes a complete function as an example for description, but it should be understood that this is not a limitation on the first device.
  • the second device can monitor the network status of the network and perform network configuration.
  • the second device may be a roadside unit (RSU) that monitors the network status of the PC5 network; the second device may also be a network open entity, such as a service capability exposure function, SCEF) network elements, policy and charging rules function (PCRF) network elements, etc., monitor the network status of the 5G-Uu network.
  • RSU roadside unit
  • SCEF service capability exposure function
  • PCRF policy and charging rules function
  • the system may include multiple second devices, and each second device monitors the network status in its respective coverage area; in addition, the system may include two second devices, RSU and SCEF.
  • the terminal device requests a service from the first device, and the service requested by the terminal device includes one or more sub-services, and then the terminal device completes each sub-service based on the network configuration information corresponding to each sub-service determined by the first device Select the network configuration of the network, and then complete the business process of each sub-service according to the network configuration.
  • the terminal device includes functions such as initiating a service request, receiving network configuration information, and network configuration. In specific implementation, these functions can be deployed on one terminal device or on different terminal devices.
  • the function of the terminal device as shown in Figure 1 may actually be implemented by two terminal devices (such as the first terminal device and the second terminal device). The application on the second terminal device realizes the function of initiating a service request.
  • the first terminal device is bound, and the communication unit on the first terminal device realizes the function of receiving network configuration information.
  • the above-mentioned function of initiating a service request can be implemented by an AVP application installed on the mobile phone of the vehicle owner, and the function of receiving network configuration information can be implemented by an onboard unit (OBU) on the vehicle.
  • the OBU is a logical unit of the vehicle's front loading machine or telematics BOX (TBOX).
  • TBOX telematics BOX
  • the functions of the terminal equipment shown in Figure 2 can be implemented by the front loader or TBOX of the vehicle.
  • the terminal device Before the terminal device requests the service, the terminal device requests registration from the first device.
  • the network type supported by the terminal device may be registered with the first device, or may not be registered. Describe the network types supported by the terminal device.
  • the terminal device may carry the network type supported by the terminal device when requesting the service from the first device, which is not limited in this application. It should be noted that when the terminal device registers the network type supported by the terminal device with the first device, in specific implementation, the same can be registered by the terminal device itself, or by the application on the second terminal device. Register, the application is bound to the first terminal device (the communication unit on the first terminal device realizes the function of receiving network configuration information).
  • the application involved in the embodiments of the present application can be understood as a collection of software that implements a specific service, that is, a kind of service-related application software and so on.
  • the second device and the terminal device are not limited to the above examples, and there may be other examples, which are not listed here in this application.
  • the selected network of the sub-service involved in the embodiments of the present application refers to a communication network used to transmit data, information or messages related to the sub-service.
  • the network types involved in the embodiments of this application include PC5, LTE, 5G and other network types.
  • PC5 when the network type PC5 is involved, it specifically includes PC5 under the LTE network (ie LTE-PC5) and PC5 under 5G (ie 5G-PC5); when the network type LTE is involved, it specifically refers to LTE -Uu; when it comes to network type 5G, it specifically refers to 5G-Uu.
  • PC5 when the network type PC5 is involved, it specifically includes PC5 under the LTE network (ie LTE-PC5) and PC5 under 5G (ie 5G-PC5); when the network type LTE is involved, it specifically refers to LTE -Uu; when it comes to network type 5G, it specifically refers to 5G-Uu.
  • PC5 when the network type PC5 is involved, it specifically
  • the network configuration method provided by the embodiment of the present application is applicable to the system shown in FIG. 1. As shown in Figure 2, the specific process of the method may include:
  • Step 201 The first device receives a service request from a terminal device, the service request includes a service identifier; wherein the service includes at least one sub-service.
  • the service request may be initiated by an application of the terminal device or other functional modules, and the application of the terminal device may be an application bound to a service of the terminal device.
  • Step 202 The first device obtains the network type supported by the terminal device.
  • the first device may obtain the network type supported by the terminal device in two situations:
  • the first case the service request further includes the network type supported by the terminal device, and the first apparatus obtains the network type supported by the terminal device from the service request.
  • the second case the terminal device sends a registration request to the first device before sending the service request to the first device, and the registration request includes the network type supported by the terminal device. Then the first device obtains the network type supported by the terminal device registered by the terminal device.
  • the registration request may be initiated by an application of the terminal device or other functional modules, and the application of the terminal device may be an application bound to a service of the terminal device.
  • the service request may also include the identification of the terminal device.
  • the content included in the service request may be as shown in Table 1:
  • the service request may be initiated by an application of the terminal device, such as a mobile application (mobile application, MAPP) installed on the terminal device.
  • MAPP mobile application
  • the MAPP cannot directly communicate with the first device, and the cloud AVP server is required to forward the service request of the MAPP to the first device.
  • the first device before the first device receives the service request from the terminal device, the first device obtains the service requirements of each sub-service, and then the first device determines The service requirements of each sub-service and the available network type of the system where the first device is located determine at least one candidate network corresponding to each sub-service.
  • the first device acquiring the service requirements of each sub-service may be the service requirements of each sub-service registered by the AVP application received by the first device.
  • the service requirements of each sub-service can include, but are not limited to, uplink and downlink information, unicast/broadcast, time delay, bandwidth, frequency, reliability information, and so on.
  • the business requirements of each sub-business can be as shown in Table 2.
  • the AVP application and the first device can be jointly deployed in the AVP server of the parking lot, of course, the two can also be deployed separately, which is not limited in this application.
  • At least one candidate network corresponding to each sub-service may exist in the form of a candidate network list, as shown in Table 3:
  • the first device may set the priority of network selection.
  • the priority of the candidate network corresponding to each sub-service in Table 3 may be arranged in order of priority from high priority to low priority, such as sub-service For map downloading, 5G-Uu has a higher priority than LTE-Uu.
  • 5G-Uu has a higher priority than LTE-Uu.
  • the first device needs to predetermine the available network type of the system where the terminal device is located. Specifically, the first device receives network status information from a second device, where the network status information sent by the second device is network status information of a network deployed by the system where the first device is located; the first device According to the network state information, determine the available network type of the system where the first device is located. Wherein, there may be one or more second devices.
  • the second device may be one or more of RSU, SCEF, and PCRF.
  • the RSU may send the network status information of the PC5 to the first device, which may specifically include the identification of the RSU, the location of the RSU, the coverage area, the load condition, the synchronization status, the channel quality, and so on.
  • the PC5 network status information sent by the RSU may be as shown in Table 4; SCEF or PCRF may send 5G-Uu, LTE-Uu network congestion information to the first device, which may specifically include the information of the base station (for example, eNodeB) Identification or NR identification, network congestion status, etc.
  • the network status information of LTE-Uu may be as shown in Table 5.
  • the network types available to the system determined by the first device may be as shown in Table 6.
  • RSU logo load Synchronization status Channel quality Coverage RSU ID 1 80% normal excellent Geographic coordinates
  • RSU ID 2 50% normal excellent Geographic coordinates
  • Step 203 The first device determines the selected network of each sub-service according to the network type supported by the terminal device, and initiates a network configuration process based on the selected network of each sub-service.
  • the first device determines the selected network of each sub-service according to the network type supported by the terminal device.
  • the specific method may be:
  • the first device obtains the at least one sub-service corresponding to the service according to the identifier of the service, and then determines at least one candidate network corresponding to each sub-service;
  • the first device determines the selected network of each sub-service among at least one candidate network corresponding to each sub-service according to the network type supported by the terminal device.
  • the first device may determine the sub-services corresponding to the AVP in the mapping relationship stored in the first device according to the AVP identifier, including map download, path planning, auxiliary positioning, obstacle detection, The status is reported, and the candidate network for each sub-service is further determined through the mapping relationship.
  • the determined candidate network for map download is 5G-Uu and LTE-Uu.
  • the first device may determine the selected network of each sub-service in combination with Table 1, Table 2 and Table 3.
  • the selected network of each sub-service may be as shown in Table 7.
  • Table 7 Selected networks for each sub-service
  • the configuration process initiated by the first device may include but is not limited to the following three situations:
  • the first device initiating the network configuration process may specifically include:
  • the first device allocates a destination layer two address to the terminal device; the first device sends network configuration information to the terminal device and the second device, and the configuration information includes the destination layer two address and the The identification of the terminal device.
  • the terminal device may receive the network configuration information through a communication unit in the terminal device.
  • the application or other functional modules of the terminal device that initiates the service request can be integrated with the communication unit in the same terminal device, or can be integrated in different terminal devices, which is not limited in this application .
  • the destination layer 2 address is a MAC address.
  • the first device allocates the destination layer two address to the terminal device according to the identification of the terminal device, the identification of the first sub-service, and the communication type (ie, unicast or broadcast) .
  • the first device determines that the network configuration of the first sub-service is complete. At this time, the first device saves the identification of the terminal device, the identification of the service, and the correspondence between the network type of the first sub-service and the destination layer two address of the terminal device. For example, when the first sub-service is auxiliary positioning or obstacle detection, the corresponding relationship saved by the first device may be as shown in Table 8 for the corresponding relationship related to sub-service auxiliary positioning or obstacle detection.
  • the first device receives a first service message from a third device, and the first service message includes the identification of the terminal device and the first service message.
  • the terminal device determines that the destination layer two address in the second service message is its own destination layer two address, it determines that the second service message is sent to itself, and then sends a response to the second service message.
  • Business messages are processed.
  • the first device searches for the correspondence relationship stored locally, and determines the destination layer two address corresponding to the identity of the terminal device and the identity of the first sub-service, for example, when the first sub-service
  • the first device may determine through the look-up table 8 that the destination layer 2 address corresponding to both the terminal equipment and the assisted positioning is MAC 1; then, the first device includes the destination layer 2 address in the
  • the second service message is broadcast to the terminal device through the second device, and then the terminal device compares whether the destination layer two address and its own destination layer two address are the same, thereby judging whether the second service message is Business messages sent to yourself.
  • the first apparatus may also allocate air interface resources to the terminal device, and then may include the identifier of the air interface resource in the network configuration information.
  • the second device may be an RSU
  • the third device may be an AVP application, or a device deployed by the AVP, such as an AVP server deployed by the AVP application.
  • the first device initiating the network configuration process may specifically include:
  • the first device sends network configuration information to the second device, and the network configuration information includes the IP address of the terminal device and the service requirements of the second sub-service; the first device sends the information from the second device Receive network configuration success message.
  • the first device may send a network configuration request or a bearer establishment connection request to the second device, and the network configuration request or the bearer establishment connection request includes the network configuration information.
  • the second device After the establishment of the bearer between the second device and the terminal device is completed, the second device returns a network configuration success message to the first device.
  • the first device saves the correspondence between the identification of the terminal device, the identification of the service, the network type of the second sub-service, and the IP address.
  • the second device is SCEF or PCRF.
  • the first device initiating a network configuration process may specifically include:
  • the first device determines the network slice of the third sub-service according to the service requirements of the third sub-service; the first device sends network configuration information to the terminal device, and the network configuration information includes the The identifier of the service, the IP address of the terminal device, and the identifier of the network slice of the third sub-service.
  • the first device determines that the network configuration of the third sub-service is complete. At this time, the first device saves the corresponding relationship between the terminal equipment identifier, the IP address, the service identifier, the network type of the third sub-service, and the network slice identifier of the third sub-service.
  • the first device receives the third service message from the third device, and the third service message Including the identification of the terminal device and the identification of the fourth sub-service; the fourth sub-service is the second sub-service in the above case a2 or the third sub-service in the above case a3; the first After acquiring the identifier of the terminal device and the destination IP address corresponding to the identifier of the fourth sub-service, the apparatus sends the third service message to the terminal device through the destination IP address.
  • the third device may be an AVP application in an AVP service scenario, or a device or device deployed by the AVP application, such as an AVP server at a parking lot.
  • the change of the network status of the selected network of any sub-service will affect the service and trigger the network reconfiguration process.
  • the first device acquires first information, where the first information is used to indicate the network status of the first network; the first device determines that the first network is currently unavailable according to the first information; The first device determines the target sub-service corresponding to the first network, updates the network configuration information corresponding to the target sub-service, and initiates a network configuration update process.
  • the first device acquiring the first information specifically can be divided into the following two situations:
  • the first device receives data packet statistical information from the terminal device, and the data packet statistical information includes the number of lost packets and statistical time.
  • the terminal device determines data packet statistical information according to the received data packet, and sends it to the first device. Specifically, the terminal device counts the message count (message count, msgent) field of the received message, judges whether there is packet loss based on the continuity of msgent, and then determines the data packet statistical information.
  • the message count (message count, msgent) field of the received message
  • the terminal device periodically sends the data packet statistics information to the first apparatus; or the terminal device sends the data packet statistics information to the first device when it determines that the number of lost packets exceeds a fixed threshold.
  • a device sends the data packet statistical information.
  • Case b2 The first device receives network congestion information from the second device.
  • the second device may be SCEF or PCRF, and the SCEF or PCRF may monitor the network congestion of the LTE-Uu or 5G-Uu network, and then report the LTE to the first device -Uu or 5G-Uu network congestion information.
  • the second device may also be an RSU in an AVP service scenario.
  • the RSU monitors the network congestion condition of the PC5, and then reports the network congestion information of the PC5 to the first device.
  • the first device determines that the first network is currently unavailable according to the first information.
  • the specific method may be: When it is determined that the packet loss rate is greater than the set packet loss rate threshold, the first device determines that the first network is currently unavailable.
  • the first device determines that the first network is currently unavailable according to the first information.
  • the specific method may be: Congestion information, when it is determined that the network congestion degree is greater than a set threshold, the first device determines that the first network is currently unavailable.
  • the first device receives a service request from a terminal device.
  • the service request includes the service identifier and the network type supported by the terminal device; wherein, the service includes at least one sub-service
  • the first device determines the selected network of each sub-service according to the network type supported by the terminal device, and initiates a network configuration process based on the selected network of each sub-service.
  • the following embodiments all take the AVP service scenario as an example for description.
  • the TBOX in the terminal device and the application MAPP bound to the terminal device are taken as an example, and the first device is deployed on the field-side AVP server as an example for description.
  • the AVP application is also deployed on the field-side AVP server, which is responsible for road condition fusion perception analysis (video + radar), obstacle recognition and positioning tracking of vehicles, and vehicle parking/hailing path planning.
  • the terminal device cannot directly communicate with the first device, and a cloud AVP server (for example, an IoT platform) is required to forward messages.
  • a cloud AVP server for example, an IoT platform
  • the cloud AVP application is deployed on the cloud AVP server, responsible for IoT device management, connection management, operation and maintenance.
  • the first device implements the functions of the first device through two functional modules, a network configuration management module and a service network mapping module, as an example for description.
  • the network configuration management module and the service network mapping module are only a possible example, and other possibilities are also possible, which is not limited in this application.
  • the implementation of the terminal device function with TBOX and application MAPP in the following example is only a possible example, and the function of the terminal device can also be realized through other functional modules in the terminal device. This is not limited.
  • Fig. 3 shows an example of a network configuration method provided by the present application.
  • the process of this example may specifically include:
  • Step 301 Monitoring entities of different networks send network status information to the network configuration management module, which can be specifically shown in steps 301a and 301b in the figure:
  • Step 301a The RSU sends the network status information of the PC5 to the network configuration management module.
  • the network status information of the PC5 may include the RSU identifier, the location of the RSU, the coverage, the load status, the synchronization status, the channel quality, and so on.
  • Step 301b The SCEF sends LTE-Uu and 5G-Uu network status information to the network configuration management module.
  • the network status information may include the identity of the eNodeB or the NR, the network congestion state, and so on.
  • Step 302 The network configuration management module determines the available network type of the system where the network configuration management module is located according to the network status information.
  • the network types available to the system can be referred to Table 6 in the embodiment shown in FIG. 2, which will not be described in detail here.
  • Step 303 The network configuration management module sends network capability information to the service network mapping module, that is, the network type available to the system determined by the network configuration management module in step 302, where the network capability information includes network type and available status , As shown in Table 6.
  • Step 304 The field-side AVP application registers the service requirements of each sub-service with the service network mapping module.
  • the service requirements of each sub-service can include, but are not limited to, uplink and downlink information, unicast/broadcast, delay, bandwidth, frequency, and reliability. Sexual information and so on.
  • Step 305 The service network mapping module determines at least one candidate network corresponding to each sub-service according to the service requirements of each sub-service and the network type available in the system.
  • the form of at least one candidate network corresponding to each sub-service may be as shown in Table 3, which will not be described in detail here.
  • Step 306 The MAPP sends a service request to the cloud AVP server.
  • the service request includes the identification of the AVP, the network type supported by the terminal device and the identification of the terminal device.
  • the MAPP may be an AVP application installed on the terminal device, or may be an AVP application bound to the terminal device on the vehicle owner's mobile phone (or other terminal device).
  • MAPP cannot communicate with the local farm-side AVP server on the private network, so it forwards messages to the farm-side AVP server through the cloud AVP server.
  • the service request may be as shown in Table 1, which will not be repeated here.
  • the service request includes the network type supported by the terminal device as an example for description.
  • the service request does not include the network type supported by the terminal device, but the terminal device registers the network type supported by the terminal device during initial registration.
  • the following step 308 is executed: Previously, the service network mapping module also performed the operation of obtaining the network type supported by the terminal device, which will not be described in detail here.
  • Step 307 The cloud AVP server forwards the service request to the service network mapping module.
  • Step 308 The service network mapping module determines the selected network for each sub-service according to the network type supported by the terminal device.
  • the service network mapping module determines the selected network for each sub-service according to at least one candidate network of each sub-service (for example, Table 3) and the network type supported by the terminal device (for example, Table 1), as shown in Fig. 2 Table 7 in the illustrated embodiment is shown in Table 7, which will not be repeated here.
  • step 309 and step 310 are executed; when the When the service network mapping module determines that the selected network of each sub-service exists in at least one candidate network corresponding to each sub-service, step 311 and step 312 are executed.
  • Step 309 The service network mapping module sends an AVP service failure message to the cloud AVP server, where the AVP service failure message includes a service failure reason, and the failure reason may be unsupported by the network.
  • Step 310 The cloud AVP server forwards the service failure message to the MAPP.
  • Step 311 The service network mapping module sends network configuration information to the network configuration management module.
  • Step 312 The network configuration management module initiates a network configuration process based on the network corresponding to each sub-service.
  • the PC5 network-based network configuration process is illustrated by taking the selected network of the first sub-service as PC5 as an example.
  • the specific network configuration process may include:
  • Step 401 The service network mapping module sends a network configuration request to the network configuration management module.
  • the network configuration request includes the network type being PC5, the communication type being unicast, the terminal device ID and the first sub-service identification.
  • the identifier of the first sub-service is the ID corresponding to the auxiliary positioning and obstacle detection services.
  • Step 402 The network configuration management module determines that PC5 unicast is used, and it needs to first interact with the TBOX for the application layer key.
  • Step 403 According to the network configuration request, the network configuration management module allocates a destination layer 2 address used by unicast to the terminal device.
  • Step 404 The network configuration management module allocates unicast air interface resources to the terminal device according to the network configuration request.
  • Step 405 The network configuration management module sends PC5 configuration information to the TBOX, where the PC5 configuration information includes a terminal device ID, a first sub-service identifier, the destination layer two address, and PC5 air interface resource configuration.
  • Step 406 The network configuration management module sends PC5 configuration information to the RSU.
  • Step 407 The network configuration management module sends a network configuration complete message to the service network mapping module after determining that the configuration is complete.
  • the network configuration complete message includes the terminal device ID, the identifier of the first sub-service, and the destination layer two address. .
  • Step 408 The service network mapping module saves the identification of the terminal device, the identification of the service, the correspondence between the network type of the sub-service and the address (as shown in Table 8), and judges that the network configuration of all the sub-services is completed.
  • Step 409 The service network mapping module sends an AVP trigger success message to the cloud AVP application.
  • Step 410 The cloud AVP application forwards the AVP trigger success message to MAPP.
  • Step 411 The field-side AVP application sends a first service message to the service network mapping module, where the first service message includes the terminal device ID and the identifier of the first sub-service.
  • the first service message also includes a service message payload.
  • Step 412 The service network mapping module determines the destination layer 2 address according to the terminal device ID and the first sub-service identifier.
  • the service network mapping module also determines the network type according to the terminal device ID and the first sub-service identifier.
  • the PC5 network communication is determined to be adopted.
  • Step 413 The service network mapping module sends a second service message to the RSU, and the second service message includes the destination layer 2 address.
  • the second service message also includes the payload of the service message.
  • Step 414 The RSU sends the second service message to the TBOX.
  • the RSU encapsulates the service message payload with the destination layer two address and then sends the second service message to the TBOX.
  • Step 415 The TBOX judges whether the destination layer two address is its own destination layer two address, if yes, execute step 416, otherwise, execute step 417.
  • the TBOX filters the destination layer two address according to the PC5 configuration information in step 405, determines the sub-service corresponding to the destination layer two address, and uses a key that is not negotiated by 2 for the second service message To decode. If there is the destination layer two address in the PC5 configuration information, it is determined that the destination layer two address is its own destination layer two address, and then step 416 is executed; if the PC5 configuration information does not contain the destination layer two address, then it is determined If the destination layer 2 address is not its own destination layer 2 address, the second service message is discarded, that is, step 417 is executed.
  • Step 416 The terminal device processes the second service message.
  • Step 417 The terminal device discards the second service message.
  • the selected network of the second sub-service is LTE-Uu as an example for explaining an example of a network configuration process based on the LTE-Uu network.
  • the second sub-service is path planning.
  • the network configuration process may include:
  • Step 501 The service network mapping module sends a network configuration request to the network configuration management module.
  • the network configuration request includes the LTE-Uu network type, bandwidth, delay, and terminal device ID.
  • Step 502 The network configuration management module sends network configuration information to the cloud AVP application, where the network configuration information includes the terminal device ID, the identifier of the second sub-service, bandwidth, and delay.
  • Step 503 The cloud AVP application sends a bearer establishment request message to the SCEF, and the bearer establishment request message includes the network configuration information and the IP address of the terminal device.
  • Step 504 The SCEF establishes a bearer with the TBOX.
  • Step 505 The SCEF sends a bearer establishment success message to the cloud AVP application.
  • Step 506 The cloud AVP application sends a network configuration complete message to the network configuration management module.
  • Step 507 The network configuration management module sends the network configuration complete message to the service network mapping module.
  • Step 508 The service network mapping module determines that all sub-service network configurations are completed.
  • Step 509 The service network mapping module sends an AVP trigger success message to the cloud AVP application.
  • Step 510 The cloud AVP application forwards the AVP trigger success message to MAPP.
  • Step 511 The field-side AVP application sends a third service message to the service network mapping module, where the third service message includes the terminal device ID and the identifier of the second sub-service.
  • the third service message may be a path distribution message, and the path distribution message may further include a service message payload.
  • Step 512 The service network mapping module obtains the ID of the terminal device and the destination IP address corresponding to the identifier of the second sub-service.
  • Step 513 The service network mapping module sends the third service message to the TBOX through the destination IP address.
  • the selected network of the third sub-service is 5G-Uu as an example to illustrate an example of a network configuration process based on the 5G-Uu network.
  • the third sub-service is map downloading.
  • the network configuration process may include:
  • Step 601 The service network mapping module sends a network configuration request to the network configuration management module.
  • the network configuration request includes the network type of 5G-Uu, bandwidth, delay, and terminal device ID.
  • Step 602 The network configuration management module determines the network slice of the third sub-service according to the service requirements (bandwidth, delay) of the third sub-service.
  • Step 603 The network configuration management module sends network configuration information to the TBOX, where the network configuration information includes the identifier of the third sub-service, the IP address of the terminal device, and the identifier of the network slice.
  • Step 604 The network configuration management module sends a network configuration complete message to the service network mapping module.
  • the network configuration complete message includes the terminal device ID, the identifier of the third sub-service, and the IP address of the terminal device.
  • Step 605 The service network mapping module determines that all sub-service network configurations are completed.
  • Step 606 The service network mapping module sends an AVP trigger success message to the cloud AVP application.
  • Step 607 The field-side AVP application sends a fourth service message to the service network mapping module, where the fourth service message includes the terminal device ID and the identifier of the third sub-service.
  • the fourth service message may be a map distribution message, and the map distribution message may further include a service message payload.
  • Step 608 The service network mapping module obtains the ID of the terminal device and the destination IP address corresponding to the identifier of the third sub-service.
  • Step 609 The service network mapping module sends the fourth service message to the TBOX through the destination IP address.
  • the network configuration management module monitors network status changes and notifies the service network mapping module.
  • the service network mapping module determines the impact of the network status change
  • the process of network reconfiguration is triggered.
  • FIG. 7 shows an example of a process in which a network status change triggers network reconfiguration, and the specific process of this example may include:
  • Step 701 The TBOX counts the msgcnt of the received message, judges whether there is packet loss based on the continuity of the msgcnt, and determines data packet statistical information.
  • the data packet statistical information includes the terminal device ID, the number of lost packets, and the statistical time.
  • Step 702 The TBOX sends the data packet statistical information to the network configuration management module.
  • the terminal device periodically sends the data packet statistics information to the network configuration management module; or the terminal device sends the data packet statistics information to the network configuration management module when it determines that the number of lost packets exceeds a fixed threshold.
  • the network configuration management module sends the data packet statistical information.
  • Step 703 The SCEF sends network congestion information to the network configuration management module.
  • the network congestion information may include LTE-Uu or 5G-Uu network congestion situation information.
  • steps 701, 702 and step 703 are optional steps, for example, or step 701 and step 702 do not exist, and step 703 exists.
  • Step 704 The network configuration management module determines that the first network is unavailable.
  • the network configuration management module determines that the packet loss rate is greater than the set packet loss rate threshold according to the number of packet losses and the statistical time, and determines that the first network is currently unavailable.
  • the network configuration management module determines that the network congestion degree is greater than a set threshold according to the network congestion information, and determines that the first network is currently unavailable.
  • Step 705 The network configuration management module sends a network status change message to the service network mapping module, where the network status change message includes the network type and the network availability status.
  • Step 706 The service network mapping module determines the target sub-service corresponding to the first network.
  • the service network mapping module determines whether there is a sub-service carried on the first network according to the corresponding relationship between the sub-service and the selected network, and if it exists, the network configuration process is triggered again.
  • Step 707 The service network mapping module updates the network configuration information corresponding to the target sub-service.
  • Step 708 The service network mapping module sends the network configuration information corresponding to the target sub-service to the network configuration management module.
  • Step 709 The network mapping module initiates a network configuration update process based on the target sub-service.
  • the network configuration management module and the service network mapping module shown in the examples shown in FIGS. 3-7 are deployed in the first device, which is only a possible example.
  • the network configuration management module and the service network mapping module may be respectively deployed in two different devices to jointly implement the functions implemented by the first device. Specifically, the embodiments of this application will not be listed again.
  • the embodiments of the present application also provide a device for realizing network configuration.
  • the device for realizing network configuration is applied to the system as shown in FIG. 1 and is used to implement the first network configuration method provided by the embodiments of this application.
  • the receiving unit 801 is configured to receive a service request from a terminal device, where the service request includes an identifier of the service, where the service includes at least one sub-service;
  • the processing unit 802 is configured to obtain the network type supported by the terminal device, determine the selected network of each sub-service according to the network type supported by the terminal device, and initiate a network based on the selected network of each sub-service Configuration process.
  • the processing unit 802 when determining the selected network of each sub-service according to the network type supported by the terminal device, is specifically configured to: obtain the The at least one sub-service corresponding to the service, and at least one candidate network corresponding to each sub-service is determined; according to the network type supported by the terminal device, the at least one candidate network corresponding to each sub-service is determined The selected network for each sub-service.
  • the processing unit 802 before the receiving unit 801 receives the service request from the terminal device, the processing unit 802 is further configured to: obtain the service requirements of each sub-service; The service requirements of each sub-service and the available network type of the system where the first device is located determine at least one candidate network corresponding to each sub-service.
  • the receiving unit 801 is further configured to receive network status information from a second device, where the network status information sent by the second device is deployed by the system where the first device 800 is located.
  • Network status information of the network the processing unit 802 is further configured to determine, according to the network status information, the available network type of the system where the device 800 for network configuration is located.
  • the second device is SCEF, PRCF or RSU in the AVP service scenario.
  • the device 800 for implementing network configuration further includes a sending unit for sending data.
  • the processing unit 802. When initiating a network configuration process, it is specifically used to: assign a destination layer two address to the terminal device; send network configuration information to the terminal device and the second device through the sending unit, where the network configuration information includes The destination layer two address and the identification of the terminal device.
  • the second device is an RSU in an AVP service scenario.
  • the receiving unit 801 is further configured to receive a first service message from a third device, and the first service message includes the identification of the terminal device and the information of the first sub-service. Identification; the processing unit 802 is further configured to determine the destination layer two address according to the identification of the terminal device and the identification of the first sub-service; the device 800 for implementing network configuration also includes a sending unit for Send the second service message to the terminal device through the second device, the second service message includes the destination layer two address, and the destination layer two address is used to instruct the terminal device to receive and process The second service message.
  • the second device is an RSU in an AVP service scenario;
  • the third device is a device deployed by an AVP application in an AVP service scenario.
  • the device 800 for implementing network configuration further includes a sending unit for sending data; when the selected network of the second sub-service of the service is an LTE-Uu network, the When the processing unit 802 initiates the network configuration process, it is specifically configured to: send network configuration information to the second device through the sending unit, and the network configuration information includes the IP address of the terminal device and the information of the second sub-service. Business requirements; receiving a network configuration success message from the second device through the receiving unit 801.
  • the apparatus 800 for implementing network configuration further includes a sending unit for sending data; when the selected network of the third sub-service of the service is a 5G-Uu network, the The processing unit 802, when initiating a network configuration process, is specifically configured to: determine a network slice of the third sub-service according to the service requirements of the third sub-service; and send network configuration information to the terminal device through the sending unit ,
  • the network configuration information includes the identifier of the service, the IP address of the terminal device, and the identifier of the network slice of the third sub-service.
  • the second device is SCEF or PCRF in an AVP service scenario.
  • the receiving unit 801 is further configured to receive a third service message from a third device, and the third service message includes the identification of the terminal device and the identification of the fourth sub-service
  • the fourth sub-service is the second sub-service or the third sub-service
  • the processing unit 802 is also used to obtain the identification of the terminal device and the corresponding purpose of the identification of the fourth sub-service IP address
  • the sending unit is further configured to send the third service message to the terminal device through the destination IP address.
  • the third device is a device deployed by an AVP application in an AVP service scenario.
  • the processing unit 802 is further configured to obtain first information, where the first information is used to indicate the network status of the first network; according to the first information, determine the first information A network is currently unavailable; the target sub-service corresponding to the first network is determined, the network configuration information corresponding to the target sub-service is updated, and the network configuration update process is initiated.
  • the processing unit 802 when the processing unit 802 obtains the first information, it is specifically configured to: receive data packet statistics information from the terminal device through the receiving unit 801, and the data packet statistics The information includes the number of lost packets and the statistical time; or, the receiving unit 801 receives network congestion information from the second device.
  • the second device is SCEF or PCRF in an AVP service scenario.
  • the processing unit 802 when determining that the first network is currently unavailable according to the first information, is specifically configured to: determine the number of lost packets according to the number of lost packets and the statistical time The packet rate is greater than the set packet loss rate threshold; it is determined that the first network is currently unavailable; or, according to the network congestion information, it is determined that the network congestion is greater than the set threshold; it is determined that the first network is currently unavailable.
  • the device 800 for implementing network configuration is deployed in an AVP server in an AVP service scenario.
  • a service request is received from a terminal device, the service request includes the service identifier and the network type supported by the terminal device; wherein the service includes at least one sub-service;
  • the device for implementing network configuration determines the selected network of each sub-service according to the network type supported by the terminal device, and initiates a network configuration process based on the network corresponding to each sub-service. In this way, it is possible to meet the different network requirements of multiple sub-services of a business through multi-network coordination and complementation, to ensure the reliable continuity of the business, and to meet the business needs of the Internet of Vehicles business.
  • an embodiment of the present application also provides a terminal device, which is applied to the system as shown in FIG. 1 to implement the network configuration method provided in the embodiment of the present application.
  • the terminal device 900 includes a sending unit 901 and a receiving unit 902, where:
  • the sending unit 901 is configured to send a service request to the first device, where the service request includes an identifier of the service; wherein, the service includes at least one sub-service;
  • the receiving unit 902 is configured to receive network configuration information from the first device, where the network configuration information is used to configure the selected network of the at least one sub-service.
  • the network configuration information when the selected network from the service to the first sub-service is the PC5 network, the network configuration information includes the destination layer allocated by the first device to the terminal device Second, the address and the identification of the terminal device.
  • the receiving unit 902 is further configured to receive a second service message sent by the first device through a second device, and the second service message includes the destination layer 2 address
  • the terminal device also includes a processing unit for determining that the destination layer two address is its own destination layer two address, and processing the second service message.
  • the second device is an RSU in an AVP service scenario.
  • the receiving unit 902 when receiving network configuration information from the first device, specifically It is used to: receive the network configuration information sent by the first device through the second device, the IP address of the terminal device and the service requirements of the second sub-service in the network configuration information.
  • the second device is SCEF or PCRF in an AVP service scenario.
  • the network configuration information includes the identifier of the service and the IP address of the terminal device , The identifier of the network slice of the third sub-service.
  • the receiving unit 902 is further configured to receive a third service message from the first device through the IP address.
  • the terminal device 900 further includes a processing unit configured to determine data packet statistical information according to the received data packet, and the data packet statistical information includes the number of lost packets and the statistical time; the sending The unit 901 is further configured to send data packet statistical information to the first device.
  • the service request also includes the network type supported by the terminal device.
  • the sending unit 901 before sending the service request to the first device, is further configured to: send a registration request to the first device, and the registration request includes the terminal device support Network type.
  • the first device is deployed in an AVP server in an AVP service scenario.
  • the terminal device provided in the embodiment of the present application is used to send a service request to the first device, the service request includes the service identifier and the network type supported by the terminal device; wherein, the service includes at least one sub-service;
  • the terminal device receives network configuration information from the first device, where the network configuration information is used to configure the selected network of the at least one sub-service.
  • the embodiments of the present application also provide a device for realizing network configuration.
  • the device for realizing network configuration is applied to the system as shown in FIG. 1 and is used to implement the first network configuration method provided by the embodiments of this application. 2.
  • the processing unit 1001 is configured to determine the network status of the network deployed by the system where the monitored first device is located; optionally, the device for implementing network configuration is SCEF, PCRF or RSU in the AVP service scenario;
  • the sending unit 1002 is configured to send network status information to the first device, where the network status information is network status information of a network deployed by the system where the first device is located.
  • the apparatus 1000 for implementing network configuration further includes a receiving unit, configured to: Receiving network configuration information, where the configuration information includes the destination layer two address allocated to the terminal device by the first device and the identifier of the terminal device.
  • the device for realizing network configuration is RSU in the AVP service scenario.
  • the receiving unit is further configured to receive a second service message from the first device, and the second service message includes the destination layer two address; the sending unit 1002 is also Is used to send the second service message to the terminal device, and the destination layer two address is used to instruct the terminal device to receive and process the second service message.
  • the device for realizing network configuration is RSU in the AVP service scenario.
  • the apparatus 1000 for realizing network configuration further includes a receiving unit configured to: A device receives network configuration information, where the network configuration information includes the IP address of the terminal device and the service requirements of the second sub-service; the sending unit 1002 is further configured to send the network configuration success to the first device news.
  • the device for implementing network configuration is SCEF or PCRF in the AVP service scenario.
  • the sending unit 1002 is further configured to send network congestion information to the first device.
  • the device for implementing network configuration is SCEF or PCRF in the AVP service scenario.
  • the first device is deployed in an AVP server in an AVP service scenario.
  • the network status of the monitored network is determined, and the network status information is sent to the first device, where the network status information is the network of the network deployed by the system where the first device is located status information.
  • the first device can be subsequently made to execute the subsequent network configuration process based on the network status, so that the different network requirements of multiple sub-services of a business can be met through the coordination of multiple networks, and the reliability and continuity of the business can be ensured to meet the needs of the Internet of Vehicles business Business needs.
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiments of the present application also provide a device for realizing network configuration.
  • the device for realizing network configuration is applied to the system shown in FIG. 1 and used to perform the functions of the first device in the above embodiment.
  • the apparatus 1100 for implementing network configuration may include: a communication interface 1101, a processor 1102, and a memory 1103.
  • the processor 1102 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP, or the like.
  • the processor 1102 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • the communication interface 1101 and the processor 1102 are connected to each other.
  • the communication interface 1101 and the processor 1102 are connected to each other through a bus 1104;
  • the bus 1104 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard structure (Extended Industry Standard). Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used to represent in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the device 1100 for implementing network configuration implements the operation of the first device in the foregoing embodiment, it may include:
  • the communication interface 1101 is used to send and receive data, and communicate and interact with other equipment or devices in the system;
  • the processor 1102 is configured to execute a program stored in the memory 1103, and when the program is executed, control the communication interface 1101 to receive a service request from a terminal device.
  • the service request includes a service identifier, where ,
  • the service includes at least one sub-service; the network type supported by the terminal device is acquired, and the selected network for each sub-service is determined according to the network type supported by the terminal device, and based on the selected network for each sub-service Initiate the network configuration process.
  • the processor 1102 when determining the selected network of each sub-service according to the network type supported by the terminal device, is specifically configured to: obtain the The at least one sub-service corresponding to the service, and at least one candidate network corresponding to each sub-service is determined; according to the network type supported by the terminal device, the at least one candidate network corresponding to each sub-service is determined The selected network for each sub-service.
  • the processor 1102 before controlling the communication interface 1101 to receive the service request from the terminal device, is further configured to: obtain the service requirements of each sub-service; The service requirements of each sub-service and the available network type of the system where the device for implementing network configuration is located determines at least one candidate network corresponding to each sub-service.
  • the processor 1102 is further configured to: control the communication interface 1101 to receive network status information from a second device, where the network status information sent by the second device is the implementation Network status information of the network deployed by the system where the network configuration device is located; and according to the network status information, determine the available network type of the system where the network configuration device is located.
  • the second device is SCEF, PRCF or RSU in the AVP service scenario.
  • the processor 1102 when the selected network of the first sub-service of the service is the PC5 network, the processor 1102 is specifically configured to: allocate to the terminal device when initiating the network configuration process Destination layer two address; controlling the communication interface 1101 to send network configuration information to the terminal device and the second device, the network configuration information including the destination layer two address and the terminal device identifier.
  • the second device is an RSU in an AVP service scenario.
  • the processor 1102 is further configured to: control the communication interface 1101 to receive a first service message from a third device, where the first service message includes the identification of the terminal device And the identification of the first sub-service; determine the destination layer two address according to the identification of the terminal equipment and the identification of the first sub-service; control the communication interface 1101 to communicate to the terminal through the second device
  • the device sends the second service message, the second service message includes the destination layer two address, and the destination layer two address is used to instruct the terminal device to receive and process the second service message.
  • the second device is an RSU in an AVP service scenario
  • the third device is a device deployed by an AVP application in an AVP service scenario.
  • the processor 1102 when the selected network of the second sub-service of the service is an LTE-Uu network, the processor 1102 is specifically configured to: control the communication when initiating a network configuration procedure
  • the interface 1101 sends network configuration information to the second device, where the network configuration information includes the IP address of the terminal device and the service requirements of the second sub-service; controls the communication interface 1101 to receive the network from the second device Configuration success message.
  • the processor 1102 when the selected network of the third sub-service of the service is a 5G-Uu network, the processor 1102 is specifically configured to: according to the The service requirements of the third sub-service determine the network slice of the third sub-service; control the communication interface 1101 to send network configuration information to the terminal device.
  • the network configuration information includes the service identifier and the terminal The IP address of the device and the identifier of the network slice of the third sub-service.
  • the second device is SCEF or PCRF in an AVP service scenario.
  • the processor 1102 is further configured to: control the communication interface 1101 to receive a third service message from a third device, and the third service message includes the identification of the terminal device and The identifier of the fourth sub-service; the fourth sub-service is the second sub-service or the third sub-service; obtaining the identifier of the terminal device and the destination IP address corresponding to the identifier of the fourth sub-service; Controlling the communication interface 1101 to send the third service message to the terminal device through the destination IP address.
  • the third device is a device deployed by an AVP application in an AVP service scenario.
  • the processor 1102 is further configured to obtain first information, where the first information is used to indicate the network status of the first network; and according to the first information, determine the first information A network is currently unavailable; the target sub-service corresponding to the first network is determined, the network configuration information corresponding to the target sub-service is updated, and the network configuration update process is initiated.
  • the processor 1102 when the processor 1102 obtains the first information, it is specifically configured to: control the communication interface 1101 to receive data packet statistics from the terminal device, and the data packet statistics The information includes the number of lost packets and the statistical time; or the communication interface 1101 is controlled to receive network congestion information from the second device.
  • the second device is SCEF or PCRF in an AVP service scenario.
  • the processor 1102 when determining that the first network is currently unavailable according to the first information, is specifically configured to: determine the number of lost packets according to the number of lost packets and the statistical time; The packet rate is greater than the set packet loss rate threshold; it is determined that the first network is currently unavailable; or, according to the network congestion information, it is determined that the network congestion is greater than the set threshold; it is determined that the first network is currently unavailable.
  • the device 1100 for implementing network configuration is deployed in an AVP server in an AVP service scenario.
  • the memory 1103 is coupled with the processor 1102 and is used for storing programs and the like.
  • the program may include program code, and the program code includes computer operation instructions.
  • the memory 1103 may include RAM, or may also include non-volatile memory, such as at least one disk memory.
  • the processor 1102 executes the application program stored in the memory 1103 to implement the above-mentioned functions, thereby implementing a network configuration method.
  • the memory 1103 may also store the identification of the terminal device, the identification of the sub-service and the corresponding relationship between the sub-service's candidate network, and so on.
  • a service request is received from a terminal device, the service request includes the service identifier and the network type supported by the terminal device; wherein the service includes at least one sub-service;
  • the device for implementing network configuration determines the selected network of each sub-service according to the network type supported by the terminal device, and initiates a network configuration process based on the selected network of each sub-service. In this way, it is possible to meet the different network requirements of multiple sub-services of a business through multi-network coordination and complementation, to ensure the reliable continuity of the business, and to meet the business needs of the Internet of Vehicles business.
  • an embodiment of the present application also provides a terminal device, which is applied to the system shown in FIG. 1.
  • the terminal device 1200 may include: a transceiver 1201, a processor 1202, and a memory 1203.
  • the processor 1202 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP, or the like.
  • the processor 1202 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • the transceiver 1201 and the processor 1202 are connected to each other.
  • the transceiver 1201 and the processor 1202 are connected to each other through a bus 1204;
  • the bus 1204 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard structure (Extended Industry Standard). Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used to represent in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the terminal device 1200 when the terminal device 1200 implements the operation of the terminal device in the foregoing embodiment, it may include:
  • the transceiver 1201 is used to send and receive data, and to communicate and interact with other equipment or devices in the system;
  • the processor 1202 is configured to execute a program stored in the memory, and when the program is executed, control the transceiver 1201 to send a service request to the first device, and the service request includes a service identifier; where , The business includes at least one sub-business;
  • Control the transceiver 1201 to receive network configuration information from the first device, where the network configuration information is used to configure the selected network of the at least one sub-service.
  • the network configuration information when the selected network of the first sub-service of the service is the PC5 network, the network configuration information includes the destination layer 2 allocated by the first device to the terminal device. The address and the identification of the terminal device.
  • the processor 1202 is further configured to control the transceiver 1201 to receive the second service message sent by the first device through the second device, and the second service message includes The destination layer two address; determine that the destination layer two address is its own destination layer two address, and process the second service message.
  • the second device is an RSU in an AVP service scenario.
  • the processor 1202 when the selected network of the second sub-service of the service is an LTE-Uu network, the processor 1202 is controlling the transceiver 1201 to receive from the first device When the network configuration information is used, it is specifically used to: control the transceiver 1201 to receive the network configuration information sent by the first device through the second device, and the IP address of the terminal device and the second sub-device in the network configuration information Business needs of the business.
  • the second device is SCEF or PCRF in an AVP service scenario.
  • the network configuration information includes the identifier of the service and the IP address of the terminal device , The network slice selection information corresponding to each sub-service.
  • the processor 1202 is further configured to control the transceiver 1201 to receive a third service message from the first device through the IP address.
  • the processor 1202 is further configured to determine data packet statistical information according to received data packets, where the data packet statistical information includes the number of lost packets and the statistical time; and control the transceiver 1201 Sending data packet statistical information to the first device.
  • the service request also includes the network type supported by the terminal device.
  • the processor 1202 before controlling the transceiver 1201 to send the service request to the first device, the processor 1202 is further configured to: control the transceiver 1201 to send registration to the first device.
  • Request the registration request includes the network type supported by the terminal device.
  • the first device is deployed in an AVP server in an AVP service scenario.
  • the memory 1203 is coupled with the processor 1202 and is used for storing programs and the like.
  • the program may include program code, and the program code includes computer operation instructions.
  • the memory 1203 may include RAM, or may also include non-volatile memory, such as at least one disk memory.
  • the processor 1202 executes the application program stored in the memory 1203 to realize the above-mentioned functions, thereby realizing the network configuration method.
  • the terminal device provided in the embodiment of the present application is used to send a service request to the first device, the service request includes the service identifier and the network type supported by the terminal device; wherein, the service includes at least one sub-service;
  • the terminal device receives network configuration information from the first device, where the network configuration information is used to configure the selected network of the at least one sub-service.
  • the embodiments of the present application also provide a device for realizing network configuration.
  • the device for realizing network configuration is applied to the system shown in FIG. 1 and used to perform the operation of the second device in the above embodiment.
  • the apparatus 1300 for implementing network configuration may include: a communication interface 1301, a processor 1302, and a memory 1303.
  • the processor 1302 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP, or the like.
  • the processor 1302 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • the communication interface 1301 and the processor 1302 are connected to each other.
  • the communication interface 1301 and the processor 1302 are connected to each other through a bus 1304;
  • the bus 1304 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard structure (Extended Industry Standard). Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the apparatus 1300 for implementing network configuration implements the operation of the apparatus for implementing network configuration in the foregoing embodiment, it may include:
  • the communication interface 1301 is used to send and receive data, and communicate and interact with other equipment or devices in the system;
  • the processor 1302 is configured to execute the program stored in the memory, and when the program is executed, determine the network status of the network deployed by the system where the monitored first device is located; optionally, the implementation of the network configuration
  • the device of is SCEF, PCRF or RSU in the AVP service scenario;
  • the communication interface 1301 is controlled to send network status information to the first device, where the network status information is network status information of the network deployed in the system where the first device is located.
  • the processor 1302 is further configured to: control the communication interface 1301 to receive data from the first device Network configuration information, where the configuration information includes a destination layer two address allocated to a terminal device by the first device and an identifier of the terminal device.
  • the device for realizing network configuration is RSU in the AVP service scenario.
  • the processor 1302 is further configured to: control the communication interface 1301 to receive a second service message from the first device, and the second service message includes the destination layer two Address; controlling the communication interface 1301 to send the second service message to the terminal device, and the destination layer two address is used to instruct the terminal device to receive and process the second service message.
  • the device for realizing network configuration is RSU in the AVP service scenario.
  • the processor 1302 is further configured to: control the communication interface 1301 from the first The device receives network configuration information, where the network configuration information includes the IP address of the terminal device and the service requirements of the second sub-service; controls the communication interface 1301 to send a network configuration success message to the first device.
  • the device for implementing network configuration is SCEF or PCRF in the AVP service scenario.
  • the processor 1302 is further configured to control the communication interface 1301 to send network congestion information to the first device.
  • the device for implementing network configuration is SCEF or PCRF in the AVP service scenario.
  • the memory 1303 is coupled with the processor 1302 and is used for storing programs and the like.
  • the program may include program code, and the program code includes computer operation instructions.
  • the memory 1303 may include RAM, or may also include non-volatile memory, such as at least one disk memory.
  • the processor 1302 executes the application program stored in the memory 1303 to realize the above-mentioned functions, thereby realizing the network configuration method.
  • the first device is deployed in an AVP server in an AVP service scenario.
  • the network status of the network deployed by the system where the monitored first device is located is determined, and the network status information is sent to the first device, where the network status information is the first device Network status information of the network deployed by the system.
  • the first device can be subsequently made to execute the subsequent network configuration process based on the network status, so that the different network requirements of multiple sub-services of a business can be met through the coordination of multiple networks, and the reliability and continuity of the business can be ensured to meet the needs of the Internet of Vehicles business Business needs.
  • the embodiments of the present application provide a network configuration method and device.
  • the first device receives a service request from a terminal device, and the service request includes the service identifier and the terminal device supported Network type; wherein the service includes at least one sub-service; the first device determines the selected network of each sub-service according to the network type supported by the terminal device, and initiates based on the selected network of each sub-service Network configuration process.
  • the embodiments of the present application also provide a computer storage medium, the storage medium stores a software program, and when the software program is read and executed by one or more processors, any one or more of the above The method provided by the embodiment.
  • the computer storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the embodiments of the present application also provide a chip, which includes a processor, which is used to implement the functions involved in any one or more of the above embodiments, such as acquiring or processing the information involved in the above methods or news.
  • the chip further includes a memory, and the memory is used for necessary program instructions and data executed by the processor.
  • the chip can be composed of a chip, or it can include a chip and other discrete devices.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种网络配置方法及装置,用以解决现有技术中单一网络并不能满足车联网业务的多个子业务的业务需求的问题。该方法为:第一装置从终端设备接收业务请求,所述业务请求中包括业务的标识和所述终端设备支持的网络类型;其中,所述业务包括至少一个子业务;所述第一装置根据所述终端设备支持的网络类型,确定每个子业务的选定网络,并基于所述每个子业务的选定网络发起网络配置流程。这样,可以通过多网络协同互补满足一个业务的多个子业务的差异网络需求,保证业务可靠连续性,从而满足车联网业务的业务需求。

Description

一种网络配置方法及装置
相关申请的交叉引用
本申请要求在2019年04月10日提交中国专利局、申请号为201910286762.5、申请名称为“一种网络配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车联网领域,尤其涉及一种网络配置方法及装置。
背景技术
随着车联网技术的不断发展,车联网业务(例如,全自动带客泊车(auto valet parking,AVP)等)为用户广泛应用。目前,在车联网业务的应用过程中,一个车联网业务下会包含多个业务流程(即多个子业务),每个业务流程的网络需求又不尽相同。例如,AVP业务在应用过程中需要实时检测障碍物并发送给车辆,需要低时延、小带宽、跨网络切换业务不中断的网络能力;AVP业务同时需要针对车辆进行路径规划并发给车辆,需要点对点、高可靠的网络能力;AVP业务还涉及地图下发给车辆,需要高可靠、高带宽的网络能力。
现有的网络技术中无线保真(wireless fidelity,WIFI)具有低时延特点,但是跨接入点(access point,AP)切换会导致业务中断1-2s,不能满足业务连续覆盖的需求;长期演进车载近距离通信5((long term evolution,LTE)-(vehicle,V)(proximity communication five,PC5))对比WIFI技术能够支持低时延和业务连续覆盖,但是由于频谱受限,不适用于大带宽的业务;LTE Uu能够提供可靠的点对点连接和大带宽技术,但是传输路径过长导致时延太大,不能满足低时延业务的需求。
现有技术中,并没有考虑一个车联网业务下包含的多个子业务,且多个子业务具有不同的网络需求的情况,导致选择的通信网络并不能满足车联网业务下多个子业务的业务需求。
发明内容
本申请提供一种网络配置方法及装置,用以现有技术中单一网络并不能满足车联网业务的多个子业务的业务需求的问题。
第一方面,本申请提供了一种网络配置方法,该方法可以包括:第一装置从终端设备接收业务请求,所述业务请求中包括业务的标识,其中,所述业务包括至少一个子业务;所述第一装置获取所述终端设备支持的网络类型,之后所述第一装置根据所述终端设备支持的网络类型,确定每个子业务的选定网络,并基于所述每个子业务的选定网络发起网络配置流程。
通过上述方法,可以通过多网络协同互补满足一个业务的多个子业务的差异网络需求,保证业务可靠连续性,从而满足车联网业务的业务需求。
在一个可能的设计中,所述第一装置根据所述终端设备支持的网络类型,确定每个子 业务的选定网络,具体方法可以为:所述第一装置根据所述业务的标识获取所述业务对应的所述至少一个子业务,并确定所述每个子业务对应的至少一个待选网络;所述第一装置根据所述终端设备支持的网络类型,在所述每个子业务对应的至少一个待选网络中确定所述每个子业务的选定网络。
通过上述方法,所述第一装置可以准确地确定每个子业务的选定网络,以使后续基于所述每个子业务的选定网络准确发起网络配置流程,从而可以多网络协同互补满足一个业务的多个子业务的差异网络需求。
在一个可能的设计中,所述第一装置从所述终端设备接收所述业务请求之前,还获取所述每个子业务的业务需求,并根据所述每个子业务的业务需求和所述第一装置所在系统可用的网络类型确定所述每个子业务对应的至少一个待选网络。
通过上述方法,所述第一装置可以结合实际情况准确地确定每个子业务对应的待选网络。
在一个可能的设计中,所述第一装置从第二装置接收网络状态信息,其中,所述第二装置发送的网络状态信息为所述第一装置所在系统所部署网络的网络状态信息;所述第一装置根据所述网络状态信息,确定所述第一装置所在系统可用的网络类型。其中,示例性的,所述第二装置为AVP业务场景中的服务能力公开功能(service capability exposure function,SCEF)网元、策略和收费规则功能(policy and charging rules function,PCRF)网元或者路侧单元(road side unit,RSU)。
通过上述方法,所述第一装置可以根据网络的可用与否的状态确定所述第一装置所在的系统可用的网络类型,进而使所述第一装置确定每个子业务对应的待选网络。
在一个可能的设计中,当所述业务的第一子业务的选定网络为PC5网络时,所述第一装置发起网络配置流程,具体可以包括:所述第一装置为所述终端设备分配目的层二地址,并向所述终端设备和第二装置发送网络配置信息,所述网络配置信息中包括所述目的层二地址和所述终端设备的标识。其中,示例性的,所述第二装置为AVP业务场景中的RSU。
通过上述方法,可以成功发起对PC5网络的网络配置流程,进而基于PC5网络进行网络配置。
在一个可能的设计中,所述第一装置从第三装置接收第一业务消息,所述第一业务消息中包括所述终端设备的标识和所述第一子业务的标识;所述第一装置根据所述终端设备的标识和所述第一子业务的标识确定所述目的层二地址;所述第一装置通过所述第二装置向所述终端设备发送所述第二业务消息,所述第二业务消息中包括所述目的层二地址,所述目的层二地址用于指示所述终端设备接收并处理所述第二业务消息。其中,示例性的,所述第二装置为AVP业务场景中的RSU;所述第三装置为AVP业务场景中的AVP应用所部署的装置。
通过上述方法,可以在网络配置完成后进行子业务,从而满足子业务的业务需求。
在一个可能的设计中,当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述第一装置发起网络配置流程,具体可以包括:所述第一装置向第二装置发送网络配置信息,所述网络配置信息中包括所述终端设备的IP地址和所述第二子业务的业务需求;所述第一装置从所述第二装置接收网络配置成功消息。其中,示例性的,所述第二装置为AVP业务场景中的SCEF或PCRF。
通过上述方法,可以成功发起对LTE-Uu网络的网络配置流程,进而基于LTE-Uu网 络进行网络配置。
在一个可能的设计中,当所述业务的第三子业务所需的网络为5G-Uu网络时,所述第一装置发起网络配置流程,具体可以包括:所述第一装置根据所述第三子业务的业务需求确定所述第三子业务的网络切片;所述第一装置向所述终端设备发送网络配置信息,所述网络配置信息中包括所述业务的标识、所述终端设备的IP地址、所述每个子业务的网络切片的标识。
通过上述方法,可以成功发起对5G-Uu网络的网络配置流程,进而基于5G-Uu网络进行网络配置。
在一个可能的设计中,所述第一装置从第三装置接收第三业务消息,所述第三业务消息中包括所述终端设备的标识和第四子业务的标识;所述第四子业务为所述第二子业务或者所述第三子业务;所述第一装置获取所述终端设备的标识和所述第四子业务的标识对应的目的IP地址;所述第一装置通过所述目的IP地址向所述终端设备发送所述第三业务消息。其中,示例性的,所述第三装置为AVP业务场景中的AVP应用所部署的装置。
通过上述方法,可以在网络配置完成后进行子业务,从而满足子业务的业务需求。
在一个可能的设计中,所述第一装置获取第一信息,所述第一信息用于指示第一网络的网络状态;所述第一装置根据所述第一信息,确定所述第一网络当前不可用;所述第一装置确定所述第一网络对应的目标子业务,并更新所述目标子业务对应的网络配置信息,发起网络配置更新流程。
通过上述方法,在某个网络异常时,更新该网络对应的子业务的网络配置信息,从而避免对该子业务的影响,从而提供业务可靠性。
在一个可能的设计中,所述第一装置获取所述第一信息,具体方法可以为:所述第一装置从所述终端设备接收数据包统计信息,所述数据包统计信息中包括丢包数和统计时间;或者,所述第一装置从第二装置接收网络拥塞信息。其中,示例性的,所述第二装置为AVP业务场景中的SCEF或PCRF。
通过上述方法,所述第一装置可以准确地获取到第一信息,从而准确地确定第一网络的网络状态。
在一个可能的设计中,所述第一装置根据所述第一信息,确定第一网络当前不可用,具体方法可以为:所述第一装置根据所述丢包数和所述统计时间,确定丢包率大于设定丢包率阈值时,确定所述第一网络当前不可用;或者,所述第一装置根据所述网络拥塞信息,确定网络拥塞度大于设定阈值时,确定所述第一网络当前不可用。
通过上述方法,所述第一装置可以准确地确定所述第一网络当前不可以用,从而进行后续更新所述第一网络对应的子业务的网络配置信息,以提高业务可靠性。
在一个可能的设计中,所述第一装置部署于全自动带客泊车AVP业务场景中的AVP服务器中。
第二方面,本申请提供了一种网络配置方法,该方法包括:终端设备向第一装置发送业务请求,所述业务请求中包括业务的标识;其中,所述业务包括至少一个子业务;所述终端设备从所述第一装置接收网络配置信息,所述网络配置信息用于配置所述至少一个子业务的选定网络。
通过上述方法,可以基于每个子业务的选定网络进行网络配置,从而可以通过多网络协同互补满足一个业务的多个子业务的差异网络需求,保证业务可靠连续性,从而满足车 联网业务的业务需求。
在一个可能的设计中,当所述业务的第一子业务的选定网络为PC5网络时,所述网络配置信息中包括所述第一装置为所述终端设备分配的目的层二地址和所述终端设备的标识。这样可以通知所述终端设备所述目的层二地址仅用于所述终端设备,从而使所述终端设备完成网络配置后,基于所述目的层二地址对业务消息进行处理。
在一个可能的设计中,所述终端设备通过第二装置接收所述第一装置发送的第二业务消息,所述第二业务消息中包括所述目的层二地址;所述终端设备判断所述目的层二地址为自身的目的层二地址,并处理所述第二业务消息。其中,示例性的,所述第二装置为AVP业务场景中的RSU。
通过上述方法,所述终端设备可以准确地处理与自身相关的业务消息。
在一个可能的设计中,当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述终端设备从所述第一装置接收网络配置信息,具体方法可以为:所述终端设备通过第二装置接收所述第一装置发送的网络配置信息,所述网络配置信息中所述终端设备的IP地址和所述第二子业务的业务需求。其中,示例性的,所述第二装置为AVP业务场景中的SCEF或PCRF。
通过上述方法,所述终端设备可以准确接收到网络配置信息,进而后续完成基于LTE-Uu网络的网络配置。
在一个可能的设计中,当所述业务的第三子业务的选定网络为5G-Uu网络时,所述网络配置信息中包括所述业务的标识、所述终端设备的IP地址、所述第三子业务的网络切片的标识。这样,可以使后续准确完成基于5G-Uu网络的网络配置。
在一个可能的设计中,所述终端设备通过所述IP地址从所述第一装置接收第三业务消息。这样可以使所述终端设备准确处理与自身相关的业务消息。
在一个可能的设计中,所述终端设备根据接收数据包确定数据包统计信息,所述数据包统计信息中包括丢包数和统计时间;所述终端设备向所述第一装置发送数据包统计信息。
通过上述方法,可以使所述第一装置根据所述数据包统计信息确定第一网络的网络状态,当确定所述第一网络不可用时,更新所述第一网络对应的子业务的网络配置信息,从而可以提高业务可靠性。
在一个可能的设计中,所述第一装置部署于AVP业务场景中的AVP服务器中。
第三方面,本申请提供了一种网络配置方法,该方法可以包括:第二装置确定监控的第一装置所在系统所部署网络的网络状态后,向所述第一装置发送网络状态信息,其中,所述网络状态信息为所述第一装置所在系统所部署网络的网络状态信息。
通过上述方法,可以后续使第一装置基于网络状态去执行后续的网络配置流程,这样可以通过多网络协同互补满足一个业务的多个子业务的差异网络需求,保证业务可靠连续性,从而满足车联网业务的业务需求。
在一个可能的设计中,所述第二装置可以为AVP业务场景中的SCEF、PCRF或者RSU。
在一个可能的设计中,当所述业务的第一子业务的选定网络为PC5网络时,所述第二装置从所述第一装置接收网络配置信息,所述配置信息中包括所述第一装置为终端设备分配的目的层二地址和所述终端设备的标识。其中,示例性的,所述第二装置为AVP业务场景中的RSU。
通过上述方法,所述第二装置可以确定所述目的层二地址仅用于所述终端设备,后续 可以根据所述目的层二地址识别所述终端设备的业务消息,进而通知所述终端设备的相关的业务消息。
在一个可能的设计中,所述第二装置从所述第一装置接收第二业务消息,所述第二业务消息中包括所述目的层二地址;所述第二装置向所述终端设备发送所述第二业务消息,所述目的层二地址用于指示所述终端设备接收并处理所述第二业务消息。其中,示例性的,所述第二装置为AVP业务场景中的RSU。
通过上述方法,所述第二装置可以将业务消息发送给终端设备,使所述终端设备根据所述目的层二地址和所述第一地址确定是否需要对业务消息进行处理。
在一个可能的设计中,当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述第二装置从所述第一装置接收网络配置信息,所述网络配置信息中包括所述终端设备的IP地址和所述第二子业务的业务需求;所述第二装置向所述第一装置发送网络配置成功消息。其中,示例性的,所述第二装置为AVP业务场景中的SCEF或PCRF。这样,可以完成基于LTE网络的网络配置。
在一个可能的设计中,所述第二装置向所述第一装置发送网络拥塞信息。其中,示例性的,所述第二装置为AVP业务场景中的SCEF或PCRF。
通过上述方法,可以使所述第一装置根据所述网络拥塞信息确定第一网络的网络状态,当确定所述第一网络不可用时,更新所述第一网络对应的子业务的网络配置信息,从而可以提高业务可靠性。
在一个可能的设计中,所述业务请求中还包括所述终端设备支持的网络类型。这样第一装置可以直接根据所述业务请求中的所述终端设备支持的网络类型确定每个子业务的选定网络。
在一个可能的设计中,所述终端设备在向所述第一装置发送业务请求之前,向所述第一装置发送注册请求,所述注册请求中包括所述终端设备支持的网络类型。
通过上述方法,可以使所述第一装置在接收到业务请求之后获取终端设备注册的终端设备支持的网络类型,以使第一装置后续根据所述终端设备支持的网络类型确定每个子业务的选定网络。
在一个可能的设计中,所述第一装置部署于AVP业务场景中的AVP服务器中。
第四方面,本申请还提供了一种实现网络配置的装置,该实现网络配置的装置具有实现上述第一方面方法实例中第一装置的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述实现网络配置的装置的结构中包括接收单元和处理单元,可选的还可以包括发送单元,这些单元可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述实现网络配置的装置的结构中包括通信接口、存储器和处理器,通信接口用于收发数据,以及与系统中的其他设备进行通信交互,处理器被配置为支持实现网络配置的装置执行上述第一方面方法中第一装置相应的功能。存储器与处理器耦合,其保存实现网络配置的装置必要的程序指令和数据。
第五方面,本申请还提供了一种终端设备,该终端设备具有实现上述第二方面方法实例中终端设备的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述终端设备的结构中包括发送单元和接收单元,可选的还可以包括处理单元,这些单元可以执行上述第二面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述终端设备的结构中包括收发器、存储器和处理器,收发器用于收发数据,以及与系统中的其他设备进行通信交互,处理器被配置为支持终端设备执行上述第二方面方法中相应的功能。存储器与处理器耦合,其保存终端设备必要的程序指令和数据。
第六方面,本申请还提供了一种实现网络配置的装置,该实现网络配置的装置具有实现上述第三方面方法实例中第二装置的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述实现网络配置的装置的结构中包括处理单元和发送单元,可选的还可以包括接收单元,这些单元可以执行上述第三方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述实现网络配置的装置的结构中包括通信接口、存储器和处理器,收发器用于收发数据,以及与系统中的其他设备进行通信交互,处理器被配置为支持实现网络配置的装置执行上述第三方面方法中第二装置相应的功能。存储器与处理器耦合,其保存实现网络配置的装置必要的程序指令和数据。
第七方面,本申请还提供了一种系统,所述系统至少可以包括上述涉及中提及的第一装置、终端设备和第二装置。
第八方面,本申请还提供了一种计算机存储介质,计算机存储介质中存储有计算机可执行指令,计算机可执行指令在被计算机调用时用于使计算机执行上述任一种方法。
第九方面,本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一种方法。
第十方面,本申请还提供了一种芯片,芯片与存储器耦合,用于读取并执行存储器中存储的程序指令,以实现上述任一种方法。
附图说明
图1为本申请提供的一种系统的架构示意图;
图2为本申请提供的一网络配置方法的流程图;
图3为本申请提供的一种网络配置方法的示例的流程图;
图4为本申请提供的一种基于PC5网络的网络配置流程的示例的流程图;
图5为本申请提供的一种基于LTE网络的网络配置流程的示例的流程图;
图6为本申请提供的一种基于5G网络的网络配置流程的示例的流程图;
图7为本申请提供的一种网络状态变更触发网络重配的流程示例的流程图;
图8为本申请提供的一种实现网络配置的装置的结构示意图;
图9为本申请提供的一种终端设备的结构示意图;
图10为本申请提供的一种另实现网络配置的装置的结构示意图;
图11为本申请提供的一种实现网络配置的装置的结构图;
图12为本申请提供的一种终端设备的结构图;
图13为本申请提供的一种另实现网络配置的装置的结构图。
具体实施方式
本申请实施例提供一种网络配置方法及装置,用以满足车联网业务的业务需求。其中,本申请所述方法和装置基于同一发明构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请的描述中“至少一个”指的是一个或者多个。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的网络配置方法及装置进行说明。
图1示出了本申请实施例提供的网络配置方法适用的一种可能的系统架构,所述系统架构中至少包括第一装置、第二装置和终端设备。具体的,所述系统可以有多种应用场景,例如,车联网中的AVP业务场景,或者编队行驶(platoon)场景等等应用场景中。其中:
所述第一装置所在的系统包括一个或多个类型的网络,所述第一装置可以管理不同接入网络类型的网络(即异构网络)来满足各子业务的业务需求。第一装置根据所述终端设备支持的网络类型和各子业务的业务需求,确定每个子业务所适用的网络(本申请中称之为选定网络),并基于所述每个子业务的选定网络发起网络配置流程。所述第一装置可以为独立部署的一个装置或设备,也可以集成在一个平台上,还可以集成在服务器或其它设备中。一种可能的实现方式中,在AVP业务场景中,所述第一装置可以部署或集成在AVP服务器中。
应理解,所述第一装置的功能也可以拆分为多个逻辑功能,这些逻辑功能可以统一部署在同一个设备或装置中,也可以分别部署在不同的设备或装置中。在本申请实施例中,仅以所述第一装置实现完整的功能为例进行描述,但是应理解这并不作为对所述第一装置的限定。
所述第二装置可以监控网络的网络状态以及进行网络配置。例如,所述第二装置可以为路侧单元(road side unit,RSU),监测PC5网络的网络状态;所述第二装置还可以为网络开放实体,如服务能力公开功能(service capability exposure function,SCEF)网元、策略和收费规则功能(policy and charging rules function,PCRF)网元等,监测5G-Uu网络的网络状态。需要说明的是,所述系统中可以包括多个所述第二装置,各第二装置监测各自覆盖区域内的网络状态;另外,所述系统中可以同时包括RSU和SCEF两个第二装置。
所述终端设备向所述第一装置请求业务,该终端设备请求的业务包括一个或多个子业务,然后终端设备基于所述第一装置确定的各子业务对应的网络配置信息完成各子业务的选定网络的网络配置,进而根据网络配置完成各子业务的业务流程。需要说明的是,所述终端设备包括了发起业务请求、接收网络配置信息、网络配置等功能。具体实现时,这些功能可以部署在一个终端设备上,或部署在不同的终端设备上。如图1中所示的终端设备的功能实际上可能由两个终端设备(如第一终端设备,第二终端设备)共同实现,第二终端设备上的应用实现发起业务请求的功能,该应用绑定了第一终端设备,第一终端设备上的通信单元实现接收网络配置信息的功能。例如,在AVP业务场景中,上述发起业务请求的功能可以由安装在车辆主人的手机上的AVP应用实现,接收网络配置信息的功能可以由车辆上的车载单元(on board unit,OBU)实现,其中OBU为车辆的前装车机或远程信息处理器(telematics BOX,TBOX)的一个逻辑单元。在其它车联网业务场景中,图2中所 示终端设备的功能可以统一由车辆的前装车机或TBOX实现。
在所述终端设备请求业务之前,所述终端设备向所述第一装置请求注册,所述终端设备注册时可以向所述第一装置注册所述终端设备支持的网络类型,也可以不注册所述终端设备支持的网络类型。当所述终端设备不注册所述终端设备支持的网络类型时,所述终端设备可以在向所述第一装置请求业务时携带所述终端设备支持的网络类型,对此本申请不作限定。需要说明的是,当所述终端设备向所述第一装置注册所述终端设备支持的网络类型,在具体实现时,同理可以由该终端设备自己注册,或者由第二终端设备上的应用注册,该应用绑定了第一终端设备(该第一终端设备上的通信单元实现接收网络配置信息的功能)。
其中,本申请实施例中涉及的应用可以理解为一种实现具体的业务的软件集合,也即一种与业务相关的应用软件等等。
另外,所述第二装置和所述终端设备不限于上述举例,还可以有其它举例,本申请此处不再一一列举。
需要说明的是,在本申请实施例中涉及的子业务的选定网络是指用于传输该子业务相关的数据、信息或消息的通信网络。在本申请实施例中涉及的网络类型包括PC5、LTE、5G等等网络类型。其中,需要说明的是,当涉及网络类型PC5时,具体包括LTE网络下的PC5(即LTE-PC5)和5G下的PC5(即5G-PC5);当涉及网络类型LTE时,具体是指LTE-Uu;当涉及网络类型5G时,具体是指5G-Uu。在以下的介绍中为了描述简单,仅以PC5、LTE-Uu、5G-Uu来描述。
本申请实施例提供的一种网络配置方法,适用于如图1所示的系统。参阅图2所示,该方法的具体流程可以包括:
步骤201:第一装置从终端设备接收业务请求,所述业务请求中包括业务的标识;其中,所述业务包括至少一个子业务。
其中,发起所述业务请求的可以是所述终端设备的应用或其它功能模块,所述终端设备的应用可以是绑定了所述终端设备的一种业务的应用。
步骤202:所述第一装置获取所述终端设备支持的网络类型。
在一种可选的实施中,所述第一装置获取所述终端设备支持的网络类型可能有两种情况:
第一种情况:所述业务请求中还包括所述终端设备支持的网络类型,所述第一装置从所述业务请求中获取所述终端设备支持的网络类型。
第二种情况:所述终端设备在向所述第一装置发送所述业务请求之前,向所述第一装置发送注册请求,所述注册请求中包括所述终端设备支持的网络类型。然后所述第一装置获取所述终端设备注册的所述终端设备支持的网络类型。
其中,发起注册请求的可以是所述终端设备的应用或其它功能模块,所述终端设备的应用可以是绑定了所述终端设备的一种业务的应用。
在一种可选的实施方式中,所述业务请求中还可以包括所述终端设备的标识。例如,在AVP业务场景中,当所述业务请求中包括所述终端设备支持的网络类型的情况下,所述业务请求中包括的内容可以如表1所示:
表1业务请求
终端设备的标识 业务的标识 支持的网络类型
终端设备ID AVP LTE-Uu、PC5
具体的,可以由终端设备的应用发起业务请求,如终端设备上安装的移动应用程序(mobile application,MAPP)。在AVP业务场景中,MAPP无法与所述第一装置直接通信,需要云端AVP服务器将MAPP的业务请求转发给所述第一装置。
在一种可选的实施方式中,所述第一装置从所述终端设备接收所述业务请求之前,所述第一装置获取所述每个子业务的业务需求,然后所述第一装置根据所述每个子业务的业务需求和所述第一装置所在系统可用的网络类型确定所述每个子业务对应的至少一个待选网络。
在一种可选的实施方式中,在AVP业务场景中,所述第一装置获取所述每个子业务的业务需求可以是所述第一装置接收的AVP应用注册的每个子业务的业务需求。其中,每个子业务的业务需求可以但不限于包括上下行信息、单播/广播、时延、带宽、频率、可靠性信息等等。例如,每个子业务的业务需求可以如表2所示。此时在此场景中,所述AVP应用和所述第一装置可以共同部署于停车场的AVP服务器中,当然两者还可分开部署,本申请对此不作限定。
表2子业务的业务需求
Figure PCTCN2020083359-appb-000001
在一种可选的实施方式中,每个子业务对应的至少一个待选网络可以以待选网络列表的形式存在,例如表3所示:
表3子业务对应的待选网络列表
Figure PCTCN2020083359-appb-000002
其中,所述第一装置可以设置网络选择的优先级,例如,表3中每个子业务对应的待选网络的优先级可以是优先级从高优先级到低优先级的顺序排列,如子业务地图下载,5G-Uu的优先级高于LTE-Uu。当然还可以有其它优先级排列顺序,此处不再详细列举。
在一种可选的实施方式中,所述第一装置需要预先确定所述终端设备的所在的系统可用的网络类型。具体的,所述第一装置从第二装置接收网络状态信息,其中,所述第二装置发送的网络状态信息为所述第一装置所在系统所部署网络的网络状态信息;所述第一装置根据所述网络状态信息,确定第一装置所在系统可用的网络类型。其中,所述第二装置可以为一个或者多个。
例如,在AVP业务场景中,所述第二装置可以为RSU、SCEF、PCRF中的一个或者多个。其中,RSU可以向所述第一装置发送PC5的网络状态信息,具体可以包括RSU的标识、RSU的位置、覆盖范围、负载情况、同步状态、信道质量等等。例如,RSU发送的PC5的网络状态信息可以如表4所示;SCEF或者PCRF可以向所述第一装置发送5G-Uu、LTE-Uu的网络拥塞信息,具体的可以包括基站(例如eNodeB)的标识或NR的标识、网络拥塞状态等等。例如,LTE-Uu的网络状态信息可以如表5所示。进一步地,所述第一装置确定的系统可用的网络类型可以如表6所示。
表4 PC5的网络状态信息
RSU的标识 负载 同步状态 信道质量 覆盖范围
RSU ID 1 80% 正常 地理坐标
RSU ID 2 50% 正常 地理坐标
表5 LTE-Uu的网络状态信息
eNodeB的标识 网络拥塞状态
eNodeB 1
eNodeB 2
表6
网络类型 可用状态(是否可用)
PC5 可用
LTE-Uu 可用
5G-Uu 不可用
WIFI-Uu 可用
步骤203:所述第一装置根据所述终端设备支持的网络类型,确定每个子业务的选定网络,并基于所述每个子业务的选定网络发起网络配置流程。
在一种可选的实施方式中,所述第一装置根据所述终端设备支持的网络类型,确定每个子业务的选定网络,具体方法可以为:
所述第一装置根据所述业务的标识获取所述业务对应的所述至少一个子业务,进而确定所述每个子业务对应的至少一个待选网络;
所述第一装置根据所述终端设备支持的网络类型,在所述每个子业务对应的至少一个待选网络中确定所述每个子业务的选定网络。
例如,如表3所示,所述第一装置可以根据AVP的标识,在所述第一装置保存的映射关系中确定AVP对应的子业务包括地图下载、路径规划、辅助定位、障碍物检测、状态上报,然后通过映射关系进一步确定每个子业务的待选网络,例如,确定的地图下载的待选网络为5G-Uu和LTE-Uu。
在一种可选的实施方式中,所述第一装置可以结合表1、表2和表3确定每个子业务的选定网络,例如,每个子业务的选定网络可以如表7所示:
表7每个子业务的选定网络
Figure PCTCN2020083359-appb-000003
在具体实现时,当不同的子业务的选定网络不同时,后续的网络配置也不相同。根据网络的不同,所述第一装置发起配置流程的情况可以但不限于包括以下三种:
情况a1:当所述业务的第一子业务的选定网络为PC5网络时,所述第一装置发起网络配置流程,具体可以包括:
所述第一装置为所述终端设备分配目的层二地址;所述第一装置向所述终端设备和第二装置发送网络配置信息,所述配置信息中包括所述目的层二地址和所述终端设备的标识。其中,所述终端设备接收所述网络配置信息时,所述终端设备可以通过所述终端设备中的一个通信单元接收所述网络配置信息。需要说明的是,发起业务请求的所述终端设备的应用或其它功能模块可以和所述通信单元集成在同一个终端设备中,也可以分别集成在不同的终端设备中,本申请对此不作限定。
其中,所述目的层二地址为MAC地址。
在一种实施方式中,所述第一装置根据所述终端设备的标识、所述第一子业务的标识和通信类型(即单播或者广播)为所述终端设备分配所述目的层二地址。
在一种可选的实施方式中,当所述终端设备向所述第一装置回应了一个配置应答消息之后,所述第一装置确定所述第一子业务的网络配置完成。此时所述第一装置保存了终端设备的标识、业务的标识、第一子业务的网络类型与终端设备的目的层二地址的对应关系。例如,当所述第一子业务是辅助定位或障碍物检测时,所述第一装置保存的对应关系可以如表8中子业务辅助定位或障碍物检测相关的对应关系所示。
表8
Figure PCTCN2020083359-appb-000004
在一种可选的实施方式中,在网络配置完成之后,所述第一装置从第三装置接收第一业务消息,所述第一业务消息中包括所述终端设备的标识和所述第一子业务的标识;所述第一装置根据所述终端设备的标识和所述第一子业务的标识确定所述目的层二地址;所述第一装置通过所述第二装置向所述终端设备发送所述第二业务消息,所述第二业务消息中包括所述目的层二地址,所述目的层二地址用于指示所述终端设备接收并处理所述第二业务消息。具体的,所述终端设备确定所述第二业务消息中的所述目的层二地址是自身的目的层二地址时,确定所述第二业务消息是发送给自己的,然后对所述第二业务消息进行处 理。
其中,示例性的,所述第一装置查找本地保存的对应关系,确定所述终端设备的标识和所述第一子业务的标识共同对应的目的层二地址,例如,当所述第一子业务是辅助定位时,所述第一装置可以通过查找表8确定终端设备和辅助定位共同对应的目的层二地址为MAC 1;然后所述第一装置将所述目的层二地址包含在所述第二业务消息中通过所述第二装置广播给所述终端设备,之后所述终端设备对比所述目的层二地址和自身的目的层二地址是否相同,从而判断所述第二业务消息是否为发送给自己的业务消息。
在一种可选的实施方式中,所述第一装置还可以为所述终端设备分配空口资源,然后可以将所述空口资源的标识包含在所述网络配置信息中。
在此情况a1中,如果是AVP业务场景中,所述第二装置可以是RSU,所述第三装置可以是AVP应用,或者是所述AVP所部署的设备,例如AVP应用部署的AVP服务器。
情况a2:当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述第一装置发起网络配置流程,具体可以包括:
所述第一装置向第二装置发送网络配置信息,所述网络配置信息中包括所述终端设备的IP地址和所述第二子业务的业务需求;所述第一装置从所述第二装置接收网络配置成功消息。
在一种可选的实施方式中,所述第一装置可以向所述第二装置发送网络配置请求或者承载建立连接请求,所述网络配置请求或者所述承载建立连接请求中包含所述网络配置信息。当所述第二装置和所述终端设备承载建立完成后,所述第二装置向所述第一装置返回网络配置成功消息。此时,所述第一装置保存终端设备的标识、业务的标识、第二子业务的网络类型和IP地址的对应关系。
在此情况a2中,若在AVP业务场景中,所述第二装置为SCEF或者PCRF。
情况a3:当所述业务的第三子业务的选定网络为5G-Uu网络时,所述第一装置发起网络配置流程,具体可以包括:
所述第一装置根据所述第三子业务的业务需求确定所述第三子业务的网络切片;所述第一装置向所述终端设备发送网络配置信息,所述网络配置信息中包括所述业务的标识、所述终端设备的IP地址、所述第三子业务的网络切片的标识。
在一种可选的实施方式中,当所述终端设备向所述第一装置回应了一个配置应答消息之后,所述第一装置确定所述第三子业务的网络配置完成。此时所述第一装置保存了终端设备的标识、IP地址、业务的标识、第三子业务的网络类型、第三子业务的网络切片的标识的对应关系。
在一种可选的实施方式中,在上述情况a2和情况a3中,在网络配置完成后的流程中,所述第一装置从第三装置接收第三业务消息,所述第三业务消息中包括所述终端设备的标识和第四子业务的标识;所述第四子业务为上述情况a2中的所述第二子业务或者上述情况a3中的所述第三子业务;所述第一装置获取所述终端设备的标识和所述第四子业务的标识对应的目的IP地址后,通过所述目的IP地址向所述终端设备发送所述第三业务消息。此时,所述第三装置可以为AVP业务场景中的AVP应用,或者AVP应用部署的设备或装置,例如停车场端的AVP服务器。
在具体实施时,在业务进行的过程中,任一个子业务的选定网络的网络状态的变化会影响业务,会触发网络的重配置流程。具体的,所述第一装置获取第一信息,所述第一信 息用于指示第一网络的网络状态;所述第一装置根据所述第一信息,确定所述第一网络当前不可用;所述第一装置确定所述第一网络对应的目标子业务,并更新所述目标子业务对应的网络配置信息,发起网络配置更新流程。
在一种可选的实施方式中,所述第一装置获取所述第一信息,具体可以分为以下两种情况:
情况b1:所述第一装置从所述终端设备接收数据包统计信息,所述数据包统计信息中包括丢包数和统计时间。
在一种可选的实施方式中,所述终端设备根据接收数据包确定数据包统计信息,并发送给所述第一装置。具体的,所述终端设备统计接收消息的消息计数(message count,msgent)字段,通过msgent的连续性判断是否有丢包,进而确定所述数据包统计信息。
在一种可选的实施方式中,所述终端设备周期性的向所述第一装置发送所述数据包统计信息;或者所述终端设备确定所述丢包数超过固定阈值时向所述第一装置发送所述数据包统计信息。
情况b2:所述第一装置从第二装置接收网络拥塞信息。
示例性的,在AVP业务场景中,所述第二装置可以为SCEF或PCRF,所述SCEF或者PCRF可以监控LTE-Uu或5G-Uu网络的网络拥塞情况,然后向所述第一装置上报LTE-Uu或5G-Uu的网络拥塞信息。
所述第二装置还可以为AVP业务场景中的RSU,RSU监控PC5的网络拥塞情况,然后向所述第一装置上报PC5的网络拥塞信息。
在一种可选的实施方式中,基于上述情况b1,所述第一装置根据所述第一信息,确定第一网络当前不可用,具体方法可以为:所述第一装置根据所述丢包数和所述统计时间,确定丢包率大于设定丢包率阈值时,所述第一装置确定所述第一网络当前不可用。
在另一种可选的实施方式中,基于上述情况b2,所述第一装置根据所述第一信息,确定第一网络当前不可用,具体方法可以为:所述第一装置根据所述网络拥塞信息,确定网络拥塞度大于设定阈值时,所述第一装置确定所述第一网络当前不可用。
采用本申请实施例提供的网络配置方法,第一装置从终端设备接收业务请求,所述业务请求中包括业务的标识和所述终端设备支持的网络类型;其中,所述业务包括至少一个子业务;所述第一装置根据所述终端设备支持的网络类型,确定每个子业务的选定网络,并基于所述每个子业务的选定网络发起网络配置流程。通过上述方法,可以通过多网络协同互补满足一个业务的多个子业务的差异网络需求,保证业务可靠连续性,从而满足车联网业务的业务需求。
基于以上实施例,以下以具体的场景对本申请实施例提供的网络配置方法进行说明。例如,以下实施例均以AVP业务场景为例进行说明。在该场景中,以终端设备中的TBOX和与终端设备绑定的应用MAPP为例,以第一装置部署在场端AVP服务器上为例进行说明。其中,场端AVP服务器上还部署了AVP应用,负责路况融合感知分析(视频+雷达),负责车辆进行障碍物识别和定位跟踪,进行车辆泊车/招车路径规划。AVP业务场景中,终端设备不能直接与第一装置进行通信,需要云端AVP服务器(例如,IoT平台)进行消息转发。其中云端AVP服务器上部署云端AVP应用,负责物联网设备管理、连接管理、运营和维护。在以下的举例中,以第一装置通过两个功能模块网络配置管理模块和业务网络映射模块实现所述第一装置的功能为例进行说明。需要说明的是,网络配置管理模块和业 务网络映射模块仅仅是一种可能的示例,还可以为有其它可能,本申请对此不作限定。需要说明的是,以下的示例中以TBOX和应用MAPP实现终端设备的功能仅仅为一种可能的示例,还可以通过所述终端设备中的其他功能模块实现所述终端设备的功能,本申请对此不作限定。
图3示出了本申请提供的一种网络配置方法的示例,该示例的流程具体可以包括:
步骤301:不同的网络的监控实体向网络配置管理模块发送网络状态信息,具体的可以如图中步骤301a和步骤301b所示:
步骤301a:RSU向所述网络配置管理模块发送PC5的网络状态信息,所述PC5的网络状态信息中可以包括RSU标识、RSU的位置、覆盖范围、负载情况、同步状态、信道质量等等。
具体的可以参见图2所示的实施例中的表4,此处不再重复赘述。
步骤301b:SCEF向所述网络配置管理模块发送LTE-Uu、5G-Uu的网络状态信息,所述网络状态信息中可以包括eNodeB的标识或NR的标识、网络拥塞状态等等。
例如,LTE-Uu的网络状态信息可以参见上述图2所示的实施例中的表5,此处不再重复赘述。
步骤302:所述网络配置管理模块根据所述网络状态信息,确定所述网络配置管理模块所在系统可用的网络类型。
具体的,系统可用的网络类型可以参见图2所示的实施例中的表6所示,此处不再详细赘述。
步骤303:所述网络配置管理模块向业务网络映射模块发送网络能力信息,也即步骤302中所述网络配置管理模块确定的系统可用的网络类型,其中所述网络能力信息包括网络类型和可用状态,如表6所示。
步骤304:场端AVP应用向所述业务网络映射模块注册每个子业务的业务需求,每个子业务的业务需求可以但不限于包括上下行信息、单播/广播、时延、带宽、频率、可靠性信息等等。
具体的,子业务的业务需求可以参见图2所示的实施例中表2,此处不再重复赘述。
步骤305:所述业务网络映射模块根据所述每个子业务的业务需求和所在系统可用的网络类型确定所述每个子业务对应的至少一个待选网络。
例如,每个子业务对应的至少一个待选网络的形式可以如表3所示,此处不再详细描述。
步骤306:MAPP向云端AVP服务器发送业务请求,所述业务请求中包括AVP的标识终端设备支持的网络类型和终端设备的标识。
其中MAPP可以是安装在终端设备端的AVP应用,或者可以是车辆车主手机端(或其它终端设备)上与所述终端设备绑定的AVP应用。
其中,MAPP无法与私网本地的场端AVP服务器互通,所以通过云端AVP服务器向场端AVP服务器转发消息。
具体的,所述业务请求可以如表1所示,此处不再重复赘述。
需要说明的是,此处仅以所述业务请求中包含所述终端设备支持的网络类型为例进行描述。还有一种可能的方案是所述业务请求中不包含所述终端设备支持的网络类型,而是终端设备在初始注册时注册了终端设备支持的网络类型,在这种方案中在执行以下步骤 308之前,所述业务网络映射模块还执行获取所述终端设备支持的网络类型的操作,具体的此处不再详细描述。
步骤307:所述云端AVP服务器将所述业务请求转发给所述业务网络映射模块。
步骤308:所述业务网络映射模块根据所述终端设备支持的网络类型,确定每个子业务的选定网络。
具体的,所述业务网络映射模块根据每个子业务的至少一个待选网络(例如表3)和所述终端设备支持的网络类型(例如表1)确定每个子业务的选定网络,例如图2所示的实施例中的表7所示,此处不再赘述。
当所述业务网络映射模块确定所述至少一个子业务中的某个子业务对应的至少一个待选网络中不存在所述某个子业务的选定网络时,执行步骤309和步骤310;当所述业务网络映射模块确定每个子业务对应的至少一个待选网络中均存在所述每个子业务的选定网络时,执行步骤311和步骤312。
步骤309:所述业务网络映射模块向所述云端AVP服务器发送AVP业务失败消息,其中所述AVP业务失败消息中包括业务失败原因,所述失败原因可以为网络不支持。
步骤310:所述云端AVP服务器向所述MAPP转发所述业务失败消息。
步骤311:所述业务网络映射模块向所述网络配置管理模块发送网络配置信息。
步骤312:所述网络配置管理模块基于所述每个子业务对应的网络发起网络配置流程。
示例性的,以下基于不同的子业务对应的网络发起的配置流程以具体的示例进行介绍,例如下述图4-图6所示的示例。
图4中以第一子业务的选定网络为PC5为例进行说明的基于PC5网络的网络配置流程的示例,具体的该网络配置流程可以包括:
步骤401:业务网络映射模块向网络配置管理模块发送网络配置请求,所述网络配置请求中包括网络类型为PC5、通信类型为单播、终端设备ID和第一子业务的标识。例如,在本示例中第一子业务的标识为辅助定位和障碍物检测业务对应的ID。
步骤402:所述网络配置管理模块判断采用PC5单播,需要先与TBOX交互应用层密钥。
步骤403:所述网络配置管理模块根据所述网络配置请求,为所述终端设备分配单播采用的目的层二地址。
步骤404:所述网络配置管理模块根据所述网络配置请求,为所述终端设备分配单播采用空口资源。
步骤405:所述网络配置管理模块向所述TBOX发送PC5配置信息,所述PC5配置信息包括终端设备ID、第一子业务的标识、所述目的层二地址和PC5空口资源配置。
步骤406:所述网络配置管理模块向RSU发送PC5配置信息。
步骤407:所述网络配置管理模块确定配置完成后向所述业务网络映射模块发送网络配置完成消息,所述网络配置完成消息包括终端设备ID、所述第一子业务的标识、目的层二地址。
步骤408:所述业务网络映射模块保存终端设备的标识、业务的标识、子业务的网络类型和地址的对应关系(如表8所示),判断所有子业务的网络配置完成。
步骤409:所述业务网络映射模块向云端AVP应用发送AVP触发成功消息。
步骤410:所述云端AVP应用转发所述AVP触发成功消息给MAPP。
步骤411:所述场端AVP应用向所述业务网络映射模块发送第一业务消息,所述第一业务消息包括终端设备ID、所述第一子业务的标识。
其中,所述第一业务消息中还包括业务消息净荷。
步骤412:所述业务网络映射模块根据终端设备ID和所述第一子业务标识确定所述目的层二地址。
具体的,所述业务网络映射模块还根据终端设备ID和所述第一子业务标识确定网络类型,此示例中确定采用PC5网络通信。
步骤413:所述业务网络映射模块向RSU发送第二业务消息,所述第二业务消息中包括所述目的层二地址。
其中,所述第二业务消息中还包括所述业务消息净荷。
步骤414:所述RSU向所述TBOX发送所述第二业务消息。
示例性的,所述RSU用所述目的层二地址封装业务消息净荷后向所述TBOX发送所述第二业务消息。
步骤415:所述TBOX判断所述目的层二地址是否为自身的目的层二地址,若是,则执行步骤416,否则执行步骤417。
具体的,所述TBOX根据步骤405中的PC5配置信息对所述目的层二地址进行过滤,确定所述目的层二地址对应的子业务,并对第二业务消息采用不受2协商的密钥进行解码。若PC5配置信息中有所述目的层二地址,则确定所述目的层二地址为自身的目的层二地址,则执行步骤416;若PC5配置信息中无此目的层二地址,则确定判断所述目的层二地址不是自身的目的层二地址,则丢弃该第二业务消息,即执行步骤417。
步骤416:所述终端设备处理所述第二业务消息。
步骤417:所述终端设备丢弃所述第二业务消息。
图5中以第二子业务的选定网络为LTE-Uu为例进行说明的基于LTE-Uu网络的网络配置流程的示例,在该示例中,所述第二子业务为路径规划,具体的该网络配置流程可以包括:
步骤501:业务网络映射模块向网络配置管理模块发送网络配置请求,所述网络配置请求中包括网络类型为LTE-Uu、带宽、时延和终端设备ID。
步骤502:所述网络配置管理模块向云端AVP应用发送网络配置信息,所述网络配置信息中包括终端设备ID、所述第二子业务的标识、带宽、时延。
步骤503:所述云端AVP应用向SCEF发送承载建立请求消息,所述承载建立请求消息中包括所述网络配置信息和终端设备的IP地址。
步骤504:所述SCEF建立与所述TBOX之间的承载。
步骤505:所述SCEF向所述云端AVP应用发送承载建立成功消息。
步骤506:所述云端AVP应用向所述网络配置管理模块发送网络配置完成消息。
步骤507:所述网络配置管理模块向所述业务网络映射模块发送所述网络配置完成消息。
步骤508:所述业务网络映射模块确定所有子业务网络配置完成。
步骤509:所述业务网络映射模块向云端AVP应用发送AVP触发成功消息。
步骤510:所述云端AVP应用转发所述AVP触发成功消息给MAPP。
步骤511:场端AVP应用向所述业务网络映射模块发送第三业务消息,所述第三业务 消息包括终端设备ID、所述第二子业务的标识。
其中,所述第三业务消息可以是路径下发消息,所述路径下发消息中还可包括业务消息净荷。
步骤512:所述业务网络映射模块获取所述终端设备的ID和所述第二子业务的标识对应的目的IP地址。
步骤513:所述业务网络映射模块通过所述目的IP地址向所述TBOX发送所述第三业务消息。
图6中以第三子业务的选定网络为5G-Uu为例进行说明的基于5G-Uu网络的网络配置流程的示例,在该示例中,所述第三子业务为地图下载,具体的该网络配置流程可以包括:
步骤601:业务网络映射模块向网络配置管理模块发送网络配置请求,所述网络配置请求中包括网络类型为5G-Uu、带宽、时延和终端设备ID。
步骤602:所述网络配置管理模块根据所述第三子业务的业务需求(带宽、时延)确定所述第三子业务的网络切片。
步骤603:所述网络配置管理模块向TBOX发送网络配置信息,所述网络配置信息中包括所述第三子业务的标识、所述终端设备的IP地址、所述网络切片的标识。
步骤604:所述网络配置管理模块向所述业务网络映射模块发送网络配置完成消息。
其中,所述网络配置完成消息中包括终端设备ID、所述第三子业务的标识和终端设备的IP地址。
步骤605:所述业务网络映射模块确定所有子业务网络配置完成。
步骤606:所述业务网络映射模块向云端AVP应用发送AVP触发成功消息。
步骤607:场端AVP应用向所述业务网络映射模块发送第四业务消息,所述第四业务消息包括终端设备ID、所述第三子业务的标识。
其中,所述第四业务消息可以是地图下发消息,所述地图下发消息中还可包括业务消息净荷。
步骤608:所述业务网络映射模块获取所述终端设备的ID和所述第三子业务的标识对应的目的IP地址。
步骤609:所述业务网络映射模块通过所述目的IP地址向所述TBOX发送所述第四业务消息。
通过上述示例可以完成对不同的子业务的选定网络的网络配置,在业务进行的过程中,网络配置管理模块监控网络状态变更并通知业务网络映射模块,当业务网络映射模块判断网络状态变更影响业务时,触发网络重新配置的流程。例如,图7示出了一种网络状态变更触发网络重配的流程示例,具体的该示例的流程可以包括:
步骤701:TBOX统计接收消息的msgcnt,通过msgcnt的连续性判断是否有丢包,确定数据包统计信息,所述数据包统计信息包括终端设备ID、丢包数、统计时间。
步骤702:所述TBOX向网络配置管理模块发送所述数据包统计信息。
在一种可选的实施方式中,所述终端设备周期性的向所述网络配置管理模块发送所述数据包统计信息;或者所述终端设备确定所述丢包数超过固定阈值时向所述网络配置管理模块发送所述数据包统计信息。
步骤703:SCEF向所述网络配置管理模块发送网络拥塞信息。
其中,所述网络拥塞信息可以包括LTE-Uu或5G-Uu的网络拥塞情况信息。
其中,上述步骤701和步骤702与步骤703是可选的步骤,例如,或者步骤701和步骤702不存在,步骤703存在。
步骤704:所述网络配置管理模块确定第一网络不可用。
其中,当上述步骤701和步骤702存在时,所述网络配置管理模块根据所述丢包数和所述统计时间,确定丢包率大于设定丢包率阈值时,确定所述第一网络当前不可用。
或者,当上述步骤703存在时,所述网络配置管理模块根据所述网络拥塞信息,确定网络拥塞度大于设定阈值时,确定所述第一网络当前不可用。
步骤705:所述网络配置管理模块向所述业务网络映射模块发送网络状态变更消息,所述网络状态变更消息包括网络类型和网络可用状态。
步骤706:所述业务网络映射模块确定所述第一网络对应的目标子业务。
所述业务网络映射模块根据子业务与选定网络的对应关系,判断是否有子业务承载在所述第一网络上,若存在,则重新触发网络配置流程。
步骤707:所述业务网络映射模块更新所述目标子业务对应的网络配置信息。
步骤708:所述业务网络映射模块向所述网络配置管理模块发送所述目标子业务对应的网络配置信息。
步骤709:所述网络映射模块发起基于所述目标子业务的网络配置更新流程。
具体的,对子业务的网络配置过程可以参见上述实施例,此处不再详细描述。
需要说明的是,上述示例中,SCEF执行的操作也可以由PCRF执行,具体的本申请不再详细介绍。
需要说明的是,上述图3-图7所示的示例中示出的网络配置管理模块和业务网络映射模块部署于所述第一装置中,仅仅是一种可能的示例。在具体实现时,所述网络配置管理模块和所述业务网络映射模块可以分别部署于两个不同的装置中,共同实现所述第一装置实现的功能。具体的,本申请实施例不再列出。
基于以上实施例,本申请实施例还提供了一种实现网络配置的装置,该实现网络配置的装置应用于如图1所示的系统,用于实现本申请实施例提供的网络配置方法中第一装置的功能。参阅图8所示,该实现网络配置的装置800包括:接收单元801和处理单元802,其中:
所述接收单元801,用于从终端设备接收业务请求,所述业务请求中包括业务的标识,其中,所述业务包括至少一个子业务;
所述处理单元802,用于获取所述终端设备支持的网络类型,根据所述终端设备支持的网络类型,确定每个子业务的选定网络,并基于所述每个子业务的选定网络发起网络配置流程。
在一种可选的实施方式中,所述处理单元802,在根据所述终端设备支持的网络类型,确定每个子业务的选定网络时,具体用于:根据所述业务的标识获取所述业务对应的所述至少一个子业务,并确定所述每个子业务对应的至少一个待选网络;根据所述终端设备支持的网络类型,在所述每个子业务对应的至少一个待选网络中确定所述每个子业务的选定网络。
在一种可选的实施方式中,所述处理单元802,在所述接收单元801从所述终端设备接收所述业务请求之前,还用于:获取所述每个子业务的业务需求;根据所述每个子业务 的业务需求和所述第一装置所在系统可用的网络类型确定所述每个子业务对应的至少一个待选网络。
在一种可选的实施方式中,所述接收单元801还用于从第二装置接收网络状态信息,其中,所述第二装置发送的网络状态信息为所述第一装置800所在系统所部署网络的网络状态信息;所述处理单元802还用于根据所述网络状态信息,确定实现网络配置的装置800所在系统可用的网络类型。其中可选的,所述第二装置为AVP业务场景中的SCEF、PRCF或者RSU。
在一种可选的实施方式中,所述实现网络配置的装置800还包括发送单元,用于发送数据,当所述业务的第一子业务的选定网络为PC5网络时,所述处理单元802,在发起网络配置流程时,具体用于:为所述终端设备分配目的层二地址;通过所述发送单元向所述终端设备和第二装置发送网络配置信息,所述网络配置信息中包括所述目的层二地址和所述终端设备的标识。其中,可选的,所述第二装置为AVP业务场景中的RSU。
在一种可选的实施方式中,所述接收单元801还用于从第三装置接收第一业务消息,所述第一业务消息中包括所述终端设备的标识和所述第一子业务的标识;所述处理单元802,还用于根据所述终端设备的标识和所述第一子业务的标识确定所述目的层二地址;所述实现网络配置的装置800还包括发送单元,用于通过所述第二装置向所述终端设备发送所述第二业务消息,所述第二业务消息中包括所述目的层二地址,所述目的层二地址用于指示所述终端设备接收并处理所述第二业务消息。其中,可选的,所述第二装置为AVP业务场景中的RSU;所述第三装置为AVP业务场景中的AVP应用所部署的装置。
在一种可选的实施方式中,所述实现网络配置的装置800还包括发送单元,用于发送数据;当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述处理单元802在发起网络配置流程时,具体用于:通过所述发送单元向第二装置发送网络配置信息,所述网络配置信息中包括所述终端设备的IP地址和所述第二子业务的业务需求;通过所述接收单元801从所述第二装置接收网络配置成功消息。
在一种可选的实施方式中,所述实现网络配置的装置800还包括发送单元,用于发送数据;当所述业务的第三子业务的选定网络为5G-Uu网络时,所述处理单元802,在发起网络配置流程时,具体用于:根据所述第三子业务的业务需求确定所述第三子业务的网络切片;通过所述发送单元向所述终端设备发送网络配置信息,所述网络配置信息中包括所述业务的标识、所述终端设备的IP地址、所述第三子业务的网络切片的标识。其中,可选的,所述第二装置为AVP业务场景中的SCEF或PCRF。
在一种可选的实施方式中,所述接收单元801,还用于从第三装置接收第三业务消息,所述第三业务消息中包括所述终端设备的标识和第四子业务的标识;所述第四子业务为所述第二子业务或者所述第三子业务;所述处理单元802,还用于获取所述终端设备的标识和所述第四子业务的标识对应的目的IP地址;所述发送单元还用于通过所述目的IP地址向所述终端设备发送所述第三业务消息。其中,可选的,所述第三装置为AVP业务场景中的AVP应用所部署的装置。
在一种可选的实施方式中,所述处理单元802,还用于获取第一信息,所述第一信息用于指示第一网络的网络状态;根据所述第一信息,确定所述第一网络当前不可用;确定所述第一网络对应的目标子业务,并更新所述目标子业务对应的网络配置信息,发起网络配置更新流程。
在一种可选的实施方式中,所述处理单元802在获取所述第一信息时,具体用于:通过所述接收单元801从所述终端设备接收数据包统计信息,所述数据包统计信息中包括丢包数和统计时间;或者,通过所述接收单元801从第二装置接收网络拥塞信息。其中,可选的,所述第二装置为AVP业务场景中的SCEF或PCRF。
在一种可选的实施方式中,所述处理单元802,在根据所述第一信息,确定第一网络当前不可用时,具体用于:根据所述丢包数和所述统计时间,确定丢包率大于设定丢包率阈值;确定所述第一网络当前不可用;或者,根据所述网络拥塞信息,确定网络拥塞度大于设定阈值;确定所述第一网络当前不可用。
在一种可选的实施方式中,所述实现网络配置的装置800部署于AVP业务场景中的AVP服务器中。
采用本申请实施例提供的实现网络配置的装置,从终端设备接收业务请求,所述业务请求中包括业务的标识和所述终端设备支持的网络类型;其中,所述业务包括至少一个子业务;所述实现网络配置的装置根据所述终端设备支持的网络类型,确定每个子业务的选定网络,并基于所述每个子业务对应的网络发起网络配置流程。这样,可以通过多网络协同互补满足一个业务的多个子业务的差异网络需求,保证业务可靠连续性,从而满足车联网业务的业务需求。
基于以上实施例,本申请实施例还提供了一种终端设备,该终端设备应用于如图1所示的系统,用于实现本申请实施例提供的网络配置方法。参阅图9所示,该终端设备900包括:发送单元901和接收单元902,其中:
所述发送单元901,用于向第一装置发送业务请求,所述业务请求中包括业务的标识;其中,所述业务包括至少一个子业务;
所述接收单元902,用于从所述第一装置接收网络配置信息,所述网络配置信息用于配置所述至少一个子业务的选定网络。
在一种可选的实施方式中,当所述业务的至第一子业务的选定网络为PC5网络时,所述网络配置信息中包括所述第一装置为所述终端设备分配的目的层二地址和所述终端设备的标识。
在一种可选的实施方式中,所述接收单元902,还用于通过第二装置接收所述第一装置发送的第二业务消息,所述第二业务消息中包括所述目的层二地址;所述终端设备还包括处理单元,用于判断所述目的层二地址为自身的目的层二地址,并处理所述第二业务消息。其中,可选的,所述第二装置为AVP业务场景中的RSU。
在一种可选的实施方式中,当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述接收单元902,在从所述第一装置接收网络配置信息时,具体用于:通过第二装置接收所述第一装置发送的网络配置信息,所述网络配置信息中所述终端设备的IP地址和所述第二子业务的业务需求。其中可选的,所述第二装置为AVP业务场景中的SCEF或PCRF。
在一种可选的实施方式中,当所述业务的第三子业务的选定网络为5G-Uu网络时,所述网络配置信息中包括所述业务的标识、所述终端设备的IP地址、所述第三子业务的网络切片的标识。
在一种可选的实施方式中,所述接收单元902,还用于通过所述IP地址从所述第一装置接收第三业务消息。
在一种可选的实施方式中,所述终端设备900还包括处理单元,用于根据接收数据包 确定数据包统计信息,所述数据包统计信息中包括丢包数和统计时间;所述发送单元901,还用于向所述第一装置发送数据包统计信息。
在一个具体的示例中,所述业务请求中还包括所述终端设备支持的网络类型。
在另一个具体的示例中,所述发送单元901在向所述第一装置发送业务请求之前,还用于:向所述第一装置发送注册请求,所述注册请求中包括所述终端设备支持的网络类型。
在一种可选的实施方式中,所述第一装置部署于AVP业务场景中的AVP服务器中。
采用本申请实施例提供的终端设备,向第一装置发送业务请求,所述业务请求中包括业务的标识和所述终端设备支持的网络类型;其中,所述业务包括至少一个子业务;所述终端设备从所述第一装置接收网络配置信息,所述网络配置信息用于配置所述至少一个子业务的选定网络。这样,可以通过多网络协同互补满足一个业务的多个子业务的差异网络需求,保证业务可靠连续性,从而满足车联网业务的业务需求。
基于以上实施例,本申请实施例还提供了一种实现网络配置的装置,该实现网络配置的装置应用于如图1所示的系统,用于实现本申请实施例提供的网络配置方法中第二装置的功能。参阅图10所示,该实现网络配置的装置1000包括:处理单元1001和发送单元1002,其中:
所述处理单元1001,用于确定监控的第一装置所在系统所部署网络的网络状态;其中可选的,所述实现网络配置的装置为AVP业务场景中的SCEF、PCRF或者RSU;
所述发送单元1002,用于向所述第一装置发送网络状态信息,其中,所述网络状态信息为所述第一装置所在系统所部署网络的网络状态信息。
在一种可选的实施方式中,当所述业务的第一子业务的选定网络为PC5网络时,所述实现网络配置的装置1000还包括接收单元,用于:从所述第一装置接收网络配置信息,所述配置信息中包括所述第一装置为终端设备分配的目的层二地址和所述终端设备的标识。其中,所述实现网络配置的装置为AVP业务场景中的RSU。
在一种可选的实施方式中,所述接收单元还用于从所述第一装置接收第二业务消息,所述第二业务消息中包括所述目的层二地址;所述发送单元1002还用于向所述终端设备发送所述第二业务消息,所述目的层二地址用于指示所述终端设备接收并处理所述第二业务消息。其中,所述实现网络配置的装置为AVP业务场景中的RSU。
在一种可选的实施方式中,当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述实现网络配置的装置1000还包括接收单元,用于:从所述第一装置接收网络配置信息,所述网络配置信息中包括所述终端设备的IP地址和所述第二子业务的业务需求;所述发送单元1002还用于向所述第一装置发送网络配置成功消息。其中可选的,所述实现网络配置的装置为AVP业务场景中的SCEF或PCRF。
在一种可选的实施方式中,所述发送单元1002还用于向所述第一装置发送网络拥塞信息。其中可选的,所述实现网络配置的装置为AVP业务场景中的SCEF或PCRF。
在一种可选的实施方式中,所述第一装置部署于AVP业务场景中的AVP服务器中。
采用本申请实施例提供的实现网络配置的装置,确定监控的网络的网络状态,向第一装置发送网络状态信息,其中,所述网络状态信息为所述第一装置所在系统所部署网络的网络状态信息。这样,可以后续使第一装置基于网络状态去执行后续的网络配置流程,这样可以通过多网络协同互补满足一个业务的多个子业务的差异网络需求,保证业务可靠连续性,从而满足车联网业务的业务需求。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种实现网络配置的装置,所述实现网络配置的装置应用于如图1所示的系统,用于执行上述实施例中第一装置的功能。参阅图11所示,所述实现网络配置的装置1100可以包括:通信接口1101、处理器1102和存储器1103。
其中,所述处理器1102可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合等等。所述处理器1102还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。所述处理器1102在实现上述功能时,可以通过硬件实现,当然也可以通过硬件执行相应的软件实现。
所述通信接口1101和所述处理器1102之间相互连接。可选的,所述通信接口1101和所述处理器1102通过总线1104相互连接;所述总线1104可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
具体的,所述实现网络配置的装置1100在实现上述实施例中第一装置的操作时,可以包括:
所述通信接口1101,用于收发数据,以及与系统中的其他设备或装置进行通信交互;
所述处理器1102,用于执行所述存储器1103中存储的程序,当所述程序被执行时,控制所述通信接口1101从终端设备接收业务请求,所述业务请求中包括业务的标识,其中,所述业务包括至少一个子业务;获取所述终端设备支持的网络类型,根据所述终端设备支持的网络类型,确定每个子业务的选定网络,并基于所述每个子业务的选定网络发起网络配置流程。
在一种可选的实施方式中,所述处理器1102,在根据所述终端设备支持的网络类型,确定每个子业务的选定网络时,具体用于:根据所述业务的标识获取所述业务对应的所述至少一个子业务,并确定所述每个子业务对应的至少一个待选网络;根据所述终端设备支持的网络类型,在所述每个子业务对应的至少一个待选网络中确定所述每个子业务的选定 网络。
在一种可选的实施方式中,所述处理器1102,在控制所述通信接口1101从所述终端设备接收所述业务请求之前,还用于:获取所述每个子业务的业务需求;根据所述每个子业务的业务需求和所述实现网络配置的装置所在系统可用的网络类型确定所述每个子业务对应的至少一个待选网络。
在一种可选的实施方式中,所述处理器1102还用于:控制所述通信接口1101从第二装置接收网络状态信息,其中,所述第二装置发送的网络状态信息为所述实现网络配置的装置所在系统所部署网络的网络状态信息;根据所述网络状态信息,确定实现网络配置的装置所在系统可用的网络类型。其中可选的,所述第二装置为AVP业务场景中的SCEF、PRCF或者RSU。
在一种可选的实施方式中,当所述业务的第一子业务的选定网络为PC5网络时,所述处理器1102在发起网络配置流程时,具体用于:为所述终端设备分配目的层二地址;控制所述通信接口1101向所述终端设备和第二装置发送网络配置信息,所述网络配置信息中包括所述目的层二地址和所述终端设备的标识。其中,可选的,所述第二装置为AVP业务场景中的RSU。
在一种可选的实施方式中,所述处理器1102,还用于:控制所述通信接口1101从第三装置接收第一业务消息,所述第一业务消息中包括所述终端设备的标识和所述第一子业务的标识;根据所述终端设备的标识和所述第一子业务的标识确定所述目的层二地址;控制所述通信接口1101通过所述第二装置向所述终端设备发送所述第二业务消息,所述第二业务消息中包括所述目的层二地址,所述目的层二地址用于指示所述终端设备接收并处理所述第二业务消息。其中,可选的,所述第二装置为AVP业务场景中的RSU;所述第三装置为AVP业务场景中的AVP应用所部署的装置。
在一种可选的实施方式中,当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述处理器1102在发起网络配置流程时,具体用于:控制所述通信接口1101向第二装置发送网络配置信息,所述网络配置信息中包括所述终端设备的IP地址和所述第二子业务的业务需求;控制所述通信接口1101从所述第二装置接收网络配置成功消息。
在一种可选的实施方式中,当所述业务的第三子业务的选定网络为5G-Uu网络时,所述处理器1102,在发起网络配置流程时,具体用于:根据所述第三子业务的业务需求确定所述第三子业务的网络切片;控制所述通信接口1101向所述终端设备发送网络配置信息,所述网络配置信息中包括所述业务的标识、所述终端设备的IP地址、所述第三子业务的网络切片的标识。其中,可选的,所述第二装置为AVP业务场景中的SCEF或PCRF。
在一种可选的实施方式中,所述处理器1102还用于:控制所述通信接口1101从第三装置接收第三业务消息,所述第三业务消息中包括所述终端设备的标识和第四子业务的标识;所述第四子业务为所述第二子业务或者所述第三子业务;获取所述终端设备的标识和所述第四子业务的标识对应的目的IP地址;控制所述通信接口1101通过所述目的IP地址向所述终端设备发送所述第三业务消息。其中,可选的,所述第三装置为AVP业务场景中的AVP应用所部署的装置。
在一种可选的实施方式中,所述处理器1102,还用于获取第一信息,所述第一信息用于指示第一网络的网络状态;根据所述第一信息,确定所述第一网络当前不可用;确定所述第一网络对应的目标子业务,并更新所述目标子业务对应的网络配置信息,发起网络配 置更新流程。
在一种可选的实施方式中,所述处理器1102在获取所述第一信息时,具体用于:控制所述通信接口1101从所述终端设备接收数据包统计信息,所述数据包统计信息中包括丢包数和统计时间;或者控制所述通信接口1101从第二装置接收网络拥塞信息。其中,可选的,所述第二装置为AVP业务场景中的SCEF或PCRF。
在一种可选的实施方式中,所述处理器1102,在根据所述第一信息,确定第一网络当前不可用时,具体用于:根据所述丢包数和所述统计时间,确定丢包率大于设定丢包率阈值;确定所述第一网络当前不可用;或者,根据所述网络拥塞信息,确定网络拥塞度大于设定阈值;确定所述第一网络当前不可用。
在一种可选的实施方式中,所述实现网络配置的装置1100部署于AVP业务场景中的AVP服务器中。
所述存储器1103,与所述处理器1102耦合,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器1103可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。所述处理器1102执行所述存储器1103所存放的应用程序,实现上述功能,从而实现网络配置方法。
在一种实施方式中,所述存储器1103还可以存储终端设备的标识、子业务的标识和子业务的待选网络的对应关系等等。
采用本申请实施例提供的实现网络配置的装置,从终端设备接收业务请求,所述业务请求中包括业务的标识和所述终端设备支持的网络类型;其中,所述业务包括至少一个子业务;所述实现网络配置的装置根据所述终端设备支持的网络类型,确定每个子业务的选定网络,并基于所述每个子业务的选定网络发起网络配置流程。这样,可以通过多网络协同互补满足一个业务的多个子业务的差异网络需求,保证业务可靠连续性,从而满足车联网业务的业务需求。
基于以上实施例,本申请实施例还提供了一种终端设备,该终端设备应用于如图1所示的系统。参阅图12所示,所述终端设备1200可以包括:收发器1201、处理器1202和存储器1203。
其中,所述处理器1202可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合等等。所述处理器1202还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。所述处理器1202在实现上述功能时,可以通过硬件实现,当然也可以通过硬件执行相应的软件实现。
所述收发器1201和所述处理器1202之间相互连接。可选的,所述收发器1201和所述处理器1202通过总线1204相互连接;所述总线1204可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
具体的,所述终端设备1200在实现上述实施例中终端设备的操作时,可以包括:
所述收发器1201,用于收发数据,以及与系统中的其他设备或装置进行通信交互;
所述处理器1202,用于执行所述存储器中存储的程序,当所述程序被执行时,控制所述收发器1201向第一装置发送业务请求,所述业务请求中包括业务的标识;其中,所述业务包括至少一个子业务;
控制所述收发器1201从所述第一装置接收网络配置信息,所述网络配置信息用于配置所述至少一个子业务的选定网络。
在一种可选的实施方式中,当所述业务的第一子业务的选定网络为PC5网络时,所述网络配置信息中包括所述第一装置为所述终端设备分配的目的层二地址和所述终端设备的标识。
在一种可选的实施方式中,所述处理器1202,还用于控制所述收发器1201通过第二装置接收所述第一装置发送的第二业务消息,所述第二业务消息中包括所述目的层二地址;判断所述目的层二地址为自身的目的层二地址,并处理所述第二业务消息。其中,可选的,所述第二装置为AVP业务场景中的RSU。
在一种可选的实施方式中,当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述处理器1202,在控制所述收发器1201从所述第一装置接收网络配置信息时,具体用于:控制所述收发器1201通过第二装置接收所述第一装置发送的网络配置信息,所述网络配置信息中所述终端设备的IP地址和所述第二子业务的业务需求。其中可选的,所述第二装置为AVP业务场景中的SCEF或PCRF。
在一种可选的实施方式中,当所述业务的第三子业务的选定网络为5G-Uu网络时,所述网络配置信息中包括所述业务的标识、所述终端设备的IP地址、所述每个子业务对应的网络切片选择信息。
在一种可选的实施方式中,所述处理器1202还用于控制所述收发器1201通过所述IP地址从所述第一装置接收第三业务消息。
在一种可选的实施方式中,所述处理器1202,还用于根据接收数据包确定数据包统计信息,所述数据包统计信息中包括丢包数和统计时间;控制所述收发器1201向所述第一装置发送数据包统计信息。
在一种具体的示例中,所述业务请求中还包括所述终端设备支持的网络类型。
在另一种具体的示例中,所述处理器1202在控制所述收发器1201向所述第一装置发送业务请求之前,还用于:控制所述收发器1201向所述第一装置发送注册请求,所述注册请求中包括所述终端设备支持的网络类型。
在一种可选的实施方式中,所述第一装置部署于AVP业务场景中的AVP服务器中。
所述存储器1203,与所述处理器1202耦合,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器1203可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。所述处理器1202执行所述存储器1203所存放的应用程序,实现上述功能,从而实现网络配置方法。
采用本申请实施例提供的终端设备,向第一装置发送业务请求,所述业务请求中包括业务的标识和所述终端设备支持的网络类型;其中,所述业务包括至少一个子业务;所述终端设备从所述第一装置接收网络配置信息,所述网络配置信息用于配置所述至少一个子业务的选定网络。这样,可以通过多网络协同互补满足一个业务的多个子业务的差异网络需求,保证业务可靠连续性,从而满足车联网业务的业务需求。
基于以上实施例,本申请实施例还提供了一种实现网络配置的装置,该实现网络配置的装置应用于如图1所示的系统,用于执行上述实施例中第二装置的操作。参阅图13所示,该实现网络配置的装置1300可以包括:通信接口1301、处理器1302和存储器1303。
其中,所述处理器1302可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合等等。所述处理器1302还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。所述处理器1302在实现上述功能时,可以通过硬件实现,当然也可以通过硬件执行相应的软件实现。
所述通信接口1301和所述处理器1302之间相互连接。可选的,所述通信接口1301和所述处理器1302通过总线1304相互连接;所述总线1304可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
具体的,所述实现网络配置的装置1300在实现上述实施例中实现网络配置的装置的操作时,可以包括:
所述通信接口1301,用于收发数据,以及与系统中的其他设备或装置进行通信交互;
所述处理器1302,用于执行所述存储器中存储的程序,当所述程序被执行时,确定监控的第一装置所在系统所部署网络的网络状态;其中可选的,所述实现网络配置的装置为AVP业务场景中的SCEF、PCRF或者RSU;
控制所述通信接口1301向第一装置发送网络状态信息,其中,所述网络状态信息为所述第一装置所在系统所部署网络的网络状态信息。
在一种可选的实施方式中,当所述业务的第一子业务的选定网络为PC5网络时,所述处理器1302还用于:控制所述通信接口1301从所述第一装置接收网络配置信息,所述配置信息中包括所述第一装置为终端设备分配的目的层二地址和所述终端设备的标识。其中,所述实现网络配置的装置为AVP业务场景中的RSU。
在一种可选的实施方式中,所述处理器1302还用于:控制所述通信接口1301从所述第一装置接收第二业务消息,所述第二业务消息中包括所述目的层二地址;控制所述通信接口1301向所述终端设备发送所述第二业务消息,所述目的层二地址用于指示所述终端设备接收并处理所述第二业务消息。其中,所述实现网络配置的装置为AVP业务场景中的RSU。
在一种可选的实施方式中,当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述处理器1302还用于:控制所述通信接口1301从所述第一装置接收网络配置信息,所述网络配置信息中包括所述终端设备的IP地址和所述第二子业务的业务需求;控制所述通信接口1301向所述第一装置发送网络配置成功消息。其中可选的,所述实现网络配置的装置为AVP业务场景中的SCEF或PCRF。
在一种可选的实施方式中,所述处理器1302还用于控制所述通信接口1301向所述第 一装置发送网络拥塞信息。其中可选的,所述实现网络配置的装置为AVP业务场景中的SCEF或PCRF。
所述存储器1303,与所述处理器1302耦合,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器1303可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。所述处理器1302执行所述存储器1303所存放的应用程序,实现上述功能,从而实现网络配置方法。
在一种可选的实施方式中,所述第一装置部署于AVP业务场景中的AVP服务器中。
采用本申请实施例提供的实现网络配置的装置,确定监控的第一装置所在系统所部署网络的网络状态,向第一装置发送网络状态信息,其中,所述网络状态信息为所述第一装置所在系统所部署网络的网络状态信息。这样,可以后续使第一装置基于网络状态去执行后续的网络配置流程,这样可以通过多网络协同互补满足一个业务的多个子业务的差异网络需求,保证业务可靠连续性,从而满足车联网业务的业务需求。
综上所述,通过本申请实施例提供一种网络配置方法及装置,在该方法中,第一装置从终端设备接收业务请求,所述业务请求中包括业务的标识和所述终端设备支持的网络类型;其中,所述业务包括至少一个子业务;所述第一装置根据所述终端设备支持的网络类型,确定每个子业务的选定网络,并基于所述每个子业务的选定网络发起网络配置流程。这样,可以通过多网络协同互补满足一个业务的多个子业务的差异网络需求,保证业务可靠连续性,从而满足车联网业务的业务需求。
基于以上实施例,本申请实施例还提供了一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述任意一个或多个实施例提供的方法。所述计算机存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种芯片,该芯片包括处理器,用于实现上述任意一个或多个实施例所涉及的功能,例如获取或处理上述方法中所涉及的信息或者消息。可选地,所述芯片还包括存储器,所述存储器,用于处理器所执行必要的程序指令和数据。该芯片,可以由芯片构成,也可以包含芯片和其他分立器件。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (35)

  1. 一种网络配置方法,其特征在于,包括:
    第一装置从终端设备接收业务请求,所述业务请求中包括业务的标识,其中,所述业务包括至少一个子业务;
    所述第一装置获取所述终端设备支持的网络类型;
    所述第一装置根据所述终端设备支持的网络类型,确定每个子业务的选定网络,并基于所述每个子业务的选定网络发起网络配置流程。
  2. 如权利要求1所述的方法,其特征在于,所述第一装置根据所述终端设备支持的网络类型,确定每个子业务的选定网络,包括:
    所述第一装置根据所述业务的标识获取所述业务对应的所述至少一个子业务,并确定所述每个子业务对应的至少一个待选网络;
    所述第一装置根据所述终端设备支持的网络类型,在所述每个子业务对应的至少一个待选网络中确定所述每个子业务的选定网络。
  3. 如权利要求2所述的方法,其特征在于,所述第一装置从所述终端设备接收所述业务请求之前,所述方法还包括:
    所述第一装置获取所述每个子业务的业务需求;
    所述第一装置根据所述每个子业务的业务需求和所述第一装置所在系统可用的网络类型确定所述每个子业务对应的至少一个待选网络。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一装置从第二装置接收网络状态信息,其中,所述第二装置发送的网络状态信息为所述第一装置所在系统所部署网络的网络状态信息;
    所述第一装置根据所述网络状态信息,确定所述第一装置所在系统可用的网络类型。
  5. 如权利要求1-4任一项所述的方法,其特征在于,当所述业务的第一子业务的选定网络为PC5网络时,所述第一装置发起网络配置流程,包括:
    所述第一装置为所述终端设备分配目的层二地址;
    所述第一装置向所述终端设备和第二装置发送网络配置信息,所述网络配置信息中包括所述目的层二地址和所述终端设备的标识。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一装置从第三装置接收第一业务消息,所述第一业务消息中包括所述终端设备的标识和所述第一子业务的标识;
    所述第一装置根据所述终端设备的标识和所述第一子业务的标识确定所述目的层二地址;
    所述第一装置通过所述第二装置向所述终端设备发送所述第二业务消息,所述第二业务消息中包括所述目的层二地址,所述目的层二地址用于指示所述终端设备接收并处理所述第二业务消息。
  7. 如权利要求1-4任一项所述的方法,其特征在于,当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述第一装置发起网络配置流程,包括:
    所述第一装置向第二装置发送网络配置信息,所述网络配置信息中包括所述终端设备的IP地址和所述第二子业务的业务需求;
    所述第一装置从所述第二装置接收网络配置成功消息。
  8. 如权利要求1-4任一项所述的方法,其特征在于,当所述业务的第三子业务的选定网络为5G-Uu网络时,所述第一装置发起网络配置流程,包括:
    所述第一装置根据所述第三子业务的业务需求确定所述第三子业务的网络切片;
    所述第一装置向所述终端设备发送网络配置信息,所述网络配置信息中包括所述业务的标识、所述终端设备的IP地址、所述第三子业务的网络切片的标识。
  9. 如权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述第一装置从第三装置接收第三业务消息,所述第三业务消息中包括所述终端设备的标识和第四子业务的标识;所述第四子业务为所述第二子业务或者所述第三子业务;
    所述第一装置获取所述终端设备的标识和所述第四子业务的标识对应的目的IP地址;
    所述第一装置通过所述目的IP地址向所述终端设备发送所述第三业务消息。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一装置获取第一信息,所述第一信息用于指示第一网络的网络状态;
    所述第一装置根据所述第一信息,确定所述第一网络当前不可用;
    所述第一装置确定所述第一网络对应的目标子业务,并更新所述目标子业务对应的网络配置信息,发起网络配置更新流程。
  11. 如权利要求10所述的方法,其特征在于,所述第一装置获取所述第一信息,包括:
    所述第一装置从所述终端设备接收数据包统计信息,所述数据包统计信息中包括丢包数和统计时间;或者
    所述第一装置从第二装置接收网络拥塞信息。
  12. 如权利要求1-11任一项所述的方法,其特征在于,所述第一装置部署于全自动带客泊车AVP业务场景中的AVP服务器中。
  13. 一种网络配置方法,其特征在于,包括:
    终端设备向第一装置发送业务请求,所述业务请求中包括业务的标识;其中,所述业务包括至少一个子业务;
    所述终端设备从所述第一装置接收网络配置信息,所述网络配置信息用于配置所述至少一个子业务的选定网络。
  14. 如权利要求13所述的方法,其特征在于,当所述业务的第一子业务的选定网络为PC5网络时,所述网络配置信息中包括所述第一装置为所述终端设备分配的目的层二地址和所述终端设备的标识。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    所述终端设备通过第二装置接收所述第一装置发送的第二业务消息,所述第二业务消息中包括所述目的层二地址;
    所述终端设备判断所述目的层二地址为自身的目的层二地址,并处理所述第二业务消息。
  16. 如权利要求13所述的方法,其特征在于,当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述终端设备从所述第一装置接收网络配置信息,包括:
    所述终端设备通过第二装置接收所述第一装置发送的网络配置信息,所述网络配置信息中所述终端设备的IP地址和所述第二子业务的业务需求。
  17. 如权利要求13所述的方法,其特征在于,当所述业务的第三子业务的选定网络 为5G-Uu网络时,所述网络配置信息中包括所述业务的标识、所述终端设备的IP地址、所述第三子业务的网络切片的标识。
  18. 如权利要求16或17所述的方法,其特征在于,所述方法还包括:
    所述终端设备通过所述IP地址从所述第一装置接收第三业务消息。
  19. 如权利要求13-18任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据接收数据包确定数据包统计信息,所述数据包统计信息中包括丢包数和统计时间;
    所述终端设备向所述第一装置发送数据包统计信息。
  20. 如权利要求13-19任一项所述的方法,其特征在于,所述业务请求中还包括所述终端设备支持的网络类型。
  21. 如权利要求13-19任一项所述的方法,其特征在于,所述终端设备在向所述第一装置发送业务请求之前,所述方法还包括:
    所述终端设备向所述第一装置发送注册请求,所述注册请求中包括所述终端设备支持的网络类型。
  22. 如权利要求13-21任一项所述的方法,其特征在于,所述第一装置部署于全自动带客泊车AVP业务场景中的AVP服务器中。
  23. 一种网络配置方法,其特征在于,包括:
    第二装置确定监控的第一装置所在系统所部署网络的网络状态;
    所述第二装置向所述第一装置发送网络状态信息,其中,所述网络状态信息为所述第一装置所在系统所部署网络的网络状态信息。
  24. 如权利要求23所述的方法,其特征在于,当所述业务的第一子业务的选定网络为PC5网络时,所述方法还包括:
    所述第二装置从所述第一装置接收网络配置信息,所述配置信息中包括所述第一装置为终端设备分配的目的层二地址和所述终端设备的标识。
  25. 如权利要求24所述的方法,其特征在于,所述方法还包括:
    所述第二装置从所述第一装置接收第二业务消息,所述第二业务消息中包括所述目的层二地址;
    所述第二装置向所述终端设备发送所述第二业务消息,所述目的层二地址用于指示所述终端设备接收并处理所述第二业务消息。
  26. 如权利要求23所述的方法,其特征在于,当所述业务的第二子业务的选定网络为LTE-Uu网络时,所述方法还包括:
    所述第二装置从所述第一装置接收网络配置信息,所述网络配置信息中包括所述终端设备的IP地址和所述第二子业务的业务需求;
    所述第二装置向所述第一装置发送网络配置成功消息。
  27. 如权利要求23或26所述的方法,其特征在于,所述方法还包括:
    所述第二装置向所述第一装置发送网络拥塞信息。
  28. 如权利要求23-27任一项所述的方法,其特征在于,所述第一装置部署于全自动带客泊车AVP业务场景中的AVP服务器中。
  29. 如权利要求23所述的方法,其特征在于,所述第二装置为全自动带客泊车AVP业务场景中的网络开放实体SCEF或者路侧单元RSU。
  30. 如权利要求24或25所述的方法,其特征在于,所述第二装置为全自动带客泊车AVP业务场景中的路侧单元RSU。
  31. 如权利要求26或27所述的方法,其特征在于,所述第二装置为全自动带客泊车AVP业务场景中的网络开放实体SCEF。
  32. 一种实现网络配置的装置,其特征在于,所述实现网络配置的装置包括:通信接口、存储器和处理器;
    所述通信接口用于收发数据;
    所述存储器用于存储程序;
    所述处理器用于执行所述存储器中存储的程序,当所述程序被执行时,所述实现网络配置的装置执行如权利要求1-12任一项所述的方法。
  33. 一种终端设备,其特征在于,所述终端设备包括:收发器、存储器和处理器;
    所述收发器用于收发数据;
    所述存储器用于存储程序;
    所述处理器用于执行所述存储器中存储的程序,当所述程序被执行时,所述终端设备执行如权利要求13-22任一项所述的方法。
  34. 一种实现网络配置的装置,其特征在于,所述实现网络配置的装置包括:通信接口、存储器和处理器;
    所述通信接口用于收发数据;
    所述存储器用于存储程序;
    所述处理器用于执行所述存储器中存储的程序,当所述程序被执行时,所述实现网络配置的装置执行如权利要求23-31任一项所述的方法。
  35. 一种网络配置系统,其特征在于,包括:如权利要求32所述的实现网络配置的装置、如权利要求33所述终端设备和如权利要求34所述的实现网络配置的装置。
PCT/CN2020/083359 2019-04-10 2020-04-03 一种网络配置方法及装置 WO2020207359A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910286762.5 2019-04-10
CN201910286762.5A CN111818547B (zh) 2019-04-10 2019-04-10 一种网络配置方法及装置

Publications (1)

Publication Number Publication Date
WO2020207359A1 true WO2020207359A1 (zh) 2020-10-15

Family

ID=72750944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083359 WO2020207359A1 (zh) 2019-04-10 2020-04-03 一种网络配置方法及装置

Country Status (2)

Country Link
CN (1) CN111818547B (zh)
WO (1) WO2020207359A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769627A (zh) * 2021-02-03 2021-05-07 阿里巴巴集团控股有限公司 网络环境模拟方法、系统及计算机程序产品
US20220015159A1 (en) * 2020-07-10 2022-01-13 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signals in wireless communication system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006130960A1 (en) * 2005-06-06 2006-12-14 Mobidia, Inc. System and method of controlling a mobile device using a network policy
CN101453779A (zh) * 2007-11-30 2009-06-10 中国移动通信集团公司 一种选择接入网络的方法及网络侧装置
CN102209358A (zh) * 2011-06-09 2011-10-05 上海顶竹通讯技术有限公司 一种移动网络以及终端接入业务网络的方法
CN103391597A (zh) * 2012-05-08 2013-11-13 京信通信系统(中国)有限公司 一种多模移动终端的接入控制方法、装置及基站
CN103458482A (zh) * 2013-05-28 2013-12-18 大连理工大学 Vanet中解决rsu接入问题的演化博弈方法
CN107005880A (zh) * 2015-10-19 2017-08-01 华为技术有限公司 通信方法、服务器、路侧单元和节点
CN109391669A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种业务管理的方法、装置及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104080104B (zh) * 2013-03-26 2018-12-07 华为技术有限公司 通信控制方法及用户设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006130960A1 (en) * 2005-06-06 2006-12-14 Mobidia, Inc. System and method of controlling a mobile device using a network policy
CN101453779A (zh) * 2007-11-30 2009-06-10 中国移动通信集团公司 一种选择接入网络的方法及网络侧装置
CN102209358A (zh) * 2011-06-09 2011-10-05 上海顶竹通讯技术有限公司 一种移动网络以及终端接入业务网络的方法
CN103391597A (zh) * 2012-05-08 2013-11-13 京信通信系统(中国)有限公司 一种多模移动终端的接入控制方法、装置及基站
CN103458482A (zh) * 2013-05-28 2013-12-18 大连理工大学 Vanet中解决rsu接入问题的演化博弈方法
CN107005880A (zh) * 2015-10-19 2017-08-01 华为技术有限公司 通信方法、服务器、路侧单元和节点
CN109391669A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种业务管理的方法、装置及存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220015159A1 (en) * 2020-07-10 2022-01-13 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signals in wireless communication system
US11877327B2 (en) * 2020-07-10 2024-01-16 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving connection information in wireless communication system
CN112769627A (zh) * 2021-02-03 2021-05-07 阿里巴巴集团控股有限公司 网络环境模拟方法、系统及计算机程序产品
CN112769627B (zh) * 2021-02-03 2024-03-22 阿里巴巴集团控股有限公司 网络环境模拟方法、系统及计算机程序产品

Also Published As

Publication number Publication date
CN111818547B (zh) 2022-06-24
CN111818547A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
US11063775B2 (en) Efficient and dynamic support of mobile low latency services
US10595233B2 (en) Communication control method, controller, user equipment, and function instance
US11291039B2 (en) Wireless network access control method and apparatus
US11457459B2 (en) Communication mode selection method and apparatus
WO2019061188A1 (en) MOBILE NETWORK INTERACTION REPRESENTATIVE
US11902860B2 (en) Communication method and device
JP2022531225A (ja) 車両と受信デバイスとの間のv2x通信を管理するためのシステムおよび方法
CN106850239B (zh) 本地化信息服务
WO2017113207A1 (zh) 一种业务消息传输方法、第一终端及网络侧设备
US11689956B2 (en) Relocation method and apparatus
WO2020207359A1 (zh) 一种网络配置方法及装置
CN109983736A (zh) 一种nf组件异常的处理方法、设备及系统
EP3445081A1 (en) Flow-based bearer management method, and data transmission method and device
US10764183B2 (en) Data flow transmission method, device, and system
CN108377582B (zh) 删除用户面隧道的方法、网元及系统
US20160197789A1 (en) Application management method and apparatus
US11973848B2 (en) Apparatus, method and computer program
WO2023155618A1 (zh) 一种通信方法及装置
WO2022087808A1 (en) External assisted application mobility in edge computing
WO2022252186A1 (en) Support for localized multimedia broadcast/multicast service in edge computing system
JP5675909B2 (ja) 局所情報サービス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787932

Country of ref document: EP

Kind code of ref document: A1