WO2020204610A1 - 딥러닝 기반 컬러링 방법, 시스템 및 프로그램 - Google Patents
딥러닝 기반 컬러링 방법, 시스템 및 프로그램 Download PDFInfo
- Publication number
- WO2020204610A1 WO2020204610A1 PCT/KR2020/004476 KR2020004476W WO2020204610A1 WO 2020204610 A1 WO2020204610 A1 WO 2020204610A1 KR 2020004476 W KR2020004476 W KR 2020004476W WO 2020204610 A1 WO2020204610 A1 WO 2020204610A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- memory
- query
- color
- key
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/53—Querying
- G06F16/535—Filtering based on additional data, e.g. user or group profiles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/40—Filling a planar surface by adding surface attributes, e.g. colour or texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T13/00—Animation
Definitions
- the present invention relates to a deep learning-based coloring method, system, and program, and more particularly, to a coloring method, system, and program reinforced by external neural memory.
- coloring or colorization is the stage that requires the most time and cost. Therefore, there have been many attempts to automate the coloring task, and despite the development of the deep learning-based coloring model, the actual use in the field is extremely limited. There are many limitations to using a deep learning-based coloring model in a real environment.
- An object of the present invention is to provide a deep learning-based coloring method capable of learning a coloring model with only a limited number of cartoon or animation data.
- Another object of the present invention is to enable coloring of colors that do not appear frequently.
- Another object of the present invention is to provide a threshold triple loss that enables training of a memory network in an unsupervised environment.
- the present invention is configured to include a key memory related to a spatial feature, a value memory related to a color feature, and provides a color feature in response to a specific query.
- Memory network And a coloring network that performs coloring based on the color features generated by the memory network.
- the deep learning-based coloring system comprising a, wherein the memory network, Query generator for generating a query; A neighbor calculator configured to calculate a k-th nearest neighbor based on similarity between the query and key memory values; A color feature determination unit that generates a color feature for representing color information stored in the value memory; A threshold value triple loss calculator configured to calculate a threshold value triple loss based on a comparison of the distance between the color features and a threshold value; A memory update unit that updates the memory based on whether the distance between the highest value and the newly inputted query value is within a threshold value; Deep learning-based coloring system including a is provided.
- the k-th nearest neighbor may be determined as a memory slot having a similarity between the query and the spatial feature from 1 to k-th based on a cosine similarity of the query and the key memory value.
- the highest value may be a value memory value having the same index as a key memory value having the highest cosine similarity to the query when calculating a first nearest neighbor among the k-th nearest neighbors.
- the threshold triple loss may be a value that maximizes similarity between a query and a positive key and minimizes similarity between a query and a negative key.
- the positive key is a key memory value of the same index as the nearest value memory value among value memory values in which a distance from the color feature value of the query is less than the threshold value
- the negative key is Among the value memory values in which the color feature value and the distance exceed the threshold value, a key memory value having the same index as the value memory value having the smallest distance may be used.
- the color feature has two variation values, and the two variation values are C dist , which is a probability value for how many preset 313 colors for each image are, and a preset library It may be C RGB obtained by extracting the most dominant 10 pixel values for each image by using.
- the memory network may determine that images having a spatial feature corresponding to the k-th nearest neighbor and a color feature corresponding to a color distance from a query less than the threshold value belong to the same class. .
- the coloring network includes a generator and a discriminator, and the discriminator may receive a gray scale input image and the color feature.
- the memory network is configured to additionally store an age, and the age may represent the lifetime of an item stored in the memory.
- generating a query Calculating a k-th nearest neighbor based on the similarity between the query and key memory values; Generating a color feature to represent color information stored in the value memory; Calculating a threshold triple loss based on a comparison of a threshold value and a distance between the color features; Updating a memory based on whether the distance between the highest value and the newly inputted query value is within the threshold value; Deep learning-based coloring method comprising a is provided.
- the k-th nearest neighbor may be determined as a memory slot having a similarity between the query and the spatial feature from 1 to k-th based on the cosine similarity of the query and the key memory value.
- the highest value may be a value memory value having the same index as a key memory value having the highest cosine similarity to the query when calculating a first nearest neighbor among the k-th nearest neighbors.
- the threshold triple loss is a value that maximizes similarity between a query and a positive key and minimizes similarity between a query and a negative key
- the positive key is the Among the value memory values in which the color feature value and the distance of the query are less than the threshold, the key memory value of the index equal to the nearest value memory value, and the negative key is that the color feature value and the distance of the query exceed the threshold.
- the value memory values it may be a key memory value having the same index as the value memory value having the smallest distance.
- the color feature has two variation values, and the two variation values are C dist , which is a probability value for how many preset 313 colors for each image are, and a preset library It may be C RGB obtained by extracting the most dominant 10 pixel values for each image by using.
- coloring can be learned with a minimum amount of data, one-shot or several-shot coloring is possible.
- FIG. 1 is a diagram showing the configuration of a deep learning-based coloring system according to an embodiment of the present invention.
- FIG. 2 is a diagram showing the internal configuration of the server of the present invention.
- FIG. 3 illustrates an operation of a memory network according to an embodiment of the present invention in time series.
- FIG. 4 is for explaining the operation of a memory network and a coloring network according to an embodiment of the present invention.
- FIG. 5 illustrates a coloring result based on a threshold triple loss according to an embodiment of the present invention.
- FIG. 6 is a view for explaining providing a color value to a generator during a test period according to an embodiment of the present invention.
- FIG. 1 is a diagram showing the configuration of a deep learning-based coloring system according to an embodiment of the present invention.
- a deep learning based coloring system may include a server 100, a manager terminal 101, and a user terminal 102.
- the server 100 of the present invention may configure a memory network and perform a coloring job of applying colors to a gray scale image.
- coloring may mean any operation of applying color to a part or the whole of an image.
- the operation of the server 100 described in this specification may be performed by a processor included in the server 100 although not shown in FIG. 1.
- the manager terminal 101 determines the operation of the deep learning-based coloring system provided by the server 100, provides initial training data, and manages the settings of all processes performed by the server 100. I can.
- the user terminal 102 may be a terminal of a user who requests an image for coloring to the server 100 and obtains a colored image.
- the deep learning-based coloring system and method of the present invention provides a system and method for coloring an image based on a deep learning algorithm.
- deep learning-based coloring methods existed in the past, the following two limitations exist to apply them in the actual field.
- the existing coloring model ignores rare cases and chooses to learn the most frequently appearing colors to generalize the data. However, remembering rare cases is important when various characters appear in the content. Supporting characters that appear infrequently are ignored in the coloring network, and there is a problem that a dominant effect occurs in which the supporting characters are colored like the main characters. The dominant effect occurs when the coloring model trains coloring with only a few dominant colors in the training set. Understanding this, the existing model cannot maintain color identification, which defines a specific object class as a unique color that distinguishes it from other object classes.
- the present invention complements the limitations of such existing coloring models, and according to the present invention, a coloring network reinforced by external neural memory networks is provided.
- FIG. 2 is a diagram showing the internal configuration of the server of the present invention.
- the server 100 of the present invention includes a memory network 210 and a coloring network 220, and the memory network 210 includes a query generator 211, a neighbor calculator 212, and a color A feature determination unit 213, a triple loss calculation unit 214 and an update unit 215 are included, and the coloring network 220 includes a generator 221 and a discriminator 222.
- the memory network 210 is shown to be included in the server 100, this does not necessarily mean that the memory network 210 physically exists in the server 100.
- the memory network may be a neural network network inside or outside the server 100, and according to an embodiment of the present invention, it does not depend on the memory inside the coloring network 220 in order to efficiently supply limited data to the coloring network 220. Without it, the neural network 210 may be separately configured.
- the memory network 210 configures a memory network to include a key memory related to space, a value memory related to color, and an age.
- the coloring network 220 performs coloring on an image based on a color feature generated by the memory network configuration unit.
- FIG. 3 illustrates an operation of a memory network according to an embodiment of the present invention in time series.
- FIG. 4 is for explaining the operation of a memory network and a coloring network according to an embodiment of the present invention.
- the coloring system or coloring model of the present invention includes a memory network 510 and a coloring network 520.
- the coloring system of the present invention can augment the color network 520 using the memory network 510 to memorize sparse cases and generate high-quality colors with limited data.
- the memory network 510 of the present invention is characterized in how a key and value memory is structured. According to the present invention, a threshold triplet loss is provided that enables unsupervised learning of the memory network 510 without additional class label information.
- the color network 520 of the present invention activates adaptive instance normalization in order to improve colorization performance.
- the memory network 210 receives the same query image as an input to the coloring network 220 and is trained to efficiently derive information necessary for coloring the query image.
- the memory network 210 is configured to store three different types of information: a key memory, a value memory, and an age (S1).
- the key memory K stores information on spatial features of input data.
- the key memory is used to calculate the cosine similarity to the input query.
- the value memory V stores color features that are used as conditions for the coloring network later.
- the key memory 511 and the value memory 512 are extracted from the training data.
- the age vector A represents the lifetime of the item stored in the memory without being used.
- the overall memory structure M of the present invention can be represented by the following [Equation 1].
- K and V are values extracted from the same image, and for the same image, K is a spatial feature extracted through an artificial neural network, and V is a color feature extracted from the image.
- m represents the memory size.
- the query generator 211 of the memory network 210 generates a query q (S2).
- the query q is first ImageNet (J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. Imagenet: A large-scale hierarchical image database.In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248-255. Ieee, 2009) pretrained ResNet18-pool5 layers (K. He, X. Zhang, S. Ren, and and J. Sun. Deep residual learning for image recognition.In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778, 2016.). This is, It can be marked as At this time, X rp5 is a high-dimensional expression pulled through ResNet, and is the same as query q. Also, R 512 stands for 512 dimension.
- feature vectors are used from pooling layers to summarize spatial information. For example, a rose should be recognized as the same rose no matter where it is spatially located in the image.
- the present invention is a learnable parameter And And conveys feature representation through linear layers. At this time, W is the weight, and b is the bias in the neural net.
- the present invention normalizes a vector as shown in [Equation 2] below to generate a query q. In the following [Equation 2] to be.
- the neighbor calculator 212 calculates a k-th nearest neighbor based on the similarity between the query and the keys (S3).
- the k-th nearest neighbor is determined as a memory slot having a similarity between the query and the spatial feature from 1 to k-th based on the cosine similarity of the query and the key memory value.
- the memory network calculates the nearest neighbor k for the cosine similarity of the query and the keys as shown in [Equation 3] below, and is the first nearest value (1-nearest neighbors). To return. Means V among the (K,V) pairs of memory slots most similar to q.
- NN(q,M) refers to a calculation that results in the query q and the most spatial feature being similar in M (memory), and (n 1 , ..., n k ) is q Memory slots with similar spatial features are listed in similar order (n 1 : most similar, n k : k-th similar) up to k.
- the color feature determination unit 213 generates a color feature to indicate color information stored in the value memory.
- the present invention uses two variants of color distribution and RGB color values to represent color information stored in a value memory. That is, according to an embodiment of the present invention, since necessary information is different according to input data, two shift values are set for the color feature V.
- the former has a color distribution format for 313 quantized color values represented by.
- C dist is a result of summarizing all color information in large-scale image data into 313 colors, and then calculating a probability value of how many 313 colors each image has. This is calculated by converting the input RGB image to the CIE Lab color space and quantizing the ab value into 313 color bins (313 clolor bins).
- the present invention can use a conventional technique, parametrization, to quantize ab values.
- the color distribution is suitable for images with various colors and complex drawings.
- the second shift value is the RGB color value
- It is a set of ten dominant RGB color values of the image represented by, which is the extraction of the ten most dominant colors (pixel values) from the input image using a tool called Color Thief. Since neural networks can learn more easily and quickly when using direct RGB values rather than complex color distribution information, The one shot coloring setting works better if you use as a color feature. Therefore, the value memory of the present invention can be expressed as the following [Equation 4].
- Color information extracted as described above may be used as a condition for the coloring network 220 of the present invention.
- One or both of the above two transition values may be used, but the present invention is used in a value memory to prevent confusion in a subsequent equation. I decided to use the expression.
- the triple loss calculation unit 214 calculates the threshold triple loss based on the comparison of the distance between the color features and the threshold value (S5).
- triple loss is adopted to maximize similarity between a query and a positive key and minimize similarity between a query and a negative key.
- the positive key means a key memory value (K[n p ]) that is the same index as the closest memory value (V[n p ]) among value memory values in which the color feature value and the distance of the query image are less than a certain threshold. .
- a negative key is a key memory value (K[n b ]), which is the same index as the memory value with the smallest distance (V[n b ]) among the memory values in which the color feature value and distance of the query image exceed a certain threshold Means).
- the existing triple loss method has the main goal of making images of a certain class (positive neighbor) closer to each other than images of other classes (negative neighbor).
- the existing supervised triple loss is If is the same class label as the input query q, it introduces the smallest index p, which makes n p a positive neighbor of q.
- the negative neighbor of q is defined by the smallest index b, Has a different class label than q.
- the threshold based triplet loss of the present invention is characterized in that it can be applied to a completely unsupervised setting.
- the threshold based triplet loss of the present invention is characterized in that it can be applied to a completely unsupervised setting.
- the threshold based triplet loss of the present invention assuming that there are two images, if the distance between the color features between the two images is within a certain threshold, then the two images are considered to have similar spatial features, and therefore, will be in the same class. I think the possibility is high.
- the specific threshold value described above is represented by a hyperparameter ⁇ .
- a measure of the distance between two color features As, in the present invention, Kullback-Leibler divergence of color distributions for quantized ab values is calculated.
- a color distribution is calculated by converting an RGB value into a CIE Lab value using CIEDE2000.
- a method of measuring a distance between color features is set differently for each type of color feature. In the case of, since it is a probability value composed of 313 dimensions, KL divergence, a method of measuring the distance between probability values, is used.
- KL divergence a method of measuring the distance between probability values, is used.
- Is a color feature composed of actual pixel values so we use CIEDE2000.
- CIEDE2000 is a method to measure the distance between colors as close to human perception as possible, considering the characteristic that the human eye is more sensitive to specific colors than other colors compared to Euclidean distance.To use this, RGB pixel values are calculated by CIE Lab. After converting to pixel values, measure the distance.
- the present invention When the distance between the and the correct desired value v (e.g., the color feature of the query image) is within the color threshold ⁇ , a new positive neighbor n p is newly established as a memory slot with the minimum index. define.
- the purpose of learning a memory network of the present invention is to automatically extract a color feature (value memory) corresponding to the spatial feature (key memory) of the image when a query image is given. Therefore, at the time of learning, it is called the correct target value v because it is learned to bring a value memory as close as possible to the color feature of the query image.
- the color threshold ⁇ The relationship of, v can be expressed as the following [Equation 5].
- the present invention N b can be defined as a memory slot having the smallest index in which the distance between and the correct target value v exceeds the color threshold value ⁇ , and in this case, the color threshold value ⁇ can be expressed as [Equation 6] below. .
- Equation 7 the threshold triple loss according to an embodiment of the present invention.
- the threshold triple loss of the present invention maximizes the distance between the negative key and the query while minimizing the distance between the positive key and the query.
- FIG. 5 illustrates a coloring result based on a threshold triple loss according to an embodiment of the present invention.
- images with i) similar spatial features (eg, k-th nearest neighbor) and ii) similar color features (eg, color distance within a certain threshold) belong to the same class.
- the threshold triple loss is calculated on the premise of i) and ii). 5 is an example of applying the top three color features derived from the memory network of the present invention to a target image. Referring to FIG. 5, it can be seen that using the threshold triple loss, the memory network of the present invention is trained to derive color features that are highly relevant to the content of the query image.
- the images corresponding to the top three (top-1, top-2, top-3) of FIG. 5 have the same class as the query image.
- the top three images share the same character, clothes, and background. This allows the threshold triple loss to play a role in allowing the memory network of the present invention to search for color features that are highly relevant to the content of the query image.
- the updater 215 updates the memory based on whether the distance between the highest value and the newly inputted query value is within a threshold value (S6).
- Memory M according to an embodiment of the present invention is updated after a new query q is introduced into the network.
- Memory is the top-1 value It can be updated as follows (i) and (ii) depending on whether the distance between and the correct value v (eg, a color feature of the new query image) is within the color threshold.
- the coloring network 220 performs coloring based on the color features generated in the memory network.
- the coloring network of the present invention is a conditional generative adversarial network consisting of a generator 221 G and a discriminator 222 D.
- a generator 221 G and a discriminator 222 D For the generator 221 and the discriminator 222, a known configuration of an existing deep learning algorithm may be adopted except for the characteristic configuration of the present invention described below.
- the discriminator 222 uses a gray scale image and a color feature as conditions to distinguish between an actual image and a color output, while the generator 221 has a gray scale input X and a color feature C.
- the discriminator 222 is deceived by creating a realistic color image.
- the smooth L 1 loss between the generated output G (x, C) and the ground-truth image y is added to the objective function of the generator as shown in [Equation 10] below.
- the generator 221 can generate an output that does not deviate too far from the ground truth image.
- the complete objective function of the present invention for D and G can be expressed as the following [Equation 11] and [Equation 12].
- the present invention trains the generator 221 and the discriminator 222 by extracting color features from the ground truth image.
- FIG. 6 is a view for explaining providing a color value to a generator during a test period according to an embodiment of the present invention.
- the present invention provides a condition to the trained generator as shown in FIG. 5 using a color value retrieved from a memory network.
- the k-nearest neighbor is determined based on the query q generated from the input image, and the highest color feature is extracted and passed through a multi-layer perceptron (MLP) to generate AdaIn parameters.
- MLP multi-layer perceptron
- the present invention applies the architecture of the generator network to the architecture of the discriminator.
- the present invention paints an input image with adaptive instance normalization (Coloring with Adaptive Instance Normalization). Colorization is generally not the first to be perceived with respect to style transfer. Style transfer is an operation of transmitting the color of a reference image to a target image, and the colorization operation of the present invention can be regarded as an operation of transmitting a color feature to an actual target grayscale image.
- AdaIN Adaptive Instance Normalization
- the present invention applies Adaptive Instance Normalization (AdaIN), which is effective in delivering style information, to effectively transfer a style. That is, by directly supplying the color features to the parameter-regression networks of the present invention as shown in [Equation 13] below, the present invention provides the affine transformation parameters used in the AdaIN module. Can be obtained.
- z is the activation of the previous convolution layer, which is first normalized and also scaled by the standard deviation and shifted by the mean of the color feature C.
- the present invention can improve coloring performance by inputting both a grayscale image and a color feature as a conditional input of the discriminator 222.
- the first column of FIG. 7 shows the ground truth image
- the second column shows the results according to the existing coloring model
- the third column shows the results according to the deep learning-based coloring method according to an embodiment of the present invention.
- the outputs in the second and third columns were obtained from the same iteration of each approach.
- the use of the AdaIN-based method of the present invention provides a more vivid and high-quality coloring result as in the third column of FIG. 7. I can.
- the present invention as described above has the following effects.
- color information related to coloring can be extracted by querying an external memory network.
- the coloring model of the present invention can capture an image of an infrequent class and can solve the dominant color effect, which was a problem of the existing coloring model.
- the present invention since the memory network is learned to obtain a value memory corresponding to the key memory value most similar to the spatial feature, even in rare cases, the color is not generalized to the color of the dominant character, The dominant color effect can be solved by coloring the color features that match.
- the present invention provides a new threshold triplet loss that enables training of a memory network in an unsupervised environment. According to the coloring model of the present invention, no labeled data is required to successfully color an image.
- the embodiments according to the present invention described above may be implemented in the form of program instructions that can be executed through various computer components and recorded in a computer-readable recording medium.
- the computer-readable recording medium may include program instructions, data files, data structures, etc. alone or in combination.
- the program instructions recorded in the computer-readable recording medium may be specially designed and configured for the present invention or may be known and usable to those skilled in the computer software field.
- Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and magnetic-optical media such as floptical disks. medium), and a hardware device specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
- Examples of the program instructions include not only machine language codes such as those produced by a compiler but also high-level language codes that can be executed by a computer using an interpreter or the like.
- the hardware device can be changed to one or more software modules to perform the processing according to the present invention, and vice versa.
- connection or connection members of the lines between the components shown in the drawings exemplarily represent functional connections and/or physical or circuit connections. It may be referred to as a connection, or circuit connections.
- essential or “importantly”, it may not be an essential component for the application of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Biophysics (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Image Analysis (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
본 발명의 일 실시예에 따르면, 공간 피처(spatial feature)와 관계된 키(key) 메모리, 컬러 피처(color feature)와 관계된 값(value) 메모리를 포함하도록 구성되고, 특정 쿼리에 대응하여 컬러 피처를 제공하는 메모리 네트워크; 및 상기 메모리 네트워크에서 생성한 컬러 피처에 기초하여 컬러링(coloring)을 수행하는 컬러링 네트워크; 를 포함하는 딥러닝 기반 컬러링 시스템에 있어서, 상기 메모리 네트워크는, 쿼리를 생성하는 쿼리 생성부; 상기 쿼리와 키 메모리값들 간의 유사성에 기초하여 k번째 가까운 이웃(k-nearest neighbor)을 산출하는 이웃 산출부; 상기 값 메모리에 저장된 색상 정보를 나타내기 위한 컬러 피처를 생성하는 컬러 피처 결정부; 상기 컬러 피처들 간의 거리와 임계값의 비교에 기초하여 임계값 삼중 손실을 산출하는 임계값 삼중 손실 산출부; 최상위 값과 새롭게 입력된 쿼리의 값 간의 거리가 임계값 이내인지 여부에 기초하여 메모리를 업데이트하는 메모리 업데이트부; 를 포함하는, 딥러닝 기반 컬러링 시스템이 제공된다.
Description
본 발명은 딥러닝 기반 컬러링 방법, 시스템 및 프로그램에 관한 것으로, 보다 상세하게는 외부 신경 메모리에 의해 보강된 컬러링 방법, 시스템 및 프로그램에 관한 것이다.
애니메이션 혹은 만화 컨텐츠 제작에서 컬러링(coloring 혹은 colorization) 작업은 시간 및 비용을 가장 많이 요구하는 단계이다. 따라서 컬러링 작업을 자동화하려는 많은 시도가 있었으며, 딥러닝 기반 컬러링 모델의 발전에도 불구하고 실제 현장에서 사용되는 일은 극히 제한적이다. 실제 환경에서 딥러닝 기반 컬러링 모델을 사용하기에는 많은 제한이 존재한다.
보다 상세히, 기존의 딥러닝 기반 컬러링 모델을 훈련하기 위해서는 많은 양의 데이터가 필요하지만 저작권 등의 문제로 인해 애니메이션 혹은 만화 컨텐츠의 훈련 데이터를 얻기에는 한계가 존재한다. 더불어, 기존의 딥러닝 기반 컬러링 모델은 희귀한 색상을 가지는 경우를 무시하고 가장 빈번하게 나타나는 색상을 선택하도록 훈련되는 경우가 많은데, 이 경우 애니메이션 혹은 만화의 조연 캐릭터의 채색이 부적절해지는 경우가 발생하였다. 따라서 딥러닝 기반 컬러링 모델을 실제 현장에서 사용하기는 어려움이 있었다.
본 발명은 제한된 수의 만화 혹은 애니메이션 데이터만으로도 컬러링 모델을 학습할 수 있는 딥러닝 기반 컬러링 방법을 제공하는 것을 일 목적으로 한다.
또한, 본 발명은 빈번히 나타나지 않는 색상의 채색을 가능하게 하는 것을 다른 목적으로 한다.
또한, 본 발명은 비감독 환경에서 메모리 네트워크의 훈련을 가능하게 하는 임계값 삼중 손실을 제공하는 것을 다른 목적으로 한다.
본 발명의 일 실시예에 따르면 공간 피처(spatial feature)와 관계된 키(key) 메모리, 컬러 피처(color feature)와 관계된 값(value) 메모리를 포함하도록 구성되고, 특정 쿼리에 대응하여 컬러 피처를 제공하는 메모리 네트워크; 및 상기 메모리 네트워크에서 생성한 컬러 피처에 기초하여 컬러링(coloring)을 수행하는 컬러링 네트워크; 를 포함하는 딥러닝 기반 컬러링 시스템에 있어서, 상기 메모리 네트워크는, 쿼리를 생성하는 쿼리 생성부; 상기 쿼리와 키 메모리값들 간의 유사성에 기초하여 k번째 가까운 이웃(k-nearest neighbor)을 산출하는 이웃 산출부; 상기 값 메모리에 저장된 색상 정보를 나타내기 위한 컬러 피처를 생성하는 컬러 피처 결정부; 상기 컬러 피처들 간의 거리와 임계값의 비교에 기초하여 임계값 삼중 손실을 산출하는 임계값 삼중 손실 산출부; 최상위 값과 새롭게 입력된 쿼리의 값 간의 거리가 임계값 이내인지 여부에 기초하여 메모리를 업데이트하는 메모리 업데이트부; 를 포함하는 딥러닝 기반 컬러링 시스템이 제공된다.
본 발명에 있어서, 상기 k번째 가까운 이웃은, 상기 쿼리와 상기 키 메모리값의 코사인 유사도에 기초하여, 상기 쿼리와 상기 공간 피처 간의 유사도가 1 내지 k 번째까지인 메모리 슬롯으로 결정될 수 있다.
본 발명에 있어서, 상기 최상위 값은, 상기 k번째 가까운 이웃 중 1번째 가까운 이웃을 산출하였을 때 상기 쿼리와 코사인 유사도가 가장 높은 키 메모리값과 동일한 인덱스를 갖는 값 메모리값일 수 있다.
본 발명에 있어서, 상기 임계값 삼중 손실은 쿼리와 양의 키(positive key) 사이의 유사성을 최대화하고 쿼리와 음의 키(negative key) 사이의 유사성을 최소화하는 값일 수 있다.
본 발명에 있어서, 상기 양의 키는 상기 쿼리의 컬러 피처값과 거리가 상기 임계값 미만인 값 메모리값 중, 가장 가까운 값 메모리값과 동일한 인덱스의 키 메모리값이고, 상기 음의 키는 상기 쿼리의 컬러 피처값과 거리가 상기 임계값 초과인 값 메모리값 중, 가장 거리가 작은 값 메모리값과 동일한 인덱스의 키 메모리값일 수 있다.
본 발명에 있어서, 상기 컬러 피처는 2가지 변이값(variant)를 가지며, 상기 2가지 변이값은 이미지 별로 기설정된 313개의 색이 얼만큼 있는지에 대한 확률값을 구한 것인 Cdist와, 기설정된 라이브러리를 이용하여 이미지 별 가장 지배적인 10개의 픽셀값을 추출한 CRGB 일 수 있다.
본 발명에 있어서, 상기 메모리 네트워크는, 상기 k번째 가까운 이웃에 대응하는 공간 피처 및 상기 임계값 미만의 쿼리와의 컬러 거리에 대응하는 컬러 피처를 갖는 이미지들은 서로 동일 클래스에 속한다고 판단할 수 있다.
본 발명에 있어서, 상기 컬러링 네트워크는 생성기 및 판별기를 포함하고, 상기 판별기는 그레이스케일(gray scale) 입력 이미지 및 상기 컬러 피처를 입력받을 수 있다.
본 발명에 있어서, 상기 메모리 네트워크는 에이지(age)를 추가적으로 저장하도록 구성되며, 상기 에이지는 메모리에 저장된 항목의 수명을 나타낼 수 있다.
본 발명의 일 실시예에 따르면, 쿼리를 생성하는 단계; 상기 쿼리와 키 메모리값들 간의 유사성에 기초하여 k번째 가까운 이웃(k-nearest neighbor)을 산출하는 단계; 상기 값 메모리에 저장된 색상 정보를 나타내기 위해 컬러 피처를 생성하는 단계; 상기 컬러 피처들 간의 거리와 임계값의 비교에 기초하여 임계값 삼중 손실을 산출하는 단계; 최상위 값과 새롭게 입력된 쿼리의 값 간의 거리가 상기 임계값 이내인지 여부에 기초하여 메모리를 업데이트하는 단계; 를 포함하는 딥러닝 기반 컬러링 방법이 제공된다.
본 발명에 있어서, 상기 k번째 가까운 이웃은, 상기 쿼리와 상기 키 메모리값의 코사인 유사도에 기초하여, 상기 쿼리와 공간 피처 간의 유사도가 1 내지 k 번째까지인 메모리 슬롯으로 결정될 수 있다.
본 발명에 있어서, 상기 최상위 값은, 상기 k번째 가까운 이웃 중 1번째 가까운 이웃을 산출하였을 때 상기 쿼리와 코사인 유사도가 가장 높은 키 메모리값과 동일한 인덱스를 갖는 값 메모리값일 수 있다.
본 발명에 있어서, 상기 임계값 삼중 손실은 쿼리와 양의 키(positive key) 사이의 유사성을 최대화하고 쿼리와 음의 키(negative key) 사이의 유사성을 최소화하는 값으로서, 상기 양의 키는 상기 쿼리의 컬러 피처값과 거리가 상기 임계값 미만인 값 메모리값 중, 가장 가까운 값 메모리값과 동일한 인덱스의 키 메모리값이고, 상기 음의 키는 상기 쿼리의 컬러 피처값과 거리가 상기 임계값 초과인 값 메모리값 중, 가장 거리가 작은 값 메모리값과 동일한 인덱스의 키 메모리값일 수 있다.
본 발명에 있어서, 상기 컬러 피처는 2가지 변이값(variant)를 가지며, 상기 2가지 변이값은 이미지 별로 기설정된 313개의 색이 얼만큼 있는지에 대한 확률값을 구한 것인 Cdist와, 기설정된 라이브러리를 이용하여 이미지 별 가장 지배적인 10개의 픽셀값을 추출한 CRGB 일 수 있다.
본 발명에 따른 방법을 실행하기 위한 컴퓨터 판독 가능한 기록 매체에 저장된 컴퓨터 프로그램이 더 제공된다.
본 발명에 의하면, 최소한의 데이터로 컬러링을 학습할 수 있으므로 원샷(one shot) 혹은 몇개의 샷(few shot) 컬러링이 가능하다.
또한 본 발명에 의하면, 메모리 네트워크는 공간 피처와 가장 유사한 키 메모리 값에 해당하는 값 메모리를 가져오도록 학습되므로, 도미넌트(dominant) 컬러 효과를 해결할 수 있다.
도 1 은 본 발명의 일 실시예에 따른 딥러닝 기반 컬러링 시스템의 구성을 나타낸 도면이다.
도 2 는 본 발명의 서버의 내부 구성을 도시한 도면이다.
도 3 은 본 발명의 일 실시예에 따른 메모리 네트워크의 동작을 시계열적으로 나타낸 것이다.
도 4 는 본 발명의 일 실시예에 따른 메모리 네트워크 및 컬러링 네트워크의 동작을 설명하기 위한 것이다.
도 5 는 본 발명의 일 실시예에 따른 임계값 삼중 손실에 기초한 컬러링 결과를 예시한 것이다.
도 6 은 본 발명의 일 실시예에 따른 시험 기간 동안 색상 값을 생성기에 제공하는 것을 설명하기 위한 도면이다.
도 7 은 기존의 방법과 본 발명의 컬러링 방법을 적용한 결과를 나타낸 예시이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이러한 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 본 명세서에 기재되어 있는 특정 형상, 구조 및 특성은 본 발명의 정신과 범위를 벗어나지 않으면서 일 실시예로부터 다른 실시예로 변경되어 구현될 수 있다. 또한, 각각의 실시예 내의 개별 구성요소의 위치 또는 배치도 본 발명의 정신과 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 행하여지는 것이 아니며, 본 발명의 범위는 특허청구범위의 청구항들이 청구하는 범위 및 그와 균등한 모든 범위를 포괄하는 것으로 받아들여져야 한다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 구성요소를 나타낸다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 여러 실시예에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 1 은 본 발명의 일 실시예에 따른 딥러닝 기반 컬러링 시스템의 구성을 나타낸 도면이다.
도 1 을 참조하면, 본 발명의 일 실시예에 따른 딥러닝 기반 컬러링 시스템은 서버(100), 관리자 단말(101) 및 사용자 단말(102)을 포함할 수 있다. 본 발명의 서버(100)는 메모리 네트워크를 구성하고 그레이스케일(gray scale) 이미지에 색상을 입히는 컬러링 작업을 수행할 수 있다. 이하의 명세서에서, 컬러링은 이미지의 부분 또는 전체에 색상을 입히는 모든 동작을 의미할 수 있다. 또한, 본 명세서에서 설명되는 서버(100)의 동작은 비록 도 1 에 도시되지 않았지만 서버(100)에 포함된 프로세서에 의해 수행될 수 있다.
또한, 관리자 단말(101)은 서버(100)가 제공하는 딥러닝 기반 컬러링 시스템의 동작을 결정하고 초기 훈련 데이터를 제공하며, 서버(100)가 수행하는 모든 프로세스의 설정을 관리하는 관리자의 단말일 수 있다. 더불어, 사용자 단말(102)은 컬러링을 원하는 이미지를 서버(100)로 요청하고, 컬러링된 이미지를 획득하는 사용자의 단말일 수 있다.
본 발명의 딥러닝 기반 컬러링 시스템 및 방법은 딥러닝(deep learning) 알고리즘을 기반으로 하여 이미지를 채색하는 시스템 및 방법을 제공한다. 기존에도 딥러닝 기반 컬러링 방법들이 존재하였으나, 이를 실제 현장에서 적용하기에는 이하의 2가지 한계가 존재하였다.
첫번째로, 딥러닝 기반 컬러링 모델을 학습(training)하기 위해서는 많은 양의 데이터가 필요하지만, 사용할 수 있는 애니메이션 및 만화 데이터의 수는 제한적이다. 사진은 카메라로 찍을 수 있고 단순히 그레이 스케일(gray scale)로 변환할 수 있기 때문에 풍부한 학습 데이터를 용이하게 얻을 수 있지만, 애니메이션 및 만화 데이터는 손으로 그린 후 복잡하게 색칠한 데이터를 얻어야 하므로 데이터 획득이 쉽지 않다. 이에 기존의 컬러링 모델들은 실제 사진 이미지에 대해 학습을 진행하여 대부분 예전 흑백 사진들에 대해 적용되었으나, 현대 사진들은 대부분 컬러로 제작되기 때문에 이 작업은 더 이상 필요하지 않다. 따라서, 사진을 학습하는 방법과는 별개로 적은 양의 데이터로 애니메이션과 만화를 색칠하는 법을 훈련할 필요가 존재한다.
두번째로, 기존의 컬러링 모델은 희귀한 경우를 무시하고 데이터를 일반화하기 위해 가장 빈번하게 나타나는 색을 학습하는 것을 선택한다. 그러나, 희귀한 경우를 기억하는 것은 컨텐츠에 다양한 등장 인물이 등장할 때 중요하다. 드물게 등장하는 조연 캐릭터는 색칠 네트워크에서 무시되어 조연 캐릭터들이 주연 캐릭터들처럼 색칠되는 도미넌트(dominent) 효과가 생기는 문제점이 존재한다. 도미넌트 효과는 컬러링 모델이 훈련 세트에 있는 몇 가지 지배적인 컬러로만 컬러링을 훈련할 때 발생한다. 이로 이해, 기존 모델은 특정 객체 클래스를 다른 객체 클래스와 구분하는 고유한 색상으로 정의하는 색상 식별을 유지할 수 없게 된다.
본 발명은 이러한 기존 컬러링 모델의 한계를 보완하는 것으로, 본 발명에 의하면 외부 신경 메모리(external neural memory networks)에 의해 보강된 컬러링 네트워크를 제공한다.
도 2 는 본 발명의 서버의 내부 구성을 도시한 도면이다.
도 2 를 참조하면, 본 발명의 서버(100)는 메모리 네트워크(210) 및 컬러링 네트워크(220)를 포함하고, 메모리 네트워크(210)는 쿼리 생성부(211), 이웃 산출부(212), 컬러 피처 결정부(213), 삼중 손실 산출부(214) 및 업데이트부(215)를 포함하며, 컬러링 네트워크(220)는 생성기(221) 및 판별기(222)를 포함한다.
도 3 에서는 비록 메모리 네트워크(210)가 서버(100)에 포함된 것으로 도시되었지만, 이는 반드시 물리적으로 서버(100) 내에 메모리 네트워크(210)가 존재하는 것은 아니다. 메모리 네트워크는 서버(100) 내부 또는 외부의 신경망 네트워크일 수 있으며, 본 발명의 일 실시예에 따르면 한정된 데이터를 효율적으로 컬러링 네트워크(220)에 공급하기 위해 컬러링 네트워크(220) 내부의 메모리에 의존하지 않고 외부적으로 신경망 네트워크(210)를 따로 구성할 수 있다.
먼저, 메모리 네트워크(210)는 공간과 관계된 키(key) 메모리, 색상과 관계된 값(value) 메모리 및 에이지(age)를 포함하도록 메모리 네트워크를 구성한다. 또한, 컬러링 네트워크(220)는 메모리 네트워크 구성부에서 생성한 컬러 피처(color feature)에 기초하여 이미지에 컬러링(coloring)을 수행한다.
도 3 은 본 발명의 일 실시예에 따른 메모리 네트워크의 동작을 시계열적으로 나타낸 것이다.
또한, 도 4 는 본 발명의 일 실시예에 따른 메모리 네트워크 및 컬러링 네트워크의 동작을 설명하기 위한 것이다.
이하에서는, 도 2 내지 도 4 를 함께 참조하여 본 발명의 딥러닝 기반 컬러링 방법을 설명하기로 한다. 도 2 및 도 4 에서 볼 수 있는 바와 같이, 본 발명의 컬러링 시스템 혹은 컬러링 모델은 메모리 네트워크(510)와 컬러링 네트워크(520)를 포함한다. 본 발명의 컬러링 시스템은 희소한 경우를 기억하고 제한된 데이터로 고품질의 색상을 생성하기 위해 메모리 네트워크(510)를 사용하여 컬러 네트워크(520)를 보강할 수 있다. 본 발명의 메모리 네트워크(510)는 키와 값 메모리가 어떻게 구성되는지를 일 특징으로 한다. 본 발명에 따르면, 추가적인 클래스 라벨 정보(additional class label information) 없이도 메모리 네트워크(510)의 비지도 학습을 가능하게 하는 임계 삼중 손실(threshold triplet loss)이 제공된다. 또한, 본 발명의 컬러 네트워크(520)는 색상화 성능을 향상시키기 위하여 적응 인스턴스 정규화(Adaptive Instance Normalization)를 활성화한다.
먼저, 메모리 네트워크(210)는 컬러링 네트워크(220)에 입력으로 주어지는 쿼리 이미지를 동일하게 입력받고, 해당 쿼리 이미지를 컬러링하는데 필요한 정보를 효율적으로 도출할 수 있도록 학습된다. 본 발명의 일 실시예에 따르면 메모리 네트워크(210)는 키(key) 메모리, 값(value) 메모리, 에이지(age)의 3가지 다른 종류의 정보를 저장하기 위해 구성된다(S1). 보다 상세히, 키 메모리 K 는 입력 데이터의 공간 피처(Spatial Features)에 관한 정보를 저장한다. 키 메모리는 입력 쿼리와의 코사인(consin) 유사성을 계산하는데 사용된다. 값 메모리 V 는 추후 컬러링 네트워크의 조건으로 사용되는 컬러 피처(Color Features)를 저장한다. 키 메모리(511) 및 값 메모리(512)는 학습 데이터에서 추출된다. 또한, 에이지 벡터 A 는 사용하지 않고 메모리에 저장된 항목의 수명을 나타낸다.
본 발명의 전체 메모리 구조 M 은 하기의 [수학식 1] 과 같이 나타낼 수 있다. 이때, K 와 V 는 동일한 이미지에서 뽑은 값이며 동일한 이미지에 대해 K 는 인공 신경망을 통과시켜 뽑은 공간 피처, V는 이미지에서 색 정보를 추출한 컬러 피처를 담고 있다.
[수학식 1]
상기 [수학식 1]에서 m 은 메모리 크기를 나타낸다.
먼저, 메모리 네트워크(210)의 쿼리 생성부(211)는 질의 q 를 생성한다(S2). 도4 에서 알 수 있는 바와 같이, 질의 q 는 먼저 ImageNet(J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248-255. Ieee, 2009.)에서 미리 훈련된 ResNet18-pool5 layers (K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770- 778, 2016.) 을 통한 입력 이미지 X 를 전달함으로서 구성된다. 이는, 로 표시될 수 있다. 이때, Xrp5 는 ResNet 을 통과시켜 뽑은 고차원의 표현이며, 쿼리q 와 동일하다. 또한 R512 은 512 차원(dimension)을 뜻하는 것이다.
또한, 본 발명에서는 공간 정보를 요약하기 위해 레이어를 풀링(pooling)하는 것으로부터 피처(feature) 벡터를 사용한다. 예를 들어, 장미는 이미지에 공간적으로 어디에 위치하는지에 관계없이 같은 장미로 인식되어야 한다. 본 발명은 학습 가능한 파라미터인 및 와 함께 선형 레이어를 통해 피처 표현을 전달한다. 이때, W는 가중치이고, b 는 뉴럴넷에서의 바이어스(bias)를 뜻한다. 마지막으로, 본 발명은 쿼리 q 를 생성하기 위해 벡터를 아래의 [수학식 2]와 같이 정규화한다. 하기의 [수학식 2]에서 이다.
[수학식 2]
다음으로, 이웃 산출부(212)는 쿼리와 키들 간의 유사성에 기초하여 k 번째 가까운 이웃(k-nearest neighbor)을 산출한다(S3). 본 발명의 일 실시예에 따르면, k번째 가까운 이웃은 쿼리와 키 메모리값의 코사인 유사도에 기초하여, 상기 쿼리와 상기 공간 피처 간의 유사도가 1 내지 k 번째까지인 메모리 슬롯으로 결정된다. q가 주어진 경우, 메모리 네트워크는 쿼리와 키들의 코사인 유사성에 대해 가장 가까운 이웃 k 를 하기의 [수학식 3]과 같이 계산하고, 1번째 가까운 값(1-nearest neighbors)인 을 반납한다. 은 q 와 제일 유사한 메모리 슬롯의 (K,V) 쌍 중에서 V 를 뜻하는 것이다.
이는 추후 컬러링 네트워크에 대한 조건으로 사용된다.
[수학식 3]
상기 [수학식 3]에서, NN(q,M)은 M(메모리) 안에서 쿼리 q 와 제일 공간 피처가 유사한 것을 가져오는 계산을 뜻하는 것으로서, (n1, ..., nk)는 q 와 공간 피처가 유사한 메모리 상의 메모리 슬롯을 유사한 순서대로 (n1: 제일 유사, nk: k번째로 유사) k개 까지 나열한 것이다.
다음으로, 컬러 피처 결정부(213)는 값 메모리에 저장된 색상 정보를 나타내기 위해 컬러 피처(color feature)를 생성한다. 본 발명은 값 메모리에 저장된 색상 정보를 나타내기 위해, 색상 분포 및 RGB 색상 값이라는 두가지 변이값(variant)을 사용한다. 즉, 본 발명의 일 실시예에 따르면 입력 데이터에 따라 필요한 정보가 다르기 때문에 컬러 피처 V 에 대해 2가지 변이값을 설정한다.
전자는 으로 표시되는 313개의 양자화된 색상 값에 대한 색상 분포 형식을 가진다. Cdist 는 대규모 이미지 데이터에 존재하는 모든 색 정보를 313개의 색으로 요약한 다음, 이미지 별 각 313개의 색이 얼만큼 있는지에 대한 확률값을 구한 것이다. 이는 입력 RGB 이미지를 CIE Lab 색상 공간으로 변환하고 ab 값을 313 색 빈(313 clolor bin)으로 양자화하여 계산한다. 더불어, 본 발명은 ab 값을 양자화하기 위하여 기존의 기술인 매개변이값화(parametrization)를 사용할 수 있다. 색상 분포는 다양한 색상과 복잡한 드로잉이 있는 이미지에 적합하다.
두번째 변이값은 RGB 색상 값으로서, 로 표시되는 이미지의 10개의 지배적인 RGB 색상값의 세트이며, 이는 Color Thief 라 불리는 도구를 사용하여 입력 이미지에서 가장 지배적인 10개의 색(픽셀값)을 추출한 것이다. 신경망은 복잡한 색상 분포 정보보다 직접적인 RGB 값을 사용하는 경우 쉽고 빠르게 학습이 가능하므로, 를 컬러 피처로 사용하면 원샷(one shot) 컬러링 셋팅이 더 잘 작동한다. 따라서, 본 발명의 값 메모리는 하기의 [수학식 4]와 같이 나타낼 수 있다.
[수학식 4]
상술한 발명과 같이 추출된 색상 정보는 본 발명의 컬러링 네트워크(220)에 대한 조건으로 사용될 수 있다. 상술한 두 변이값 중 하나 또는 두가지를 모두 사용할 수 있지만, 본 발명은 차후 식에서 혼동을 방지하기 위해 값 메모리에 라는 표현을 사용하기로 한다.
다음으로, 삼중 손실 산출부(214)는 컬러 피처들 간의 거리와 임계값의 비교에 기초하여 임계값 삼중 손실을 산출한다(S5). 본 발명의 일 실시예에서는 쿼리와 양의 키(positive key) 사이의 유사성을 최대화하고 쿼리와 음의 키(negative key) 사이의 유사성을 최소화하기 위한 삼중 손실을 채택한다. 양의 키란 쿼리 이미지의 컬러 피처값과 거리가 일정 임계값 미만인 값 메모리값 중, 가장 가까운 값 메모리값(V[np])과 동일한 인덱스인 키 메모리값(K[np])을 의미한다. 반대로 음의 키란 쿼리 이미지의 컬러 피처값과 거리가 일정 임계값 초과인 값 메모리값 중, 가장 거리가 작은 값 메모리값(V[nb])과 동일한 인덱스인 키 메모리값(K[nb])을 의미한다.
기존의 삼중 손실 방법은 특정 클래스(양의 이웃)의 이미지를 다른 클래스(음의 이웃)의 이미지보다 서로 더 가깝게 만드는 주요 목표를 가지고 있다. 기존에 존재하는 지도(supervised) 삼중 손실은 가 입력 쿼리 q 와 동일한 클래스 라벨(class label)을 가지는 경우, 가장 작은 인덱스 p 를 도입하며, 이는 np 를 q 의 양의 이웃으로 만든다. q 의 음의 이웃은 가장 작은 인덱스 b 로 정의되며, 는 q 와 상이한 클래스 라벨을 갖는다.
그러나, 기존의 지도 삼중 손실은 클래스 라벨 정보를 필요로 하기 때문에, 컬러링 작업을 하기 위한 대부분의 데이터는 라벨 정보를 제공하지 않아 그 사용이 제한적일 수 밖에 없다. 예를 들어, 애니메이션의 모든 단일 프레임에 그것의 클래스 라벨(예를 들어, 특정 문자, 객체 혹은 배경이 주어진 프레임에 표시되는지 여부)로 애니메이션의 모든 단일 프레임에 라벨링을 하는 것은 불가능하다.
이러한 문제점을 해결하기 위해, 본 발명의 임계값 삼중 손실(threshold based triplet loss)은 완전한 비지도(unsupervised) 셋팅에 적용할 수 있는 것을 특징으로 한다. 본 발명의 일 실시예에 따르면, 2개의 이미지가 있다고 가정할 때, 2 이미지 사이의 컬러 피처들 간의 거리가 특정 임계값 내에 있으면, 2 이미지는 유사한 공간 피처를 가진다고 간주되며, 따라서 동일한 클래스에 있을 가능성이 높다고 본다. 본 발명에서는 상술한 특정 임계값을 하이퍼 파라미터(hyperparameter) δ 로 표시한다.
2개의 칼라 피처들 간의 거리 측정치 로서, 본 발명에서는 양자화된 ab 값에 대한 색상 분포(color distributions)의 KL 발산(Kullback-Leibler divergence)을 계산한다. 에 대하여, 본 발명에서는 CIEDE2000을 사용하여 RGB 값을 CIE Lab 값으로 변환하여 색상 분포를 산출한다. 보다 상세히, 본 발명의 일 실시예에 따르면 컬러 피처 간의 거리를 측정하는 방법은 컬러 피처의 종류마다 다르게 설정된다. 의 경우 313 dimension으로 구성된 확률값이므로, 확률값 간의 거리를 측정하는 방법인 KL 발산을 사용한다. 반면 는 실제 픽셀값으로 구성된 색 피쳐이므로, CIEDE2000을 사용한다. CIEDE2000는 Euclidean distance에 비해 인간의 눈이 다른 색보다 특정 색에 더 민감하다는 특성을 고려하여 최대한 사람의 지각과 최대한 유사하게 색 간의 거리를 측정하는 방법이며, 이를 사용하기 위해 RGB 픽셀값을 CIE Lab 픽셀값으로 변환한 후 거리를 측정한다.
본 발명의 비지도 임계값 삼중 손실 설정에서, 본 발명은 와 올바른 목표값(correct desired value) v (예를 들어, 쿼리 이미지의 컬러 피처) 사이의 거리가 컬러 임계값 δ로 내일 때 최소 인덱스를 갖는 메모리 슬롯(memory slot)으로서 새롭게 양의 이웃 np 를 정의한다. 본 발명의 메모리 네트워크를 학습하는 목적은 쿼리 이미지가 주어져 있을 때, 해당 이미지의 공간 피처(키 메모리)만 보고 그에 해당하는 색상 피처(값 메모리)를 자동으로 추출하기 위함이다. 따라서 학습 시에는 쿼리 이미지의 컬러 피처와 최대한 유사한 값 메모리를 가져오도록 학습되기 때문에 이를 올바른 목표값 v 라고 칭한다. 이때, 컬러 임계값 δ,, v 의 관계는 하기의 [수학식 5]와 같이 나타낼 수 있다.
[수학식 5]
유사하게, 본 발명은 와 올바른 목표값 v 사이의 거리가 컬러 임계값 δ를 초과하는 가장 작은 인덱스를 갖는 메모리 슬롯으로서 nb 를 정의할 수 있으며, 이때 컬러 임계값 δ 는 하기의 [수학식 6]과 같이 나타낼 수 있다.
[수학식 6]
마지막으로, 본 발명의 일 실시예에 따른 임계값 삼중 손실은 하기의 [수학식 7]과 같이 나타낼 수 있다.
[수학식 7]
상기와 같은 본 발명의 임계값 삼중 손실은 양의 키 및 쿼리 사이의 거리를 최소화하면서 음의 키와 쿼리 간의 거리를 최대화한다.
도 5 는 본 발명의 일 실시예에 따른 임계값 삼중 손실에 기초한 컬러링 결과를 예시한 것이다.
본 발명에 따르면 i) 유사한 공간 피처를 가지고(예를 들어, k번째 가까운 이웃), ii) 유사한 칼라 피처를 가진(예를 들어, 특정 임계값 내의 컬러 거리) 이미지들은 동일 클래스 내에 속한다. 본 발명에 따르면 임계값 삼중 손실은 상기 i) 및 ii) 를 전제로 하여 산출된다. 도 5 는 대상 이미지에 대하여 본 발명의 메모리 네트워크로부터 도출된 상위 3가지 컬러 피처를 적용한 예시이다. 도 5 를 참조하면, 임계값 삼중 손실을 사용하여, 본 발명의 메모리 네트워크는 쿼리 이미지의 컨텐츠와 관련성이 높은 컬러 피처를 도출하도록 훈련된 것을 알 수 있다.
보다 상세히, 도 5 의 상위 3개(top-1, top-2, top-3)에 대응하는 이미지는 쿼리 이미지와 동일한 클래스를 가진 것을 알 수 있다. 특히, 첫번째 행, 즉 만화 이미지에서는 상위 3개의 이미지들이 동일한 캐릭터, 옷, 배경을 공유한다. 이는 임계값 삼중 손실이 본 발명의 메모리 네트워크로 하여금 쿼리 이미지의 내용과 관련성이 높은 컬러 피처를 검색할 수 있도록 임계값 삼중 손실이 역할할 수 있도록 한다.
다음으로, 업데이트부(215)는 최상위 값과 새롭게 입력된 쿼리의 값 간의 거리가 임계값 이내인지 여부에 기초하여 메모리를 업데이트한다(S6). 본 발명의 일 실시예에 따른 메모리 M 은 새로운 쿼리 q가 네트워크에 도입된 후에 업데이트된다. 메모리는 최상위 값(top-1 value) 과 올바른 값 v (예를 들어, 새로운 쿼리 이미지의 컬러 피처) 간의 거리가 컬러 임계값 내에 있는지에 따라 하기의 (i) 및 (ii)과 같이 업데이트될 수 있다.
(i) 과 v 사이의 거리가 컬러 임계값 내인 경우(도 4 의 Case 1 에 해당함), 본 발명은 및 q 을 평균하고 정규화하여 키를 업데이트한다. n1의 에이지도 0으로 재설정된다. 일때 업데이트의 표기는 하기의 [수학식 8]과 같이 나타낼 수 있다.
[수학식 8]
(ii) 과 v 사이의 거리가 컬러 임계값을 초과하는 경우(도 4 의 Case 2 에 해당함), 이는 현재 메모리에서 v와 일치하는 메모리 슬롯이 없음을 나타낸다. 따라서, (q,v)는 메모리에 새롭게 기록될 수 있다. 본 발명에서는 랜덤하게 가장 오래된 에이지를 가진 메모리 슬롯(예를 들어, 가장 최근에 사용된 슬롯)을 선택하고, 선택된 메모리 슬롯을 nr 로 표기하고, 그 슬롯을 (q,v)로 대체한다. 또한, 본 발명에서는 교체된 슬롯의 에이지를 0으로 재설정할 수 있다. 보다 상세히, 일 때, 업데이트는 하기의 [수학식 9]와 같이 나타낼 수 있다.
[수학식 9]
다음으로, 컬러링 네트워크(220)는 메모리 네트워크에서 생성한 컬러 피처에 기초하여 컬러링을 수행한다. 본 발명의 컬러링 네트워크는 생성기(generator, 221) G 와 판별기(discriminator, 222) D 로 이루어진 조건부 생성적 적대적 네트워크(conditional generative adversarial networks)이다. 생성기(221) 및 판별기(222)에 대해서는, 하기에서 설명하는 본 발명의 특징적인 구성을 제외하면 기존의 딥러닝 알고리즘의 알려진 구성을 차용할 수 있다.
본 발명의 일 실시예에 따르면 판별기(222)는 그레이 스케일 이미지와 컬러 피처를 조건으로 사용하여 실제 이미지와 컬러 출력을 구분하는 반면, 생성기(221)는 그레이스케일 입력 X 및 컬러 피처 C 가 있는 사실적인 컬러 이미지를 생성함으로써 판별기(222)를 속인다. 생성된 출력 G (x, C)와 그라운드 트루스(ground-truth) 이미지 y 사이의 부드러운 L1 손실은 생성기의 목적 함수에 하기의 [수학식 10]과 같이 더해진다.
[수학식 10]
상기와 같은 본 발명에 따르면, 생성기(221)가 그라운드 트루스 이미지에서 너무 멀리 벗어나지 않는 출력을 생성할 수 있다. D 및 G 에 대한 본 발명의 완전한 목적 함수는 하기의 [수학식 11] 및 [수학식 12]와 같이 나타낼 수 있다.
[수학식 11]
[수학식 12]
훈련 과정에서, 본 발명은 그라운드 트루스 이미지로부터 컬러 피처를 추출하여 생성기(221)과 판별기(222)를 훈련시킨다.
도 6 은 본 발명의 일 실시예에 따른 시험 기간 동안 색상 값을 생성기에 제공하는 것을 설명하기 위한 도면이다.
도 6 을 참조하면, 시험 시간(test time) 동안, 본 발명은 메모리 네트워크에서 검색된 색상 값을 사용하여 도 5 와 같이 훈련된 생성기에 조건으로 제공한다. 보다 상세히, 입력 이미지로부터 생성된 쿼리 q 에 기초하여 k-가장 가까운 이웃을 결정하고, 최상위 컬러 피처를 추출하여 다층신경망(MLP, Multi-layer Perceptron)을 통과시켜 AdaIn 파라미터(AdaIN Parameters)를 생성하여 검색된 색상 값을 생성기에 제공한다. 또한, 본 발명은 발전기 네트워크의 아키넥처를 판별기의 아키텍처에 적용한다.
본 발명의 일 실시예에 따른 컬러링 과정을 보다 상세히 살펴보면, 본 발명은 입력 이미지를 적응형 인스턴스 정규화로 채색(Coloring with Adaptive Instance Normalization)한다. 컬러링(colorization)는 일반적으로 스타일 이전(style transfer)과 관련하여 처음으로 인지되는 것은 아니다. 스타일 이전은 참조 이미지의 색상을 대상 이미지로 전송하는 작업으로서, 본 발명의 컬러화 작업은 실제 목표 회색 음영 이미지로 컬러 피처를 전송하는 작업과 같은 것으로 볼 수 있다. 이러한 관점에서 본 발명은 효과적으로 스타일을 이전하기 위하여 스타일 정보 전달에 효과적인 Adaptive Instance Normalization (AdaIN) 를 적용한다. 즉, 하기의 [수학식 13]과 같은 본 발명의 파라미터-회귀 네트워크(parameter-regression networks)에 컬러 피처를 직접적으로 공급함으로써, 본 발명은 AdaIN 모듈에서 사용된 아핀 변환 파라미터(affine transformation parameters)를 획득할 수 있다.
[수학식 13]
상기 [수학식 13] 에서, z 는 이전 컨볼루션(convolution) 레이어의 활성화로서, 이는 첫번째로 표준화되고 또한 표준 편차에 의해 스케일되며 컬러 피처 C 의 평균에 의해 쉬프트되는 것이다.
더불어, 도 4 에 나타난 바와 같이, 본 발명은 판별기(222)의 조건 입력(conditional input)으로 그레이스케일 이미지 및 컬러 피처를 모두 입력하여, 컬러링 성능을 높일 수 있다.
도 7 은 기존의 방법과 본 발명의 컬러링 방법을 적용한 결과를 나타낸 예시이다.
도 7 의 첫번째 열은 그라운드 트루스 이미지를 나타내고, 두번째 열은 기존의 컬러링 모델에 따른 결과를 나타내며, 세번째 열은 본 발명의 일 실시예에 따른 딥러닝 기반 컬러링 방법에 따른 결과를 나타낸 것이다. 두번째 및 세번째 열의 산출물은 각 접근법의 동일한 반복으로부터 획득된 것이다. 단순한 요소별 추가(Element-wise addition)로 색상 조건을 통합하는 기존의 컬러링 모델들과 비교할 때, 본 발명의 AdaIN 기반 방법을 사용하면 도 7 의 세번째 열과 같은 보다 생생하고 고퀄리티의 컬러링 결과를 얻을 수 있다.
상술한 바와 같은 본 발명은 다음과 같은 효과를 가진다. 첫번째로, 본 발명은 최소한의 데이터로 컬러링을 배울 수 있으므로 원샷(one shot) 혹은 몇개의 샷(few shot) 컬러링을 가능하게 할 수 있다. 이는, 본 발명의 메모리 네트워크가 주어진 훈련 데이터로부터 유용한 컬러 정보를 추출 및 저장하기 때문에 가능하다. 본 발명의 컬러링 모델에 입력이 주어지면 외부 메모리 네트워크에 질의하여 컬러링과 관련된 색 정보를 추출할 수 있다. 두번째로, 본 발명의 컬러링 모델은 빈번하지 않은 클래스의 이미지를 캡처할 수 있으며 기존의 컬러링 모델의 문제점이었던 도미넌트 컬러 효과를 해결할 수 있다. 보다 상세히, 본 발명에 따르면 메모리 네트워크는 공간 피처와 가장 유사한 키 메모리 값에 해당하는 값 메모리를 가져오도록 학습되므로, 희귀한 경우에도 지배적인 캐릭터의 색으로 일반화하여 채색하는 것이 아니라, 해당 캐릭터ㅢ 색에 맞는 컬러 피처를 채색하여 도미넌트 컬러 효과를 해결할 수 있다. 세번째로, 본 발명은 비감독(unsupervised) 환경에서 메모리 네트워크의 훈련을 가능케 하는 새로운 임계값 삼중 손실(threshold triplet loss)을 제공한다. 본 발명의 컬러링 모델에 따르면, 이미지를 성공적으로 색칠하기 위해 라벨링된 데이터를 필요로 하지 않는다.
이상 설명된 본 발명에 따른 실시예는 다양한 컴퓨터 구성요소를 통하여 실행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등과 같은, 프로그램 명령어를 저장하고 실행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위하여 하나 이상의 소프트웨어 모듈로 변경될 수 있으며, 그 역도 마찬가지이다.
본 발명에서 설명하는 특정 실행들은 일 실시 예들로서, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 명세서의 간결함을 위하여, 종래 전자적인 구성들, 제어 시스템들, 소프트웨어, 상기 시스템들의 다른 기능적인 측면들의 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다. 또한, “필수적인”, “중요하게” 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.
본 발명의 명세서(특히 특허청구범위에서)에서 “상기”의 용어 및 이와 유사한 지시 용어의 사용은 단수 및 복수 모두에 해당하는 것일 수 있다. 또한, 본 발명에서 범위(range)를 기재한 경우 상기 범위에 속하는 개별적인 값을 적용한 발명을 포함하는 것으로서(이에 반하는 기재가 없다면), 발명의 상세한 설명에 상기 범위를 구성하는 각 개별적인 값을 기재한 것과 같다. 마지막으로, 본 발명에 따른 방법을 구성하는 단계들에 대하여 명백하게 순서를 기재하거나 반하는 기재가 없다면, 상기 단계들은 적당한 순서로 행해질 수 있다. 반드시 상기 단계들의 기재 순서에 따라 본 발명이 한정되는 것은 아니다. 본 발명에서 모든 예들 또는 예시적인 용어(예들 들어, 등등)의 사용은 단순히 본 발명을 상세히 설명하기 위한 것으로서 특허청구범위에 의해 한정되지 않는 이상 상기 예들 또는 예시적인 용어로 인해 본 발명의 범위가 한정되는 것은 아니다. 또한, 당업자는 다양한 수정, 조합 및 변경이 부가된 특허청구범위 또는 그 균등물의 범주 내에서 설계 조건 및 팩터에 따라 구성될 수 있음을 알 수 있다.
Claims (15)
- 공간 피처(spatial feature)와 관계된 키(key) 메모리, 컬러 피처(color feature)와 관계된 값(value) 메모리를 포함하도록 구성되고, 특정 쿼리에 대응하여 컬러 피처를 제공하는 메모리 네트워크; 및상기 메모리 네트워크에서 생성한 컬러 피처에 기초하여 컬러링(coloring)을 수행하는 컬러링 네트워크;를 포함하는 딥러닝 기반 컬러링 시스템에 있어서,상기 메모리 네트워크는,쿼리를 생성하는 쿼리 생성부;상기 쿼리와 키 메모리값들 간의 유사성에 기초하여 k번째 가까운 이웃(k-nearest neighbor)을 산출하는 이웃 산출부;상기 값 메모리에 저장된 색상 정보를 나타내기 위한 컬러 피처를 생성하는 컬러 피처 결정부;상기 컬러 피처들 간의 거리와 임계값의 비교에 기초하여 임계값 삼중 손실을 산출하는 임계값 삼중 손실 산출부;최상위 값과 새롭게 입력된 쿼리의 값 간의 거리가 임계값 이내인지 여부에 기초하여 메모리를 업데이트하는 메모리 업데이트부;를 포함하는, 딥러닝 기반 컬러링 시스템.
- 제 1 항에 있어서,상기 k번째 가까운 이웃은, 상기 쿼리와 상기 키 메모리값의 코사인 유사도에 기초하여, 상기 쿼리와 상기 공간 피처 간의 유사도가 1 내지 k 번째까지인 메모리 슬롯으로 결정되는, 딥러닝 기반 컬러링 시스템.
- 제 2 항에 있어서,상기 최상위 값은, 상기 k번째 가까운 이웃 중 1번째 가까운 이웃을 산출하였을 때 상기 쿼리와 코사인 유사도가 가장 높은 키 메모리값과 동일한 인덱스를 갖는 값 메모리값인, 딥러닝 기반 컬러링 시스템.
- 제 1 항에 있어서,상기 임계값 삼중 손실은 쿼리와 양의 키(positive key) 사이의 유사성을 최대화하고 쿼리와 음의 키(negative key) 사이의 유사성을 최소화하는 값인, 딥러닝 기반 컬러링 시스템.
- 제 4 항에 있어서,상기 양의 키는 상기 쿼리의 컬러 피처값과 거리가 상기 임계값 미만인 값 메모리값 중, 가장 가까운 값 메모리값과 동일한 인덱스의 키 메모리값이고,상기 음의 키는 상기 쿼리의 컬러 피처값과 거리가 상기 임계값 초과인 값 메모리값 중, 가장 거리가 작은 값 메모리값과 동일한 인덱스의 키 메모리값인, 딥러닝 기반 컬러링 시스템.
- 제 1 항에 있어서,상기 컬러 피처는 2가지 변이값(variant)를 가지며, 상기 2가지 변이값은 이미지 별로 기설정된 313개의 색이 얼만큼 있는지에 대한 확률값을 구한 것인 Cdist와, 기설정된 라이브러리를 이용하여 이미지 별 가장 지배적인 10개의 픽셀값을 추출한 CRGB 인, 딥러닝 기반 컬러링 시스템.
- 제 1 항에 있어서,상기 메모리 네트워크는,상기 k번째 가까운 이웃에 대응하는 공간 피처 및 상기 임계값 미만의 쿼리와의 컬러 거리에 대응하는 컬러 피처를 갖는 이미지들은 서로 동일 클래스에 속한다고 판단하는, 딥러닝 기반 컬러링 시스템.
- 제 1 항에 있어서,상기 컬러링 네트워크는 생성기 및 판별기를 포함하고,상기 판별기는 그레이스케일(gray scale) 입력 이미지 및 상기 컬러 피처를 입력받는, 딥러닝 기반 컬러링 시스템.
- 제 1 항에 있어서,상기 메모리 네트워크는 에이지(age)를 추가적으로 저장하도록 구성되며, 상기 에이지는 메모리에 저장된 항목의 수명을 나타내는, 딥러닝 기반 컬러링 시스템.
- 쿼리를 생성하는 단계;상기 쿼리와 키 메모리값들 간의 유사성에 기초하여 k번째 가까운 이웃(k-nearest neighbor)을 산출하는 단계;상기 값 메모리에 저장된 색상 정보를 나타내기 위해 컬러 피처를 생성하는 단계;상기 컬러 피처들 간의 거리와 임계값의 비교에 기초하여 임계값 삼중 손실을 산출하는 단계;최상위 값과 새롭게 입력된 쿼리의 값 간의 거리가 상기 임계값 이내인지 여부에 기초하여 메모리를 업데이트하는 단계;를 포함하는, 딥러닝 기반 컬러링 방법.
- 제 10 항에 있어서,상기 k번째 가까운 이웃은, 상기 쿼리와 상기 키 메모리값의 코사인 유사도에 기초하여, 상기 쿼리와 공간 피처 간의 유사도가 1 내지 k 번째까지인 메모리 슬롯으로 결정되는, 딥러닝 기반 컬러링 방법.
- 제 11 항에 있어서,상기 최상위 값은, 상기 k번째 가까운 이웃 중 1번째 가까운 이웃을 산출하였을 때 상기 쿼리와 코사인 유사도가 가장 높은 키 메모리값과 동일한 인덱스를 갖는 값 메모리값인, 딥러닝 기반 컬러링 방법.
- 제 10 항에 있어서,상기 임계값 삼중 손실은 쿼리와 양의 키(positive key) 사이의 유사성을 최대화하고 쿼리와 음의 키(negative key) 사이의 유사성을 최소화하는 값으로서,상기 양의 키는 상기 쿼리의 컬러 피처값과 거리가 상기 임계값 미만인 값 메모리값 중, 가장 가까운 값 메모리값과 동일한 인덱스의 키 메모리값이고,상기 음의 키는 상기 쿼리의 컬러 피처값과 거리가 상기 임계값 초과인 값 메모리값 중, 가장 거리가 작은 값 메모리값과 동일한 인덱스의 키 메모리값인, 딥러닝 기반 컬러링 방법.
- 제 10 항에 있어서,상기 컬러 피처는 2가지 변이값(variant)를 가지며, 상기 2가지 변이값은 이미지 별로 기설정된 313개의 색이 얼만큼 있는지에 대한 확률값을 구한 것인 Cdist와, 기설정된 라이브러리를 이용하여 이미지 별 가장 지배적인 10개의 픽셀값을 추출한 CRGB 인, 딥러닝 기반 컬러링 방법.
- 제10항 내지 제14항 중 어느 한 항에 따른 방법을 실행하기 위한 컴퓨터 판독 가능한 기록 매체에 저장된 컴퓨터 프로그램.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/449,710 US11816145B2 (en) | 2019-04-02 | 2021-10-01 | Method, system and computer program for coloring based on deep learning |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0038612 | 2019-04-02 | ||
KR1020190038612A KR102211762B1 (ko) | 2019-04-02 | 2019-04-02 | 딥러닝 기반 컬러링 방법, 시스템 및 프로그램 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/449,710 Continuation US11816145B2 (en) | 2019-04-02 | 2021-10-01 | Method, system and computer program for coloring based on deep learning |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020204610A1 true WO2020204610A1 (ko) | 2020-10-08 |
Family
ID=72667199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/004476 WO2020204610A1 (ko) | 2019-04-02 | 2020-04-01 | 딥러닝 기반 컬러링 방법, 시스템 및 프로그램 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11816145B2 (ko) |
KR (1) | KR102211762B1 (ko) |
WO (1) | WO2020204610A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102429297B1 (ko) * | 2020-10-13 | 2022-08-04 | 엔에이치엔클라우드 주식회사 | 딥러닝 기반 이미지 채색 방법 및 시스템 |
WO2023211000A1 (ko) * | 2022-04-28 | 2023-11-02 | 삼성전자 주식회사 | 컨볼루션 뉴럴 네트워크를 이용한 영상 처리 방법, 전자 디바이스, 및 저장매체 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170078516A (ko) * | 2015-12-29 | 2017-07-07 | 삼성전자주식회사 | 신경망 기반 영상 신호 처리를 수행하는 방법 및 장치 |
WO2019022849A1 (en) * | 2017-07-26 | 2019-01-31 | Magic Leap, Inc. | FORMATION OF A NEURONAL NETWORK WITH REPRESENTATIONS OF USER INTERFACE DEVICES |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101191172B1 (ko) | 2012-02-15 | 2012-10-15 | (주)올라웍스 | 이미지 데이터베이스의 이미지들을 관리하는 방법, 장치 및 컴퓨터 판독 가능한 기록 매체 |
GB201511887D0 (en) | 2015-07-07 | 2015-08-19 | Touchtype Ltd | Improved artificial neural network for language modelling and prediction |
KR102400017B1 (ko) * | 2017-05-17 | 2022-05-19 | 삼성전자주식회사 | 객체를 식별하는 방법 및 디바이스 |
KR102481885B1 (ko) | 2017-09-08 | 2022-12-28 | 삼성전자주식회사 | 클래스 인식을 위한 뉴럴 네트워크 학습 방법 및 디바이스 |
KR102002902B1 (ko) * | 2017-10-13 | 2019-07-24 | 네이버랩스 주식회사 | 퍼스널 모빌리티 |
KR20190118816A (ko) | 2018-04-11 | 2019-10-21 | 한국전자통신연구원 | 통계적 메모리 네트워크 방법 및 장치 |
US10496924B1 (en) | 2018-08-07 | 2019-12-03 | Capital One Services, Llc | Dictionary DGA detector model |
US11663642B2 (en) * | 2019-10-07 | 2023-05-30 | Salesforce, Inc. | Systems and methods of multicolor search of images |
US11709885B2 (en) * | 2020-09-18 | 2023-07-25 | Adobe Inc. | Determining fine-grain visual style similarities for digital images by extracting style embeddings disentangled from image content |
US20230222154A1 (en) * | 2022-01-07 | 2023-07-13 | Capital One Services, Llc | Using tracking pixels to determine areas of interest on a zoomed in image |
-
2019
- 2019-04-02 KR KR1020190038612A patent/KR102211762B1/ko active IP Right Grant
-
2020
- 2020-04-01 WO PCT/KR2020/004476 patent/WO2020204610A1/ko active Application Filing
-
2021
- 2021-10-01 US US17/449,710 patent/US11816145B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170078516A (ko) * | 2015-12-29 | 2017-07-07 | 삼성전자주식회사 | 신경망 기반 영상 신호 처리를 수행하는 방법 및 장치 |
WO2019022849A1 (en) * | 2017-07-26 | 2019-01-31 | Magic Leap, Inc. | FORMATION OF A NEURONAL NETWORK WITH REPRESENTATIONS OF USER INTERFACE DEVICES |
Non-Patent Citations (5)
Title |
---|
CHEN, WEIHUA ET AL.: "Beyond triplet loss: a deep quadruplet network for person re-identification", ARXIV:1704.01719V1, 6 April 2017 (2017-04-06), XP080761115, Retrieved from the Internet <URL:https://arxiv.org/abs/1704.01719v1> [retrieved on 20200618] * |
HE, MINGMING ET AL.: "Deep Exemplar-based Colorization", ARXIV:1807.06587V2, 21 July 2018 (2018-07-21), XP055610222, Retrieved from the Internet <URL:https://arxiv.org/abs/1807.06587v2> [retrieved on 20200618] * |
JING, LONGLONG ET AL.: "Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey", ARXIV: 1902.061 62V1, 16 February 2019 (2019-02-16), XP081029932, Retrieved from the Internet <URL:https://arxiv.org/abs/1902.06162v1> [retrieved on 20200618] * |
XIAO, YI ET AL.: "INTERACTIVE DEEP COLORIZATION WITH SIMULTANEOUS GLOBAL AND LOCAL INPUTS", AIXIV:1801.09083V1, 27 January 2018 (2018-01-27), XP033566288, Retrieved from the Internet <URL:https://arxiv.org/abs/1801.09083v1> [retrieved on 20200618] * |
YOO, SEUNGJOO ET AL.: "Coloring With Limited Data: Few-Shot Colorization via Memory Augmented Networks", ARXIV:1906.11838V1, 9 June 2019 (2019-06-09), XP033686557, Retrieved from the Internet <URL:https://arxiv.org/abs/1906.11888v1> [retrieved on 20200618] * |
Also Published As
Publication number | Publication date |
---|---|
KR20200116767A (ko) | 2020-10-13 |
KR102211762B1 (ko) | 2021-02-04 |
US20220092106A1 (en) | 2022-03-24 |
US11816145B2 (en) | 2023-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018212494A1 (ko) | 객체를 식별하는 방법 및 디바이스 | |
WO2017213398A1 (en) | Learning model for salient facial region detection | |
WO2019098414A1 (ko) | 약한 지도 학습에 기초한 뉴럴 네트워크의 계층적 학습 방법 및 장치 | |
WO2020204610A1 (ko) | 딥러닝 기반 컬러링 방법, 시스템 및 프로그램 | |
WO2011096651A2 (ko) | 얼굴 식별 방법 및 그 장치 | |
WO2017164478A1 (ko) | 미세 얼굴 다이나믹의 딥 러닝 분석을 통한 미세 표정 인식 방법 및 장치 | |
WO2014051246A1 (en) | Method and apparatus for inferring facial composite | |
WO2010041836A2 (en) | Method of detecting skin-colored area using variable skin color model | |
WO2017115937A1 (ko) | 가중치 보간 맵을 이용한 표정 합성 장치 및 방법 | |
WO2020141907A1 (ko) | 키워드에 기초하여 이미지를 생성하는 이미지 생성 장치 및 이미지 생성 방법 | |
WO2020231005A1 (ko) | 영상 처리 장치 및 그 동작방법 | |
WO2021241804A1 (ko) | 다중 플로우 기반 프레임 보간 장치 및 방법 | |
WO2020159241A1 (ko) | 이미지를 처리하기 위한 방법 및 그에 따른 장치 | |
WO2022045485A1 (ko) | 랜드마크를 함께 생성하는 발화 동영상 생성 장치 및 방법 | |
WO2022086147A1 (en) | Method for training and testing user learning network to be used for recognizing obfuscated data created by obfuscating original data to protect personal information and user learning device and testing device using the same | |
WO2020256517A2 (ko) | 전방위 화상정보 기반의 자동위상 매핑 처리 방법 및 그 시스템 | |
WO2023210914A1 (en) | Method for knowledge distillation and model generation | |
WO2021033872A1 (en) | Validating performance of a neural network trained using labeled training data | |
WO2020071618A1 (ko) | 엔트로피 기반 신경망 부분학습 방법 및 시스템 | |
WO2022019390A1 (ko) | 데이터 증강 기반 사물 분석 모델 학습 장치 및 방법 | |
WO2024080791A1 (ko) | 데이터셋을 생성하기 위한 방법 | |
WO2022019389A1 (ko) | 데이터 증강 기반 공간 분석 모델 학습 장치 및 방법 | |
WO2019198900A1 (en) | Electronic apparatus and control method thereof | |
WO2020231006A1 (ko) | 영상 처리 장치 및 그 동작방법 | |
WO2022004970A1 (ko) | 신경망 기반의 특징점 학습 장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20782364 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20782364 Country of ref document: EP Kind code of ref document: A1 |