WO2020205816A1 - Gas separation membrane module with enhanced performance - Google Patents
Gas separation membrane module with enhanced performance Download PDFInfo
- Publication number
- WO2020205816A1 WO2020205816A1 PCT/US2020/025878 US2020025878W WO2020205816A1 WO 2020205816 A1 WO2020205816 A1 WO 2020205816A1 US 2020025878 W US2020025878 W US 2020025878W WO 2020205816 A1 WO2020205816 A1 WO 2020205816A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core tube
- module
- gas
- fibers
- tubesheets
- Prior art date
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 22
- 239000012528 membrane Substances 0.000 title description 43
- 239000000835 fiber Substances 0.000 claims abstract description 96
- 239000012466 permeate Substances 0.000 claims abstract description 43
- 239000012465 retentate Substances 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims description 13
- 239000012510 hollow fiber Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 84
- 229920000642 polymer Polymers 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000491 Polyphenylsulfone Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/032—More than two tube sheets for one bundle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/22—Controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D2053/221—Devices
- B01D2053/223—Devices with hollow tubes
- B01D2053/224—Devices with hollow tubes with hollow fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/08—Flow guidance means within the module or the apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/10—Specific supply elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/12—Specific discharge elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/19—Specific flow restrictors
Definitions
- the present invention relates to the separation of gas into components using polymeric membranes.
- a membrane-based gas separation system has the inherent advantage that the system does not require the transportation, storage, and handling of cryogenic liquids.
- a membrane system requires relatively little energy.
- the membrane itself has no moving parts; the only moving part in the overall membrane system is usually the compressor which provides the gas to be fed to the membrane.
- a gas separation membrane unit is typically provided in the form of a module containing a large number of small, hollow fibers made of the selected polymeric membrane material.
- the module is generally cylindrical, and terminates in a pair of tubesheets which anchor the hollow fibers.
- the tubesheets are impervious to gas.
- the fibers are mounted so as to extend through the tubesheets, so that gas flowing through the interior of the fibers (known in the art as the bore side) can effectively bypass the tubesheets. But gas flowing in the region external to the fibers (known as the shell side) cannot pass through the tubesheets.
- a gas is introduced into the module, the gas being directed to flow through the bore side of the fibers.
- One component of the gas permeates through the fiber walls, and emerges on the shell side of the fibers, while the other, non-permeate, component tends to flow straight through the bores of the fibers.
- the non-permeate component comprises a product stream that emerges from the bore sides of the fibers at the outlet end of the module.
- the gas can be introduced from the shell side of the module.
- the permeate is withdrawn from the bore side, and the non-permeate is taken from the shell side.
- One application of the above-described technology is the production of nitrogen by using air as the feed gas. If it is desired to produce nitrogen having high purity, i.e. having a purity of up to 99.99%, it is known to arrange two or more membrane modules in series. An output stream of a first module is used as the feed gas, or input stream, for a second module. In general, two membrane modules connected in series will yield a product which is substantially more pure than the output of just one module.
- the modules can be arranged horizontally, i.e. side by side, or they can be stacked vertically. In general, a vertical configuration is desirable when the available space is limited, such as on off-shore oil drilling platforms.
- T g glass transition temperature
- Another problem with fiber membrane modules relates to the pressure exerted on the tubesheets.
- the feed gas is introduced into the module at a pressure which is greater than atmospheric pressure, to provide motive force for the gas. But the tubesheets must then withstand the elevated pressure inside the module. If the tubesheets are pushed outwardly by the pressure of the gas in the vessel, the fibers may become stretched, to the point that they break. Thus, outward movement of the tubesheets harms the performance of the module.
- the present invention provides an improved fiber membrane module which solves the problems described above.
- the module of the present invention may be used in a single stage unit or a multiple stage unit, and can be used in either horizontal or vertical membrane configurations.
- the present invention comprises a module containing a plurality of polymeric fibers for use in gas separation.
- the fibers extend between two tubesheets, the tubesheets being held by a pair of heads.
- a core tube extends along the length of the module.
- the heads are securely mounted on the core tube. The heads therefore stabilize the tubesheets, preventing the tubesheets from moving due to elevated gas pressure within the module.
- the core tube is constructed so that it can telescope. That is, the core tube includes sections which enable the core tube to be extended or collapsed.
- the ends of the fibers are affixed to the respective tubesheets while the core tube is in its extended position. Then, before the module is installed inside a casing, the core tube is collapsed, thereby creating slack in the fibers. This slack compensates for possible shrinkage of the fibers during operation of the module, and therefore tends to prevent damage to the fibers due to shrinkage. This technique thus substantially extends the life of the module.
- the process of collapsing the core tube is normally performed only once, during the assembly of the module.
- the invention can be practiced with a module having shell-side feed or bore-side feed.
- the core tube is formed of two concentric cylinders, so that the core tube defines two distinct passages for gas.
- the two cylinders are denoted as the inner core tube and the outer core tube.
- the first passage, defined by the inner core tube has a circular cross- section.
- the second passage comprises the space between the inner and outer core tubes, and has an annular cross-section.
- the two separate passages make it possible to direct permeate and retentate gas through distinct desired paths.
- Part of the invention resides in the specific configuration of gas flow paths within the modules.
- the module of the invention can be used singly, or it can be used as part of a plurality of modules arranged in series. Also, a plurality of modules made according to the invention can be disposed within a single module housing.
- the present invention therefore has the primary object of improving the efficiency and longevity of a gas-separation module having polymeric fibers.
- the invention has the further object of preventing degradation of polymeric fibers due to shrinkage and/or plasticization.
- the invention has the further object of enhancing the operation of a fiber membrane module, by preventing movement of tubesheets within the module, due to pressure of gas within the module.
- the invention has the further object of providing a fiber membrane module having a core tube defining a plurality of distinct passages for gas, to direct distinct gaseous components to different locations within the module.
- Figure 1 provides a partly schematic, longitudinal cross-sectional view of a membrane module, made according to the present invention, wherein the feed gas is introduced on the shell side, at one end of the fibers.
- Figures 2a, 2b, and 2c provide cross-sectional views of the core tube of the embodiment of Figure 1, corresponding, respectively, to the areas of Figure 1 labeled A, B, and C.
- FIGs 3a and 3b provide simplified drawings of the module of Figure 1, wherein the core tube is extended, in Figure 3a, and collapsed, in Figure 3b.
- Figure 4 provides a partly schematic, longitudinal cross-sectional view of a membrane module, made according to the present invention, wherein the feed gas is introduced on the shell side, at both ends of the fibers.
- Figures 5a, 5b, 5c, and 5d provide cross-sectional views of the core tube of the embodiment of Figure 4, corresponding, respectively, to the areas of Figure 4 labeled D, E, F, and G.
- FIGs 6a and 6b provide simplified drawings of the module of Figure 4, wherein the core tube is extended, in Figure 6a, and collapsed, in Figure 6b.
- Figure 7 provides a partly schematic, longitudinal cross-sectional view of a membrane module, made according to the present invention, wherein the feed gas is introduced on the bore side of the fibers.
- Figures 8a, 8b, and 8c provide cross-sectional views of the core tube of the embodiment of Figure 7, corresponding, respectively, to the areas of Figure 7 labeled H, I, and J.
- FIGs 9a and 9b provide simplified drawings of the module of Figure 7, wherein the core tube is extended, in Figure 9a, and collapsed, in Figure 9b.
- FIG 1 illustrates an embodiment of the present invention, wherein the feed gas is introduced from the shell side of the fibers, and at one end only.
- the module is defined by a casing 1 which contains the fibers.
- the fibers are not shown explicitly, as in practice they are numerous and of very tiny diameter, but they are located in the region designated by reference numeral 3.
- the fibers are held between tubesheets 5 and 6. If the module is arranged vertically, the tubesheets may be identified as “upper” and “lower”. For example, tubesheet 6 may be called the “upper” tubesheet.
- a core tube 9 extends longitudinally along the length of the module.
- the core tube which is also illustrated in the cross-sectional views of Figures 2a-2c, includes two coaxial tubes, namely an outer tube and an inner tube.
- the inner tube defines a channel for gas flow, the channel having a circular cross-section, and the outer and inner tubes together define a channel for gas flow having an annular cross-section.
- the fibers are therefore located in the region between the outer core tube and the baffle 7.
- the core tube is formed in sections so that the core tube can telescope. That is, the core tube can be extended and collapsed, as will be described in more detail later. In the view of Figure 1, the sections of the core tube have been collapsed, so the sections abut each other along seam 11.
- a pair of heads 13 and 15 are affixed to the core tube, and provide support for the tubesheets 5 and 6.
- the heads are preferably made of metal, or other relatively rigid material.
- the heads are securely held to the core tube 9 by retaining rings 17 and 19.
- the retaining rings maintain the heads in a constant longitudinal position along the core tube 9, and thus maintain a constant distance between the opposing tubesheets.
- each head engages its associated tubesheet, and because the head is anchored to the core tube, the head prevents the tubesheet from moving outwardly (i.e. to the left, for tubesheet 5, and to the right, for tubesheet 6) due to the pressure of gas introduced into the interior of the module. Preventing such outward motion of the tubesheets prevents undue stretching of the fibers, the ends of which are connected to the respective tubesheets.
- FIGS 2a-2c The internal structure of the core tube is further shown in Figures 2a-2c, which correspond, respectively, to the areas identified as A, B, and C in Figure 1.
- FIG. 2a there is an inner core tube 21, and an outer core tube 22, the core tubes 21 and 22 both being cylindrical, and being coaxial.
- the cross-section of the inner core tube is therefore circular, and the cross-section of the channel through which gas flows in the outer core tube is annular.
- the flow is dictated by the arrangement of baffles and walls in the module; the feed gas is pressurized, and it flows where it finds an available path.
- Gas which permeates the fibers passes through the tubesheet first, and then enters the space between the tubesheet and its associated head, as indicated by reference symbol B in Figure 1.
- the permeate then passes through hole 2 in the core tube.
- Hole 2 is a specially machined part.
- Figure 2b shows that the permeate gas is separated, by wall 27, from the channel of the outer core tube.
- the permeate gas flows only into the inner core tube, without leaking into the annular space defining the outer core tube.
- the permeate then flows to the left in the drawings, due to end cap 10, which seals off the right-hand end of the core tube.
- end cap 10 which seals off the right-hand end of the core tube.
- the permeate gas cannot flow to the right, and must flow to the left, as seen in Figures 1 and 2a-2c.
- the retentate gas i.e. gas which has not permeated the fibers, is directed to the outer core tube, as shown in Figure 2a, and flows to the right in the figures, due to the presence of wall 26.
- This flow of retentate gas is independent of the flow of the permeate gas, as the permeate and retentate streams flow in separate and distinct channels within the core tube. Due to the structure of the core tube, the permeate and retentate streams do not mix. Therefore, the permeate gas exits the module at the left-hand side of Figure 1, and the retentate gas exits at the right-hand side.
- the retentate gas is forced out of holes 28 due to the effect of wall 29, shown in Figure 2c.
- the end of the inner core tube, at the left- hand side of the drawing of Figure 1 comprises an outlet port for permeate gas, and the holes 28 (see Figure 2C) in the outer core tube comprise an outlet port for retentate gas.
- holes 28 are disposed around the surface of the outer core tube 22, as is also illustrated in Figure 1. Similar dispositions of analogous holes are shown in the other cross-sectional views of the core tube, described below.
- the core tube is designed to telescope. That is, the core tube can be extended or collapsed, such that the overall length of the core tube can change. This feature is illustrated in Figures 3a and 3b.
- Figure 3a shows core tube section 31 which is exposed when the core tube is in the extended position. Then, the fibers are attached, such that they extend from one tubesheet to the other. After the fibers have been attached to the tubesheets, the core tube is collapsed, as shown in Figure 3b. Collapsing the core tube creates slack in the fibers. Thereafter, the core tube is maintained in the collapsed position, and the module is installed inside the casing.
- the length of the core tube is normally adjusted only once, during the assembly process.
- the core tube is extended before the fibers are attached to the tubesheets, and collapsed after the fibers have been attached to the tubesheets, but before the module has been installed inside its casing.
- the above-described process reduces or eliminates damage to the fibers due to shrinkage. Because there is some slack in the fibers, shrinkage of the fibers is not likely to cause damage, because the fibers will not be stretched excessively.
- the telescoping feature of the core tube is separate from the dual structure of the core tube. That is, the core tube is constructed such that both the inner and outer tubes move together when the core tube is moved between the fully extended or fully collapsed positions.
- Figure 4 shows an embodiment in which the feed gas is introduced on the shell side, and at both ends of the fibers.
- the module of Figure 4 is similar to that of Figure 1 with respect to the following components.
- the module of Figure 4 includes casing 41 holding fibers located in region 43, between tubesheets 45 and 46.
- the feed gas initially travels along the periphery of the fiber bundle due to gas impermeable baffle 47.
- a core tube 49 extends along the length of the module, the core tube being shown in its collapsed state, so that its sections abut each other along seam 51. Heads 53 and 55 are anchored to the core tube by retaining rings 57 and 59.
- the core tube 49 is similar in construction to that of core tube 9 of Figure 1.
- the cross-sectional views of Figures 5a-5d correspond to locations D, E, F, and G, respectively, of Figure 4.
- the core tube 49 is constructed to telescope, as illustrated in Figures 6a and 6b, similar to the previous embodiment. As shown in Figures 5a-5d, the core tube includes outer tube 61 and inner tube 63.
- the feed gas is introduced at both ends of the fibers.
- the retentate gas enters the outer core tube at location D, as further illustrated in Figure 5a. Due to wall 67, the retentate gas must flow to the right, in the outer channel, as shown in the drawings.
- Figure 5d is similar to Figure 2c of the previous embodiment. Due to wall 69, the retentate gas must exit through holes 71, disposed around the surface of the outer core tube.
- Figures 6a and 6b show the module with the core tube extended and collapsed, in the embodiment of Figure 4.
- the movement of the telescoping core tube is the same as in the embodiment of Figures 1-3.
- Figure 7 shows an embodiment in which the feed gas is introduced on the bore side of the fibers.
- the module of Figure 7 is similar to those of the previous embodiments with respect to the following components.
- the module of Figure 7 includes casing 81 holding fibers located in region 83, between tubesheets 85 and 86.
- a core tube 89 extends along the length of the module, the core tube being shown in its collapsed state, so that its sections abut each other along seam 91. Heads 93 and 95 are anchored to the core tube by retaining rings 97 and 99.
- the core tube 89 is similar in construction to that of core tube 9 of Figure 1.
- the cross-sectional views of Figures 8a-8c correspond to locations H, I, and J, respectively, of
- the core tube 89 is constructed to telescope, as illustrated in Figures 9a and 9b. As shown in Figures 8a-8c, the core tube includes outer tube 101 and inner tube 103.
- the feed gas flows into the outer core tube 101, as shown in Figure 8a, at the position labeled H in Figure 7.
- the feed gas travels through the annular outer channel of the core tube, to the right as shown in the drawings, due to the effect of wall 105.
- the feed gas then exits the annular region as indicated by arrows 107, due to the effect of wall 109.
- the feed gas exits the annular region in the space between the head 93 and the tubesheet 85.
- the feed gas then enters the fiber bundle, flowing into the open ends of the individual fibers.
- the feed gas flows to the right, as indicated by arrows 92 of Figure 7, and some of the feed gas permeates through the walls of the fibers.
- This permeate gas flows into the center core tube at the location labeled I in Figure 7, and shown in detail in Figure 8b.
- the permeate gas does not leak into the outer core tube, due to the presence of wall 102, and instead flows directly into the inner core tube.
- the permeate gas then flows to the left, due to the presence of an end cap, similar to end cap 10 of Figure 1, preventing the permeate from flowing to the right.
- the collapsing of the core tube is a process that is normally performed only once, during the assembly of the module. That is, the fibers are attached between tubesheets, and the core tube is collapsed, to provide slack in the fibers. The module is then installed inside the casing.
- the collapsed position of the core tube is maintained permanently, preferably by a threaded connection. After the core tube has been collapsed, pieces of the core tube are threaded together, so that the sections remain in the collapsed position.
- Other means for maintaining the core tube in the collapsed position could be used instead, and the invention is not limited to the specific means used. It is not intended that the core tube be extended again, during the life of the module.
- caps similar to cap 10 of Figure 1 are not shown in Figures 4 and 7. But it should be understood that such caps, or their equivalents, will be used in all embodiments, to insure that the permeate gas flows in the desired direction.
- the present invention comprises at least the following three inventive features:
- the heads which are attached to the core tube, and which support the tubesheets, preventing the tubesheets from moving under the influence of elevated pressure inside the module, and thus preventing undue stretching of the fibers; and 3) the specific gas flows in the various embodiments, especially the distinct channels within the core tube, which permit the separate handling of permeate and retentate flows, as described above.
- Prior art gas-separation systems have used flat sheets of polymeric material, the sheets being spirally wound.
- a membrane module which uses fibers, instead of spiral wound flat sheets, is advantageous due to the fact that fibers provide a greater effective membrane surface area than that provided by flat sheets, and a fiber design makes it easier to provide cross-flow and counter-current flow patterns.
- the present invention makes fiber modules even more advantageous than flat sheet modules.
- the present invention makes fiber modules more practical and economical.
- the membrane module of the present invention when used with the shell-side feed configuration, may conveniently operate at pressures between about 40 bar and 100 bar. When used with a bore-side configuration, the module can conveniently operate at pressures between about 5 and 50 bar.
- the modules of the present invention can comprise replacements for existing modules, without the need to alter the existing ports on the module housings.
- the modules may allow cross-flow or counter-current flow, depending on the needs of a particular application.
- a plurality of modules made according to the present invention may be arranged within a single pressure vessel, limited only by the size of the outer housing and considerations regarding pressure drop.
- Preferred materials for use as the membrane material include the sulfone class of polymers, including polysulfone, polyethersulfone, sulfonated polysulfone, and polyphenylsulfone. These materials are preferred polymers for the hollow fiber membranes because of their membrane durability, i.e. resilience to chemical contamination and plasticization, and their mechanical properties, i.e. high tensile and ultimate elongation properties. Other materials which can be used for the membranes include cellulosic and polyimide polymer families, and polycarbonates. But the invention is not necessarily limited to use of the polymers specifically listed above.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
A gas separation module includes hollow polymeric fibers held between a pair of tubesheets. The tubesheets are mounted to a core tube, and the distance between the tubesheets is maintained constant. The core tube is formed in telescoping sections, such that the fibers are attached to the tubesheets when the core tube is in its extended position, and the core tube is then collapsed, forming slack in the fibers. The core tube includes two distinct channels, connected to receive permeate and retentate gas streams, and to carry these streams to outlet ports while keeping the streams separate. Because the tubesheets are affixed to the core tube, the tubesheets do not move under the influence of gas pressure in the module. The slack in the fibers compensates for shrinkage of the fibers, prolonging the life of the module.
Description
GAS SEPARATION MEMBRANE MODULE WITH ENHANCED PERFORMANCE
CROSS-REFERENCE TO RELATED APPLICATION
Priority is claimed from U.S. provisional patent application Serial No. 62/828,627, filed April 3, 2019, the entire disclosure of which is hereby incorporated herein.
BACKGROUND OF THE INVENTION
The present invention relates to the separation of gas into components using polymeric membranes.
It has been known to use a polymeric membrane to separate air into components. Various polymers have the property that they allow different gases to flow through, or permeate, the membrane, at different rates. A polymer used in air separation, for example, will pass oxygen and nitrogen at different rates. The gas that preferentially flows through the membrane wall is called the "permeate" gas, and the gas that tends not to flow through the membrane is called the "non-permeate" or "retentate" gas. The selectivity of the membrane is a measure of the degree to which the membrane allows one component, but not the other, to pass through.
A membrane-based gas separation system has the inherent advantage that the system does not require the transportation, storage, and handling of cryogenic liquids.
Also, a membrane system requires relatively little energy. The membrane itself has no
moving parts; the only moving part in the overall membrane system is usually the compressor which provides the gas to be fed to the membrane.
A gas separation membrane unit is typically provided in the form of a module containing a large number of small, hollow fibers made of the selected polymeric membrane material. The module is generally cylindrical, and terminates in a pair of tubesheets which anchor the hollow fibers. The tubesheets are impervious to gas. The fibers are mounted so as to extend through the tubesheets, so that gas flowing through the interior of the fibers (known in the art as the bore side) can effectively bypass the tubesheets. But gas flowing in the region external to the fibers (known as the shell side) cannot pass through the tubesheets.
In operation of a typical gas separation membrane module, a gas is introduced into the module, the gas being directed to flow through the bore side of the fibers. One component of the gas permeates through the fiber walls, and emerges on the shell side of the fibers, while the other, non-permeate, component tends to flow straight through the bores of the fibers. The non-permeate component comprises a product stream that emerges from the bore sides of the fibers at the outlet end of the module.
Alternatively, the gas can be introduced from the shell side of the module. In this case, the permeate is withdrawn from the bore side, and the non-permeate is taken from the shell side.
An example of a membrane-based air separation system is given in U.S. Patent No. 4,881,953, the disclosure of which is incorporated by reference herein.
Other examples of fiber membrane modules are given in U.S. Patent Nos.
5,137,631, 5,470,469, 7,497,894, 7,517,388, 7,578,871, and 7,662,333, the
disclosures of which are all hereby incorporated by reference.
One application of the above-described technology is the production of nitrogen by using air as the feed gas. If it is desired to produce nitrogen having high purity, i.e. having a purity of up to 99.99%, it is known to arrange two or more membrane modules in series. An output stream of a first module is used as the feed gas, or input stream, for a second module. In general, two membrane modules connected in series will yield a product which is substantially more pure than the output of just one module.
In providing a plurality of membrane modules, the modules can be arranged horizontally, i.e. side by side, or they can be stacked vertically. In general, a vertical configuration is desirable when the available space is limited, such as on off-shore oil drilling platforms.
One problem with the use of polymeric fiber membranes is their durability. One or more components of the feed gas may dissolve into the polymeric structure, and thereby reduce the glass transition temperature (Tg) of the polymer. Then, the polymer begins to soften, or plasticize. When the fiber, which is already very porous, becomes plasticized, the pores of the fiber collapse, leading to shrinkage of the fiber. Plasticization may occur when a polymeric fiber is exposed to acid gas atmospheres containing large concentrations of heavy hydrocarbons and aromatic components.
Over time, the deformation and shrinkage of the fiber due to plasticization leads to stress on the fiber, and possibly breakage. This shrinkage of the fiber therefore inhibits the performance of the membrane module, and reduces its useful life. Shrinkage of the fibers also puts stress on the tubesheets anchoring the fibers, causing cracks in the tubesheets.
Another problem with fiber membrane modules relates to the pressure exerted on
the tubesheets. The feed gas is introduced into the module at a pressure which is greater than atmospheric pressure, to provide motive force for the gas. But the tubesheets must then withstand the elevated pressure inside the module. If the tubesheets are pushed outwardly by the pressure of the gas in the vessel, the fibers may become stretched, to the point that they break. Thus, outward movement of the tubesheets harms the performance of the module.
The present invention provides an improved fiber membrane module which solves the problems described above. The module of the present invention may be used in a single stage unit or a multiple stage unit, and can be used in either horizontal or vertical membrane configurations.
SUMMARY OF THE INVENTION
The present invention comprises a module containing a plurality of polymeric fibers for use in gas separation. The fibers extend between two tubesheets, the tubesheets being held by a pair of heads. A core tube extends along the length of the module. The heads are securely mounted on the core tube. The heads therefore stabilize the tubesheets, preventing the tubesheets from moving due to elevated gas pressure within the module.
In one important feature of the invention, the core tube is constructed so that it can telescope. That is, the core tube includes sections which enable the core tube to be extended or collapsed. In assembling the module, the ends of the fibers are affixed to the respective tubesheets while the core tube is in its extended position. Then, before the module is installed inside a casing, the core tube is collapsed, thereby creating slack in the
fibers. This slack compensates for possible shrinkage of the fibers during operation of the module, and therefore tends to prevent damage to the fibers due to shrinkage. This technique thus substantially extends the life of the module. The process of collapsing the core tube is normally performed only once, during the assembly of the module.
The invention can be practiced with a module having shell-side feed or bore-side feed. The core tube is formed of two concentric cylinders, so that the core tube defines two distinct passages for gas. The two cylinders are denoted as the inner core tube and the outer core tube. The first passage, defined by the inner core tube, has a circular cross- section. The second passage comprises the space between the inner and outer core tubes, and has an annular cross-section. In general the two separate passages make it possible to direct permeate and retentate gas through distinct desired paths. Part of the invention resides in the specific configuration of gas flow paths within the modules.
The module of the invention can be used singly, or it can be used as part of a plurality of modules arranged in series. Also, a plurality of modules made according to the invention can be disposed within a single module housing.
The present invention therefore has the primary object of improving the efficiency and longevity of a gas-separation module having polymeric fibers.
The invention has the further object of preventing degradation of polymeric fibers due to shrinkage and/or plasticization.
The invention has the further object of enhancing the operation of a fiber membrane module, by preventing movement of tubesheets within the module, due to pressure of gas within the module.
The invention has the further object of providing a fiber membrane module having a
core tube defining a plurality of distinct passages for gas, to direct distinct gaseous components to different locations within the module.
The reader skilled in the art will recognize other objects and advantages of the present invention, from a reading of the following brief description of the drawings, and the detailed description of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 provides a partly schematic, longitudinal cross-sectional view of a membrane module, made according to the present invention, wherein the feed gas is introduced on the shell side, at one end of the fibers.
Figures 2a, 2b, and 2c provide cross-sectional views of the core tube of the embodiment of Figure 1, corresponding, respectively, to the areas of Figure 1 labeled A, B, and C.
Figures 3a and 3b provide simplified drawings of the module of Figure 1, wherein the core tube is extended, in Figure 3a, and collapsed, in Figure 3b.
Figure 4 provides a partly schematic, longitudinal cross-sectional view of a membrane module, made according to the present invention, wherein the feed gas is introduced on the shell side, at both ends of the fibers.
Figures 5a, 5b, 5c, and 5d provide cross-sectional views of the core tube of the embodiment of Figure 4, corresponding, respectively, to the areas of Figure 4 labeled D, E, F, and G.
Figures 6a and 6b provide simplified drawings of the module of Figure 4, wherein
the core tube is extended, in Figure 6a, and collapsed, in Figure 6b.
Figure 7 provides a partly schematic, longitudinal cross-sectional view of a membrane module, made according to the present invention, wherein the feed gas is introduced on the bore side of the fibers.
Figures 8a, 8b, and 8c provide cross-sectional views of the core tube of the embodiment of Figure 7, corresponding, respectively, to the areas of Figure 7 labeled H, I, and J.
Figures 9a and 9b provide simplified drawings of the module of Figure 7, wherein the core tube is extended, in Figure 9a, and collapsed, in Figure 9b.
DETAILED DESCRIPTION OF THE INVENTION
Figure 1 illustrates an embodiment of the present invention, wherein the feed gas is introduced from the shell side of the fibers, and at one end only.
The module is defined by a casing 1 which contains the fibers. The fibers are not shown explicitly, as in practice they are numerous and of very tiny diameter, but they are located in the region designated by reference numeral 3. The fibers are held between tubesheets 5 and 6. If the module is arranged vertically, the tubesheets may be identified as "upper" and "lower". For example, tubesheet 6 may be called the "upper" tubesheet. A gas impermeable baffle 7, preferably formed of a flexible plastic material, surrounds the fiber bundle, and prevents incoming gas from entering except where desired.
A core tube 9 extends longitudinally along the length of the module. The core tube, which is also illustrated in the cross-sectional views of Figures 2a-2c, includes two coaxial
tubes, namely an outer tube and an inner tube. The inner tube defines a channel for gas flow, the channel having a circular cross-section, and the outer and inner tubes together define a channel for gas flow having an annular cross-section.
The fibers are therefore located in the region between the outer core tube and the baffle 7.
The core tube is formed in sections so that the core tube can telescope. That is, the core tube can be extended and collapsed, as will be described in more detail later. In the view of Figure 1, the sections of the core tube have been collapsed, so the sections abut each other along seam 11.
A pair of heads 13 and 15 are affixed to the core tube, and provide support for the tubesheets 5 and 6. The heads are preferably made of metal, or other relatively rigid material. The heads are securely held to the core tube 9 by retaining rings 17 and 19. The retaining rings maintain the heads in a constant longitudinal position along the core tube 9, and thus maintain a constant distance between the opposing tubesheets. As shown in the drawing, each head engages its associated tubesheet, and because the head is anchored to the core tube, the head prevents the tubesheet from moving outwardly (i.e. to the left, for tubesheet 5, and to the right, for tubesheet 6) due to the pressure of gas introduced into the interior of the module. Preventing such outward motion of the tubesheets prevents undue stretching of the fibers, the ends of which are connected to the respective tubesheets.
The internal structure of the core tube is further shown in Figures 2a-2c, which correspond, respectively, to the areas identified as A, B, and C in Figure 1.
As shown, for example, in Figure 2a, there is an inner core tube 21, and an outer
core tube 22, the core tubes 21 and 22 both being cylindrical, and being coaxial. The cross-section of the inner core tube is therefore circular, and the cross-section of the channel through which gas flows in the outer core tube is annular.
Feed gas enters the module at port 23, of Figure 1, travels along the periphery of the module, as indicated by arrows 24, and then flows radially inward, as indicated by arrows 25. The flow is dictated by the arrangement of baffles and walls in the module; the feed gas is pressurized, and it flows where it finds an available path.
Gas which permeates the fibers passes through the tubesheet first, and then enters the space between the tubesheet and its associated head, as indicated by reference symbol B in Figure 1. The permeate then passes through hole 2 in the core tube. Hole 2 is a specially machined part.
Figure 2b shows that the permeate gas is separated, by wall 27, from the channel of the outer core tube. Thus, the permeate gas flows only into the inner core tube, without leaking into the annular space defining the outer core tube. The permeate then flows to the left in the drawings, due to end cap 10, which seals off the right-hand end of the core tube. Thus, the permeate gas cannot flow to the right, and must flow to the left, as seen in Figures 1 and 2a-2c.
The retentate gas, i.e. gas which has not permeated the fibers, is directed to the outer core tube, as shown in Figure 2a, and flows to the right in the figures, due to the presence of wall 26. This flow of retentate gas is independent of the flow of the permeate gas, as the permeate and retentate streams flow in separate and distinct channels within the core tube. Due to the structure of the core tube, the permeate and retentate streams do not mix.
Therefore, the permeate gas exits the module at the left-hand side of Figure 1, and the retentate gas exits at the right-hand side. The retentate gas is forced out of holes 28 due to the effect of wall 29, shown in Figure 2c. The end of the inner core tube, at the left- hand side of the drawing of Figure 1, comprises an outlet port for permeate gas, and the holes 28 (see Figure 2C) in the outer core tube comprise an outlet port for retentate gas.
In Figure 2C, holes 28 are disposed around the surface of the outer core tube 22, as is also illustrated in Figure 1. Similar dispositions of analogous holes are shown in the other cross-sectional views of the core tube, described below.
As mentioned above, the core tube is designed to telescope. That is, the core tube can be extended or collapsed, such that the overall length of the core tube can change. This feature is illustrated in Figures 3a and 3b.
When the module is being assembled, one adjusts the core tube so that it is in the extended position, as shown in Figure 3a. Figure 3a shows core tube section 31 which is exposed when the core tube is in the extended position. Then, the fibers are attached, such that they extend from one tubesheet to the other. After the fibers have been attached to the tubesheets, the core tube is collapsed, as shown in Figure 3b. Collapsing the core tube creates slack in the fibers. Thereafter, the core tube is maintained in the collapsed position, and the module is installed inside the casing.
Thus, the length of the core tube is normally adjusted only once, during the assembly process. The core tube is extended before the fibers are attached to the tubesheets, and collapsed after the fibers have been attached to the tubesheets, but before the module has been installed inside its casing.
The above-described process reduces or eliminates damage to the fibers due to
shrinkage. Because there is some slack in the fibers, shrinkage of the fibers is not likely to cause damage, because the fibers will not be stretched excessively.
The telescoping feature of the core tube is separate from the dual structure of the core tube. That is, the core tube is constructed such that both the inner and outer tubes move together when the core tube is moved between the fully extended or fully collapsed positions.
Figure 4 shows an embodiment in which the feed gas is introduced on the shell side, and at both ends of the fibers.
The module of Figure 4 is similar to that of Figure 1 with respect to the following components. The module of Figure 4 includes casing 41 holding fibers located in region 43, between tubesheets 45 and 46. The feed gas initially travels along the periphery of the fiber bundle due to gas impermeable baffle 47. A core tube 49 extends along the length of the module, the core tube being shown in its collapsed state, so that its sections abut each other along seam 51. Heads 53 and 55 are anchored to the core tube by retaining rings 57 and 59.
The core tube 49 is similar in construction to that of core tube 9 of Figure 1. The cross-sectional views of Figures 5a-5d correspond to locations D, E, F, and G, respectively, of Figure 4.
The core tube 49 is constructed to telescope, as illustrated in Figures 6a and 6b, similar to the previous embodiment. As shown in Figures 5a-5d, the core tube includes outer tube 61 and inner tube 63.
In the embodiment of Figure 4, the feed gas is introduced at both ends of the fibers.
Permeate gas enters the inner core tube at locations E and F, as illustrated in more detail
in Figures 5b and 5c. These figures show that the permeate gas is separated, by wall 65, from the channel of the outer core tube. Thus, the permeate gas flows only into the inner core tube, where it flows to the left in the drawings, due to an end cap, not shown in Figure 4 but similar to the end cap 10 of Figure 1, preventing permeate gas from flowing to the right.
The retentate gas enters the outer core tube at location D, as further illustrated in Figure 5a. Due to wall 67, the retentate gas must flow to the right, in the outer channel, as shown in the drawings.
Figure 5d is similar to Figure 2c of the previous embodiment. Due to wall 69, the retentate gas must exit through holes 71, disposed around the surface of the outer core tube.
Figures 6a and 6b show the module with the core tube extended and collapsed, in the embodiment of Figure 4. The movement of the telescoping core tube is the same as in the embodiment of Figures 1-3.
Figure 7 shows an embodiment in which the feed gas is introduced on the bore side of the fibers.
The module of Figure 7 is similar to those of the previous embodiments with respect to the following components. The module of Figure 7 includes casing 81 holding fibers located in region 83, between tubesheets 85 and 86. A core tube 89 extends along the length of the module, the core tube being shown in its collapsed state, so that its sections abut each other along seam 91. Heads 93 and 95 are anchored to the core tube by retaining rings 97 and 99.
The core tube 89 is similar in construction to that of core tube 9 of Figure 1. The
cross-sectional views of Figures 8a-8c correspond to locations H, I, and J, respectively, of
Figure 7.
The core tube 89 is constructed to telescope, as illustrated in Figures 9a and 9b. As shown in Figures 8a-8c, the core tube includes outer tube 101 and inner tube 103.
In the embodiment of Figure 7, the feed gas flows into the outer core tube 101, as shown in Figure 8a, at the position labeled H in Figure 7. The feed gas travels through the annular outer channel of the core tube, to the right as shown in the drawings, due to the effect of wall 105. The feed gas then exits the annular region as indicated by arrows 107, due to the effect of wall 109. The feed gas exits the annular region in the space between the head 93 and the tubesheet 85.
The feed gas then enters the fiber bundle, flowing into the open ends of the individual fibers. The feed gas flows to the right, as indicated by arrows 92 of Figure 7, and some of the feed gas permeates through the walls of the fibers. This permeate gas flows into the center core tube at the location labeled I in Figure 7, and shown in detail in Figure 8b. The permeate gas does not leak into the outer core tube, due to the presence of wall 102, and instead flows directly into the inner core tube. The permeate gas then flows to the left, due to the presence of an end cap, similar to end cap 10 of Figure 1, preventing the permeate from flowing to the right.
At the right-hand side of the fiber bundle, at the location labeled J in Figure 7, the feed gas has become retentate, because it has not permeated the fibers. This retentate gas re-enters the outer core tube, traveling through the annular region, as shown in Figure 8c, and then out of the core tube, as indicated by arrow 111. The retentate flows in this way, due to the effect of walls 113 and 115, shown in Figure 8c.
Figures 9a and 9b show the module with the core tube extended and collapsed, in the embodiment of Figure 7. The movement of the telescoping core tube is the same as in the previous embodiments.
The collapsing of the core tube is a process that is normally performed only once, during the assembly of the module. That is, the fibers are attached between tubesheets, and the core tube is collapsed, to provide slack in the fibers. The module is then installed inside the casing.
The collapsed position of the core tube is maintained permanently, preferably by a threaded connection. After the core tube has been collapsed, pieces of the core tube are threaded together, so that the sections remain in the collapsed position. Other means for maintaining the core tube in the collapsed position could be used instead, and the invention is not limited to the specific means used. It is not intended that the core tube be extended again, during the life of the module.
For convenience of illustration, caps similar to cap 10 of Figure 1 are not shown in Figures 4 and 7. But it should be understood that such caps, or their equivalents, will be used in all embodiments, to insure that the permeate gas flows in the desired direction.
The present invention comprises at least the following three inventive features:
1) the telescoping core tube, which provides slack in the fibers, and therefore prevents damage to the fibers due to shrinkage;
2) the heads which are attached to the core tube, and which support the tubesheets, preventing the tubesheets from moving under the influence of elevated pressure inside the module, and thus preventing undue stretching of the fibers; and
3) the specific gas flows in the various embodiments, especially the distinct channels within the core tube, which permit the separate handling of permeate and retentate flows, as described above.
Prior art gas-separation systems have used flat sheets of polymeric material, the sheets being spirally wound. A membrane module which uses fibers, instead of spiral wound flat sheets, is advantageous due to the fact that fibers provide a greater effective membrane surface area than that provided by flat sheets, and a fiber design makes it easier to provide cross-flow and counter-current flow patterns.
Flat sheet membranes are subject to the same problems regarding shrinkage as described with respect to fiber membranes. But there is no known way to address this problem when using flat sheet membranes.
By enhancing the performance of polymeric fibers, when used as membranes for gas separation, the present invention makes fiber modules even more advantageous than flat sheet modules. The present invention makes fiber modules more practical and economical.
The membrane module of the present invention, when used with the shell-side feed configuration, may conveniently operate at pressures between about 40 bar and 100 bar. When used with a bore-side configuration, the module can conveniently operate at pressures between about 5 and 50 bar.
The modules of the present invention can comprise replacements for existing modules, without the need to alter the existing ports on the module housings. The modules may allow cross-flow or counter-current flow, depending on the needs of a particular application. Also, a plurality of modules made according to the present invention
may be arranged within a single pressure vessel, limited only by the size of the outer housing and considerations regarding pressure drop.
Preferred materials for use as the membrane material include the sulfone class of polymers, including polysulfone, polyethersulfone, sulfonated polysulfone, and polyphenylsulfone. These materials are preferred polymers for the hollow fiber membranes because of their membrane durability, i.e. resilience to chemical contamination and plasticization, and their mechanical properties, i.e. high tensile and ultimate elongation properties. Other materials which can be used for the membranes include cellulosic and polyimide polymer families, and polycarbonates. But the invention is not necessarily limited to use of the polymers specifically listed above.
The invention can be modified in various ways, which will be apparent to those skilled in the art. Such modifications should be considered within the spirit and scope of the following claims.
Claims
1. In a gas separation module, the module having a cylindrical shape and having a longitudinal axis, the module having a plurality of hollow fibers made of a polymeric material capable of separating a gas into components, the fibers being held by a pair of tubesheets,
the improvement wherein:
the tubesheets are connected to a core tube, the core tube extending along the longitudinal axis of the module, the core tube being formed in telescoping sections, such that the core tube can be extended and collapsed, so as to vary a distance between the tubesheets, and wherein there is slack in the fibers when the core tube is in its collapsed position.
2. The improvement of Claim 2, wherein each tubesheet is connected to the core tube through a head which is connected both to the tubesheet and to the core tube, wherein the tubesheet is anchored to the core tube.
3. The improvement of Claim 2, wherein the core tube is maintained in its collapsed position, so as to maintain a constant distance between the tubesheets.
4. The improvement of Claim 3,
wherein the core tube comprises an outer tube and an inner tube, the outer and inner tubes being coaxial, wherein the core tube defines two distinct channels for gas flow, and
wherein the module includes means for directing distinct gas streams into said distinct channels such that said distinct gas streams do not mix.
5. The improvement of Claim 4, wherein the core tube includes an end cap located at one end of the core tube, the core tube also including at least one opening communicating with one of said channels, and wherein gas flowing in the other of said channels exits the module at an end opposite to that of the end cap.
6. In a gas separation module, the module having a cylindrical shape and having a longitudinal axis, the module having a plurality of hollow fibers made of a polymeric material capable of separating a gas into components, the fibers being held by a pair of tubesheets,
the improvement wherein:
each tubesheet is connected to a head which is affixed to a core tube, the core tube extending along the longitudinal axis of the module, wherein the tubesheets are held at a constant distance from each other, and wherein the tubesheets are prevented from moving away from each other when gas pressure between the tubesheets is increased.
7. The improvement of Claim 6, wherein there is slack in the fibers.
8. The improvement of Claim 6, wherein the core tube is constructed in telescoping sections, wherein the core tube has an extended position and a collapsed position, and wherein, when the core tube is in its collapsed position, there is slack in the fibers held by the tubesheets.
9. In a gas separation module, the module having a cylindrical shape and having a longitudinal axis, the module having a plurality of hollow fibers made of a polymeric material capable of separating a gas into a permeate stream and a retentate stream, the permeate stream being gas which has permeated the fibers, and the retentate stream being gas which has not permeated the fibers,
the improvement wherein:
the module includes a core tube which extends along the longitudinal axis of the module, the core tube comprising an outer tube and an inner tube, the outer and inner tubes being coaxial, wherein the core tube defines two distinct channels for gas flow,
wherein the module includes means for directing the permeate stream into one of said channels and means for directing the retentate stream into another of said channels, wherein the permeate and retentate streams do not mix.
10. The improvement of Claim 9, wherein the permeate stream flows in the channel defined by the inner tube, and wherein the retentate stream flows in the channel defined by the inner and outer tubes, and wherein the module includes outlet ports for withdrawing the permeate and retentate streams at opposite ends of the module.
11. The improvement of Claim 9, wherein the core tube includes an end cap located at one end of the core tube, the core tube also including at least one opening communicating with one of said channels, and wherein gas flowing in the other of said channels exits the module at an end opposite to that of the end cap.
12. In a method of making a gas separation module, the module having a cylindrical shape and having a longitudinal axis, the method including attaching a plurality of hollow fibers, made of a polymeric material capable of separating a gas into components, to a pair of tubesheets,
the improvement wherein the method also comprises the steps of:
providing a core tube which extends along the longitudinal axis of the module, wherein the tubesheets are connected to the core tube, wherein the core tube is formed in telescoping sections, such that the core tube can be extended and collapsed,
placing the core tube in its extended position before attaching the fibers to the tubesheets, and
collapsing the core tube after the fibers have been attached to the tubesheets, so as to provide slack in the fibers.
13. The improvement of Claim 12, further comprising the step of maintaining the core tube in its collapsed position.
14. A gas separation module, comprising:
a plurality of hollow fibers, held within a generally cylindrical casing having a longitudinal axis, the fibers being made of a polymeric material capable of separating a gas into components,
the fibers being held by a pair of tubesheets,
a core tube extending along the longitudinal axis of the casing, the core tube being constructed with telescoping sections,
the tubesheets being affixed to the core tube, wherein the tubesheets are held at a constant distance from each other,
wherein the tubesheets are positioned such that there is slack in the fibers, wherein the core tube defines two distinct channels for gas flow, wherein gas in one of said channels does not mix with gas in another of said channels.
15. The gas separation module of Claim 14, wherein the tubesheets are affixed to the core tube through a pair of heads, each tubesheet being connected to one of said pair of heads, and the heads being affixed to the core tube.
16. The gas separation module of Claim 14, wherein the core tube comprises an outer tube and an inner tube, the outer and inner tubes being coaxial, wherein one of said
channels is defined by a space within the inner tube, and wherein another of said channels is defined by a space between the outer tube and the inner tube.
17. The gas separation module of Claim 16, wherein the core tube includes an end cap located at one end of the core tube, the core tube also including at least one opening communicating with one of said channels, and wherein gas flowing in the other of said channels exits the module at an end opposite to that of the end cap.
18. The gas separation module of Claim 14, wherein the module produces a permeate stream comprising gas which has permeated the fibers, and a retentate stream comprising gas which has not permeated the fibers,
and wherein the module includes means for directing the permeate stream into one of said channels and means for directing the retentate stream into another of said channels, wherein the permeate and retentate streams do not mix.
19. The improvement of Claim 18, wherein the permeate stream flows in the channel defined by the inner tube, and wherein the retentate stream flows in the channel defined by the inner and outer tubes, and wherein the module includes outlet ports for withdrawing the permeate and retentate streams at opposite ends of the module.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20784385.5A EP3946689A4 (en) | 2019-04-03 | 2020-03-31 | Gas separation membrane module with enhanced performance |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962828627P | 2019-04-03 | 2019-04-03 | |
US62/828,627 | 2019-04-03 | ||
US16/807,349 | 2020-03-03 | ||
US16/807,349 US11446610B2 (en) | 2019-04-03 | 2020-03-03 | Gas separation membrane module with enhanced performance |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020205816A1 true WO2020205816A1 (en) | 2020-10-08 |
Family
ID=72661769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2020/025878 WO2020205816A1 (en) | 2019-04-03 | 2020-03-31 | Gas separation membrane module with enhanced performance |
Country Status (3)
Country | Link |
---|---|
US (1) | US11446610B2 (en) |
EP (1) | EP3946689A4 (en) |
WO (1) | WO2020205816A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022261265A1 (en) * | 2021-06-08 | 2022-12-15 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Gas separation membrane bundle with convertible flow configurations |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5026479A (en) * | 1990-02-13 | 1991-06-25 | Union Carbide Industrial Gases Technology Corporation | Fluid separation device |
US5176725A (en) * | 1991-07-26 | 1993-01-05 | Air Products And Chemicals, Inc. | Multiple stage countercurrent hollow fiber membrane module |
US5470469A (en) * | 1994-09-16 | 1995-11-28 | E. I. Du Pont De Nemours And Company | Hollow fiber cartridge |
US20140230649A1 (en) * | 2013-02-19 | 2014-08-21 | The Boeing Company | Counter-Flow Gas Separation Modules and Methods |
US20150053085A1 (en) * | 2013-08-26 | 2015-02-26 | Cameron Solutions, Inc. | Single End, Shell-Side Feed, Hollow Fiber Membrane Separation Module |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3322373A (en) * | 1966-10-12 | 1967-05-30 | Wanskuck Co | Lightweight reinforced reel |
IT1119541B (en) * | 1979-11-23 | 1986-03-10 | Sorin Biomedica Spa | QUARRY FIBER DIALIZER APPARATUS |
US4610789A (en) * | 1985-04-22 | 1986-09-09 | Ppg Industries, Inc. | Filtration cartridge and reactor |
US4881953A (en) | 1988-09-15 | 1989-11-21 | Union Carbide Corporation | Prevention of membrane degradation |
US5137631A (en) | 1991-10-22 | 1992-08-11 | E. I. Du Pont De Nemours And Company | Multiple bundle permeator |
DE19900432A1 (en) * | 1999-01-08 | 2000-07-13 | Stephan R Blum | Membrane module |
CA2351272C (en) * | 2001-06-22 | 2009-09-15 | Petro Sep International Ltd. | Membrane-assisted fluid separation apparatus and method |
US7338601B2 (en) * | 2004-12-10 | 2008-03-04 | Uop Llc | Membrane separation assemblies |
US7497894B2 (en) | 2005-04-19 | 2009-03-03 | Generon Igs, Inc. | Portable air separation/air dehydration system |
US7578871B2 (en) | 2005-05-25 | 2009-08-25 | Generon Igs, Inc. | Gas separation membrane with partial surfactant coating |
US7717983B2 (en) * | 2005-10-18 | 2010-05-18 | Parker-Hannifin Corporation | Air separation module with load carrying center tube |
US7517388B2 (en) | 2006-05-15 | 2009-04-14 | Generon Igs, Inc. | Air separation membrane module with variable sweep stream |
US7662333B2 (en) | 2006-08-14 | 2010-02-16 | Generon Igs, Inc. | Vacuum-assisted potting of fiber module tubesheets |
EP2226112A3 (en) * | 2009-02-20 | 2010-10-20 | Parker Hannifin Corporation | Air Dryer for Electrical Enclosures |
US9186848B2 (en) * | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US9283524B2 (en) * | 2013-12-20 | 2016-03-15 | L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude | Woven membrane module with controlled tubesheet epoxy wicking |
DE102014104386B4 (en) * | 2014-03-28 | 2019-03-14 | Beko Technologies Gmbh | Housing head with purge air controller |
US9579606B2 (en) * | 2014-07-23 | 2017-02-28 | Air Liquide Advanced Technologies U.S. Llc | Gas separation membrane module with improved gas seal |
ES2788458T3 (en) * | 2014-12-24 | 2020-10-21 | Dainippon Ink & Chemicals | Hollow fiber degassing module and inkjet printer |
US10456751B2 (en) * | 2015-03-27 | 2019-10-29 | National Institute Of Advanced Industrial Science And Technology | Method for producing hollow fiber carbon membrane and separation membrane module |
US20160303507A1 (en) * | 2015-04-17 | 2016-10-20 | Generon Igs, Inc. | Gas separation membrane module with integrated filter |
KR20180101407A (en) * | 2016-01-22 | 2018-09-12 | 도레이 카부시키가이샤 | Fluid separation membrane, fluid separation membrane module and porous carbon fiber |
-
2020
- 2020-03-03 US US16/807,349 patent/US11446610B2/en active Active
- 2020-03-31 EP EP20784385.5A patent/EP3946689A4/en active Pending
- 2020-03-31 WO PCT/US2020/025878 patent/WO2020205816A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5026479A (en) * | 1990-02-13 | 1991-06-25 | Union Carbide Industrial Gases Technology Corporation | Fluid separation device |
US5176725A (en) * | 1991-07-26 | 1993-01-05 | Air Products And Chemicals, Inc. | Multiple stage countercurrent hollow fiber membrane module |
US5470469A (en) * | 1994-09-16 | 1995-11-28 | E. I. Du Pont De Nemours And Company | Hollow fiber cartridge |
US20140230649A1 (en) * | 2013-02-19 | 2014-08-21 | The Boeing Company | Counter-Flow Gas Separation Modules and Methods |
US20150053085A1 (en) * | 2013-08-26 | 2015-02-26 | Cameron Solutions, Inc. | Single End, Shell-Side Feed, Hollow Fiber Membrane Separation Module |
Non-Patent Citations (1)
Title |
---|
See also references of EP3946689A4 * |
Also Published As
Publication number | Publication date |
---|---|
US11446610B2 (en) | 2022-09-20 |
EP3946689A1 (en) | 2022-02-09 |
EP3946689A4 (en) | 2023-01-04 |
US20200316527A1 (en) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5071552A (en) | Multiple bundle fluid separation apparatus | |
CA2156518C (en) | Boreside feed hollow fiber membrane device | |
US9199191B2 (en) | Gas separation membrane module and method of replacing a hollow fiber element | |
EP0607290B1 (en) | Clamshell retainer used in hollow fiber membrane devices | |
EP1137478B1 (en) | Bore-side feed modules with permeate flow channels | |
EP1582252B1 (en) | Three-port high performance mini hollow fiber membrane contactor | |
JPH04235720A (en) | Hollow fiber membrane device for separating fluid | |
EP0540877A2 (en) | Double ended hollow fiber bundle and fluids separation apparatus | |
CN107921374B (en) | Hollow fiber membrane cartridge and assembly for fluid separation | |
US8398755B2 (en) | Integrated membrane module for gas dehydration and gas separation | |
JPH04265111A (en) | Method and device for drying using diaphragm | |
US11446610B2 (en) | Gas separation membrane module with enhanced performance | |
US6153097A (en) | Internal staged permeator for fluid separation | |
US9764275B2 (en) | Membrane module capable of operation in extreme temperature environments | |
JP3972528B2 (en) | Fluid separation membrane module and separation method | |
JP5966757B2 (en) | Gas separation membrane module and hollow fiber element replacement method | |
US11103827B2 (en) | Two-stage gas separation unit contained within a single housing | |
US20240058763A1 (en) | Gas separation membrane bundle with convertible flow configurations | |
US20240058762A1 (en) | Gas separation membrane bundle with convertible flow configurations | |
US20230398496A1 (en) | Gas separation membrane bundle with convertible flow configurations | |
US20230398494A1 (en) | Gas separation membrane bundle with convertible flow configurations | |
WO2022261265A1 (en) | Gas separation membrane bundle with convertible flow configurations | |
JP7107136B2 (en) | Separation membrane module | |
JP2017177071A (en) | Separation membrane module and hollow fiber membrane element | |
JP2003010648A (en) | Hollow yarn separation membrane module and gas separation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20784385 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020784385 Country of ref document: EP Effective date: 20211103 |