WO2020206583A1 - Kinase inhibitors and uses thereof - Google Patents

Kinase inhibitors and uses thereof Download PDF

Info

Publication number
WO2020206583A1
WO2020206583A1 PCT/CN2019/081705 CN2019081705W WO2020206583A1 WO 2020206583 A1 WO2020206583 A1 WO 2020206583A1 CN 2019081705 W CN2019081705 W CN 2019081705W WO 2020206583 A1 WO2020206583 A1 WO 2020206583A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
alkyl
pharmaceutically acceptable
membered
acceptable salt
Prior art date
Application number
PCT/CN2019/081705
Other languages
French (fr)
Inventor
Wenge Zhong
Xiaotian Zhu
Xianming Deng
Lei Wu
Original Assignee
Qilu Regor Therapeutics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu Regor Therapeutics Inc. filed Critical Qilu Regor Therapeutics Inc.
Priority to PCT/CN2019/081705 priority Critical patent/WO2020206583A1/en
Publication of WO2020206583A1 publication Critical patent/WO2020206583A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/10Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D237/20Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/14Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D241/20Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D253/00Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
    • C07D253/02Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 not condensed with other rings
    • C07D253/061,2,4-Triazines
    • C07D253/0651,2,4-Triazines having three double bonds between ring members or between ring members and non-ring members
    • C07D253/071,2,4-Triazines having three double bonds between ring members or between ring members and non-ring members with hetero atoms, or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the Philadelphia Chromosome was the first genetic defect linked with a specific human cancer.
  • the translocation fused the Abelson Tyrosine Kinase (ABL1) gene of chromosome 9 to the breakpoint cluster region (BCR) gene of chromosome 22.
  • the resulting fusion gene is known as BCR-ABL1. It encodes a hybrid protein having a constitutively active ABL1 tyrosine kinase activity. This in turn leads to uncontrollable cell division due to interrupted genome stability and impaired signaling pathways (e.g., JAK/STAT, Ras/MAPK/ERK, and DNA binding and apoptosis) governing cell cycle.
  • interrupted genome stability and impaired signaling pathways e.g., JAK/STAT, Ras/MAPK/ERK, and DNA binding and apoptosis
  • CML chronic myeloid leukemia
  • Philadelphia chromosome is not sufficiently specific to diagnose CML, since it is also found in acute lymphoblastic leukemia (ALL, 25-30%of adult cases and 2-10%of pediatric cases) and occasionally in acute myelogenous leukemia (AML) , as well as mixed-phenotype acute leukemia (MPAL) .
  • STI-571 (imatinib) was identified by Novartis (then Ciba Geigy) in high-throughput screens for tyrosine kinase inhibitors. STI-571 was found to inhibit the Abl kinase domain, and subsequent clinical trials demonstrated that STI-571 inhibits proliferation of BCR-ABL-expressing hematopoietic cells. Imatinib mesylate was marketed in 2001 by Novartis as Gleevec in the US, Glivec in Europe.
  • Imatinib was the first marketed Bcr-Abl inhibitor, and was hailed as “the magic bullet” to cure cancer by TIME magazine, because no drugs were available to alter the natural progression of CML prior to 2001. Since 2001, imatinib and many other rationally designed Bcr-Abl tyrosine-kinase inhibitors (TKI) have been used as first-and second-line therapies, respectively, for most patients with chronic myelogenous leukemia (CML) , because >90%of CML cases are caused by the Philadelphia chromosome.
  • CML chronic myelogenous leukemia
  • Bcr-Abl independent mechanisms include factors influencing the concentration of imatinib within the cell, for example by alterations in drug influx and effiux and activation of Bcr-Abl independent pathways, such as members of the Src kinase family.
  • Bcr-Abl dependent mechanisms include over expression or amplification of the Bcr-Abl gene and point mutations within the Bcr-Abl kinase domain that interfere with imatinib binding. Certain point mutations occur inside the kinase domain of the Bcr-Abl protein and disrupt the binding site of imatinib, resulting in a loss of sensitivity to the drug. These mutations normally affect the structure of the Bcr-Abl protein, leading either to interruption of critical contact points between the drug and the Bcr-Abl protein or induction of a conformational change, resulting in a protein that imatinib is unable to bind to.
  • the most important mutations are the P-loop mutations and the T315I mutation, though mutations on other sites (e.g., those on the C-helix, SH2 domain, substrate binding site, activation loop and C-terminal lobe) have also been reported.
  • the ATP-binding P-loop and the activation loop are two flexible loops in Bcr-Abl. Mutations in these loops destabilize arrangement of the loops such that the kinase domain cannot assume the inactive conformation required for imatinib binding. Mutations in the P-loop region are the most common, accounting for 36-48%of all mutations. Clinical data indicates that the P-loop mutation is 70-100 fold less sensitive to imatinib compared with native Bcr-Abl.
  • the T315I is a unique mutation because of its resistance to almost all approved Bcr-Abl inhibitors. It is caused by a single cytosine to thymine (C ⁇ T) base pair substitution at position 944 of the Abl gene (codon “315” of the Abl protein) sequence resulting in amino acid (T) hreonine being substituted by (I) soleucine at that position -thus “T315I. ” This substitution eliminates a critical oxygen atom needed for hydrogen bonding between imatinib and the Abl kinase domain, and also creates steric hindrance to the binding of most TKIs. When discovered, it was estimated that every 6 out of 9 cases of advanced stage CML with imatinib resistance carried this mutation. T315I produces the highest magnitude of resistance of any mutation both to imatinib and rationally designed second generation TKIs described below.
  • Nilotinib is a selective Bcr-Abl kinase inhibitor structurally related to imatinib. Small changes were made on the imatinib molecule to make it more potent and selective -about 10-30 fold more potent than imatinib in inhibiting Bcr-Abl and proliferation of Bcr-Abl expressing cells. Synergistic activity of imatinib and nilotinib has been reported, which may be because the drugs are taken up in cells by different mechanisms. Resistance to nilotinib is associated with a limited spectrum of Bcr-Abl kinase mutations that mostly affect the P-loop and T315I. Increasing nilotinib concentration can effectively suppress nearly all mutations, except T315I.
  • Dasatinib is a multi-targeted inhibitor of Bcr-Abl and Src family kinases. It was discovered with a program directed towards immunosuppressive drugs, and is 325-fold more potent against cells expressing wild type Bcr-Abl than imatinib. Unlike most other Bcr-Abl TKIs, which bind to the inactive kinase, Dasatinib binds both the active and inactive conformation of Abl kinase. It has some structural elements in common with nilotinib. Because dasatinib does not bind to Bcr-Abl with the same stringent conformational requirements as imatinib, it can inhibit all Bcr-Abl kinase domain mutants, except for T315I.
  • Bosutinib has a quinoline scaffold and is structurally related to the AstraZeneca quinazoline template. It was initially identified as a Src kinase inhibitor in 2001, but was found to be slightly more potent against Abl than Src (IC 50 1.4 nM vs. 3.5 nM) in 2003. Bosutinib inhibits Src, Abl and a wide range of both tyrosine and serine-threonine kinases. Bosutinib inhibited cells expressing a variety of mutations, some of which led to imatinib resistance, but the T315I mutation was completely resistant to bosutinib.
  • Bafetinib was discovered by attempts to create a more potent drug than imatinib, with efficacy against various point mutations in the Bcr-Abl kinase, fewer adverse effects, and narrower kinase spectra, namely just Lyn and Bcr-Abl. Due to the structural similarities of imatinib and bafetinib, their binding to Bcr-Abl is quite similar. Bafetinib has unrivalled specificity in that it only targets Bcr-Abl and Src family kinases Lck and Lyn.
  • Bcr-Abl has higher affinity for Bcr-Abl than nilotinib (but less than dasatinib) , and is effective against most imatinib resistant mutations and some dasatinib resistant mutations.
  • Bafetinib is not effective against the T315I mutation.
  • Ponatinib (Iclusig, by Ariad Pharmaceuticals) , which was approved in 2013 as a second-line CML treatment TKI.
  • Ponatinib is a potent drug and targets not only most of the known mutations on the Bcr-Abl TK but, most importantly of all, the T315I mutation, which is emerging as a common pathway to failure of both first and second line treatments. Meanwhile, ponatinib does not target Aurora kinases.
  • the most common all-grade adverse events included hypertension (69%) , rash (63%) , abdominal pain (48%) , fatigue (47%) , headache (43%) , arterial ischemia (42%) , dry skin (42%) , constipation (41%) , arthralgia (32%) , nausea (28%) , pyrexia (26%) , peripheral neuropathy (24%) , myalgia (24%) , pain in extremity (23%) , back pain (21%) , and diarrhea (20%) .
  • a kinase including (but not limited to) : a Src family non-receptor Tyr kinase (such as SrcA subfamily kinases including FGR, FYN, SRC and YES; SrcB subfamily including BLK, HCK, LCK and LYN; and SRM subfamily including SRM and BRK) , a FGF-R (such as FGFR1-FGFR4, FGFRL1, and FGFR6) , a VEGF-R (such as VEGF-R 1 (FLT-1) , VEGF-R2 (KDR) , or VEGF-R
  • the invention provides a compound of Formula (I) or a pharmaceutically acceptable salt thereof:
  • R 12 , R a , R b , X-Z, ring A, ring B, m, n, and L are as defined herein.
  • the compound or pharmaceutically acceptable salt thereof is selected from the compounds of Table 1.
  • compositions comprising the compounds of the invention, or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
  • the present disclosure further provides a method of treating cancer in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of (1) the compound of the invention or a pharmaceutically acceptable salt thereof; (2) a pharmaceutically acceptable composition comprising the compound of the invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • the cancer can be treated by inhibiting the activity of a kinase including (but not limited to) : a Src family non-receptor Tyr kinase (such as SrcA subfamily kinases including FGR, FYN, SRC and YES; SrcB subfamily including BLK, HCK, LCK and LYN; and SRM subfamily including SRM and BRK) , a FGF-R (such as FGFR1-FGFR4, FGFRL1, and FGFR6) , a VEGF-R (such as VEGF-R 1 (FLT-1) , VEGF-R2 (KDR) , or VEGF-R3 (FLT-4) ) , a PDGF-R (such as PDGFRa and PDGFRb) , a Kit (such as KIT, FLT-3, and fms/CSF1R) , an EGFR (such as ErbB-
  • the cancer is a solid tumor (e.g., breast, colon, pancreatic, GIST, head and neck cancer, etc. ) , or a leukemia, including leukemia and solid tumor which are resistant or refractory to other treatment (such as resistant to treatment with Gleevec or another kinase inhibitor) .
  • a solid tumor e.g., breast, colon, pancreatic, GIST, head and neck cancer, etc.
  • a leukemia including leukemia and solid tumor which are resistant or refractory to other treatment (such as resistant to treatment with Gleevec or another kinase inhibitor) .
  • the present disclosure also provides a method of treating leukemia in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of (1) the compound of the invention or a pharmaceutically acceptable salt thereof; (2) a pharmaceutically acceptable composition comprising the compound of the invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • the present disclosure further provides a method of treating chronic myeloid leukemia (CML) in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of (1) the compound of the invention or a pharmaceutically acceptable salt thereof; (2) a pharmaceutically acceptable composition comprising the compound of the invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • CML chronic myeloid leukemia
  • the present disclosure also provides a method of treating Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ALL) in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of (1) the compound of the invention or a pharmaceutically acceptable salt thereof; (2) a pharmaceutically acceptable composition comprising the compound of the invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • Ph+ALL Philadelphia chromosome positive acute lymphoblastic leukemia
  • the present disclosure also provides a use of the compound of the invention or a pharmaceutically acceptable salt thereof or a pharmaceutical composition comprising the same in any of the methods of the invention described above.
  • the compound of the invention or a pharmaceutically acceptable salt thereof or a pharmaceutical composition comprising the same for use in any of the method of the invention described above.
  • provided is use of the compound of the invention or a pharmaceutically acceptable salt thereof or a pharmaceutical composition comprising the same for the manufacture of a medicament for any of the method of the invention described.
  • the invention provides compounds having a broad range of biological and pharmacological activities useful in preparing pharmaceutical compositions and in methods for treating a variety of diseases, including e.g., metabolic disorders, bone diseases (e.g., osteoporosis, Paget’s Disease, etc.
  • diseases including e.g., metabolic disorders, bone diseases (e.g., osteoporosis, Paget’s Disease, etc.
  • TKIs tyrosine kinase inhibitors
  • TKIs may include one or more of Imatinib, Nilotinib, Dasatinib, Bosutinib, Bafetinib, and Ponatinib.
  • the compounds of the invention are less toxic to endothelial cells compared to ponatinib, such as Human Umbilical Vein Endothelial Cells (HUVECs) .
  • ponatinib Human Umbilical Vein Endothelial Cells
  • the toxicity of the subject compounds can be measured using any art recognized methods, such as the assay generally described in the biological examples of the Example section below (incorporated herein by reference) .
  • the compounds of the invention have at least one reduced side effect or adverse event compared to ponatinib, such as a reduced side effect or adverse event in cardiovascular system.
  • the invention also provides a composition (e.g., a pharmaceutical composition) comprising at least one compound of the invention or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable excipient or additive.
  • a composition e.g., a pharmaceutical composition
  • An effective amount of such compositions can be administered to a subject in need thereof to inhibit the growth, development and/or metastasis of cancers, including solid tumors (e.g., breast, colon, pancreatic, CNS and head and neck cancers, among others) and various forms of leukemia, including leukemia and other cancers which are resistant to other treatment, including those which are resistant to treatment with Gleevec or another kinase inhibitor, and generally for the treatment and prophylaxis of diseases or undesirable conditions mediated by one or more kinases which are inhibited by a compound of this invention.
  • solid tumors e.g., breast, colon, pancreatic, CNS and head and neck cancers, among others
  • various forms of leukemia including le
  • the invention also provides a method of cancer treatment comprising administering (as a monotherapy or in combination with one or more other anti-cancer agents, one or more agents for ameliorating side effects, radiation, etc. ) a therapeutically effective amount of a compound of the invention to a human or animal in need thereof, in order to inhibit, slow or reverse the growth, development or spread /metastasis of cancer, including solid tumors or other forms of cancer such as leukemia, in the recipient.
  • Such administration constitutes a method for the treatment or prophylaxis of diseases mediated by one or more kinases inhibited by one of the disclosed compounds or a pharmaceutically acceptable derivative thereof.
  • the various cancers which may be treated are noted elsewhere herein and include, among others, cancers which are or have become resistant to another anticancer agent such as Gleevec, Iressa, Tarceva or one of the other agents noted herein. Treatment may be provided in combination with one or more other cancer therapies, include surgery, radiotherapy (e.g., gamma-radiation, neutron beam radiotherapy, electron beam radiotherapy, proton therapy, brachytherapy, and systemic radioactive isotopes, etc.
  • radiotherapy e.g., gamma-radiation, neutron beam radiotherapy, electron beam radiotherapy, proton therapy, brachytherapy, and systemic radioactive isotopes, etc.
  • agent (s) may be administered using a formulation, route of administration and dosing schedule the same or different from that used with the compound of this invention.
  • Such other drugs include but not limited to one or more of the following: an anti-cancer alkylating or intercalating agent (e.g., mechlorethamine, chlorambucil, Cyclophosphamide, Melphalan, and Ifosfamide) ; antimetabolite (e.g., Methotrexate) ; purine antagonist or pyrimidine antagonist (e.g., 6-Mercaptopurine, 5-Fluorouracil, Cytarabile, and Gemcitabine) ; spindle poison (e.g., Vinblastine, Vincristine, Vinorelbine and Paclitaxel) ; podophyllotoxin (e.g., Etoposide, Irinotecan, Topotecan) ; antibiotic (e.g., Doxorubicin, Bleomycin and Mitomycin) ; nitrosourea (e.g., Carmustine, Lomustine) ; inorganic ion (e.g., Cisplatin
  • proteasome inhibitor such as Velcade, another proteasome inhibitor (see e.g., WO 02/096933) or another NF-kB inhibitor, including, e.g., an IkK inhibitor
  • other kinase inhibitors e.g., an inhibitor of Src, BRC/Abl, KDR, flt3, aurora-2, glycogen synthase kinase 3 ( “GSK-3” )
  • EGF-R kinase e.g., Iressa, Tarceva, etc.
  • VEGF-R kinase VEGF-R kinase
  • PDGF-R kinase VEGF-R kinase
  • an antibody, soluble receptor or other receptor antagonist against a receptor or hormone implicated in a cancer including receptors such as EGFR, ErbB2, VEGFR, PDGFR, and IGF-R; and agents such as Herceptin, Avastin, Erbitux, etc.
  • a more comprehensive discussion of updated cancer therapies see the NCBI website at NIH, a list of the FDA approved oncology drugs at the US FDA website, and The Merck Manual, Seventeenth Ed. 1999, the entire contents of which are hereby incorporated by reference.
  • Examples of other therapeutic agents are noted elsewhere herein and include among others, Zyloprim, alemtuzmab, altretamine, amifostine, nastrozole, antibodies against prostate-specific membrane antigen (such as MLN-591, MLN591RL and MLN2704) , arsenic trioxide, bexarotene, bleomycin, busulfan, capecitabine, Gliadel Wafer, celecoxib, chlorambucil, cisplatin-epinephrine gel, cladribine, cytarabine liposomal, daunorubicin liposomal, daunorubicin, daunomycin, dexrazoxane, docetaxel, doxorubicin, Elliott’s B Solution, epirubicin, estramustine, etoposide phosphate, etoposide, exemestane, fludarabine, 5-FU, fulvestrant, gemcitabine, gemtu
  • This invention further comprises the preparation of a compound of any of Formulae (I) , (II) , (III) , (IV-a) , (IV-b) , (IV-c) , (IV-d) and (IV-e) of this invention.
  • the invention also comprises the use of a compound of the invention, or a pharmaceutically acceptable derivative thereof, in the manufacture of a medicament for the treatment either acutely or chronically of cancer (including leukemia and solid tumors, primary or metastatic, including cancers such as noted elsewhere herein and including cancers which are resistant or refractory to one or more other therapies) .
  • cancer including leukemia and solid tumors, primary or metastatic, including cancers such as noted elsewhere herein and including cancers which are resistant or refractory to one or more other therapies.
  • the compounds of this invention are useful in the manufacture of an anti-cancer medicament.
  • the compounds of the present invention are also useful in the manufacture of a medicament to attenuate or prevent disorders through inhibition of one or more kinases such as Src, KDR, abl. etc.
  • disorders which may be treated with a compound of this invention include metabolic disorders, inflammatory disorders and osteoporosis and other bone disorders.
  • the compound of this invention may be used as a monotherapy or may be administered in conjunction with administration of another drug for the disorder, e.g., a bisphosphonate in the case of osteoporosis or other bone-related illnesses.
  • compositions comprising a compound of the invention, including a compound of any of the described classes or subclasses, including those of any of the formulas noted above, among others, preferably in a therapeutically-effective amount, in association with a least one pharmaceutically acceptable carrier, adjuvant or diluent.
  • Compounds of this invention are also useful as standards and reagents for characterizing various kinases, especially but not limited to KDR and Src family kinases, as well as for studying the role of such kinases in biological and pathological phenomena; for studying intracellular signal transduction pathways mediated by such kinases, for the comparative evaluation of new kinase inhibitors; and for studying various cancers in cell lines and animal models.
  • halo as used herein means halogen and includes chloro, fluoro, bromo and iodo.
  • alkyl used alone or as part of a larger moiety, such as “alkoxy” or “haloalkyl” and the like, means saturated aliphatic straight-chain or branched monovalent hydrocarbon radical. Unless otherwise specified, an alkyl group typically has 1-4 carbon atoms, i.e. (C 1 -C 4 ) alkyl. As used herein, a “ (C 1 -C 4 ) alkyl” group means a radical having from 1 to 4 carbon atoms in a linear or branched arrangement. Examples include methyl, ethyl, n-propyl, iso-propyl, and the like.
  • alkoxy means an alkyl radical attached through an oxygen linking atom, represented by -O-alkyl.
  • alkoxy means an alkyl radical attached through an oxygen linking atom, represented by -O-alkyl.
  • (C 1 -C 4 ) alkoxy includes methoxy, ethoxy, propoxy, and butoxy.
  • haloalkyl and “haloalkoxy” means alkyl or alkoxy, as the case may be, substituted with one or more halogen atoms.
  • haloalkyl include, but are not limited to, trifluoromethyl, trichloromethyl, pentafluoroethyl and the like.
  • Carbocyclyl refers to a radical of a non-aromatic monocyclic, bicyclic, or tricyclic or polycyclic hydrocarbon ring system having from 3 to 14 ring carbon atoms ( “C 3-14 carbocyclyl” ) and zero heteroatoms in the non-aromatic ring system.
  • Carbocyclyl groups include fully saturated ring systems (e.g., cycloalkyls) , and partially saturated ring systems.
  • a carbocyclyl group has 3 to 10 ring carbon atoms ( “C 3-10 carbocyclyl” ) .
  • cycloalkyl as employed herein includes saturated cyclic, bicyclic, tricyclic, or polycyclic hydrocarbon groups having 3 to 14 carbons containing the indicated number of rings and carbon atoms (for example a C 3 -C 14 monocyclic, C 4 -C 14 bicyclic, C 5 -C 14 tricyclic, or C 6 -C 14 polycyclic cycloalkyl) .
  • cycloalkyl is a monocyclic cycloalkyl.
  • Examples of monocyclic cycloalkyl groups include cyclopentyl (C 5 ) , cyclohexyl (C 5 ) , cyclopropyl (C 3 ) cyclobutyl (C 4 ) , cycloheptyl (C 7 ) and cyclooctyl (C 8 ) .
  • cycloalkyl is a bicyclic cycloalkyl.
  • bicyclic cycloalkyls examples include bicyclo [1.1.0] butane (C 4 ) , bicyclo [1.1.1] pentane (C 5 ) , spiro [2.2] pentane (C 5 ) , bicyclo [2.1.0] pentane (C 5 ) , bicyclo [2.1.1] hexane (C 6 ) , bicyclo [3.3.3] undecane (C 11 ) , decahydronaphthalene (C 10 ) , bicyclo [4.3.2] undecane (C 11 ) , spiro [5.5] undecane (C 11 ) and bicyclo [4.3.3] dodecane (C 12 ) .
  • cycloalkyl is a tricyclic cycloalkyl.
  • tricyclic cycloalkyls include adamantine (C 12 ) .
  • a “cycloalkyl” has from three to six carbon atoms.
  • aryl group used alone or as part of a larger moiety as in “aralkyl” , “aralkoxy” , or “aryloxyalkyl” , means a carbocyclic aromatic ring.
  • aryl may be used interchangeably with the terms “aryl ring” “carbocyclic aromatic ring” , “aryl group” and “carbocyclic aromatic group” .
  • An aryl group typically has six to fourteen ring atoms. Examples includes phenyl, naphthyl, anthracenyl, 1, 2-dihydronaphthyl, 1, 2, 3, 4-tetrahydronaphthyl, fluorenyl, indanyl, indenyl and the like.
  • a “substituted aryl group” is substituted at any one or more substitutable ring atom, which is a ring carbon atom bonded to a hydrogen.
  • heterocyclyl group or “heterocyclic group” means a monocyclic, non-aromatic ring with 3 to 10-members containing from 1-4 ring heteroatoms or a polycyclic ring with ring with 7 to 20-members and from 1 to 4 ring heteroatoms, wherein the polycyclic ring having one or more monocyclic non-aromatic heterocyclic ring fused with one or more aromatic or heteroaromatic ring.
  • Each heteroatom is independently selected from nitrogen, quaternary nitrogen, oxidized nitrogen (e.g., NO) ; oxygen; and sulfur, including sulfoxide and sulfone.
  • the heterocyclyl group is a bicyclic ring having a monocyclic non-aromatic heterocyclic ring fused with a phenyl group.
  • Exemplary polycyclic heterocyclic group includes tetrahydroisoquinolinyl (such as 1, 2, 3, 4-tetrahydroisoquinolin-7-yl, 2-methyl-1, 2, 3, 4-tetrahydroisoquinolin-7-yl, 1, 2, 3, 4-tetrahydroisoquinolin-6-yl and 2-methyl-1, 2, 3, 4-tetrahydroisoquinolin-6-yl) , isoindolinyl (such as 2-ethylisoindolin-5-yl, 2-methylisoindolin-5-yl) , indolinyl, tetrahydrobenzo [f] oxazepinyl (such as 2, 3, 4, 5-tetrahydrobenzo [f] [1, 4] oxazepin-7-yl) .
  • heterocycle “heterocyclyl, ” or “heterocyclic” whether saturated or partially unsaturated, also refers to rings that are optionally substituted.
  • a heterocyclyl group is a 3-14 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur ( “3-14 membered heterocyclyl” ) .
  • heteroaryl refers to aromatic ring groups having five to fourteen ring atoms selected from carbon and at least one (typically 1 to 4, more typically 1 or 2) heteroatoms (e.g., oxygen, nitrogen or sulfur) .
  • Heteroaryl includes monocyclic rings and polycyclic rings in which a monocyclic heteroaromatic ring is fused to one or more other carbocyclic aromatic or heteroaromatic rings.
  • “5-14 membered heteroaryl” includes monocyclic, bicyclic or tricyclic ring systems.
  • Examples of monocyclic 5-6 membered heteroaryl groups include furanyl (e.g., 2-furanyl, 3-furanyl) , imidazolyl (e.g., N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl) , isoxazolyl (e.g., 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl) , oxadiazolyl (e.g., 2-oxadiazolyl, 5-oxadiazolyl) , oxazolyl (e.g., 2-oxazolyl, 4-oxazolyl, 5-oxazolyl) , pyrazolyl (e.g., 3-pyrazolyl, 4-pyrazolyl) , pyrrolyl (e.g., 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl) , pyridyl (e.g., 2-pyrid
  • polycyclic aromatic heteroaryl groups examples include carbazolyl, benzimidazolyl, benzothienyl, benzofuranyl, indolyl, quinolinyl, benzotriazolyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, isoquinolinyl, indolyl, isoindolyl, acridinyl, or benzisoxazolyl.
  • a “substituted heteroaryl group” is substituted at any one or more substitutable ring atom, which is a ring carbon or ring nitrogen atom bonded to a hydrogen.
  • moieties e.g., alkyl, alkylene, cycloalkyl, aryl, heteroaryl, or heterocyclyl
  • substituents any substituents that are suitable to attach to the moiety.
  • Each R a1 and each R b1 are independently selected from -H and (C 1 -C 5 ) alkyl, optionally substituted with hydroxyl or (C 1 -C 3 ) alkoxy;
  • R c1 is -H, (C 1 -C 5 ) haloalkyl or (C 1 -C 5 ) alkyl, wherein the (C 1 -C 5 ) alkyl is optionally substituted with hydroxyl or (C 1 -C 3 ) alkoxy.
  • the compounds of this invention can exist in radiolabelled form, i.e., said compounds may contain one or more atoms containing an atomic mass or mass number different from the atomic mass or mass number: ordinarily found in nature.
  • Radioisotopes of hydrogen, carbon, phosphorous, fluorine and chlorine include 3 H, 14 C, 32 p, 35 S, 43 F and 36 Cl, respectively.
  • Compounds of this invention which contain those radioisotopes and/or other radioisotopes of other atoms are within the scope of this invention. Tritiated, i.e., 3 H, and carbon-14, i.e., 14 C, radioisotopes are particularly preferred for their ease of preparation and detectability.
  • Radiolabelled compounds of this invention can generally be prepared by methods well known to those skilled in the art. Conveniently, such radiolabelled compounds can be prepared by carrying out the procedures disclosed herein except substituting a readily available radiolabelled reagent for a non-radiolabelled reagent.
  • the compounds of this invention can exist in free form for treatment, or where appropriate, as a pharmaceutically acceptable salt form.
  • pharmaceutically acceptable salt refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art, for example, Berge et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference.
  • Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases.
  • Examples of pharmaceutically acceptable, acid addition salts are salts of an amino group formed with inorganic acids, such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, and perchloric acid or with organic acids, such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid, or malonic acid or by using other methods known in the art such as ion exchange.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, and perchloric acid
  • organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid, or malonic acid or by using other methods known in the art such as ion exchange.
  • salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate,
  • Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium, and N + (C 1-4 alkyl) 4 - salts.
  • Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like.
  • Further pharmaceutically acceptable salts include, when appropriate, ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate, and aryl sulfonate.
  • composition and “formulation” are used interchangeably.
  • a “subject” is a mammal, preferably a human, but can also be an animal in need of veterinary treatment, e.g., companion animals (e.g., dogs, cats, and the like) , farm animals (e.g., cows, sheep, pigs, horses, and the like) and laboratory animals (e.g., rats, mice, guinea pigs, and the like) .
  • companion animals e.g., dogs, cats, and the like
  • farm animals e.g., cows, sheep, pigs, horses, and the like
  • laboratory animals e.g., rats, mice, guinea pigs, and the like
  • administer refers to methods introducing a compound of the invention, or a composition thereof, in or on a subject. These methods include, but are not limited to, intraarticular (in the joints) , intravenous, intramuscular, intratumoral, intradermal, intraperitoneal, subcutaneous, orally, topically, intrathecally, inhalationally, transdermally, rectally, and the like. Administration techniques that can be employed with the agents and methods described herein are found in e.g., Goodman and Gilman, The Pharmacological Basis of Therapeutics, current ed.; Pergamon; and Remington’s, Pharmaceutical Sciences (current edition) , Mack Publishing Co., Easton, Pa.
  • treatment refers to reversing, alleviating, or inhibiting the progress of a disease described herein.
  • treatment may be administered after one or more signs or symptoms of the disease have developed or have been observed (i.e., therapeutic treatment) .
  • treatment may be administered in the absence of signs or symptoms of the disease.
  • treatment may be administered to a susceptible subject prior to the onset of symptoms (i.e., prophylactic treatment) (e.g., in light of a history of symptoms and/or in light of exposure to a pathogen) .
  • Treatment may also be continued after symptoms have resolved, for example, to delay or prevent recurrence.
  • condition ” “disease, ” and “disorder” are used interchangeably.
  • an effective amount of a compound taught herein varies depending upon various factors, such as the given drug or compound, the pharmaceutical formulation, the route of administration, the type of disease or disorder, the identity of the subject or host being treated, and the like, but can nevertheless be routinely determined by one skilled in the art.
  • An effective amount of a compound of the present teachings may be readily determined by one of ordinary skill by routine methods known in the art.
  • an effective amount means an amount when administered to the subject which results in beneficial or desired results, including clinical results, e.g., inhibits, suppresses or reduces the symptoms of the condition being treated in the subject as compared to a control.
  • an effective amount can be given in unit dosage form (e.g., from 1 mg to about 50 g per day, e.g., from 1 mg to about 5 grams per day) .
  • a “therapeutically effective amount” is that amount effective for detectable killing or inhibition of the growth or spread of cancer cells; the size or number of tumors; or other measure of the level, stage, progression or severity of the cancer. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular anticancer agent, its mode of administration, combination treatment with other therapies, and the like.
  • R 12 is selected from C 1-4 alkyl, C 3 -C 6 cycloalkyl, 4-6 membered heterocyclyl, 6-10 membered aryl, 5-10 membered mono-cyclic or bicyclic heteroaryl, wherein the alkyl, cycloalkyl, or heterocyclyl is optionally substituted with one or more groups selected from oxo or R 15 , wherein said aryl or heteroaryl is optionally substituted with one or more groups selected from R 15 ;
  • X, Y, and Z are each independently N or CR 15 , provided that X, Y and Z are not N simultaneously;
  • each R 15 is independently selected from H, halogen, CN, C 1-4 alkyl, C 1-4 perfluoroalkyl, C 1-4 polydeuterated alkyl and C 1-4 alkoxy;
  • Ring A is phenyl or 5-6 membered monocyclic heteroaryl
  • Ring B is phenyl or 5-6 membered monocyclic heteroaryl
  • L is NR 0 C (O) , C (O) NR 0 , NR 0 C (O) O, OC (O) NR 0 , or NR 0 C (O) NR 0 ;
  • R 0 is independently H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl, heterocyclyl, and heteroaryl;
  • Y 1 is independently a bond, -O-, -S-, or -NR 3 -;
  • R is 3-10 membered carbocyclyl, 3-10 membered heterocyclyl, 6-14 membered aryl, or 5-14 membered heteroaryl;
  • each R 2 and R 3 are independently selected from H, alkyl, alkenyl, alkynyl, carbocyclyl, aryl, heterocyclic and heteroaryl; alternatively,
  • R 2 and R 3 taken together with the atom to which they are attached, form heterocyclyl or heteroaryl;
  • each R 4 is independently selected from alkyl, alkenyl, alkynyl, carbocyclyl, aryl, heterocyclyl, and heteroaryl;
  • r 0, 1, or 2;
  • x 0, 1, 2, or 3;
  • z 0, 1, 2, 3, or 4;
  • each of the heterocyclyl and heteroaryl contains 1-3 ring heteroatoms independently selected from N, O, and S;
  • each of the alkyl, alkenyl, alkynyl, carbocyclyl, aryl, heterocyclyl, and heteroaryl moieties recited herein is optionally substituted;
  • n 0, 1, 2, 3, or 4;
  • n 0, 1, 2, 3, 4, or 5.
  • X, Y, and Z are each independently N or CH, provided that X, Y and Z are not N simultaneously;
  • R 12 is C 1 -C 4 alkyl, C 3 -C 6 cycloalkyl, 4-6 membered monocyclic heterocyclyl, phenyl, or 5-6 membered monocyclic heteroaryl, each of which is optionally substituted with one to three groups selected from halogen, CN, C 1-4 alkyl, and C 1-4 alkoxy;
  • each occurrence of R a is independently selected from the group consisting of H, halogen, CN, C 1 -C 4 alkyl, or C 1 -C 4 alkoxy, wherein said C 1 -C 4 alkyl or C 1 -C 4 alkoxy is optionally substituted with one or more groups selected from halogen or deuterium; and m is 0, 1, or 2, and the remaining variables are as defined for Formula (I) or in the first embodiment.
  • the compound of Formula (I) is represented by structural formula (III) :
  • R a is H, halogen, CN, C 1-3 alkyl optionally substituted with one or more fluoro or deuterium;
  • R b1 is H, halogen, C 1 -C 3 perfluoroalkyl, C 1 -C 3 alkyl optionally substituted with one or more deuterium;
  • R b2 is H, halogen, CN, - (CH 2 ) z NR 2 R 3 , C 1 -C 3 alkyl, C 1 -C 3 fluoroalkyl, or- (CH 2 ) z R;
  • R b3 is H, halogen, CN, - (CH 2 ) z NR 2 R 3 , C 1 -C 3 alkyl, C 1 -C 3 perfluoroalkyl, or- (CH 2 ) z R;
  • each R 2 and R 3 are independently selected from H, C 1-6 alkyl, C 3-6 cycloalkyl, 4-7 membered heterocyclic, and 5-7 membered heteroaryl; alternatively,
  • R 2 and R 3 taken together with the atom to which they are attached, form 4-7 membered heterocyclyl or 5-7 membered heteroaryl, each of which is optionally substituted with one or more halogen, OH, CN, C 1 -C 4 alkyl, or C 1 -C 4 alkoxy, and the remaining variables are as defined in the first and/or second embodiment (s) .
  • the compound of Formula (I) is represented by one of the following structural formulae (IV-a) - (IV-e) :
  • R 12 is C 1-4 alkyl optionally substituted with C 1-2 alkoxy; or C 3 -C 6 cycloalkyl, and the remaining variables are as defmed in the first, second and/or third embodiment (s) .
  • the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein R b1 is C 1-3 alkyl or C 1-3 perfluoroalkyl, preferably CF 3 , and the remaining variables are as defined in the first, second, third, and/or fourth embodiment (s) .
  • the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein each of R b2 and R b3 is independently H, halogen, CN, C 1 -C 3 perfluoroalkyl, C 1-3 alkyl, -CH 2 N (CH 3 ) 2 , or - (CH 2 ) z R; and z is 0 or 1, and the remaining variables are as defined in the first, second, third, fourth, and/or fifth embodiment (s) .
  • the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein each R b2 and R b3 is independently H, halogen, CN, C 1 -C 3 perfluoroalkyl, C 1-3 alkyl, -CH 2 N (CH 3 ) 2 , 3-10 membered heterocyclyl, - (CH 2 ) -4-6 membered heterocyclyl, or 5-10 membered heteroaryl, and the remaining variables are as defined in the first, second, third, fourth, fifth, and/or sixth embodiment (s) .
  • the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein R b2 is H, halogen, CN, C 1-3 alkyl, or one of:
  • R b3 is H, and more preferably R b1 is CF 3 , and the remaining variables are as defined in the first, second, third, fourth, fifth, sixth, and/or seventh embodiment (s) .
  • the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein R b3 is H, halogen, CN, C 1-3 alkyl, C 1-3 perfluoroalkyl, or one of:
  • R b2 is H, and more preferably R b1 is CF 3 , and the remaining variables are as defined in the first, second, third, fourth, fifth, sixth, seventh, and/or eighth embodiment (s) .
  • the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, whereinR b3 is and the remaining variables are as defined in the first, second, third, fourth, fifth, sixth, seventh, eighth, and/or ninth embodiment (s) .
  • the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein R b2 is H, and the remaining variables are as defined in the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and/or tenth embodiment (s) .
  • the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein R b1 is CF 3 , and the remaining variables are as defined in the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and/or eleventh embodiment (s) .
  • the compound has the structure of Formula (I) , (II) , (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein R 12 is CH 3 or cyclopropyl, and the remaining variables are as defined in the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, and/or twelfth embodiment (s) .
  • the compound or a pharmaceutically acceptable salt thereof is selected from the compounds of Formulae (I) , (II) , (III) , (IV-a) - (IV-e) , in the Examples, and in Table 1.
  • compositions which comprise any one of the compounds described herein, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carriers or excipients.
  • “Pharmaceutically acceptable excipient” and “pharmaceutically acceptable carrier” refer to a substance that aids the formulation and/or administration of an active agent to and/or absorption by a subject and can be included in the compositions of the present disclosure without causing a significant adverse toxicological effect on the subject.
  • Non-limiting examples of pharmaceutically acceptable carriers and excipients include water, NaCl, normal saline solutions, lactated Ringer’s, normal sucrose, normal glucose, binders, fillers, disintegrants, lubricants, coatings, sweeteners, flavors, salt solutions (such as Ringer’s solution) , alcohols, oils, gelatins, carbohydrates such as lactose, amylose or starch, fatty acid esters, hydroxymethycellulose, polyvinyl pyrrolidine, and colors, and the like.
  • Such preparations can be sterilized and, if desired, mixed with auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances and the like that do not deleteriously react with or interfere with the activity of the compounds provided herein.
  • auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances and the like that do not deleteriously react with or interfere with the activity of the compounds provided herein.
  • auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances and the like that do not deleteriously react with or interfere with the activity of the compounds provided herein.
  • auxiliary agents such
  • compositions optionally further comprise one or more additional therapeutic agents.
  • a compound of the invention may be administered to a patient in need thereof in combination with the administration of one or more other therapeutic regimens (e.g. Gleevec or other kinase inhibitors, interferon, bone marrow transplant, farnesyl transferase inhibitors, bisphosphonates, thalidomide, cancer vaccines, hormonal therapy, antibodies, radiation, etc) .
  • additional therapeutic agents for conjoint administration or inclusion in a pharmaceutical composition with a compound of this invention may be another one or more anticancer agents.
  • compositions of the present invention comprise a compound of the invention together with a pharmaceutically acceptable carrier, which, as used herein, includes any and all solvents, diluents, or other vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired.
  • a pharmaceutically acceptable carrier includes any and all solvents, diluents, or other vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired.
  • Remington s Pharmaceutical Sciences, Fifteenth Edition, E.W. Martin (Mack Publishing Co., Easton, Pa., 1975) discloses various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof.
  • any conventional carrier medium is incompatible with the compounds of the invention, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component (s) of the pharmaceutical composition, its use is contemplated to be within the scope of this invention.
  • materials which can serve as pharmaceutically acceptable carriers include, but are not limited to, sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil; sesame oil; olive oil; com oil and soybean oil; glycols; such a propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer’s solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such
  • compositions comprising the active compounds of this invention in association with one or more pharmaceutically-acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as “carrier” materials) and, if desired, other active ingredients.
  • carrier materials
  • the active compounds of the present invention may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended.
  • compositions of the present invention may, for example, be administered orally, mucosally, topically, rectally, pulmonarily such as by inhalation spray, or parentally including intravascularly, intravenously, intraperitoneally, subcutaneously, intramuscularly, intrasternally and infusion techniques, in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles.
  • the pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals.
  • the pharmaceutical composition may be in the form of, for example, a tablet, capsule, suspension or liquid.
  • the pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient.
  • a suitable daily dose for a human or other mammal may vary depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
  • the amount of compounds which are administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex and medical condition of the subject, the type of disease, the severity of the disease, the route and frequency of administration, and the particular compound employed. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods. As mentioned previously, the daily dose can be given in one administration or may be divided between 2, 3, 4 or more administrations.
  • the active compounds of this invention are ordinarily combined with one or more adjuvants, excipients or carriers appropriate to the indicated route of administration.
  • the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration.
  • Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose.
  • Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin (e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.
  • the active ingredient may comprise from 0.001%to 10%w/w, e.g., from 1%to 2%by weight of the formulation, although it may comprise as much as 10%w/w, but preferably not more than 5%w/w, and more preferably from 0.1%to 1%of the formulation.
  • the compounds of this invention can also be administered by a transdermal device.
  • transdermal administration will be accomplished using a patch either of the reservoir and porous membrane type or of a solid matrix variety.
  • the active agent is delivered -continuously from the reservoir or microcapsules through a membrane into the active agent permeable adhesive, which is in contact with the skin or mucosa of the recipient. If the active agent is absorbed through the skin, a controlled and predetermined flow of the active agent is administered to the recipient.
  • the encapsulating agent may also function as the membrane.
  • the oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner.
  • the phase may comprise merely an emulsifier, it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil.
  • a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat.
  • the emulsifier (s) with or without stabilizer (s) make-up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations.
  • Emulsifiers and emulsion stabilizers suitable for use in the formulation of the present invention include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate, sodium lauryl sulfate, glyceryl distearate alone or with a wax, or other materials well known in the art.
  • the choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties, since the solubility of the active compound in most oils likely to be used in pharmaceutical emulsion formulations is very low.
  • the cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers.
  • Straight or branched chain, mono-or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters may be used. These may be used alone or in combination depending on the properties required.
  • high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils can be used.
  • Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredients are dissolved or suspended in suitable carrier, especially an aqueous solvent for the active ingredients.
  • the active ingredients are preferably present in such formulations in a concentration of 0.5 to 20%, advantageously 0.5 to 10%and particularly about 1.5%w/w.
  • Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules using one or more of the carriers or diluents mentioned for use in the formulations for oral administration or by using other suitable dispersing or wetting agents and suspending agents.
  • the compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, com oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, tragacanth gum, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.
  • the active ingredient may also be administered by injection as a composition with suitable carriers including saline, dextrose, or water, or with cyclodextrin (i.e. Captisol) , cosolvent solubilization (i.e. propylene glycol) or micellar solubilization (i.e. Tween 80) .
  • suitable carriers including saline, dextrose, or water, or with cyclodextrin (i.e. Captisol) , cosolvent solubilization (i.e. propylene glycol) or micellar solubilization (i.e. Tween 80) .
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1, 3-butanediol.
  • a non-toxic parenterally acceptable diluent or solvent for example as a solution in 1, 3-butanediol.
  • acceptable vehicles and solvents that may be employed are water, Ringer’s solution, and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed, including synthetic mono-or diglycerides.
  • fatty acids such as oleic acid find use in the preparation of injectables.
  • the pharmaceutical composition may be administered in the form of an aerosol or with an inhaler including dry powder aerosol.
  • Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable nonirritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
  • a suitable nonirritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
  • compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc. Tablets and pills can additionally be prepared with enteric coatings. Such compositions may also comprise adjuvants, such as wetting, sweetening, flavoring, and perfuming agents.
  • Pharmaceutical compositions of this invention comprise a compound of the formulas described herein or a pharmaceutically acceptable salt thereof; an additional agent selected from a kinase inhibitory agent (small molecule, polypeptide, antibody, etc. ) , an immunosuppressant, an anticancer agent, an anti-viral agent, antiinflammatory agent, antifungal agent, antibiotic, or an anti-vascular hyperproliferation compound; and any pharmaceutically acceptable carrier, adjuvant or vehicle.
  • compositions of this invention comprise a compound of the formulae described herein or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable cartier, adjuvant or vehicle.
  • Such compositions may optionally comprise one or more additional therapeutic agents, including, for example, kinase inhibitory agents (small molecule, polypeptide, antibody, etc. ) , immunosuppressants, anti-cancer agents, anti-viral agents, antiinflammatory agents, antifungal agents, antibiotics, or anti-vascular hyperproliferation compounds.
  • pharmaceutically acceptable carrier or adjuvant refers to a carrier or adjuvant that may be administered to a patient, together with a compound of this invention, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.
  • Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, selfemulsifying drug delivery systems (SEDDS) such as d-atocopherol polyethyleneglycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-poly
  • Cyclodextrins such as u-, P-, and y-cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2 and 3-hydroxypropyl-cyclodextrins, or other solubilized derivatives may also be advantageously used to enhance delivery of compounds of the formulae described herein.
  • compositions may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, emulsions and aqueous suspensions, dispersions and solutions.
  • carriers which are cormnonly used include lactose and corn starch.
  • Lubricating agents, such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried corn starch.
  • compositions may comprise formulations utilizing liposome or microencapsulation techniques, various examples of which are known in the art.
  • compositions may be administered by nasal aerosol or inhalation.
  • Such compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents, examples of which are also well known in the art.
  • the compounds of the invention have various biological properties which make them useful for treating or amerliorating diseases in which kinases (such as Bcr-Abl kinase or mutants thereof) may be involved; symptoms of such disease; or the effect of other physiological events mediated by the target kinases.
  • kinases such as Bcr-Abl kinase or mutants thereof
  • Numerous compounds of the invention have been shown to inhibit tyrosine kinase activity of Src and/or Abl, among other tyrosine kinases which are believed to mediate the growth, development and/or metastasis of cancer. Using conventional anti-proliferation assays, numerous compounds of the invention have been found to possess potent in vitro activity against BAF3 BCR-ABL.
  • the compounds of the invention are useful for treating cancers, including both primary and metastatic cancers, including solid tumors as well as lymphomas and leukemia (including CML, AML and ALL) , and including cancers which are resistant to other therapies, including other therapies involving the administration of kinase inhibitors such as Gleevec, Tarceva or Iressa.
  • Treatable cancers include, among others, cancers of the breast, cervix, colon and rectum, lung, ovaries, pancreas, prostate, head and neck, gastrointestinal stroma, as well as diseases such as melanoma, multiple myeloma, non-Hodgkin’s lymphoma, melanoma, gastric cancers and leukemia (e.g., myeloid, lymphocytic, myelocytic and lymphoblastic leukemia) including cases which are resistant to one or more other therapies, including among others, Gleevec, Tarceva or Iressa.
  • diseases such as melanoma, multiple myeloma, non-Hodgkin’s lymphoma, melanoma, gastric cancers and leukemia (e.g., myeloid, lymphocytic, myelocytic and lymphoblastic leukemia) including cases which are resistant to one or more other therapies, including among others, Gleevec,
  • Resistance to various anticancer agents can arise from one or more mutations in a mediator or effector of the cancer (e.g., mutation in a kinase such as Src or Abl) which correlate with alteration in the protein’s drug binding properties, phosphate binding properties, protein binding properties, autoregulation or other characteristics.
  • a mediator or effector of the cancer e.g., mutation in a kinase such as Src or Abl
  • BCR-Abl the kinase associated with chronic myeloid leukemia, resistance to Gleevec has been mapped to a variety of BCR/Abl mutations which are linked to a variety of functional consequences, including among others, steric hindrance of drug occupancy at the kinase’s active site, alteration in deformability of the phosphate binding P loop, effects on the conformation of the activation loop surrounding the active site, and others. See, e.g., Shah et al, 2002, Cancer Cell 2, 117-125 and Azam et al, 2003, Cell 112, 831-843 and references cited therein for representative examples of such mutations in Bcr/Abl.
  • Compounds of this invention can be used both in monotherapies and in combination therapies, and are useful against hematopoietic cancers such as leukemia, as well as other cancers, including those which are resistant in whole or part to other anticancer agents, specifically including Gleevec and other kinase (e.g., Bcr-Abl) inhibitors, and specifically including leukemia involving one or more mutations in BCR/Abl, within or outside the kinase domain, including but not limited to those noted in any of the foregoing publications, such as the T315I mutation or a P loop mutation. Also see, in particular, Azam et al.
  • the method of the invention comprises administering to a subject in need thereof a therapeutically effective amount of a compound of the invention.
  • the compound, or a composition containing the compound may be administered using any amount and any route of administration effective for killing or inhibiting the growth of tumors or other forms of cancer.
  • the methods of the invention comprises administering a therapeutically effective amount of a subject compound to a subject in need thereof, to treat a disease or indication characterized by up-regulation of one or more kinases, such as a Src family non-receptor Tyr kinase (such as SrcA subfamily kinases including FGR, FYN, SRC and YES; SrcB subfamily including BLK, HCK, LCK and LYN; and SRM subfamily including SRM and BRK) , a FGF-R (such as FGFR1-FGFR4, FGFRL1, and FGFR6) , a VEGF-R (such as VEGF-R 1 (FLT-1) , VEGF-R2 (KDR) , or VEGF-R3 (FLT-4) ) , a PDGF-R (such as PDGFRa and PDGFRb) , a Kit (such as KIT, FLT-3, and fms/
  • the kinase is a Src family kinase, which is a proto-oncogene encoding a non-receptor Tyr kinase that forms major signaling hubs in animals, and transduces signals from receptor tyrosine kinases and other receptors to downstream signaling pathways.
  • An elevated level of activity of c-Src tyrosine kinase has been linked to cancer progression by promoting other signals, such as the malignant progression of about 50%of rumors from colon, liver, lung, breast, prostate, and the pancreas.
  • the method of the invention can be used to treat such cancers.
  • the kinase is a FGFR family kinase, which binds to members of the fibroblast growth factor family of growth factors.
  • the FGF/FGFR signalling pathway plays a critical role in oncogenesis via gene amplification, activating mutations, or translocation in tumors of various histologies, inclduing breast cancers (predominantly in estrogen receptor (ER) positive cancers) , squamous non-small cell lung cancers (SqCLC) , small cell lung cancer, oral squamous cell carcinoma, esophageal squamous carcinoma, ovarian cancer, bladder cancer, rhabdomyosarcoma, glioblastoma, melanoma, Pilocytic astrocytoma for FGFR1; endometrial carcinoma, gastric cancer, breast cancer (such as triple-negative breast cancer) , lung cancer (such as adenocarcinoma, SqNSCLC, and squamous
  • the kinase is a VEGFR family kinase
  • the cancer is RCC (renal cell carcinoma) , colorectal cancer, lung cancer such as non-small cell lung cancer, breast cancer (such as estrogen receptor positive breast cancers, particularly of the luminol subtype B form of breast cancer) , hematological cancer (such as eosinophilia, hypereosinophilia, Myeloid leukemia, myeloproliferative neoplasm, myeloid sarcoma, lymphoid leukemia, or non-Hodgkin lymphoma) , phosphaturic mesenchymal tumor, rhabdomyosarcoma, myelodysplasia, urinary bladder transitional cell carcinoma, squamous cell Head and neck cancers, endometrial cancer, prostate cancer, ovarian Papillary serous cystadenocarcinoma, colorectal cancer, sarcomas, Glio
  • RCC
  • the tyrosine kinase inhibitor Ponatinib has been used as mono-therapy and subsequently used in combination with intensive chemotherapy to treat the myelodysplasia caused by the FGFR1-BCR fusion gene.
  • the method of the invention can be used to treat such cancers.
  • the kinase is a PDGFR family kinase.
  • PDGFRa mutations have been associated with hematological malignancy in the clonal hypereosinophilia class of malignancies, leukemia, lymphoma, myelodysplastic syndrome that are commonly associated with hypereosinophilia, clonal eosinophilia, chronic eosinophilia, chronic eosinophilic leukemia, myeloproliferative neoplasm/myeloblastic leukemia associated with little or no eosinophilia, T-lymphoblastic leukemia/lymphoma associated with eosinophilia, myeloid sarcoma with eosinophilia, mesenchymal neoplasm of the gastrointestinal tract (GI tract) , Gastrointestinal stromal tumors or (GISTs) , pediatric diffuse Gliomas of the pons
  • human chromosome translocations between the PDGFRB gene and at least any one of 30 genes on other chromosomes lead to myeloid and/or lymphoid neoplasms that are many ways similar to the neoplasm caused by the fusion of the PDGFRA gene with the FIP1L1 gene, such as leukemia and congenital fibrosarcoma, Chronic myelomonocytic leukemias, juvenile myelomonocytic leukemia, Atypical or Philadelphia chromosome negative chronic myeloid leukemias, myelodysplastic syndromes, acute myelogenous leukemias, or acute lymphoblastic leukemias, clonal eosinophilia.
  • the method of the invention can be used to treat such cancers.
  • the kinase is a EGFR family kinase. Mutations associated with EGFR overexpression have been associated with a number of cancers, including breast cancer, ovarian cancer, stomach cancer, adenocarcinoma of the lung, anal cancers, uterine serous endometrial carcinoma, glioblastoma, salivary duct carcinomas, gastric cancer, epithelian tumors of the head and neck, testicular germ cell cancer, and esophageal tumor.
  • the method of the invention can be used to treat such cancers.
  • the kinase is Abl kinase, such as Bcr-Abl kinase.
  • the Abl kinase is associated with chronic myelogenous leukemia (CML) , and also rarely in some other leukemia forms.
  • CML chronic myelogenous leukemia
  • the method of the invention can be used to treat CML and other leukemias characterized by Bcr-Abl mutation.
  • the kinase is a Discoidin Domain Receptor kinase, which is a RTK widely expressed in normal and transformed epithelial cells and is activated by various types of collagen.
  • DDR1 is significantly over-expressed in several human tumors from breast, ovarian, esophageal, and pediatric brain.
  • the closely related DDR2 has been associated with a number of diseases including fibrosis and cancer.
  • the method of the invention can be used to treat such cancers or fibrosis.
  • the kinase is a RET kinase, which is a proto-oncogene encoding a receptor tyrosine kinase for members of the glial cell line-derived neurotrophic factor (GDNF) family of extracellular signalling molecules.
  • RET gain of function mutations are associated with the development of various types of human cancer, including medullary thyroid carcinoma; multiple endocrine neoplasias (MEN) such as MEN 2A, MEN 2B and familial medullary thyroid carcinoma (FMTC) ; pheochromocytoma; parathyroid hyperplasia; and papillary thyroid carcinoma (PTC) .
  • MEN multiple endocrine neoplasias
  • FMTC familial medullary thyroid carcinoma
  • PTC papillary thyroid carcinoma
  • the kinase is a Leucine Rich Repeat Kinase, which is an intracellular Tyr kinase-like (TKL) kinase and GTPase implicated in Parkinson′s disease and Crohn’s disease.
  • TKL Tyr kinase-like
  • GTPase implicated in Parkinson′s disease and Crohn’s disease.
  • Mutations in the LRRK2 gene is the main factor in contributing to the genetic development of Parkinson′s disease, and over 100 mutations in this gene have been shown to increase the chance of PD development. These mutations are most commonly seen in Jewish, North African Arab Berber, Chinese, and Japanese populations. Thus the method of the invention can be used to treat such diseases, particularly in such populations.
  • the anticancer compounds of the invention are preferably formulated in dosage unit form for ease of administration and uniformity of dosage.
  • the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician using routine reliance upon sound medical judgment.
  • the specific therapeutically effective dose level for any particular patient or organism will depend upon a variety of factors including the disorder being treated; the severity of the disorder; the potency of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the route and schedule of administration; the rate of metabolism and/or excretion of the compound; the duration of the treatment; drugs used in combination or coincident with administration of the compound of this invention; and like factors well known in the medical arts.
  • compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by transdermal patch, powders, ointments, or drops) , sublingually, bucally, as an oral or nasal spray, or the like.
  • the amount of compound which will be effective in the treatment or prevention of a particular disorder or condition will depend in part on factors affecting drug dosage.
  • in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges.
  • a rough guide to effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
  • the precise dosage level should be determined by the attending physician or other health care provider and will depend upon well known factors, including route of administration, and the age, body weight, sex and general health of the individual; the nature, severity and clinical stage of the disease; the use (or not) of concomitant therapies; and the nature and extent of genetic engineering of cells in the patient.
  • the effective dosage of the compound of this invention may vary depending upon the particular compound utilized, the mode of administration, the condition, and severity thereof, of the condition being treated, as well as the various physical factors related to the individual being treated.
  • dosages of each of the components of the combination are administered during a desired treatment period.
  • the components of the combination may administered at the same time; either as a unitary dosage form containing both components, or as separate dosage units; the components of the combination can also be administered at different times during a treatment period, or one may be administered as a pretreatment for the other.
  • the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other compounds of the invention or with one or more other agents.
  • the therapeutic agents can be formulated as separate compositions that are administered at the same time or sequentially at different times, or the therapeutic agents can be given as a single composition.
  • the administration of compounds of the present invention may be in conjunction with additional therapies known to those skilled in the art in the prevention or treatment of cancer, such as radiation therapy or cytostatic agents, cytotoxic agents, other anti-cancer agents and other drugs to amerliorate symptoms of the cancer or side effects of any of the drugs.
  • additional therapies known to those skilled in the art in the prevention or treatment of cancer, such as radiation therapy or cytostatic agents, cytotoxic agents, other anti-cancer agents and other drugs to amerliorate symptoms of the cancer or side effects of any of the drugs.
  • Such combination products employ the compounds of this invention within the accepted dosage ranges.
  • Compounds of this invention may also be administered sequentially with other anticancer or cytotoxic agents when a combination formulation is inappropriate.
  • the invention is not limited in the sequence of administration; compounds of this invention may be administered prior to, simulateously with, or after administration of the other anticancer or cytotoxic agent.
  • Typical chemotherapy regime consists of either DNA alkylating agents, DNA intercalating agents, CDK inhibitors, or microtubule poisons.
  • the chemotherapy doses used are just below the maximal tolerated dose and therefore dose limiting toxicities typically include, nausea, vomiting, diarrhea, hair loss, neutropenia and the like.
  • antineoplastic agents there are large numbers of antineoplastic agents available in commercial use, in clinical evaluation and in pre-clinical development, which would be selected for treatment of cancer by combination drug chemotherapy. And there are several major categories of such antineoplastic agents, namely, antibiotic-type agents, alkylating agents, antimetabolite agents, hormonal agents, immunological agents, interferon-type agents and a category of miscellaneous agents.
  • a first family of antineoplastic agents which may be used in combination with compounds of the present invention includes antimetabolite-type/thymidilate synthase inhibitor antineoplastic agents.
  • Suitable antimetabolite antineoplastic agents may be selected from but not limited to the group consisting of 5-FU-fibrinogen, acanthifolic acid, aminothiadiazole, brequinar sodium, carmofur, CibaGeigy CGP-30694, cyclopentyl cytosine, cytarabine phosphate stearate, cytarabine conjugates, Lilly DATHF, Merrel Dow DDFC, dezaguanine, dideoxycytidine, dideoxyguanosine, didox, Yoshitomi DMDC, doxifluridine, Wellcome EHNA, Merck &Co.
  • EX-015 benzrabine, floxuridine, fludarabine phosphate, 5fluorouracil, N- (21-furanidyl) fluorouracil, Daiichi Seiyaku FO-152, isopropyl pyrrolizine, Lilly LY-1 88011, Lilly LY-264618, methobenzaprim, methotrexate, Wellcome MZPES, norspermidine, NCI NSC-127716, NCI NSC-264880, NCI NSC-39661, NCI NSC-612567, Warner-Lambert PALA, pentostatin, piritrexim, plicamycin, Asahi Chemical PL-AC, Takeda TAC788, thioguanine, tiazofurin, Erbamont TIF, trimetrexate, tyrosine kinase inhibitors, Taiho UFT and uricytin.
  • a second family of antineoplastic agents which may be used in combination with compounds of the present invention consists of alkylating-type antineoplastic agents.
  • Suitable alkylating-type antineoplastic agents may be selected from but not limited to the group consisting of Shionogi 254-S, aldo-phosphamide analogues, altretamine, anaxirone, Boehringer Mannheim BBR-2207, bestrabucil, budotitane, Wakunaga CA-102, carboplatin, carmustine, Chinoin-139, Chinoin-153, chlorambucil, cisplatin, cyclophosphamide, American Cyanamid CL-286558, Sanofi CY-233, cyplatate, Degussa D 384, Sumimoto DACHP (Myr) 2, diphenylspiromustine, diplatinum cytostatic, Erba distamycin derivatives, Chugai DWA-2114R, ITI E09
  • a third family of antineoplastic agents which may be used in combination with compounds of the present invention consists of antibiotic-type antineoplastic agents.
  • Suitable antibiotic-type antineoplastic agents may be selected from but not limited to the group consisting of Taiho 4181-A, aclarubicin, actinomycin D, actinoplanone, Erbamont ADR-456, aeroplysinin derivative, Ajinomoto AN II, Ajinomoto AN3, Nippon Soda anisomycins, anthracycline, azino-mycin-A, bisucaberin, Bristol-Myers BL-6859, Bristol-Myers BMY-25067, Bristol-Myers BNY-25551, Bristol-Myers BNY-26605 IBristolMyers BNY-27557, Bristol-Myers BMY-28438, bleomycin sulfate, bryostatin-1, Taiho C-1027, calichemycin, chromoximycin, dactino
  • a fourth family of antineoplastic agents which may be used in combination with compounds of the present invention consists of a miscellaneous family of antineoplastic agents, including tubulin interacting agents, topoisomerase II inhibitors, topoisomerase I inhibitors and hormonal agents, selected from but not limited to the group consisting of (xcarotene, (X-difluoromethyl-arginine, acitretin, Biotec AD-5, Kyorin AHC-52, alstonine, amonafide, amphethinile, amsacrine, Angiostat, ankinomycin, anti-neoplaston A10, antineoplaston A2, antineoplaston A3, antineoplaston A5, antineoplaston AS2-1F Henkel APD, aphidicolin glycinate, asparaginase, Avarol, baccharin, batracylin, benfluron, benzotript, Ipsen-Beaufour BIM-23015, bisantren
  • kits for conveniently and effectively carrying out the methods in accordance with the present invention.
  • the pharmaceutical pack or kit comprises one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
  • kits are especially suited for the delivery of solid oral forms such as tablets or capsules.
  • a kit preferably includes a number of unit dosages, and may also include a card having the dosages oriented in the order of their intended use.
  • a memory aid can be provided, for example in the form of numbers, letters, or other markings or with a calendar insert, designating the days in the treatment schedule in which the dosages can be administered.
  • Optionally associated with such container (s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceutical products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
  • Step 1-1 3- (1H-imidazol-1-yl) -5- (trifluoromethyl) benzenamine.
  • DMSO DMSO
  • 1H-imidazole 700 mg, 1.0 mmol
  • K 2 CO 3 4.2 g, 3.0 mmol
  • 8-oxyquinolin 145 mg, 0.1 mmol
  • CuI 190 mg, 0.1 mmol
  • Step 1-2 N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3-iodo-4-methylbenzamide (intermediate 1) .
  • the solution of 3-iodo-4-methylbenzoic acid (2.8 g, 10.8 mmol) in SOCl 2 (6.37 g, 54 mmol) was stirred at 70 °C for an hour, and concentrated to remove SOCl 2 .
  • Step 2-1 (4-Nitro-2- (trifluoromethyl) phenyl) methanol.
  • 4-nitro-2- (trifluoromethyl) benzoic acid 100 g, 43 mmol
  • Et 3 N 4.3 g, 43 mmol
  • the mixture was cooled to -7 °C, and isobutyl carbonochloridate (59 g, 43 mmol) was added dropwise thereto in 30 minutes.
  • the mixture was stirred for an additional hour at this temperature, and filtered.
  • Step 2-2 1- (Bromomethyl) -4-nitro-2- (trifluoromethyl) benzene.
  • DCM dimethyl sulfoxide
  • CBr 4 105 g, 320 mmol
  • PPh 3 84 g, 320 mmol
  • Step 2-3 1-Methyl-4- (4-nitro-2- (trifluoromethyl) benzyl) piperazine.
  • K 2 CO 3 24 g, 170 mmol
  • 1-methylpiperazine 34 g, 340 mmol
  • Step 2-4 4- ( (4-Methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) aniline.
  • 1-methyl-4- (4-nitro-2- (trifluoromethyl) benzyl) piperazine 42 g, 139 mmol
  • MeOH 500 mL
  • 10%Pd/C 4.5 g, 13.9 mmol
  • Step 3-1 1-Bromo-2-methyl-5-nitro-3- (trifluoromethyl) benzene.
  • nitric acid (2.64 g, 41.84 mmol, 30 mL) in sulfuric acid (80 mL) at 0 °C.
  • the resulting mixture was stirred for 2 hours, quenched with ice-cold water (2 L) and extracted with EA (2 *1 L) .
  • the organic phase was separated, washed with brine (800 mL) dried over anhydrous Na 2 SO 4 , and concentrated in vacuo.
  • Step 3-2 1-Bromo-2- (bromomethyl) -5-nitro-3- (trifluoromethyl) benzene.
  • Step 3-3 1- [ [2-Bromo-4-nitro-6- (trifluoromethyl) phenyl] methyl] -4-methyl-piperazine.
  • Step 3-4 3-Bromo-4- [ (4-methylpiperazin-1-yl) methyl] -5- (trifluoromethyl) aniline.
  • 1- [ [2-bromo-4-nitro-6- (trifluoromethyl) phenyl] methyl] -4-methyl-piperazine (3.5 g, 9.16 mmol) in AcOH (5 mL) was added Iron (5.11 g, 91.58 mmol) at 60 °C.
  • the reaction mixture was stirred for 40 minutes at this temperature under N 2 , and concentrated in vacuo.
  • the residue was suspended in ethyl acetate (200 mL) , and filtered.
  • Step 3-5 3- (1H-imidazol-1-yl) -4- ( (4-methylpiperazin-1-yl) methyl) -5- (trifluoromethyl) aniline.
  • Step 4-1 1- (Bromomethyl) -4-nitro-2- (trifluoromethyl) benzene.
  • NBS N-(2-dichloroethane)
  • AIBN 246.3 mg, 1.50 mmol
  • the reaction mixture was heated at 90 °C overnight. After the reaction was complete monitored by TLC, the mixture was poured into water (100 mL) . The organic layer was separated and the aqueous layer was extracted with DCM (3 *40 mL) .
  • Step 4-2 N, N-dimethyl-1- (4-nitro-2- (trifluoromethyl) benzyl) pyrrolidin-3-amine.
  • 1- (bromomethyl) -4-nitro-2- (trifluoromethyl) benzene (1.82 g, 6.40 mmol) in 40 mL of DCM were added Et 3 N (3.56 mL, 25.60 mmol) and 3- (dimethylamino) pyrrolidine (1.32 g, 7.00 mmol) .
  • the reaction mixture was stirred at room temperature until the reaction was complete monitored by TLC, diluted with DCM (100 mL) and washed with saturated aqueous NaHCO 3 solution (100 mL) .
  • Step 4-3 1- (4-Amino-2- (trifluoromethyl) benzyl) -N, N-dimethylpyrrolidin-3-amine.
  • N N-dimethyl-1- (4-nitro-2- (trifluoromethyl) benzyl) pyrrolidin-3-amine (1.37 g, 4.32 mmol) in 40 mL of MeOH was added Pd/C (130.7 mg, 10%Pd on C) .
  • the reaction mixture was purged thoroughly with H 2 , stirred with hydrogen balloon for 2-3 hours, and filtered through celite.
  • Step 4-4 N- (4- ( (3- (dimethylamino) pyrrolidin-1-yl) methyl) -3- (trifluoromethyl) phenyl) -3-iodo-4-methy lbenzamide (intermediate 9) .
  • Step 5-1 Methyl 3-iodo-4-methylbenzoate.
  • 3-iodo-4-methylbenzoic acid 3.93 g, 15.00 mmol
  • thionyl dichloride 3.30 mL, 45.00 mmol
  • the resulting reaction mixture was stirred at 70 °C for 4 hours, and concentrated in vacuo.
  • the residue was dissolved in ethyl acetate (150 mL) , which was washed with saturated aqueous NaHCO 3 solution (3 *50 mL) .
  • the organic phase was dried over anhydrous MgSO 4 , filtered and concentrated in vacuo to provide the crude methyl 3-iodo-4-methylbenzoate as light yellow oily liquid (4.07 g, 96.7%yield) .
  • Step 5-2 3-Iodo-4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) phenyl) benzamide.
  • methyl 3-iodo-4-methylbenzoate (2.64 g, 9.58 mmol) and 4- ( (4-methylpiperazin-1-yl) methyl) aniline (1.57 g, 7.66 mmol) in anhydrous THF (30 mL) was added potassium tert-butoxide (4.28 g, 38.20 mmol) in anhydrous THF (30 mL) at -20 °C in 3 hours. Then the reaction mixture was slowly warmed to room temperature, stirred for another hour, and poured into ice-water (200 mL) with stirring. The brown precipitate was collected by filtration and dried in vacuo to provide intermediate 10 (2.78 g, 64.6%) .
  • Step 6-1 N- (6-bromopyridazin-3-yl) acetamide.
  • 6-bromopyridazin-3-amine 200.0 mg, 1.15 mmol
  • pyridine 0.37 mL, 4.60 mmol
  • acetyl chloride 0.17 mL, 2.30 mmol
  • the reaction mixture was quenched with saturated aqueous NH 4 Cl solution (50 mL) , and extracted with DCM (3 *20 mL) .
  • the combined organic layers were dried over anhydrous Na 2 SO 4 , filtered, and concentrated to provide the crude intermediate 11 (76.2 %) .
  • Step 7-1 4-Methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) -3- ( (trimethylsilyl) ethynyl) benzamide.
  • 4-dioxane 150 mL
  • CuI 200 mg, 1.05 mmol
  • DIPEA 5.4 g, 42 mmol
  • ethynyltrimethylsilane 2.5 g, 25 mmol
  • Pd (PPh 3 ) 2 Cl 2 737 mg, 1.05 mmol
  • Step 7-2 3-Ethynyl-4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benza mide.
  • 4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) -3- ( (trimethylsilyl) ethynyl) benzamide 5.6 g, 11.5 mmol
  • MeOH 80 mL
  • K 2 CO 3 (4.76 g, 34.5 mmol
  • Step 7-3 3- ( (6-Acetamidopyridazin-3-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benzamide.
  • Step 8-1 N- (5-bromopyridin-2-yl) acetamide.
  • 5-bromopyridin-2-amine 6.06 g, 60 mmol
  • THF 100 mL
  • acetic anhydride 3.12 g, 40 mmol
  • the reaction mixture was stirred at 25 °C for 16 hours, diluted with water (150 mL) , and extracted with EA (3 *120 mL) .
  • the combine organic layers were dried over anhydrous Na 2 SO 4 , filtered and concentrated in vacuo.
  • Step 8-2 tert-Butyl acetyl (5-bromopyridin-2-yl) carbamate (intermediate 16) .
  • N- (5-bromopyridin-2-yl) acetamide 740 mg, 3.5 mmol
  • LiHMDS 4.2 mL, 4.2 mmol
  • Boc 2 O 916 mg, 4.2 mmol
  • the reaction mixture was stirred at 25 °C for 3 hours, diluted with water (50 mL) , and extracted with EA (3 *40 mL) .
  • the combined organic layers were dried over anhydrous Na 2 SO 4 , filtered and concentrated in vacuo.
  • LCMS: (M+H) + 337.0.
  • Step 7-3 To the solution of tert-butyl acetyl (5- ( (2-methyl-5- ( (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) carba moyl) phenyl) ethynyl) pyridin-2-yl) carbamate (52 mg, 0.08 mmol) in DCM (10 mL) was added TFA (1 mL) .
  • Step 9-1 5- (2-Trimethylsilylethynyl) pyrazin-2-amine.
  • Step 9-2 5-Ethynylpyrazin-2-amine.
  • 5- (2-trimethylsilylethynyl) pyrazin-2-amine 3 g, 15.68 mmol
  • K 2 CO 3 4.34 g, 31.36 mmol
  • the reaction mixture was stirred at 15 °C for 12 hours, and diluted with EA (100 mL) .
  • the organic layer was separated, and the aqueous layer was extracted with EA (2 *150 mL) .
  • the combined organic phases were washed with brine (100 mL) , dried over anhydrous Na 2 SO 4 , filtered and concentrated in vacuo.
  • Step 9-3 3- [2- (5-Aminopyrazin-2-yl) ethynyl] -N- [3-imidazol-1-yl-5- (trifluoromethyl) phenyl] -4-methyl -benzamide.
  • Step 9-4 N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (5- (2-methoxy-acetamido) pyrazin-2-yl) ethynyl) -4-methylbenzamide.
  • Step 10-1 1H-imidazol-4-yl (pyrrolidin-1-yl) methanone.
  • Step 10-2 4- (Pyrrolidin-1-ylmethyl) -1H-imidazole (intermediate 17) .
  • 1H-imidazol-4-yl (pyrrolidin-1-yl) methanone 1.5 g, 9.08 mmol
  • LiAlH 4 1.72 g, 45.40 mmol
  • the resulting mixture was stirred for 5 hours at 60°C under N 2 , cooled, and quenched with ice-cold water (20 mL) .
  • the mixture was extracted with EtOAc (3 *20 mL) .
  • Step 11-1 N- (6- ( (trimethylsilyl) ethynyl) pyridazin-3-yl) acetamide.
  • Step 11-2 N- (6-ethynylpyridazin-3-yl) acetamide.
  • the mixture of crude N- (6- ( (trimethylsilyl) ethynyl) pyridazin-3-yl) acetamide and K 2 CO 3 (165.8 mg, 1.20 mmol) in methanol (6 mL) was stirred at room temperature for an hour and then filtered. The filtrate was concentrated, and the residue was purified by flash column chromatography on silica gel to provide N- (6-ethynylpyridazin-3-yl) acetamide.
  • Step 11-3 N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (6-acetamidopyridazin-3-yl) ethynyl) -4-methylbenzamide.
  • Step 12-1 3- (4, 4, 5, 5-Tetramethyl-1, 3, 2-dioxaborolan-2-yl) -5- (trifluoromethyl) aniline.
  • Step 12-2 3- (1-Methylimidazol-2-yl) -5- (trifluoromethyl) aniline.
  • Step 12-3 3- [2- (2-Aminopyrimidin-5-yl) ethynyl] -4-methyl-N- [3- (1-methylimidazol-2-yl) -5- (trifluorom ethyl) phenyl] benzamide.
  • the mixture of 3- (1-methylimidazol-2-yl) -5- (trifluoromethyl) aniline (98 mg, 406.28 ⁇ mol) , intermediate 19 (102.89 mg, 406.28 ⁇ mol) , DIPEA (210.04 mg, 1.63 mmol) , and HATU (310.60 mg, 812.56 ⁇ mol) in DMF (3 mL) was stirred for 16 hours at 25 °C.
  • the reaction mixture was purified by Pre-HPLC (10 mM NH 4 HCO 3 /MeCN) to provide 3- [2- (2-aminopyrimidin-5-yl) ethynyl] -4-methyl-N- [3- (1-methylimidazol-2-yl) -5- (trifluorome thyl) phenyl] benzamide (50 mg, 104.94 ⁇ mol) as white solid.
  • LCMS: (M+H) + 477.0.
  • Step 4-4 3- [2- [2- (Cyclopropanecarbonylamino) pyrimidin-5-yl] ethynyl] -4-methyl-N- [3- (1-methylimid azol-2-yl) -5- (trifluoromethyl) phenyl] benzamide.
  • Step 13-1 3- (3, 6-Dihydro-2H-pyran-4-yl) -5- (trifluoromethyl) aniline. Under nitrogen atmosphere, to a mixture of 3-bromo-5- (trifluoromethyl) aniline (1 g, 4.17 mmol) , 2- (3, 6-dihydro-2H-pyran-4-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane (875.25 mg, 4.17 mmol) and sodium carbonate (883.16 mg, 8.33 mmol) in water (4 mL) and THF (20 mL) was added Pd (dppf) Cl 2 ⁇ CH 2 Cl 2 (304.85 mg, 416.63 ⁇ mol) .
  • Step 13-2 3-Tetrahydropyran-4-yl-5- (trifluoromethyl) aniline.
  • the mixture of 3- (3, 6-dihydro-2H-pyran-4-yl) -5- (trifluoromethyl) aniline (0.4 g, 1.64 mmol) and palladium on carbon (40.00 mg) in methanol (10 mL) was stirred at 25 °C for 3 hours, and filtered through celite. The filtrate was concentrated to provide crude 3-tetrahydropyran-4-yl-5- (trifluoromethyl) aniline (0.38 g, crude) .
  • LCMS: (M+H) + 246.1.
  • Step 13-3 and 13-4 are the same as Method 12 of Example 57, Step 12-3 and Step 12-4.
  • LCMS: (M+H) + 549.0.
  • Ba/F3 is a murine interleukin-3 (IL-3) dependent pro-B cell line that has been used as a model system for assessing both the potency and downstream signaling of kinase oncogenes, and the ability of small-molecule kinase inhibitors to block kinase activity.
  • IL-3 murine interleukin-3
  • Ba/F3 cells have recently been adapted to high-throughput assay formats for compound profiling. Further, several published approaches show promise in predicting resistance to small-molecule kinase inhibitors elicited by point mutations interfering with inhibitor binding.
  • Ba/F3 cells (transformed with WT or T315I mutation of Bcr-Abl) were harvested during the logarithmic growth period and counted. ⁇ 2000 cells were added as suspensions to each well of 96-well plates and incubated at 37°C, 5%CO 2 . Serial dilutions of each test compound, with top concentration of 10uM or 0.2uM by 2 or 3 fold, were prepared and dispensed in each well (triplicates for each concentration) . The plate was then incubated for 72hrs in humidified incubator at 37°C with 5%CO 2 .
  • CTG CELL Luminescent Cell Viability kit, Cat. No.: G7572, Promega
  • TAREA0011 EnVision Multi Label Reader 2104-0010A, PerkinElmer, USA
  • the CELL Luminescent Cell Viability Assay is a homogeneous method of determining the number of viable cells in culture based on quantitation of the ATP present, an indicator of metabolically active cells. The amount of ATP is directly proportional to the number of cells present in culture. Thus this assay measures the number of cells over time in the presence of various amounts of the test compounds.
  • IC 50 values of certain representative compounds of the invention in terms of anti-proliferate activity against cells harboring the wild-type or T315I mutant form of Bcr-Abl kinase are listed in Table 1.
  • Human umbilical vein endothelial cells are cells derived from the endothelium of veins from the umbilical cord. They are used as a laboratory model system for the study of the function and pathology of endothelial cells, such as angiogenesis.
  • HUVEC cells Allcells, Cat. #: H-001F grown in cell growth medium (Cat. #: H-004) were harvested during the logarithmic growth period and counted. ⁇ 3000 HUVEC cells were added as suspensions to each well of 96-well plates and incubated at 37°C, 5%CO 2 . Serial dilutions of each test compound were prepared and dispensed in each well (triplicates for each concentration) . The plate was incubated for 72 hrs in humidified incubator at 37°C with 5%CO 2 .
  • CTG Cell Luminescent Cell Viability kit, Cat. No.: G7572, Promega
  • TAREA0011 EnVision Multi Label Reader 2104-0010A, PerkinElmer, USA
  • kinase assays were performed at Nanosyn on the Caliper platform. Briefly, test compounds were diluted in 100%DMSO using 3-fold serial dilution. Final compound concentration in the assays ranged from 10 ⁇ M to 0.0565 nM. Compounds were tested in a single well for each dilution, and the final concentration of DMSO in all assays was kept at 1%. Protein concentration in kinase assay was 0.4 nM, 0.3 nM, 9 nM, 0.25 nM and 5 nM for ABL, T315I ABL, DDR2, KDR and KIT, respectively, with substrate concentration of 1 ⁇ M. Compound incubation time with protein kinase was 3 minutes for all the listed kinases, with the exception of KIT, which incubation time was 17 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

This invention described herein relates to compounds of general formula (I) : (I), in which variable groups are as defined herein, and to their preparation and use. Uses for the compounds and for compositions containing them include treatment of cancer and other diseases mediated by protein kinases, such as Bcr-Abl kinase, and mutants thereof, such as the T315I mutant.

Description

KINASE INHIBITORS AND USES THEREOF BACKGROUND OF THE INVENTION
Sixty years ago, collaboration between a Ph. D. student (David Hungerford) from Fox Chase Cancer Center and a pathologist (Peter Nowell) from the UPenn School of Medicine led to the discovery of the Philadelphia (Ph) Chromosome from the blood cells of a patient with a specific type of leukemia. The reciprocal chromosome 9 /chromosome 22 translocation was subsequently named after the city in which both institutions are located.
The Philadelphia Chromosome was the first genetic defect linked with a specific human cancer. The translocation fused the Abelson Tyrosine Kinase (ABL1) gene of chromosome 9 to the breakpoint cluster region (BCR) gene of chromosome 22. The resulting fusion gene is known as BCR-ABL1. It encodes a hybrid protein having a constitutively active ABL1 tyrosine kinase activity. This in turn leads to uncontrollable cell division due to interrupted genome stability and impaired signaling pathways (e.g., JAK/STAT, Ras/MAPK/ERK, and DNA binding and apoptosis) governing cell cycle.
Nearly all (about 95%) cases of chronic myeloid leukemia (CML) are positive for BCR-ABL1, and thus the presence of this translocation is a highly sensitive test for CML. However, the presence of the Philadelphia chromosome is not sufficiently specific to diagnose CML, since it is also found in acute lymphoblastic leukemia (ALL, 25-30%of adult cases and 2-10%of pediatric cases) and occasionally in acute myelogenous leukemia (AML) , as well as mixed-phenotype acute leukemia (MPAL) .
In the late 1990s, STI-571 (imatinib) was identified by Novartis (then Ciba Geigy) in high-throughput screens for tyrosine kinase inhibitors. STI-571 was found to inhibit the Abl kinase domain, and subsequent clinical trials demonstrated that STI-571 inhibits proliferation of BCR-ABL-expressing hematopoietic cells. Imatinib mesylate was marketed in 2001 by Novartis as Gleevec in the US, Glivec in Europe.
Imatinib was the first marketed Bcr-Abl inhibitor, and was hailed as “the magic bullet” to cure cancer by TIME magazine, because no drugs were available to alter the natural progression of CML prior to 2001. Since 2001, imatinib and many other rationally designed Bcr-Abl tyrosine-kinase inhibitors (TKI) have been used as first-and second-line therapies, respectively, for most patients with chronic myelogenous leukemia (CML) , because >90%of CML cases are caused by the Philadelphia chromosome.
Figure PCTCN2019081705-appb-000001
Shortly after the introduction of imatinib, however, investigators began to describe a number of in vitro derived cell lines with resistance to imatinib. This was rapidly followed by the clinical description of imatinib resistant cells in patients. Such resistance generally falls into two categories -Bcr-Abl dependent and independent mechanisms. Thus overcoming drug resistance soon became a main drive in identifying additional Bcr-Abl TKI.
Bcr-Abl independent mechanisms include factors influencing the concentration of imatinib within the cell, for example by alterations in drug influx and effiux and activation of Bcr-Abl independent pathways, such as members of the Src kinase family.
Bcr-Abl dependent mechanisms include over expression or amplification of the Bcr-Abl gene and point mutations within the Bcr-Abl kinase domain that interfere with imatinib binding. Certain point mutations occur inside the kinase domain of the Bcr-Abl protein and disrupt the binding site of imatinib, resulting in a loss of sensitivity to the drug. These mutations normally affect the structure of the Bcr-Abl protein, leading either to interruption of critical contact points between the drug and the Bcr-Abl protein or induction of a conformational change, resulting in a protein that imatinib is unable to bind to.
The most important mutations are the P-loop mutations and the T315I mutation, though mutations on other sites (e.g., those on the C-helix, SH2 domain, substrate binding site, activation loop and C-terminal lobe) have also been reported.
The ATP-binding P-loop and the activation loop are two flexible loops in Bcr-Abl. Mutations in these loops destabilize arrangement of the loops such that the kinase domain cannot assume the inactive conformation required for imatinib binding. Mutations in the P-loop region are the most common, accounting for 36-48%of all mutations. Clinical data indicates that the P-loop mutation is 70-100 fold less sensitive to imatinib compared with  native Bcr-Abl.
The T315I is a unique mutation because of its resistance to almost all approved Bcr-Abl inhibitors. It is caused by a single cytosine to thymine (C→T) base pair substitution at position 944 of the Abl gene (codon “315” of the Abl protein) sequence resulting in amino acid (T) hreonine being substituted by (I) soleucine at that position -thus “T315I. ” This substitution eliminates a critical oxygen atom needed for hydrogen bonding between imatinib and the Abl kinase domain, and also creates steric hindrance to the binding of most TKIs. When discovered, it was estimated that every 6 out of 9 cases of advanced stage CML with imatinib resistance carried this mutation. T315I produces the highest magnitude of resistance of any mutation both to imatinib and rationally designed second generation TKIs described below.
Nilotinib is a selective Bcr-Abl kinase inhibitor structurally related to imatinib. Small changes were made on the imatinib molecule to make it more potent and selective -about 10-30 fold more potent than imatinib in inhibiting Bcr-Abl and proliferation of Bcr-Abl expressing cells. Synergistic activity of imatinib and nilotinib has been reported, which may be because the drugs are taken up in cells by different mechanisms. Resistance to nilotinib is associated with a limited spectrum of Bcr-Abl kinase mutations that mostly affect the P-loop and T315I. Increasing nilotinib concentration can effectively suppress nearly all mutations, except T315I.
Figure PCTCN2019081705-appb-000002
Dasatinib is a multi-targeted inhibitor of Bcr-Abl and Src family kinases. It was discovered with a program directed towards immunosuppressive drugs, and is 325-fold more potent against cells expressing wild type Bcr-Abl than imatinib. Unlike most other Bcr-Abl TKIs, which bind to the inactive kinase, Dasatinib binds both the active and inactive  conformation of Abl kinase. It has some structural elements in common with nilotinib. Because dasatinib does not bind to Bcr-Abl with the same stringent conformational requirements as imatinib, it can inhibit all Bcr-Abl kinase domain mutants, except for T315I.
Figure PCTCN2019081705-appb-000003
Bosutinib has a quinoline scaffold and is structurally related to the AstraZeneca quinazoline template. It was initially identified as a Src kinase inhibitor in 2001, but was found to be slightly more potent against Abl than Src (IC 50 1.4 nM vs. 3.5 nM) in 2003. Bosutinib inhibits Src, Abl and a wide range of both tyrosine and serine-threonine kinases. Bosutinib inhibited cells expressing a variety of mutations, some of which led to imatinib resistance, but the T315I mutation was completely resistant to bosutinib.
Figure PCTCN2019081705-appb-000004
Bafetinib was discovered by attempts to create a more potent drug than imatinib, with efficacy against various point mutations in the Bcr-Abl kinase, fewer adverse effects, and narrower kinase spectra, namely just Lyn and Bcr-Abl. Due to the structural similarities of imatinib and bafetinib, their binding to Bcr-Abl is quite similar. Bafetinib has unrivalled specificity in that it only targets Bcr-Abl and Src family kinases Lck and Lyn. It has higher affinity for Bcr-Abl than nilotinib (but less than dasatinib) , and is effective against most imatinib resistant mutations and some dasatinib resistant mutations. However, Bafetinib is not effective against the T315I mutation.
Figure PCTCN2019081705-appb-000005
So far, the only FDA approved Bcr-Abl TKI that is still effective against the T315I mutation is Ponatinib (Iclusig, by Ariad Pharmaceuticals) , which was approved in 2013 as a second-line CML treatment TKI. Ponatinib is a potent drug and targets not only most of the known mutations on the Bcr-Abl TK but, most importantly of all, the T315I mutation, which is emerging as a common pathway to failure of both first and second line treatments. Meanwhile, ponatinib does not target Aurora kinases.
The US FDA approved ponatinib in December 2012 under the FDA Accelerated Approval program. Based on additional studies, the FDA granted in 2016 full approval and label update to ponatinib (Iclusig) for patients with chronic phase, accelerated phase, or blast phase chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia for whom no other tyrosine kinase inhibitor therapy is indicated. Approval was also granted for T315I-positive and T315I-positive Philadelphia chromosome positive acute lymphoblastic leukemia (ALL) .
Figure PCTCN2019081705-appb-000006
The US FDA issued a partial clinical hold on new trial enrollment for ponatinib on October 9, 2013, and temporarily suspended sales on October 31, 2013, due to an increased number of blood clots (e.g., arterial thrombosis, venous thrombosis) observed in patients taking the drug and “the risk of life-threatening blood clots and severe narrowing of blood vessels. ” This suspension was partially lifted on December 20, 2013, with ponatinib being issued revised prescribing information, a new “Black Box Warning” and a “Risk Evaluation and Mitigation Strategy” in place to better evaluate the risks and benefits of using the drug.
Studies of 449 patients treated during 4 years with ponatinib for chronic phase chronic myelogenous leukemia found numerous adverse reactions, many associated with the cardiovascular system. 150 Patients experienced cardiac vascular (21%of patients) , peripheral vascular (12%) , and cerebrovascular (9%) arterial occlusive events. Venous thromboembolic events occurred in 6%of patients. The most common all-grade adverse events included hypertension (69%) , rash (63%) , abdominal pain (48%) , fatigue (47%) , headache (43%) , arterial ischemia (42%) , dry skin (42%) , constipation (41%) , arthralgia (32%) , nausea (28%) , pyrexia (26%) , peripheral neuropathy (24%) , myalgia (24%) , pain in extremity (23%) , back pain (21%) , and diarrhea (20%) .
Thus, there remains a need for further development of additional Bcr-Abl TKIs for treating diseases associated therewith, including CML.
SUMMARY OF THE INVENTION
Described herein are compounds of Formulae (I) , (II) , (III) , (IV-a) , (IV-b) , (IV-c) , (IV-d) and (IV-e) , and the compounds of Table 1 (collectively referred to herein as “the compounds of the invention” ) , that inhibit the activity of a kinase including (but not limited to) : a Src family non-receptor Tyr kinase (such as SrcA subfamily kinases including FGR, FYN, SRC and YES; SrcB subfamily including BLK, HCK, LCK and LYN; and SRM subfamily including SRM and BRK) , a FGF-R (such as FGFR1-FGFR4, FGFRL1, and FGFR6) , a VEGF-R (such as VEGF-R 1 (FLT-1) , VEGF-R2 (KDR) , or VEGF-R3 (FLT-4) ) , a PDGF-R (such as PDGFRa and PDGFRb) , a Kit (such as KIT, FLT-3, and fms/CSF1R) , an EGFR (such as ErbB-1/HER1, ErbB-2/HER2/neu, ErbB-3/HER3, and ErbB-4/HER4) , an Abl kinase (including Bcr-Abl) , a Discoidin Domain Receptor kinase (such as DDR1 and DDR2) , a Ret kinase, and/or a Leucine Rich Repeat Kinase (such as LRRK2) , and pharmaceutically acceptable salts thereof.
In one embodiment, the invention provides a compound of Formula (I) or a pharmaceutically acceptable salt thereof:
Figure PCTCN2019081705-appb-000007
wherein R 12, R a, R b, X-Z, ring A, ring B, m, n, and L are as defined herein.
In one embodiment, the compound or pharmaceutically acceptable salt thereof is selected from the compounds of Table 1.
Also provided are pharmaceutical compositions comprising the compounds of the invention, or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
The present disclosure further provides a method of treating cancer in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of (1) the compound of the invention or a pharmaceutically acceptable salt thereof; (2) a pharmaceutically acceptable composition comprising the compound of the invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
In certain embodiments of the methods of the invention, the cancer can be treated by inhibiting the activity of a kinase including (but not limited to) : a Src family non-receptor Tyr kinase (such as SrcA subfamily kinases including FGR, FYN, SRC and YES; SrcB subfamily including BLK, HCK, LCK and LYN; and SRM subfamily including SRM and BRK) , a FGF-R (such as FGFR1-FGFR4, FGFRL1, and FGFR6) , a VEGF-R (such as VEGF-R 1 (FLT-1) , VEGF-R2 (KDR) , or VEGF-R3 (FLT-4) ) , a PDGF-R (such as PDGFRa and PDGFRb) , a Kit (such as KIT, FLT-3, and fms/CSF1R) , an EGFR (such as ErbB-1/HER1, ErbB-2/HER2/neu, ErbB-3/HER3, and ErbB-4/HER4) , an Abl kinase (including Bcr-Abl) , a Discoidin Domain Receptor kinase (such as DDR1 and DDR2) , a Ret kinase, and/or a Leucine Rich Repeat Kinase (such as LRRK2) .
In certain embodiments of the methods of the invention, the cancer is a solid tumor (e.g., breast, colon, pancreatic, GIST, head and neck cancer, etc. ) , or a leukemia, including leukemia and solid tumor which are resistant or refractory to other treatment (such as resistant to treatment with Gleevec or another kinase inhibitor) .
The present disclosure also provides a method of treating leukemia in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of (1) the compound of the invention or a pharmaceutically acceptable salt thereof; (2) a pharmaceutically acceptable composition comprising the compound of the invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
The present disclosure further provides a method of treating chronic myeloid leukemia (CML) in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of (1) the compound of the invention or a pharmaceutically acceptable salt thereof; (2) a pharmaceutically acceptable composition comprising the compound of the invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
The present disclosure also provides a method of treating Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ALL) in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of (1) the compound of the invention or a pharmaceutically acceptable salt thereof; (2) a pharmaceutically acceptable composition comprising the compound of the invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
The present disclosure also provides a use of the compound of the invention or a pharmaceutically acceptable salt thereof or a pharmaceutical composition comprising the same  in any of the methods of the invention described above. In one embodiment, provided is the compound of the invention or a pharmaceutically acceptable salt thereof or a pharmaceutical composition comprising the same for use in any of the method of the invention described above. In another embodiment, provided is use of the compound of the invention or a pharmaceutically acceptable salt thereof or a pharmaceutical composition comprising the same for the manufacture of a medicament for any of the method of the invention described.
DETAILED DESCRIPTION OF THE INVENTION
1. Overview
The invention provides compounds having a broad range of biological and pharmacological activities useful in preparing pharmaceutical compositions and in methods for treating a variety of diseases, including e.g., metabolic disorders, bone diseases (e.g., osteoporosis, Paget’s Disease, etc. ) , inflammation (including rheumatoid arthritis, among other inflammatory disorders) and cancer (including solid tumors and leukemia, especially those mediated by one or more kinases such as Src or KDR, or by dysregulation of a kinase such as Abl and mutant variants thereof such as Bcr-Abl and/or T315I mutant thereof) , including, among others, advanced cases and cases which are resistant or refractory to one or more other treatments, such as resistant or refractory or relapsed disease previously treated by one or more tyrosine kinase inhibitors (TKIs) . Such TKIs may include one or more of Imatinib, Nilotinib, Dasatinib, Bosutinib, Bafetinib, and Ponatinib.
In certain embodiments, the compounds of the invention are less toxic to endothelial cells compared to ponatinib, such as Human Umbilical Vein Endothelial Cells (HUVECs) . The toxicity of the subject compounds can be measured using any art recognized methods, such as the assay generally described in the biological examples of the Example section below (incorporated herein by reference) .
In certain embodiments, the compounds of the invention have at least one reduced side effect or adverse event compared to ponatinib, such as a reduced side effect or adverse event in cardiovascular system.
The invention also provides a composition (e.g., a pharmaceutical composition) comprising at least one compound of the invention or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable excipient or additive. An effective amount of such compositions can be administered to a subject in need thereof to inhibit the growth, development and/or metastasis of cancers, including solid tumors (e.g., breast, colon,  pancreatic, CNS and head and neck cancers, among others) and various forms of leukemia, including leukemia and other cancers which are resistant to other treatment, including those which are resistant to treatment with Gleevec or another kinase inhibitor, and generally for the treatment and prophylaxis of diseases or undesirable conditions mediated by one or more kinases which are inhibited by a compound of this invention.
The invention also provides a method of cancer treatment comprising administering (as a monotherapy or in combination with one or more other anti-cancer agents, one or more agents for ameliorating side effects, radiation, etc. ) a therapeutically effective amount of a compound of the invention to a human or animal in need thereof, in order to inhibit, slow or reverse the growth, development or spread /metastasis of cancer, including solid tumors or other forms of cancer such as leukemia, in the recipient. Such administration constitutes a method for the treatment or prophylaxis of diseases mediated by one or more kinases inhibited by one of the disclosed compounds or a pharmaceutically acceptable derivative thereof.
In certain embodiments, the various cancers which may be treated are noted elsewhere herein and include, among others, cancers which are or have become resistant to another anticancer agent such as Gleevec, Iressa, Tarceva or one of the other agents noted herein. Treatment may be provided in combination with one or more other cancer therapies, include surgery, radiotherapy (e.g., gamma-radiation, neutron beam radiotherapy, electron beam radiotherapy, proton therapy, brachytherapy, and systemic radioactive isotopes, etc. ) , endocrine therapy, biologic response modifiers (e.g., interferons, interleukins, and rumor necrosis factor (TNF) to name a few) , hyperthermia, cryotherapy, agents to attenuate any adverse effects (e.g., antiemetics) , and other cancer chemotherapeutic drugs. The other agent (s) may be administered using a formulation, route of administration and dosing schedule the same or different from that used with the compound of this invention.
Such other drugs include but not limited to one or more of the following: an anti-cancer alkylating or intercalating agent (e.g., mechlorethamine, chlorambucil, Cyclophosphamide, Melphalan, and Ifosfamide) ; antimetabolite (e.g., Methotrexate) ; purine antagonist or pyrimidine antagonist (e.g., 6-Mercaptopurine, 5-Fluorouracil, Cytarabile, and Gemcitabine) ; spindle poison (e.g., Vinblastine, Vincristine, Vinorelbine and Paclitaxel) ; podophyllotoxin (e.g., Etoposide, Irinotecan, Topotecan) ; antibiotic (e.g., Doxorubicin, Bleomycin and Mitomycin) ; nitrosourea (e.g., Carmustine, Lomustine) ; inorganic ion (e.g., Cisplatin, Carboplatin, Oxaliplatin or oxiplatin) ; enzyme (e.g., Asparaginase) ; hormone (e.g., Tamoxifen, Leuprolide, Flutamide and Megestrol) ; mTOR inhibitor (e.g., Sirolimus (rapamycin) ,  Temsirolimus (CC1779) , Everolimus (RAD001) , AP23573 or other compounds disclosed in U.S. Pat. No. 7,091,213) ; proteasome inhibitor (such as Velcade, another proteasome inhibitor (see e.g., WO 02/096933) or another NF-kB inhibitor, including, e.g., an IkK inhibitor) ; other kinase inhibitors (e.g., an inhibitor of Src, BRC/Abl, KDR, flt3, aurora-2, glycogen synthase kinase 3 ( “GSK-3” ) , EGF-R kinase (e.g., Iressa, Tarceva, etc. ) , VEGF-R kinase, PDGF-R kinase, etc) ; an antibody, soluble receptor or other receptor antagonist against a receptor or hormone implicated in a cancer (including receptors such as EGFR, ErbB2, VEGFR, PDGFR, and IGF-R; and agents such as Herceptin, Avastin, Erbitux, etc. ) ; etc. For a more comprehensive discussion of updated cancer therapies see the NCBI website at NIH, a list of the FDA approved oncology drugs at the US FDA website, and The Merck Manual, Seventeenth Ed. 1999, the entire contents of which are hereby incorporated by reference.
Examples of other therapeutic agents are noted elsewhere herein and include among others, Zyloprim, alemtuzmab, altretamine, amifostine, nastrozole, antibodies against prostate-specific membrane antigen (such as MLN-591, MLN591RL and MLN2704) , arsenic trioxide, bexarotene, bleomycin, busulfan, capecitabine, Gliadel Wafer, celecoxib, chlorambucil, cisplatin-epinephrine gel, cladribine, cytarabine liposomal, daunorubicin liposomal, daunorubicin, daunomycin, dexrazoxane, docetaxel, doxorubicin, Elliott’s B Solution, epirubicin, estramustine, etoposide phosphate, etoposide, exemestane, fludarabine, 5-FU, fulvestrant, gemcitabine, gemtuzumab-ozogamicin, goserelin acetate, hydroxyurea, idarubicin, idarubicin, Idamycin, ifosfamide, imatinib mesylate, irinotecan (or other topoisomerase inhibitor, including antibodies such as MLN576 (XRl1576) ) , letrozole, leucovorin, leucovorin levamisole, liposomal daunorubicin, melphalan, L-PAM, mesna, methotrexate, methoxsalen, mitomycin C, mitoxantrone, MLN518 or MLN608 (or other inhibitors of the flt-3 receptor tyrosine kinase, PDFG-R or c-kit) , itoxantrone, paclitaxel, Pegademase, pentostatin, porfimer sodium, Rituximab
Figure PCTCN2019081705-appb-000008
talc, tamoxifen, temozolamide, teniposide, VM-26, topotecan, toremifene, 2C4 (or other antibody which interferes with HER2-mediated signaling) , tretinoin, ATRA, valrubicin, vinorelbine, or pamidronate, zoledronate or another bisphosphonate.
This invention further comprises the preparation of a compound of any of Formulae (I) , (II) , (III) , (IV-a) , (IV-b) , (IV-c) , (IV-d) and (IV-e) of this invention.
The invention also comprises the use of a compound of the invention, or a pharmaceutically acceptable derivative thereof, in the manufacture of a medicament for the treatment either acutely or chronically of cancer (including leukemia and solid tumors, primary  or metastatic, including cancers such as noted elsewhere herein and including cancers which are resistant or refractory to one or more other therapies) . The compounds of this invention are useful in the manufacture of an anti-cancer medicament. The compounds of the present invention are also useful in the manufacture of a medicament to attenuate or prevent disorders through inhibition of one or more kinases such as Src, KDR, abl. etc.
Other disorders which may be treated with a compound of this invention include metabolic disorders, inflammatory disorders and osteoporosis and other bone disorders. In such cases the compound of this invention may be used as a monotherapy or may be administered in conjunction with administration of another drug for the disorder, e.g., a bisphosphonate in the case of osteoporosis or other bone-related illnesses.
This invention further encompasses a composition comprising a compound of the invention, including a compound of any of the described classes or subclasses, including those of any of the formulas noted above, among others, preferably in a therapeutically-effective amount, in association with a least one pharmaceutically acceptable carrier, adjuvant or diluent.
Compounds of this invention are also useful as standards and reagents for characterizing various kinases, especially but not limited to KDR and Src family kinases, as well as for studying the role of such kinases in biological and pathological phenomena; for studying intracellular signal transduction pathways mediated by such kinases, for the comparative evaluation of new kinase inhibitors; and for studying various cancers in cell lines and animal models.
With the general aspects of the invention broadly described, the detailed aspects and embodiments of the invention are described in the sections below. It should be understood that any one embodiment or aspect of the invention, including those only described in one section or only in the examples or claims, can be combined with any one or more additional such embodiments, unless explicitly disclaimed or is improper.
2. Definitions
The term “halo” as used herein means halogen and includes chloro, fluoro, bromo and iodo.
The term “alkyl” used alone or as part of a larger moiety, such as “alkoxy” or “haloalkyl” and the like, means saturated aliphatic straight-chain or branched monovalent hydrocarbon radical. Unless otherwise specified, an alkyl group typically has 1-4 carbon atoms, i.e. (C 1-C 4) alkyl. As used herein, a “ (C 1-C 4) alkyl” group means a radical having from 1 to 4  carbon atoms in a linear or branched arrangement. Examples include methyl, ethyl, n-propyl, iso-propyl, and the like.
The term “alkoxy” means an alkyl radical attached through an oxygen linking atom, represented by -O-alkyl. For example, “ (C 1-C 4) alkoxy” includes methoxy, ethoxy, propoxy, and butoxy.
The terms “haloalkyl” and “haloalkoxy” means alkyl or alkoxy, as the case may be, substituted with one or more halogen atoms. Examples of haloalkyl, include, but are not limited to, trifluoromethyl, trichloromethyl, pentafluoroethyl and the like.
The term “carbocyclyl” or “carbocyclic” refers to a radical of a non-aromatic monocyclic, bicyclic, or tricyclic or polycyclic hydrocarbon ring system having from 3 to 14 ring carbon atoms ( “C 3-14 carbocyclyl” ) and zero heteroatoms in the non-aromatic ring system. Carbocyclyl groups include fully saturated ring systems (e.g., cycloalkyls) , and partially saturated ring systems. In some embodiments, a carbocyclyl group has 3 to 10 ring carbon atoms ( “C 3-10 carbocyclyl” ) .
The term “cycloalkyl” as employed herein includes saturated cyclic, bicyclic, tricyclic, or polycyclic hydrocarbon groups having 3 to 14 carbons containing the indicated number of rings and carbon atoms (for example a C 3-C 14 monocyclic, C 4-C 14 bicyclic, C 5-C 14 tricyclic, or C 6-C 14 polycyclic cycloalkyl) . In some embodiments “cycloalkyl” is a monocyclic cycloalkyl. Examples of monocyclic cycloalkyl groups include cyclopentyl (C 5) , cyclohexyl (C 5) , cyclopropyl (C 3) cyclobutyl (C 4) , cycloheptyl (C 7) and cyclooctyl (C 8) . In some embodiments “cycloalkyl” is a bicyclic cycloalkyl. Examples of bicyclic cycloalkyls include bicyclo [1.1.0] butane (C 4) , bicyclo [1.1.1] pentane (C 5) , spiro [2.2] pentane (C 5) , bicyclo [2.1.0] pentane (C 5) , bicyclo [2.1.1] hexane (C 6) , bicyclo [3.3.3] undecane (C 11) , decahydronaphthalene (C 10) , bicyclo [4.3.2] undecane (C 11) , spiro [5.5] undecane (C 11) and bicyclo [4.3.3] dodecane (C 12) . In some embodiments “cycloalkyl” is a tricyclic cycloalkyl. Examples of tricyclic cycloalkyls include adamantine (C 12) . Unless otherwise described, a “cycloalkyl” has from three to six carbon atoms.
The term “aryl group” used alone or as part of a larger moiety as in “aralkyl” , “aralkoxy” , or “aryloxyalkyl” , means a carbocyclic aromatic ring. The term “aryl” may be used interchangeably with the terms “aryl ring” “carbocyclic aromatic ring” , “aryl group” and “carbocyclic aromatic group” . An aryl group typically has six to fourteen ring atoms. Examples includes phenyl, naphthyl, anthracenyl, 1, 2-dihydronaphthyl, 1, 2, 3, 4-tetrahydronaphthyl, fluorenyl, indanyl, indenyl and the like. A “substituted aryl group”  is substituted at any one or more substitutable ring atom, which is a ring carbon atom bonded to a hydrogen.
The term “heterocyclyl group” or “heterocyclic group” means a monocyclic, non-aromatic ring with 3 to 10-members containing from 1-4 ring heteroatoms or a polycyclic ring with ring with 7 to 20-members and from 1 to 4 ring heteroatoms, wherein the polycyclic ring having one or more monocyclic non-aromatic heterocyclic ring fused with one or more aromatic or heteroaromatic ring. Each heteroatom is independently selected from nitrogen, quaternary nitrogen, oxidized nitrogen (e.g., NO) ; oxygen; and sulfur, including sulfoxide and sulfone. In one embodiment, the heterocyclyl group is a bicyclic ring having a monocyclic non-aromatic heterocyclic ring fused with a phenyl group. Exemplary polycyclic heterocyclic group includes tetrahydroisoquinolinyl (such as 1, 2, 3, 4-tetrahydroisoquinolin-7-yl, 2-methyl-1, 2, 3, 4-tetrahydroisoquinolin-7-yl, 1, 2, 3, 4-tetrahydroisoquinolin-6-yl and 2-methyl-1, 2, 3, 4-tetrahydroisoquinolin-6-yl) , isoindolinyl (such as 2-ethylisoindolin-5-yl, 2-methylisoindolin-5-yl) , indolinyl, tetrahydrobenzo [f] oxazepinyl (such as 2, 3, 4, 5-tetrahydrobenzo [f] [1, 4] oxazepin-7-yl) . The term “heterocycle, ” “heterocyclyl, ” or “heterocyclic” whether saturated or partially unsaturated, also refers to rings that are optionally substituted. In some embodiments, a heterocyclyl group is a 3-14 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur ( “3-14 membered heterocyclyl” ) .
The term “heteroaryl” , “heteroaromatic” , “heteroaryl ring” , “heteroaryl group” , “heteroaromatic ring” , and “heteroaromatic group” , used alone or as part of a larger moiety as in “heteroaralkyl” or “heteroarylalkoxy” , refers to aromatic ring groups having five to fourteen ring atoms selected from carbon and at least one (typically 1 to 4, more typically 1 or 2) heteroatoms (e.g., oxygen, nitrogen or sulfur) . “Heteroaryl” includes monocyclic rings and polycyclic rings in which a monocyclic heteroaromatic ring is fused to one or more other carbocyclic aromatic or heteroaromatic rings. As such, “5-14 membered heteroaryl” includes monocyclic, bicyclic or tricyclic ring systems.
Examples of monocyclic 5-6 membered heteroaryl groups include furanyl (e.g., 2-furanyl, 3-furanyl) , imidazolyl (e.g., N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl) , isoxazolyl (e.g., 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl) , oxadiazolyl (e.g., 2-oxadiazolyl, 5-oxadiazolyl) , oxazolyl (e.g., 2-oxazolyl, 4-oxazolyl, 5-oxazolyl) , pyrazolyl (e.g., 3-pyrazolyl, 4-pyrazolyl) , pyrrolyl (e.g., 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl) , pyridyl (e.g., 2-pyridyl, 3-pyridyl, 4-pyridyl) , pyrimidinyl (e.g., 2-pyrimidinyl, 4-pyrimidinyl,  5-pyrimidinyl) , pyridazinyl (e.g., 3-pyridazinyl) , thiazolyl (e.g., 2-thiazolyl, 4-thiazolyl, 5-thiazolyl) , triazolyl (e.g., 2-triazolyl, 5-triazolyl) , tetrazolyl (e.g., tetrazolyl) , thienyl (e.g., 2-thienyl, 3-thienyl) , pyrimidinyl, pyridinyl and pyridazinyl. Examples ofpolycyclic aromatic heteroaryl groups include carbazolyl, benzimidazolyl, benzothienyl, benzofuranyl, indolyl, quinolinyl, benzotriazolyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, isoquinolinyl, indolyl, isoindolyl, acridinyl, or benzisoxazolyl. A “substituted heteroaryl group” is substituted at any one or more substitutable ring atom, which is a ring carbon or ring nitrogen atom bonded to a hydrogen.
As used herein, many moieties (e.g., alkyl, alkylene, cycloalkyl, aryl, heteroaryl, or heterocyclyl ) are referred to as being either “substituted” or “optionally substituted” . When a moiety is modified by one of these terms, unless otherwise noted, it denotes that any portion of the moiety that is known to one skilled in the art as being available for substitution can be substituted, which includes one or more substituents. Where if more than one substituent is present, then each substituent may be independently selected. Such means for substitution are well-known in the art and/or taught by the instant disclosure. The optional substituents can be any substituents that are suitable to attach to the moiety.
Where suitable substituents are not specifically enumerated, exemplary substituents include, but are not limited to: (C 1-C 5) alkyl, (C 1-C 5) hydroxyalkyl, (C 1-C 5) haloalkyl, (C 1-C 5) alkoxy, (C 1-C 5) haloalkoxy, halogen, hydroxyl, cyano, amino, -CN, -NO 2, -OR c1, -NR a1R b1, -S (O)  iR a1, -NR a1 S (O)  iR b1, -S (O)  iNR a1R b1, -C (=O) OR a1, -OC (=O) OR a1, -C (=S) OR a1, -O (C=S) R a1, -C (=O) NR a1R b1, -NR a1C (=O) R b1, -C (=S) NR a1R b1, -C (=O) R a1, -C (=S) R a1, NR a1C (=S) R b1, -O (C=O) NR a1R b1, -NR a1 (C=S) OR b1, -O (C=S) NR a1R b1, -NR a1 (C=O) NR a1R b1, -NR a1 (C=S) NR a1R b1, phenyl, or 5-6 membered heteroaryl. Each R a1 and each R b1 are independently selected from -H and (C 1-C 5) alkyl, optionally substituted with hydroxyl or (C 1-C 3) alkoxy; R c1 is -H, (C 1-C 5) haloalkyl or (C 1-C 5) alkyl, wherein the (C 1-C 5) alkyl is optionally substituted with hydroxyl or (C 1-C 3) alkoxy.
The compounds of this invention can exist in radiolabelled form, i.e., said compounds may contain one or more atoms containing an atomic mass or mass number different from the atomic mass or mass number: ordinarily found in nature. Radioisotopes of hydrogen, carbon, phosphorous, fluorine and chlorine include  3H,  14C,  32p,  35S,  43F and  36Cl, respectively. Compounds of this invention which contain those radioisotopes and/or other radioisotopes of other atoms are within the scope of this invention. Tritiated, i.e.,  3H, and carbon-14, i.e.,  14C, radioisotopes are particularly preferred for their ease of preparation and detectability.
Radiolabelled compounds of this invention can generally be prepared by methods well known to those skilled in the art. Conveniently, such radiolabelled compounds can be prepared by carrying out the procedures disclosed herein except substituting a readily available radiolabelled reagent for a non-radiolabelled reagent.
The compounds of this invention can exist in free form for treatment, or where appropriate, as a pharmaceutically acceptable salt form.
The term “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art, for example, Berge et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference. Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases. Examples of pharmaceutically acceptable, acid addition salts are salts of an amino group formed with inorganic acids, such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, and perchloric acid or with organic acids, such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid, or malonic acid or by using other methods known in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium, and N + (C 1-4 alkyl)  4 - salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate, and aryl sulfonate.
The terms “composition” and “formulation” are used interchangeably.
A “subject” is a mammal, preferably a human, but can also be an animal in need of veterinary treatment, e.g., companion animals (e.g., dogs, cats, and the like) , farm animals (e.g., cows, sheep, pigs, horses, and the like) and laboratory animals (e.g., rats, mice, guinea pigs, and the like) .
The term “administer, ” “administering, ” or “administration” refers to methods introducing a compound of the invention, or a composition thereof, in or on a subject. These methods include, but are not limited to, intraarticular (in the joints) , intravenous, intramuscular, intratumoral, intradermal, intraperitoneal, subcutaneous, orally, topically, intrathecally, inhalationally, transdermally, rectally, and the like. Administration techniques that can be employed with the agents and methods described herein are found in e.g., Goodman and Gilman, The Pharmacological Basis of Therapeutics, current ed.; Pergamon; and Remington’s, Pharmaceutical Sciences (current edition) , Mack Publishing Co., Easton, Pa.
The terms “treatment, ” “treat, ” and “treating” refer to reversing, alleviating, or inhibiting the progress of a disease described herein. In some embodiments, treatment may be administered after one or more signs or symptoms of the disease have developed or have been observed (i.e., therapeutic treatment) . In other embodiments, treatment may be administered in the absence of signs or symptoms of the disease. For example, treatment may be administered to a susceptible subject prior to the onset of symptoms (i.e., prophylactic treatment) (e.g., in light of a history of symptoms and/or in light of exposure to a pathogen) . Treatment may also be continued after symptoms have resolved, for example, to delay or prevent recurrence.
The terms “condition, ” “disease, ” and “disorder” are used interchangeably.
Generally, an effective amount of a compound taught herein varies depending upon various factors, such as the given drug or compound, the pharmaceutical formulation, the route of administration, the type of disease or disorder, the identity of the subject or host being treated, and the like, but can nevertheless be routinely determined by one skilled in the art. An effective amount of a compound of the present teachings may be readily determined by one of ordinary skill by routine methods known in the art.
The term “an effective amount” means an amount when administered to the subject which results in beneficial or desired results, including clinical results, e.g., inhibits, suppresses or reduces the symptoms of the condition being treated in the subject as compared to a control. For example, an effective amount can be given in unit dosage form (e.g., from 1 mg to about 50 g per day, e.g., from 1 mg to about 5 grams per day) .
A “therapeutically effective amount” is that amount effective for detectable killing or  inhibition of the growth or spread of cancer cells; the size or number of tumors; or other measure of the level, stage, progression or severity of the cancer. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular anticancer agent, its mode of administration, combination treatment with other therapies, and the like.
3. Compounds
In a first embodiment of the invention, provided is a compound of Formula (I) :
Figure PCTCN2019081705-appb-000009
or a pharmaceutically acceptable salt thereof, wherein:
R 12 is selected from C 1-4 alkyl, C 3-C 6 cycloalkyl, 4-6 membered heterocyclyl, 6-10 membered aryl, 5-10 membered mono-cyclic or bicyclic heteroaryl, wherein the alkyl, cycloalkyl, or heterocyclyl is optionally substituted with one or more groups selected from oxo or R 15, wherein said aryl or heteroaryl is optionally substituted with one or more groups selected from R 15;
X, Y, and Z are each independently N or CR 15, provided that X, Y and Z are not N simultaneously;
each R 15 is independently selected from H, halogen, CN, C 1-4 alkyl, C 1-4 perfluoroalkyl, C 1-4 polydeuterated alkyl and C 1-4 alkoxy;
Ring A is phenyl or 5-6 membered monocyclic heteroaryl;
Ring B is phenyl or 5-6 membered monocyclic heteroaryl;
L is NR 0C (O) , C (O) NR 0, NR 0C (O) O, OC (O) NR 0, or NR 0C (O) NR 0;
R 0 is independently H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl, heterocyclyl, and heteroaryl;
each occurrence of R a is independently selected from the group consisting of H, halogen, -CN, -NO 2, -R 4, -OR 2, -NR 2R 3, -C (O) Y 1R 2, -OC (O) Y 1R 2, -NR 2C (O) Y 1R 2, -SC (O) Y 1R 2, -Y 1C (=NR 3) Y 1R 2, -Y 1p (=O) (Y 1R 4) (Y 1R 4) , -NR 2SO 2R 2, -S (O)  rR 2, -SO 2NR 2R 3, and -NR 2SO 2NR 2R 3;
each occurrence of R b is independently selected from the group consisting of H, halogen, -CN, -NO 2, -R 4, - (CH 2zR, -O (CH 2xR, -NR 3 (CH 2xR, -S (CH 2xR, -OR 2, - (CH 2zNR 2R 3, -C (O) Y 1R 2, -OC (O) Y 1R 2, -NR 2C (O) Y 1R 2, - (CH 2xNR 3C (O) (CH 2xR, -SC (O) Y 1R 2, -Y 1C (=NR 3) Y 1R 2, -Y 1p (=O) (Y 1R 4) (Y 1R 4) , -NR 2SO 2R 2, -S (O)  rR 2, -SO 2NR 2R 3, and -NR 2SO 2NR 2R 3;
Y 1 is independently a bond, -O-, -S-, or -NR 3-;
R is 3-10 membered carbocyclyl, 3-10 membered heterocyclyl, 6-14 membered aryl, or 5-14 membered heteroaryl;
each R 2 and R 3 are independently selected from H, alkyl, alkenyl, alkynyl, carbocyclyl, aryl, heterocyclic and heteroaryl; alternatively,
R 2 and R 3, taken together with the atom to which they are attached, form heterocyclyl or heteroaryl;
each R 4 is independently selected from alkyl, alkenyl, alkynyl, carbocyclyl, aryl, heterocyclyl, and heteroaryl;
r is 0, 1, or 2;
x is 0, 1, 2, or 3;
z is 0, 1, 2, 3, or 4;
wherein each of the heterocyclyl and heteroaryl contains 1-3 ring heteroatoms independently selected from N, O, and S;
each of the alkyl, alkenyl, alkynyl, carbocyclyl, aryl, heterocyclyl, and heteroaryl moieties recited herein is optionally substituted;
m is 0, 1, 2, 3, or 4; and
n is 0, 1, 2, 3, 4, or 5.
In a second embodiment of the invention, the compound of Formula (I) is represented by structural formula (II) :
Figure PCTCN2019081705-appb-000010
or a pharmaceutically acceptable salt thereof, wherein
X, Y, and Z are each independently N or CH, provided that X, Y and Z are not N simultaneously;
R 12 is C 1-C 4 alkyl, C 3-C 6 cycloalkyl, 4-6 membered monocyclic heterocyclyl, phenyl, or 5-6 membered monocyclic heteroaryl, each of which is optionally substituted with one to three groups selected from halogen, CN, C 1-4 alkyl, and C 1-4 alkoxy;
wherein each occurrence of R a is independently selected from the group consisting of H, halogen, CN, C 1-C 4 alkyl, or C 1-C 4 alkoxy, wherein said C 1-C 4 alkyl or C 1-C 4 alkoxy is optionally substituted with one or more groups selected from halogen or deuterium; and m is 0, 1, or 2, and the remaining variables are as defined for Formula (I) or in the first embodiment.
In a third embodiment of the invention, the compound of Formula (I) is represented by structural formula (III) :
Figure PCTCN2019081705-appb-000011
or a pharmaceutically acceptable salt thereof, wherein:
R a is H, halogen, CN, C 1-3 alkyl optionally substituted with one or more fluoro or deuterium;
R b1 is H, halogen, C 1-C 3 perfluoroalkyl, C 1-C 3 alkyl optionally substituted with one or more deuterium;
R b2 is H, halogen, CN, - (CH 2zNR 2R 3, C 1-C 3 alkyl, C 1-C 3 fluoroalkyl, or- (CH 2zR;
R b3 is H, halogen, CN, - (CH 2zNR 2R 3, C 1-C 3 alkyl, C 1-C 3 perfluoroalkyl, or- (CH 2zR;
each R is independently 3-10 membered carbocyclyl, 3-10 membered heterocyclyl, 6-14 membered aryl, or 5-14 membered heteroaryl, wherein the 3-10 membered carbocyclyl or 3-10 membered heterocyclyl is optionally substituted with halogen, OH, CN, NO 2, C 1-C 4 alkyl, C 1-C 4 alkoxy, =O, or NR 2R 3; wherein the 6-14 membered aryl or 5-14 membered heteroaryl is optionally substituted with halogen, OH, CN, NO 2, C 1-C 4 alkyl, C 1-C 4 alkoxy, NR 2R 3, or  CH 2-4-6 membered monocyclic heterocyclyl;
each R 2 and R 3 are independently selected from H, C 1-6 alkyl, C 3-6 cycloalkyl, 4-7 membered heterocyclic, and 5-7 membered heteroaryl; alternatively,
R 2 and R 3, taken together with the atom to which they are attached, form 4-7 membered heterocyclyl or 5-7 membered heteroaryl, each of which is optionally substituted with one or more halogen, OH, CN, C 1-C 4 alkyl, or C 1-C 4 alkoxy, and the remaining variables are as defined in the first and/or second embodiment (s) .
In a fourth embodiment of the invention, the compound of Formula (I) is represented by one of the following structural formulae (IV-a) - (IV-e) :
Figure PCTCN2019081705-appb-000012
Figure PCTCN2019081705-appb-000013
or a pharmaceutically acceptable salt thereof, wherein R 12 is C 1-4 alkyl optionally substituted with C 1-2 alkoxy; or C 3-C 6 cycloalkyl, and the remaining variables are as defmed in the first, second and/or third embodiment (s) .
In a fifth embodiment of the invention, the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein R b1 is C 1-3 alkyl or C 1-3 perfluoroalkyl, preferably CF 3, and the remaining variables are as defined in the first, second, third, and/or fourth embodiment (s) .
In a sixth embodiment of the invention, the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein each of R b2 and R b3 is independently H, halogen, CN, C 1-C 3 perfluoroalkyl, C 1-3 alkyl, -CH 2N (CH 32, or - (CH 2zR; and z is 0 or 1, and the remaining variables are as defined in the first, second, third, fourth, and/or fifth embodiment (s) .
In a seventh embodiment of the invention, the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein each R b2 and R b3 is independently H, halogen, CN, C 1-C 3 perfluoroalkyl, C 1-3 alkyl, -CH 2N (CH 32, 3-10 membered heterocyclyl, - (CH 2) -4-6 membered heterocyclyl, or 5-10 membered heteroaryl, and the remaining variables are as defined in the first, second, third, fourth, fifth, and/or sixth embodiment (s) .
In an eighth embodiment of the invention, the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein R b2 is H, halogen, CN, C 1-3 alkyl, or one of:
Figure PCTCN2019081705-appb-000014
preferably R b3 is H, and more preferably R b1 is CF 3, and the remaining variables are as  defined in the first, second, third, fourth, fifth, sixth, and/or seventh embodiment (s) .
In a ninth embodiment of the invention, the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein R b3 is H, halogen, CN, C 1-3 alkyl, C 1-3 perfluoroalkyl, or one of:
Figure PCTCN2019081705-appb-000015
preferably R b2 is H, and more preferably R b1 is CF 3, and the remaining variables are as defined in the first, second, third, fourth, fifth, sixth, seventh, and/or eighth embodiment (s) .
In a tenth embodiment of the invention, the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, whereinR b3 is 
Figure PCTCN2019081705-appb-000016
and the remaining variables are as defined in the first, second, third, fourth, fifth, sixth, seventh, eighth, and/or ninth embodiment (s) .
In an eleventh embodiment of the invention, the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein R b2 is H, and the remaining variables are as defined in the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and/or tenth embodiment (s) .
In a twelfth embodiment of the invention, the compound has the structure of Formula (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein R b1 is CF 3, and the remaining variables are as defined in the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and/or eleventh embodiment (s) .
In a thirteenth embodiment of the invention, the compound has the structure of Formula (I) , (II) , (III) , (IV-a) - (IV-e) , or a pharmaceutically acceptable salt thereof, wherein R 12 is CH 3 or cyclopropyl, and the remaining variables are as defined in the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, and/or twelfth embodiment (s) .
In one embodiment, the compound or a pharmaceutically acceptable salt thereof is selected from the compounds of Formulae (I) , (II) , (III) , (IV-a) - (IV-e) , in the Examples, and in Table 1.
4. Pharmaceutical Compositions
The invention provides pharmaceutical compositions which comprise any one of the compounds described herein, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable carriers or excipients.
“Pharmaceutically acceptable excipient” and “pharmaceutically acceptable carrier” refer to a substance that aids the formulation and/or administration of an active agent to and/or absorption by a subject and can be included in the compositions of the present disclosure without causing a significant adverse toxicological effect on the subject. Non-limiting examples of pharmaceutically acceptable carriers and excipients include water, NaCl, normal saline solutions, lactated Ringer’s, normal sucrose, normal glucose, binders, fillers, disintegrants, lubricants, coatings, sweeteners, flavors, salt solutions (such as Ringer’s solution) , alcohols, oils, gelatins, carbohydrates such as lactose, amylose or starch, fatty acid esters, hydroxymethycellulose, polyvinyl pyrrolidine, and colors, and the like. Such preparations can be sterilized and, if desired, mixed with auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances and the like that do not deleteriously react with or interfere with the activity of the compounds provided herein. One of ordinary skill in the art will recognize that other pharmaceutical carriers and excipients are suitable for use with disclosed compounds.
These compositions optionally further comprise one or more additional therapeutic agents. Alternatively, a compound of the invention may be administered to a patient in need thereof in combination with the administration of one or more other therapeutic regimens (e.g. Gleevec or other kinase inhibitors, interferon, bone marrow transplant, farnesyl transferase inhibitors, bisphosphonates, thalidomide, cancer vaccines, hormonal therapy, antibodies, radiation, etc) . For example, additional therapeutic agents for conjoint administration or inclusion in a pharmaceutical composition with a compound of this invention may be another one or more anticancer agents.
As described herein, the compositions of the present invention comprise a compound of the invention together with a pharmaceutically acceptable carrier, which, as used herein, includes any and all solvents, diluents, or other vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington’s Pharmaceutical Sciences, Fifteenth Edition, E.W. Martin (Mack Publishing Co., Easton, Pa., 1975) discloses various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Except insofar as any conventional carrier medium is incompatible with the compounds of the invention, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component (s) of the pharmaceutical composition, its use is contemplated to be within the scope of this invention. Some examples of materials which can serve as pharmaceutically acceptable carriers include, but are not limited to, sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil; sesame oil; olive oil; com oil and soybean oil; glycols; such a propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer’s solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition.
5. Formulations
This invention also encompasses a class of compositions comprising the active compounds of this invention in association with one or more pharmaceutically-acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as “carrier” materials) and, if desired, other active ingredients. The active compounds of the present invention may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. The compounds and compositions of the present invention may, for example, be administered orally, mucosally, topically, rectally, pulmonarily such as by inhalation spray, or parentally including intravascularly, intravenously, intraperitoneally, subcutaneously, intramuscularly,  intrasternally and infusion techniques, in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles.
The pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals.
For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, capsule, suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient.
Examples of such dosage units are tablets or capsules. For example, a suitable daily dose for a human or other mammal may vary depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.
The amount of compounds which are administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex and medical condition of the subject, the type of disease, the severity of the disease, the route and frequency of administration, and the particular compound employed. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods. As mentioned previously, the daily dose can be given in one administration or may be divided between 2, 3, 4 or more administrations.
For therapeutic purposes, the active compounds of this invention are ordinarily combined with one or more adjuvants, excipients or carriers appropriate to the indicated route of administration. If administered per os, the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose.
In the case of skin conditions, it may be preferable to apply a topical preparation of compounds of this invention to the affected area two to four times a day. Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin (e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose. For topical administration, the active  ingredient may comprise from 0.001%to 10%w/w, e.g., from 1%to 2%by weight of the formulation, although it may comprise as much as 10%w/w, but preferably not more than 5%w/w, and more preferably from 0.1%to 1%of the formulation.
The compounds of this invention can also be administered by a transdermal device. Preferably transdermal administration will be accomplished using a patch either of the reservoir and porous membrane type or of a solid matrix variety. In either case, the active agent is delivered -continuously from the reservoir or microcapsules through a membrane into the active agent permeable adhesive, which is in contact with the skin or mucosa of the recipient. If the active agent is absorbed through the skin, a controlled and predetermined flow of the active agent is administered to the recipient. In the case of microcapsules, the encapsulating agent may also function as the membrane. The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner.
While the phase may comprise merely an emulsifier, it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier (s) with or without stabilizer (s) make-up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations. Emulsifiers and emulsion stabilizers suitable for use in the formulation of the present invention include Tween 60, Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate, sodium lauryl sulfate, glyceryl distearate alone or with a wax, or other materials well known in the art.
The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties, since the solubility of the active compound in most oils likely to be used in pharmaceutical emulsion formulations is very low. Thus, the cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono-or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters may be used. These may be used alone or in combination depending on the properties required.
Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils can be used.
Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredients are dissolved or suspended in suitable carrier, especially an aqueous solvent for the active ingredients.
The active ingredients are preferably present in such formulations in a concentration of 0.5 to 20%, advantageously 0.5 to 10%and particularly about 1.5%w/w.
Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules using one or more of the carriers or diluents mentioned for use in the formulations for oral administration or by using other suitable dispersing or wetting agents and suspending agents. The compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, com oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, tragacanth gum, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art. The active ingredient may also be administered by injection as a composition with suitable carriers including saline, dextrose, or water, or with cyclodextrin (i.e. Captisol) , cosolvent solubilization (i.e. propylene glycol) or micellar solubilization (i.e. Tween 80) .
The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1, 3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer’s solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed, including synthetic mono-or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
For pulmonary administration, the pharmaceutical composition may be administered in the form of an aerosol or with an inhaler including dry powder aerosol.
Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable nonirritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum and release the drug.
The pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc. Tablets and pills can additionally be prepared with enteric coatings. Such compositions may also comprise  adjuvants, such as wetting, sweetening, flavoring, and perfuming agents. Pharmaceutical compositions of this invention comprise a compound of the formulas described herein or a pharmaceutically acceptable salt thereof; an additional agent selected from a kinase inhibitory agent (small molecule, polypeptide, antibody, etc. ) , an immunosuppressant, an anticancer agent, an anti-viral agent, antiinflammatory agent, antifungal agent, antibiotic, or an anti-vascular hyperproliferation compound; and any pharmaceutically acceptable carrier, adjuvant or vehicle.
Alternate compositions of this invention comprise a compound of the formulae described herein or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable cartier, adjuvant or vehicle. Such compositions may optionally comprise one or more additional therapeutic agents, including, for example, kinase inhibitory agents (small molecule, polypeptide, antibody, etc. ) , immunosuppressants, anti-cancer agents, anti-viral agents, antiinflammatory agents, antifungal agents, antibiotics, or anti-vascular hyperproliferation compounds.
The term “pharmaceutically acceptable carrier or adjuvant” refers to a carrier or adjuvant that may be administered to a patient, together with a compound of this invention, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound. Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, selfemulsifying drug delivery systems (SEDDS) such as d-atocopherol polyethyleneglycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. Cyclodextrins such as u-, P-, and y-cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2 and 3-hydroxypropyl-cyclodextrins, or other solubilized derivatives may also be advantageously used to enhance delivery of compounds of the formulae described herein.
The pharmaceutical compositions may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, emulsions and aqueous suspensions, dispersions and solutions. In the case of tablets for oral use, carriers which are cormnonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions and/or emulsions are administered orally, the active ingredient may be suspended or dissolved in an oily phase is combined with emulsifying and/or suspending agents.
If desired, certain sweetening, flavoring and/or coloring agents may be added. The pharmaceutical compositions may comprise formulations utilizing liposome or microencapsulation techniques, various examples of which are known in the art.
The pharmaceutical compositions may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents, examples of which are also well known in the art.
6. Pharmaceutical Uses &Indications
The compounds of the invention have various biological properties which make them useful for treating or amerliorating diseases in which kinases (such as Bcr-Abl kinase or mutants thereof) may be involved; symptoms of such disease; or the effect of other physiological events mediated by the target kinases.
Numerous compounds of the invention have been shown to inhibit tyrosine kinase activity of Src and/or Abl, among other tyrosine kinases which are believed to mediate the growth, development and/or metastasis of cancer. Using conventional anti-proliferation assays, numerous compounds of the invention have been found to possess potent in vitro activity against BAF3 BCR-ABL.
Thus the compounds of the invention are useful for treating cancers, including both primary and metastatic cancers, including solid tumors as well as lymphomas and leukemia (including CML, AML and ALL) , and including cancers which are resistant to other therapies, including other therapies involving the administration of kinase inhibitors such as Gleevec, Tarceva or Iressa.
Treatable cancers include, among others, cancers of the breast, cervix, colon and  rectum, lung, ovaries, pancreas, prostate, head and neck, gastrointestinal stroma, as well as diseases such as melanoma, multiple myeloma, non-Hodgkin’s lymphoma, melanoma, gastric cancers and leukemia (e.g., myeloid, lymphocytic, myelocytic and lymphoblastic leukemia) including cases which are resistant to one or more other therapies, including among others, Gleevec, Tarceva or Iressa.
Resistance to various anticancer agents can arise from one or more mutations in a mediator or effector of the cancer (e.g., mutation in a kinase such as Src or Abl) which correlate with alteration in the protein’s drug binding properties, phosphate binding properties, protein binding properties, autoregulation or other characteristics. For example, in the case of BCR-Abl, the kinase associated with chronic myeloid leukemia, resistance to Gleevec has been mapped to a variety of BCR/Abl mutations which are linked to a variety of functional consequences, including among others, steric hindrance of drug occupancy at the kinase’s active site, alteration in deformability of the phosphate binding P loop, effects on the conformation of the activation loop surrounding the active site, and others. See, e.g., Shah et al, 2002, Cancer Cell 2, 117-125 and Azam et al, 2003, Cell 112, 831-843 and references cited therein for representative examples of such mutations in Bcr/Abl. such as the T315I mutation, which correlate with drug resistance. See also the following references for additional background information on BCR/Abl, its mechanistic role in CML and drug-resistance-conferring mechanisms and mutations: Kurzrock et al., Philadelphia chromosome-positive leukemia: from basic mechanisms to molecular therapeutics, Ann Intern Med. 2003 May 20; 138 (10) : 819-30; O’Dwyer et al., Demonstration of Philadelphia chromosome negative abnormal clones in patients with chronic myelogenous leukemia during major cytogenetic responses induced by imatinib mesylate. Leukemia. 2003 March; 17 (3) : 481-487; Hochhaus et al., Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy, Leukemia. 2002 November; 16 (11) : 2190-6; O’Dwyer et al., The impact of clonal evolution on response to imatinib mesylate (STI571) in accelerated phase CML. Blood. 2002 Sep. 1; 100 (5) : 1628-33; Braziel et al., Hematopathologic and cytogenetic findings in imatinib mesylate-treated chronic myelogenous leukemia patients: 14 months’ experience. Blood. 2002 Jul. 15; 100 (2) : 435-41; Corbin et al., Analysis of the structural basis of specificity of inhibition of the Abl kinase by STI571, J Biol Chem. 2002 Aug. 30; 277 (35) : 32214-9; Wertheim et al., BCR-ABL-induced adhesion defects are tyrosine kinase-independent. Blood. 2002 Jun. 1; 99 (11) : 4122-30; Kantarjian et al., Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia, N Engl J Med.  2002 Feb. 28; 346 (9) : 645-52, Erratum in: N Engl J Med 2002 Jun. 13; 346 (24) : 1923; Hochhaus et al., Roots of clinical resistance to STI-571 cancer therapy. Science. 2001 Sep. 21; 293 (5538) : 2163; Druker et al., Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001 Apr. 5; 344 (14) : 1038-42, Erratum in: N Engl J Med 2001 Jul. 19; 345 (3) : 232; Mauro et al., Chronic myelogenous leukemia. Curr Opin Oncol. 2001 January; 13 (1) : 3-7, Review; Kolibaba et al., CRKL binding to BCR-ABL and BCR-ABL transformation. Leuk Lymphoma. 1999 March; 33 (1-2) : 119-26; Bhat et al., Interactions of p62 (dok) with p210 (bcr-abl) and Bcr-Abl-associated proteins. J Biol Chem. 1998 Nov. 27; 273 (48) : 32360-8; Senechal et al., Structural requirements for function of the Crkl adapter protein in fibroblasts and hematopoietic cells. Mol Cell Biol. 1998 September; 18 (9) : 5082-90; Kolibaba et al., Protein tyrosine kinases and cancer. Biochim Biophys Acta. 1997 December 9; 1333 (3) : F217-48, Review; Heaney et al., Direct binding of CRKL to BCR-ABL is not required for BCR-ABL transformation. Blood. 1997 Jan. 1; 89 (1) : 297-306; Hallek et al., Interaction of the receptor tyrosine kinase p145c-kit with the p210Obcr/abl kinase in myeloid cells. Br J Haematol. 1996 July; 94 (1) : 5-16; Oda et al., The SH2 domain of ABL is not required for factor-independent growth induced by BCR-ABL in a murine myeloid cell line. Leukemia. 1995 Feb.; 9 (2) : 295-301; Carlesso et al., Use of a temperature-sensitive mutant to define the biological effects of the p210BCR-ABL tyrosine kinase on proliferation of a factor-dependent murine myeloid cell line. Oncogene. 1994 January; 9 (1) : 149-56. All incorporated herein by reference.
Compounds of this invention can be used both in monotherapies and in combination therapies, and are useful against hematopoietic cancers such as leukemia, as well as other cancers, including those which are resistant in whole or part to other anticancer agents, specifically including Gleevec and other kinase (e.g., Bcr-Abl) inhibitors, and specifically including leukemia involving one or more mutations in BCR/Abl, within or outside the kinase domain, including but not limited to those noted in any of the foregoing publications, such as the T315I mutation or a P loop mutation. Also see, in particular, Azam et al. and references cited therein for examples of such mutations in BCR/Abl, including, among others, the T315I mutation, and other mutations in the drug binding cleft, the phosphate binding P loop, the activation loop, the conserved VAVK of the kinase beta-3 sheet, the catalytic alpha-1 helix of the small N lobe, the long alpha-3 helix within the large C lobe, and the region within the C lobe downstream of the activation loop.
7. Pharmaceutical Methods
The method of the invention comprises administering to a subject in need thereof a therapeutically effective amount of a compound of the invention.
The compound, or a composition containing the compound, may be administered using any amount and any route of administration effective for killing or inhibiting the growth of tumors or other forms of cancer.
In certain embodiments, the methods of the invention comprises administering a therapeutically effective amount of a subject compound to a subject in need thereof, to treat a disease or indication characterized by up-regulation of one or more kinases, such as a Src family non-receptor Tyr kinase (such as SrcA subfamily kinases including FGR, FYN, SRC and YES; SrcB subfamily including BLK, HCK, LCK and LYN; and SRM subfamily including SRM and BRK) , a FGF-R (such as FGFR1-FGFR4, FGFRL1, and FGFR6) , a VEGF-R (such as VEGF-R 1 (FLT-1) , VEGF-R2 (KDR) , or VEGF-R3 (FLT-4) ) , a PDGF-R (such as PDGFRa and PDGFRb) , a Kit (such as KIT, FLT-3, and fms/CSF1R) , an EGFR (such as ErbB-1/HER1, ErbB-2/HER2/neu, ErbB-3/HER3, and ErbB-4/HER4) , an Abl kinase (including Bcr-Abl) , a Discoidin Domain Receptor kinase (such as DDR1 and DDR2) , a Ret kinase, and/or a Leucine Rich Repeat Kinase (such as LRRK2) .
In certain embodiments, the kinase is a Src family kinase, which is a proto-oncogene encoding a non-receptor Tyr kinase that forms major signaling hubs in animals, and transduces signals from receptor tyrosine kinases and other receptors to downstream signaling pathways. An elevated level of activity of c-Src tyrosine kinase has been linked to cancer progression by promoting other signals, such as the malignant progression of about 50%of rumors from colon, liver, lung, breast, prostate, and the pancreas. Thus the method of the invention can be used to treat such cancers.
In certain embodiments, the kinase is a FGFR family kinase, which binds to members of the fibroblast growth factor family of growth factors. The FGF/FGFR signalling pathway plays a critical role in oncogenesis via gene amplification, activating mutations, or translocation in tumors of various histologies, inclduing breast cancers (predominantly in estrogen receptor (ER) positive cancers) , squamous non-small cell lung cancers (SqCLC) , small cell lung cancer, oral squamous cell carcinoma, esophageal squamous carcinoma, ovarian cancer, bladder cancer, rhabdomyosarcoma, glioblastoma, melanoma, Pilocytic astrocytoma for FGFR1; endometrial carcinoma, gastric cancer, breast cancer (such as triple-negative breast cancer) , lung cancer (such as adenocarcinoma, SqNSCLC, and squamous  cell carcinoma) for FGFR2; non-muscle-invasive bladder cancer, invasive bladder cancer, Salivary adenoid cystic cancer, squamous cell lung carcinoma, cervical cancer, multiple myeloma, prostate cancer, spermatocytic seminoma, head and neck squamous cell carcinoma (HNSCC) , recurrent or metastatic adenoid cystic carcinoma (ACC) for FGFR3; rhabdomyosarcoma, prostate cancer, colon cancer, and liver cancer (such as HCC) for FGFR4. Thus the method of the invention can be used to treat such cancers.
In certain embodiments, the kinase is a VEGFR family kinase, and the cancer is RCC (renal cell carcinoma) , colorectal cancer, lung cancer such as non-small cell lung cancer, breast cancer (such as estrogen receptor positive breast cancers, particularly of the luminol subtype B form of breast cancer) , hematological cancer (such as eosinophilia, hypereosinophilia, Myeloid leukemia, myeloproliferative neoplasm, myeloid sarcoma, lymphoid leukemia, or non-Hodgkin lymphoma) , phosphaturic mesenchymal tumor, rhabdomyosarcoma, myelodysplasia, urinary bladder transitional cell carcinoma, squamous cell Head and neck cancers, endometrial cancer, prostate cancer, ovarian Papillary serous cystadenocarcinoma, colorectal cancer, sarcomas, Glioblastomas, Salivary gland cancer, AML, hereditary lymphedema type IA, gastrointestinal stromal tumor, testicular seminoma, mast cell disease, melanoma, acute myeloid leukemia, etc. The tyrosine kinase inhibitor Ponatinib has been used as mono-therapy and subsequently used in combination with intensive chemotherapy to treat the myelodysplasia caused by the FGFR1-BCR fusion gene. Thus the method of the invention can be used to treat such cancers.
In certain embodiments, the kinase is a PDGFR family kinase. PDGFRa mutations have been associated with hematological malignancy in the clonal hypereosinophilia class of malignancies, leukemia, lymphoma, myelodysplastic syndrome that are commonly associated with hypereosinophilia, clonal eosinophilia, chronic eosinophilia, chronic eosinophilic leukemia, myeloproliferative neoplasm/myeloblastic leukemia associated with little or no eosinophilia, T-lymphoblastic leukemia/lymphoma associated with eosinophilia, myeloid sarcoma with eosinophilia, mesenchymal neoplasm of the gastrointestinal tract (GI tract) , Gastrointestinal stromal tumors or (GISTs) , pediatric diffuse Gliomas of the pons, glioblastoma. Meanwhile, human chromosome translocations between the PDGFRB gene and at least any one of 30 genes on other chromosomes lead to myeloid and/or lymphoid neoplasms that are many ways similar to the neoplasm caused by the fusion of the PDGFRA gene with the FIP1L1 gene, such as leukemia and congenital fibrosarcoma, Chronic myelomonocytic leukemias, juvenile myelomonocytic leukemia, Atypical or Philadelphia  chromosome negative chronic myeloid leukemias, myelodysplastic syndromes, acute myelogenous leukemias, or acute lymphoblastic leukemias, clonal eosinophilia. Thus the method of the invention can be used to treat such cancers.
In certain embodiments, the kinase is a EGFR family kinase. Mutations associated with EGFR overexpression have been associated with a number of cancers, including breast cancer, ovarian cancer, stomach cancer, adenocarcinoma of the lung, anal cancers, uterine serous endometrial carcinoma, glioblastoma, salivary duct carcinomas, gastric cancer, epithelian tumors of the head and neck, testicular germ cell cancer, and esophageal tumor. Thus the method of the invention can be used to treat such cancers.
In certain embodiments, the kinase is Abl kinase, such as Bcr-Abl kinase. The Abl kinase is associated with chronic myelogenous leukemia (CML) , and also rarely in some other leukemia forms. Thus the method of the invention can be used to treat CML and other leukemias characterized by Bcr-Abl mutation.
In certain embodiments, the kinase is a Discoidin Domain Receptor kinase, which is a RTK widely expressed in normal and transformed epithelial cells and is activated by various types of collagen. DDR1 is significantly over-expressed in several human tumors from breast, ovarian, esophageal, and pediatric brain. The closely related DDR2 has been associated with a number of diseases including fibrosis and cancer. Thus the method of the invention can be used to treat such cancers or fibrosis.
In certain embodiments, the kinase is a RET kinase, which is a proto-oncogene encoding a receptor tyrosine kinase for members of the glial cell line-derived neurotrophic factor (GDNF) family of extracellular signalling molecules. RET gain of function mutations are associated with the development of various types of human cancer, including medullary thyroid carcinoma; multiple endocrine neoplasias (MEN) such as MEN 2A, MEN 2B and familial medullary thyroid carcinoma (FMTC) ; pheochromocytoma; parathyroid hyperplasia; and papillary thyroid carcinoma (PTC) . Thus the method of the invention can be used to treat such cancers.
In certain embodiments, the kinase is a Leucine Rich Repeat Kinase, which is an intracellular Tyr kinase-like (TKL) kinase and GTPase implicated in Parkinson′s disease and Crohn’s disease. Mutations in the LRRK2 gene is the main factor in contributing to the genetic development of Parkinson′s disease, and over 100 mutations in this gene have been shown to increase the chance of PD development. These mutations are most commonly seen in Jewish, North African Arab Berber, Chinese, and Japanese populations. Thus the method  of the invention can be used to treat such diseases, particularly in such populations.
The anticancer compounds of the invention are preferably formulated in dosage unit form for ease of administration and uniformity of dosage. As is normally the case, the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician using routine reliance upon sound medical judgment. The specific therapeutically effective dose level for any particular patient or organism will depend upon a variety of factors including the disorder being treated; the severity of the disorder; the potency of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the route and schedule of administration; the rate of metabolism and/or excretion of the compound; the duration of the treatment; drugs used in combination or coincident with administration of the compound of this invention; and like factors well known in the medical arts.
Furthermore, after formulation with an appropriate pharmaceutically acceptable carrier in a desired dosage, the compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by transdermal patch, powders, ointments, or drops) , sublingually, bucally, as an oral or nasal spray, or the like.
The amount of compound which will be effective in the treatment or prevention of a particular disorder or condition will depend in part on factors affecting drug dosage. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. A rough guide to effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems. The precise dosage level should be determined by the attending physician or other health care provider and will depend upon well known factors, including route of administration, and the age, body weight, sex and general health of the individual; the nature, severity and clinical stage of the disease; the use (or not) of concomitant therapies; and the nature and extent of genetic engineering of cells in the patient.
When administered for the treatment or inhibition of a particular disease state or disorder, the effective dosage of the compound of this invention may vary depending upon the particular compound utilized, the mode of administration, the condition, and severity thereof, of the condition being treated, as well as the various physical factors related to the individual being treated.
When the compound of this invention is used as part of a combination regimen, dosages of each of the components of the combination are administered during a desired treatment  period. The components of the combination may administered at the same time; either as a unitary dosage form containing both components, or as separate dosage units; the components of the combination can also be administered at different times during a treatment period, or one may be administered as a pretreatment for the other.
8. Combination Therapy
While the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other compounds of the invention or with one or more other agents. When administered as a combination, the therapeutic agents can be formulated as separate compositions that are administered at the same time or sequentially at different times, or the therapeutic agents can be given as a single composition.
Thus, the administration of compounds of the present invention may be in conjunction with additional therapies known to those skilled in the art in the prevention or treatment of cancer, such as radiation therapy or cytostatic agents, cytotoxic agents, other anti-cancer agents and other drugs to amerliorate symptoms of the cancer or side effects of any of the drugs.
If formulated as a fixed dose, such combination products employ the compounds of this invention within the accepted dosage ranges. Compounds of this invention may also be administered sequentially with other anticancer or cytotoxic agents when a combination formulation is inappropriate. The invention is not limited in the sequence of administration; compounds of this invention may be administered prior to, simulateously with, or after administration of the other anticancer or cytotoxic agent.
Currently, standard treatment of primary tumors consists of surgical excision, when appropriate, followed by either radiation or chemotherapy, and typically administered intravenously (IV) . The typical chemotherapy regime consists of either DNA alkylating agents, DNA intercalating agents, CDK inhibitors, or microtubule poisons. The chemotherapy doses used are just below the maximal tolerated dose and therefore dose limiting toxicities typically include, nausea, vomiting, diarrhea, hair loss, neutropenia and the like.
There are large numbers of antineoplastic agents available in commercial use, in clinical evaluation and in pre-clinical development, which would be selected for treatment of cancer by combination drug chemotherapy. And there are several major categories of such antineoplastic agents, namely, antibiotic-type agents, alkylating agents, antimetabolite agents, hormonal agents, immunological agents, interferon-type agents and a category of miscellaneous agents.
A first family of antineoplastic agents which may be used in combination with compounds of the present invention includes antimetabolite-type/thymidilate synthase inhibitor antineoplastic agents. Suitable antimetabolite antineoplastic agents may be selected from but not limited to the group consisting of 5-FU-fibrinogen, acanthifolic acid, aminothiadiazole, brequinar sodium, carmofur, CibaGeigy CGP-30694, cyclopentyl cytosine, cytarabine phosphate stearate, cytarabine conjugates, Lilly DATHF, Merrel Dow DDFC, dezaguanine, dideoxycytidine, dideoxyguanosine, didox, Yoshitomi DMDC, doxifluridine, Wellcome EHNA, Merck &Co. EX-015, fazarabine, floxuridine, fludarabine phosphate, 5fluorouracil, N- (21-furanidyl) fluorouracil, Daiichi Seiyaku FO-152, isopropyl pyrrolizine, Lilly LY-1 88011, Lilly LY-264618, methobenzaprim, methotrexate, Wellcome MZPES, norspermidine, NCI NSC-127716, NCI NSC-264880, NCI NSC-39661, NCI NSC-612567, Warner-Lambert PALA, pentostatin, piritrexim, plicamycin, Asahi Chemical PL-AC, Takeda TAC788, thioguanine, tiazofurin, Erbamont TIF, trimetrexate, tyrosine kinase inhibitors, Taiho UFT and uricytin.
A second family of antineoplastic agents which may be used in combination with compounds of the present invention consists of alkylating-type antineoplastic agents. Suitable alkylating-type antineoplastic agents may be selected from but not limited to the group consisting of Shionogi 254-S, aldo-phosphamide analogues, altretamine, anaxirone, Boehringer Mannheim BBR-2207, bestrabucil, budotitane, Wakunaga CA-102, carboplatin, carmustine, Chinoin-139, Chinoin-153, chlorambucil, cisplatin, cyclophosphamide, American Cyanamid CL-286558, Sanofi CY-233, cyplatate, Degussa D 384, Sumimoto DACHP (Myr) 2, diphenylspiromustine, diplatinum cytostatic, Erba distamycin derivatives, Chugai DWA-2114R, ITI E09, elmustine, Erbamont FCE-24517, estramustine phosphate sodium, fotemustine, Unimed G M, Chinoin GYKI-17230, hepsulfam, ifosfamide, iproplatin, lomustine, mafosfamide, mitolactolf Nippon Kayaku NK-121, NCI NSC-264395, NCI NSC-342215, oxaliplatin, Upjohn PCNU, prednimustine, Proter PTT-119, ranimustine, semustine, SmithKline SK&F-101772, Yakult Honsha SN-22, spiromus-tine, Tanabe Seiyaku TA-077, tauromustine, temozolomide, teroxirone, tetraplatin and trimelamol.
A third family of antineoplastic agents which may be used in combination with compounds of the present invention consists of antibiotic-type antineoplastic agents. Suitable antibiotic-type antineoplastic agents may be selected from but not limited to the group consisting of Taiho 4181-A, aclarubicin, actinomycin D, actinoplanone, Erbamont ADR-456, aeroplysinin derivative, Ajinomoto AN II, Ajinomoto AN3, Nippon Soda anisomycins,  anthracycline, azino-mycin-A, bisucaberin, Bristol-Myers BL-6859, Bristol-Myers BMY-25067, Bristol-Myers BNY-25551, Bristol-Myers BNY-26605 IBristolMyers BNY-27557, Bristol-Myers BMY-28438, bleomycin sulfate, bryostatin-1, Taiho C-1027, calichemycin, chromoximycin, dactinomycin, daunorubicin, Kyowa Hakko DC-102, Kyowa Hakko DC-79, Kyowa Hakko DC-88A, Kyowa Hakko, DC89-AI, Kyowa Hakko DC92-B, ditrisarubicin B, Shionogi DOB-41, doxorubicin, doxorubicin-fibrinogen, elsamicin-A, epirubicin, erbstatin, esorubicin, esperamicin-AI, esperamicin-Alb, Erbamont FCE21954, Fujisawa FK-973, fostriecin, Fujisawa FR-900482, glidobactin, gregatin-A, grincamycin, herbimycin, idarubicin, illudins, kazusamycin, kesarirhodins, Kyowa Hakko KM-5539, Kirin Brewery KRN-8602, Kyowa Hakko KT-5432, Kyowa Hakko KT-5594, Kyowa Hakko KT-6149, American Cyanamid LL-D49194, Meiji Seika ME 2303, menogaril, mitomycin, mitoxantrone, SmithKline M-TAG, neoenactin, Nippon Kayaku NK-313, Nippon Kayaku NKT-01, SRI International NSC-357704, oxalysine, oxaunomycin, peplomycin, pilatin, pirarubicin, porothramycin, pyrindanycin A, Tobishi RA-I, rapamycin, rhizoxin, rodorubicin, sibanomicin, siwenmycin, Sumitomo SM5887, Snow Brand SN-706, Snow Brand SN-07, sorangicin-A, sparsomycin, SS Pharmaceutical SS-21020, SS Pharmaceutical SS-7313B, SS Pharmaceutical SS-9816B, steffimycin B, Taiho 4181-2, talisomycin, Takeda TAN-868A, terpentecin, thrazine, tricrozarin A, Upjohn U-73975, Kyowa Hakko UCN-10028A, Fujisawa WF-3405, Yoshitomi Y-25024 and zorubicin.
A fourth family of antineoplastic agents which may be used in combination with compounds of the present invention consists of a miscellaneous family of antineoplastic agents, including tubulin interacting agents, topoisomerase II inhibitors, topoisomerase I inhibitors and hormonal agents, selected from but not limited to the group consisting of (xcarotene, (X-difluoromethyl-arginine, acitretin, Biotec AD-5, Kyorin AHC-52, alstonine, amonafide, amphethinile, amsacrine, Angiostat, ankinomycin, anti-neoplaston A10, antineoplaston A2, antineoplaston A3, antineoplaston A5, antineoplaston AS2-1F Henkel APD, aphidicolin glycinate, asparaginase, Avarol, baccharin, batracylin, benfluron, benzotript, Ipsen-Beaufour BIM-23015, bisantrene, BristoMyers BNY-40481, Vestar boron-10, bromofosfamide, Wellcome BW-502, Wellcome BW-773, caracemide, carmethizole hydrochloride, Ajinomoto CDAF, chlorsulfaquinoxalone, Chemes CHX-2053, Chemex CHX-100, Warner-Lambert CI-921, WarnerLambert CI-937, Warner-Lambert CI-941, Warner-Lambert C1958, clanfenur, claviridenone, ICN compound 1259, ICN compound 4711, Contracan, Yakult Honsha CPT-11, crisnatol, curaderm, cytochalasin B. cytarabine, cytocytin, Merz D-609, DABIS maleate,  dacarbazine, datelliptinium, didemnin-B, dihaematoporphyrin ether, dihydrolenperone, dinaline, distamycin, Toyo Pharmar DM-341, Toyo Pharmar DM-75, Daiichi Seiyaku DN-9693, docetaxel elliprabin, elliptinium acetate, Tsumura EPMTC, the epothilones, ergotamine, etoposide, etretinate, fenretinide, Fujisawa FR-57704t gallium nitrate, genkwadaphnin, Chugai GLA-43, Glaxo GR-63178, grifolan NMF5N, hexadecylphosphocholine, Green Cross HO-221, homoharringtonine, hydroxyurea, BTG ICRF-187, ilmofosine, isoglutamine, isotretinoin, Otsuka JI-36, Ramot K-477, Otsuak K-76COONa, Kureha Chemical K-AM, MECT Corp KI-8110, American Cyanamid L-623, leukoregulin, lonidamine, Lundbeck LU 1121 Lilly LY-186641, NCI (US) MAP, marycin, Merrel Dow MDL-27048, Medco MEDR-340, merbarone, merocyanlne derivatives, methylanilinoacridine, Molecular Genetics MGI136, minactivin, mitonafide, mitoquidone mopidamol, motretinide, Zenyaku Kogyo MST-16, N- (retinoyl) amino acids, Nisshin Flour Milling N-021, N-acylated-dehydroalanines, nafazatrom, Taisho NCU-190, nocodazole derivative, Normosang, NCI NSC-145813, NCI NSC-361456, NCI NSC-604782, NCI NSC-95580, ocreotide, Ono ONO-112, oquizanocine, Akzo Org-10172, paclitaxel, pancratistatin, pazelliptine, WarnerLambert PD-11707, Warner-Lambert PD-115934, Warner-Lambert PD-131141, Pierre Fabre PE-1001, ICRT peptide D, piroxantrone, polyhaematoporphyrin, polypreic acid, Efamol porphyrin, probimane, procarbazine, proglumide, Invitron protease nexin I, Tobishi RA-700, razoxane, Sapporo Breweries RBS, restrictin-P, retelliptine, retinoic acid, Rhone-Poulenc RP-49532, Rhone-Poulenc RP-56976, SmithKline SK&F-104864, Sumitomo SM-108, Kuraray SMANCS, SeaPharm SP10094, spatol, spirocyclopropane derivatives, spirogermanium, Unimed, SS Pharmaceutical SS-554, strypoldinone, Stypoldione, Suntory SUN 0237, Suntory SUN 2071, superoxide dismutase, Toyama T-506, Toyama T-680, taxol, Teijin TEI-0303, teniposide, thaliblastine, Eastman Kodak TJB-29, tocotrienol, topotecan, Topostin, Teijin TT82, Kyowa Hakko UCN-01, Kyowa Hakko UCN-1028, ukrain, Eastman Kodak USB-006, vinblastine sulfate, vincristine, vindesine, vinestramide, vinorelbine, vintriptol, vinzolidine, withanolides and Yamanouchi YM Alternatively, the present compounds may also be used in co-therapies with other anti-neoplastic agents, such as acemannan, aclarubicin, aldesleukin, alemtuzumab, alitretinoin, altretamine, amifostine, aminolevulinic acid, amrubicin, amsacrine, anagrelide, anastrozole, ANCER, ancestim, ARGLABIN, arsenic trioxide, BAM 002 (Novelos) , bexarotene, bicalutamide, broxuridine, capecitabine, celmoleukin, cetrorelix, cladribine, clotrimazole, cytarabine ocfosfate, DA 3030 (Dong-A) , daclizumab, denileukin diftitox, deslorelin, dexrazoxane, dilazep, docetaxel, docosanol, doxercalciferol, doxifluridine, doxorubicin,  bromocriptine, carmustine, cytarabine, fluorouracil, HIT diclofenac, interferon alfa, daunorubicin, doxorubicin, tretinoin, edelfosine, edrecolomab eflornithine, emitefur, epirubicin, epoetin beta, etoposide phosphate, exemestane, exisulind, fadrozole, filgrastim, finasteride, fludarabine phosphate, formestane, fotemustine, gallium nitrate, gemcitabine, gemtuzumab zogamicin, gimeracil/oteracil/tegafur combination, glycopine, goserelin, heptaplatin, human chorionic gonadotropin, human fetal alpha fetoprotein, ibandronic acid, idarubicin, (imiquimod, interferon alfa, interferon alfa, natural, interferon alfa-2, interferon alfa-2a, interferon alfa-2b, interferon alfa-NI, interferon alfa-n3, interferon alfaconl, interferon alpha, natural, interferon beta, interferon beta-Ia, interferon beta-Ib, interferon gamma, natural interferon gamma-Ia, interferon gamma-Ib, interleukin-I beta, iobenguane, irinotecan, irsogladine, lanreotide, LC 9018 (Yakult) , leflunomide, lenograstim, lentinan sulfate, letrozole, leukocyte alpha interferon, leuprorelin, levamisole+fluorouracil, liarozole, lobaplatin, lonidamine, lovastatin, masoprocol, melarsoprol, metoclopramide, mifepristone, miltefosine, mirimostim, mismatched double stranded RNA, mitoguazone, mitolactol, mitoxantrone, molgramostim, nafarelin, naloxone+pentazocine, nartograstim, nedaplatin, nilutamide, noscapine, novel erythropoiesis stimulating protein, NSC 631570 octreotide, oprelvekin, osaterone, oxaliplatin, paclitaxel, pamidronic acid, pegaspargase, peginterferon alfa-2b, pentosan polysulfate sodium, pentostatin, picibanil, pirarubicin, rabbit antithymocyte polyclonal antibody, polyethylene glycol interferon alfa-2a, porfimer sodium, raloxifene, raltitrexed, rasburicase, rhenium Re 186 etidronate, RII retinamide, rituximab, romurtide, samarium (153 Sm) lexidronam, sargramostim, sizofiran, sobuzoxane, sonermin, strontium-89 chloride, suramin, tasonermin, tazarotene, tegafur, temoporfin, temozolomide, teniposide, tetrachlorodecaoxide, thalidomide, thymalfasin, thyrotropin alfa, topotecan, toremifene, tositumomab-iodine 131, trastuzumab, treosulfan, tretinoin, trilostane, trimetrexate, triptorelin, tumor necrosis factor alpha, natural, ubenimex, bladder cancer vaccine, Maruyama vaccine, melanoma lysate vaccine, valrubicin, verteporfin, vinorelbine, VIRULIZIN, zinostatin stimalamer, or zoledronic acid; abarelix; AE 941 (Aeterna) , ambamustine, antisense oligonucleotide, bcl-2 (Genta) , APC 8015 (Dendreon) , cetuximab, decitabine, dexaminoglutethimide, diaziquone, EL 532 (Elan) , EM 800 (Endorecherche) , eniluracil, etanidazole, fenretinidel filgrastim SDO1 (Amgen) , fulvestrant, galocitabine, gastrin 17 immunogen, HLA-B7 gene therapy (Vical) , granulocyte macrophage colony stimulating factor, histamine dihydrochloride, ibritumomab tiuxetan, ilomastat, IM 862 (Cytran) , interleukin iproxifene, LDI 200 (Milkhaus) , leridistim, lintuzumab, CA 125 MAb (Biomira) , cancer MAb (Japan Pharmaceutical Development) , HER-2 and Fc MAb (Medarex) , idiotypic 105AD7  MAb (CRC Technology) , idiotypic CEA MAb (Trilex) , LYM iodine 131 MAb (Techniclone) , polymorphic epithelial mucin-yttrium 90 MAb (Antisoma) , marimastat, menogaril, mitumomab, motexafin, gadolinium, MX 6 (Galderma) , nelarabine, nolatrexed, P 30 protein, pegvisomant, pemetrexed, porfiromycin, prinomastat, RL 0903 (Shire) , rubitecan, satraplatin, sodium phenylacetate, sparfosic acid, SRL 172 (SR Pharma) , SU 5416 (SUGEN) y SU 6668 (SUGEN) , TA 077 (Tanabe) , tetrathiomolybdate, thaliblastine, thrombopoietin, tin ethyl etiopurpurin, tirapazamine, cancer vaccine (Biomira) , melanoma vaccine (New York University) , melanoma vaccine (Sloan Kettering Institute) , melanoma oncolysate vaccine (New York Medical College) , viral melanoma cell lysates vaccine (Royal Newcastle Hospital) , or valspodar.
9. Treatment Kits
One aspect of the present invention relates to a kit for conveniently and effectively carrying out the methods in accordance with the present invention. In general, the pharmaceutical pack or kit comprises one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Such kits are especially suited for the delivery of solid oral forms such as tablets or capsules. Such a kit preferably includes a number of unit dosages, and may also include a card having the dosages oriented in the order of their intended use. If desired, a memory aid can be provided, for example in the form of numbers, letters, or other markings or with a calendar insert, designating the days in the treatment schedule in which the dosages can be administered. Optionally associated with such container (s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceutical products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
The following representative examples contain important additional information, exemplification and guidance which can be adapted to the practice of this invention in its various embodiments and the equivalents thereof. These examples are intended to help illustrate the invention, and are not intended to, nor should they be construed to, limit its scope. Indeed, various modifications of the invention, and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art upon review of this document, including the examples which follow and the references to the scientific and patent literature cited herein.
The contents of the cited references are incorporated herein by reference to help illustrate the state of the art.
In addition, for purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75 th Ed., inside cover. Additionally, general principles of organic chemistry, as well as specific functional moieties and reactivity, are described in “Organic Chemistry, ” Thomas Sorrell, University Science Books, Sausalito: 1999, and “Organic Chemistry, ” Morrison &Boyd (3d Ed) , the entire contents of both of which are incorporated herein by reference.
EXAMPLES
Abbreviations list:
Figure PCTCN2019081705-appb-000017
Synthetic Examples
Method 1
Intermediate 1
Figure PCTCN2019081705-appb-000018
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3-iodo-4-methylbenzamide
Figure PCTCN2019081705-appb-000019
Step 1-1: 3- (1H-imidazol-1-yl) -5- (trifluoromethyl) benzenamine. To the solution of 3-bromo-5- (trifluoromethyl) benzenamine (2.38 g, 1.0 mmol) in DMSO (30 mL) were added 1H-imidazole (700 mg, 1.0 mmol) , K 2CO 3 (4.2 g, 3.0 mmol) , 8-oxyquinolin (145 mg, 0.1 mmol) and CuI (190 mg, 0.1 mmol) . The mixture was stirred at 130 ℃ for 18 hours under N 2, diluted with water (80 mL) , filtered, and extracted with EA (3 *60 mL) . The combined organic layers were dried over anhydrous Na 2SO 4, filtered and concentrated. The residue was purified by column chromatography on silica gel (PE/EA = 5/1) to provide 3- (1H-imidazol-1-yl) -5- (trifluoromethyl) benzenamine (2.1 g, 61%yield) as yellow solid. LCMS: (M+H)  += 228.0.
Step 1-2: N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3-iodo-4-methylbenzamide (intermediate 1) . The solution of 3-iodo-4-methylbenzoic acid (2.8 g, 10.8 mmol) in SOCl 2 (6.37 g, 54 mmol) was stirred at 70 ℃ for an hour, and concentrated to remove SOCl 2. The residue was dissolved in DCM (10 mL) and added to the solution of 3- (1H-imidazol-1-yl) -5- (trifluoromethyl) benzenamine (2.1 g, 9 mmol) and DIPEA (3.2 g, 27 mmol) in CH 2Cl 2 (30 mL) . The mixture was stirred at 0 ℃ for 1.5 hours, then at room temperature overnight, and diluted with water (50 mL) . The mixture was extracted with DCM (3 *20 mL) . The combined organic layers were dried over anhydrous Na 2SO 4, filtered, and concentrated to provide intermediate 1 (1.8 g, 48%yield) as white solid. LCMS: (M+H)  += 472.0.
Intermediate 2
Figure PCTCN2019081705-appb-000020
3-Iodo-4-methyl-N- (3- (4-methyl-1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) benzamide Synthesized according to Method 1 of Intermediate 1, using 4-methyl-1H-imidazole in place of 1H-imidazole in Step 1-1. LCMS: (M+H)  += 486.0.
Intermediate 3
Figure PCTCN2019081705-appb-000021
3-Iodo-4-methyl-N- (3- (2-methyl-1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) benzamide Synthesized according to Method 1 of intermediate 1, using 2-methyl-1H-imidazole in place of 1H-imidazole in Step 1-1. LCMS: (M+H)  += 486.0.
Intermediate 4
Figure PCTCN2019081705-appb-000022
N- (3- (1H-1, 2, 3-triazol-1-yl) -5- (trifluoromethyl) phenyl) -3-iodo-4-methylbenzamide Synthesized according to Method 1 of intermediate 1, using 1H-1, 2, 3-triazole in place of 1H-imidazole in Step 1-1.
Intermediate 5
Figure PCTCN2019081705-appb-000023
N- (3- (4H-1, 2, 4-triazol-4-yl) -5- (trifluoromethyl) phenyl) -3-iodo-4-methylbenzamide Synthesized according to Method 1 of intermediate 1, using 4H-1, 2, 4-triazole in place of 1H-imidazole in Step 1-1.
Intermediate 6
Figure PCTCN2019081705-appb-000024
N- (3- (2H-1, 2, 3-triazol-2-yl) -5- (trifluoromethyl) phenyl) -3-iodo-4-methylbenzamide Synthesized according to Method 1 of intermediate 1, using 2H-1, 2, 3-triazole in place of 1H-imidazole in Step 1-1.
Method 2
Intermediate 7
Figure PCTCN2019081705-appb-000025
3-Iodo-4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000026
Step 2-1: (4-Nitro-2- (trifluoromethyl) phenyl) methanol. To the solution of 4-nitro-2- (trifluoromethyl) benzoic acid (100 g, 43 mmol) in THF (1 L) was added Et 3N (4.3 g, 43 mmol) . The mixture was cooled to -7 ℃, and isobutyl carbonochloridate (59 g, 43 mmol) was added dropwise thereto in 30 minutes. The mixture was stirred for an additional hour at this temperature, and filtered. The cake was washed with THF (3 *200 mL) , and the filtrate was cooled to 0 ℃, to which was added NaBH 4 (62 g, 163 mmol) , followed by the dropwise addition of MeOH (280 mL) in an hour. The resulting mixture was stirred at 10 ℃ for another hour, quenched with 6N HCl (600 mL) , and diluted with water (1.6 L) . The mixture was  extracted with DCM (3 *500 mL) . The combined organic layers were washed with brine (3 *500 mL) , dried over anhydrous Na 2SO 4 and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (PE/EA = 10/1) to provide (4-nitro-2- (trifluoromethyl) phenyl) methanol (65 g, 69%yield) as yellow oil.
Step 2-2: 1- (Bromomethyl) -4-nitro-2- (trifluoromethyl) benzene. To the solution of (4-nitro-2- (trifluoromethyl) phenyl) methanol (60 g, 270 mmol) in DCM (500 mL) was added CBr 4 (105 g, 320 mmol) , followed by the addition of PPh 3 (84 g, 320 mmol) in portions at 0 ℃. The reaction mixture was stirred for additional 2 hours at 25 ℃, and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EA = 20/1) to provide 1- (bromomethyl) -4-nitro-2- (trifluoromethyl) benzene (50 g, 65%yield) as yellow oil. Step 2-3: 1-Methyl-4- (4-nitro-2- (trifluoromethyl) benzyl) piperazine. To the solution of 1- (bromomethyl) -4-nitro-2- (trifluoromethyl) benzene (48 g, 170 mmol) in DCM (480 mL) were added K 2CO 3 (24 g, 170 mmol) and 1-methylpiperazine (34 g, 340 mmol) . The mixture was stirred for 15 hours at 25 ℃, and diluted with water (1000 mL) . The mixture was extracted with DCM (3 *700 mL) . The combined organic layers were washed with brine (2 *500 mL) , dried over anhydrous Na 2SO 4 and concentrated in vacuo. The crude product was purified by column chromatography on silica gel column chromatography (PE/EA = 1/1) to provide 1-methyl-4- (4-nitro-2- (trifluoromethyl) benzyl) piperazine (42 g, 82%yield) as yellow solid. LCMS: (M+H)  + = 304.0.
Step 2-4: 4- ( (4-Methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) aniline. To the solution of 1-methyl-4- (4-nitro-2- (trifluoromethyl) benzyl) piperazine (42 g, 139 mmol) in MeOH (500 mL) was added 10%Pd/C (4.5 g, 13.9 mmol) under H 2. The reaction mixture was stirred at 50 ℃ for 15 hours, and filtered. The cake was washed with MeOH (3 *150 mL) , and the filtrate was concentrated in vacuo to provide 4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) aniline (37 g, 98%yield) as yellow solid. LCMS: (M+H)  + = 274.0.
Intermediate 7 was synthesized according to in Step 1-2, Method 1 of Intermediate 1 with 3-iodo-4-methylbenzoic acid. LCMS: (M+H)  += 518.0.
Method 3
Intermediate 8
Figure PCTCN2019081705-appb-000027
N- (3- (1H-imidazol-1-yl) -4- ( (4-methylpiperazin-1-yl) methyl) -5- (trifluoromethyl) phenyl) -3-iodo-4-methylbenzamide
Figure PCTCN2019081705-appb-000028
Step 3-1: 1-Bromo-2-methyl-5-nitro-3- (trifluoromethyl) benzene. To a suspension of 1-bromo-2-methyl-3- (trifluoromethyl) benzene (10 g, 41.84 mmol) in sulfuric acid (80 mL) was added slowly nitric acid (2.64 g, 41.84 mmol, 30 mL) in sulfuric acid (80 mL) at 0 ℃. The resulting mixture was stirred for 2 hours, quenched with ice-cold water (2 L) and extracted with EA (2 *1 L) . The organic phase was separated, washed with brine (800 mL) dried over anhydrous Na 2SO 4, and concentrated in vacuo. The residue was purified by flash chromatography (SiO 2, hexane/ethyl acetate: 10/1) to provide 1-bromo-2-methyl-5-nitro-3- (trifluoromethyl) benzene (5.5 g, 46.29%yield) as yellow liquid. Step 3-2: 1-Bromo-2- (bromomethyl) -5-nitro-3- (trifluoromethyl) benzene. To the suspension of 1-bromo-2-methyl-5-nitro-3- (trifluoromethyl) benzene (4.4 g, 15.49 mmol) in DCM (10 mL) were added slowly1-bromopyrrolidine-2, 5-dione (3.03 g, 17.04 mmol) , and AIBN (254.38 mg, 1.55 mmol) . The reaction mixture was stirred at 90 ℃ for 18 hours under N 2, quenched with ice-cold water (120 mL) and extracted with DCM (3 *60 mL) . The organic phases were washed with brine (60 mL) , dried over anhydrous Na 2SO 4, filtered and concentrated in vacuo. The residue was purified by flash chromatography (SiO 2, hexane) to provide 1-bromo-2- (bromomethyl) -5-nitro-3- (trifluoromethyl) benzene (5.1 g, 90.71%yield) as yellow solid.
Step 3-3: 1- [ [2-Bromo-4-nitro-6- (trifluoromethyl) phenyl] methyl] -4-methyl-piperazine. To a suspension of 1-bromo-2- (bromomethyl) -5-nitro-3- (trifluoromethyl) benzene (5.1 g, 14.05 mmol) in DCM (10 mL) were added slowly potassium carbonate (1.94 g, 14.05 mmol) and 1-methylpiperazine (2.82 g, 28.10 mmol) at 25 ℃. The reaction mixture was stirred for 18 hours under N 2, quenched with ice-cold water (100 mL) and extracted with DCM (3 *80 mL) . The organic phases were washed with brine (100 mL) , dried over anhydrous Na 2SO 4, filtered and concentrated in vacuo. The crude product was purified by flash chromatography (SiO 2, hexane/ethyl acetate: 1/1) to provide 1- [ [2-bromo-4-nitro-6- (trifluoromethyl) phenyl] methyl] -4-methyl-piperazine (3.5 g, 65.17%yield) as yellow solid. LCMS: (M+H)  + = 383.0.
Step 3-4: 3-Bromo-4- [ (4-methylpiperazin-1-yl) methyl] -5- (trifluoromethyl) aniline. To a suspension of 1- [ [2-bromo-4-nitro-6- (trifluoromethyl) phenyl] methyl] -4-methyl-piperazine (3.5 g, 9.16 mmol) in AcOH (5 mL) was added Iron (5.11 g, 91.58 mmol) at 60 ℃. The reaction mixture was stirred for 40 minutes at this temperature under N 2, and concentrated in vacuo. The residue was suspended in ethyl acetate (200 mL) , and filtered. The filtrate was concentrated, and the crude product was purified by flash chromatography (SiO 2, hexane/ethyl acetate = 1/1) to provide 3-bromo-4- [ (4-methylpiperazin-1-yl) methyl] -5- (trifluoromethyl) aniline (3.2 g, 99.21%yield) as yellow solid. LCMS: (M+H)  + = 353.0.
Step 3-5: 3- (1H-imidazol-1-yl) -4- ( (4-methylpiperazin-1-yl) methyl) -5- (trifluoromethyl) aniline. To a suspension of 3-bromo-4- [ (4-methylpiperazin-1-yl) methyl] -5- (trifluoromethyl) aniline (3.2 g, 9.09 mmol) in DMSO (20 mL) were added 1H-imidazole (6.36 g, 9.09 mmol) , K 2CO 3 (38 g, 27 mmol) , 8-oxyquinolin (132 mg, 0.9 mmol) and CuI (170 mg, 0.9 mmol) . The mixture was stirred at 135 ℃ for 2 hours under N 2, diluted with water (80 mL) , and extracted with EA (3 *60 mL) . The combined organic layers were dried over anhydrous Na 2SO 4, filtered and concentrated. The residue was purified by column chromatography on silica gel (DCM/methanol: 10/1) to provide 3- (1H-imidazol-1-yl) -4- ( (4-methylpiperazin-1-yl) methyl) -5- (trifluoromethyl) aniline (3 g, 97.30%yield) as white solid. LCMS: (M+H)  + = 340.0.
Intermediate 8 was synthesized according to in Step 1-2, Method 1 of Intermediate 1 with 3-iodo-4-methylbenzoic acid. LCMS: (M+H)  += 584.0.
Method 4
Intermediate 9
Figure PCTCN2019081705-appb-000029
N- (4- ( (3- (dimethylamino) pyrrolidin-1-yl) methyl) -3- (trifluoromethyl) phenyl) -3-iodo-4-methylbenzamide
Figure PCTCN2019081705-appb-000030
Step 4-1: 1- (Bromomethyl) -4-nitro-2- (trifluoromethyl) benzene. To a stirred solution of 1-methyl-4-nitro-2- (trifluoromethyl) benzene (2.05 g, 10.00 mmol) in 1, 2-dichloroethane (65 mL) was added NBS (5.34 g, 30.00 mmol) and AIBN (246.3 mg, 1.50 mmol) , then the reaction mixture was heated at 90 ℃ overnight. After the reaction was complete monitored by TLC, the mixture was poured into water (100 mL) . The organic layer was separated and the aqueous layer was extracted with DCM (3 *40 mL) . The combined organic layers were washed with brine (50 mL) , dried over anhydrous MgSO 4, filtered and concentrated. The residue was purified by column chromatography on silica gel (EA/hexanes = 1/100) to provide 1- (bromomethyl) -4-nitro-2- (trifluoromethyl) benzene as light yellow oily liquid (1.82 g, 64.1%yield) .
Step 4-2: N, N-dimethyl-1- (4-nitro-2- (trifluoromethyl) benzyl) pyrrolidin-3-amine. To the solution of 1- (bromomethyl) -4-nitro-2- (trifluoromethyl) benzene (1.82 g, 6.40 mmol) in 40 mL of DCM were added Et 3N (3.56 mL, 25.60 mmol) and 3- (dimethylamino) pyrrolidine (1.32 g, 7.00 mmol) . The reaction mixture was stirred at room temperature until the reaction was complete monitored by TLC, diluted with DCM (100 mL) and washed with saturated aqueous NaHCO 3 solution (100 mL) . The organic layer was dried over anhydrous Na 2SO 4,  filtered, and concentrated. The residue was purified by silica gel column chromatography (MeOH/DCM = 1/20) to provide N, N-dimethyl-1- (4-nitro-2- (trifluoromethyl) benzyl) pyrrolidin-3-amine as yellow oily liquid (1.37 g, 60.1%yield) .
Step 4-3: 1- (4-Amino-2- (trifluoromethyl) benzyl) -N, N-dimethylpyrrolidin-3-amine. To the solution of N, N-dimethyl-1- (4-nitro-2- (trifluoromethyl) benzyl) pyrrolidin-3-amine (1.37 g, 4.32 mmol) in 40 mL of MeOH was added Pd/C (130.7 mg, 10%Pd on C) . The reaction mixture was purged thoroughly with H 2, stirred with hydrogen balloon for 2-3 hours, and filtered through celite. The cake was washed with MeOH, and the filtrate was concentrated to provide 1- (4-amino-2- (trifluoromethyl) benzyl) -N, N-dimethylpyrrolidin-3-amine as light yellow oil (1.05 g, 85%yield) .
Step 4-4: N- (4- ( (3- (dimethylamino) pyrrolidin-1-yl) methyl) -3- (trifluoromethyl) phenyl) -3-iodo-4-methy lbenzamide (intermediate 9) . The mixture of 3-iodo-4-methylbenzoic acid (525.2 mg, 2.00 mmol) , 1- (4-amino-2- (trifluoromethyl) benzyl) -N, N-dimethylpyrrolidin-3-amine (480.0 mg, 1.67 mmol) , HATU (952.5 mg, 2.50 mmol) , and DIPEA (0.83 mL, 5.01 mmol) in DMSO (10 mL) was stirred at 60℃, until the reaction was complete monitored by LC-MS. The reaction mixture was diluted with EA (100 mL) and washed with brine (3 *30 mL) . The organic layer was dried over anhydrous MgSO4, filtered, and concentrated. The residue was purified by flash column chromatography (MeOH/DCM = 1/20) on silica gel to provide intermediate 9 as light pink solid (428.2 mg, 40.3%yield) .
Method 5
Intermediate 10
Figure PCTCN2019081705-appb-000031
3-Iodo-4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000032
Step 5-1: Methyl 3-iodo-4-methylbenzoate. To the stirred solution of 3-iodo-4-methylbenzoic acid (3.93 g, 15.00 mmol) in methanol (90 mL) was added thionyl dichloride (3.30 mL, 45.00 mmol) at 0 ℃ in 15 minutes. Then the resulting reaction mixture was stirred at 70 ℃ for 4 hours, and concentrated in vacuo. The residue was dissolved in ethyl acetate (150 mL) , which was washed with saturated aqueous NaHCO 3 solution (3 *50 mL) . The organic phase was dried over anhydrous MgSO 4, filtered and concentrated in vacuo to provide the crude methyl 3-iodo-4-methylbenzoate as light yellow oily liquid (4.07 g, 96.7%yield) .
Step 5-2: 3-Iodo-4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) phenyl) benzamide. To the solution of methyl 3-iodo-4-methylbenzoate (2.64 g, 9.58 mmol) and 4- ( (4-methylpiperazin-1-yl) methyl) aniline (1.57 g, 7.66 mmol) in anhydrous THF (30 mL) was added potassium tert-butoxide (4.28 g, 38.20 mmol) in anhydrous THF (30 mL) at -20 ℃ in 3 hours. Then the reaction mixture was slowly warmed to room temperature, stirred for another hour, and poured into ice-water (200 mL) with stirring. The brown precipitate was collected by filtration and dried in vacuo to provide intermediate 10 (2.78 g, 64.6%) .
Method 6
Intermediate 11
Figure PCTCN2019081705-appb-000033
N- (6-bromopyridazin-3-yl) acetamide
Figure PCTCN2019081705-appb-000034
Step 6-1: N- (6-bromopyridazin-3-yl) acetamide. To a stirred solution of 6-bromopyridazin-3-amine (200.0 mg, 1.15 mmol) and pyridine (0.37 mL, 4.60 mmol) in 10 mL of CH 2Cl 2 was added acetyl chloride (0.17 mL, 2.30 mmol) dropwise over 15 minutes at 0 ℃. After stirring for an hour, the reaction mixture was quenched with saturated aqueous  NH 4Cl solution (50 mL) , and extracted with DCM (3 *20 mL) . The combined organic layers were dried over anhydrous Na 2SO 4, filtered, and concentrated to provide the crude intermediate 11 (76.2 %) .
Intermediate 12
Figure PCTCN2019081705-appb-000035
N- (6-bromopyridazin-3-yl) cyclopropanecarboxamide
Synthesized according to Method 6 of Intermediate 11, using cyclopropanecarbonyl chloride in place of acetyl chloride.
Intermediate 13
Figure PCTCN2019081705-appb-000036
N- (5-bromopyrazin-2-yl) acetamide
Synthesized according to Method 6 of Intermediate 11, using 5-bromopyrazin-2-amine in place of 6-bromopyridazin-3-amine.
Intermediate 14
Figure PCTCN2019081705-appb-000037
N- (6-bromopyrazin-2-yl) cyclopropanecarboxamide
Synthesized according to Method 6 of Intermediate 11, using 5-bromopyrazin-2-amine with cyclopropanecarbonyl chloride.
Intermediate 15
Figure PCTCN2019081705-appb-000038
N- (6-bromo-1, 2, 4-triazin-3-yl) acetamide
Synthesized according to Method 6 of Intermediate 11, using 6-bromo-1, 2, 4-triazin-3-amine in place of 6-bromopyridazin-3-amine.
Method 7
Example 1.
3- ( (6-Acetamidopyridazin-3-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000039
Step 7-1: 4-Methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) -3- ( (trimethylsilyl) ethynyl) benzamide. To the solution of intermediate 7 (11 g, 21 mmol) in 1, 4-dioxane (150 mL) were added CuI (200 mg, 1.05 mmol) , DIPEA (5.4 g, 42 mmol) , ethynyltrimethylsilane (2.5 g, 25 mmol) and Pd (PPh 32Cl 2 (737 mg, 1.05 mmol) . The reaction mixture was stirred at 80 ℃ for 10 hours under N 2, diluted with water (200 mL) , and extracted with EA (3 *200 mL) . The combined organic layers were washed with brine (2 *400 mL) , dried over anhydrous Na 2SO 4 and concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE/EA = 1/1 ~1/2) to provide 4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) -3- ( (trimethylsilyl) ethynyl) benzamide (7.0 g, 68%yield) as yellow solid. LCMS: (M+H)  += 488.0.
Step 7-2: 3-Ethynyl-4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benza mide. To the solution of 4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) -3- ( (trimethylsilyl) ethynyl) benzamide (5.6 g, 11.5 mmol) in MeOH (80 mL) was added K 2CO 3 (4.76 g, 34.5 mmol) . The mixture was stirred at 25 ℃ for 12 hours, diluted with water (200 mL) , and extracted with EA (3 *150 mL) . The combined organic layers were  washed with brine (2 *200 mL) , dried over anhydrous Na 2SO 4 and concentrated in vacuo. The residue was purified by column chromatography on silica gel (MeOH/DCM = 5%~10%) to provide
3-ethynyl-4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benza mide (3.5 g, 73%yield) as yellow oil. LCMS: (M+H)  += 416.0.
Step 7-3: 3- ( (6-Acetamidopyridazin-3-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benzamide. To the solution of 3-ethynyl-4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benza mide (100 mg, 0.24 mmol) in 1, 4-dioxane (6.0 mL) were added CuI (10 mg, 0.012 mmol) , DIPEA (51 mg, 0.4 mmol) , intermediate 11 (44 mg, 0.2 mmol) and Pd (PPh 32Cl 2 (10 mg, 0.012 mmol) . The reaction mixture was stirred for 10 hours at 80 ℃ under N 2, diluted with water (50 mL) , and extracted with EA (3 *40 mL) . The combined organic layers were washed with brine (2 *60 mL) , dried over anhydrous Na 2SO 4 and concentrated in vacuo. The residue was purified by prep-HPLC (10 mM NH 4HCO 3/MeCN) to afford 3- ( (6-acetamidopyridazin-3-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (t rifluoromethyl) phenyl) benzamide (20 mg, 16%yield) as white solid. LCMS: (M+H)  += 551.57.
Example 2.
3- ( (6- (Cyclopropanecarboxamido) pyridazin-3-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000040
Synthesized according to Method 7 of Example 1, using intermediate 12 in place of intermediate 11 in Step 7-3. LCMS: (M+H)  += 557.61.
Example 3.
3- ( (5-Acetamidopyrazin-2-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000041
Synthesized according to Method 7 of Example 1, using intermediate 13 in place of intermediate 11 in Step 7-3. LCMS: (M+H)  + = 557.57.
Example 4.
3- ( (5- (Cyclopropanecarboxamido) pyrazin-2-yl) ethynyl) -4-methyl-N- (4- ( (4-methyl piperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000042
Synthesized according to Method 7 of Example 1, using intermediate 14 in place of intermediate 11 in Step 7-3. LCMS: (M+H)  + = 577.61.
Example 5.
3- ( (6-Acetamidopyridazin-3-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000043
Synthesized according to Method 7 of Example 1, using intermediate 10 in place of intermediate 7 in Step 7-1. LCMS: (M+H)  += 483.58.
Example 6.
3- ( (6- (Cyclopropanecarboxamido) pyridazin-3-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000044
Synthesized according to Method 7 of Example 1, using intermediate 10 in place of intermediate 7 in Step 7-1, intermediate 12 in place of intermediate 11 in Step 7-3. LCMS: (M+H)  += 509.61.
Example 7.
3- ( (5-Aeetamidopyrazin-2-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000045
Synthesized according to Method 7 of Example 1, using intermediate 10 in place of intermediate 7 in Step 7-1, intermediate 13 in place of intermediate 11 in Step 7-3. LCMS: (M+H)  += 483.58.
Example 8.
3- ( (5- (Cyclopropanecarboxamido) pyrazin-2-yl) ethynyl) -4-methyl-N- (4- ( (4-methyl piperazin-1-yl) methyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000046
Synthesized according to Method 7 of Example 1, using intermediate 10 in place of intermediate 7 in Step 7-1, intermediate 14 in place of intermediate 11 in Step 7-3. LCMS: (M+H)  += 509.61.
Example 9.
3- ( (3-Aeetamido-1, 2, 4-triazin-6-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000047
Synthesized according to Method 7 of Example 1, using intermediate 10 in place of intermediate 7 in Step 7-1, intermediate 15 in place of intermediate 11 in Step 7-3. LCMS:  (M+H)  += 484.56.
Example 10.
3- ( (6-Acetamidopyridazin-3-yl) ethynyl) -4-methyl-N- (3- (4-methyl-1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000048
Synthesized according to Method 7 of Example 1, using intermediate 2 in place of intermediate 7 in Step 7-1. LCMS: (M+H)  += 519.49.
Example 11.
3- ( (6- (Cyclopropanecarboxamido) pyridazin-3-yl) ethynyl) -4-methyl-N- (3- (4-methyl-1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000049
Synthesized according to Method 7 of Example 1, using intermediate 2 in place of intermediate 7 in Step 7-1, intermediate 12 in place of intermediate 11 in Step 7-3. LCMS: (M+H)  += 545.53.
Example 12.
3- ( (5-Acetamidopyrazin-2-yl) ethynyl) -4-methyl-N- (3- (4-methyl-1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000050
Synthesized according to Method 7 of Example 1, using intermediate 2 in place of intermediate 7 in Step 7-1, intermediate 13 in place of intermediate 11 in Step 7-3. LCMS: (M+H)  += 519.49.
Method 8
Intermediate 16
Figure PCTCN2019081705-appb-000051
tert-Butyl acetyl (5-bromopyridin-2-yl) carbamate
Figure PCTCN2019081705-appb-000052
Step 8-1: N- (5-bromopyridin-2-yl) acetamide. To the solution of 5-bromopyridin-2-amine (6.7 g, 40 mmol) and TEA (6.06 g, 60 mmol) in THF (100 mL) was added acetic anhydride (3.12 g, 40 mmol) . The reaction mixture was stirred at 25 ℃ for 16 hours, diluted with water (150 mL) , and extracted with EA (3 *120 mL) . The combine organic layers were dried over anhydrous Na 2SO 4, filtered and concentrated in vacuo. The residue was purified by silica column chromatography (PE/EA = 2/1) to provide N- (5-bromopyridin-2-yl) acetamide (2.4 g, 28%yield) as yellow solid. LCMS: (M+H)  += 215.0.
Step 8-2: tert-Butyl acetyl (5-bromopyridin-2-yl) carbamate (intermediate 16) . To the solution of N- (5-bromopyridin-2-yl) acetamide (740 mg, 3.5 mmol) in THF (15 mL) was added LiHMDS (4.2 mL, 4.2 mmol) at 0 ℃, followed by dropwise addition of Boc 2O (916 mg, 4.2 mmol) . The reaction mixture was stirred at 25 ℃ for 3 hours, diluted with water (50 mL) , and extracted with EA (3 *40 mL) . The combined organic layers were dried over anhydrous Na 2SO 4, filtered and concentrated in vacuo. The residue was purified by silica column chromatography (PE/EA = 10/1) to provide intermediate 16 (550 mg, 61%yield) as yellow solid. LCMS: (M+H)  += 337.0.
Example 13.
3- ( (6-Acetamidopyridin-3-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000053
Synthesized according to Method 7 of Example 1, using intermediate 16 in place of intermediate 11 in Step 7-3, and with the condition below to remove Boc-protection group. Deprotection condition following Step 7-3: To the solution of tert-butyl  acetyl (5- ( (2-methyl-5- ( (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) carba moyl) phenyl) ethynyl) pyridin-2-yl) carbamate (52 mg, 0.08 mmol) in DCM (10 mL) was added TFA (1 mL) . The mixture was stirred for 5 hours at 25 ℃, diluted with saturated aqueous NaHCO 3 solution (15 mL) , and extracted with EA (3 *20 mL) . The combined organic layers were dried over anhydrous Na 2SO 4, filtered and concentrated in vacuo. The residue was purified by Prep-HPLC (0.2% formic acid/MeCN) to afford 3- ( (6-acetamidopyridin-3-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benzamide (37 mg, 84%yield) as white solid. LCMS: (M+H)  += 550.0.
Example 14.
3- ( (6-Aeetamidopyridin-3-yl) ethynyl) -4-methyl-N- (3- (4-methyl-1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000054
Synthesized according to Method 7 of Example 1, using intermediate 2 in place of intermediate 7 in Step 7-1, intermediate 16 in place of intermediate 11 in Step 7-3, and with the same deprotection condition as that of Example 13. LCMS: (M+H)  + = 518.0.
Method 9
Example 15.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (5- (2-methoxy-acetamido) pyrazin-2-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000055
Figure PCTCN2019081705-appb-000056
Step 9-1: 5- (2-Trimethylsilylethynyl) pyrazin-2-amine. The mixture of 5-bromopyrazin-2-amine (10 g, 57.47 mmol) , ethynyl (trimethyl) silane (10.16 g, 103.45 mmol, 14.62 mL) , Pd (PPh 32Cl 2 (2.02 g, 2.87 mmol) , CuI (547 mg, 2.87 mmol) and DIPEA (22.28 g, 172.41 mmol) in dioxane (200 mL) was stirred for 12 hours at 90 ℃ under microwave conditions protected by N 2. The reaction mixture was filtered through a pad of Celite, and the cake was washed with EA (200 mL) . The filtrate was concentrated in vacuo, and the residue was purified by silica gel chromatography (Hexanes/EA = 20/1) to provide 5- (2-trimethylsilylethynyl) pyrazin-2-amine (9.8 g, 89.13%yield) as pale yellow solid. LCMS: (M+H)  += 192.1.
Step 9-2: 5-Ethynylpyrazin-2-amine. To the stirred solution of 5- (2-trimethylsilylethynyl) pyrazin-2-amine (3 g, 15.68 mmol) in ethanol (60 mL) was added K 2CO 3 (4.34 g, 31.36 mmol) at 0 ℃. The reaction mixture was stirred at 15 ℃ for 12 hours, and diluted with EA (100 mL) . The organic layer was separated, and the aqueous layer was extracted with EA (2 *150 mL) . The combined organic phases were washed with brine (100 mL) , dried over anhydrous Na 2SO 4, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (SiO 2, hexanes/EA: 7/1) to provide 5-ethynylpyrazin-2-amine (1.7 g, 91.00%yield) as light-yellow solid. LCMS: (M+H)  + = 120.0.
Step 9-3: 3- [2- (5-Aminopyrazin-2-yl) ethynyl] -N- [3-imidazol-1-yl-5- (trifluoromethyl) phenyl] -4-methyl -benzamide. A mixture of intermediate 1 (2.6 g, 7.53 mmol) , 5-ethynylpyrazin-2-amine (1.70 g, 14.31 mmol) , Pd (PPh 32Cl 2 (263.90 mg, 376.46 μmol) , CuI (71.53 mg, 376.46 μmol) and DIPEA (2.92 g, 22.59 mmol) in dioxane (50 mL) was stirred for 12 hours at 90 ℃ under N 2.  The reaction mixture was filtered through a pad of Celite. The cake was washed with EA (100 mL) , and the filtrate was concentrated in vacuo. The residue was purified by silica gel chromatography (Hexanes/EA = 20/1) to provide 3- [2- (5-aminopyrazin-2-yl) ethynyl] -N- [3-imidazol-1 -yl-5- (trifluoromethyl) phenyl] -4-methyl-benzamide (2.8 g, 80.5%yield) as pale yellow solid. LCMS: (M+H)  + = 192.1.
Step 9-4: N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (5- (2-methoxy-acetamido) pyrazin-2-yl) ethynyl) -4-methylbenzamide. To a stirred solution of 3- [2- (5-aminopyrazin-2-yl) ethynyl] -N- [3-imidazol-1 -yl-5- (trifluoromethyl) phenyl] -4-methyl-benzamide (70 mg, 151.38 μmol) in dichloromethane (3 mL) at 0 ℃ were added pyridine (59.87 mg, 756.88 μmol, 61.22 uL) and 2-methoxyacetyl chloride (32.86 mg, 302.75 μmol) . The reaction mixture was stirred at 15 ℃ for 2 hours, and diluted with water (50 mL) . The organic layer was separated, and the aqueous layer was extracted with EA (3 *20 mL) . The combine organic layers were washed with brine (100 mL) , dried over anhydrous Na 2SO 4, filtered and concentrated in vacuo. The residue was purified by prep-HPLC (10 mM NH 4HCO 3/MeCN) to provide N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (5- (2-methoxy-acetamido) pyrazin-2-yl) ethynyl) -4-methylbenzamide (21 mg, 26%yield) as white solid. LCMS: (M+H)  + = 535.1.
Example 16.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (5-acetamidopyrazin-2-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000057
Synthesized according to Method 9 of Example 15, using acetyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 505.0.
Example 17.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (5- (cyclopropanecar-boxa mido) pyrazin-2-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000058
Synthesized according to Method 9 of Example 15, using cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  += 531.0.
Example 18.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -4-methyl-3- ( (5-propionamido pyrazin-2-yl) ethynyl) benzamide
Figure PCTCN2019081705-appb-000059
Synthesized according to Method 9 of Example 15, using propionyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 519.0.
Example 19.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (5-isobutyramido-pyrazin-2-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000060
Synthesized according to Method 9 of Example 15, using isobutyryl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 533.0.
Example 20.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -4-methyl-3- ( (5-pivalamidopyr azin-2-yl) ethynyl) benzamide
Figure PCTCN2019081705-appb-000061
Synthesized according to Method 9 of Example 15, using pivaloyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 547.0.
Example 21.
N- (5- ( (5- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenylcarbamoyl) -2-methylphe nyl) ethynyl) pyrazin-2-yl) -tetrahydro-2H-pyran-4-earboxamide
Figure PCTCN2019081705-appb-000062
Synthesized according to Method 9 of Example 15, using tetrahydro-2H-pyran-4-carbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 574.9.
Example 22.
(S) -N- (5- ( (5- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenylcarbamoyl) -2-methyl phenyl) ethynyl) pyrazin-2-yl) -tetrahydrofuran-2-carboxamide
Figure PCTCN2019081705-appb-000063
Synthesized according to Method 9 of Example 15, using (S) -tetrahydrofuran-2-carbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 561.0.
Example 23.
(R) -N- (5- ( (5- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenylcarbamoyl) -2-methyl phenyl) ethynyl) pyrazin-2-yl) -tetrahydrofuran-2-carboxamide
Figure PCTCN2019081705-appb-000064
Synthesized according to Method 9 of Example 15, using (R) -tetrahydrofuran-2-carbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 561.0.
Example 24.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (5-benzamidopyrazin-2-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000065
Synthesized according to Method 9 of Example 15, using benzoyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 567.0.
Example 25.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (5- (4-fluoroben-zamido) pyrazin-2-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000066
Synthesized according to Method 9 of Example 15, using 4-fluorobenzoyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 585.0.
Example 26.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (5- (2-fluorobenzamido) pyrazin-2-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000067
Synthesized according to Method 9 of Example 15, using 2-fluorobenzoyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 585.0.
Example 27.
N- (5- ( (5- ( (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) carbamoyl) -2-methylph  enyl) ethynyl) pyrazin-2-yl) picolinamide
Figure PCTCN2019081705-appb-000068
Synthesized according to Method 9 of Example 15, using picolinoyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 568.0.
Example 28.
3- ( (2-Acetamidopyrimidin-5-yl) ethynyl) -4-methyl-N- (4- ( (4-methylpiperazin-1-yl) methyl) -3- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000069
Synthesized according to Method 9 of Example 15, using 5-bromopyrimidin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 7 in place of intermediate 1 in Step 9-3, and acetyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  += 550.9.
Example 29.
3- ( (6- (Cyclopropanecarboxamido) pyridin-3-yl) ethynyl) -4-methyl-N- (3- (4-methyl-1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000070
Synthesized according to Method 9 of Example 15, using 5-bromopyridin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 2 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 544.2.
Example 30.
3- ( (5- (Cyclopropanecarboxamido) pyrazin-2-yl) ethynyl) -4-methyl-N- (3- (4-methyl-1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000071
Synthesized according to Method 9 of Example 15, using intermediate 2 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 544.9.
Example 31.
3- ( (2-Acetamidopyrimidin-5-yl) ethynyl) -4-methyl-N- (3- (4-methyl-1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000072
Synthesized according to Method 9 of Example 15, using 5-bromopyrimidin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 2 in place of intermediate 1 in Step 9-3, and acetyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  += 519.0.
Example 32.
3- ( (2- (Cyclopropanecarboxamido) pyrimidin-5-yl) ethynyl) -4-methyl-N- (3- (4-methyl-1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000073
Synthesized according to Method 9 of Example 15, using 5-bromopyrimidin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 2 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 545.0.
Example 33.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (6- (cyclopropane-carboxa mido) pyridin-3-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000074
Synthesized according to Method 9 of Example 15, using 5-bromopyridin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 530.0.
Example 34.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (2- (eyelopropane-earboxa mido) pyrimidin-5-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000075
Synthesized according to Method 9 of Example 15, using 5-bromopyrimidin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 531.0.
Method 10
Intermediate 17
Figure PCTCN2019081705-appb-000076
4- (Pyrrolidin-1-ylmethyl) -1H-imidazole
Figure PCTCN2019081705-appb-000077
Step 10-1: 1H-imidazol-4-yl (pyrrolidin-1-yl) methanone. The mixture of 1H-imidazole-4-carboxylic acid (5 g, 44.61 mmol) , pyrrolidine (3.49 g, 49.07 mmol, 4.08 mL) , HATU (25.58 g, 66.91 mmol) , and DIPEA (20.18 g, 156.13 mmol, 27.19 mL) in DMF (50 mL) was stirred for 12 hours at 25 ℃ under N 2. The reaction mixture was quenched with water (50 mL) and extracted with EtOAc (3 *50 mL) . The organic phase was washed with brine (150  mL) , dried over anhydrous Na 2SO 4, filtered and concentrated in vacuo. The residue was purified by flash chromatography (SiO 2, hexane/ethyl acetate: 1/8) to provide 1H-imidazol-4-yl (pyrrolidin-1-yl) methanone (2.3 g, 31%yield) as yellow solid. LCMS: (M+H)  += 166.0.
Step 10-2: 4- (Pyrrolidin-1-ylmethyl) -1H-imidazole (intermediate 17) . To the solution of 1H-imidazol-4-yl (pyrrolidin-1-yl) methanone (1.5 g, 9.08 mmol) in THF (5 mL) was added slowly LiAlH 4 (1.72 g, 45.40 mmol) in portions at 0 ℃. The resulting mixture was stirred for 5 hours at 60℃ under N 2, cooled, and quenched with ice-cold water (20 mL) . The mixture was extracted with EtOAc (3 *20 mL) . The organic phases were washed with brine (50 mL) , dried over anhydrous Na 2SO 4, filtered and concentrated in vacuo. The residue was purified by flash chromatography (SiO 2, DCM/MeOH: 10/1) to afford intermediate 17 (0.5 g, 36%yield) as yellow solid. LCMS: (M+H)  += 152.0.
Example 35.
3- ( (2- (Cyclopropanecarboxamido) pyrimidin-5-yl) ethynyl) -4-methyl-N- (3- (4- (pyrrolidin-1-ylmethyl) -1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000078
Synthesized according to Method 9 of Example 15, using 5-bromopyrimidin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 17 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  += 614.2.
Example 36.
3- ( (2- (Cyclopropanecarboxamido) pyrimidin-5-yl) ethynyl) -4-methyl-N- (3- (2-methyl-1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000079
Synthesized according to Method 9 of Example 15, using 5-bromopyrimidin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 3 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS:  (M+H)  + = 545.2.
Example 37.
N- (3- (1H-1, 2, 3-triazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (2- (cyclopropane-carbo xamido) pyrimidin-5-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000080
Synthesized according to Method 9 of Example 15, using 5-bromopyrimidin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 4 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  += 532.2.
Example 38.
N- (3- (1H-1, 2, 3-triazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (6- (cyclopropanecarbox amido) pyridin-3-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000081
Synthesized according to Method 9 of Example 15, using 5-bromopyridin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 4 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 531.2.
Example 39.
N- (3- (1H-1, 2, 3-triazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (5- (cyclopropanecarbox amido) pyrazin-2-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000082
Synthesized according to Method 9 of Example 15, using intermediate 4 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS (M+H)  + = 532.2.
Example 40.
N- (3- (2H-1, 2, 3-triazol-2-yl) -5- (trifluoromethyl) phenyl) -3- ( (2- (cyclopropanecarbox amido) pyrimidin-5-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000083
Synthesized according to Method 9 of Example 15, using 5-bromopyrimidin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 6 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 532.2.
Example 41.
N- (3- (4H-1, 2, 4-triazol-4-yl) -5- (trifluoromethyl) phenyl) -3- ( (2- (cyclopropanecarbox amido) pyrimidin-5-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000084
Synthesized according to Method 9 of Example 15, using 5-bromopyrimidin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 5 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 532.2.
Example 42.
N- (3- (4H-1, 2, 4-triazol-4-yl) -5- (trifluoromethyl) phenyl) -3- ( (5- (cyclopropane-carbo xamido) pyrazin-2-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000085
Synthesized according to Method 9 of Example 15, using intermediate 5 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 532.0.
Example 43.
N- (3- (4H-1, 2, 4-triazol-4-yl) -5- (trifluoromethyl) phenyl) -3- ( (6- (cyclopropanecarbox amido) pyridin-3-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000086
Synthesized according to Method 9 of Example 15, using 5-bromopyridin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 5 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 531.0.
Example 44.
N- (3- (1H-imidazol-1-yl) -4- ( (4-methylpiperazin-1-yl) methyl) -5- (trifluoromethyl) phenyl) -3- ( (2- (cyclopropanecarboxamido) pyrimidin-5-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000087
Synthesized according to Method 9 of Example 15, using 5-bromopyrimidin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 8 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 643.0.
Example 45.
N- (3- (1H-imidazol-1-yl) -4- ( (4-methylpiperazin-1-yl) methyl) -5- (trifluoromethyl) phenyl) -3- ( (6- (cyclopropanecarboxamido) pyridin-3-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000088
Synthesized according to Method 9 of Example 15, using 5-bromopyridin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, intermediate 8 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS: (M+H)  + = 642.3.
Example 46.
N- (3- (1H-imidazol-1-yl) -4- ( (4-methylpiperazin-1-yl) methyl) -5- (trifluoromethyl) phenyl) -3- ( (5- (cyclopropanecarboxamido) pyrazin-2-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000089
Synthesized according to Method 9 of Example 15, using intermediate 8 in place of intermediate 1 in Step 9-3, and cyclopropanecarbonyl chloride in place of 2-methoxyacetyl chloride in Step 9-4. LCMS (M+H)  + = 643.3.
Method 11
Example 47.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (6-acetamidopyridazin-3-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000090
Step 11-1: N- (6- ( (trimethylsilyl) ethynyl) pyridazin-3-yl) acetamide. The mixture of intermediate 11 (130 mg, 0.60 mmol) , trimethylsilylacetylene (163.0 uL, 1.20 mmol) , Cu (I) iodide (11.4 mg, 0.06 mmol ) , Pd (PPh 32Cl 2 (42.1 mg, 0.06 mmol) , and DIPEA (395.0 uL, 2.40 mmol) in acetonitrile (6 mL) was purged with N 2, stirred at 80 ℃ for 5 hours, and filtered through celite. The cake was washed three times with EA (30 mL) , and the filtrate was concentrated in vacuo to provide the crude N- (6- ( (trimethylsilyl) ethynyl) pyridazin-3-yl) acetamide.
Step 11-2: N- (6-ethynylpyridazin-3-yl) acetamide. The mixture of crude N- (6- ( (trimethylsilyl) ethynyl) pyridazin-3-yl) acetamide and K 2CO 3 (165.8 mg, 1.20 mmol) in methanol (6 mL) was stirred at room temperature for an hour and then filtered. The filtrate was concentrated, and the residue was purified by flash column chromatography on silica gel to provide N- (6-ethynylpyridazin-3-yl) acetamide.
Step 11-3: N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (6-acetamidopyridazin-3-yl) ethynyl) -4-methylbenzamide. The mixture of intermediate 1 (47 mg, 0.10 mmol) , N- (6-ethynylpyridazin-3-yl) acetamide (21 mg, 0.13 mmol) , Cu (I) iodide (2.0 mg, 0.01 mmol) , Pd (PPh 32Cl 2 (7.0 mg, 0.01 mmol) , and DIPEA (66 uL, 0.40 mmol) in MeCN (2 mL) was purged with N 2, and stirred at 80 ℃ overnight. The reaction mixture was filtered through celite and the cake was washed three times with ethyl acetate (30 mL) . The filtrate was concentrated, and the residue was purified by flash column chromatography on silica gel to afford N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (6-acetamidopyridazin-3-yl) ethynyl) -4-methylbenzamide. LCMS: (M+H)  += 505.46.
Example 48.
N- (3- (1H-imidazol-1-yl) -5- (trifluoromethyl) phenyl) -3- ( (6- (cyclopropanecarboxamido) pyridazin-3-yl) ethynyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000091
Synthesized according to Method 11 of Example 47, using intermediate 12 in place of intermediate 11 in Step 11-1. LCMS: (M+H)  += 531.50.
Intermediate 18
Figure PCTCN2019081705-appb-000092
3- ( (4-Methylpiperazin-1-yl) methyl) -5- (trifluoromethyl) aniline
Synthesized according to Method 2 of intermediate 7, using 3-amino-5- (trifluoromethyl) benzoic acid in place of 4-amino-2- (trifluoromethyl) benzoic acid in Step 2-1.
Example 49.
3- ( (6-Acetamidopyridazin-3-yl) ethynyl) -4-methyl-N- (3- ( (4-methylpiperazin-1-yl) methyl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000093
Synthesized according to Method 11 of Example 47, using intermediate 18 in place of intermediate 1 in Step 11-3. LCMS: (M+H)  += 551.57.
Example 50.
3- ( (6- (Cyclopropanecarboxamido) pyridazin-3-yl) ethynyl) -4-methyl-N- (3- ( (4-methylpiperazin-1-yl) methyl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000094
Synthesized according to Method 11 of Example 47, using intermediate 12 in place of intermediate 11 in Step 11-1, and intermediate 18 in place of intermediate 1 in Step 11-3. LCMS: (M+H)  += 576.61.
Example 51.
3- ( (5-Acetamidopyrazin-2-yl) ethynyl) -4-methyl-N- (3- ( (4-methylpiperazin-1-yl) methyl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000095
Synthesized according to Method 11 of Example 47, using intermediate 13 in place of intermediate 11 in Step 11-1, and intermediate 18 in place of intermediate 1 in Step 11-3. LCMS: (M+H)  + = 551.57.
Example 52.
3- ( (5- (Cyclopropanecarboxamido) pyrazin-2-yl) ethynyl) -4-methyl-N- (3- ( (4-methyl piperazin-1-yl) methyl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000096
Synthesized according to Method 11 of Example 47, using intermediate 14 in place of intermediate 11 in Step 11-1, and intermediate 18 in place of intermediate 1 in Step 11-3. LCMS: (M+H)  += 576.61.
Example 53.
3- ( (6-Acetamidopyridazin-3-yl) ethynyl) -N- (4- ( (3- (dimethylamino) pyrrolidin-1-yl) methyl) -3- (trifluoromethyl) phenyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000097
Synthesized according to Method 11 of Example 47, using intermediate 9 in place of intermediate 1 in Step 11-3. LCMS: (M+H)  += 565.60.
Example 54.
3- ( (6- (Cyclopropanecarboxamido) pyridazin-3-yl) ethynyl) -N- (4- ( (3- (dimethylamino) pyrrolidin-1-yl) methyl) -3- (trifluoromethyl) phenyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000098
Synthesized according to Method 11 of Example 47, using intermediate 12 in place of intermediate 11 in Step 11-1, and intermediate 9 in place of intermediate 1 in Step 11-3. LCMS: (M+H)  += 591.65.
Example 55.
3- ( (5-acetamidopyrazin-2-yl) ethynyl) -N- (4- ( (3- (dimethylamino) pyrrolidin-1-yl) methyl) -3- (trifluoromethyl) phenyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000099
Synthesized according to Method 11 of Example 47, using intermediate 13 in place of intermediate 11 in Step 11-1, and intermediate 9 in place of intermediate 1 in Step 11-3. LCMS: (M+H)  += 565.60.
Example 56.
3- ( (5- (Cyelopropaneearboxamido) pyrazin-2-yl) ethynyl) -N- (4- ( (3- (dimethylamino) pyrrolidin-1-yl) methyl) -3- (trifluoromethyl) phenyl) -4-methylbenzamide
Figure PCTCN2019081705-appb-000100
Synthesized according to Method 11 of Example 47, using intermediate 14 in place of intermediate 11 in Step 11-1, and intermediate 9 in place of intermediate 1 in Step 11-3. LCMS: (M+H)  += 591.65.
Intermediate 19
Figure PCTCN2019081705-appb-000101
3- ( (2-Aminopyrimidin-5-yl) ethynyl) -4-methylbenzoic acid
Synthesized according to Method 9 of Example 16, using 5-bromopyrimidin-2-amine in place of 5-bromopyrazin-2-amine in Step 9-1, and 3-iodo-4-methylbenzoic acid in place of intermediate 1 in Step 9-3, and omitting Step 9-4.
Intermediate 20
Figure PCTCN2019081705-appb-000102
3- ( (5-Aminopyrazin-2-yl) ethynyl) -4-methylbenzoic acid
Synthesized according to Method 9 of Example 16, using 3-iodo-4-methylbenzoic acid in place of intermediate 1 in Step 9-3, and omitting Step 9-4.
Method 12
Example 57.
3- ( (2- (Cyclopropanecarboxamido) pyrimidin-5-yl) ethynyl) -4-methyl-N- (3- (1-methyl-1H-imidazol-2-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000103
Step 12-1: 3- (4, 4, 5, 5-Tetramethyl-1, 3, 2-dioxaborolan-2-yl) -5- (trifluoromethyl) aniline. The mixture of 3-bromo-5- (trifluoromethyl) aniline (5 g, 20.83 mmol, 2.94 mL) , 4, 4, 5, 5-tetramethyl-2- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1, 3, 2-dioxaborolane (6.35 g, 25.00 mmol) and Pd (dppf) Cl 2·CH 2Cl 2 (762.13 mg, 1.04 mmol) , and potassium acetate (6.13 g, 62.49 mmol) in DMSO (15 mL) was stirred for 6 hours at 80 ℃ under N 2. The reaction mixture was filtered through a pad of Celite. The cake was washed with EA (150 mL) , and the filtrate was washed with water (3 *40 mL) . The organic phase was dried over anhydrous Na 2SO 4, filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (Hexanes/EA = 6/1) to provide 3- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -5- (trifluoromethyl) aniline (3.6 g, 12.54 mmol) as pale yellow oil. LCMS: (M+H)  + = 288.0.
Step 12-2: 3- (1-Methylimidazol-2-yl) -5- (trifluoromethyl) aniline. The mixture of 3- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -5- (trifluoromethyl) aniline (891 mg, 3.10 mmol) , 2-bromo-1-methyl-1H-imidazole (499.68 mg, 3.10 mmol) , cesium carbonate (2.02 g, 6.21 mmol) , and Pd (dppf) Cl 2·CH 2Cl 2 (227.09 mg, 310.36 μmol) in dioxane (6 mL) was stirred for 2.5 hours at 90 ℃ under N 2. The reaction mixture was filtered through a pad of Celite. The cake was washed with EA (100 mL) , and the filtrate was concentrated in vacuo. The residue  was purified by silica gel chromatography (100% EA) to provide 3- (1-methylimidazol-2-yl) -5- (trifluoromethyl) aniline (180 mg, 24.04%yield) as pale yellow solid. LCMS: (M+H)  + = 242.0.
Step 12-3: 3- [2- (2-Aminopyrimidin-5-yl) ethynyl] -4-methyl-N- [3- (1-methylimidazol-2-yl) -5- (trifluorom ethyl) phenyl] benzamide. The mixture of 3- (1-methylimidazol-2-yl) -5- (trifluoromethyl) aniline (98 mg, 406.28 μmol) , intermediate 19 (102.89 mg, 406.28 μmol) , DIPEA (210.04 mg, 1.63 mmol) , and HATU (310.60 mg, 812.56 μmol) in DMF (3 mL) was stirred for 16 hours at 25 ℃. The reaction mixture was purified by Pre-HPLC (10 mM NH 4HCO 3/MeCN) to provide 3- [2- (2-aminopyrimidin-5-yl) ethynyl] -4-methyl-N- [3- (1-methylimidazol-2-yl) -5- (trifluorome thyl) phenyl] benzamide (50 mg, 104.94 μmol) as white solid. LCMS: (M+H)  + = 477.0.
Step 4-4: 3- [2- [2- (Cyclopropanecarbonylamino) pyrimidin-5-yl] ethynyl] -4-methyl-N- [3- (1-methylimid azol-2-yl) -5- (trifluoromethyl) phenyl] benzamide. To a stirred solution of 3- [2- (2-aminopyrimidin-5-yl) ethynyl] -4-methyl-N- [3- (1-methylimidazol-2-yl) -5- (trifluorome thyl) phenyl] benzamide (50 mg, 104.94 μmol) in dichloromethane (3 mL) at 0 ℃ were added pyridine (83.01 mg, 1.05 mmol, 84.88 uL) and cyclopropanecarbonyl chloride (16.46 mg, 157.41 μmol, 14.31 uL) . The reaction mixture was stirred at 25 ℃ for 2 hours, and purified by prep -HPLC (10 mM NH4HCO3/MeCN) to provide 3- [2- [2- (cyclopropanecarbonylamino) pyrimidin-5-yl] ethynyl] -4-methyl-N- [3- (1-methylimida zol-2-yl) -5- (trifluoromethyl) phenyl] benzamide (11.4 mg, 20%yield) as pale white solid. LCMS: (M+H)  + = 545.0.
Example 58.
3- ( (2- (Cyclopropanecarboxamido) pyrimidin-5-yl) ethynyl) -4-methyl-N- (3- (1-methyl-1H-imidazol-4-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000104
Synthesized according to Method 12 of Example 57, using 4-bromo-1-methyl-1H-imidazole in place of 2-bromo-1-methyl-1H-imidazole in Step 12-2. LCMS: (M+H)  + = 545.0.
Example 59.
3- ( (2- (Cyclopropanecarboxamido) pyrimidin-5-yl) ethynyl) -4-methyl-N- (3- (oxazol-2-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000105
Synthesized according to Method 12 of Example 57, using 2-bromooxazole in place of 2-bromo-1-methyl-1H-imidazole in Step 12-2. LCMS: (M+H)  + = 532.2.
Method 13
Example 60.
3- ( (5- (Cyclopropanecarboxamido) pyrazin-2-yl) ethynyl) -4-methyl-N- (3- (tetrahydro-2H-pyran-4-yl) -5- (trifluoromethyl) phenyl) benzamide
Figure PCTCN2019081705-appb-000106
Step 13-1: 3- (3, 6-Dihydro-2H-pyran-4-yl) -5- (trifluoromethyl) aniline. Under nitrogen atmosphere, to a mixture of 3-bromo-5- (trifluoromethyl) aniline (1 g, 4.17 mmol) , 2- (3, 6-dihydro-2H-pyran-4-yl) -4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane (875.25 mg, 4.17 mmol) and sodium carbonate (883.16 mg, 8.33 mmol) in water (4 mL) and THF (20 mL) was added Pd (dppf) Cl 2·CH 2Cl 2 (304.85 mg, 416.63 μmol) . The reaction mixture was stirred at 80 ℃ for 16 hours, diluted with water (100 mL) and extracted with EA (3 *50 mL) . The combined organic phases were washed with brine (100 mL) , dried over anhydrous Na 2SO 4, filtered and concentrated to provide crude  3- (3, 6-dihydro-2H-pyran-4-yl) -5- (trifluoromethyl) aniline (0.9 g, crude) . LCMS: (M+H)  += 244.1.
Step 13-2: 3-Tetrahydropyran-4-yl-5- (trifluoromethyl) aniline. Under hydrogen atmosphere, the mixture of 3- (3, 6-dihydro-2H-pyran-4-yl) -5- (trifluoromethyl) aniline (0.4 g, 1.64 mmol) and palladium on carbon (40.00 mg) in methanol (10 mL) was stirred at 25 ℃ for 3 hours, and filtered through celite. The filtrate was concentrated to provide crude 3-tetrahydropyran-4-yl-5- (trifluoromethyl) aniline (0.38 g, crude) . LCMS: (M+H)  + = 246.1. Step 13-3 and 13-4 are the same as Method 12 of Example 57, Step 12-3 and Step 12-4. LCMS: (M+H)  + = 549.0.
Biological Examples
Ba/F3 BCR-ABL WT and T315I proliferation assays:
Ba/F3 is a murine interleukin-3 (IL-3) dependent pro-B cell line that has been used as a model system for assessing both the potency and downstream signaling of kinase oncogenes, and the ability of small-molecule kinase inhibitors to block kinase activity. Facilitated by their growth properties, Ba/F3 cells have recently been adapted to high-throughput assay formats for compound profiling. Further, several published approaches show promise in predicting resistance to small-molecule kinase inhibitors elicited by point mutations interfering with inhibitor binding.
Ba/F3 cells (transformed with WT or T315I mutation of Bcr-Abl) were harvested during the logarithmic growth period and counted. ~2000 cells were added as suspensions to each well of 96-well plates and incubated at 37℃, 5%CO 2. Serial dilutions of each test compound, with top concentration of 10uM or 0.2uM by 2 or 3 fold, were prepared and dispensed in each well (triplicates for each concentration) . The plate was then incubated for 72hrs in humidified incubator at 37℃ with 5%CO 2.
At the end of incubation period, CTG (CELL
Figure PCTCN2019081705-appb-000107
Luminescent Cell Viability kit, Cat. No.: G7572, Promega) was added, and luminescence signal was recorded using EnVision Multi Label Reader 2104-0010A, PerkinElmer, USA (TAREA0011) . The CELL 
Figure PCTCN2019081705-appb-000108
Luminescent Cell Viability Assay is a homogeneous method of determining the number of viable cells in culture based on quantitation of the ATP present, an indicator of metabolically active cells. The amount of ATP is directly proportional to the number of cells present in culture. Thus this assay measures the number of cells over time in the presence of various amounts of the test compounds.
IC 50 values of certain representative compounds of the invention in terms of anti-proliferate activity against cells harboring the wild-type or T315I mutant form of Bcr-Abl kinase are listed in Table 1.
HUVEC cell viability assay:
Human umbilical vein endothelial cells (HUVECs) are cells derived from the endothelium of veins from the umbilical cord. They are used as a laboratory model system for the study of the function and pathology of endothelial cells, such as angiogenesis.
HUVEC cells (Allcells, Cat. #: H-001F) grown in cell growth medium (Cat. #: H-004) were harvested during the logarithmic growth period and counted. ~3000 HUVEC cells were added as suspensions to each well of 96-well plates and incubated at 37℃, 5%CO 2. Serial dilutions of each test compound were prepared and dispensed in each well (triplicates for each concentration) . The plate was incubated for 72 hrs in humidified incubator at 37℃ with 5%CO 2.
At the end of 72 hrs incubation period, CTG (CELL
Figure PCTCN2019081705-appb-000109
Luminescent Cell Viability kit, Cat. No.: G7572, Promega) was added, and luminescence signal was recorded using EnVision Multi Label Reader 2104-0010A, PerkinElmer, USA (TAREA0011) . Thus this assay measures the number of cells over time in the presence of various amounts of the test compounds.
IC 50 values of certain representative compounds of the invention in terms of toxicity against the HUVEC cells are listed in Table 1.
The ratio ofHUVEC IC 50 value over T315I IC 50 value for selected compounds of the invention are also listed in Table 1.
IC 50 Against Kinase Panel
To further assess the activity of the compounds of the invention against other kinases either structurally and/or functionally similar Bcr-Abl, or have been known to be inhibited by certain inhibitors of Bcr-Abl such as ponatinib, additional kinase inhibition assays were carried out using several representative compounds of the invention against a kinase panel. The results are shown in Table A below.
All kinase assays were performed at Nanosyn on the Caliper platform. Briefly, test compounds were diluted in 100%DMSO using 3-fold serial dilution. Final compound concentration in the assays ranged from 10 μM to 0.0565 nM. Compounds were tested in a single well for each dilution, and the final concentration of DMSO in all assays was kept at 1%.  Protein concentration in kinase assay was 0.4 nM, 0.3 nM, 9 nM, 0.25 nM and 5 nM for ABL, T315I ABL, DDR2, KDR and KIT, respectively, with substrate concentration of 1 μM. Compound incubation time with protein kinase was 3 minutes for all the listed kinases, with the exception of KIT, which incubation time was 17 minutes.
Table A IC 50 values Against Representative Kinases
Example# Abl T315I DDR2 KDR KIT
17 A A A A A
33 A A A A A
3 A A A A A
*A: IC 50 < 100 nM.
Figure PCTCN2019081705-appb-000110
Figure PCTCN2019081705-appb-000111
Figure PCTCN2019081705-appb-000112
Figure PCTCN2019081705-appb-000113
Figure PCTCN2019081705-appb-000114
Figure PCTCN2019081705-appb-000115
Figure PCTCN2019081705-appb-000116
Figure PCTCN2019081705-appb-000117
Figure PCTCN2019081705-appb-000118
Figure PCTCN2019081705-appb-000119
Figure PCTCN2019081705-appb-000120
Figure PCTCN2019081705-appb-000121
Figure PCTCN2019081705-appb-000122
Figure PCTCN2019081705-appb-000123
Figure PCTCN2019081705-appb-000124
Figure PCTCN2019081705-appb-000125
Figure PCTCN2019081705-appb-000126
Figure PCTCN2019081705-appb-000127

Claims (23)

  1. A compound represented by structural formula (I) :
    Figure PCTCN2019081705-appb-100001
    or a pharmaceutically acceptable salt thereof, wherein:
    R 12 is selected from C 1-4 alkyl, C 3-C 6 cycloalkyl, 4-6 membered heterocyclyl, 6-10 membered aryl, 5-10 membered mono-cyclic or bicyclic heteroaryl, wherein the alkyl, cycloalkyl, or heterocyclyl is optionally substituted with one or more groups selected from oxo or R 15, wherein said aryl or heteroaryl is optionally substituted with one or more groups selected from R 15;
    X, Y, and Z are each independently N or CR 15, provided that X, Y and Z are not N simultaneously;
    each R 15 is independently selected from H, halogen, CN, C 1-4 alkyl, C 1-4 perfluoroalkyl, C 1-4 polydeuterated alkyl and C 1-4 alkoxy;
    Ring A is phenyl or 5-6 membered monocyclic heteroaryl;
    Ring B is phenyl or 5-6 membered monocyclic heteroaryl;
    L is NR 0C (O) , C (O) NR 0, NR 0C (O) O, OC (O) NR 0, or NR 0C (O) NR 0;
    R 0 is independently H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl, heterocyclyl, and heteroaryl;
    each occurrence of R a is independently selected from the group consisting of H, halogen, -CN, -NO 2, -R 4, -OR 2, -NR 2R 3, -C (O) Y 1R 2, -OC (O) Y 1R 2, -NR 2C (O) Y 1R 2,
    -SC (O ) Y 1 R 2, -Y 1C (=NR 3) Y 1R 2, -Y 1P (=O ) (Y 1R 4) (Y 1R 4) , -NR 2SO 2 R 2, -S (O ) rR 2, -SO 2NR 2R 3, and -NR 2SO 2NR 2R 3;
    each occurrence of R b is independently selected from the group consisting of H, halogen, -CN, -NO 2, -R 4, - (CH 2zR, -O (CH 2) xR, -NR 3 (CH 2xR, -S (CH 2xR, -OR 2,  - (CH 2zNR 2R 3, -C (O) Y 1R 2, -OC (O) Y 1R 2, -NR 2C (O) Y 1R 2, - (CH 2xNR 3C (O) (CH 2xR, -SC (O ) Y 1R 2, -Y 1C (=NR 3) Y 1R 2, -Y 1p (=O ) (Y 1R 4) (Y 1R 4) , -NR 2SO 2 R 2, -S (O )  rR 2, -SO 2NR 2R 3, and -NR 2SO 2NR 2R 3;
    Y 1 is independently a bond, -O-, -S-, or -NR 3-;
    R is 3-10 membered carbocyclyl, 3-10 membered heterocyclyl, 6-14 membered aryl, or 5-14 membered heteroaryl;
    each R 2 and R 3 are independently selected from H, alkyl, alkenyl, alkynyl, carbocyclyl, aryl, heterocyclic and heteroaryl; alternatively,
    R 2 and R 3, taken together with the atom to which they are attached, form heterocyclyl or heteroaryl;
    each R 4 is independently selected from alkyl, alkenyl, alkynyl, carbocyclyl, aryl, heterocyclyl, and heteroaryl;
    r is 0, 1, or 2;
    x is 0, 1, 2, or 3;
    z is 0, 1, 2, 3, or 4;
    wherein each of the heterocyclyl and heteroaryl contains 1-3 ring heteroatoms independently selected from N, O, and S;
    each of the alkyl, alkenyl, alkynyl, carbocyclyl, aryl, heterocyclyl, and heteroaryl moieties recited herein is optionally substituted;
    m is 0, 1, 2, 3, or 4; and
    h is0, 1, 2, 3, 4, or 5.
  2. The compound of claim 1, which is represented by structural formula (II) :
    Figure PCTCN2019081705-appb-100002
    or a pharmaceutically acceptable salt thereof, wherein
    X, Y, and Z are each independently N or CH, provided that X, Y and Z are not N simultaneously;
    R 12 is C 1-C 4 alkyl, C 3-C 6 cycloalkyl, 4-6 membered monocyclic heterocyclyl, phenyl, or 5-6 membered monocyclic heteroaryl, each of which is optionally substituted with one to three groups selected from halogen, CN, C 1-4 alkyl, and C 1-4 alkoxy;
    wherein each occurrence of R a is independently selected from the group consisting of H, halogen, CN, C 1-C 4 alkyl, or C 1-C 4 alkoxy, wherein said C 1-C 4 alkyl or C 1-C 4 alkoxy is optionally substituted with one or more groups selected from halogen or deuterium; and m is 0, 1, or 2.
  3. The compound of claim 1 or 2, wherein the compound is represented by structural formula (III) :
    Figure PCTCN2019081705-appb-100003
    or a pharmaceutically acceptable salt thereof, wherein:
    R a is H, halogen, CN, C 1-3 alkyl optionally substituted with one or more fluoro or deuterium;
    R b1 is H, halogen, C 1-C 3 perfluoroalkyl, C 1-C 3 alkyl optionally substituted with one or more deuterium;
    R b2 is H, halogen, CN, - (CH 2zNR 2R 3, C 1-C 3 alkyl, C 1-C 3 fluoroalkyl, or -(CH 2zR;
    R b3 is H, halogen, CN, - (CH 2zNR 2R 3, C 1-C 3 alkyl, C 1-C 3 perfluoroalkyl, or -(CH 2zR;
    each R is independently 3-10 membered carbocyclyl, 3-10 membered heterocyclyl, 6-14 membered aryl, or 5-14 membered heteroaryl, wherein the 3-10 membered carbocyclyl or 3-10 membered heterocyclyl is optionally substituted with halogen, OH, CN, NO 2, C 1-C 4 alkyl, C 1-C 4 alkoxy, =O, or NR 2R 3; wherein the 6-14 membered aryl or 5-14 membered heteroaryl is optionally substituted with halogen, OH, CN, NO 2, C 1-C 4 alkyl, C 1-C 4 alkoxy, NR 2R 3, or CH 2-4-6 membered monocyclic heterocyclyl;
    each R 2 and R s are independently selected from H, C 1-6 alkyl, C 3-6 cycloalkyl, 4-7 membered heterocyclic, and 5-7 membered heteroaryl; alternatively,
    R 2 and R 3, taken together with the atom to which they are attached, form 4-7 membered heterocyclyl or 5-7 membered heteroaryl, each of which is optionally substituted with one or more halogen, OH, CN, C 1-C 4 alkyl, or C 1-C 4 alkoxy.
  4. The compound of any one of claims 1-3, wherein the compound is represented by one of the following structural formulae (IV-a) - (IV-e) :
    Figure PCTCN2019081705-appb-100004
    Figure PCTCN2019081705-appb-100005
    or a pharmaceutically acceptable salt thereof, wherein:
    R 12 is C 1-4 alkyl optionally substituted with C 1-2 alkoxy; or C 3-C 6 cycloalkyl.
  5. The compound of claim 3 or 4, or a pharmaceutically acceptable salt thereof, wherein R b1 is C 1-3 alkyl or C 1-3 perfluoroalkyl, preferably CF 3.
  6. The compound of any one of claims 3-5, or a pharmaceutically acceptable salt thereof, wherein each of R b2 and R b3 is independently H, halogen, CN, C 1-C 3 perfluoroalkyl, C 1-3 alkyl, -CH 2N (CH 32, or - (CH 2zR; and z is 0 or 1.
  7. The compound of any one of claims 3-6, or a pharmaceutically acceptable salt thereof, wherein each R b2 and R b3 is independently H, halogen, CN, C 1-C 3 perfluoroalkyl,
    C 1-3 alkyl, -CH 2N (CH 32, 3-10 membered heterocyclyl, - (CH 2) -4-6 membered heterocyclyl, or 5-10 membered heteroaryl.
  8. The compound of any one of claims 3-7, or a pharmaceutically acceptable salt thereof, wherein:
    R b2 is H, halogen, CN, C 1-3 alkyl, or one of:
    Figure PCTCN2019081705-appb-100006
    , preferably R b3 is H, and more preferably R b1 is CF 3.
  9. The compound of any one of claims 3-8, or a pharmaceutically acceptable salt thereof, wherein:
    R b3 is H, halogen, CN, C 1-3 alkyl, C 1-3 perfluoroalkyl, or one of:
    Figure PCTCN2019081705-appb-100007
    preferably R b2 is H, and more preferably R b1 is CF 3.
  10. The compound of any one of claims 3-9, or a pharmaceutically acceptable salt thereof, wherein R b3 is
    Figure PCTCN2019081705-appb-100008
  11. The compound of any one of claims 3-10, or a pharmaceutically acceptable salt thereof, wherein R b2 is H.
  12. The compound of any one of claims 3-11, or a pharmaceutically acceptable salt thereof, wherein R b1 is CF 3.
  13. The compound of any one of claims 1-12, or a pharmaceutically acceptable salt thereof, wherein R 12 is CH 3 or cyclopropyl.
  14. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein the compound is a compound listed in Table 1.
  15. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein the compound is:
    Figure PCTCN2019081705-appb-100009
  16. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein the compound is:
    Figure PCTCN2019081705-appb-100010
  17. A pharmaceutical composition comprising an effective amount of the compound of any one of claims 1-16 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  18. A method of treating cancer in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of a compound of any of claims 1-16 or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition of claim 17.
  19. The method of claim 18, wherein the cancer is treated by inhibiting the activity of a kinase, such as a Src family non-receptor Tyr kinase (such as SrcA subfamily kinases including FGR, FYN, SRC and YES; SrcB subfamily including BLK, HCK, LCK and LYN; and SRM subfamily including SRM and BRK) , a FGF-R (such as FGFR1-FGFR4, FGFRL1, and FGFR6) , a VEGF-R (such as VEGF-R 1 (FLT-1) , VEGF-R2 (KDR) , or VEGF-R3 (FLT-4) ) , a PDGF-R (such as PDGFRa and PDGFRb) , a Kit (such as KIT, FLT-3, and fms/CSF1R) , an EGFR (such as ErbB-1/HER1, ErbB-2/HER2/neu, ErbB-3/HER3, and ErbB-4/HER4) , an Abl kinase (including Bcr-Abl) , a Discoidin Domain Receptor kinase (such as DDR1 and DDR2) , a Ret kinase, and/or a Leucine Rich Repeat Kinase (such as LRRK2) .
  20. The method of claim 19, wherein the cancer is a solid tumor (e.g., breast, colon, pancreatic, CNS and head and neck cancer) , or a leukemia, including leukemia and solid tumor which are resistant or refractory to other treatment (such as resistant to treatment with Gleevec or another CDK inhibitor, Iressa, or Tarceva) .
  21. A method of treating leukemia in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of a compound of any of claims 1-16 or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition of claim 17.
  22. A method of treating chronic myeloid leukemia (CML) in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of a  compound of any of claims 1-16 or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition of claim 17.
  23. A method for treating Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ALL) in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of a compound of any of claims 1-16 or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition of claim 17.
PCT/CN2019/081705 2019-04-08 2019-04-08 Kinase inhibitors and uses thereof WO2020206583A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081705 WO2020206583A1 (en) 2019-04-08 2019-04-08 Kinase inhibitors and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081705 WO2020206583A1 (en) 2019-04-08 2019-04-08 Kinase inhibitors and uses thereof

Publications (1)

Publication Number Publication Date
WO2020206583A1 true WO2020206583A1 (en) 2020-10-15

Family

ID=72752192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081705 WO2020206583A1 (en) 2019-04-08 2019-04-08 Kinase inhibitors and uses thereof

Country Status (1)

Country Link
WO (1) WO2020206583A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778207A (en) * 2021-03-19 2021-05-11 海南鑫开源医药科技有限公司 Nilotinib hydrochloride raw material medicine impurity and preparation method thereof
WO2022149855A1 (en) * 2021-01-05 2022-07-14 주식회사 비투에스바이오 Heteroaryl-ethynyl derivative compound and use thereof
WO2022216680A1 (en) 2021-04-05 2022-10-13 Halia Therapeutics, Inc. Nek7 inhibitors
WO2022226182A1 (en) 2021-04-22 2022-10-27 Halia Therapeutics, Inc. Nek7 inhibitors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053274A1 (en) * 2000-01-21 2001-07-26 Agouron Pharmaceuticals, Inc. Amide compounds for inhibiting protein kinases
WO2006044823A2 (en) * 2004-10-18 2006-04-27 Amgen Inc. Heteroaryl-substituted alkyne compounds and method of use
CN104211639A (en) * 2013-06-05 2014-12-17 中国科学院上海药物研究所 Alkynyl heterocyclic compounds and application thereof
WO2015108490A2 (en) * 2014-01-17 2015-07-23 Agency For Science, Technology And Research Heteroaryl alkyne derivatives and uses thereof
WO2018183122A1 (en) * 2017-03-27 2018-10-04 Sidecar Therapeutics, Inc. Apoptosis signal-regulating kinase 1 (ask 1) inhibitor compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053274A1 (en) * 2000-01-21 2001-07-26 Agouron Pharmaceuticals, Inc. Amide compounds for inhibiting protein kinases
WO2006044823A2 (en) * 2004-10-18 2006-04-27 Amgen Inc. Heteroaryl-substituted alkyne compounds and method of use
CN104211639A (en) * 2013-06-05 2014-12-17 中国科学院上海药物研究所 Alkynyl heterocyclic compounds and application thereof
WO2015108490A2 (en) * 2014-01-17 2015-07-23 Agency For Science, Technology And Research Heteroaryl alkyne derivatives and uses thereof
WO2018183122A1 (en) * 2017-03-27 2018-10-04 Sidecar Therapeutics, Inc. Apoptosis signal-regulating kinase 1 (ask 1) inhibitor compounds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HARI NARAYANA MOORTHY,N.S. ET AL.: "Analysis of surface area features of structurally diverse molecules for Bcr/Abl kinase inhibitory activity and antiproliferative activity", MED. CHEM. RES., vol. 23, 27 October 2013 (2013-10-27), XP55742027, DOI: 20191220100056X *
HARI NARAYANA MOORTHY,N.S. ET AL.: "Analysis of surface area features of structurally diverse molecules for Bcr/Abl kinase inhibitory activity and antiproliferative activity", MED. CHEM. RES., vol. 23, 27 October 2013 (2013-10-27), XP55742027, DOI: 20191220100123Y *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149855A1 (en) * 2021-01-05 2022-07-14 주식회사 비투에스바이오 Heteroaryl-ethynyl derivative compound and use thereof
CN112778207A (en) * 2021-03-19 2021-05-11 海南鑫开源医药科技有限公司 Nilotinib hydrochloride raw material medicine impurity and preparation method thereof
WO2022216680A1 (en) 2021-04-05 2022-10-13 Halia Therapeutics, Inc. Nek7 inhibitors
WO2022226182A1 (en) 2021-04-22 2022-10-27 Halia Therapeutics, Inc. Nek7 inhibitors

Similar Documents

Publication Publication Date Title
US9278971B2 (en) Substituted acetylenic pyrazolo[1,5-a]pyrimidines as kinase inhibitors
US8461167B2 (en) Acetylenic heteroaryl compounds
US8912330B2 (en) Azaindole derivatives as kinase inhibitors
US8278307B2 (en) Monocyclic Heteroaryl compounds
WO2020206583A1 (en) Kinase inhibitors and uses thereof
CN101489558A (en) Acetylenic heteroaryl compounds
AU2013203928B2 (en) Monocyclic heteroaryl compounds
AU2013203914A1 (en) Acetylenic heteroaryl compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923862

Country of ref document: EP

Kind code of ref document: A1