WO2020204254A1 - Method for manufacturing hydroxyapatite-coated zirconia implant by means of dip coating using hydroxyapatite sol - Google Patents

Method for manufacturing hydroxyapatite-coated zirconia implant by means of dip coating using hydroxyapatite sol Download PDF

Info

Publication number
WO2020204254A1
WO2020204254A1 PCT/KR2019/005835 KR2019005835W WO2020204254A1 WO 2020204254 A1 WO2020204254 A1 WO 2020204254A1 KR 2019005835 W KR2019005835 W KR 2019005835W WO 2020204254 A1 WO2020204254 A1 WO 2020204254A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroxyapatite
implant
zirconia
coating layer
solution
Prior art date
Application number
PCT/KR2019/005835
Other languages
French (fr)
Korean (ko)
Inventor
김현이
이성미
김진영
정성민
Original Assignee
서울대학교 산학협력단
주식회사 제노스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단, 주식회사 제노스 filed Critical 서울대학교 산학협력단
Publication of WO2020204254A1 publication Critical patent/WO2020204254A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/01Palates or other bases or supports for the artificial teeth; Making same
    • A61C13/02Palates or other bases or supports for the artificial teeth; Making same made by galvanoplastic methods or by plating; Surface treatment; Enamelling; Perfuming; Making antiseptic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0003Not used, see subgroups
    • A61C8/0009Consolidating prostheses or implants, e.g. by means of stabilising pins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating

Definitions

  • the present invention comprises the step of forming a hydroxyapatite sol coating layer on all or part of a zirconia implant surface by dip coating on a hydroxyapatite brush and then sintering at a controlled temperature, a method for producing a hydroxyapatite-coated zirconia implant, and
  • the present invention relates to an implant having improved biocompatibility.
  • dental implants using ceramic materials have the advantage of having less corrosion or immune reactions because they have excellent aesthetic effects with a color similar to that of teeth, and have little ion emission.
  • conventional ceramic materials have poor mechanical properties and are easily damaged when force is applied.
  • dental implants using zirconia having excellent mechanical properties have been studied. Zirconia implants are not reactive enough to solve problems arising from metal implants.
  • zirconia stabilized using yttrium has excellent fracture resistance and flexural strength, so it is suitable for use as a dental implant.
  • zirconia itself is not suitable for use for implantation in the body due to poor biocompatibility.
  • bone compatibility is also poor, which is insufficient for use as a dental implant. Therefore, in order to overcome this, a surface treatment method such as adjusting the surface roughness or coating the surface with another material has been used.
  • Hydroxyapatite is a ceramic that exists a lot in the human body and is the main component of teeth and bones. Therefore, hydroxyapatite is a material having very excellent biological properties, especially bone compatibility. Accordingly, as a surface treatment method for imparting biocompatibility to the zirconia, a method of coating the surface of zirconia using a hydroxyapatite-based ceramic has been proposed. In this regard, a method of coating hydroxyapatite on the surface of the zirconia implant through plasma treatment, or coating the intermediate layer of zirconia and hydroxyapatite using fluorinated hydroxyapatite to prevent the reaction of zirconia and hydroxyapatite during sintering, etc. was suggested.
  • the method of coating through plasma treatment has disadvantages that the zirconia itself is damaged and the coating layer is formed too thick, and the method of using fluorinated hydroxyapatite in the intermediate layer repeats the process of coating with several materials. Therefore, there is a disadvantage in that the process is cumbersome and problems such as adhesion may occur.
  • the present inventors made thin hydroxyapatite directly on the surface of a zirconia implant by dip coating using a hydroxyapatite brush of an appropriate concentration. Forming a coating layer, but by controlling the sintering temperature, it was confirmed that hydroxyapatite coating was possible in which by-products were blocked by the reaction of zirconia and hydroxyapatite without an intermediate layer including fluorinated hydroxyapatite, etc. Completed.
  • One object of the present invention is a first step of preparing a hydroxyapatite sol by mixing a triethylphosphite solution and a calcium nitrate tetrahydrate solution; A second step of forming a hydroxyapatite brush coating layer on the entire or part of the surface of the zirconia implant by dip coating on the hydroxyapatite brush; And a third step of sintering at 650 to 950° C. to provide a method of manufacturing a hydroxyapatite coated zirconia implant.
  • Another object of the present invention is to provide an implant with improved bone compatibility, comprising a hydroxyapatite coating layer formed to a thickness of 100 to 1000 nm on all or part of the surface of a zirconia implant.
  • the manufacturing method of the present invention does not generate a by-product due to the reaction of hydroxyapatite and zircotia without an intermediate layer containing fluorinated hydroxyapatite by dip coating hydroxyapatite sol at an appropriate concentration and sintering at a controlled temperature.
  • hydroxyapatite sol at an appropriate concentration and sintering at a controlled temperature.
  • FIG. 1 is a diagram schematically showing a method of manufacturing a hydroxyapatite sol according to an embodiment of the present invention and a method of manufacturing a zirconia implant having a hydroxyapatite coating layer formed thereon by dip coating using the same.
  • Figure 2 is a diagram showing the X-ray diffraction pattern of the zirconia implant and the zirconia implant itself by dip coating the hydroxyapatite sol and then sintering at 600, 800 and 1000°C, respectively, to form a hydroxyapatite coating layer on the surface.
  • 3 is a diagram showing the results of observing the surfaces of zirconia implants and untreated zirconia implants formed with a hydroxyapatite coating layer on the surface by dip coating hydroxyapatite sol and then sintering at 800°C with a scanning electron microscope.
  • FIG. 4 is a scanning electron microscope image of a cross section of a zirconia implant and an untreated zirconia implant in which a hydroxyapatite coating layer was formed on the surface by dip coating a hydroxyapatite brush and then sintered at 800°C, and the thickness of the coating layer measured by a focused ion beam Is a diagram showing.
  • FIG. 6 is a diagram showing the measured bonding strength of a zirconia implant and an untreated zirconia implant in which a hydroxyapatite coating layer was formed on the surface by dip coating a hydroxyapatite sol and then sintering at 800°C.
  • Figure 7 shows the results of observing cell adhesion on a zirconia implant and an untreated zirconia implant having a hydroxyapatite coating layer formed on the surface by dip coating a hydroxyapatite brush and then sintering at 800°C with a confocal laser scanning microscope. It is a diagram shown.
  • Figure 8 is a diagram showing the proliferation of osteoblasts on a zirconia implant and an untreated zirconia implant in which the hydroxyapatite sol was dip coated and then sintered at 800°C to form a hydroxyapatite coating layer on the surface.
  • Figure 9 shows the image of the tissue after 4 weeks by dip coating the hydroxyapatite sol and then sintering at 800°C to form a hydroxyapatite coating layer on the surface of the zirconia implant and the untreated zirconia implant into the rabbit tibia. Is also.
  • Figure 10 is a hydroxyapatite sol after dip coating and sintering at 800 °C to form a hydroxyapatite coating layer on the surface of the zirconia implant and the untreated zirconia implant inserted into the rabbit shin bone and measured after 4 weeks bone and implant It is a diagram showing the contact degree and the area of the bone.
  • the present invention is a first step of preparing a hydroxyapatite sol by mixing a triethylphosphite solution and a calcium nitrate tetrahydrate solution; A second step of dip coating the hydroxyapatite sole to form a hydroxyapatite sol coating layer on all or part of the surface of the zirconia implant; And it provides a method for producing a hydroxyapatite-coated zirconia implant comprising a third step of sintering at 650 to 950 °C.
  • the zirconia implant may be zirconia having a stabilized tetragonal structure including yttrium.
  • the zirconia containing yttrium is a zirconia composite having very improved physical properties compared to conventional zirconia, and may be a ceramic composite containing yttrium at 4% or less of the total mass and zirconia at 90% or more.
  • the zirconia implant may contain less than 6% of the total mass of the total complex of materials other than yttrium, but is not limited thereto.
  • the hydroxyapatite is a mineral that occurs in nature having a formula of Ca 5 (PO 4 ) 3 (OH), and since a crystal unit cell consists of two individuals, Ca 10 (PO 4 ) 6 (OH) 2 is also used.
  • Hydroxyapatite is a hydroxyl endmember of the complex apatite group, and the OH - group may be substituted with fluoride, chloride or carbonate.
  • the crystalline form is hexagonal and pure hydroxyapatite is white.
  • the hydroxyapatite of the present invention may be in a form containing not only pure hydroxyapatite but also the above derivatives, derivatives substituted with silicon, and other metals or ceramics, but is not limited thereto.
  • the present invention is designed to discover a simple process of introducing a thin and even hydroxyapatite coating layer on the surface of a zirconia-based dental implant in order to improve biocompatibility.After dip coating using a hydroxyapatite brush of an appropriate concentration, at a predetermined temperature It is based on the finding that, by sintering, a thin and even coating is possible without an intermediate layer containing fluorinated hydroxyapatite or the like, without producing a by-product by the reaction of zirconia and hydroxyapatite.
  • the conventional method of forming the hydroxyapatite coating layer includes sintering at a high temperature of 1000° C. or higher in order to finally crystallize the hydroxyapatite.
  • sintering at a high temperature of 1000° C. or higher in order to finally crystallize the hydroxyapatite.
  • the present invention is characterized by discovering a coating method that directly introduces a hydroxyapatite coating layer on the surface of a zirconia implant, but does not generate by-products by lowering the sintering temperature.
  • the manufacturing method of the present invention does not include the step of introducing an intermediate layer of fluorinated hydroxyapatite between the zirconia implant surface and the hydroxyapatite coating layer, but does not produce calcium zirconate, a by-product.
  • the concentration of hydroxyapatite sol to prepare suitable for dip coating and by sintering the zirconia implant coated with hydroxyapatite sol to a predetermined thickness at a relatively low temperature of less than 1000°C, calcium zirconate It can prevent creation.
  • the concentration of these solutions is less than 0.1 M, it may be difficult to form a coating layer by dip coating or to form a coating layer with a uniform thickness due to the thin concentration of the resulting brush. During dip coating, it may be difficult to form a coating layer with a uniform thickness.
  • the first step may be achieved by mixing a triethyl phosphite solution and a calcium nitrate tetrahydrate solution at room temperature for 1 to 5 days, and optionally aging at 25 to 50°C for 6 hours to 7 days. have. At this time, when the aging period exceeds 7 days, the hydroxyapatite particles may overgrow, and a non-uniform coating layer may be formed during dip coating.
  • the dip coating using the hydroxyapatite sol may be performed at a rate of 0.1 to 10 mm per minute, but is not limited thereto.
  • the dip coating may be performed once or repeatedly performed 2 to 9 times, but is not limited thereto, and the number of repetitions may be adjusted until a desired thickness is achieved. However, if the number of coatings exceeds 9, it is difficult to form a coating layer with an appropriate thickness, and the stability and uniformity of the coating layer may be adversely affected.
  • a step of spinning to remove excess sol solution may be additionally included.
  • the spinning may be performed for 10 to 30 seconds at 100 to 300 rpm after dip coating is repeated every 2 to 4 times, but is not limited thereto. In addition, the spinning may be performed 1 to 3 times.
  • the spinning cycle, the number of times, and conditions may be appropriately changed by a person skilled in the art in consideration of the amount and concentration of the remaining sol solution.
  • the manufacturing method of the present invention uses a solution excluding hydroxyapatite particles.
  • a step of drying at 60 to 90°C may be further included. The drying may be performed for 6 hours to 2 days, but is not limited thereto.
  • the present invention provides an implant with improved bone compatibility, including a hydroxyapatite coating layer formed to a thickness of 100 to 1000 nm on all or part of the surface of the zirconia implant.
  • the thickness of the coating layer is less than 100 nm or more than 1000 nm, the uniformity and/or stability of the coating may be deteriorated, and it may be difficult to ensure the stability of the coating layer structure itself.
  • the implant having improved bone compatibility of the present invention may be manufactured by the above-described hydroxyapatite-coated zirconia implant manufacturing method.
  • the implant of the present invention may be a dental implant.
  • the implant of the present invention may have a coating layer formed on a screw portion that comes into contact with a bone when inserted into the body.
  • the implant of the present invention is characterized by improved bone regeneration ability compared to the zirconium implant itself by the introduction of a hydroxyapatite coating layer.
  • the adhesion and/or proliferation of osteoblasts is improved through cell experiments around the hydroxyapatite-coated zirconia implant according to the present invention compared to the non-treated zirconia implant itself. It was confirmed that the contact and/or bone area was increased (FIGS. 9 and 10).
  • the implant of the present invention is characterized in that it does not include an intermediate layer made of fluorinated hydroxyapatite between the surface of the zirconium implant and the hydroxyapatite coating layer.
  • Introduction of the intermediate layer not only makes the process cumbersome, but also increases the thickness of the coating layer due to the presence of an additional layer, making it difficult to control and implement a microstructure.
  • the implant of the present invention is characterized in that it does not contain calcium zirconate, a by-product produced by the reaction of zirconium and hydroxyapatite, without an intermediate layer of fluorinated hydroxyapatite between the zirconium implant surface and the hydroxyapatite coating layer.
  • hydroxyapatite sol for implant coating triethylphosphite was dissolved in ethanol at a concentration of 0.6 molar and calcium nitrate tetrahydrate at a concentration of 1 molar, and then for 3 days. It was mixed at room temperature. Thereafter, aging was performed at 37° C. for 1 day to prepare hydroxyapatite sol.
  • Example 1 Formation of hydroxyapatite coating layer by dip coating
  • Step 1 In order to form the hydroxyapatite coating layer on the dental zirconia implant, dip coating was performed using the hydroxyapatite brush prepared according to Preparation Example 1. Specifically, the dip coating was performed 9 times at a speed of 0.5 mm per minute, and the excess brush solution was removed by spinning once every 3 times. Then, the solution was dried at 70° C. for one day to remove the solutions excluding the hydroxyapatite particles.
  • Step 2 Since the particles present in the hydroxyapatite brush coated on the implant are not yet high in crystallinity, sintering was performed to increase the crystallinity. Specifically, the dried hydroxyapatite brush-coated zirconia implant obtained from step 1 was put into a furnace and sintered. At this time, the temperature was adjusted to 600, 800 and 1000°C and sintered for 1 hour each, and the effect according to the sintering temperature was confirmed.
  • Example 1 In addition to the three samples prepared by adjusting the sintering temperature according to Example 1 (600, 800 and 1000°C, respectively), as a negative control, a zirconia implant without a hydroxyapatite coating layer was used. First, components and/or structures were confirmed through X-ray diffraction analysis of each specimen, and the results are shown in FIG. 2. As shown in Figure 2, compared with the negative control group, the three samples of Example 1 additionally showed hydroxyapatite-related peaks, and among these, the reaction between zirconia and hydroxyapatite at high temperatures was observed in the samples sintered at 1000°C. Calcium zirconate, which is a by-product formed by, was produced, and the specimen sintered at 600° C. showed somewhat low crystallinity. Therefore, in the subsequent in vitro and in vivo experiments, a product sintered at 800°C was used.
  • the surface and cross section were observed with a scanning electron microscope, and the thickness of the coating layer was confirmed with a focused ion beam, and the results are shown in FIGS. 3 and 4, respectively.
  • the hydroxyapatite coating layer introduced on the surface of the zirconia implant was formed with a uniform thickness of 400 nm on average.
  • the bonding force of the coating layer to the implant surface was measured using a stud and a tensioner having adhesive strength. Specifically, in the zirconia specimen (negative control group) and the specimen (Example) in which the hydroxyapatite ceramic coating layer was formed, the separated part of the adhesive and the specimen was observed with a scanning electron microscope, and the results are shown in FIG. As shown in FIG. 5, the remaining adhesive was confirmed, indicating that a bonding force greater than the bonding force between the adhesive and the stud exists between the coating layer and zirconia. Furthermore, the measured bonding force is shown in FIG. 6.
  • the measured bonding force was about 40 MPa, which means the bonding force between the adhesive and the stud, and thus it was confirmed that the zirconia and hydroxyapatite coating layer were attached with a greater bonding force.
  • the bonding force in the negative control zirconia itself was also measured to be about 40 MPa, which supports that the bonding force between the aforementioned zirconia and hydroxyapatite coating layer exceeds 40 MPa.
  • osteoblasts were dispensed onto the coated implant and cultured for 1 day.
  • cell culture was performed in the same manner for the zirconia implant without the coating layer.
  • the morphology of the cultured cells was confirmed with a confocal laser scanning microscope, and the results are shown in FIG. 7. As shown in FIG. 7, more cells were attached to the implant in which the hydroxyapatite coating layer was introduced on the surface compared to the negative control zirconia itself, and the shape of the attached cells also extended and strongly adhered.
  • osteoblasts were dispensed on a zirconia implant with or without a hydroxyapatite coating layer and cultured for up to 5 days, while on the 3rd and 5th days. MTS assay was performed, and the results are shown in FIG. 8. As shown in FIG. 8, as the culture period increased, the cell proliferation rate was significantly increased in the zirconia implant including the hydroxyapatite coating layer. This indicates that the introduction of the hydroxyapatite coating layer enhances the adhesion and/or proliferation of osteoblasts on the implant, and thus, can be usefully used for tissue regeneration.
  • the implant was inserted into the shin bone of a 16-week-old rabbit and killed by asphyxiation using carbon dioxide after 4 weeks orally, and the shape of the implanted implant was observed through histological analysis, and the results are shown in FIG. 9. Further, the bone contact rate with the implant was calculated as the bone contact length compared to the length of the implant, and the bone area rate was calculated as the bone area relative to the area between the high portions of the implant, and the results are shown in FIG. 10. The histological analysis results shown in FIG.

Abstract

The present invention relates to: a method for manufacturing a hydroxyapatite-coated zirconia implant, comprising a step of performing dip coating in a hydroxyapatite sol, thereby forming a hydroxyapatite sol coating layer on the entire surface of or a part of the surface of a zirconia implant, and then sintering same at a controlled temperature; and an implant having improved biocompatibility, manufactured thereby.

Description

하이드록시아파타이트 솔을 이용한 딥코팅에 의한 하이드록시아파타이트 코팅된 지르코니아 임플란트의 제조방법Manufacturing method of hydroxyapatite coated zirconia implant by dip coating using hydroxyapatite brush
본 발명은, 하이드록시아파타이트 솔에 딥코팅하여 지르코니아 임플란트 표면 전체 또는 일부에 하이드록시아파타이트 솔 코팅층을 형성한 후 조절된 온도에서 소결하는 단계를 포함하는, 하이드록시아파타이트 코팅된 지르코니아 임플란트의 제조방법 및 이에 따라 제조된 생체적합성이 향상된 임플란트에 관한 것이다.The present invention comprises the step of forming a hydroxyapatite sol coating layer on all or part of a zirconia implant surface by dip coating on a hydroxyapatite brush and then sintering at a controlled temperature, a method for producing a hydroxyapatite-coated zirconia implant, and The present invention relates to an implant having improved biocompatibility.
티타늄 및 이의 합금은 훌륭한 생체 적합성과 우수한 기계적 강도를 가진 재료로 치과용 임플란트에 널리 사용되고 있다. 그러나, 치아와 상이한 검회색 표면에 의한 심미적인 문제와 금속이기 때문에 비특이적 면역반응과 자가면역 등의 문제가 발생할 수 있고 타액 등의 생체 물질에 의한 갈바니 부식이 발생하는 등의 부작용이 보고되고 있다.Titanium and its alloys are widely used in dental implants as materials with excellent biocompatibility and excellent mechanical strength. However, since it is a metal and an aesthetic problem caused by a black gray surface different from that of the teeth, problems such as non-specific immune response and autoimmunity may occur, and side effects such as galvanic corrosion caused by biomaterials such as saliva have been reported.
반면, 세라믹 재료를 사용한 치과용 임플란트는 치아와 비슷한 색깔로 심미적 효과가 뛰어나며 이온 방출이 적기 때문에 부식이나 면역 반응이 적은 장점을 갖는다. 그러나 기존의 세라믹 소재는 기계적 성질이 좋지 않아 힘이 가해졌을 때 쉽게 파손이 일어나는 문제점이 있다. 이를 극복하기 위해 최근에는 기계적 성질이 우수한 지르코니아를 이용한 치과용 임플란트가 연구되고 있다. 지르코니아 임플란트는 금속 임플란트에서 발생하는 문제들을 해결할 정도로 반응성이 없으며, 특히 이트륨을 사용하여 안정화된 지르코니아는 우수한 파손 저항성과 굴곡 강도를 가지므로 치과용 임플란트로 사용하기에 적합하다. On the other hand, dental implants using ceramic materials have the advantage of having less corrosion or immune reactions because they have excellent aesthetic effects with a color similar to that of teeth, and have little ion emission. However, conventional ceramic materials have poor mechanical properties and are easily damaged when force is applied. In order to overcome this, recently, dental implants using zirconia having excellent mechanical properties have been studied. Zirconia implants are not reactive enough to solve problems arising from metal implants. In particular, zirconia stabilized using yttrium has excellent fracture resistance and flexural strength, so it is suitable for use as a dental implant.
그러나, 지르코니아 자체로서는 생체 적합성이 열악하여 체내 이식용으로 사용하기에는 적합하지 못하다. 또한, 골 적합성 역시 열악하여 치과용 임플란트로 사용하기에는 역부족이다. 따라서, 이를 극복하기 위하여, 표면 거칠기를 조절하거나 다른 물질로 표면을 코팅하는 등의 표면 처리 방법이 사용되고 있다.However, zirconia itself is not suitable for use for implantation in the body due to poor biocompatibility. In addition, bone compatibility is also poor, which is insufficient for use as a dental implant. Therefore, in order to overcome this, a surface treatment method such as adjusting the surface roughness or coating the surface with another material has been used.
하이드록시아파타이트는 인체에 많이 존재하는 세라믹으로 치아 및 뼈를 구성하는 주성분이다. 따라서 하이드록시아파타이트는 생체 특성, 특히 골 적합성이 매우 뛰어난 물질이다. 따라서, 상기 지르코니아에 생체적합성을 부여하기 위한 표면 처리 방법으로서, 하이드록시아파타이트 계열의 세라믹을 사용하여 지르코니아 표면을 코팅하는 방법이 제시되고 있다. 이와 관련하여, 플라즈마 처리를 통해 지르코니아 임플란트 표면에 하이드록시아파타이트를 코팅하거나, 소결 중 지르코니아와 하이드록시아파타이트의 반응을 막기 위해 지르코니아와 하이드록시아파타이트 중간층에 플루오르화 하이드록시아파타이트를 사용하여 코팅하는 방법 등이 제안되었다. 그러나, 플라즈마 처리를 통해 코팅하는 방법은 지르코니아 자체가 손상되는 문제점과 코팅 층이 너무 두껍게 형성된다는 단점이 존재하며, 중간층에 플루오르화 하이드록시아파타이트를 사용하는 방법은 여러 물질로 코팅하는 과정을 반복하게 되므로 공정이 번거롭고 접착력 등에 문제가 생길 수 있다는 단점이 있다.Hydroxyapatite is a ceramic that exists a lot in the human body and is the main component of teeth and bones. Therefore, hydroxyapatite is a material having very excellent biological properties, especially bone compatibility. Accordingly, as a surface treatment method for imparting biocompatibility to the zirconia, a method of coating the surface of zirconia using a hydroxyapatite-based ceramic has been proposed. In this regard, a method of coating hydroxyapatite on the surface of the zirconia implant through plasma treatment, or coating the intermediate layer of zirconia and hydroxyapatite using fluorinated hydroxyapatite to prevent the reaction of zirconia and hydroxyapatite during sintering, etc. Was suggested. However, the method of coating through plasma treatment has disadvantages that the zirconia itself is damaged and the coating layer is formed too thick, and the method of using fluorinated hydroxyapatite in the intermediate layer repeats the process of coating with several materials. Therefore, there is a disadvantage in that the process is cumbersome and problems such as adhesion may occur.
본 발명자들은 지르코니아 기반 치과용 임플란트 표면에 하이드록시아파타이트 코팅층을 도입하는 간편한 공정을 발굴하기 위하여 예의 연구 노력한 결과, 적정 농도의 하이드록시아파타이트 솔을 이용하는 딥 코팅에 의해 지르코니아 임플란트 표면에 직접 얇은 하이드록시아파타이트 코팅층을 형성하되, 소결 온도를 조절하여 플루오르화 하이드록시아파타이트 등을 포함하는 중간층 없이도 지르코니아와 하이드록시아파타이트의 반응에 의한 부산물의 생성이 차단된, 하이드록시아파타이트 코팅이 가능함을 확인하고, 본 발명을 완성하였다.As a result of intensive research efforts to discover a simple process for introducing a hydroxyapatite coating layer on the surface of a zirconia-based dental implant, the present inventors made thin hydroxyapatite directly on the surface of a zirconia implant by dip coating using a hydroxyapatite brush of an appropriate concentration. Forming a coating layer, but by controlling the sintering temperature, it was confirmed that hydroxyapatite coating was possible in which by-products were blocked by the reaction of zirconia and hydroxyapatite without an intermediate layer including fluorinated hydroxyapatite, etc. Completed.
본 발명의 하나의 목적은 트리에틸포스파이트(triethylphosphite) 용액 및 질산칼슘 4수화물(calcium nitrate tetrahydrate) 용액을 혼합하여 하이드록시아파타이트 솔(sol)을 준비하는 제1단계; 상기 하이드록시아파타이트 솔에 딥코팅하여 지르코니아 임플란트 표면 전체 또는 일부에 하이드록시아파타이트 솔 코팅층을 형성하는 제2단계; 및 650 내지 950℃에서 소결하는 제3단계를 포함하는, 하이드록시아파타이트 코팅된 지르코니아 임플란트의 제조방법을 제공하는 것이다.One object of the present invention is a first step of preparing a hydroxyapatite sol by mixing a triethylphosphite solution and a calcium nitrate tetrahydrate solution; A second step of forming a hydroxyapatite brush coating layer on the entire or part of the surface of the zirconia implant by dip coating on the hydroxyapatite brush; And a third step of sintering at 650 to 950° C. to provide a method of manufacturing a hydroxyapatite coated zirconia implant.
본 발명의 다른 목적은 지르코니아 임플란트의 표면의 전체 또는 일부에 100 내지 1000 nm 두께로 형성된 하이드록시아파타이트 코팅층을 포함하는, 골 적합성이 향상된 임플란트를 제공하는 것이다.Another object of the present invention is to provide an implant with improved bone compatibility, comprising a hydroxyapatite coating layer formed to a thickness of 100 to 1000 nm on all or part of the surface of a zirconia implant.
본 발명의 제조방법은 적정 농도의 하이드록시아파타이트 솔을 딥코팅하고 조절된 온도에서 소결함으로써 플루오르화 하이드록시아파타이트를 함유하는 중간층 없이도 하이드록시아파타이트와 지르코티아의 반응에 의한 부산물을 발생시키지 않고 1 마이크로 이내의 얇은 두께로 고르게 코팅함으로써 지르코니아 임플란트의 강도 및 비반응성을 유지하면서도 생체 적합성 및 골 적합성이 현저히 개선된 지르코니아 임플란트를 제공할 수 있다.The manufacturing method of the present invention does not generate a by-product due to the reaction of hydroxyapatite and zircotia without an intermediate layer containing fluorinated hydroxyapatite by dip coating hydroxyapatite sol at an appropriate concentration and sintering at a controlled temperature. By evenly coating with a thin thickness within a micron, it is possible to provide a zirconia implant with remarkably improved biocompatibility and bone compatibility while maintaining the strength and non-reactivity of the zirconia implant.
도 1은 본 발명의 일 실시예에 따른 하이드록시아파타이트 솔의 제조 및 이를 이용한 딥코팅에 의한 하이드록시아파타이트 코팅층이 형성된 지르코니아 임플란트의 제조 방법을 개략적으로 나타낸 도이다.1 is a diagram schematically showing a method of manufacturing a hydroxyapatite sol according to an embodiment of the present invention and a method of manufacturing a zirconia implant having a hydroxyapatite coating layer formed thereon by dip coating using the same.
도 2는 하이드록시아파타이트 솔을 딥 코팅 후 각각 600, 800 및 1000℃에서 소결하여 표면에 하이드록시아파타이트 코팅층을 형성한 지르코니아 임플란트 및 지르코티아 임플란트 자체의 X-선 회절 패턴을 나타낸 도이다.Figure 2 is a diagram showing the X-ray diffraction pattern of the zirconia implant and the zirconia implant itself by dip coating the hydroxyapatite sol and then sintering at 600, 800 and 1000°C, respectively, to form a hydroxyapatite coating layer on the surface.
도 3은 하이드록시아파타이트 솔을 딥 코팅 후 800℃에서 소결하여 표면에 하이드록시아파타이트 코팅층을 형성한 지르코니아 임플란트 및 비처리 지르코티아 임플란트의 표면을 주사전자현미경으로 관찰한 결과를 나타낸 도이다.3 is a diagram showing the results of observing the surfaces of zirconia implants and untreated zirconia implants formed with a hydroxyapatite coating layer on the surface by dip coating hydroxyapatite sol and then sintering at 800°C with a scanning electron microscope.
도 4는 하이드록시아파타이트 솔을 딥 코팅 후 800℃에서 소결하여 표면에 하이드록시아파타이트 코팅층을 형성한 지르코니아 임플란트 및 비처리 지르코티아 임플란트의 단면의 주사전자현미경 이미지 및 집속 이온빔으로 측정한 코팅층의 두께를 나타낸 도이다.4 is a scanning electron microscope image of a cross section of a zirconia implant and an untreated zirconia implant in which a hydroxyapatite coating layer was formed on the surface by dip coating a hydroxyapatite brush and then sintered at 800°C, and the thickness of the coating layer measured by a focused ion beam Is a diagram showing.
도 5는 하이드록시아파타이트 솔을 딥 코팅 후 800℃에서 소결하여 표면에 하이드록시아파타이트 코팅층을 형성한 지르코니아 임플란트 및 비처리 지르코티아 임플란트에 대해 접착력을 갖는 스터드와 인장기로 결합력을 측정한 후, 분리된 부분을 주사전자현미경을 관찰한 이미지를 나타낸 도이다.5 is a hydroxyapatite brush dip coated and then sintered at 800°C to measure the bonding strength with a stud and a tensioner having adhesion to a zirconia implant and an untreated zirconia implant having a hydroxyapatite coating layer formed on the surface, followed by separation It is a diagram showing an image of a part that has been observed under a scanning electron microscope.
도 6은 하이드록시아파타이트 솔을 딥 코팅 후 800℃에서 소결하여 표면에 하이드록시아파타이트 코팅층을 형성한 지르코니아 임플란트 및 비처리 지르코티아 임플란트에 대해 측정된 결합력을 나타낸 도이다.6 is a diagram showing the measured bonding strength of a zirconia implant and an untreated zirconia implant in which a hydroxyapatite coating layer was formed on the surface by dip coating a hydroxyapatite sol and then sintering at 800°C.
도 7은 하이드록시아파타이트 솔을 딥 코팅 후 800℃에서 소결하여 표면에 하이드록시아파타이트 코팅층을 형성한 지르코니아 임플란트 및 비처리 지르코티아 임플란트 상에서의 세포 부착성을 공초점레이저주사현미경으로 관찰한 결과를 나타낸 도이다.Figure 7 shows the results of observing cell adhesion on a zirconia implant and an untreated zirconia implant having a hydroxyapatite coating layer formed on the surface by dip coating a hydroxyapatite brush and then sintering at 800°C with a confocal laser scanning microscope. It is a diagram shown.
도 8은 하이드록시아파타이트 솔을 딥 코팅 후 800℃에서 소결하여 표면에 하이드록시아파타이트 코팅층을 형성한 지르코니아 임플란트 및 비처리 지르코티아 임플란트 상에서 골아세포의 증식을 나타낸 도이다.Figure 8 is a diagram showing the proliferation of osteoblasts on a zirconia implant and an untreated zirconia implant in which the hydroxyapatite sol was dip coated and then sintered at 800°C to form a hydroxyapatite coating layer on the surface.
도 9는 하이드록시아파타이트 솔을 딥 코팅 후 800℃에서 소결하여 표면에 하이드록시아파타이트 코팅층을 형성한 지르코니아 임플란트 및 비처리 지르코티아 임플란트를 토끼 정강이뼈에 삽입하여 4주 경과 후 조직의 이미지를 나타낸 도이다.Figure 9 shows the image of the tissue after 4 weeks by dip coating the hydroxyapatite sol and then sintering at 800°C to form a hydroxyapatite coating layer on the surface of the zirconia implant and the untreated zirconia implant into the rabbit tibia. Is also.
도 10은 하이드록시아파타이트 솔을 딥 코팅 후 800℃에서 소결하여 표면에 하이드록시아파타이트 코팅층을 형성한 지르코니아 임플란트 및 비처리 지르코티아 임플란트를 토끼 정강이뼈에 삽입하여 4주 경과 후 측정된 뼈와 임플란트의 접촉 정도 및 뼈의 면적을 나타낸 도이다.Figure 10 is a hydroxyapatite sol after dip coating and sintering at 800 °C to form a hydroxyapatite coating layer on the surface of the zirconia implant and the untreated zirconia implant inserted into the rabbit shin bone and measured after 4 weeks bone and implant It is a diagram showing the contact degree and the area of the bone.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 트리에틸포스파이트(triethylphosphite) 용액 및 질산칼슘 4수화물(calcium nitrate tetrahydrate) 용액을 혼합하여 하이드록시아파타이트 솔(sol)을 준비하는 제1단계; 상기 하이드록시아파타이트 솔에 딥코팅하여 지르코니아 임플란트 표면 전체 또는 일부에 하이드록시아파타이트 솔 코팅층을 형성하는 제2단계; 및 650 내지 950℃에서 소결하는 제3단계를 포함하는, 하이드록시아파타이트 코팅된 지르코니아 임플란트의 제조방법을 제공한다.As one aspect for achieving the above object, the present invention is a first step of preparing a hydroxyapatite sol by mixing a triethylphosphite solution and a calcium nitrate tetrahydrate solution; A second step of dip coating the hydroxyapatite sole to form a hydroxyapatite sol coating layer on all or part of the surface of the zirconia implant; And it provides a method for producing a hydroxyapatite-coated zirconia implant comprising a third step of sintering at 650 to 950 °C.
상기 지르코니아 임플란트는 이트륨을 포함하여 안정화된 정방 구조를 갖는 지르코니아일 수 있다. 상기 이트륨을 포함하는 지르코니아는 기존의 지르코니아에 비해 매우 향상된 물리적 특성을 가지는 지르코니아 복합체로서, 이트륨을 전체 질량의 4% 이하로 함유하고, 지르코니아를 90% 이상 포함하는 세라믹 복합체일 수 있다. 또한, 상기 지르코니아 임플란트는 이트륨 이외에 물질들의 전체 복합체의 전체 질량의 6% 미만으로 포함할 수 있으나, 이에 제한되지 않는다.The zirconia implant may be zirconia having a stabilized tetragonal structure including yttrium. The zirconia containing yttrium is a zirconia composite having very improved physical properties compared to conventional zirconia, and may be a ceramic composite containing yttrium at 4% or less of the total mass and zirconia at 90% or more. In addition, the zirconia implant may contain less than 6% of the total mass of the total complex of materials other than yttrium, but is not limited thereto.
상기 하이드록시아파타이트는 Ca5(PO4)3(OH)의 화학식을 가지는 자연에서 발생한 광물(mineral)로서, 결정 단위 셀(crystal unit cell)은 두개 개체로 이루어지므로, Ca10(PO4)6(OH)2라 쓰기도 한다. 하이드록시아파타이트는 복합적 아파타이트군의 하이드록실 단성분(endmember)으로 OH- 그룹은 플루오라이드, 클로라이드 또는 카보네이트로 치환될 수 있다. 결정형은 육방정계이며 순수한 하이드록시아파타이트는 흰색이다. 본 발명의 하이드록시아파타이트는 순수 하이드록시아파타이트 뿐만 아니라 상기 유도체, 실리콘으로 치환된 유도체 및 다른 금속이나 세라믹이 함유된 형태일 수 있으나, 이에 제한되지 않는다.The hydroxyapatite is a mineral that occurs in nature having a formula of Ca 5 (PO 4 ) 3 (OH), and since a crystal unit cell consists of two individuals, Ca 10 (PO 4 ) 6 (OH) 2 is also used. Hydroxyapatite is a hydroxyl endmember of the complex apatite group, and the OH - group may be substituted with fluoride, chloride or carbonate. The crystalline form is hexagonal and pure hydroxyapatite is white. The hydroxyapatite of the present invention may be in a form containing not only pure hydroxyapatite but also the above derivatives, derivatives substituted with silicon, and other metals or ceramics, but is not limited thereto.
본 발명은 생체적합성을 향상시키기 위하여 지르코니아 기반 치과용 임플란트 표면에 얇고 고르게 하이드록시아파타이트 코팅층을 도입하는 간편한 공정을 발굴하기 위하여 고안된 것으로, 적정 농도의 하이드록시아파타이트 솔을 이용하는 딥 코팅 후 소정의 온도에서 소결함으로써, 플루오르화 하이드록시아파타이트 등을 포함하는 중간층 없이도, 지르코니아와 하이드록시아파타이트의 반응에 의한 부산물을 생성하지 않는, 얇고 고른 코팅이 가능함을 발견한 것에 기초한다.The present invention is designed to discover a simple process of introducing a thin and even hydroxyapatite coating layer on the surface of a zirconia-based dental implant in order to improve biocompatibility.After dip coating using a hydroxyapatite brush of an appropriate concentration, at a predetermined temperature It is based on the finding that, by sintering, a thin and even coating is possible without an intermediate layer containing fluorinated hydroxyapatite or the like, without producing a by-product by the reaction of zirconia and hydroxyapatite.
종래 하이드록시아파타이트 코팅층을 형성하는 방법은 최종적으로 하이드록시아파타이트를 결정화하기 위하여 1000℃ 이상의 고온에서 소결하는 단계를 포함한다. 그러나, 지르코니아 기반의 임플란트의 표면을 개질함에 있어서 임플란트의 표면에 직접 하이드록시아파타이트 코팅층을 도입하고 소결하는 경우, 고온에서 지르코니아와 하이드록시아파타이트의 반응에 의해 부산물인 칼슘지르코네이트의 생성이 불가피하다. 따라서, 이러한 부산물이 생성되는 것을 차단하기 위한 방법으로 플루오르화 하이드록시아파타이트를 중간층에 포함하는 방법이 사용되고 있으나, 이는 추가적인 공정을 필요로 하므로 번거로울 뿐만 아니라 중간층의 개입으로 코팅층이 두꺼워질 수 밖에 없어 코팅층의 두께 조절에 어려움이 있어 미세구조를 요구하는 부분에는 적용이 어렵다.The conventional method of forming the hydroxyapatite coating layer includes sintering at a high temperature of 1000° C. or higher in order to finally crystallize the hydroxyapatite. However, in modifying the surface of a zirconia-based implant, in the case of introducing and sintering a hydroxyapatite coating layer directly on the surface of the implant, it is inevitable to produce calcium zirconate, a by-product due to the reaction of zirconia and hydroxyapatite at high temperature. . Therefore, as a method to block the generation of such by-products, a method including fluorinated hydroxyapatite in the intermediate layer is used, but this requires an additional process, which is cumbersome, and the coating layer is inevitably thickened due to the intervention of the intermediate layer. It is difficult to control the thickness of the material, so it is difficult to apply it to parts that require a microstructure.
이에, 본 발명은 지르코니아 임플란트 표면에 하이드록시아파타이트 코팅층을 직접 도입하되 소결 온도를 낮추어 부산물을 생성하지 않는 코팅 방법을 발굴한 것이 특징이다.Accordingly, the present invention is characterized by discovering a coating method that directly introduces a hydroxyapatite coating layer on the surface of a zirconia implant, but does not generate by-products by lowering the sintering temperature.
본 발명의 구체적인 실시예에서는, 소결 온도를 조절하여 형성된 하이드록시아파타이트 코팅층의 성분을 X-선 회절을 통해 분석한 결과, 650℃ 미만의 낮은 온도, 예컨대, 600℃에서 소결시, 낮은 결정화도를 나타내어 원하는 정도의 생체적합성 개선 효과를 발휘하기 어려울 수 있음을 확인하였으며, 950℃ 초과하는 높은 온도, 예컨대, 1000℃에서 소결시에는 지르코니아와 하이드록시아파타이트가 반응하여 생성되는 부산물인 칼슘지르코네이트가 생성된 것을 확인하였다(도 2).In a specific embodiment of the present invention, as a result of analyzing the components of the hydroxyapatite coating layer formed by controlling the sintering temperature through X-ray diffraction, when sintering at a low temperature of less than 650°C, for example, 600°C, a low crystallinity is shown. It was confirmed that it may be difficult to exhibit the desired degree of biocompatibility improvement effect, and when sintering at a high temperature exceeding 950°C, such as 1000°C, calcium zirconate, a by-product produced by the reaction of zirconia and hydroxyapatite, is produced. It was confirmed that it became (Fig. 2).
예컨대, 본 발명의 제조방법은 지르코니아 임플란트 표면과 하이드록시아파타이트 코팅층 사이에 플루오르화 하이드록시아파타이트 중간층을 도입하는 단계를 포함하지 않으면서도 부산물인 칼슘지르코네이트를 생성하지 않은 방법이다. 이를 위하여, 하이드록시아파타이트 솔의 농도를 조절하여 딥코팅에 적합하게 준비하고, 소정의 두께로 하이드록시아파타이트 솔이 코팅된 지르코니아 임플란트를 1000℃ 미만의 상대적으로 낮은 온도에서 소결함으로썬 칼슘지르코네이트의 생성을 방지할 수 있다.For example, the manufacturing method of the present invention does not include the step of introducing an intermediate layer of fluorinated hydroxyapatite between the zirconia implant surface and the hydroxyapatite coating layer, but does not produce calcium zirconate, a by-product. To this end, by adjusting the concentration of hydroxyapatite sol to prepare suitable for dip coating, and by sintering the zirconia implant coated with hydroxyapatite sol to a predetermined thickness at a relatively low temperature of less than 1000℃, calcium zirconate It can prevent creation.
예컨대, 딥코팅을 위한 하이드록시아파타이트 솔의 제조에 사용되는 상기 트리에틸포스파이트 용액의 농도는 총 혼합 용액을 기준으로 0.1 내지 1 M 농도가 되도록 사용할 수 있고, 이때, 질산칼슘 4수화물은 상기 트리에틸포스파이트의 1.5 내지 1.8배 몰농도로 사용할 수 있다. 예컨대, 트리에틸포스파이트 용액 및 질산칼슘 4수화물 용액은 각각 독립적으로 0.1 내지 1 M 농도일 수 있으나, 이에 제한되지 않는다. 다만, 이들 용액의 농도가 0.1 M 미만인 경우, 제조되는 솔의 농도가 묽어 딥코팅에 의한 코팅층 형성이 어렵거나 균일한 두께로의 코팅층 형성이 어려울 수 있고, 1 M 초과인 경우 솔의 농도가 진해 딥코팅시 균일한 두께로 코팅층을 형성하기 어려울 수 있다.For example, the concentration of the triethylphosphite solution used in the preparation of hydroxyapatite sol for dip coating may be used to be 0.1 to 1 M based on the total mixed solution, and at this time, calcium nitrate tetrahydrate is the triethyl phosphite solution. It can be used in a molar concentration of 1.5 to 1.8 times that of ethyl phosphite. For example, the triethyl phosphite solution and the calcium nitrate tetrahydrate solution may each independently have a concentration of 0.1 to 1 M, but are not limited thereto. However, if the concentration of these solutions is less than 0.1 M, it may be difficult to form a coating layer by dip coating or to form a coating layer with a uniform thickness due to the thin concentration of the resulting brush. During dip coating, it may be difficult to form a coating layer with a uniform thickness.
예컨대, 상기 제1단계는 트리에틸포스파이트 용액 및 질산칼슘 4수화물 용액을 1 내지 5일 동안 상온에서 혼합하고, 선택적으로 25 내지 50℃에서 6시간 내지 7일 동안 숙성(aging)시킴으로써 달성될 수 있다. 이때, 숙성기간이 7일을 초과하면 하이드록시아파타이트 입자들이 과성장하여 딥코팅시 불균일한 코팅층이 형성될 수 있다.For example, the first step may be achieved by mixing a triethyl phosphite solution and a calcium nitrate tetrahydrate solution at room temperature for 1 to 5 days, and optionally aging at 25 to 50°C for 6 hours to 7 days. have. At this time, when the aging period exceeds 7 days, the hydroxyapatite particles may overgrow, and a non-uniform coating layer may be formed during dip coating.
예컨대, 제2단계에서 하이드록시아파타이트 솔을 이용한 딥코팅은 분당 0.1 내지 10 mm 속도로 수행할 수 있으나, 이에 제한되지 않는다.For example, in the second step, the dip coating using the hydroxyapatite sol may be performed at a rate of 0.1 to 10 mm per minute, but is not limited thereto.
나아가, 상기 딥코팅은 단회 수행하거나, 2 내지 9회 반복하여 수행할 수 있으나, 이에 제한되지 않으며, 원하는 두께를 달성할 때 까지 반복 횟수를 조절할 수 있다. 다만, 코팅 횟수가 9회를 초과하면 적절한 두께로 코팅층을 형성하기 어렵고, 코팅층의 안정성 및 균일성에 불리한 영향을 줄 수 있다.Further, the dip coating may be performed once or repeatedly performed 2 to 9 times, but is not limited thereto, and the number of repetitions may be adjusted until a desired thickness is achieved. However, if the number of coatings exceeds 9, it is difficult to form a coating layer with an appropriate thickness, and the stability and uniformity of the coating layer may be adversely affected.
전술한 바와 같이, 딥코팅을 반복하여 수행하는 경우, 여분의 솔 용액을 제거하기 위하여 스피닝 하는 단계를 추가로 포함할 수 있다. 상기 스피닝은 매 2 내지 4회의 딥코팅 반복 후 100 내지 300 rpm으로 10 내지 30초 동안 수행할 수 있으나, 이에 제한되지 않는다. 아울러, 상기 스피닝은 1 내지 3회 수행할 수 있다. 한편, 과도한 스피닝은 균일한 코팅층의 형성을 오히려 저해할 수 있으므로, 상기 스피닝 주기, 횟수 및 조건은 잔여 솔 용액의 양, 농도 등을 고려하여 당업자가 적절히 변경하여 수행할 수 있다.As described above, when dip coating is repeatedly performed, a step of spinning to remove excess sol solution may be additionally included. The spinning may be performed for 10 to 30 seconds at 100 to 300 rpm after dip coating is repeated every 2 to 4 times, but is not limited thereto. In addition, the spinning may be performed 1 to 3 times. On the other hand, since excessive spinning may rather inhibit the formation of a uniform coating layer, the spinning cycle, the number of times, and conditions may be appropriately changed by a person skilled in the art in consideration of the amount and concentration of the remaining sol solution.
예컨대, 본 발명의 제조방법은 하이드록시아파타이트 입자를 제외한 용액을 제거하기 위하여, 제2단계 이후, 60 내지 90℃에서 건조하는 단계를 추가로 포함할 수 있다. 상기 건조는 6시간 내지 2일 동안 수행할 수 있으나, 이에 제한되지 않는다.For example, the manufacturing method of the present invention uses a solution excluding hydroxyapatite particles. In order to remove, after the second step, a step of drying at 60 to 90°C may be further included. The drying may be performed for 6 hours to 2 days, but is not limited thereto.
또한, 본 발명은 지르코니아 임플란트의 표면의 전체 또는 일부에 100 내지 1000 nm 두께로 형성된 하이드록시아파타이트 코팅층을 포함하는, 골 적합성이 향상된 임플란트를 제공한다.In addition, the present invention provides an implant with improved bone compatibility, including a hydroxyapatite coating layer formed to a thickness of 100 to 1000 nm on all or part of the surface of the zirconia implant.
상기 코팅층의 두께가 100 nm 미만인 경우 또는 1000 nm 초과인 경우, 코팅성의 균일성 및/또는 안정성이 저하될 수 있고, 코팅층 구조 자체의 안정성이 보장되기 어려울 수 있다.When the thickness of the coating layer is less than 100 nm or more than 1000 nm, the uniformity and/or stability of the coating may be deteriorated, and it may be difficult to ensure the stability of the coating layer structure itself.
상기 본 발명의 골 적합성이 향상된 임플란트는 전술한 하이드록시아파타이트 코팅된 지르코니아 임플란트 제조방법으로 제조될 수 있다.The implant having improved bone compatibility of the present invention may be manufactured by the above-described hydroxyapatite-coated zirconia implant manufacturing method.
예컨대, 본 발명의 임플란트는 치과용 임플란트일 수 있다.For example, the implant of the present invention may be a dental implant.
특히, 본 발명의 임플란트는 체내 삽입시 뼈와 접하게 되는 스크류(screw) 부분에 코팅층이 형성된 것일 수 있다.In particular, the implant of the present invention may have a coating layer formed on a screw portion that comes into contact with a bone when inserted into the body.
본 발명의 임플란트는 하이드록시아파타이트 코팅층의 도입으로 지르코늄 임플란트 자체에 비해 골 재생능이 향상된 것이 특징이다. 본 발명의 구체적인 실시예에서는 비처리 지르코니아 임플란트 자체에 비해 본 발명에 따른 하이드록시아파타이트가 코팅된 지르코니아 임플란트 주위에서 세포실험을 통해 골아세포의 부착 및/또는 증식이 향상됨은 물론, 동물실험을 통해 골 접촉 및/또는 골 면적이 증가된 것을 확인하였다(도 9 및 도 10).The implant of the present invention is characterized by improved bone regeneration ability compared to the zirconium implant itself by the introduction of a hydroxyapatite coating layer. In a specific embodiment of the present invention, the adhesion and/or proliferation of osteoblasts is improved through cell experiments around the hydroxyapatite-coated zirconia implant according to the present invention compared to the non-treated zirconia implant itself. It was confirmed that the contact and/or bone area was increased (FIGS. 9 and 10).
또한, 본 발명의 임플란트는 지르코늄 임플란트 표면과 하이드록시아파타이트 코팅층 사이에 플루오르화 하이드록시아파타이트로 된 중간층을 불포함하는 것이 특징이다. 상기 중간층의 도입은 공정을 번거롭게 할 뿐만 아니라 추가적인 층의 존재로 코팅층의 두께가 두꺼워져 조절이 어려울 수 있고 미세구조를 구현하기 어려울 수 있다.In addition, the implant of the present invention is characterized in that it does not include an intermediate layer made of fluorinated hydroxyapatite between the surface of the zirconium implant and the hydroxyapatite coating layer. Introduction of the intermediate layer not only makes the process cumbersome, but also increases the thickness of the coating layer due to the presence of an additional layer, making it difficult to control and implement a microstructure.
나아가, 본 발명의 임플란트는 지르코늄 임플란트 표면과 하이드록시아파타이트 코팅층 사이에 플루오르화 하이드록시아파타이트로 된 중간층 없이도 지르코늄과 하이드록시아파타이트의 반응에 의해 생성되는 부산물인 칼슘 지르코네이트를 불포함하는 것이 특징이다.Furthermore, the implant of the present invention is characterized in that it does not contain calcium zirconate, a by-product produced by the reaction of zirconium and hydroxyapatite, without an intermediate layer of fluorinated hydroxyapatite between the zirconium implant surface and the hydroxyapatite coating layer.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are for explaining the present invention more specifically, and the scope of the present invention is not limited by these examples.
제조예 1: 솔-젤 방식에 의한 하이드록시아파타이트 솔의 제조Preparation Example 1: Preparation of hydroxyapatite sol by sol-gel method
임플란트 코팅을 위한 하이드록시아파타이트 솔을 제조하기 위하여, 에탄올에 트리에틸포스파이트(triethylphosphite)를 0.6몰 농도로, 질산칼슘 4수화물(calcium nitrate tetrahydrate)을 1몰 농도로 각각 용해시킨 후, 3일 동안 상온에서 혼합하였다. 이후, 37℃에서 1일 동안 숙성(aging)시켜 하이드록시아파타이트 솔을 제조하였다.In order to prepare hydroxyapatite sol for implant coating, triethylphosphite was dissolved in ethanol at a concentration of 0.6 molar and calcium nitrate tetrahydrate at a concentration of 1 molar, and then for 3 days. It was mixed at room temperature. Thereafter, aging was performed at 37° C. for 1 day to prepare hydroxyapatite sol.
실시예 1: 딥코팅에 의한 하이드록시아파타이트 코팅층의 형성Example 1: Formation of hydroxyapatite coating layer by dip coating
단계 1: 치과용 지르코티아 임플란트에 하이드록시아파타이트 코팅층을 형성하기 위하여, 상기 제조예 1에 따라 준비한 하이드록시아파타이트 솔을 이용하여 딥코팅하였다. 구체적으로, 상기 딥코팅은 분당 0.5 mm 속도로 총 9회 수행하였으며, 3회 마다 1회씩 스피닝하여 여분의 솔 용액을 제거하였다. 이후 70℃에서 하루 동안 건조하여 하이드록시아파타이트 입자를 제외한 용액들을 제거하였다. Step 1 : In order to form the hydroxyapatite coating layer on the dental zirconia implant, dip coating was performed using the hydroxyapatite brush prepared according to Preparation Example 1. Specifically, the dip coating was performed 9 times at a speed of 0.5 mm per minute, and the excess brush solution was removed by spinning once every 3 times. Then, the solution was dried at 70° C. for one day to remove the solutions excluding the hydroxyapatite particles.
단계 2: 상기 임플란트 상에 코팅된 하이드록시아파타이트 솔 내에 존재하는 입자는 아직 결정화도가 높지 않으므로 소결하여 결정화도를 높였다. 구체적으로, 상기 단계 1로부터 수득한 건조된 하이드록시아파타이트 솔이 코팅된 지르코니아 임플란트를 용광로에 넣어 소결하였다. 이때, 온도를 600, 800 및 1000℃로 조절하여 각 1시간 씩 소결하여, 소결 온도에 따른 효과를 확인하였다. Step 2 : Since the particles present in the hydroxyapatite brush coated on the implant are not yet high in crystallinity, sintering was performed to increase the crystallinity. Specifically, the dried hydroxyapatite brush-coated zirconia implant obtained from step 1 was put into a furnace and sintered. At this time, the temperature was adjusted to 600, 800 and 1000°C and sintered for 1 hour each, and the effect according to the sintering temperature was confirmed.
실험예 1: 코팅층의 성분 및 형태 확인Experimental Example 1: Confirmation of Components and Form of Coating Layer
상기 실시예 1에 따라 소결 온도를 조절(각각 600, 800 및 1000℃)하여 준비한 3종의 시료와 함께 음성대조군으로는 하이드록시아파타이트 코팅층을 형성하지 않은 지르코니아 임플란트를 사용하였다. 먼저, 각 시편의 X-선 회절 분석을 통해 성분 및/또는 구조를 확인하고, 그 결과를 도 2에 나타내었다. 도 2에 나타난 바와 같이, 음성대조군과 비교하여 실시예 1의 3종 시료에서는 하이드록시아파타이트 관련 피크가 추가로 나타났으며, 이중 1000℃에서 소결한 시편에서는 고온에서 지르코니아와 하이드록시아파타이트의 반응에 의해 형성되는 부산물인 칼슘지르코네이트가 생성되었고, 600℃에서 소결한 시편은 다소 낮은 결정화도를 나타내었다. 따라서, 이후 in vitro 및 in vivo 실험에서는 800℃에서 소결한 제품을 사용하였다.In addition to the three samples prepared by adjusting the sintering temperature according to Example 1 (600, 800 and 1000°C, respectively), as a negative control, a zirconia implant without a hydroxyapatite coating layer was used. First, components and/or structures were confirmed through X-ray diffraction analysis of each specimen, and the results are shown in FIG. 2. As shown in Figure 2, compared with the negative control group, the three samples of Example 1 additionally showed hydroxyapatite-related peaks, and among these, the reaction between zirconia and hydroxyapatite at high temperatures was observed in the samples sintered at 1000°C. Calcium zirconate, which is a by-product formed by, was produced, and the specimen sintered at 600° C. showed somewhat low crystallinity. Therefore, in the subsequent in vitro and in vivo experiments, a product sintered at 800°C was used.
나아가, 임플란트 표면에 형성된 하이드록시아파타이트 코팅층의 형태를 확인하기 위하여, 표면 및 단면을 주사전자현미경으로 관찰하고, 집속이온빔으로 코팅층의 두께를 확인하여, 그 결과를 각각 도 3 및 4에 나타내었다. 도 4에 나타난 바와 같이, 지르코니아 임플란트 표면에 도입된 하이드록시아파타이트 코팅층은 평균 400 nm 안팍의 균일한 두께로 형성되었다.Further, in order to confirm the shape of the hydroxyapatite coating layer formed on the implant surface, the surface and cross section were observed with a scanning electron microscope, and the thickness of the coating layer was confirmed with a focused ion beam, and the results are shown in FIGS. 3 and 4, respectively. As shown in FIG. 4, the hydroxyapatite coating layer introduced on the surface of the zirconia implant was formed with a uniform thickness of 400 nm on average.
실험예 2: 코팅층의 안정성 확인Experimental Example 2: Checking the stability of the coating layer
상기 실시예 1에 따라 지르코니아 임플란트 표면에 형성된 하이드록시아파타이트 코팅층의 안정성을 확인하기 위하여, 접착력을 가진 스터드와 인장기를 사용하여 임플란트 표면에 대한 코팅층의 결합력을 측정하였다. 구체적으로, 지르코니아 시편(음성대조군)과 하이드록시아파타이트 세라믹 코팅층이 형성된 시편(실시예)에서 접착제와 시편이 분리된 부분을 주사전자현미경으로 관찰하고, 그 결과를 도 5에 나타내었다. 도 5에 나타난 바와 같이, 잔류하는 접착제가 확인되었으며, 이는 접착제와 스터드 사이의 결합력보다 더 큰 결합력이 코팅층과 지르코니아 사이에 존재함을 나타내는 것이다. 나아가, 측정된 결합력을 도 6에 나타내었다. 이때 측정된 결합력은 약 40 MPa로, 이는 접착제와 스터드 간의 결합력을 의미하며, 따라서 지르코니아와 하이드록시아파타이트 코팅층은 이보다 큰 결합력으로 부착되었음을 확인할 수 있었다. 음성대조군인 지르코티아 자체에서의 결합력 역시 40 MPa 정도로 측정되었으며, 이는 전술한 지르코니아와 하이드록시아파타이트 코팅층 사이의 결합력이 40 MPa 초과함을 뒷받침한다.In order to confirm the stability of the hydroxyapatite coating layer formed on the surface of the zirconia implant according to Example 1, the bonding force of the coating layer to the implant surface was measured using a stud and a tensioner having adhesive strength. Specifically, in the zirconia specimen (negative control group) and the specimen (Example) in which the hydroxyapatite ceramic coating layer was formed, the separated part of the adhesive and the specimen was observed with a scanning electron microscope, and the results are shown in FIG. As shown in FIG. 5, the remaining adhesive was confirmed, indicating that a bonding force greater than the bonding force between the adhesive and the stud exists between the coating layer and zirconia. Furthermore, the measured bonding force is shown in FIG. 6. At this time, the measured bonding force was about 40 MPa, which means the bonding force between the adhesive and the stud, and thus it was confirmed that the zirconia and hydroxyapatite coating layer were attached with a greater bonding force. The bonding force in the negative control zirconia itself was also measured to be about 40 MPa, which supports that the bonding force between the aforementioned zirconia and hydroxyapatite coating layer exceeds 40 MPa.
실험예 3: 세포 특성 확인Experimental Example 3: Cell Characteristics Confirmation
상기 실시예 1에 따라 준비한 하이드록시아파타이트 코팅층을 도입한 지르코니아 임플란트의 세포특성을 확인하기 위하여, 상기 코팅된 임플란트 상에 골아세포를 분주하고, 1일 동안 배양하였다. 비교를 위하여, 코팅층을 불포함하는 지르코니아 임플란트에 대해서도 동일하게 세포배양을 수행하였다. 1일 후 배양된 세포의 형태를 공초점레이저주사현미경으로 확인하고, 그 결과를 도 7에 나타내었다. 도 7에 나타난 바와 같이, 음성대조군인 지르코니아 자체에 비해 표면에 하이드록시아파타이트 코팅층을 도입한 임플란트에 보다 많은 세포가 부착되었으며, 부착된 세포의 형태 또한 보다 넓게 뻗어 강하게 부착되었다. 또한, 상기 하이드록시아파타이트 코팅의 세포 증식에 대한 영향을 확인하기 위하여, 상기와 같이, 하이드록시아파타이트 코팅층을 포함 또는 불포함하는 지르코니아 임플란트 상에 골아세포를 분주하여 5일까지 배양하면서 3일과 5일에 MTS 어세이를 수행하고, 그 결과를 도 8에 나타내었다. 도 8에 나타난 바와 같이, 배양기간이 증가함에 따라 하이드록시아파타이트 코팅층을 포함하는 지르코니아 임플란트에서 세포 증식율이 유의미하게 증가되었다. 이는 하이드록시아파타이트 코팅층의 도입이 임플란트 상에서 골아세포의 부착 및/또는 증식을 증진시키며, 따라서, 조직 재생에 유용하게 사용될 수 있음을 나타내는 것이다.In order to confirm the cellular characteristics of the zirconia implant prepared with the hydroxyapatite coating layer prepared according to Example 1, osteoblasts were dispensed onto the coated implant and cultured for 1 day. For comparison, cell culture was performed in the same manner for the zirconia implant without the coating layer. After 1 day, the morphology of the cultured cells was confirmed with a confocal laser scanning microscope, and the results are shown in FIG. 7. As shown in FIG. 7, more cells were attached to the implant in which the hydroxyapatite coating layer was introduced on the surface compared to the negative control zirconia itself, and the shape of the attached cells also extended and strongly adhered. In addition, in order to confirm the effect of the hydroxyapatite coating on cell proliferation, as described above, osteoblasts were dispensed on a zirconia implant with or without a hydroxyapatite coating layer and cultured for up to 5 days, while on the 3rd and 5th days. MTS assay was performed, and the results are shown in FIG. 8. As shown in FIG. 8, as the culture period increased, the cell proliferation rate was significantly increased in the zirconia implant including the hydroxyapatite coating layer. This indicates that the introduction of the hydroxyapatite coating layer enhances the adhesion and/or proliferation of osteoblasts on the implant, and thus, can be usefully used for tissue regeneration.
실험예 4: 동물모델에의 이식 실험Experimental Example 4: Transplantation experiment to an animal model
상기 실시예 1에 따라 준비한 하이드록시아파타이트 코팅층을 도입한 지르코니아 임플란트의 생체 내에서의 골 적합성을 확인하기 위하여 동물모델에의 이식실험을 실시하였다. 구체적으로, 16주령의 토끼의 정강이뼈에 임플란트를 삽입하고 4주 경구 후 이산화탄소를 이용한 질식에 의해 치사시켜 이식된 임플란트의 형태를 조직학적 분석을 통해 관찰하고 그 결과를 도 9에 나타내었다. 나아가, 임플란트이 길이 대비 뼈 접촉 길이로 임플란트와의 골 접촉율을 산출하고, 임플란트의 높은 부분 사이의 면적에 대한 골면적으로서 골 면적율을 산출하여, 그 결과를 도 10에 나타내었다. 도 9에 나타난 조직학적 분석 결과는, 표면처리되지 않은 지르코니아 시편의 경우, 임플란트 주변에 골 세포가 많이 채워지지 않은 반면, 하이드록시아파타이트 코팅층이 형성된 지르코니아 시편의 경우, 임플란트 주변으로 골 세포가 많이 채워졌음을 나타낸다. 이를 수치화하여 뼈와 임플란트의 접촉 정도 및 뼈 면적을 산출하여 도 10에 나타내었다. 도 10에 나타난 바와 같이, 하이드록시아파타이트 코팅층 존재시 뼈와의 접촉이 현저히 향상되었으며, 구체적으로, 음성대조군에 비해 각각 40% 및 25%가량 증가된 값을 나타내었다. 이는 상기 실험예 3에서 확인한 바와 같이, 하이드록시아파타이트 코팅층에 의해 증가된 세포의 부착 및/또는 증식력으로 인해 골 생성이 촉진되었음을 나타낸다.In order to confirm the bone compatibility in vivo of the zirconia implant prepared with the hydroxyapatite coating layer prepared according to Example 1 above, an implantation experiment was performed in an animal model. Specifically, the implant was inserted into the shin bone of a 16-week-old rabbit and killed by asphyxiation using carbon dioxide after 4 weeks orally, and the shape of the implanted implant was observed through histological analysis, and the results are shown in FIG. 9. Further, the bone contact rate with the implant was calculated as the bone contact length compared to the length of the implant, and the bone area rate was calculated as the bone area relative to the area between the high portions of the implant, and the results are shown in FIG. 10. The histological analysis results shown in FIG. 9 show that in the case of the non-surface-treated zirconia specimen, bone cells were not filled much around the implant, whereas in the case of the zirconia specimen on which the hydroxyapatite coating layer was formed, the bone cells were filled around the implant. Indicate that you have lost. This was numerically calculated to calculate the contact degree and the bone area between the bone and the implant, and are shown in FIG. As shown in FIG. 10, when the hydroxyapatite coating layer was present, contact with the bone was significantly improved, and specifically, the values were increased by 40% and 25%, respectively, compared to the negative control group. This indicates that, as confirmed in Experimental Example 3, bone production was promoted due to the increased adhesion and/or proliferative power of cells by the hydroxyapatite coating layer.

Claims (15)

  1. 트리에틸포스파이트(triethylphosphite) 용액 및 질산칼슘 4수화물(calcium nitrate tetrahydrate) 용액을 혼합하여 하이드록시아파타이트 솔(sol)을 준비하는 제1단계;A first step of preparing a hydroxyapatite sol by mixing a triethylphosphite solution and a calcium nitrate tetrahydrate solution;
    상기 하이드록시아파타이트 솔에 딥코팅하여 지르코니아 임플란트 표면 전체 또는 일부에 하이드록시아파타이트 솔 코팅층을 형성하는 제2단계; 및A second step of dip coating the hydroxyapatite sole to form a hydroxyapatite sol coating layer on all or part of the surface of the zirconia implant; And
    650 내지 950℃에서 소결하는 제3단계를 포함하는,Including a third step of sintering at 650 to 950 ℃,
    하이드록시아파타이트 코팅된 지르코니아 임플란트의 제조방법.Method for producing a hydroxyapatite coated zirconia implant.
  2. 제1항에 있어서,The method of claim 1,
    칼슘지르코네이트가 생성되지 않는 것인, 제조방법.That the calcium zirconate is not produced, the manufacturing method.
  3. 제1항에 있어서,The method of claim 1,
    상기 트리에틸포스파이트 용액은 질산칼슘 4수화물 용액과의 혼합용액을 기준으로 0.1 내지 1 M 농도로, 질산칼슘 4수화물은 상기 트리에틸포스파이트의 1.5 내지 1.8배 몰농도로 사용하는 것인, 제조방법.The triethyl phosphite solution is used at a concentration of 0.1 to 1 M based on the mixed solution with the calcium nitrate tetrahydrate solution, and the calcium nitrate tetrahydrate is used at a molar concentration of 1.5 to 1.8 times that of the triethyl phosphite. Way.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1단계는 트리에틸포스파이트 용액 및 질산칼슘 4수화물 용액을 1 내지 5일 동안 상온에서 혼합하고, 선택적으로 25 내지 50℃에서 6시간 내지 7일 동안 숙성(aging)시킴으로써 달성되는 것인, 제조방법.The first step is achieved by mixing the triethyl phosphite solution and the calcium nitrate tetrahydrate solution at room temperature for 1 to 5 days, and optionally aging at 25 to 50° C. for 6 hours to 7 days, Manufacturing method.
  5. 제1항에 있어서,The method of claim 1,
    상기 딥코팅은 분당 0.1 내지 10 mm 속도로 수행하는 것인, 제조방법.The dip coating is to be performed at a rate of 0.1 to 10 mm per minute.
  6. 제1항에 있어서,The method of claim 1,
    상기 딥코팅은 2 내지 9회 반복하여 수행하는 것인, 제조방법.The dip coating is performed by repeating 2 to 9 times, the manufacturing method.
  7. 제6항에 있어서,The method of claim 6,
    매 2 내지 4회 반복 후 100 내지 300 rpm으로 10 내지 30초 동안 스피닝하는 단계를 추가로 포함하는 것인, 제조방법.The method further comprising spinning for 10 to 30 seconds at 100 to 300 rpm after repeating every 2 to 4 times.
  8. 제1항에 있어서,The method of claim 1,
    제2단계 이후, 60 내지 90℃에서 건조하는 단계를 추가로 포함하는 것인, 제조방법.After the second step, the manufacturing method further comprises a step of drying at 60 to 90 ℃.
  9. 지르코니아 임플란트의 표면의 전체 또는 일부에 100 내지 1000 nm 두께로 형성된 하이드록시아파타이트 코팅층을 포함하는, 골 적합성이 향상된 임플란트.An implant having improved bone compatibility, comprising a hydroxyapatite coating layer formed to a thickness of 100 to 1000 nm on all or part of the surface of the zirconia implant.
  10. 제9항에 있어서,The method of claim 9,
    제1항 내지 제8항 중 어느 한 항의 방법으로 제조된 것인, 임플란트.Any one of claims 1 to 8, which is manufactured by the method of claim 1, an implant.
  11. 제9항에 있어서,The method of claim 9,
    치과용 임플란트인 것인, 임플란트.What is a dental implant, an implant.
  12. 제11항에 있어서,The method of claim 11,
    스크류(screw) 부분에 코팅층이 형성된 것인, 임플란트.A coating layer is formed on the screw (screw) portion, the implant.
  13. 제9항에 있어서,The method of claim 9,
    지르코늄 임플란트 자체에 비해 골 재생능이 향상된 것인, 임플란트.Compared to the zirconium implant itself, bone regeneration is improved, the implant.
  14. 제9항에 있어서,The method of claim 9,
    지르코늄 임플란트 표면과 하이드록시아파타이트 코팅층 사이에 플루오르화 하이드록시아파타이트로 된 중간층을 불포함하는 것인, 임플란트.An implant that does not include an intermediate layer of fluorinated hydroxyapatite between the zirconium implant surface and the hydroxyapatite coating layer.
  15. 제9항에 있어서,The method of claim 9,
    지르코늄과 하이드록시아파타이트의 반응에 의해 생성되는 부산물인 칼슘 지르코네이트를 불포함하는 것인, 임플란트.An implant that does not contain calcium zirconate, a by-product produced by the reaction of zirconium and hydroxyapatite.
PCT/KR2019/005835 2019-03-29 2019-05-15 Method for manufacturing hydroxyapatite-coated zirconia implant by means of dip coating using hydroxyapatite sol WO2020204254A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190037112A KR102152378B1 (en) 2019-03-29 2019-03-29 Method for preparation of zirconia implant coated with hydroxyapatite by deep-coating using hydroxyapatite sol
KR10-2019-0037112 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020204254A1 true WO2020204254A1 (en) 2020-10-08

Family

ID=72472092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005835 WO2020204254A1 (en) 2019-03-29 2019-05-15 Method for manufacturing hydroxyapatite-coated zirconia implant by means of dip coating using hydroxyapatite sol

Country Status (2)

Country Link
KR (1) KR102152378B1 (en)
WO (1) WO2020204254A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022128813A1 (en) 2022-10-31 2024-05-02 Universität Siegen, Körperschaft des öffentlichen Rechts Anti-adhesive polymer coatings for short-term implants

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0153988B1 (en) * 1995-11-28 1998-11-16 강병호 Process for the preparation of hydroxylapatite by using sol-gel reaction
JP5087768B2 (en) * 2006-10-20 2012-12-05 国立大学法人 鹿児島大学 Biocompatible high-strength ceramic composite material and manufacturing method thereof
KR20160145473A (en) * 2014-04-18 2016-12-20 난닝 웨양 테크놀로지 컴퍼니, 리미티드 Dental implant made of zirconia ceramic-fused-bioactive glass ceramic artificial bone dust
KR101826967B1 (en) * 2016-04-08 2018-02-07 전남대학교산학협력단 Implant comprising Bioactive color glass and preparing method thereof
KR20180026290A (en) * 2016-09-02 2018-03-12 대구가톨릭대학교산학협력단 A Si-substituted hydroxyapatite sol for the surface treatment of zirconia implant, process for preparation thereof and a surface treatment method using the Si-substituted hydroxyapatite sol

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100579155B1 (en) * 2003-05-01 2006-05-12 학교법인 영남학원 Calcium metaphosphate coated dental implant and manufacturing method thereof
JP2005034333A (en) * 2003-07-18 2005-02-10 Univ Nihon Dental implant and its manufacturing method
KR100558157B1 (en) 2003-12-01 2006-03-10 재단법인서울대학교산학협력재단 Porous Bioceramics for Bone Scaffold and Method for Manufacturing the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0153988B1 (en) * 1995-11-28 1998-11-16 강병호 Process for the preparation of hydroxylapatite by using sol-gel reaction
JP5087768B2 (en) * 2006-10-20 2012-12-05 国立大学法人 鹿児島大学 Biocompatible high-strength ceramic composite material and manufacturing method thereof
KR20160145473A (en) * 2014-04-18 2016-12-20 난닝 웨양 테크놀로지 컴퍼니, 리미티드 Dental implant made of zirconia ceramic-fused-bioactive glass ceramic artificial bone dust
KR101826967B1 (en) * 2016-04-08 2018-02-07 전남대학교산학협력단 Implant comprising Bioactive color glass and preparing method thereof
KR20180026290A (en) * 2016-09-02 2018-03-12 대구가톨릭대학교산학협력단 A Si-substituted hydroxyapatite sol for the surface treatment of zirconia implant, process for preparation thereof and a surface treatment method using the Si-substituted hydroxyapatite sol

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, H. W.: "Processing and Performance of Hydroxyapatite/Fluorapatite Double Layer Coating on Zirconia by the Powder Slurry Method", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, pages 2466 - 2472, XP085861888, Retrieved from the Internet <URL:https://doi.org/10.1111/j.1551-2916.2006.01114.x> *
KIM, H. W.: "Sol-Gel Derived Fluor-Hydroxyapatite Biocoatings on Zirconia Substrate", BIOMATERIALS, 2004, pages 2919 - 2926, XP004489042, DOI: 10.1016/j.biomaterials.2003.09.074 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022128813A1 (en) 2022-10-31 2024-05-02 Universität Siegen, Körperschaft des öffentlichen Rechts Anti-adhesive polymer coatings for short-term implants

Also Published As

Publication number Publication date
KR102152378B1 (en) 2020-09-07

Similar Documents

Publication Publication Date Title
Sollazzo et al. Zirconium oxide coating improves implant osseointegration in vivo
Kweh et al. An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock
Kim et al. Hydroxyapatite and titania sol–gel composite coatings on titanium for hard tissue implants; mechanical and in vitro biological performance
WO2010147308A2 (en) Implant coated with net-shaped or island-shaped low-crystallized hydroxyapatite and method for coating same
Marchi et al. Analysis in vitro of the cytotoxicity of potential implant materials. I: Zirconia‐titania sintered ceramics
EP3049017B1 (en) Implants with a removable coating
GB2461125A (en) A silk membrane for bone graft material
Hirota et al. Bone responses to zirconia implants with a thin carbonate‐containing hydroxyapatite coating using a molecular precursor method
WO2020204254A1 (en) Method for manufacturing hydroxyapatite-coated zirconia implant by means of dip coating using hydroxyapatite sol
Cavalu et al. Improving osseointegration of alumina/zirconia ceramic implants by fluoride surface treatment
WO2015034307A1 (en) Bone graft material using cuttlefish bones and method for preparing same
de Paula Miranda et al. Effect of titania content and biomimetic coating on the mechanical properties of the Y-TZP/TiO2 composite
Drevet et al. Human osteoblast-like cells response to pulsed electrodeposited calcium phosphate coatings
US20060068363A1 (en) Coated dental implants
Hayakawa et al. Trabecular bone response to titanium implants with a thin carbonate-containing apatite coating applied using the molecular precursor method.
KR100424910B1 (en) Coating process of bioactive ceramics
WO2021201378A1 (en) Method for synthesizing apatite powder using laser
WO2014208824A1 (en) Method for producing implant having bioactive material immobilized on surface thereof and implant produced thereby
WO2015167044A1 (en) Surface-modified hybrid surface implant and method for manufacturing same
WO2018124375A1 (en) Method for manufacturing implant having hydrophilic surface
KR20040094077A (en) Calcium metaphosphate coated dental implant and manufacturing method thereof
Tanimoto et al. Characterization and bioactivity of tape‐cast and sintered TCP sheets
KR20040099966A (en) Dental implants coated with fluorhydroxyapatite for biocompatible implants
CN1080627A (en) Biological active incline ceramic material
EP2808040B1 (en) Osteoinductive coatings for dental implants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922878

Country of ref document: EP

Kind code of ref document: A1