WO2020206908A1 - 基于PaaS平台的超低功耗土壤近地无线传感系统及使用方法 - Google Patents

基于PaaS平台的超低功耗土壤近地无线传感系统及使用方法 Download PDF

Info

Publication number
WO2020206908A1
WO2020206908A1 PCT/CN2019/102643 CN2019102643W WO2020206908A1 WO 2020206908 A1 WO2020206908 A1 WO 2020206908A1 CN 2019102643 W CN2019102643 W CN 2019102643W WO 2020206908 A1 WO2020206908 A1 WO 2020206908A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
soil
low power
paas platform
ultra
Prior art date
Application number
PCT/CN2019/102643
Other languages
English (en)
French (fr)
Inventor
涂勇辉
唐昊冶
胡文友
孙蝉娟
Original Assignee
中国科学院南京土壤研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院南京土壤研究所 filed Critical 中国科学院南京土壤研究所
Priority to US17/310,590 priority Critical patent/US11635419B2/en
Publication of WO2020206908A1 publication Critical patent/WO2020206908A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to an ultra-low power consumption soil near-ground wireless sensing system based on a PaaS platform and a use method thereof, and belongs to the field of soil monitoring.
  • communication interface methods such as 485 or SDI-12 are used in each sensor node, and the sensor is connected to the data acquisition module through a cable, and the data acquisition module is then connected through a mobile communication network (GPRS or 3G or 4G).
  • GPRS mobile communication network
  • 3G or 4G mobile communication network
  • the senor is first connected to the gateway using common short-distance wireless communication methods such as Zigbee or Bluetooth, WIFI, and then connected to the Internet through mobile communication or directly.
  • This method can reduce network operation to a certain extent. Cost, it is convenient to deploy more sensor nodes, but the application of this combined communication strategy will undoubtedly increase the complexity of the sensor network, which is not conducive to the construction and application deployment of large-scale wireless sensor networks, and the increase of sensor nodes is also limited , The consumption of energy also makes it difficult for battery power supply to support long-term field work.
  • LPWAN low-power wide area network
  • LoRa is generally optimistic about its market. Manufacturers, research institutes and other units rush to research, participate in standard formulation, and set up commercial pilots.
  • This kind of communication technology and sensor equipment is only a simple application combination, and the system integration with the sensor equipment is not really carried out from the bottom.
  • Communication modules are often independent of sensor equipment.
  • the power consumption of communication modules can meet battery power supply.
  • sensor equipment is still based on traditional application design. Power consumption cannot meet battery power supply for a long time. Mains or solar power is still used.
  • Application deployment is troublesome. A lot of maintenance work, the advantages of LoRa technology have not been truly reflected.
  • Self-built sensor systems based on private clouds also face high design, installation, deployment, and upgrade costs, and cannot adapt to more and more sensor connection requirements, as well as multi-application-oriented data and equipment management requirements.
  • the present invention provides an ultra-low power soil proximity wireless sensing system based on a PaaS platform and a method of use, so that the sensor node has ultra-low power consumption and satisfies a single battery
  • the secondary power supply maintains the nodes to work for a long time; integrates LoRa communication technology to build a node network with ultra-low power consumption and long-distance transmission, and fully utilize the economic value of existing sensors.
  • the ultra-low power soil proximity wireless sensing system based on the PaaS platform of the present invention includes several sensors installed in the soil.
  • the sensor is equipped with a signal transceiver module through which the signal transceiver module passes
  • the LoRa wireless communication sends the signal to the LoRaWan gateway, which is connected to the PaaS platform and the user group in turn;
  • the sensors include soil moisture sensors, soil salinity sensors, and rainfall sensors.
  • the real-time data of the rainfall sensor is used as the soil moisture sensor to calculate the sampling period T Parameters.
  • the senor is connected to a ternary lithium battery through a boosting device, and the ternary lithium battery is connected to a signal transceiver module through a voltage reducing device, and a controller is connected between the sensor and the signal transceiver module.
  • the sampling period of the soil moisture sensor and the soil salinity sensor are consistent, and the sampling period of the soil moisture sensor
  • T(n) is the nth sampling period of the soil moisture sensor
  • ⁇ (n) is the value of the soil moisture content collected by the sensor
  • is the maximum allowable deviation of the two data before and after the data integrity is maintained
  • R is the precipitation level
  • E 0 is an empirical parameter, where R is the real-time weather forecast data, and R is obtained from the rainfall sensor measured by the rainfall sensor.
  • the value of R is 1, 2, 3, 4, 5, 6, 7, increasing in order, indicating no rainfall.
  • the sampling period can be adjusted to an appropriate value in the initial stage according to actual application requirements, such as setting the initial sampling period T0, if artificial irrigation occurs , Can be corrected in real time.
  • a wireless charging coil is provided outside the ternary lithium battery, and the wireless charging coil is sheathed with a casing.
  • a method for using ultra-low power soil proximity wireless sensing system based on PaaS platform includes the following steps:
  • the sensor data is transmitted to the PaaS platform through the LoRa communication module, and the PaaS platform stores the sensor data;
  • the power supply battery is connected with a wireless charging coil to realize wireless charging, so that the node battery can be charged by wireless charging after the battery is exhausted, so that the node can be reused, and the wireless charging design makes the node hardware
  • the sensor node is more compact overall, which satisfies integrated packaging and is more convenient for maintenance.
  • the sensor node is packaged with imported black flame-retardant epoxy resin as a whole, and the package is integrated with a customized stainless steel mold. It has high mechanical strength, heat resistance, waterproof and corrosion resistance, and is truly easy to deploy on a large scale and maintenance-free.
  • the LoRa gateway is designed based on the SX1301 transceiver controller of Semtech, and integrates the LTE DTU function.
  • the LoRa gateway is powered by solar energy. Due to the large coverage radius of the LoRa gateway network and strong connection load capacity (up to 10,000 terminals), a single LoRa gateway can be used for large-scale networking, and a set of solar power systems can meet large-scale networking. Use to make application deployment more convenient.
  • the PaaS cloud computing platform uses the operator-level open Internet of Things platform OneNet to build an efficient, stable and secure application platform between user applications and sensor devices. For equipment, adapt to multiple network environments and common transmission protocols, and sensor terminal equipment can be quickly connected. For user applications, it provides rich API and data distribution capabilities to meet the development needs of various application systems. Use rich chart display components to realize applications that meet the needs of multiple scenarios.
  • the sensor node adopts the TCP transparent transmission communication mode to access the PaaS platform, the user defines the protocol, and completes the analysis of the protocol by uploading the analysis script.
  • the Lua script language is used to write the protocol analysis script, which includes the device_timer_init (dev) function for periodically issuing data tasks, and the device_data_analyze for analyzing device upload data.
  • 12V DC power supply is generally used, and the node MCU, flash chip, RS485 transceiver and other chips use 3.3V power supply. Therefore, in the circuit hardware structure, the battery voltage is boosted to 12V to supply power for the sensor.
  • the linear regulator outputs a stable 3.3V to power the chip, and the node hardware system realizes a single battery global power supply, which simplifies the hardware structure and facilitates application deployment.
  • Each chip of the node is selected based on the consideration of low power consumption.
  • the sensor has a high working voltage and large current, up to 100-250mA, which is the main energy consumption part of the entire node. On the other hand, in practical applications, the soil proximity sensor is parallel There is no need to collect data continuously for a long time.
  • the node hardware is designed to enable and control the sensor 12V power supply. Once the system detects that the sensor is working and effective After outputting the data, immediately control the boost chip to stop working and cut off the sensor power supply to avoid the sensor from continuing to consume power when the node is idle.
  • the sensor node can also receive external commands, and can issue commands from the user application platform to modify the parameter settings of the node.
  • the sensor data collection period can be flexibly changed according to actual needs. This reduces the overall work of the sensor while ensuring the validity and integrity of the data. Time, so as to extend the working time of the sensor battery in the field.
  • LoRa's channel detection technology can also be used to wake up nodes in the air to make the working mode of sensor nodes flexible and changeable to meet the needs of multiple application scenarios. This series of designs will greatly reduce the overall power consumption of the node in practical applications, enabling a single battery to supply power for a long time to maintain the node.
  • CAD LoRa's channel detection technology
  • the rainfall sensor does not need to set a fixed sampling period. When there is rainfall, it is awakened in real time by an external interrupt and enters the sampling working state, and when there is no rainfall, it enters the dormant state.
  • Rainfall sensor sampling tipping bucket rainfall sensor the metering component is a tipping bucket mechanical bistable weighing mechanism, its function is to convert the rainfall depth in mm into a switch signal output.
  • the tipping bucket is injection molded of engineering plastics and divided into two half-cone chambers of equal volume with a middle partition. It is a mechanical bistable structure. When one chamber receives water, the other chamber is in a waiting state.
  • the rain sensor When the volume of the received rainwater reaches a predetermined value of 0.2mm, it overturns due to gravity and is in a waiting state, and the other chamber is in a water receiving state. When the water receiving volume reaches a predetermined value, it overturns by itself and is in a waiting state.
  • a magnetic steel is installed on the side wall of the tipping bucket, which scans from the side of the dry reed tube when the tipping bucket is turned over to make the dry reed tube switch on and off. That is, every time the tipping bucket is overturned, the dry reed pipe is turned on and sends out a switch signal (pulse signal). Therefore, the rain sensor is usually in the sleep state, and the pulse signal of the dry reed tube is used as the input of the external interrupt to wake the rain sensor from the sleep state.
  • the change in soil moisture content should be equal to the difference between the incoming water item and the dewatering item.
  • a positive value represents an increase in soil moisture
  • a negative value represents a decrease.
  • ⁇ W P+I+U-ET-DR-In
  • ⁇ W soil water content change income: P—precipitation, mm, I—irrigation volume, mm, U—upstream capillary water, mm, expenditure: E—soil Surface evaporation, mm, T—evapotranspiration, mm, D—leakage, mm, R—runoff, mm, In—canopy interception, mm
  • soil moisture mainly comes from atmospheric precipitation and artificial irrigation water.
  • the rise of groundwater and the condensation of moisture in the atmosphere are also the source of soil moisture; at the same time, the moisture in the soil is subject to gravity, capillary attraction, water molecular attraction, and soil particle surface
  • the action of various forces such as molecular gravity forms different types of water movement and the transformation of water in different media (evaporation, transpiration), and the migration of water in the soil-plant-atmosphere continuum (SPAC) also affects the final Soil moisture content.
  • is the water content
  • t is the time
  • K is the permeability coefficient
  • is the total soil water potential of the unsaturated soil
  • x, y, z represent the coordinate axis directions. Therefore, under certain soil depth and texture conditions, the most important factors affecting unsaturated soil water content are atmospheric precipitation and artificial irrigation.
  • the collection of soil moisture is a series of discrete sets, and the difference between the two data before and after reflects the change trend of soil moisture. Within a certain range of change, the acquisition period can be prolonged, thereby reducing the number of sensor wake-ups; when it exceeds a certain range, the sampling period needs to be shortened and the number of data acquisitions increased to maintain data integrity.
  • the ultra-low power soil near-ground wireless sensing system based on the PaaS platform of the present invention enables the sensor node to have ultra-low power consumption, and meets the requirements of a single battery single power supply to maintain the node to work for a long time; integrates LoRa communication technology to build a super
  • the node network with low power consumption and long-distance transmission can give full play to the economic value of existing sensors; sensor nodes can receive external commands, and can issue commands from the user application platform to modify node parameter settings, and adjust the sampling period proportionally according to actual applications , While ensuring the validity and integrity of the data, it reduces the total working time of the sensor, thereby prolonging the single field work time of the sensor battery.
  • Figure 1 is a system composition diagram of the present invention.
  • Figure 2 is a schematic diagram of the power supply of the present invention.
  • the ultra-low power soil proximity wireless sensing system based on the PaaS platform of the present invention includes several sensors installed in the soil.
  • the sensor is equipped with a signal transceiver module, and the signal transceiver module passes
  • the LoRa wireless communication sends the signal to the LoRaWan gateway, and the LoRaWan gateway is connected to the PaaS platform and the user group in turn;
  • the sensors include soil near-ground sensors such as soil moisture sensors, soil salinity sensors, and rainfall sensors.
  • the real-time data of the rainfall sensor is used as soil moisture
  • the sensor calculates the parameters of the sampling period T.
  • the senor is connected to a ternary lithium battery through a boost device, and the ternary lithium battery is connected to a signal transceiver module through a voltage drop device, and a controller is connected between the sensor and the signal transceiver module.
  • a wireless charging coil is provided outside the ternary lithium battery, and the wireless charging coil is sheathed with a casing.
  • T(n) is the nth sampling period of the soil moisture sensor
  • ⁇ (n) is the value of the soil moisture content collected by the sensor
  • is the maximum allowable deviation of the two data before and after the data integrity is maintained
  • R is the precipitation level
  • E 0 is an empirical parameter
  • R is obtained from the actual rainfall measured by the rainfall sensor.
  • the value of R is 1, 2, 3, 4, 5, 6, 7, and they are successively increased, indicating no rainfall, light rain, moderate rain, heavy rain, heavy rain , Heavy rain, extra heavy rain, E 0 as an empirical parameter, the sampling period can be adjusted to an appropriate value in the initial stage according to actual application requirements, and if manual irrigation occurs, it can be corrected in real time.
  • the sampling period When the difference between the two data before and after the sensor does not exceed ⁇ , the sampling period will gradually increase according to the formula; when it exceeds ⁇ , the sampling period will be shortened by proportional adjustment. Therefore, while ensuring the validity and integrity of the data, through the proportional adjustment of the sampling period, the total working time of the sensor can be reduced, and the sleep time of the sensor node can be maximized, thereby extending the single field work time of the sensor battery.
  • a method for using ultra-low power soil proximity wireless sensing system based on PaaS platform includes the following steps:
  • the sensor data is transmitted to the PaaS platform through the LoRa communication module, and the PaaS platform stores the sensor data;
  • the sampling period T will always be dynamically adjusted and continuously optimized. While maintaining the integrity of the sampled data, the sensor can obtain the maximum sleep time to meet the requirement of a single battery for a single power supply to maintain the sensor node for a long time.
  • Adopting the above-mentioned method of the present invention has many advantages.
  • 1) The present invention adopts an ultra-low power consumption hardware structure, so that the sensor node has ultra-low power consumption, and satisfies a single battery single power supply to maintain the node to work for a long time; integrate LoRa communication technology , Construct a node network with ultra-low power consumption and long-distance transmission, and give full play to the economic value of existing sensors.
  • the sensor node can receive external commands, and the user application platform can issue commands to modify the parameter settings of the node, and adjust the sampling period according to the actual application requirements according to the formula, which reduces the work of the sensor while ensuring the validity and integrity of the data Total time, thereby extending the time of a single field work of the sensor battery.
  • the soil proximity sensor node of the present invention adopts single battery multi-output global power supply, which simplifies the hardware structure, does not need to be connected to mains or solar energy, avoids the need for cable connection during installation, and realizes true "wireless", which greatly facilitates the field Application deployment; In addition, due to the strong connection load capacity of the LoRa gateway, only a small amount of solar power supply systems need to be installed in large-scale networking.
  • the imported black flame-retardant epoxy resin is used for integrated curing and packaging, which is heat-resistant, waterproof and corrosion-resistant. Really realize the maintenance-free or convenient maintenance in the later period.
  • PaaS platform which can build a soil near-ground wireless sensor system with massive connections, data storage, device management, rule engines, and event warnings, and build an efficient, stable, and safe system between sensor devices and users
  • Application platform The user can also send instructions from the application platform to the network node, so that it has an adjustable cycle and real-time wake-up mode to meet the needs of a variety of application scenarios.

Abstract

一种基于PaaS平台的超低功耗土壤近地无线传感系统及使用方法,该系统包括安装在土壤中的若干个传感器,传感器内设有信号收发模块,信号收发模块通过LoRa无线通信将信号发送到LoRaWan网关,LoRaWan网关依次与PaaS平台和用户群连接;传感器包含土壤水分传感器、土壤盐分传感器、降雨量传感器。该系统的传感器节点具有超低功耗,满足单一电池单次供电维持节点长时间工作;融合LoRa通信技术,构建超低功耗、远距离传输的节点网络,充分发挥现有传感器的经济价值。

Description

基于PaaS平台的超低功耗土壤近地无线传感系统及使用方法 技术领域
本发明涉及基于PaaS平台的超低功耗土壤近地无线传感系统及使用方法,属于土壤监测领域。
背景技术
随着现代传感器技术及通信技术的发展,基于各种土壤近地传感器的数据采集设备及系统被广泛应用于野外土壤各类理化参数的获取。这些设备或系统通常都部署于野外环境,实际应用中面临布线繁琐、运行成本高、安装维护不便的缺点;另外,在区域尺度大规模组网时传感器网络结构复杂,节点的能源消耗大,无法倚靠电池供电支撑长时间的野外工作,不便于远距离海量连接的构建及应用部署。
例如,在一些土壤墒情监测系统中,在各传感器节点采用485或SDI-12等通信接口方式,通过线缆将传感器连接至数据采集模块,数据采集模块再通过移动通信网络(GPRS或3G或4G)实现远距离通信,这种组网方式适合于传感器布置稀疏,监测区域不大的情况,若需要在更广阔的野外空间布置大量的传感器节点,这种组网方式将面临布线繁琐、运行成本高、安装维护不便等缺点。
一些野外田间及大棚实验中,在传感器端先采用Zigbee或蓝牙、WIFI等常见的短距离无线通信方式连接至网关,再通过移动通信或直接连接至互联网,这种方式可以一定程度上降低网络运行成本,方便部署更多传感节点,但这种组合通信策略的应用无疑又会增加传感器网络的复杂程度,不利于大规模无线传感网络的构建及应用部署,而且传感器节点的增加也是有限的,能源的消耗也使电池供电难以支撑长时间的野外工作。近年来,以LoRa和NB-IoT为代表的LPWAN(低功耗广域网)技术发展迅速,与Wi-Fi、蓝牙、ZigBee等现有的无线技术相比,它们具有超低功耗、远距离传输、满足长时间电池(2节AA电池)供电、低成本、覆盖容量大等优点,因而被越来越多的应用于传感器设备,尤其是土壤近地传感器的无线数据通信。
LoRa作为一种新兴的技术,其市场普遍被看好,各厂商、研究院所等单位争先研究,参与标准制定,设商用试点。但现阶段的应用中存在着一些实际问题,这种通信技术与传感器设备仅仅进行简单的应用组合,并未真正从底层与传感器设备进行系统集成。通信模块往往独立于传感器设备,通信模块的功耗可以满足电池供电,但传感器设备仍 然基于传统的应用设计,功耗无法满足长时间电池供电,仍然采用市电或太阳能供电,应用部署麻烦,需要大量的维护工作,LoRa技术的优势没有得到真正体现。基于私有云自行构建的传感器系统也面临设计、安装、部署及升级成本高,无法适应越来越多的传感器连接需求,以及面向多应用的数据、设备的管理需求。
因此,针对现有的大量基于传统应用设计的土壤近地传感器设备,如何应用LoRa技术,真正发挥其超低功耗、远距离传输、满足长时间电池供电、低成本、覆盖容量大等优点,构建具有海量连接、数据存储、设备管理等特性的无线传感器系统,具有重要的现实意义和经济价值。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种基于PaaS平台的超低功耗土壤近地无线传感系统及使用方法,使传感器节点具有超低功耗,满足单一电池单次供电维持节点长时间工作;融合LoRa通信技术,构建超低功耗、远距离传输的节点网络,充分发挥现有传感器的经济价值。
技术方案:为解决上述技术问题,本发明的基于PaaS平台的超低功耗土壤近地无线传感系统,包括安装在土壤中的若干个传感器,传感器内设有信号收发模块,信号收发模块通过LoRa无线通信将信号发送到LoRaWan网关,LoRaWan网关依次与PaaS平台和用户群连接;所述传感器包含土壤水分传感器、土壤盐分传感器、降雨量传感器,降雨量传感器实时数据作为土壤水分传感器计算采样周期T的参数。
作为优选,所述传感器通过升压装置与三元锂电池,三元锂电池通过降压装置与信号收发模块连接,传感器与信号收发模块之间连接有控制器。
作为优选,所述土壤水分传感器与土壤盐分传感器采样周期一致,土壤水分传感器的采样周期
Figure PCTCN2019102643-appb-000001
式中T(n)为土壤水分传感器第n次采样周期,θ(n)为传感器采集的土壤含水量数值,△为保持数据完整性时允许的前后2次数据最大允许偏差,R为降水等级,E 0为经验参数,其中R为实时气象预报数据,通过雨量传感器实测降雨量获取R,R取值为1,2,3,4,5,6,7,依次递增,分别表示无降雨,小雨,中雨,大雨,暴雨,大暴雨,特大暴雨,E 0作为经验参数,根据实际应用需求在初始阶段可将采样周期调节至合适的数值,比如设置初始采样周期T0,若存在人工灌溉的发生,可实时修正。
作为优选,所述三元锂电池外设有无线充电线圈,无线充电线圈外套有壳体。
一种基于PaaS平台的超低功耗土壤近地无线传感系统的使用方法,包括以下步骤:
(1)将土壤水分传感器、土壤盐分传感器、降雨量传感器布设在研究区域,调试整个无线传感系统;
(2)设定最大允许偏差△和传感器初始采样周期T(0);
(3)传感器数据通过LoRa通信模块将数据传输给PaaS平台,PaaS平台对传感器数据进行存储;
(4)计算相邻两次采样数据的偏差M,并依公式计算采样周期,
Figure PCTCN2019102643-appb-000002
Figure PCTCN2019102643-appb-000003
在本发明中,供电电池接有无线充电线圈,可实现无线充电,这样在电池电量消耗完后可通过无线充电方式给节点电池充电,使节点可以重复利用,并且无线充电的设计使得节点硬件上不必预留充电接口或电池可拆卸结构,传感器节点整体上更紧凑,满足一体化封装,维护更方便。传感器节点整体采用进口黑色阻燃环氧树脂封装,封装时采用定制的不锈钢模具一体成型,机械强度高,耐热防水防腐蚀,真正做到易于大规模部署、免维护。
在本发明中,LoRa网关基于Semtech公司的SX1301收发控制器进行设计,集成LTE DTU功能。LoRa网关采用太阳能供电,由于LoRa网关网络覆盖半径大,连接负载能力强(可达10000个终端),单台LoRa网关即可进行大规模组网,一套太阳能供电系统即可满足大规模组网使用,使应用部署更方便。
PaaS云计算平台采用运营商级别的开放物联网平台OneNet,在用户应用和传感器设备之间搭建高效、稳定、安全的应用平台。面向设备,适配多种网络环境和常见传输协议,传感器终端设备可以快速接入。面向用户应用,提供丰富的API和数据分发能力以满足各类应用系统的开发需求。利用丰富的图表展示组件,实现满足多场景需求的应用。本发明中传感器节点采用TCP透传通信方式接入PaaS平台,用户自定义协议,通过上传解析脚本来完成协议的解析。本发明中采用lua脚本语言编写协议解析脚本,包括定时下发数据任务初始化函数device_timer_init(dev),以及对设备上传数据进行解析device_data_analyze。
在本发明中,一般采用12V直流供电,节点MCU、flash芯片、RS485收发器等芯 片采用3.3V供电,因而在电路硬件结构中将电池电压升压至12V为传感器供电,另一方面又通过多路线性稳压器输出稳定的3.3V为芯片供电,节点硬件系统实现了单一电池全局供电,简化了硬件结构,便于应用部署。节点各芯片选取时都基于低功耗考虑,传感器工作电压高,电流大,可达100-250mA,是整个节点的主要能耗部分;而另一方面,在实际应用中,土壤近地传感器并不需要长时间不间断地采集数据,一次数据采集发送周期内,绝大部分时间将处于空闲状态,为此,节点硬件上设计了使能控制传感器12V供电,系统一旦侦测到传感器工作并有效输出数据后,立即控制升压芯片停止工作,切断传感器电源,避免节点空闲时,传感器仍持续不断地耗电。此外,传感器节点还可接收外部命令,从用户应用平台可下发命令修改节点的参数设置,根据实际需要可以灵活改变传感器数据采集周期,在保证数据有效性和完整性的同时减少传感器的工作总时间,从而延长传感器电池野外工作的时间。
另外,还可利用LoRa的信道检测技术(CAD),空中唤醒节点工作,使传感器节点的工作方式灵活多变,满足多种应用场景需求。这一系列设计在实际应用中将大幅降低节点的整体功耗,使单一电池单次供电维持节点长时间工作得以实现。利用LoRa的信道检测技术(CAD),用户端可空中唤醒节点,修改采样周期;或传感器在周期唤醒时修改自身采样周期,并于下一采样周期开始执行。在一个周期内,传感器连续采集3次数据,取算术平均值作为本次采样值,并通过LoRa模块传输出去,之后传感器节点立即进入休眠模式直到下一个采样周期开始自动醒来。若设传感器单次采样时间为△t,则采样周期需满足T>=3△t。
在本发明中,降雨量传感器无需设置固定采样周期,有降雨时通过外部中断实时唤醒,进入采样工作状态,无降雨时则进入休眠状态。降雨量传感器采样翻斗式雨量传感器,计量组件是一个翻斗式机械双稳态秤重机构,其功能是将以mm计的降雨深度转换为开关信号输出。翻斗是用工程塑料注射成型的用中间隔板分成两个等容积的半锥斗室。它是一个机械双稳态结构,当一个斗室接水时,另一个斗室处于等待状态。当所接雨水容积达到预定值0.2mm时,由于重力作用使自己翻倒,处于等待状态,另一个斗室处于接水工作状态。当其接水量达到预定值时,又自己翻倒,处于等待状态。在翻斗侧壁上装有磁钢,它随翻斗翻动时从干式舌簧管旁扫描,使干式舌簧管通断。即翻斗每翻倒一次,干式舌簧管便接通一次送出一个开关信号(脉冲信号)。因此雨量传感器平时处于睡眠状态,干式舌簧管的脉冲信号作为外部中断的输入,将雨量传感器从休眠状 态唤醒。
在本发明中,以土壤水分传感器为例,对于一定面积和厚度的土体,在一段时间内,其土壤含水量的变化应等于其来水项与去水项之差。正值代表土壤含水增加,负值表示减少。△W=P+I+U-ET-D-R-In,△W土壤含水量变化,收入:P—降水量,mm,I—灌溉量mm,U—上行毛管水,mm,支出:E—土面蒸发,mm,T—蒸腾量,mm,D—渗漏量,mm,R—径流量,mm,In—冠层截流量,mm,土壤水分平衡简化式为:△W=P+I-ET-D。
由此可知,土壤水分主要来源于大气降水和人工灌溉水,地下水上升和大气中水汽的凝结也是土壤水分的来源;同时,水分由于在土壤中受到重力、毛管引力、水分子引力、土粒表面分子引力等各种力的作用,形成不同类型的水分运动及不同介质中水分的转化(蒸发、蒸腾),以及水分在土壤-植物-大气连续体(SPAC)中的运移也影响着最终的土壤含水分含量。
根据非饱和土壤水分运动基本方程:
Figure PCTCN2019102643-appb-000004
式中:θ为含水量,t为时间,K为渗透系数,ψ为非饱和土壤的总土水势,x,y,z表示坐标轴方向。因此,在一定土壤深度和质地的条件下,非饱和土壤含水量最主要的影响因素是大气降水和人工灌溉。在土壤水分监测网络中,土壤水分的采集是一系列离散集合,前后2次数据的差值,反应了土壤水分的变化趋势。在一定的变化范围内可以延长采集周期,从而减少传感器唤醒工作次数;当超出一定的变化范围时则需要缩短采样周期,增加数据采集次数以保持数据的完整性。
有益效果:本发明的基于PaaS平台的超低功耗土壤近地无线传感系统,使传感器节点具有超低功耗,满足单一电池单次供电维持节点长时间工作;融合LoRa通信技术,构建超低功耗、远距离传输的节点网络,充分发挥现有传感器的经济价值;传感器节点可接收外部命令,从用户应用平台可下发命令修改节点的参数设置,根据实际应用对采样周期进行比例调节,在保证数据有效性和完整性的同时减少传感器的工作总时间,从而延长传感器电池单次野外工作的时间。
附图说明
图1为本发明的系统组成图。
图2为本发明的电源组成示意图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1和图2所示,本发明的基于PaaS平台的超低功耗土壤近地无线传感系统,包括安装在土壤中的若干个传感器,传感器内设有信号收发模块,信号收发模块通过LoRa无线通信将信号发送到LoRaWan网关,LoRaWan网关依次与PaaS平台和用户群连接;所述传感器包含土壤水分传感器、土壤盐分传感器、降雨量传感器等土壤近地传感器,降雨量传感器实时数据作为土壤水分传感器计算采样周期T的参数。
在本发明中,所述传感器通过升压装置与三元锂电池,三元锂电池通过降压装置与信号收发模块连接,传感器与信号收发模块之间连接有控制器。所述三元锂电池外设有无线充电线圈,无线充电线圈外套有壳体。所述土壤水分传感器的采样周期
Figure PCTCN2019102643-appb-000005
Figure PCTCN2019102643-appb-000006
式中T(n)为土壤水分传感器第n次采样周期,θ(n)为传感器采集的土壤含水量数值,△为保持数据完整性时允许的前后2次数据最大允许偏差,R为降水等级,E 0为经验参数,通过雨量传感器实测降雨量获取R,R取值为1,2,3,4,5,6,7,依次递增,分别表示无降雨,小雨,中雨,大雨,暴雨,大暴雨,特大暴雨,E 0作为经验参数,根据实际应用需求在初始阶段可将采样周期调节至合适的数值,若存在人工灌溉的发生,可实时修正。当传感器前后2次数据的差值不超过△时,依据公式采样周期将逐渐增大;超过△时采样周期将通过比例调节进行缩短。因此,在保证数据有效性和完整性的同时通过采样周期的比例调节,可减少传感器的工作总时间,最大化传感器节点的休眠时间,从而延长传感器电池单次野外工作的时间。
一种基于PaaS平台的超低功耗土壤近地无线传感系统的使用方法,包括以下步骤:
(1)将土壤水分传感器、土壤盐分传感器、降雨量传感器布设在研究区域,调试整个无线传感系统;
(2)设定最大允许偏差△和传感器初始采样周期T(0),在传感器布设初始阶段,设置采样周期不变,即T(0)=T(1),并进行采样,获得前2次采样数据θ(0)和θ(1)。若没有降雨则R=1,依据公式计算第三次采样周期
Figure PCTCN2019102643-appb-000007
令M=|θ(1)-θ(0)|,若M<=△,即前后2次采样数据的变化在允许范围内,依据公式则采样 周期将增大,若M>△,则采样周期将减小,依据经验设置合适的经验值E0以调整采样周期的变化速度;
(3)传感器数据通过LoRa通信模块将数据传输给PaaS平台,PaaS平台对传感器数据进行存储;
(4)计算相邻两次采样数据的偏差M,并依公式计算采样周期,
Figure PCTCN2019102643-appb-000008
Figure PCTCN2019102643-appb-000009
若M<=△,即前后2次采样数据的变化在允许范围内,依据公式则采样周期将增大,若M>△,则采样周期将减小。依据公式可知,采样周期T将始终处于动态调整中并不断优化,在保持采样数据完整性的同时,使传感器获得最大的休眠时间,以满足单一电池单次供电维持传感器节点长时间工作的需求。
采用本发明上述的方法,具有很多优点,例如1)本发明采用超低功耗的硬件结构,使传感器节点具有超低功耗,满足单一电池单次供电维持节点长时间工作;融合LoRa通信技术,构建超低功耗、远距离传输的节点网络,充分发挥现有传感器的经济价值。2)传感器节点可接收外部命令,从用户应用平台可下发命令修改节点的参数设置,根据实际应用需求依据公式对采样周期进行比例调节,在保证数据有效性和完整性的同时减少传感器的工作总时间,从而延长传感器电池单次野外工作的时间。3)本发明的土壤近地传感器节点采用单电池多输出全局供电,简化了硬件结构,无需接市电或太阳能,避免安装时需线缆连接,实现真正“无线”,大大方便了在野外的应用部署;此外,由于LoRa网关的超强连接负载能力,大规模组网时也只需安装极少量的太阳能供电系统。4)节点电池消耗完时,可通过无线充电方式进行充电后重复使用,无需预留充电接口或电池可拆卸结构,采用进口黑色阻燃环氧树脂进行一体化固化封装,耐热防水防腐蚀,真正实现后期免维护或方便维护。5)基于运营商的PaaS平台进行开发,可构建具有海量连接、数据存储、设备管理、规则引擎、事件警告的土壤近地无线传感器系统,在传感器设备和用户之间搭建高效、稳定、安全的应用平台;用户还可从应用平台发送指令至网络节点,使其具有周期可调、可实时唤醒的工作模式,满足多种应用场景需求。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

  1. 一种基于PaaS平台的超低功耗土壤近地无线传感系统,其特征在于:包括安装在土壤中的若干个传感器,传感器内设有信号收发模块,信号收发模块通过LoRa无线通信将信号发送到LoRaWan网关,LoRaWan网关依次与PaaS平台和用户群连接;所述传感器包含土壤水分传感器、土壤盐分传感器和降雨量传感器。
  2. 根据权利要求1所述的基于PaaS平台的超低功耗土壤近地无线传感系统,其特征在于:所述传感器通过升压装置与三元锂电池,三元锂电池通过降压装置与信号收发模块连接,传感器与信号收发模块之间连接有控制器。
  3. 根据权利要求1所述的基于PaaS平台的超低功耗土壤近地无线传感系统,其特征在于:所述土壤水分传感器的采样周期
    Figure PCTCN2019102643-appb-100001
    式中T(n)为土壤水分传感器第n次采样周期,θ(n)为传感器采集的土壤含水量数值,△为保持数据完整性时允许的前后2次数据最大允许偏差,R为降水等级,E 0为经验参数,其中R为实时气象预报数据,通过雨量传感器实测降雨量获取R,R取值为1,2,3,4,5,6,7,依次递增,分别表示无降雨,小雨,中雨,大雨,暴雨,大暴雨,特大暴雨,E 0作为经验参数,根据实际应用需求在初始阶段可将采样周期调节至合适的数值。
  4. 根据权利要求2所述的基于PaaS平台的超低功耗土壤近地无线传感系统,其特征在于:所述三元锂电池外设有无线充电线圈,无线充电线圈外套有壳体。
  5. 根据权利要求2所述的基于PaaS平台的超低功耗土壤近地无线传感系统的使用方法,其特征在于,包括以下步骤:
    (1)将土壤水分传感器、土壤盐分传感器、降雨量传感器布设在研究区域,调试整个无线传感系统;
    (2)设定最大允许偏差△和传感器初始采样周期T(0);
    (3)传感器数据通过LoRa通信模块将数据传输给PaaS平台,PaaS平台对传感器数据进行存储;
    (4)计算相邻两次采样数据的偏差M,并依公式计算采样周期,
    Figure PCTCN2019102643-appb-100002
    Figure PCTCN2019102643-appb-100003
PCT/CN2019/102643 2019-04-12 2019-08-26 基于PaaS平台的超低功耗土壤近地无线传感系统及使用方法 WO2020206908A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/310,590 US11635419B2 (en) 2019-04-12 2019-08-26 PAAS platform-based ultra-low power consumption soil near-ground wireless sensing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910294575.1 2019-04-12
CN201910294575.1A CN109975517B (zh) 2019-04-12 2019-04-12 基于PaaS平台的超低功耗土壤近地无线传感系统

Publications (1)

Publication Number Publication Date
WO2020206908A1 true WO2020206908A1 (zh) 2020-10-15

Family

ID=67084471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102643 WO2020206908A1 (zh) 2019-04-12 2019-08-26 基于PaaS平台的超低功耗土壤近地无线传感系统及使用方法

Country Status (3)

Country Link
US (1) US11635419B2 (zh)
CN (1) CN109975517B (zh)
WO (1) WO2020206908A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112637370A (zh) * 2021-03-10 2021-04-09 武汉慧联无限科技有限公司 一种数据处理方法、装置、设备及存储介质
CN112650970A (zh) * 2020-12-19 2021-04-13 武汉大学 饱和-非饱和水分及溶质运移双重迭代耦合方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975517B (zh) * 2019-04-12 2020-03-27 中国科学院南京土壤研究所 基于PaaS平台的超低功耗土壤近地无线传感系统
CN110995512B (zh) * 2019-12-27 2023-04-28 上海后米物联网技术有限公司 一种工业互联网lora通讯及控制方法
CN111988755A (zh) * 2020-09-01 2020-11-24 中国地质科学院地质力学研究所 一种基于降雨环境的岩溶洞穴内气压的监测系统及方法
CN112558190B (zh) * 2020-12-17 2021-10-22 水利部南京水利水文自动化研究所 用于城市暴雨洪涝的水位雨量一体监控系统
CN112948184B (zh) * 2021-02-03 2023-07-21 重庆大学 一种基于多通信模式的信息收发控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937641A (zh) * 2012-11-08 2013-02-20 上海移远通信技术有限公司 水质检测装置、水质监控系统以及其运行方法
CN103227833A (zh) * 2013-04-28 2013-07-31 北京农业信息技术研究中心 土壤湿度传感器网络系统及其信息获取方法
US20160327511A1 (en) * 2015-05-08 2016-11-10 Suprasensor Technologies, Llc System, apparatus, and method for measuring ion concentration with a standard deviation correction
CN109284619A (zh) * 2018-11-07 2019-01-29 重庆光电信息研究院有限公司 异源城市物联网的区域定置式边缘计算系统及方法
CN109975517A (zh) * 2019-04-12 2019-07-05 中国科学院南京土壤研究所 基于PaaS平台的超低功耗土壤近地无线传感系统及使用方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2872312Y (zh) * 2006-02-13 2007-02-21 北京农业信息技术研究中心 便携式农业关键环境因素采集仪
US20120152297A1 (en) * 2010-12-15 2012-06-21 The Boeing Company Power generation using a thermoelectric generator and a phase change material
CN103002014A (zh) * 2012-11-09 2013-03-27 哈尔滨中智拓图地理信息技术有限公司 基于云计算和物联网技术的环境地理信息服务平台
CN103116327A (zh) * 2012-12-30 2013-05-22 青岛中科软件股份有限公司 远程农业数据控制系统
US10368504B2 (en) * 2013-02-08 2019-08-06 Paul Francis Sabadin Process and system for controlling modulation assisted valves for the internet of things
CN103141344B (zh) * 2013-03-11 2015-10-28 北京农业智能装备技术研究中心 塑料冷棚绿色环控装置和方法
WO2016037100A1 (en) * 2014-09-05 2016-03-10 University Of Washington Power transmission using wireless communication signals
US10728336B2 (en) * 2016-03-04 2020-07-28 Sabrina Akhtar Integrated IoT (Internet of Things) system solution for smart agriculture management
US20170346953A1 (en) * 2016-05-26 2017-11-30 AgPlexus, LLC Connected farming system with grain bin condition reporting and control
US20180368339A1 (en) * 2016-11-30 2018-12-27 Reinierus Hendricus Maria van der Lee Solid state soil moisture sensor
CN107343254A (zh) * 2016-12-20 2017-11-10 中山大学花都产业科技研究院 一种农业数据的采集处理系统及其方法
CN109425721A (zh) * 2017-08-28 2019-03-05 上海花小二科技有限公司 一种基于LoRa无线通讯的土壤墒情检测系统
US20190159412A1 (en) * 2017-11-29 2019-05-30 Jerome GUIDISH In-ground moisture sensor and system
US11497179B2 (en) * 2018-07-18 2022-11-15 Jesse Lafian Long-range remote solenoid-valve actuator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937641A (zh) * 2012-11-08 2013-02-20 上海移远通信技术有限公司 水质检测装置、水质监控系统以及其运行方法
CN103227833A (zh) * 2013-04-28 2013-07-31 北京农业信息技术研究中心 土壤湿度传感器网络系统及其信息获取方法
US20160327511A1 (en) * 2015-05-08 2016-11-10 Suprasensor Technologies, Llc System, apparatus, and method for measuring ion concentration with a standard deviation correction
CN109284619A (zh) * 2018-11-07 2019-01-29 重庆光电信息研究院有限公司 异源城市物联网的区域定置式边缘计算系统及方法
CN109975517A (zh) * 2019-04-12 2019-07-05 中国科学院南京土壤研究所 基于PaaS平台的超低功耗土壤近地无线传感系统及使用方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112650970A (zh) * 2020-12-19 2021-04-13 武汉大学 饱和-非饱和水分及溶质运移双重迭代耦合方法及装置
CN112650970B (zh) * 2020-12-19 2024-03-22 武汉大学 饱和-非饱和水分及溶质运移双重迭代耦合方法及装置
CN112637370A (zh) * 2021-03-10 2021-04-09 武汉慧联无限科技有限公司 一种数据处理方法、装置、设备及存储介质
CN112637370B (zh) * 2021-03-10 2021-06-18 武汉慧联无限科技有限公司 一种数据处理方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN109975517B (zh) 2020-03-27
CN109975517A (zh) 2019-07-05
US20220107300A1 (en) 2022-04-07
US11635419B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2020206908A1 (zh) 基于PaaS平台的超低功耗土壤近地无线传感系统及使用方法
CN101902832B (zh) 可持续监测振动的低功耗无线传感器网络节点装置
CN102306949B (zh) 传感器网络节点能量自供给方法和装置
CN103210819A (zh) 一种基于物联网的农业灌溉监控系统
CN204313879U (zh) 水产养殖水质监测系统
CN202818381U (zh) 一种基于无线传感网络和云计算的农业喷滴灌系统
CN114777880A (zh) 水位监测方法和水位监测装置
CN203261929U (zh) 一种基于物联网的农业灌溉监控系统
CN209783638U (zh) 一种基于Lora技术的蜂箱重量及温湿度测量采集器
CN211878729U (zh) 一种采集设备智能监控系统
CN201845090U (zh) 基于ZigBee的压力式雨量测量装置
CN204965165U (zh) 屋顶绿化轻薄基质太阳能滴灌系统
CN210271209U (zh) 一种基于LoRa无线通信的阀门控制系统
CN111161521A (zh) 一种智能水表辅助抄表系统
CN208369860U (zh) 一种物联网数据采集器
CN111043376A (zh) 一种液压启闭机控制系统
CN102891518A (zh) 智能太阳能充电控制器
CN203037307U (zh) 智能水位水温传感器
CN206583480U (zh) 一种空气质量自动监测小型仪器
CN104501869A (zh) 水产养殖水质监测系统
CN214958844U (zh) 一种基于微光发电的小型玻璃幕墙监测传感器
CN207867263U (zh) 干渠智能控制综合管理系统
CN209430386U (zh) 一种太阳能供电光伏水泵流量控制系统
CN203773283U (zh) 一种农业作物图像感知终端
CN204965230U (zh) 用于水电发电站的水量监测终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924320

Country of ref document: EP

Kind code of ref document: A1