WO2020204151A1 - Aptamer to fgf9 and use thereof - Google Patents

Aptamer to fgf9 and use thereof Download PDF

Info

Publication number
WO2020204151A1
WO2020204151A1 PCT/JP2020/015263 JP2020015263W WO2020204151A1 WO 2020204151 A1 WO2020204151 A1 WO 2020204151A1 JP 2020015263 W JP2020015263 W JP 2020015263W WO 2020204151 A1 WO2020204151 A1 WO 2020204151A1
Authority
WO
WIPO (PCT)
Prior art keywords
aptamer
seq
nucleotide
nucleotide sequence
fgf9
Prior art date
Application number
PCT/JP2020/015263
Other languages
French (fr)
Japanese (ja)
Inventor
健朗 安達
Original Assignee
株式会社リボミック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リボミック filed Critical 株式会社リボミック
Publication of WO2020204151A1 publication Critical patent/WO2020204151A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers

Definitions

  • Fibroblast Growth Factor 9 is one of the FGF family proteins and is a protein involved in various biological processes such as embryogenesis, development, angiogenesis, and tumorigenesis (Fibroblast Growth Factor 9; FGF9).
  • FGF9 Fibroblast Growth Factor 9
  • Non-Patent Document 1 it has been reported that it is expressed in various cancers like other FGF family proteins, and it has also been reported that various organ-specific cancer models can be created by expressing FGF9 in a cell-specific manner.
  • Non-Patent Document 2 suggests that an anti-FGF9 antibody is effective for prostate cancer-induced osteoblastic bone metastasis.
  • Aptamers are nucleic acids that specifically bind to target molecules (proteins, sugar chains, hormones, etc.) and can bind to target molecules via the three-dimensional structure formed by single-stranded RNA (or DNA). it can.
  • a screening method called the SELEX method Systematic Evolution of Ligands by Exponential Enrichment
  • the chain length of the aptamer obtained by the SELEX method is about 80 nucleotides, and then the chain length is shortened using the physiological inhibitory activity of the target molecule as an index.
  • chemical modification is added for the purpose of improving stability in the living body, and optimization as a pharmaceutical product is achieved.
  • Aptamers are less susceptible to immune exclusion, and side effects such as antibody-specific antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cellular cytotoxicity (CDC) are less likely to occur.
  • ADCC antibody-specific antibody-dependent cellular cytotoxicity
  • CDC complement-dependent cellular cytotoxicity
  • low-molecular-weight compounds which are the same molecular-targeted drugs, also have poorly soluble molecules, and optimization may be required for their formulation, but aptamers are highly water-soluble, which is also advantageous.
  • cost reduction can be achieved by mass production.
  • long-term storage stability, heat, and solvent resistance are also predominant features of aptamers.
  • aptamers generally have a shorter half-life in blood than antibodies. However, this point may also be advantageous from the viewpoint of toxicity.
  • RNA aptamer drugs have been developed, including Macugen (target disease: age-related macular degeneration), the first RNA aptamer drug approved in the United States in December 2004.
  • Macugen target disease: age-related macular degeneration
  • DNA aptamers that can be stably and inexpensively produced in vivo have been developed.
  • aptamers for purification and molecular targeting of target molecules by utilizing their high affinity for target molecules.
  • Aptamers often have a higher affinity than antibodies with similar functions. From the viewpoint of delivery, since the aptamer has a molecular size of about 1/10 of that of the antibody, tissue migration is likely to occur, and it is easier to deliver the drug to the target site.
  • Antibodies to FGF9 are already commercially available, but no aptamers to FGF9 have been reported so far.
  • An object of the present invention is to provide an aptamer for FGF9.
  • this aptamer has succeeded in producing an aptamer that binds to FGF9 as a result of diligent studies to solve the above problems. We also showed that this aptamer inhibits the activity of FGF9.
  • this aptamer was a novel aptamer having a characteristic potential secondary structure and a motif sequence of a loop portion, which is a characteristic of the secondary structure.
  • [6] The following (A), (B) or (C): (A) Nucleotide sequences selected from the group consisting of SEQ ID NOs: 1-6, 10-15, 17, 18, 20, 21 and 23-35, (B) In a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1 to 6, 10 to 15, 17, 18, 20, 21 and 23 to 35, one to several nucleotides are substituted, deleted, inserted or added.
  • nucleotide sequence (However, excluding the nucleotide sequence represented by the formula (I)), the nucleotide sequence, (C) Has 95% or more identity with the nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-6, 10-15, 17, 18, 20, 21 and 23-35 (provided that it is in formula (I)).
  • Each pyrimidine nucleotide is deoxyribose
  • An aptamer in which each purine nucleotide is ribose.
  • FIG. 4-1 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 2 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the nucleotide sequence circled corresponds to a common sequence.
  • FIG. 4-2 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 3 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the nucleotide sequence circled corresponds to a common sequence.
  • FIG. 4-3 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 4 as expected by the MFOLD program.
  • FIG. 4-4 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 5 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the nucleotide sequence circled corresponds to a common sequence.
  • FIG. 4-5 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 6 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the nucleotide sequence circled corresponds to a common sequence.
  • FIG. 4-8 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 9 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the nucleotide sequence circled corresponds to a partial sequence of the common sequence.
  • FIG. 5-1 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 10 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 5-3 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 12 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 5-3 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 12 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 5-4 shows the secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 13 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 5-5 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 14 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 5-6 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 15 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 5-7 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 16 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • FIG. 5-8 shows the secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 17 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • FIG. 5-9 shows the secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 18 as expected by the MFOLD program. U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 5-10 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 19 as expected by the MFOLD program. U or u represents deoxythymidine.
  • FIG. 5-11 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 20 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 5-12 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 21 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 5-16 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 25, as expected by the MFOLD program. U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 5-17 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 26, as expected by the MFOLD program. U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 6-2 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 29, as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 6-3 shows the secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 30 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 6-4 shows the secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 31 as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 6-5 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 32, as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 6-6 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 33, as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • FIG. 6-7 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 34, as expected by the MFOLD program.
  • U or u represents deoxythymidine.
  • the loop surrounded by a square corresponds to a loop formed by a common sequence.
  • the present invention provides an aptamer having a binding activity to FGF9.
  • An aptamer is a nucleic acid molecule having a binding activity to a predetermined target molecule. Aptamers can inhibit the activity of a given target molecule by binding to the given target molecule.
  • the aptamers of the present invention can be RNA, DNA, modified nucleic acids or mixtures thereof, but preferably pyrimidines are DNA and purines are RNA.
  • the aptamers of the present invention may also be in linear, cyclic or stem-loop form.
  • the aptamer of the present invention binds to FGF9 in a physiological buffer solution.
  • the buffer solution is not particularly limited, but one having a pH of about 5.0 to 10.0 is preferably used, and examples of such a buffer solution include solution C (see Example 1) described later.
  • the aptamer of the present invention binds to FGF9 with a strength that can be detected by any of the following tests. Biacore T200 manufactured by GE Healthcare is used to measure the bond strength. One measurement method is to first immobilize the aptamer on the sensor chip. The amount of immobilization is about 370 RU.
  • the FGF9 solution for analite is prepared to 0.1 ⁇ M and injected to detect the binding of FGF9 to the aptamer.
  • the aptamer of the present invention can bind to FGF9 and inhibit the activity of FGF9. That is, the aptamer of the present invention may also have an inhibitory activity on FGF9.
  • the inhibitory activity on FGF9 means an inhibitory ability against any activity possessed by FGF9.
  • FGF9 acts on FGF receptor-expressing cells to activate signal transduction and induce the production of various cell growth factors and their receptors. Therefore, the inhibitory activity on FGF9 may be an activity that inhibits intracellular signal transduction via the FGF receptor.
  • the expression of these various cell growth factors and their receptors results in the enhancement of cell growth activity and migration activity, and thus the inhibitory activity of FGF9 means inhibition of those activities.
  • the aptamer of the present invention binds to FGF9 and inhibits the binding between FGF9 and the FGF receptor, the action associated with the activation of the intracellular signal transduction pathway mediated by the FGF receptor, for example, phosphorylation of ERK1 / 2 and The accompanying proliferation of fibroblasts and the like can be inhibited.
  • FGF9 is a protein that is strongly expressed during embryogenesis, development, angiogenesis, and tumorigenesis, and is, for example, a protein having the amino acid sequence represented by SEQ ID NO: 36.
  • FGF9 in the present invention can also be produced using mammalian cells such as mice, insect cells, and cultured cells such as Escherichia coli, and can also be produced by chemical synthesis. When prepared by cultured cells or chemical synthesis, a mutant can be easily prepared by a method known per se.
  • the "mutant" of FGF9 is one in which one to several amino acids are substituted, deleted, added, etc.
  • FGF9 in the present invention contains these variants.
  • the FGF9 receptor means a cell surface protein to which FGF9 binds.
  • FGFR3c is known as the FGF9 receptor.
  • the FGF9 receptor in the present invention may be a protein containing a natural amino acid sequence or a mutant thereof.
  • the "mutant" of the FGF9 receptor is one in which one to several amino acids are substituted, deleted, added, etc., or one consisting of a part of the amino acid sequence of a known FGF9 receptor.
  • the invention provides an aptamer that inhibits the binding of FGF9 to the FGF9 receptor.
  • the aptamer of the present invention is not particularly limited as long as it is an aptamer that binds to an arbitrary portion of FGF9. Further, the aptamer of the present invention is not particularly limited as long as it can bind to any portion of FGF9 and inhibit its activity.
  • the length of the aptamer of the present invention is not particularly limited and may be usually about 200 nucleotides or less, but for example, it is about 100 nucleotides or less, preferably about 50 nucleotides or less, and more preferably about 40 nucleotides or less. obtain.
  • the total number of nucleotides is small, chemical synthesis and mass production are easier, and there is a great cost advantage.
  • the lower limit of the aptamer length of the present invention is not particularly limited as long as it contains the common sequence represented by SEQ ID NO: 37 (CAAGGHTGCCG; H represents A, C or T), but the aptamer length is preferably 15 nucleotides or more, for example. Can be 20 nucleotides or more, more preferably 25 nucleotides or more. In a particularly preferred embodiment, the aptamer length of the present invention is 25-40 nucleotides.
  • the aptamer of the present invention is formulated (I): CAAGGHTGCCG (SEQ ID NO: 37) (I) (In the formula, H represents A, C or T) It is an aptamer that binds to FGF9 (hereinafter, also referred to as the aptamer (I) of the present invention) containing the nucleotide sequence represented by.
  • Each nucleotide constituting the aptamer (I) of the present invention may be ribose or deoxyribose independently.
  • thymine (T) shall be read as uracil (U).
  • the aptamer of the present invention is formulated (I): CAAGGHTGCCG (SEQ ID NO: 37) (I) (In the formula, H represents A, C or T) An aptamer that binds to FGF9 and contains the nucleotide sequence represented by (a) or (b): (a) In the nucleotide sequence contained in the aptamer, (i) Each pyrimidine nucleotide is deoxyribose, (ii) Each purine nucleotide is ribose; (b) In the nucleotide sequence contained in the aptamer (i) Each pyrimidine nucleotide is deoxyribose, and the hydrogen atom at the 2'position of the deoxyribose is independently unsubstituted or substituted with a methoxy group.
  • Each purine nucleotide is ribose, and the hydroxy group at the 2'position of the ribose is independently unsubstituted or substituted with a methoxy group; It is an aptamer (hereinafter, also referred to as an aptamer (II) of the present invention) which is one of the above.
  • the aptamer (II) of the present invention comprises the following (A) to (C): (A) Aptamer containing a nucleotide sequence selected from the group consisting of SEQ ID NOs: 16, 19 and 22; (B) In the nucleotide sequence selected from the group consisting of SEQ ID NOs: 16, 19 and 22, one to several nucleotides were substituted, deleted, inserted or added (however, CAAGGHTGCCG (SEQ ID NO: 37) (in the formula).
  • H represents A, C or T
  • C has 95% or more identity with the nucleotide sequence selected from the group consisting of SEQ ID NOs: 16, 19 and 22 (where CAAGGHTGCCG (SEQ ID NO: 37) (wherein H stands for A, C or T).
  • the nucleotide sequence represented by) is the same.) An aptamer that binds to FGF9 and contains a nucleotide sequence; In any of the aptamers, in the nucleotide sequence contained in the aptamer, (i) Each pyrimidine nucleotide is deoxyribose, (ii) Each purine nucleotide is an aptamer that is ribose (hereinafter, also referred to as an aptamer (III) of the present invention).
  • the aptamers of (B) and (C) above include the sequence represented by the formula (I): CAAGGHTGCCG (SEQ ID NO: 37) (where H represents A, C or T) as a common sequence.
  • the number of nucleotides to be substituted, deleted, inserted or added is not particularly limited as long as the aptamer can bind to FGF9 and inhibit the activity of FGF9, but is, for example, 10 or less, preferably 5 or less. , More preferably 4, 3, 2, or 1.
  • NCBI BLAST-2 National Center for Biotechnology Information Basic Local Alignment Search Tool
  • the aptamer (III) of the present invention also (D) can be one or more of the above (A) and / or one or more of the above (B) and / or one or more of the above (C).
  • the connection can be performed by a tandem bond.
  • a linker may be used for the connection.
  • Linkers include nucleotide chains (eg, 1 to about 20 nucleotides), non-nucleotide chains (eg,-(CH 2 ) n-linker,-(CH 2 CH 2 O) n-linker, hexaethylene glycol linker, TEG linker.
  • the plurality of the above-mentioned plurality of connected products is not particularly limited as long as it is two or more, but may be, for example, two, three, or four.
  • the aptamer (II) of the present invention comprises a nucleotide sequence represented by formula (I), adjacent to nucleotides X1, X2, X3 and 3'ends adjacent to the 5'end of the nucleotide sequence.
  • Nucleotides X4, X5, X6 are expressed in formula (II):
  • H represents A, C or T
  • X1 to X6 are nucleotides selected from the group consisting of A, G, C and T, which are the same or different, respectively
  • X1 and X6, X2 and X5, X3 and X4 and the 5'end C and 3'end G of the nucleotide sequence represented by formula (I) form Watson-Crick base pairs, respectively
  • the stem structure is formed by Watson-Crick base pairing of C at the 5'end and G at the 3'end of the nucleotide sequence represented by X1 and X6, X2 and X5, X3 and X4, and the formula (I). Is formed. Having a stem structure stabilizes the aptamer and gives it a strong activity.
  • the number of base pairs forming the stem structure is not particularly limited. Preferably, the stem length is 4 base pairs or more.
  • the upper limit is not particularly limited, but is, for example, 10 base pairs or less, preferably 7 base pairs or less. Further, in the stem structure, as long as the stem structure is formed as a whole, the aptamer activity is maintained even if a part of the stem structure does not form a base pair.
  • the aptamer (IV) of the present invention further has a nucleotide number 4th G and a nucleotide number 10th C, a nucleotide number 5th G and a nucleotide number in the nucleotide sequence represented by the formula (I).
  • the ninth C may each potentially form a Watson click base pair. Therefore, the aptamer (IV) of the present invention has the following formula (II').
  • the aptamer (V) of the present invention According to the secondary structure prediction by Mfold, when there are multiple energetically stable candidates, multiple candidates may be presented.
  • the nucleotide sequence of the aptamer of the present invention is applied to Mfold and the secondary structure is predicted, both the structure of the formula (II) and the structure of the formula (II') may be obtained. Therefore, the aptamer (IV) of the present invention may adopt the structure of the formula (II) or the structure of the formula (II').
  • aptamer that binds to FGF9 which comprises a nucleotide sequence (in the formula, H represents A, C or T) has the same nucleotide sequence;
  • H represents A, C or T
  • aptamers in the nucleotide sequence contained in the aptamer, (i) Each pyrimidine nucleotide is deoxyribose, (ii) Each purine nucleotide is an aptamer that is ribose (hereinafter, also referred to as an aptamer (VI) of the present invention).
  • the aptamer (VII) of the present invention is, in a preferred embodiment, an aptamer that binds to FGF9, which comprises the nucleotide sequence represented by SEQ ID NO: 30, in the nucleotide sequence contained in the aptamer.
  • the hydrogen atom at the 2'position of deoxyribose of each pyrimidine nucleotide is independently unsubstituted or substituted with a methoxy group.
  • sugar residues can be carried out by a method known per se (eg, Sproat et al., (1991) Nucle. Acid. Res. 19, 733-738; Cotton et al., (1991)). Nucl. Acid. Res. 19, 2629-2635; Hobbs et al., (1973) Biochemistry 12, 5138-5145).
  • the sugar residue can also be BNA: Bridged nucleic acid (LNA: Linked nucleic acid) having a crosslinked structure formed at the 2'and 4'positions.
  • Such modification of sugar residues can also be performed by a method known per se (eg, Tetrahedron Lett., 38, 8735-8738 (1997); Tetrahedron, 59, 5123-5128 (2003), Rahman SMA, Seki. See S., Obika S., Yoshikawa H., Miyashita K., Imanishi T., J. Am. Chem. Soc., 130, 4886-4896 (2008)).
  • the aptamer of the present invention may also have a nucleobase (eg, purine, pyrimidine) modified (eg, chemically substituted) in order to enhance the binding activity to FGF9 and the like.
  • a nucleobase eg, purine, pyrimidine
  • modifications include, for example, 5-position pyrimidine modification, 6- and / or 8-position purine modification, modification with extracyclic amine, substitution with 4-thiouridine, substitution with 5-bromo or 5-iodo-uracil.
  • the phosphate group contained in the aptamer of the present invention may be modified so as to be resistant to nucleases and hydrolysis, or for the purpose of enhancing the binding activity to FGF9.
  • the aptamer of the present invention can be synthesized by the methods disclosed in the present specification and known in the art.
  • One of the synthetic methods is a method using RNA polymerase.
  • the target RNA can be obtained by chemically synthesizing the DNA having the target sequence and the promoter sequence of RNA polymerase and transcribing this as a template by a method already known. It can also be synthesized by using DNA polymerase. DNA having the desired sequence is chemically synthesized, and this is used as a template for amplification by a known method, the polymerase chain reaction (PCR). This is made into a single strand by a already known method such as polyacrylamide gel electrophoresis or an enzyme treatment method.
  • PCR polymerase chain reaction
  • the ionic bond utilizing the negative charge of the phosphate group existing as many as the number of constituent nucleotides is strong and binds to the positive charge of lysine and arginine existing on the surface of the protein. Therefore, nucleobases that are not directly involved in binding to the target substance can be replaced.
  • the stem structure part since the stem structure part has already been base paired and faces the inside of the double helix structure, it is difficult for the nucleobase to directly bind to the target substance. Therefore, replacing a base pair with another base pair often does not reduce the activity of the aptamer. Even in structures such as loop structures that do not form base pairs, base substitution is possible when the nucleobase is not involved in direct binding to the target molecule.
  • Aptamers are prepared by using the SELEX method and its improved methods (for example, Ellington et al., (1990) Nature, 346, 818-822; Tuerk et al., (1990) Science, 249, 505-510). can do.
  • SELEX method aptamers with stronger binding force to the target substance are concentrated and sorted by increasing the number of rounds or using competing substances to tighten the sorting conditions. Therefore, by adjusting the number of rounds of SELEX and / or changing the race condition, aptamers with different binding forces, aptamers with different binding forms, and aptamers with the same binding force and binding form but different base sequences. You may be able to get an aptamer.
  • the SELEX method includes an amplification process by PCR, and by inserting mutations such as using manganese ions in the process, it is possible to perform SELEX with a greater variety.
  • SELEX can be performed by further changing the primer in order to obtain an aptamer having higher activity.
  • the specific method is to prepare a template in which a part of the aptamer having a certain sequence is made into a random sequence or a template in which a random sequence of about 10 to 30% is doped, and perform SELEX again.
  • the aptamer obtained by SELEX has a length of about 80 nucleotides, and it is difficult to use this as it is as a medicine. Therefore, it is necessary to repeat trial and error to shorten the length to about 50 nucleotides or less, which can be easily chemically synthesized.
  • the aptamer obtained by SELEX depends on its primer design, and the ease of subsequent minimization work changes. If the primers are not designed properly, even if SELEX can select active aptamers, further development will be impossible. In the present invention, it was possible to obtain an aptamer that retains inhibitory activity even at 29 nucleotides.
  • the important part of the obtained aptamer for binding to the target substance can be identified by repeating the above trial and error, the activity often changes even if a new sequence is added to both ends of the sequence. do not do.
  • the length of the new sequence is not particularly limited.
  • the aptamer of the present invention or the complex of the present invention can be used, for example, as a medicine (hereinafter, also referred to as the medicine of the present invention).
  • Glue gelatin, gum arabic, polyethylene glycol, sucrose, starch and other binders, starch, carboxymethyl cellulose, hydroxypropyl starch, sodium-glycol-starch, sodium hydrogen carbonate, calcium phosphate, calcium citrate and other disintegrants, magnesium stearate , Lubricants such as aerodil, starch, sodium lauryl sulfate, fragrances such as citric acid, menthol, glycyrrhizin / ammonium salt, glycine, orange powder, preservatives such as sodium benzoate, sodium hydrogen sulfite, methylparaben, propylparaben, citric acid , Stabilizers such as sodium citrate, acetic acid, suspending agents such as methyl cellulose, polyvinylpyrrolidone, aluminum stearate, dispersants such as surfactants, diluents such as water, physiological saline, orange juice, cacao butter, polyethylene. Examples thereof include
  • the medicament of the present invention can be coated by a method known per se for the purpose of masking taste, enteric acidity or persistence, if necessary.
  • the coating agent used for coating include hydroxypropylmethylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxypropylcellulose, polyoxyethylene glycol, Tween 80, Pluronic F68, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, hydroxymethylcellulose acetate succinate, and the like.
  • Eudragit manufactured by Roam, Germany, acrylate copolymer of methacrylic acid
  • dyes eg, red iron oxide, titanium dioxide, etc.
  • the drug may be either a rapid-release preparation or a sustained-release preparation.
  • the sustained-release substrate include liposomes, atelocollagen, gelatin, hydroxyapatite, PLGA and the like.
  • Suitable formulations for parenteral administration are aqueous and non-aqueous isotonic.
  • parenteral administration eg, intravenous, subcutaneous, intramuscular, topical, intraperitoneal, nasal, pulmonary, etc.
  • aqueous and non-aqueous isotonic are aqueous and non-aqueous isotonic.
  • sterile injection solutions which may contain antioxidants, buffers, antibacterial agents, isotonic agents and the like.
  • aqueous and non-aqueous sterile suspensions may be mentioned, which may include suspending agents, solubilizing agents, thickeners, stabilizers, preservatives and the like.
  • the formulation can be encapsulated in single doses or multiple doses, such as ampoules and vials.
  • sustained-release preparations can also be mentioned as suitable preparations.
  • Sustained-release preparations include artificial bone, biodegradable or non-degradable sponges, bags, drug pumps, osmotic pumps, and other sustained-release forms from carriers or containers embedded in the body, or continuous or intermittent from outside the body. Examples include devices that are delivered internally or locally.
  • examples of the surfactant include oleic acid, lecithin, diethylene glycol dioleate, tetrahydrofurfuryl oleate, ethyl oleate, isopropyl myristate, glyceryl trioleate, glyceryl monolaurate, glyceryl monooleate, and glyceryl monosteer.
  • Span, Tween, Epicron, Brij, Genapol and Synperonic are trademarks.
  • the oil include corn oil, olive oil, cottonseed oil, sunflower oil and the like.
  • appropriate pharmaceutically acceptable bases yellow petrolatum, white petrolatum, paraffin, plastic base, silicone, white ointment, beeswax, pig oil, vegetable oil, hydrophilic ointment, hydrophilic petrolatum, purified lanolin, hydrous lanolin , Water-absorbing ointment, hydrophilic plastic base, macrogol ointment, etc.
  • the inhalant can be manufactured according to the conventional method. That is, it can be produced by powdering or liquidating the aptamer of the present invention or the composite of the present invention, blending it in an inhalation propellant and / or a carrier, and filling it in an appropriate inhalation container. Further, when the aptamer of the present invention or the complex of the present invention is powder, a normal mechanical powder inhaler can be used, and when the complex is liquid, an inhaler such as a nebulizer can be used.
  • propellants can be widely used, and CFC-11, CFC-12, CFC-21, CFC-22, CFC-113, CFC-114, CFC-123, CFC-142c, CFC-134a , Freon-227, Freon-C318, Freon compounds such as 1,1,1,2-tetrafluoroethane, hydrocarbons such as propane, isobutane, n-butane, ethers such as diethyl ether, nitrogen gas, carbon dioxide A compressed gas such as a gas can be exemplified.
  • the dose of the medicament of the present invention varies depending on the type of active ingredient, activity, severity of disease, animal species to be administered, drug acceptability to be administered, body weight, age, etc., but is usually per adult per day.
  • the amount of active ingredient can be from about 0.0001 to about 100 mg / kg, such as from about 0.0001 to about 10 mg / kg, preferably from about 0.005 to about 1 mg / kg.
  • the aptamer of the present invention or the complex of the present invention can specifically bind to FGF9. Therefore, the aptamer of the present invention or the complex of the present invention is useful as a detection reagent for FGF9 (hereinafter, also referred to as a detection reagent of the present invention).
  • the detection reagent is useful for in vivo imaging of FGF9, blood concentration measurement, tissue staining, ELISA and the like.
  • the aptamer of the present invention or the complex of the present invention can be used as a ligand for separation and purification of FGF9 (hereinafter, also referred to as a ligand for separation and purification of the present invention).
  • the present invention also provides a solid phase carrier on which the aptamer of the present invention or the complex of the present invention is immobilized (hereinafter, also referred to as the solid phase carrier of the present invention).
  • the solid phase carrier include substrates, resins, plates (eg, multi-well plates), filters, cartridges, columns, and porous materials.
  • the substrate may be one used for a DNA chip, a protein chip, or the like.
  • the resin examples include agarose particles, silica particles, a copolymer of acrylamide and N, N'-methylenebisacrylamide, polystyrene-crosslinked divinylbenzene particles, particles obtained by cross-linking dextran with epichlorohydrin, cellulose fibers, and allyl dextran.
  • examples thereof include crosslinked polymers of N, N'-methylenebisacrylamide, monodisperse synthetic polymers, monodisperse hydrophilic polymers, sepharose, toyopearl, and resins in which various functional groups are bonded to these resins. ..
  • the solid phase carrier of the present invention can be useful, for example, for purification of FGF9 and detection and quantification of FGF9.
  • the aptamer of the present invention or the complex of the present invention can be immobilized on a solid phase carrier by a method known per se.
  • an affinity substance eg, as described above
  • a predetermined functional group is introduced into an aptamer of the present invention or a complex of the present invention, and then the affinity substance or a predetermined functional group is used as a solid phase carrier.
  • a method of immobilization can be mentioned.
  • the present invention also provides such a method.
  • the predetermined functional group can be a functional group that can be subjected to a coupling reaction, and examples thereof include an amino group, a thiol group, a hydroxyl group, and a carboxyl group.
  • the present invention also provides an aptamer into which such a functional group has been introduced.
  • the present invention also provides a method for purifying and concentrating FGF9 (hereinafter, also referred to as the method for purifying and concentrating the present invention).
  • the present invention is capable of separating FGF9 from other family proteins.
  • the purification and concentration method of the present invention may include adsorbing FGF9 on the solid phase carrier of the present invention and eluting the adsorbed FGF9 with an eluate.
  • Adsorption of FGF9 onto the solid phase carrier of the present invention can be carried out by a method known per se. For example, a sample containing FGF9 (eg, bacterial or cell culture or culture supernatant, blood) is introduced into the solid phase carrier of the invention or its content.
  • FGF9 eg, bacterial or cell culture or culture supernatant, blood
  • the elution of autotaxine can be performed using an eluate such as a neutral solution.
  • the neutral eluate is not particularly limited, but may have, for example, a pH of about 6 to about 9, preferably about 6.5 to about 8.5, and more preferably about 7 to about 8.
  • Neutral solutions also include, for example, urea, chelating agents (eg, EDTA), sodium salts (eg, NaCl), potassium salts (eg, KCl), magnesium salts (eg, MgCl 2 ), surfactants (eg, Tween20). , Triton, NP40), glycerin.
  • the purification and concentration method of the present invention may further include washing the solid phase carrier with a washing solution after adsorption of autotaxin.
  • the cleaning solution examples include urea, a chelating agent (eg, EDTA), Tris, an acid, an alkali, a surface active agent such as Tranfer RNA, DNA, Tween 20, and a salt such as NaCl.
  • the purification and concentration methods of the present invention may further include heat treating the solid phase carrier. By this step, the solid phase carrier can be regenerated and sterilized.
  • the present invention also provides a method for detecting and quantifying FGF9 (hereinafter, also referred to as a method for detecting and quantifying FGF9 of the present invention).
  • the present invention can be detected and quantified separately from FGF9 and other family proteins.
  • the detection and quantification methods of the present invention may include measuring FGF9 using the aptamers of the present invention (eg, by using the complex and solid phase carriers of the present invention).
  • the method for detecting and quantifying FGF9 can be carried out by the same method as the immunological method except that the aptamer of the present invention is used instead of the antibody.
  • EIA enzyme-linked immunosorbent assay
  • ELISA direct-competitive ELISA, indirect-competitive ELISA, sandwich ELISA
  • RIA radioimmunoassay
  • FIA Western blot method
  • immunohistochemical staining method cell sorting method and the like. It can also be used as a molecular probe for PET and the like.
  • RNA aptamers that bind to FGF9 were prepared using the SELEX method. SELEX was performed with reference to the method of Ellington et al. (Ellington and Szostak, Nature 346, 818-822, 1990) and the method of Tuerk et al. (Tuerk and Gold, Science 249, 505-510, 1990).
  • FGF9 manufactured by R & D systems
  • immobilized on a carrier of NHS-activated Sepharose 4 Fast Flow manufactured by GE Healthcare
  • the method for immobilizing FGF9 on the carrier was performed according to the specifications of GE Healthcare Japan.
  • the amount of immobilization was confirmed by examining the FGF9 solution before immobilization and the supernatant immediately after immobilization by SDS-PAGE. As a result of SDS-PAGE, no band of FGF9 was detected from the supernatant, and it was confirmed that almost all of the FGF9 used was coupled. About 217 pmol of FGF9 was immobilized on about 3 ⁇ L of resin.
  • RNA (35N) used in the first round was obtained by transcribing the DNA obtained by chemical synthesis using mutant T7 RNA polymerase (Sousa and Padilla, EMBO J. 14,4609-4621, 1995).
  • the substrate for this transcription reaction was selected so that the purine nucleotide of the transcript was RNA and the pyrimidine nucleotide was DNA.
  • As the DNA template a 71-nucleotide long DNA having primer sequences at both ends of the 35-nucleotide random sequence shown below was used. DNA templates and primers were made by chemical synthesis.
  • DNA template 5'-AGGAGCTACGCAGGCGTANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAGCTCGACGGAGCTTCCC-3'(SEQ ID NO: 39)
  • Primer Fwd 5'-TAATACGACTCACTATAGGGAAGCTCCGTCGAGCT-3'(SEQ ID NO: 40)
  • Primer Rev 5'-AGGAGCTACGCAGGCGTA-3' (SEQ ID NO: 41)
  • N in the DNA template is any combination of 35 nucleotides (35N: each N is A, C, G or T) and the resulting aptamer-specific sequence region. Occurs.
  • Primer Fwd contains the promoter sequence of T7 RNA polymerase. The variation of the RNA pool used in the first round was theoretically 10 14 .
  • RNA bound to FGF9 was recovered from the supernatant after adding solution B as an eluate and heat-treating at 85 ° C. for 3 minutes.
  • solution B is a mixed solution of 7M Urea, 5mM EDTA, and 20mM tris (pH 6.6).
  • the recovered RNA was amplified by reverse transcription PCR, transcribed with mutant T7 RNA polymerase, and used as a pool for the next round. The above was regarded as one round, and the same work was repeated multiple times.
  • the base sequence was analyzed using a next-generation sequencer.
  • the Ion PGM TM system manufactured by Thermo
  • was used for the next-generation sequencer was used for the next-generation sequencer, and the analysis was performed according to the specifications of Thermo.
  • the nucleotide sequence represented by SEQ ID NO: 1 is one of the representative sequences of those clonal sequences, and there were 65 copies in the clonal sequence.
  • the nucleotide sequence represented by SEQ ID NO: 1 contained common sequence 1.
  • Common sequence 1 was present in at least 28 of the 25,205 sequences. When the secondary structure of these 28 types of sequences was predicted using the MFOLD program (Zukker, Nucleic Acids Res. 31, 3406-3415, 2003), the common sequence 1 formed a similar loop structure.
  • the secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 is shown in FIG.
  • nucleotide sequence represented by SEQ ID NO: 1 and the common sequence 1 are shown below. Unless otherwise stated, the individual sequences listed below shall be represented in the 5'to 3'direction, with purine nucleotides (A and G) being 2'-OH (ie, ribonucleotides) and pyrimidine nucleotides (ie, ribonucleotides). T and C) are 2'-H (ie, deoxyribonucleotides). In addition, H in the sequence indicates T, C or A.
  • SEQ ID NO: 1 GGGAAGCTCCGTCGAGCTGAGGGCACCCAAGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGCTCCT
  • CAAGGHTGCCG SEQ ID NO: 37
  • the binding activity of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 to FGF9 was evaluated by the surface plasmon resonance method.
  • a Biacore T200 manufactured by GE Healthcare was used for the measurement.
  • As the sensor chip an SA chip on which streptavidin was immobilized was used.
  • About 740 RU of 16 nucleotides of PolydT to which biotin was bound at the 5'end was bound to this.
  • 16 nucleotides of PolyA was added to the 3'end and immobilized on the SA chip by annealing T and A.
  • Nucleic acid was injected for 30 seconds at a flow rate of 10 ⁇ L / min to immobilize approximately 370 RU of nucleic acid.
  • FGF9 for analysis was prepared to 0.1 ⁇ M and injected at a flow rate of 30 ⁇ L / min for 60 seconds.
  • Solution C was used as the running buffer.
  • the solution C is a mixed solution of 300 mM sodium chloride, 5.4 mM potassium chloride, 1.8 mM calcium chloride, 0.8 mM magnesium chloride, 20 mM tris (pH 7.6), and 0.05% Tween 20.
  • aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 binds to FGF9 (Fig. 2).
  • Nucleic acid pool (35N) used in the first round containing a random sequence of 35 nucleotides used as a negative control did not show binding to FGF9.
  • Whether or not the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 inhibits the activity of FGF9 was evaluated by the following method.
  • a fusion protein of FGFR3c and the Fc portion of IgG (manufactured by R & D systems) was selected as the receptor for FGF9.
  • Biacore T200 manufactured by GE Healthcare was used.
  • the sensor chip used was a protein A immobilized on CM5.
  • FGFR3c was immobilized there at about 500 RU.
  • a mixture of FGF9 (0.1 ⁇ M), heparin (0.1 ⁇ M) (manufactured by Calbiochem) and aptamer (0.5 ⁇ M) was flowed as an analyzer.
  • Solution D was used as the running buffer.
  • solution D is a mixed solution of 295 mM sodium chloride, 5.4 mM potassium chloride, 1.8 mM calcium chloride, 0.8 mM magnesium chloride, 20 mM tris (pH 7.6), and 0.05% Tween 20.
  • a mixture of FGF9 and heparin binds to FGFR3c.
  • the aptamer represented by SEQ ID NO: 1 showed strong inhibitory activity.
  • FIG. 3 shows a sensorgram showing that the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 inhibits the binding between FGF9 and FGFR3c.
  • the inhibition rate of the test substance was calculated using the following formula.
  • Inhibition rate (%) (R Max -R apt ) / R Max x100
  • R Max and R apt are the RU values indicated by the mixture of FGF9 and heparin with and without the addition of the test substance.
  • the inhibition rate of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 was 95.7%.
  • 35N which is a negative control, showed no inhibitory activity (inhibition rate 0%). From the above results, it can be said that the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 exhibits an excellent inhibitory effect on FGF9.
  • Example 2 Shortening the aptamer (1) The aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 was shortened to obtain an aptamer consisting of the nucleotide sequence represented by SEQ ID NOs: 2-9.
  • FIG. 4 shows a prediction of the secondary structure of the aptamer consisting of the nucleotide sequences represented by SEQ ID NOs: 2 to 9.
  • nucleotide sequences represented by SEQ ID NOs: 2 to 9 are shown below. Unless otherwise stated, the individual sequences listed below shall be represented in the 5'to 3'direction, with purine nucleotides (A and G) being 2'-OH (ie, ribonucleotides) and pyrimidine nucleotides (ie, ribonucleotides). T and C) are 2'-H (ie, deoxyribonucleotides).
  • SEQ ID NO: 2 (Sequence in which the nucleotide sequence represented by SEQ ID NO: 1 is shortened to 25 nucleotides including a common sequence) GGGCACCCAAGGCTGCCGGGTGCCA SEQ ID NO: 3: (Sequence in which the nucleotide sequence represented by SEQ ID NO: 1 is shortened to 59 nucleotides including a common sequence) GGAGCTGAGGGCACCCAAGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGCTCCT SEQ ID NO: 4: (Sequence in which the nucleotide sequence represented by SEQ ID NO: 1 is shortened to 43 nucleotides including a common sequence) GGGCACCCAAGGCTGCCGGGTGCCATGCACACATACGCCTGCG SEQ ID NO: 5: (Sequence obtained by shortening the nucleotide sequence represented by SEQ ID NO: 1 to 57 nucleotides including a common sequence) GGGAAGCTCCGTCGAGCT
  • GGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGCC SEQ ID NO: 9: (Sequence obtained by shortening the nucleotide sequence represented by SEQ ID NO: 1 to 31 nucleotides including a partial sequence of the common sequence) GGCCGGGTGCCATGCACACATACGCCTGCGT
  • Example 3 Preparation of RNA aptamer that binds to FGF9 (2)
  • the total length of the aptamer obtained was about 70 bases, and then the work of shortening the chain was required. However, the shortened form was often significantly reduced in activity. Therefore, SELEX was performed with reference to the Tailored-SELEX method developed by NOXXON (Vater et al. Nucleic Acids Res. 31, 2003, el30; Jarosch et al. Nucleic Acids Res. 34, 2006, e86).
  • the target immobilization and washing method was substantially the same as in Example 1, and FGF9 (manufactured by R & D systems) immobilized on a carrier of NHS-activated Sepharose 4 Fast Flow (manufactured by GE Healthcare) was used.
  • DNA templates and primers were prepared by chemical synthesis.
  • the substrate for the transcription reaction was selected so that the purine nucleotide was RNA and the pyrimidine nucleotide was DNA with reference to Example 1.
  • Two SELEXs were performed with different molds and primer sets. The sequences of the templates and primers used are shown below.
  • DNA template 1 5'-TCGAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGCCCTATAGTGAGTCGTATTA-3' (SEQ ID NO: 42) Forward ligate 1: 5'-UAAUACGACUCACUAUA-3' (SEQ ID NO: 43) Forward primer 1: 5'-TAGACCATTCGACTATAATACGACTCACTATAGGGC-3' (SEQ ID NO: 44) Forward bridge 1: 5'-GCCCTATAGTGAGTCGTATT-NH 2-3 ' (SEQ ID NO: 45) Reverse bridge 1: 5'-TTACGTCTTGTTTTTCTCGAG-3' (SEQ ID NO: 46) Reverse ligate 1: 5'-p-GAAAAACAAGACGTAA-NH 2-3 ' (SEQ ID NO: 47) DNA template 2: 5'-TCGAGNNNNNNNNNNNNNNNNNNNNNNNNTCCCTATAGTGAGTCGTATTA-3' (SEQ ID NO: 48) Forward ligate 2: (Sam
  • sequence analysis was performed using the next-generation sequencer in the same manner as in Example 1. From SELEX using DNA template 1, 12,737 types of clone sequences were identified, and it was confirmed that they converged to 353 types of sequences. From SELEX using DNA template 2, 28,646 types of clone sequences were identified, and it was confirmed that they converged to 3,852 types of sequences. There were clone sequences having a common sequence in these clone sequences. The nucleotide sequences represented by SEQ ID NOs: 10 to 27 are representative sequences of those clonal sequences. FIG. 5 shows a secondary structure prediction of an aptamer consisting of the nucleotide sequences represented by SEQ ID NOs: 10 to 27.
  • nucleotide sequences represented by SEQ ID NOs: 10 to 27 are shown below. Unless otherwise stated, the individual sequences listed below shall be represented in the 5'to 3'direction, with purine nucleotides (A and G) being 2'-OH (ie, ribonucleotides) and pyrimidine nucleotides (ie, ribonucleotides). T and C) are 2'-H (ie, deoxyribonucleotides).
  • the stem to be produced was found to be a 4-base pair stem.
  • the result of SEQ ID NO: 11 showed that the nucleotide sequence adjacent to the 5'side of the stem can be deleted.
  • Example 4 Shortening the aptamer (2) The aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 27 was shortened to obtain an aptamer consisting of the nucleotide sequence represented by SEQ ID NOs: 28 to 35.
  • FIG. 6 shows a secondary structure prediction of an aptamer consisting of the nucleotide sequences represented by SEQ ID NOs: 28 to 35.
  • nucleotide sequences represented by SEQ ID NOs: 28 to 35 are shown below. Unless otherwise stated, the individual sequences listed below shall be represented in the 5'to 3'direction, with purine nucleotides (A and G) being 2'-OH (ie, siribonucleotides) and pyrimidine nucleotides. (T and C) are 2'-H (ie, deoxyribonucleotides).
  • SEQ ID NO: 28 (A sequence in which the 3'end of the nucleotide sequence represented by SEQ ID NO: 27 is shortened by 2 nucleotides) GGGAGGTGCCAAGGTTGCCGGTACCAATAATGTGCTC
  • SEQ ID NO: 29 (A sequence in which the 3'end of the nucleotide sequence represented by SEQ ID NO: 27 is shortened by 4 nucleotides) GGGAGGTGCCAAGGTTGCCGGTACCAATAATGTGC
  • SEQ ID NO: 30 (A sequence in which the 3'end of the nucleotide sequence represented by SEQ ID NO: 27 is shortened by 5 nucleotides) GGGAGGTGCCAAGGTTGCCGGTACCAATAATGTG
  • SEQ ID NO: 31 (A sequence in which the 3'end of the nucleotide sequence represented by SEQ ID NO: 27 is shortened by 6 nucleotides) GGGAGGTGCCAAGGTTGCCGGTACCAATAATGT
  • the aptamers of the invention can be shortened to at least 29 mer while maintaining a 6 base pair stem formed by a nucleotide sequence containing nucleotides adjacent to the 3'side.
  • Example 5 Modification of aptamer Chemical modification of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 30 was examined, and an aptamer consisting of the nucleotide sequence represented by SEQ ID NOs: 30 (1) to 30 (22) was obtained. ..
  • nucleotide sequences represented by SEQ ID NOs: 30 (1) to 30 (22) are shown below.
  • the individual sequences listed below shall be represented in the 5'to 3'direction, and unless otherwise noted, purine nucleotides (A and G) are 2'-OH (ie, ribonucleotides) and pyrimidine nucleotides (ie, ribonucleotides).
  • T and C) are 2'-H (ie, deoxyribonucleotides).
  • a (M), G (M), C (M), and U (M) indicate that the nucleotides 2'of A, G, C, and U are methoxylated, respectively.
  • U is uridine (ribonucleotide).
  • SEQ ID NO: 30 (11): (2'of the 29th and 30th nucleotides of the nucleotide sequence represented by SEQ ID NO: 30 are methoxylated, and the 31st nucleotide is replaced with uridine in which the carbon at the 2'position is methoxylated.
  • SEQ ID NO: 30 (12): (2'of the 32nd and 34th nucleotides of the nucleotide sequence represented by SEQ ID NO: 30 are methoxylated, and the 33rd nucleotide is replaced with uridine in which the carbon at the 2'position is methoxylated.
  • SEQ ID NO: 30 (13) (includes all modifications of SEQ ID NO: 30 (1), 30 (2), 30 (3), 30 (4), 30 (10), 30 (11), 30 (12)' Array) G (M) G (M) G (M) A (M) G (M) G (M) U (M) G (M) C (M) C (M) AAGGTTTGCCG (M) G (M) U ( M) A (M) C (M) C (M) A (M) A (M) C (M) C (M) A (M) A (M) U (M) A (M) U (M) G (M) U (M) G (M) _ (T) SEQ ID NO: 30 (14): (sequence in which 2'of the nucleotides 11, 12, 13, 14, and 17 of the nucleotide sequence represented by SEQ ID NO: 30 (13) is methoxylated) G (M) G
  • the aptamers or complexes of the present invention may also be useful for purification and enrichment of FGF9, labeling of FGF9, and detection and quantification of FGF9.
  • This application is based on Japanese Patent Application No. 2019-072337 filed in Japan (Filing date: April 4, 2019), the contents of which are all incorporated herein by reference.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Optics & Photonics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention provides an aptamer binding to FGF9, which contains a nucleotide sequence represented by formula (I): CAAGGHTGCCG (SEQ ID NO: 37) (I) (wherein H represents A, C or T), etc.

Description

FGF9に対するアプタマー及びその使用Aptamers for FGF9 and their use
 本発明は、FGF9に対するアプタマーに関する発明である。 The present invention is an invention relating to an aptamer for FGF9.
 線維芽細胞増殖因子9(Fibroblast Growth Factor 9;FGF9)は、FGFファミリータンパク質の一つであり、胚形成や発生、血管形成、腫瘍形成などの様々な生物学的過程に関与するタンパク質である(非特許文献1)。特に他のFGFファミリータンパク質と同様に様々ながんで発現することが報告されており、細胞特異的にFGF9を発現させることで様々な器官特異的ながんモデルを作成できることも報告されている。 Fibroblast Growth Factor 9 (FGF9) is one of the FGF family proteins and is a protein involved in various biological processes such as embryogenesis, development, angiogenesis, and tumorigenesis (Fibroblast Growth Factor 9; FGF9). Non-Patent Document 1). In particular, it has been reported that it is expressed in various cancers like other FGF family proteins, and it has also been reported that various organ-specific cancer models can be created by expressing FGF9 in a cell-specific manner.
 FGF9に結合し、その機能を阻害する分子がこれまでに報告されている。例えば、非特許文献2では、前立腺がんが誘発する骨芽細胞性骨転移に、抗FGF9抗体が有効であることを示唆されている。 Molecules that bind to FGF9 and inhibit its function have been reported so far. For example, Non-Patent Document 2 suggests that an anti-FGF9 antibody is effective for prostate cancer-induced osteoblastic bone metastasis.
 アプタマーは標的分子(タンパク質、糖鎖、ホルモン等)に特異的に結合する核酸であり、一本鎖のRNA(又はDNA)が形成する三次元立体構造を介して、標的分子に結合することができる。その取得にはSELEX法(Systematic Evolution of Ligands by Exponential Enrichment)と呼ばれるスクリーニング法が用いられる(特許文献1~3)。SELEX法で得られるアプタマーの鎖長は80ヌクレオチド程度であり、その後標的分子の生理阻害活性を指標に短鎖化が図られる。さらに生体内での安定性向上を目的に化学修飾を加え、医薬品としての最適化が図られる。アプタマーは免疫排除を受けにくく、抗体特有の抗体依存性細胞障害(ADCC)や補体依存性細胞障害(CDC)などの副作用は起こりにくいとされる。また同じ分子標的医薬である低分子化合物には難溶性の分子もあり、その製剤化には最適化が必要である場合もあるが、アプタマーは水溶性が高いため、その点でも有利である。さらに化学合成により生産されるので、大量生産すればコストダウンを図ることができる。その他、長期保存安定性や熱、溶媒耐性もアプタマーの優位な特徴である。一方で、一般にアプタマーの血中半減期は抗体よりも短い。しかし、この点も毒性の観点からはメリットとなる場合がある。2004年12月に米国で承認された初めてのRNAアプタマー医薬品であるMacugen(対象疾患:加齢黄斑変性症)をはじめ、様々なアプタマー医薬品が開発されている。近年ではRNAアプタマーだけでなく、生体内で安定かつ安価に製造可能なDNAアプタマーの開発も進められている。 Aptamers are nucleic acids that specifically bind to target molecules (proteins, sugar chains, hormones, etc.) and can bind to target molecules via the three-dimensional structure formed by single-stranded RNA (or DNA). it can. A screening method called the SELEX method (Systematic Evolution of Ligands by Exponential Enrichment) is used for the acquisition (Patent Documents 1 to 3). The chain length of the aptamer obtained by the SELEX method is about 80 nucleotides, and then the chain length is shortened using the physiological inhibitory activity of the target molecule as an index. Furthermore, chemical modification is added for the purpose of improving stability in the living body, and optimization as a pharmaceutical product is achieved. Aptamers are less susceptible to immune exclusion, and side effects such as antibody-specific antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cellular cytotoxicity (CDC) are less likely to occur. In addition, low-molecular-weight compounds, which are the same molecular-targeted drugs, also have poorly soluble molecules, and optimization may be required for their formulation, but aptamers are highly water-soluble, which is also advantageous. Furthermore, since it is produced by chemical synthesis, cost reduction can be achieved by mass production. In addition, long-term storage stability, heat, and solvent resistance are also predominant features of aptamers. On the other hand, aptamers generally have a shorter half-life in blood than antibodies. However, this point may also be advantageous from the viewpoint of toxicity. Various aptamer drugs have been developed, including Macugen (target disease: age-related macular degeneration), the first RNA aptamer drug approved in the United States in December 2004. In recent years, not only RNA aptamers but also DNA aptamers that can be stably and inexpensively produced in vivo have been developed.
 また、アプタマーが有する標的分子への親和性の高さを利用して、標的分子の精製や分子ターゲティングに用いられる試みも数多くなされている。アプタマーは同様な機能をもつ抗体と比較してもその親和性は高い場合が多い。デリバリーの観点では、アプタマーは抗体の1/10程度の分子サイズであるため組織移行が起こりやすく、目的の部位まで薬物を送達させることがより容易である。FGF9に対する抗体は既に市販されているが、FGF9に対するアプタマーはこれまで全く報告されていない。 In addition, many attempts have been made to use aptamers for purification and molecular targeting of target molecules by utilizing their high affinity for target molecules. Aptamers often have a higher affinity than antibodies with similar functions. From the viewpoint of delivery, since the aptamer has a molecular size of about 1/10 of that of the antibody, tissue migration is likely to occur, and it is easier to deliver the drug to the target site. Antibodies to FGF9 are already commercially available, but no aptamers to FGF9 have been reported so far.
国際公開第91/19813号International Publication No. 91/19813 国際公開第94/08050号International Publication No. 94/08050 国際公開第95/07364号International Publication No. 95/07364
 本発明は、FGF9に対するアプタマーを提供することを目的とする。 An object of the present invention is to provide an aptamer for FGF9.
 本発明者は、上記課題を解決するため鋭意検討した結果、FGF9に結合するアプタマーを製造することに成功した。またこのアプタマーがFGF9の活性を阻害することも示した。特に本アプタマーは、特徴的な潜在的二次構造と該二次構造の特徴であるループ部分のモチーフ配列を有する新規のアプタマーであった。 The present inventor has succeeded in producing an aptamer that binds to FGF9 as a result of diligent studies to solve the above problems. We also showed that this aptamer inhibits the activity of FGF9. In particular, this aptamer was a novel aptamer having a characteristic potential secondary structure and a motif sequence of a loop portion, which is a characteristic of the secondary structure.
 即ち、本発明は、以下のとおりである。
[1]FGF9に結合するアプタマー。
[2]式(I):
CAAGGHTGCCG (配列番号37) (I)
(式中、HはA、CまたはTを表す)
で表されるヌクレオチド配列を含む、[1]に記載のアプタマー。
[3]以下の(a)又は(b)のいずれかである、[2]に記載のアプタマー:
(a)該アプタマーに含まれるヌクレオチド配列において、
 (i)各ピリミジンヌクレオチドが、デオキシリボースであり、
 (ii)各プリンヌクレオチドが、リボースである;
(b)該アプタマーに含まれるヌクレオチド配列において、
 (i)各ピリミジンヌクレオチドが、デオキシリボースであって、該デオキシリボースの2’位の水素原子が、それぞれ独立して、無置換であるか、メトキシ基で置換されており、
 (ii)各プリンヌクレオチドが、リボースであって、該リボースの2’位のヒドロキシ基が、それぞれ独立して、無置換であるか、メトキシ基で置換されている。
[4]式(I)で表されるヌクレオチド配列、該ヌクレオチド配列の5’末端に隣接するヌクレオチドX1、X2、X3および3’末端に隣接するヌクレオチドX4、X5、X6が、式(II): 
That is, the present invention is as follows.
[1] An aptamer that binds to FGF9.
[2] Equation (I):
CAAGGHTGCCG (SEQ ID NO: 37) (I)
(In the formula, H represents A, C or T)
The aptamer according to [1], which comprises a nucleotide sequence represented by.
[3] The aptamer according to [2], which is either (a) or (b) below:
(a) In the nucleotide sequence contained in the aptamer,
(i) Each pyrimidine nucleotide is deoxyribose,
(ii) Each purine nucleotide is ribose;
(b) In the nucleotide sequence contained in the aptamer
(i) Each pyrimidine nucleotide is deoxyribose, and the hydrogen atom at the 2'position of the deoxyribose is independently unsubstituted or substituted with a methoxy group.
(ii) Each purine nucleotide is ribose, and the hydroxy group at the 2'position of the ribose is independently unsubstituted or substituted with a methoxy group.
[4] The nucleotide sequence represented by the formula (I), the nucleotides X1, X2, X3 and the nucleotides X4, X5, X6 adjacent to the 5'end of the nucleotide sequence are represented by the formula (II):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、HはA、CまたはTを表す;
 X1~X6は、それぞれ同一または異なって、A、G、CおよびTからなる群より選択されるヌクレオチドであり;
 X1およびX6、X2およびX5、X3およびX4、および式(I)で表されるヌクレオチド配列の5’末端のCおよび3’末端のGが、それぞれワトソンクリック塩基対を形成する)
で表される潜在的2次構造を形成する、[3]に記載のアプタマー。
[5]式(II)において、式(I)で表されるヌクレオチド配列におけるヌクレオチド番号4番目のGおよびヌクレオチド番号10番目のC、ヌクレオチド番号5番目のGおよびヌクレオチド番号9番目のCがさらに、それぞれワトソンクリック塩基対を形成する、[4]に記載のアプタマー。
[6]下記(A)、(B)又は(C):
(A)配列番号1~6、10~15、17、18、20、21および23~35からなる群から選択されるヌクレオチド配列、
(B)配列番号1~6、10~15、17、18、20、21および23~35からなる群から選択されるヌクレオチド配列において、1~数個のヌクレオチドが置換、欠失、挿入又は付加された(但し、式(I)で表わされるヌクレオチド配列を除く)ヌクレオチド配列、
(C)配列番号1~6、10~15、17、18、20、21および23~35からなる群から選択されるヌクレオチド配列と95%以上の同一性を有する(但し、式(I)で表わされるヌクレオチド配列は同一である)ヌクレオチド配列
のいずれかのヌクレオチド配列を含む、[4]に記載のアプタマーであって、
該アプタマーに含まれるヌクレオチド配列において、
 (i)各ピリミジンヌクレオチドが、デオキシリボースであり、
 (ii)各プリンヌクレオチドが、リボースである
アプタマー。
[7]inverted dTが、アプタマーの3’末端に結合している、[4]または[5]に記載のアプタマー。
[8]さらにFGF9とその受容体の間の結合を阻害する、[1]~[7]のいずれか一つに記載のアプタマー。
[9] [1]~[8]のいずれか一つに記載のアプタマー及び機能性物質を含む複合体。
[10]機能性物質が、親和性物質、標識用物質、酵素、薬物送達媒体又は薬物である、[9]に記載の複合体。
[11] [1]~[8]のいずれか一つに記載のアプタマーあるいは[9]又は[10]に記載の複合体を含む、医薬。
[12] [1]~[8]のいずれか一つに記載のアプタマーあるいは[9]又は[10]に記載の複合体を含む、FGF9の検出試薬。
(In the formula, H represents A, C or T;
X1 to X6 are nucleotides selected from the group consisting of A, G, C and T, which are the same or different, respectively;
X1 and X6, X2 and X5, X3 and X4, and the 5'end C and 3'end G of the nucleotide sequence represented by formula (I) form Watson-Crick base pairs, respectively)
The aptamer according to [3], which forms a potential secondary structure represented by.
[5] In formula (II), nucleotide number 4th G and nucleotide number 10th C, nucleotide number 5th G and nucleotide number 9th C in the nucleotide sequence represented by formula (I) are further added. The aptamer according to [4], each of which forms a Watson click base pair.
[6] The following (A), (B) or (C):
(A) Nucleotide sequences selected from the group consisting of SEQ ID NOs: 1-6, 10-15, 17, 18, 20, 21 and 23-35,
(B) In a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1 to 6, 10 to 15, 17, 18, 20, 21 and 23 to 35, one to several nucleotides are substituted, deleted, inserted or added. (However, excluding the nucleotide sequence represented by the formula (I)), the nucleotide sequence,
(C) Has 95% or more identity with the nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-6, 10-15, 17, 18, 20, 21 and 23-35 (provided that it is in formula (I)). The aptamer according to [4], which comprises any of the nucleotide sequences of the nucleotide sequences (the nucleotide sequences represented are identical).
In the nucleotide sequence contained in the aptamer,
(i) Each pyrimidine nucleotide is deoxyribose,
(ii) An aptamer in which each purine nucleotide is ribose.
[7] The aptamer according to [4] or [5], wherein the inverted dT is bound to the 3'end of the aptamer.
[8] The aptamer according to any one of [1] to [7], which further inhibits the binding between FGF9 and its receptor.
[9] A complex containing the aptamer and the functional substance according to any one of [1] to [8].
[10] The complex according to [9], wherein the functional substance is an affinity substance, a labeling substance, an enzyme, a drug delivery medium or a drug.
[11] A medicament comprising the aptamer according to any one of [1] to [8] or the complex according to [9] or [10].
[12] A reagent for detecting FGF9, which comprises the aptamer according to any one of [1] to [8] or the complex according to [9] or [10].
 本発明のアプタマー又は複合体は、FGF9の精製及び濃縮、FGF9の標識、並びにFGF9の検出及び定量に有用であり得る。 The aptamer or complex of the present invention may be useful for purification and concentration of FGF9, labeling of FGF9, and detection and quantification of FGF9.
図1は、MFOLDプログラムにより予想される、配列番号1で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、円で囲われたヌクレオチド配列は共通配列に該当する。FIG. 1 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the nucleotide sequence circled corresponds to a common sequence. 図2は、配列番号1で表わされるヌクレオチド配列からなるアプタマーがFGF9に結合するセンサーグラムを示す。FIG. 2 shows a sensorgram in which an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 binds to FGF9. 図3は、配列番号1で表わされるヌクレオチド配列からなるアプタマーがFGF9とFGFR3cの結合を阻害していることを示すセンサーグラムを示す。FIG. 3 shows a sensorgram showing that an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 inhibits the binding between FGF9 and FGFR3c. 図4-1は、MFOLDプログラムにより予想される、配列番号2で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、円で囲われたヌクレオチド配列は共通配列に該当する。FIG. 4-1 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 2 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the nucleotide sequence circled corresponds to a common sequence. 図4-2は、MFOLDプログラムにより予想される、配列番号3で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、円で囲われたヌクレオチド配列は共通配列に該当する。FIG. 4-2 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 3 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the nucleotide sequence circled corresponds to a common sequence. 図4-3は、MFOLDプログラムにより予想される、配列番号4で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、円で囲われたヌクレオチド配列は共通配列に該当する。FIG. 4-3 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 4 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the nucleotide sequence circled corresponds to a common sequence. 図4-4は、MFOLDプログラムにより予想される、配列番号5で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、円で囲われたヌクレオチド配列は共通配列に該当する。FIG. 4-4 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 5 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the nucleotide sequence circled corresponds to a common sequence. 図4-5は、MFOLDプログラムにより予想される、配列番号6で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、円で囲われたヌクレオチド配列は共通配列に該当する。FIG. 4-5 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 6 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the nucleotide sequence circled corresponds to a common sequence. 図4-6は、MFOLDプログラムにより予想される、配列番号7で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、円で囲われたヌクレオチド配列は共通配列の部分配列に該当する。FIG. 4-6 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 7 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the nucleotide sequence circled corresponds to a partial sequence of the common sequence. 図4-7は、MFOLDプログラムにより予想される、配列番号8で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、円で囲われたヌクレオチド配列は共通配列内の隣接する2つのAが欠失した配列に該当する。FIG. 4-7 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 8 as expected by the MFOLD program. U or u represents deoxythymidine. Also, the circled nucleotide sequence corresponds to a sequence in which two adjacent A's are deleted in the common sequence. 図4-8は、MFOLDプログラムにより予想される、配列番号9で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、円で囲われたヌクレオチド配列は共通配列の部分配列に該当する。FIG. 4-8 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 9 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the nucleotide sequence circled corresponds to a partial sequence of the common sequence. 図5-1は、MFOLDプログラムにより予想される、配列番号10で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-1 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 10 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-2は、MFOLDプログラムにより予想される、配列番号11で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-2 shows the secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 11 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-3は、MFOLDプログラムにより予想される、配列番号12で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-3 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 12 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-4は、MFOLDプログラムにより予想される、配列番号13で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-4 shows the secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 13 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-5は、MFOLDプログラムにより予想される、配列番号14で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-5 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 14 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-6は、MFOLDプログラムにより予想される、配列番号15で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-6 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 15 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-7は、MFOLDプログラムにより予想される、配列番号16で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。FIG. 5-7 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 16 as expected by the MFOLD program. U or u represents deoxythymidine. 図5-8は、MFOLDプログラムにより予想される、配列番号17で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-8 shows the secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 17 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-9は、MFOLDプログラムにより予想される、配列番号18で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-9 shows the secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 18 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-10は、MFOLDプログラムにより予想される、配列番号19で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。FIG. 5-10 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 19 as expected by the MFOLD program. U or u represents deoxythymidine. 図5-11は、MFOLDプログラムにより予想される、配列番号20で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-11 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 20 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-12は、MFOLDプログラムにより予想される、配列番号21で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-12 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 21 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-13は、MFOLDプログラムにより予想される、配列番号22で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。FIG. 5-13 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 22 as expected by the MFOLD program. U or u represents deoxythymidine. 図5-14は、MFOLDプログラムにより予想される、配列番号23で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-14 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 23, as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-15は、MFOLDプログラムにより予想される、配列番号24で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-15 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 24, as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-16は、MFOLDプログラムにより予想される、配列番号25で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-16 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 25, as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-17は、MFOLDプログラムにより予想される、配列番号26で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-17 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 26, as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図5-18は、MFOLDプログラムにより予想される、配列番号27で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 5-18 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 27, as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図6-1は、MFOLDプログラムにより予想される、配列番号28で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 6-1 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 28, as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図6-2は、MFOLDプログラムにより予想される、配列番号29で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 6-2 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 29, as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図6-3は、MFOLDプログラムにより予想される、配列番号30で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 6-3 shows the secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 30 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図6-4は、MFOLDプログラムにより予想される、配列番号31で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 6-4 shows the secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 31 as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図6-5は、MFOLDプログラムにより予想される、配列番号32で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 6-5 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 32, as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図6-6は、MFOLDプログラムにより予想される、配列番号33で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 6-6 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 33, as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図6-7は、MFOLDプログラムにより予想される、配列番号34で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 6-7 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 34, as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence. 図6-8は、MFOLDプログラムにより予想される、配列番号35で表わされるヌクレオチド配列からなるアプタマーの二次構造を示す。Uまたはuはデオキシチミジンを表す。また、四角で囲われたループは共通配列によって形成されるループに該当する。FIG. 6-8 shows the secondary structure of an aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 35, as expected by the MFOLD program. U or u represents deoxythymidine. In addition, the loop surrounded by a square corresponds to a loop formed by a common sequence.
 本発明は、FGF9に対して結合活性を有するアプタマーを提供する。 The present invention provides an aptamer having a binding activity to FGF9.
 アプタマーとは、所定の標的分子に対する結合活性を有する核酸分子をいう。アプタマーは、所定の標的分子に対して結合することにより、所定の標的分子の活性を阻害し得る。本発明のアプタマーは、RNA、DNA、修飾核酸又はそれらの混合物であり得るが、好ましくは、ピリミジンはDNAであり、プリンはRNAである。また本発明のアプタマーは、直鎖状、環状又はステム‐ループ状の形態であり得る。 An aptamer is a nucleic acid molecule having a binding activity to a predetermined target molecule. Aptamers can inhibit the activity of a given target molecule by binding to the given target molecule. The aptamers of the present invention can be RNA, DNA, modified nucleic acids or mixtures thereof, but preferably pyrimidines are DNA and purines are RNA. The aptamers of the present invention may also be in linear, cyclic or stem-loop form.
 本発明のアプタマーは生理的な緩衝液中でFGF9へ結合する。緩衝液としては特に限定されるものではないが、pHが約5.0~10.0程度のものが好ましく用いられ、このような緩衝液としては、例えば後述する溶液C(実施例1参照)が挙げられる。本発明のアプタマーは、以下のいずれかの試験により検出可能な程度の強度で、FGF9へ結合するものである。
 結合強度の測定にはGEヘルスケア社製のBiacore T200を用いる。一つの測定方法としては、まずセンサーチップにアプタマーを固定化する。固定化量は約370RUとする。アナライト用のFGF9溶液は0.1μMに調製したものをインジェクトし、FGF9のアプタマーへの結合を検出する。35ヌクレオチドからなるランダムなヌクレオチド配列を含むDNAをネガティブコントロールとし、該コントロールDNAと比較してFGF9が有意に強くアプタマーに結合した場合、該アプタマーはFGF9への結合能を有すると判定することができる。
The aptamer of the present invention binds to FGF9 in a physiological buffer solution. The buffer solution is not particularly limited, but one having a pH of about 5.0 to 10.0 is preferably used, and examples of such a buffer solution include solution C (see Example 1) described later. The aptamer of the present invention binds to FGF9 with a strength that can be detected by any of the following tests.
Biacore T200 manufactured by GE Healthcare is used to measure the bond strength. One measurement method is to first immobilize the aptamer on the sensor chip. The amount of immobilization is about 370 RU. The FGF9 solution for analite is prepared to 0.1 μM and injected to detect the binding of FGF9 to the aptamer. When a DNA containing a random nucleotide sequence consisting of 35 nucleotides is used as a negative control and FGF9 binds to an aptamer significantly more strongly than the control DNA, it can be determined that the aptamer has a binding ability to FGF9. ..
 本発明のアプタマーは、一実施態様において、FGF9に結合し、FGF9の活性を阻害し得る。すなわち、本発明のアプタマーは、FGF9に対する阻害活性をも有し得る。 In one embodiment, the aptamer of the present invention can bind to FGF9 and inhibit the activity of FGF9. That is, the aptamer of the present invention may also have an inhibitory activity on FGF9.
 FGF9に対する阻害活性とは、FGF9が保有する任意の活性に対する阻害能を意味する。例えば、FGF9はFGF受容体発現細胞に作用してシグナル伝達を活性化し、各種細胞増殖因子やその受容体の産生を誘導する。従って、FGF9に対する阻害活性とはFGF受容体を介した細胞内シグナル伝達を阻害する活性のことであり得る。またこれら各種細胞増殖因子やその受容体の発現は、結果的に細胞の増殖活性や遊走活性の亢進を導くので、FGF9の阻害活性とはそれらの活性の阻害を意味する。
 よって、本発明のアプタマーがFGF9に結合しFGF9とFGF受容体との結合を阻害した場合、FGF受容体を介した細胞内シグナル伝達経路の活性化に伴う作用、例えばERK1/2のリン酸化およびそれに伴う線維芽細胞等の増殖などが阻害され得る。
The inhibitory activity on FGF9 means an inhibitory ability against any activity possessed by FGF9. For example, FGF9 acts on FGF receptor-expressing cells to activate signal transduction and induce the production of various cell growth factors and their receptors. Therefore, the inhibitory activity on FGF9 may be an activity that inhibits intracellular signal transduction via the FGF receptor. In addition, the expression of these various cell growth factors and their receptors results in the enhancement of cell growth activity and migration activity, and thus the inhibitory activity of FGF9 means inhibition of those activities.
Therefore, when the aptamer of the present invention binds to FGF9 and inhibits the binding between FGF9 and the FGF receptor, the action associated with the activation of the intracellular signal transduction pathway mediated by the FGF receptor, for example, phosphorylation of ERK1 / 2 and The accompanying proliferation of fibroblasts and the like can be inhibited.
 FGF9とは、胚形成や発生、血管形成、腫瘍形成時に強く発現するタンパク質であり、例えば、配列番号36で表されるアミノ酸配列を持つタンパク質である。本発明におけるFGF9は、動物体内で作られる他、マウスなどの哺乳細胞、昆虫細胞、大腸菌などの培養細胞を用いても作製することができ、更に化学合成によっても作ることができる。培養細胞や化学合成によって作製する場合は、自体公知の方法で容易に変異体を作製することができる。ここでFGF9の「変異体」とは、公知のFGF9のアミノ酸配列からアミノ酸が1~数個置換、欠失、付加等されたものや、公知のFGF9のアミノ酸配列の一部分のアミノ酸配列からなるものであって、本来FGF9が有している活性の少なくとも一つ以上の活性を有しているタンパク質又はペプチドを意味する。アミノ酸が置換、付加される場合、当該アミノ酸は天然のアミノ酸であってもよいし非天然のアミノ酸であってもよい。本発明におけるFGF9はこれらの変異体を含む。 FGF9 is a protein that is strongly expressed during embryogenesis, development, angiogenesis, and tumorigenesis, and is, for example, a protein having the amino acid sequence represented by SEQ ID NO: 36. In addition to being produced in an animal body, FGF9 in the present invention can also be produced using mammalian cells such as mice, insect cells, and cultured cells such as Escherichia coli, and can also be produced by chemical synthesis. When prepared by cultured cells or chemical synthesis, a mutant can be easily prepared by a method known per se. Here, the "mutant" of FGF9 is one in which one to several amino acids are substituted, deleted, added, etc. from the known amino acid sequence of FGF9, or one consisting of a part of the amino acid sequence of the known amino acid sequence of FGF9. It means a protein or peptide having at least one activity of the activity originally possessed by FGF9. When an amino acid is substituted or added, the amino acid may be a natural amino acid or an unnatural amino acid. FGF9 in the present invention contains these variants.
 FGF9受容体とは、FGF9が結合する細胞表面タンパク質を意味する。FGF9受容体としては、FGFR3cが知られている。本発明におけるFGF9受容体とは、天然のアミノ酸配列を含むタンパク質であってもよいしその変異体であってもよい。ここでFGF9受容体の「変異体」とは、アミノ酸が1~数個置換、欠失、付加等されたものや、公知のFGF9受容体のアミノ酸配列の一部分のアミノ酸配列からなるものであって、FGF9に対して結合活性を有するタンパク質又はペプチドを意味する。一実施態様において、本発明はFGF9とFGF9受容体との結合を阻害するアプタマーを提供する。 The FGF9 receptor means a cell surface protein to which FGF9 binds. FGFR3c is known as the FGF9 receptor. The FGF9 receptor in the present invention may be a protein containing a natural amino acid sequence or a mutant thereof. Here, the "mutant" of the FGF9 receptor is one in which one to several amino acids are substituted, deleted, added, etc., or one consisting of a part of the amino acid sequence of a known FGF9 receptor. , Means a protein or peptide having binding activity to FGF9. In one embodiment, the invention provides an aptamer that inhibits the binding of FGF9 to the FGF9 receptor.
 本発明のアプタマーは、FGF9の任意の部分に結合するアプタマーである限り特に限定されない。また本発明のアプタマーは、FGF9の任意の部分に結合し、その活性を阻害し得るものである限り特に限定されない。 The aptamer of the present invention is not particularly limited as long as it is an aptamer that binds to an arbitrary portion of FGF9. Further, the aptamer of the present invention is not particularly limited as long as it can bind to any portion of FGF9 and inhibit its activity.
 本発明のアプタマーの長さは特に限定されず、通常、約200ヌクレオチド以下であり得るが、例えば約100ヌクレオチド以下であり、好ましくは約50ヌクレオチド以下であり、より好ましくは約40ヌクレオチド以下であり得る。総ヌクレオチド数が少なければ、化学合成及び大量生産がより容易であり、かつコスト面でのメリットも大きい。また、化学修飾も容易であり、生体内安定性も高く、毒性も低いと考えられる。本発明のアプタマー長の下限は、配列番号37で表わされる共通配列(CAAGGHTGCCG;HはA、CまたはTを表す)を含む限り特に制限はないが、該アプタマー長は、例えば15ヌクレオチド以上、好ましくは20ヌクレオチド以上、より好ましくは25ヌクレオチド以上であり得る。特に好ましい実施態様において、本発明のアプタマーの長さは25~40ヌクレオチドである。 The length of the aptamer of the present invention is not particularly limited and may be usually about 200 nucleotides or less, but for example, it is about 100 nucleotides or less, preferably about 50 nucleotides or less, and more preferably about 40 nucleotides or less. obtain. When the total number of nucleotides is small, chemical synthesis and mass production are easier, and there is a great cost advantage. In addition, it is considered that chemical modification is easy, stability in vivo is high, and toxicity is low. The lower limit of the aptamer length of the present invention is not particularly limited as long as it contains the common sequence represented by SEQ ID NO: 37 (CAAGGHTGCCG; H represents A, C or T), but the aptamer length is preferably 15 nucleotides or more, for example. Can be 20 nucleotides or more, more preferably 25 nucleotides or more. In a particularly preferred embodiment, the aptamer length of the present invention is 25-40 nucleotides.
 好ましい一実施態様において、本発明のアプタマーは、式(I):
CAAGGHTGCCG (配列番号37) (I)
(式中、HはA、CまたはTを表す)
で表わされるヌクレオチド配列を含む、FGF9に結合するアプタマー(以下、本発明のアプタマー(I)ともいう)である。本発明のアプタマー(I)を構成する各ヌクレオチドは、それぞれ独立して、リボースであってもデオキシリボースであってもよい。本発明のアプタマー(I)において、ヌクレオチドがリボースである場合、チミン(T)はウラシル(U)に読み替えるものとする。
In one preferred embodiment, the aptamer of the present invention is formulated (I):
CAAGGHTGCCG (SEQ ID NO: 37) (I)
(In the formula, H represents A, C or T)
It is an aptamer that binds to FGF9 (hereinafter, also referred to as the aptamer (I) of the present invention) containing the nucleotide sequence represented by. Each nucleotide constituting the aptamer (I) of the present invention may be ribose or deoxyribose independently. In the aptamer (I) of the present invention, when the nucleotide is ribose, thymine (T) shall be read as uracil (U).
 さらに好ましい一実施態様において、本発明のアプタマーは、式(I):
CAAGGHTGCCG (配列番号37) (I)
(式中、HはA、CまたはTを表す)
で表わされるヌクレオチド配列を含む、FGF9に結合するアプタマーであって、かつ以下の(a)又は(b):
(a)該アプタマーに含まれるヌクレオチド配列において、
 (i)各ピリミジンヌクレオチドが、デオキシリボースであり、
 (ii)各プリンヌクレオチドが、リボースである;
(b)該アプタマーに含まれるヌクレオチド配列において、
 (i)各ピリミジンヌクレオチドが、デオキシリボースであって、該デオキシリボースの2’位の水素原子が、それぞれ独立して、無置換であるか、メトキシ基で置換されており、
 (ii)各プリンヌクレオチドが、リボースであって、該リボースの2’位のヒドロキシ基が、それぞれ独立して、無置換であるか、メトキシ基で置換されている;
のいずれかである、アプタマー(以下、本発明のアプタマー(II)ともいう)である。
In a more preferred embodiment, the aptamer of the present invention is formulated (I):
CAAGGHTGCCG (SEQ ID NO: 37) (I)
(In the formula, H represents A, C or T)
An aptamer that binds to FGF9 and contains the nucleotide sequence represented by (a) or (b):
(a) In the nucleotide sequence contained in the aptamer,
(i) Each pyrimidine nucleotide is deoxyribose,
(ii) Each purine nucleotide is ribose;
(b) In the nucleotide sequence contained in the aptamer
(i) Each pyrimidine nucleotide is deoxyribose, and the hydrogen atom at the 2'position of the deoxyribose is independently unsubstituted or substituted with a methoxy group.
(ii) Each purine nucleotide is ribose, and the hydroxy group at the 2'position of the ribose is independently unsubstituted or substituted with a methoxy group;
It is an aptamer (hereinafter, also referred to as an aptamer (II) of the present invention) which is one of the above.
 本発明のアプタマー(II)は、好ましい一実施態様において、下記(A)~(C):
(A)配列番号16、19および22からなる群から選択されるヌクレオチド配列を含むアプタマー;
(B)配列番号16、19および22からなる群から選択されるヌクレオチド配列において、1~数個のヌクレオチドが置換、欠失、挿入又は付加された(但し、CAAGGHTGCCG(配列番号37)(式中、HはA、CまたはTを表す)で表わされるヌクレオチド配列を除く)ヌクレオチド配列を含む、FGF9に結合するアプタマー;又は
(C)配列番号16、19および22からなる群から選択されるヌクレオチド配列と95%以上の同一性を有する(但し、CAAGGHTGCCG(配列番号37)(式中、HはA、CまたはTを表す)で表わされるヌクレオチド配列は同一である)ヌクレオチド配列を含む、FGF9に結合するアプタマー;
のいずれかのアプタマーであって、該アプタマーに含まれるヌクレオチド配列において、
 (i)各ピリミジンヌクレオチドが、デオキシリボースであり、
 (ii)各プリンヌクレオチドが、リボースである
アプタマーである(以下、本発明のアプタマー(III)ともいう)。
In one preferred embodiment, the aptamer (II) of the present invention comprises the following (A) to (C):
(A) Aptamer containing a nucleotide sequence selected from the group consisting of SEQ ID NOs: 16, 19 and 22;
(B) In the nucleotide sequence selected from the group consisting of SEQ ID NOs: 16, 19 and 22, one to several nucleotides were substituted, deleted, inserted or added (however, CAAGGHTGCCG (SEQ ID NO: 37) (in the formula). , H represents A, C or T) Except for the nucleotide sequence represented by) An aptamer that binds to FGF9;
(C) Has 95% or more identity with the nucleotide sequence selected from the group consisting of SEQ ID NOs: 16, 19 and 22 (where CAAGGHTGCCG (SEQ ID NO: 37) (wherein H stands for A, C or T). The nucleotide sequence represented by) is the same.) An aptamer that binds to FGF9 and contains a nucleotide sequence;
In any of the aptamers, in the nucleotide sequence contained in the aptamer,
(i) Each pyrimidine nucleotide is deoxyribose,
(ii) Each purine nucleotide is an aptamer that is ribose (hereinafter, also referred to as an aptamer (III) of the present invention).
 上記(B)及び(C)のアプタマーは、式(I):CAAGGHTGCCG(配列番号37)(式中、HはA、CまたはTを表す)で表わされる配列を共通配列として含む。 The aptamers of (B) and (C) above include the sequence represented by the formula (I): CAAGGHTGCCG (SEQ ID NO: 37) (where H represents A, C or T) as a common sequence.
 上記(B)において、置換、欠失、挿入又は付加されるヌクレオチド数は、アプタマーがFGF9に結合し、FGF9の活性を阻害し得る限り特に限定されないが、例えば10個以下、好ましくは5個以下、より好ましくは4個、3個、2個又は1個であり得る。 In the above (B), the number of nucleotides to be substituted, deleted, inserted or added is not particularly limited as long as the aptamer can bind to FGF9 and inhibit the activity of FGF9, but is, for example, 10 or less, preferably 5 or less. , More preferably 4, 3, 2, or 1.
 上記(C)において、「同一性」とは、当該技術分野において公知の数学的アルゴリズムを用いて2つのヌクレオチド配列をアラインさせた場合の、最適なアラインメント(好ましくは、該アルゴリズムは最適なアラインメントのために配列の一方もしくは両方へのギャップの導入を考慮し得るものである)における、オーバーラップする全ヌクレオチド残基に対する、同一ヌクレオチド残基の割合(%)を意味する。 In (C) above, "identity" means the optimum alignment (preferably, the algorithm is the optimum alignment) when two nucleotide sequences are aligned using a mathematical algorithm known in the art. Therefore, the introduction of a gap in one or both of the sequences can be considered), which means the ratio (%) of the same nucleotide residue to the total number of overlapping nucleotide residues.
 本明細書において、ヌクレオチド配列における同一性は、例えば相同性計算アルゴリズムNCBI BLAST-2(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(ギャップオープン=5ペナルティ;ギャップエクステンション=2ペナルティ;x_ドロップオフ=50;期待値=10;フィルタリング=ON)にて2つのヌクレオチド配列をアラインすることにより、計算することができる。 In the present specification, for the identity in the nucleotide sequence, for example, the homology calculation algorithm NCBI BLAST-2 (National Center for Biotechnology Information Basic Local Alignment Search Tool) is used, and the following conditions (gap open = 5 penalty; gap extension = 2) are used. It can be calculated by aligning the two nucleotide sequences with a penalty; x_dropoff = 50; expected value = 10; filtering = ON).
 本発明のアプタマー(III)はまた、
(D)1以上の上記(A)および/または1以上の上記(B)および/または1以上の上記(C)の複数の連結物であり得る。上記(D)において連結はタンデム結合にて行われ得る。また、連結に際し、リンカーを利用してもよい。リンカーとしては、ヌクレオチド鎖(例、1~約20ヌクレオチド)、非ヌクレオチド鎖(例、-(CH2)n-リンカー、-(CH2CH2O)n-リンカー、ヘキサエチレングリコールリンカー、TEGリンカー、ペプチドを含むリンカー、-S-S-結合を含むリンカー、-CONH-結合を含むリンカー、-OPO3-結合を含むリンカー)が挙げられる。上記複数の連結物における複数とは、2以上であれば特に限定されないが、例えば2個、3個又は4個であり得る。
The aptamer (III) of the present invention also
(D) can be one or more of the above (A) and / or one or more of the above (B) and / or one or more of the above (C). In (D) above, the connection can be performed by a tandem bond. In addition, a linker may be used for the connection. Linkers include nucleotide chains (eg, 1 to about 20 nucleotides), non-nucleotide chains (eg,-(CH 2 ) n-linker,-(CH 2 CH 2 O) n-linker, hexaethylene glycol linker, TEG linker. , Peptide-containing linkers, -SS-binding-containing linkers, -CONH-binding-containing linkers, -OPO 3 -binding-containing linkers). The plurality of the above-mentioned plurality of connected products is not particularly limited as long as it is two or more, but may be, for example, two, three, or four.
 本発明のアプタマー(II)は、別の好ましい一実施態様において、式(I)で表されるヌクレオチド配列、該ヌクレオチド配列の5’末端に隣接するヌクレオチドX1、X2、X3および3’末端に隣接するヌクレオチドX4、X5、X6が、式(II):  In another preferred embodiment, the aptamer (II) of the present invention comprises a nucleotide sequence represented by formula (I), adjacent to nucleotides X1, X2, X3 and 3'ends adjacent to the 5'end of the nucleotide sequence. Nucleotides X4, X5, X6 are expressed in formula (II):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、HはA、CまたはTを表す;
 X1~X6は、それぞれ同一または異なって、A、G、CおよびTからなる群より選択されるヌクレオチドであり;
 X1およびX6、X2およびX5、X3およびX4、および式(I)で表されるヌクレオチド配列の5’末端のCおよび3’末端のGが、それぞれワトソンクリック塩基対を形成する)
で表される潜在的2次構造を形成できるアプタマーである(以下、本発明のアプタマー(IV)ともいう)。
(In the formula, H represents A, C or T;
X1 to X6 are nucleotides selected from the group consisting of A, G, C and T, which are the same or different, respectively;
X1 and X6, X2 and X5, X3 and X4, and the 5'end C and 3'end G of the nucleotide sequence represented by formula (I) form Watson-Crick base pairs, respectively)
It is an aptamer capable of forming a latent secondary structure represented by (hereinafter, also referred to as an aptamer (IV) of the present invention).
 本発明のアプタマー(IV)は、式(I)で表されるヌクレオチド配列、該ヌクレオチド配列の5’末端に隣接するヌクレオチドX1、X2、X3および3’末端に隣接するヌクレオチドX4、X5、X6で表わされる配列部分において上記構造をとることができる。この構造をとることで、FGF9に対する種々の活性(FGF9への結合活性、FGF9の阻害活性等)を有すると考えられる。 The aptamer (IV) of the present invention is a nucleotide sequence represented by the formula (I), nucleotides X1, X2, X3 and nucleotides X4, X5, X6 adjacent to the 5'end of the nucleotide sequence. The above structure can be taken in the represented sequence portion. By adopting this structure, it is considered that it has various activities against FGF9 (binding activity to FGF9, inhibitory activity of FGF9, etc.).
 上記構造においては、X1およびX6、X2およびX5、X3およびX4、および式(I)で表されるヌクレオチド配列の5’末端のCおよび3’末端のGのワトソンクリック塩基対形成によって、ステム構造が形成される。ステム構造を持つことによってアプタマーが安定化し、強い活性を持つようになる。ステム構造を形成する塩基対の数(ステム長)は特に限定されない。好ましくは、ステム長は4塩基対以上である。上限は特に制限はないが、例えば10塩基対以下、好ましくは7塩基対以下である。またステム構造においては、全体としてステム構造を構成する限りにおいて、その一部において塩基対を形成しなくてもアプタマー活性は維持される。 In the above structure, the stem structure is formed by Watson-Crick base pairing of C at the 5'end and G at the 3'end of the nucleotide sequence represented by X1 and X6, X2 and X5, X3 and X4, and the formula (I). Is formed. Having a stem structure stabilizes the aptamer and gives it a strong activity. The number of base pairs forming the stem structure (stem length) is not particularly limited. Preferably, the stem length is 4 base pairs or more. The upper limit is not particularly limited, but is, for example, 10 base pairs or less, preferably 7 base pairs or less. Further, in the stem structure, as long as the stem structure is formed as a whole, the aptamer activity is maintained even if a part of the stem structure does not form a base pair.
 上記潜在的2次構造とは、生理条件下で安定に存在する2次構造をいい、例えば潜在的2次構造を有するか否かは、実施例に記載された構造予測プログラムによって決定できる。 The above-mentioned latent secondary structure means a secondary structure that exists stably under physiological conditions. For example, whether or not it has a latent secondary structure can be determined by the structure prediction program described in the examples.
 本発明のアプタマー(IV)は、さらに式(II)において、式(I)で表されるヌクレオチド配列におけるヌクレオチド番号4番目のGおよびヌクレオチド番号10番目のC、ヌクレオチド番号5番目のGおよびヌクレオチド番号9番目のCが、それぞれワトソンクリック塩基対を潜在的に形成してもよい。従って、本発明のアプタマー(IV)は、以下の式(II’) In the formula (II), the aptamer (IV) of the present invention further has a nucleotide number 4th G and a nucleotide number 10th C, a nucleotide number 5th G and a nucleotide number in the nucleotide sequence represented by the formula (I). The ninth C may each potentially form a Watson click base pair. Therefore, the aptamer (IV) of the present invention has the following formula (II').
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
を形成しうる(以下、本発明のアプタマー(V)ともいう)。
 Mfoldによる2次構造予測によれば、エネルギー的に安定な候補が複数存在する場合、複数の候補を提示する場合がある。本発明のアプタマーのヌクレオチド配列をMfoldに供し2次構造を予測した場合、式(II)の構造と式(II’)の構造が両方得られる場合がある。したがって、本発明のアプタマー(IV)は、式(II)の構造または式(II’)の構造を採り得る。
(Hereinafter, also referred to as the aptamer (V) of the present invention).
According to the secondary structure prediction by Mfold, when there are multiple energetically stable candidates, multiple candidates may be presented. When the nucleotide sequence of the aptamer of the present invention is applied to Mfold and the secondary structure is predicted, both the structure of the formula (II) and the structure of the formula (II') may be obtained. Therefore, the aptamer (IV) of the present invention may adopt the structure of the formula (II) or the structure of the formula (II').
 本発明のアプタマー(IV)は、好ましい一実施態様において、下記(A’)~(C’):
(A’)配列番号1~6、10~15、17、18、20、21および23~35からなる群から選択されるヌクレオチド配列を含むアプタマー; 
(B’)配列番号1~6、10~15、17、18、20、21および23~35からなる群から選択されるヌクレオチド配列において、1~数個のヌクレオチドが置換、欠失、挿入又は付加された(但し、CAAGGHTGCCG(配列番号37)(式中、HはA、CまたはTを表す)で表わされるヌクレオチド配列を除く)ヌクレオチド配列を含む、FGF9に結合するアプタマー;又は
(C’)配列番号1~6、10~15、17、18、20、21および23~35からなる群から選択されるヌクレオチド配列と95%以上の同一性を有する(但し、CAAGGHTGCCG(配列番号37)(式中、HはA、CまたはTを表す)で表わされるヌクレオチド配列は同一である)ヌクレオチド配列
を含む、FGF9に結合するアプタマー;
のいずれかのアプタマーであって、該アプタマーに含まれるヌクレオチド配列において、
 (i)各ピリミジンヌクレオチドが、デオキシリボースであり、
 (ii)各プリンヌクレオチドが、リボースである
アプタマーである(以下、本発明のアプタマー(VI)ともいう)。
In one preferred embodiment, the aptamer (IV) of the present invention comprises the following (A') to (C'):
(A') Aptamer containing nucleotide sequences selected from the group consisting of SEQ ID NOs: 1-6, 10-15, 17, 18, 20, 21 and 23-35;
(B') In a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-6, 10-15, 17, 18, 20, 21 and 23-35, one to several nucleotides are substituted, deleted, inserted or inserted. An aptamer that binds to FGF9, including an added (excluding the nucleotide sequence represented by CAAGGHTGCCG (SEQ ID NO: 37) (where H stands for A, C or T)).
(C') Has 95% or more identity with the nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-6, 10-15, 17, 18, 20, 21 and 23-35 (provided that CAAGGHTGCCG (SEQ ID NO:) 37) An aptamer that binds to FGF9, which comprises a nucleotide sequence (in the formula, H represents A, C or T) has the same nucleotide sequence;
In any of the aptamers, in the nucleotide sequence contained in the aptamer,
(i) Each pyrimidine nucleotide is deoxyribose,
(ii) Each purine nucleotide is an aptamer that is ribose (hereinafter, also referred to as an aptamer (VI) of the present invention).
 上記(B’)及び(C’)のアプタマーは、式(I):CAAGGHTGCCG(配列番号37)(式中、HはA、CまたはTを表す)で表わされる配列を共通配列として含む。 The aptamers of (B') and (C') above include the sequence represented by the formula (I): CAAGGHTGCCG (SEQ ID NO: 37) (where H represents A, C or T) as a common sequence.
 上記(B’)において、置換、欠失、挿入又は付加されるヌクレオチド数は、好ましくは5個以下、より好ましくは4個、さらに好ましくは3個、特に好ましくは2個又は1個であり得る。 In (B') above, the number of nucleotides substituted, deleted, inserted or added may be preferably 5 or less, more preferably 4 and even more preferably 3 and particularly preferably 2 or 1. ..
 上記(C’)において、「同一性」とは、上記(C)と同義である。 In the above (C'), "identity" is synonymous with the above (C).
 本発明のアプタマー(V)はまた、
(D’)1以上の上記(A’)および/または1以上の上記(B’)および/または1以上の上記(C’)の複数の連結物であり得る。上記(D’)において連結はタンデム結合にて行われ得る。また、連結に際し、リンカーを利用してもよい。リンカーとしては、ヌクレオチド鎖(例、1~約20ヌクレオチド)、非ヌクレオチド鎖(例、-(CH2)n-リンカー、-(CH2CH2O)n-リンカー、ヘキサエチレングリコールリンカー、TEGリンカー、ペプチドを含むリンカー、-S-S-結合を含むリンカー、-CONH-結合を含むリンカー、-OPO3-結合を含むリンカー)が挙げられる。上記複数の連結物における複数とは、2以上であれば特に限定されないが、例えば2個、3個又は4個であり得る。
The aptamer (V) of the present invention is also
(D') Can be one or more of the above (A') and / or one or more of the above (B') and / or one or more of the above (C'). In the above (D'), the connection can be performed by a tandem bond. In addition, a linker may be used for the connection. Linkers include nucleotide chains (eg, 1 to about 20 nucleotides), non-nucleotide chains (eg,-(CH 2 ) n-linker,-(CH 2 CH 2 O) n-linker, hexaethylene glycol linker, TEG linker. , Peptide-containing linkers, -SS-binding-containing linkers, -CONH-binding-containing linkers, -OPO 3 -binding-containing linkers). The plurality of the above-mentioned plurality of connected products is not particularly limited as long as it is two or more, but may be, for example, two, three, or four.
 本発明のアプタマー(IV)または(V)は、別の好ましい一実施態様において、ポリエチレングリコール、アミノ酸、ペプチド、inverted dT、核酸、ヌクレオシド、Myristoyl、Lithocolic-oleyl、Docosanyl、Lauroyl、Stearoyl、Palmitoyl、Oleoyl、Linoleoyl、その他脂質、ステロイド、コレステロール、カフェイン、ビタミン、色素、蛍光物質、抗癌剤、毒素、酵素、放射性物質、ビオチンなどをアプタマーの5’末端及び/又は3’末端に付加することにより、末端修飾が行われ得る。より好ましい一実施態様においては、本発明のアプタマー(IV)または(V)は、inverted dTが、アプタマーの3’末端に結合しているアプタマーである(以下、本発明のアプタマー(VII)ともいう)。このような末端修飾については、例えば、米国特許第5,660,985号、同第5,756,703号を参照して行うことができる。 The aptamers (IV) or (V) of the present invention, in another preferred embodiment, are polyethylene glycol, amino acids, peptides, inverted dT, nucleic acids, nucleosides, Myristoyl, Lithocolic-oleyl, Docosanyl, Lauroyl, Stearoyl, Palmitoyl, Oleoyl. , Linoleoyl, other lipids, steroids, cholesterol, caffeine, vitamins, pigments, fluorescent substances, anticancer agents, toxins, enzymes, radioactive substances, biotin, etc. by adding to the 5'end and / or 3'end of the aptamer. Modifications can be made. In one more preferred embodiment, the aptamer (IV) or (V) of the present invention is an aptamer in which an inverted dT is bound to the 3'end of the aptamer (hereinafter, also referred to as the aptamer (VII) of the present invention). ). Such end modifications can be made, for example, with reference to US Pat. Nos. 5,660,985 and 5,756,703.
 本発明のアプタマー(VII)は、好ましい一実施態様において、配列番号30で表されるヌクレオチド配列を含む、FGF9に結合するアプタマーであって、該アプタマーに含まれるヌクレオチド配列において、
 (i)各ピリミジンヌクレオチドのデオキシリボースの2’位の水素原子が、それぞれ独立して、無置換であるか、メトキシ基で置換されており、
 (ii)各プリンヌクレオチドのリボースの2’位のヒドロキシ基が、それぞれ独立して、無置換であるか、メトキシ基で置換されている
アプタマーである(以下、本発明のアプタマー(VIII)ともいう)。
The aptamer (VII) of the present invention is, in a preferred embodiment, an aptamer that binds to FGF9, which comprises the nucleotide sequence represented by SEQ ID NO: 30, in the nucleotide sequence contained in the aptamer.
(i) The hydrogen atom at the 2'position of deoxyribose of each pyrimidine nucleotide is independently unsubstituted or substituted with a methoxy group.
(ii) The hydroxy group at the 2'position of ribose of each purine nucleotide is an aptamer that is independently unsubstituted or substituted with a methoxy group (hereinafter, also referred to as the aptamer (VIII) of the present invention). ).
 本発明のアプタマーは、FGF9に対する結合性、安定性、薬物送達性等を高めるため、各ヌクレオチドの糖残基(リボース、デオキシリボース)がさらに修飾されたものであってもよい。糖残基において修飾される部位としては、例えば、糖残基の2’位、3’位及び/又は4’位のヒドロキシ基または水素原子を他の原子に置き換えたものなどが挙げられる。修飾の種類としては、例えば、フルオロ化、アルコキシ化(例、メトキシ化、エトキシ化)、O-アリル化、S-アルキル化(例、S-メチル化、S-エチル化)、S-アリル化、アミノ化(例、-NH2)が挙げられる。このような糖残基の改変は、自体公知の方法により行うことができる(例えば、Sproat et al., (1991) Nucle. Acid. Res. 19, 733-738; Cotton et al., (1991) Nucl. Acid. Res. 19, 2629-2635; Hobbs et al., (1973) Biochemistry 12, 5138-5145参照)。
 また糖残基については、2’位及び4’位で架橋構造を形成したBNA:Bridgednucleic acid(LNA:Linked nucleic acid)とすることもできる。このような糖残基の改変も、自体公知の方法により行うことができる(例えば、Tetrahedron Lett., 38, 8735-8738 (1997); Tetrahedron, 59, 5123-5128 (2003)、Rahman S.M.A., Seki S., Obika S., Yoshikawa H., Miyashita K., Imanishi T., J. Am. Chem. Soc., 130, 4886-4896 (2008)など参照)。
The aptamer of the present invention may be one in which the sugar residues (ribose, deoxyribose) of each nucleotide are further modified in order to enhance the binding property, stability, drug delivery property and the like to FGF9. Examples of the site modified in the sugar residue include those in which the hydroxy group or hydrogen atom at the 2'-position, 3'-position and / or 4'-position of the sugar residue is replaced with another atom. Types of modification include, for example, fluorolysis, alkoxylation (eg, methoxylation, ethoxylation), O-allylation, S-alkylation (eg, S-methylation, S-ethylation), S-allylation. , Amination (eg, -NH 2 ). Such modification of sugar residues can be carried out by a method known per se (eg, Sproat et al., (1991) Nucle. Acid. Res. 19, 733-738; Cotton et al., (1991)). Nucl. Acid. Res. 19, 2629-2635; Hobbs et al., (1973) Biochemistry 12, 5138-5145).
The sugar residue can also be BNA: Bridged nucleic acid (LNA: Linked nucleic acid) having a crosslinked structure formed at the 2'and 4'positions. Such modification of sugar residues can also be performed by a method known per se (eg, Tetrahedron Lett., 38, 8735-8738 (1997); Tetrahedron, 59, 5123-5128 (2003), Rahman SMA, Seki. See S., Obika S., Yoshikawa H., Miyashita K., Imanishi T., J. Am. Chem. Soc., 130, 4886-4896 (2008)).
 本発明のアプタマーはまた、FGF9に対する結合活性等を高めるため、核酸塩基(例、プリン、ピリミジン)が改変(例、化学的置換)されたものであってもよい。このような改変としては、例えば、5位ピリミジン改変、6及び/又は8位プリン改変、環外アミンでの改変、4-チオウリジンでの置換、5-ブロモ又は5-ヨード-ウラシルでの置換が挙げられる。
 また、ヌクレアーゼ及び加水分解に対して耐性であるように、あるいはFGF9に対する結合活性等を高める目的で、本発明のアプタマーに含まれるリン酸基が改変されていてもよい。例えば、リン酸基たるP(O)O基が、P(O)S(チオエート)、P(S)S(ジチオエート)、P(O)NR2(アミデート)、P(O)R、R(O)OR’、CO又はCH2(ホルムアセタール)又は3’-アミン(-NH-CH2-CH2-)で置換されていてもよい〔ここで各々のR又はR’は独立して、Hであるか、あるいは置換されているか、又は置換されていないアルキル(例、メチル、エチル)である〕。
 連結基としては、-O-、-N-又は-S-が例示され、これらの連結基を通じて隣接するヌクレオチドに結合し得る。
 改変はまた、キャッピングのような3’及び5’の改変を含んでもよい。
The aptamer of the present invention may also have a nucleobase (eg, purine, pyrimidine) modified (eg, chemically substituted) in order to enhance the binding activity to FGF9 and the like. Such modifications include, for example, 5-position pyrimidine modification, 6- and / or 8-position purine modification, modification with extracyclic amine, substitution with 4-thiouridine, substitution with 5-bromo or 5-iodo-uracil. Can be mentioned.
Further, the phosphate group contained in the aptamer of the present invention may be modified so as to be resistant to nucleases and hydrolysis, or for the purpose of enhancing the binding activity to FGF9. For example, the P (O) O group, which is a phosphate group, is P (O) S (thioate), P (S) S (dithioate), P (O) NR 2 (amidate), P (O) R, R ( O) oR ', CO or CH 2 (formacetal) or 3'-amine (-NH-CH 2 -CH 2 - ) each of R or R may be substituted [wherein in' is independently Alkyl (eg, methyl, ethyl) that is H, substituted, or unsubstituted].
Linking groups include -O-, -N- or -S-, which can bind to adjacent nucleotides through these linking groups.
Modifications may also include 3'and 5'modifications such as capping.
 本発明のアプタマーは、本明細書中の開示及び当該技術分野における自体公知の方法により合成することができる。合成方法の一つはRNAポリメラーゼを用いる方法である。目的の配列とRNAポリメラーゼのプロモーター配列を持つDNAを化学合成し、これをテンプレートにして既に公知の方法により転写することで目的のRNAを得ることができる。また、DNAポリメラーゼを用いることでも合成することができる。目的の配列を有したDNAを化学合成し、これをテンプレートにして、既に公知の方法であるポリメラーゼ連鎖反応(PCR)により増幅する。これを既に公知の方法であるポリアクリルアミド電気泳動法や酵素処理法により一本鎖とする。修飾の入ったアプタマーを合成する場合は、特定の位置に変異を導入したポリメラーゼを用いることで伸長反応の効率を上げることができる。このようにして得られたアプタマーは公知の方法により容易に精製することができる。
 アプタマーはアミダイト法もしくはホスホアミダイト法などの化学合成法によって大量合成することができる。合成方法はよく知られている方法であり、Nucleic Acid(Vol.2)[1] Synthesis and Analysis of Nucleic Acid(Editor: Yukio Sugiura, Hirokawa Publishing Company)などに記載のとおりである。実際にはGEヘルスケアーバイオサイエンス社製のOligoPilot100やOligoProcessなどの合成機を使用する。精製はクロマトグラフィー等の自体公知の方法により行われる。
 アプタマーはホスホアミダイト法などの化学合成時にアミノ基などの活性基を導入することで、合成後に機能性物質を付加することができる。例えば、アプタマーの末端にアミノ基を導入することで、カルボキシル基を導入したポリエチレングリコール鎖を縮合させることができる。
 アプタマーは、リン酸基の負電荷を利用したイオン結合、リボースを利用した疎水結合及び水素結合、核酸塩基を利用した水素結合やスタッキング結合など多様な結合様式により標的物質と結合する。特に、構成ヌクレオチドの数だけ存在するリン酸基の負電荷を利用したイオン結合は強く、タンパク質の表面に存在するリジンやアルギニンの正電荷と結合する。このため、標的物質との直接的な結合に関わっていない核酸塩基は置換することができる。特に、ステム構造の部分は既に塩基対が作られており、また、二重らせん構造の内側を向いているので、核酸塩基は、標的物質と直接結合し難い。従って、塩基対を他の塩基対に置換してもアプタマーの活性は減少しない場合が多い。ループ構造など塩基対を作っていない構造においても、核酸塩基が標的分子との直接的な結合に関与していない場合に、塩基の置換が可能である。リボースの2’位の修飾に関しては、まれにリボースの2’位の官能基が標的分子と直接的に相互作用していることがあるが、多くの場合無関係であり、他の修飾分子に置換可能である。このようにアプタマーは、標的分子との直接的な結合に関与している官能基を置換又は削除しない限り、その活性を保持していることが多い。また、全体の立体構造が大きく変わらないことも重要である。
The aptamer of the present invention can be synthesized by the methods disclosed in the present specification and known in the art. One of the synthetic methods is a method using RNA polymerase. The target RNA can be obtained by chemically synthesizing the DNA having the target sequence and the promoter sequence of RNA polymerase and transcribing this as a template by a method already known. It can also be synthesized by using DNA polymerase. DNA having the desired sequence is chemically synthesized, and this is used as a template for amplification by a known method, the polymerase chain reaction (PCR). This is made into a single strand by a already known method such as polyacrylamide gel electrophoresis or an enzyme treatment method. When synthesizing a modified aptamer, the efficiency of the extension reaction can be increased by using a polymerase in which a mutation is introduced at a specific position. The aptamer thus obtained can be easily purified by a known method.
Aptamers can be mass-synthesized by chemical synthesis methods such as the amidite method or the phosphoramidite method. The synthesis method is a well-known method, and is as described in Nucleic Acid (Vol.2) [1] Synthesis and Analysis of Nucleic Acid (Editor: Yukio Sugiura, Hirokawa Publishing Company). Actually, a synthesizer such as Oligo Pilot 100 or Oligo Process manufactured by GE Healthcare Bioscience is used. Purification is carried out by a method known per se, such as chromatography.
Aptamers can add functional substances after synthesis by introducing an active group such as an amino group during chemical synthesis such as the phosphoramidite method. For example, by introducing an amino group at the end of an aptamer, a polyethylene glycol chain having a carboxyl group introduced can be condensed.
Aptamar binds to a target substance by various bonding modes such as ionic bond using negative charge of phosphate group, hydrophobic bond and hydrogen bond using ribose, hydrogen bond and stacking bond using nucleobase. In particular, the ionic bond utilizing the negative charge of the phosphate group existing as many as the number of constituent nucleotides is strong and binds to the positive charge of lysine and arginine existing on the surface of the protein. Therefore, nucleobases that are not directly involved in binding to the target substance can be replaced. In particular, since the stem structure part has already been base paired and faces the inside of the double helix structure, it is difficult for the nucleobase to directly bind to the target substance. Therefore, replacing a base pair with another base pair often does not reduce the activity of the aptamer. Even in structures such as loop structures that do not form base pairs, base substitution is possible when the nucleobase is not involved in direct binding to the target molecule. Regarding the modification of the 2'position of ribose, in rare cases, the functional group at the 2'position of ribose may interact directly with the target molecule, but in many cases it is irrelevant and replaced with another modified molecule. It is possible. Thus, aptamers often retain their activity unless the functional groups involved in direct binding to the target molecule are substituted or deleted. It is also important that the overall three-dimensional structure does not change significantly.
 アプタマーは、SELEX法及びその改良法(例えば、Ellington et al.,(1990) Nature, 346, 818-822; Tuerk et al.,(1990) Science, 249, 505-510)を利用することで作製することができる。SELEX法ではラウンド数を増やしたり、競合物質を使用したりして、選別条件を厳しくすることで、標的物質に対してより結合力の強いアプタマーが濃縮され、選別されてくる。よって、SELEXのラウンド数を調節したり、及び/又は競合状態を変化させたりすることで、結合力が異なるアプタマー、結合形態が異なるアプタマー、結合力や結合形態は同じであるが塩基配列が異なるアプタマーを得ることができる場合がある。また、SELEX法にはPCRによる増幅過程が含まれるが、その過程でマンガンイオンを使用するなどして変異を入れることで、より多様性に富んだSELEXを行うことが可能となる。 Aptamers are prepared by using the SELEX method and its improved methods (for example, Ellington et al., (1990) Nature, 346, 818-822; Tuerk et al., (1990) Science, 249, 505-510). can do. In the SELEX method, aptamers with stronger binding force to the target substance are concentrated and sorted by increasing the number of rounds or using competing substances to tighten the sorting conditions. Therefore, by adjusting the number of rounds of SELEX and / or changing the race condition, aptamers with different binding forces, aptamers with different binding forms, and aptamers with the same binding force and binding form but different base sequences. You may be able to get an aptamer. In addition, the SELEX method includes an amplification process by PCR, and by inserting mutations such as using manganese ions in the process, it is possible to perform SELEX with a greater variety.
 SELEXで得られるアプタマーは標的物質に対して親和性が高い核酸であるが、そのことは標的物質の生理活性を阻害することを意味しない。FGF9は塩基性タンパク質であり、核酸が非特異的に結合しやすいと考えられるが、特定の部位に強く結合するアプタマー以外はその標的物質の活性に影響を及ぼさない。実際、ネガティブコントロールとして用いたランダム配列を含むRNAはFGF9との結合や阻害は認められなかった。 The aptamer obtained by SELEX is a nucleic acid having a high affinity for the target substance, but that does not mean that it inhibits the physiological activity of the target substance. FGF9 is a basic protein, and it is considered that nucleic acids are likely to bind non-specifically, but it does not affect the activity of its target substance except for aptamers that strongly bind to specific sites. In fact, RNA containing a random sequence used as a negative control did not bind to or inhibit FGF9.
 このようにして選ばれた活性のあるアプタマーに基づき、より高い活性を有するアプタマーを獲得するために更にプライマーを変えてSELEXを行うことが出来る。具体的な方法とは、ある配列が決まっているアプタマーの一部をランダム配列にしたテンプレートや10~30%程度のランダム配列をドープしたテンプレートを作製して、再度SELEXを行うものである。 Based on the active aptamer selected in this way, SELEX can be performed by further changing the primer in order to obtain an aptamer having higher activity. The specific method is to prepare a template in which a part of the aptamer having a certain sequence is made into a random sequence or a template in which a random sequence of about 10 to 30% is doped, and perform SELEX again.
 SELEXで得られるアプタマーは80ヌクレオチド程度の長さがあり、これをそのまま医薬にすることは難しい。そこで、試行錯誤を繰り返し、容易に化学合成ができる50ヌクレオチド程度以下の長さまで短くする必要がある。SELEXで得られるアプタマーはそのプライマー設計に依存して、その後の最小化作業のしやすさが変わる。うまくプライマーを設計しないと、SELEXによって活性のあるアプタマーが選別できたとしても、その後の開発が不可能となる。本発明では29ヌクレオチドでも阻害活性を保持しているアプタマーを得ることができた。 The aptamer obtained by SELEX has a length of about 80 nucleotides, and it is difficult to use this as it is as a medicine. Therefore, it is necessary to repeat trial and error to shorten the length to about 50 nucleotides or less, which can be easily chemically synthesized. The aptamer obtained by SELEX depends on its primer design, and the ease of subsequent minimization work changes. If the primers are not designed properly, even if SELEX can select active aptamers, further development will be impossible. In the present invention, it was possible to obtain an aptamer that retains inhibitory activity even at 29 nucleotides.
 アプタマーは化学合成が可能であるので改変が容易である。アプタマーはMFOLDプログラムを用いて二次構造を予測したり、X線解析やNMR解析によって立体構造を予測したりすることで、どのヌクレオチドを置換又は欠損することが可能か、また、新たなヌクレオチドをどこに挿入可能かなどを、ある程度予測することができる。予測された新しい配列のアプタマーは容易に化学合成することができ、そのアプタマーが活性を保持しているかどうかは、既存のアッセイ系により確認することができる。 Since aptamers can be chemically synthesized, they are easy to modify. Aptamers can substitute or delete which nucleotides by predicting secondary structure using the MFOLD program, or predicting the three-dimensional structure by X-ray analysis or NMR analysis, and new nucleotides. It is possible to predict to some extent where it can be inserted. The predicted new sequence of aptamers can be easily chemically synthesized, and whether or not the aptamers retain their activity can be confirmed by an existing assay system.
 得られたアプタマーの標的物質との結合に重要な部分が、上記のような試行錯誤を繰り返すことにより特定できた場合、その配列の両端に新しい配列を付加しても、多くの場合活性は変化しない。新しい配列の長さは特に限定されるものではない。 If the important part of the obtained aptamer for binding to the target substance can be identified by repeating the above trial and error, the activity often changes even if a new sequence is added to both ends of the sequence. do not do. The length of the new sequence is not particularly limited.
 修飾に関しても、配列と同様に当業者であれば自由に設計又は改変可能である。 As with the sequence, modifications can be freely designed or modified by those skilled in the art.
 以上のように、アプタマーは高度に設計又は改変可能である。本発明はまた、所定の配列(例、ステム部分、インターナルループ部分、バルジ部分、ヘアピンループ部分及び一本鎖部分から選ばれる部分に対応する配列:以下、必要に応じて固定配列と省略する)を含むアプタマーを高度に設計又は改変可能であるアプタマーの製造方法を提供する。 As mentioned above, the aptamer can be highly designed or modified. The present invention also relates to a predetermined sequence (eg, a sequence corresponding to a portion selected from a stem portion, an internal loop portion, a bulge portion, a hairpin loop portion and a single chain portion: hereinafter, abbreviated as a fixed sequence as necessary. A method for producing an aptamer, which is capable of highly designing or modifying an aptamer containing).
 例えば、このようなアプタマーの製造方法は、下記: For example, the manufacturing method of such an aptamer is as follows:
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
〔上記において、(N)aはa個のNからなるヌクレオチド鎖を示し、(N)bは、b個のNからなるヌクレオチド鎖を示し、Nはそれぞれ、同一又は異なって、A、G、C、U及びT(好ましくは、A、G、C及びU)からなる群より選ばれるヌクレオチドである。a、bはそれぞれ、同一又は異なって、任意の数であり得るが、例えば1~約100個、好ましくは1~約50個、より好ましくは1~約30個、さらにより好ましくは1~約20個又は1~約10個であり得る。〕で表わされるヌクレオチド配列からなる単一種の核酸分子又は複数種の核酸分子(例、a、bの数等が異なる核酸分子のライブラリ)、及びプライマー用配列(i)、(ii)にそれぞれ対応するプライマー対を用いて、固定配列を含むアプタマーを製造することを含む。 [In the above, (N) a indicates a nucleotide chain consisting of a N, (N) b indicates a nucleotide chain consisting of b N, and N is the same or different, respectively, A, G, A nucleotide selected from the group consisting of C, U and T (preferably A, G, C and U). A and b can be the same or different and can be any number, for example, 1 to about 100, preferably 1 to about 50, more preferably 1 to about 30, and even more preferably 1 to about. It can be 20 or 1 to about 10. ] Corresponds to a single type of nucleic acid molecule consisting of the nucleotide sequence represented by] or a plurality of types of nucleic acid molecules (eg, a library of nucleic acid molecules having different numbers of a and b, etc.), and primer sequences (i) and (ii), respectively. It involves producing an aptamer containing a fixed sequence using a pair of primers to be used.
 本発明はまた、本発明のアプタマー及びそれに結合した機能性物質を含む複合体(以下、本発明の複合体ともいう)を提供する。本発明の複合体におけるアプタマーと機能性物質との間の結合は共有結合、又は非共有結合であり得る。本発明の複合体は、本発明のアプタマーと1以上(例、2又は3個)の同種又は異種の機能性物質とが結合したものであり得る。機能性物質としては、本発明のアプタマーに何らかの機能を新たに付加するもの、あるいは本発明のアプタマーが保持し得る何らかの特性を変化(例、向上)させ得るものである限り特に限定されない。機能性物質としては、例えば、タンパク質、ペプチド、アミノ酸、脂質、糖質、単糖、ポリヌクレオチド、ヌクレオチドが挙げられる。機能性物質としてはまた、例えば、親和性物質(例、ビオチン、ストレプトアビジン、標的相補配列に対して親和性を有するポリヌクレオチド、抗体、グルタチオンセファロース、ヒスチジン)、標識用物質(例、蛍光物質、発光物質、放射性同位体)、酵素(例、西洋ワサビペルオキシダーゼ、アルカリホスファターゼ)、薬物送達媒体(例、リポソーム、ミクロスフェア、ペプチド、ポリエチレングリコール類)、薬物(例、カリケアマイシンやデュオカルマイシンなどミサイル療法に使用されているもの、シクロフォスファミド、メルファラン、イホスファミド又はトロホスファミドなどのナイトロジェンマスタード類似体、チオテパなどのエチレンイミン類、カルムスチンなどのニトロソ尿素、テモゾロミド又はダカルバジンなどのアルキル化剤、メトトレキセート又はラルチトレキセドなどの葉酸類似代謝拮抗剤、チオグアニン、クラドリビン又はフルダラビンなどのプリン類似体、フルオロウラシル、テガフール又はゲムシタビンなどのピリミジン類似体、ビンブラスチン、ビンクリスチン又はビンオレルビンなどのビンカアルカロイド及びその類似体、エトポシド、タキサン、ドセタキセル又はパクリタキセルなどのポドフィロトキシン誘導体、ドキソルビシン、エピルビシン、イダルビシン及びミトキサントロンなどのアントラサイクリン類及び類似体、ブレオマイシン及びミトマイシンなどの他の細胞毒性抗生物質、シスプラチン、カルボプラチン及びオキザリプラチンなどの白金化合物、ペントスタチン、ミルテフォシン、エストラムスチン、トポテカン、イリノテカン及びビカルタミド)、毒素(例、リシン毒素、リア毒素及びベロ毒素)が挙げられる。これらの機能性分子は最終的に取り除かれる場合がある。更に、トロンビンやマトリックスメタルプロテアーゼ(MMP)、FactorXなどの酵素が認識して切断することができるペプチド、ヌクレアーゼや制限酵素が切断できるポリヌクレオチドであってもよい。 The present invention also provides a complex containing the aptamer of the present invention and a functional substance bound thereto (hereinafter, also referred to as a complex of the present invention). The bond between the aptamer and the functional substance in the complex of the present invention can be covalent or non-covalent. The complex of the present invention may be a combination of the aptamer of the present invention and one or more (eg, 2 or 3) functional substances of the same type or different types. The functional substance is not particularly limited as long as it can newly add some function to the aptamer of the present invention or change (eg, improve) some property that can be retained by the aptamer of the present invention. Examples of functional substances include proteins, peptides, amino acids, lipids, carbohydrates, monosaccharides, polynucleotides, and nucleotides. Functional substances also include, for example, affinity substances (eg, biotin, streptavidin, polynucleotides having affinity for the target complementary sequence, antibodies, glutathione Sepharose, histidine), labeling substances (eg, fluorescent substances, etc.). Luminescent substances, radioactive isotopes), enzymes (eg, western wasabiperoxidase, alkaline phosphamide), drug delivery media (eg, liposomes, microspheres, peptides, polyethylene glycols), drugs (eg, calikeamycin, duocalmycin, etc.) Those used in missile therapy, nitrogen mustard analogs such as cyclophosphamide, melfaran, ifofamide or trophosphamide, ethyleneimines such as thiotepa, nitrosourea such as carmustin, alkylating agents such as temozolomide or dacarbazine, Folic acid-like metabolic antagonists such as methotrexate or larcitrexed, purine analogs such as thioguanine, cladribine or fludalabine, pyrimidine analogs such as fluorouracil, tegafur or gemcitabine, vinblastine and its analogs such as vinblastine, vincristine or binolerubin, etopocid , Podophilotoxin derivatives such as docetaxel or paclitaxel, anthracyclines and analogs such as doxorubicin, epirubicin, idarubicin and mitoxanthrone, other cytotoxic antibiotics such as bleomycin and mitomycin, platinum such as cisplatin, carboplatin and oxaliplatin Examples include compounds, pentostatin, myrtefosine, estramstine, topotecan, irinotecan and bicartamide), toxins (eg, lysine toxin, riatoxin and velotoxin). These functional molecules may eventually be removed. Further, it may be a peptide that can be recognized and cleaved by an enzyme such as thrombin, matrix metal protease (MMP), or Factor X, or a polynucleotide that can cleave a nuclease or a restriction enzyme.
 本発明のアプタマー又は本発明の複合体は、例えば、医薬(以下、本発明の医薬ともいう)として使用され得る。 The aptamer of the present invention or the complex of the present invention can be used, for example, as a medicine (hereinafter, also referred to as the medicine of the present invention).
 本発明の医薬は、医薬上許容される担体が配合されたものであり得る。医薬上許容される担体としては、例えば、ショ糖、デンプン、マンニット、ソルビット、乳糖、グルコース、セルロース、タルク、リン酸カルシウム、炭酸カルシウム等の賦形剤、セルロース、メチルセルロース、ヒドロキシプロピルセルロース、ポリプロピルピロリドン、ゼラチン、アラビアゴム、ポリエチレングリコール、ショ糖、デンプン等の結合剤、デンプン、カルボキシメチルセルロース、ヒドロキシプロピルスターチ、ナトリウム-グリコール-スターチ、炭酸水素ナトリウム、リン酸カルシウム、クエン酸カルシウム等の崩壊剤、ステアリン酸マグネシウム、エアロジル、タルク、ラウリル硫酸ナトリウム等の滑剤、クエン酸、メントール、グリシルリシン・アンモニウム塩、グリシン、オレンジ粉等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム、メチルパラベン、プロピルパラベン等の保存剤、クエン酸、クエン酸ナトリウム、酢酸等の安定剤、メチルセルロース、ポリビニルピロリドン、ステアリン酸アルミニウム等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水、オレンジジュース等の希釈剤、カカオ脂、ポリエチレングリコール、白灯油等のベースワックスなどが挙げられるが、それらに限定されるものではない。 The medicament of the present invention may contain a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers include, for example, excipients such as sucrose, starch, mannit, sorbit, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate, cellulose, methyl cellulose, hydroxypropyl cellulose, polypropylpyrrolidone. , Glue, gelatin, gum arabic, polyethylene glycol, sucrose, starch and other binders, starch, carboxymethyl cellulose, hydroxypropyl starch, sodium-glycol-starch, sodium hydrogen carbonate, calcium phosphate, calcium citrate and other disintegrants, magnesium stearate , Lubricants such as aerodil, starch, sodium lauryl sulfate, fragrances such as citric acid, menthol, glycyrrhizin / ammonium salt, glycine, orange powder, preservatives such as sodium benzoate, sodium hydrogen sulfite, methylparaben, propylparaben, citric acid , Stabilizers such as sodium citrate, acetic acid, suspending agents such as methyl cellulose, polyvinylpyrrolidone, aluminum stearate, dispersants such as surfactants, diluents such as water, physiological saline, orange juice, cacao butter, polyethylene. Examples thereof include base waxes such as glycol and white kerosene, but the present invention is not limited thereto.
 本発明の医薬の投与経路としては特に限定されるものではないが、例えば経口投与、非経口投与が挙げられる。経口投与に好適な製剤は、水、生理食塩水、オレンジジュースのような希釈液に有効量のリガンドを溶解させた液剤、有効量のリガンドを固体や顆粒として含んでいるカプセル剤、サッシェ剤又は錠剤、適当な分散媒中に有効量の有効成分を懸濁させた懸濁液剤、有効量の有効成分を溶解させた溶液を適当な分散媒中に分散させ乳化させた乳剤等である。 The route of administration of the drug of the present invention is not particularly limited, and examples thereof include oral administration and parenteral administration. Suitable formulations for oral administration are liquids in which an effective amount of ligand is dissolved in a diluted solution such as water, physiological saline, orange juice, capsules containing an effective amount of ligand as solids or granules, sachets, or These include tablets, suspensions in which an effective amount of the active ingredient is suspended in an appropriate dispersion medium, and an emulsion in which a solution in which an effective amount of the active ingredient is dissolved is dispersed in an appropriate dispersion medium and emulsified.
 また、本発明の医薬は必要により、味のマスキング、腸溶性あるいは持続性などの目的のため、自体公知の方法でコーティングすることができる。コーティングに用いられるコーティング剤としては、例えば、ヒドロキシプロピルメチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、ポリオキシエチレングリコール、ツイーン80、プルロニックF68、セルロースアセテートフタレート、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシメチルセルロースアセテートサクシネート、オイドラギット(ローム社製、ドイツ,メタアクリル酸アクリル酸共重合体)及び色素(例、ベンガラ、二酸化チタンなど)などが用いられる。当該医薬は、速放性製剤、徐放性製剤のいずれであってもよい。徐放の基材としては、例えば、リポソーム、アテロコラーゲン、ゼラチン、ヒドロキシアパタイト、PLGAなどが挙げられる。 Further, the medicament of the present invention can be coated by a method known per se for the purpose of masking taste, enteric acidity or persistence, if necessary. Examples of the coating agent used for coating include hydroxypropylmethylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxypropylcellulose, polyoxyethylene glycol, Tween 80, Pluronic F68, cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, hydroxymethylcellulose acetate succinate, and the like. Eudragit (manufactured by Roam, Germany, acrylate copolymer of methacrylic acid) and dyes (eg, red iron oxide, titanium dioxide, etc.) are used. The drug may be either a rapid-release preparation or a sustained-release preparation. Examples of the sustained-release substrate include liposomes, atelocollagen, gelatin, hydroxyapatite, PLGA and the like.
 非経口的な投与(例えば、静脈内投与、皮下投与、筋肉内投与、局所投与、腹腔内投与、経鼻投与、経肺投与など)に好適な製剤としては、水性及び非水性の等張な無菌の注射液剤があり、これには抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていてもよい。また、水性及び非水性の無菌の懸濁液剤が挙げられ、これには懸濁剤、可溶化剤、増粘剤、安定化剤、防腐剤等が含まれていてもよい。当該製剤は、アンプルやバイアルのように単位投与量あるいは複数回投与量ずつ容器に封入することができる。また、有効成分及び医薬上許容される担体を凍結乾燥し、使用直前に適当な無菌の溶媒に溶解又は懸濁すればよい状態で保存することもできる。また、徐放製剤も好適な製剤として挙げることができる。徐放製剤としては、人工骨や生体分解性もしくは非分解性スポンジ、バッグ、薬剤ポンプ、浸透圧ポンプなど、体内に埋め込まれた担体もしくは容器からの徐放形態、あるいは体外から継続的もしくは断続的に体内もしくは局所に送達されるデバイス等が挙げられる。生体分解性の基材としては、リポソーム、カチオニックリポソーム、Poly(lactic-co-glycolic)acid (PLGA)、アテロコラーゲン、ゼラチン、ヒドロキシアパタイト、多糖シゾフィランなどが挙げられる。更に注射液剤や徐放製剤以外にも、吸入剤、軟膏剤も可能である。吸入剤の場合、凍結乾燥状態の有効成分を微細化し適当な吸入デバイスを用いて吸入投与する。吸入剤には、更に必要に応じて従来から使用されている界面活性剤、油、調味料、シクロデキストリン又はその誘導体等を適宜配合することができる。 Suitable formulations for parenteral administration (eg, intravenous, subcutaneous, intramuscular, topical, intraperitoneal, nasal, pulmonary, etc.) are aqueous and non-aqueous isotonic. There are sterile injection solutions, which may contain antioxidants, buffers, antibacterial agents, isotonic agents and the like. In addition, aqueous and non-aqueous sterile suspensions may be mentioned, which may include suspending agents, solubilizing agents, thickeners, stabilizers, preservatives and the like. The formulation can be encapsulated in single doses or multiple doses, such as ampoules and vials. In addition, the active ingredient and a pharmaceutically acceptable carrier can be freeze-dried and stored in a state where it can be dissolved or suspended in a suitable sterile solvent immediately before use. In addition, sustained-release preparations can also be mentioned as suitable preparations. Sustained-release preparations include artificial bone, biodegradable or non-degradable sponges, bags, drug pumps, osmotic pumps, and other sustained-release forms from carriers or containers embedded in the body, or continuous or intermittent from outside the body. Examples include devices that are delivered internally or locally. Examples of the biodegradable substrate include liposomes, cationic liposomes, Poly (lactic-co-glycolic) acid (PLGA), atelocollagen, gelatin, hydroxyapatite, and polysaccharide schizophyllan. Further, in addition to injection solutions and sustained-release preparations, inhalants and ointments are also possible. In the case of an inhalant, the lyophilized active ingredient is miniaturized and administered by inhalation using an appropriate inhalation device. Further, if necessary, a conventionally used surfactant, oil, seasoning, cyclodextrin or a derivative thereof and the like can be appropriately added to the inhalant.
 ここで界面活性剤としては、例えばオレイン酸、レシチン、ジエチレングリコールジオレエート、テトラヒドロフルフリルオレエート、エチルオレエート、イソプロピルミリステート、グリセリルトリオレエート、グリセリルモノラウレート、グリセリルモノオレエート、グリセリルモノステアレート、グリセリルモノリシノエート、セチルアルコール、ステアリルアルコール、ポリエチレングリコール400、セチルピリジニウムクロリド、ソルビタントリオレエート(商品名Span(スパン)85)、ソルビタンモノオレエート(商品名Span(スパン)80)、ソルビタンモノラウエート(商品名Span(スパン)20)、ポリオキシエチレン硬化ヒマシ油(商品名HCO-60)、ポリオキシエチレン(20)ソルビタンモノラウレート(商品名Tween(ツイーン)20)、ポリオキシエチレン(20)ソルビタンモノオレエート(商品名Tween(ツイーン)80)、天然資源由来のレシチン(商品名Epiclon(エピクロン))、オレイルポリオキシエチレン(2)エーテル(商品名Brij(ブリジ)92)、ステアリルポリオキシエチレン(2)エーテル(商品名Brij(ブリジ)72)、ラウリルポリオキシエチレン(4)エーテル(商品名Brij(ブリジ)30)、オレイルポリオキシエチレン(2)エーテル(商品名Genapol(ゲナポル)0-020)、オキシエチレンとオキシプロピレンとのブロック共重合体(商品名Synperonic(シンペロニック))等が挙げられる。Span(スパン)、Tween(ツイーン)、Epiclon(エピクロン)、Brij(ブリジ)、Genapol(ゲナポル)及びSynperonic(シンペロニック)は商標である。
 油としては、例えばトウモロコシ油、オリーブ油、綿実油、ヒマワリ油等が挙げられる。また、軟膏剤の場合、適当な医薬上許容される基剤(黄色ワセリン、白色ワセリン、パラフィン、プラスチベース、シリコーン、白色軟膏、ミツロウ、豚油、植物油、親水軟膏、親水ワセリン、精製ラノリン、加水ラノリン、吸水軟膏、親水プラスチベース、マクロゴール軟膏等)を用い、有効成分と混合し製剤化し使用する。
Here, examples of the surfactant include oleic acid, lecithin, diethylene glycol dioleate, tetrahydrofurfuryl oleate, ethyl oleate, isopropyl myristate, glyceryl trioleate, glyceryl monolaurate, glyceryl monooleate, and glyceryl monosteer. Rate, glyceryl monolithinoate, cetyl alcohol, stearyl alcohol, polyethylene glycol 400, cetylpyridinium chloride, sorbitan trioleate (trade name Span 85), sorbitan monooleate (trade name Span 80), sorbitan monora Weight (trade name Span 20), polyoxyethylene hydrogenated castor oil (trade name HCO-60), polyoxyethylene (20) sorbitan monolaurate (trade name Tween 20), polyoxyethylene (20) ) Solbitan monooleate (trade name Tween 80), natural resource-derived lecithin (trade name Epiclon), oleyl polyoxyethylene (2) ether (trade name Brij 92), stearyl polyoxy Ethylene (2) ether (trade name Brij 72), lauryl polyoxyethylene (4) ether (trade name Brij 30), oleyl polyoxyethylene (2) ether (trade name Genapol 0- 020), a block copolymer of oxyethylene and oxypropylene (trade name Synperonic) and the like can be mentioned. Span, Tween, Epicron, Brij, Genapol and Synperonic are trademarks.
Examples of the oil include corn oil, olive oil, cottonseed oil, sunflower oil and the like. In the case of ointments, appropriate pharmaceutically acceptable bases (yellow petrolatum, white petrolatum, paraffin, plastic base, silicone, white ointment, beeswax, pig oil, vegetable oil, hydrophilic ointment, hydrophilic petrolatum, purified lanolin, hydrous lanolin , Water-absorbing ointment, hydrophilic plastic base, macrogol ointment, etc.), mix with the active ingredient, formulate and use.
 吸入剤は常法に従って製造することができる。すなわち、上記本発明のアプタマー又は本発明の複合体を粉末又は液状にして、吸入噴射剤及び/又は担体中に配合し、適当な吸入容器に充填することにより製造することができる。また上記本発明のアプタマー又は本発明の複合体が粉末の場合は通常の機械的粉末吸入器を、液状の場合はネブライザー等の吸入器をそれぞれ使用することもできる。ここで噴射剤としては従来公知のものを広く使用でき、フロン-11、フロン-12、フロン-21、フロン-22、フロン-113、フロン-114、フロン-123、フロン-142c、フロン-134a、フロン-227、フロン-C318、1,1,1,2-テトラフルオロエタン等のフロン系化合物、プロパン、イソブタン、n-ブタン等の炭化水素類、ジエチルエーテル等のエーテル類、窒素ガス、炭酸ガス等の圧縮ガス等を例示できる。 The inhalant can be manufactured according to the conventional method. That is, it can be produced by powdering or liquidating the aptamer of the present invention or the composite of the present invention, blending it in an inhalation propellant and / or a carrier, and filling it in an appropriate inhalation container. Further, when the aptamer of the present invention or the complex of the present invention is powder, a normal mechanical powder inhaler can be used, and when the complex is liquid, an inhaler such as a nebulizer can be used. Here, conventionally known propellants can be widely used, and CFC-11, CFC-12, CFC-21, CFC-22, CFC-113, CFC-114, CFC-123, CFC-142c, CFC-134a , Freon-227, Freon-C318, Freon compounds such as 1,1,1,2-tetrafluoroethane, hydrocarbons such as propane, isobutane, n-butane, ethers such as diethyl ether, nitrogen gas, carbon dioxide A compressed gas such as a gas can be exemplified.
 本発明の医薬の投与量は、有効成分の種類、活性、病気の重篤度、投与対象となる動物種、投与対象の薬物受容性、体重、年齢等によって異なるが、通常、成人1日あたり有効成分量として約0.0001~約100mg/kg、例えば約0.0001~約10mg/kg、好ましくは約0.005~約1mg/kgであり得る。 The dose of the medicament of the present invention varies depending on the type of active ingredient, activity, severity of disease, animal species to be administered, drug acceptability to be administered, body weight, age, etc., but is usually per adult per day. The amount of active ingredient can be from about 0.0001 to about 100 mg / kg, such as from about 0.0001 to about 10 mg / kg, preferably from about 0.005 to about 1 mg / kg.
 本発明のアプタマー又は本発明の複合体は、FGF9に特異的に結合し得る。従って、本発明のアプタマー又は本発明の複合体は、FGF9の検出試薬(以下、本発明の検出試薬ともいう)として有用である。該検出試薬は、FGF9のインビボイメージング、血中濃度測定、組織染色、ELISA等に有用である。 The aptamer of the present invention or the complex of the present invention can specifically bind to FGF9. Therefore, the aptamer of the present invention or the complex of the present invention is useful as a detection reagent for FGF9 (hereinafter, also referred to as a detection reagent of the present invention). The detection reagent is useful for in vivo imaging of FGF9, blood concentration measurement, tissue staining, ELISA and the like.
 また、そのFGF9への特異的結合に基づき、本発明のアプタマー又は本発明の複合体はFGF9の分離精製用リガンド(以下、本発明の分離精製用リガンドともいう)として使用され得る。 Further, based on the specific binding to FGF9, the aptamer of the present invention or the complex of the present invention can be used as a ligand for separation and purification of FGF9 (hereinafter, also referred to as a ligand for separation and purification of the present invention).
 本発明はまた、本発明のアプタマー又は本発明の複合体が固定化された固相担体を提供する(以下、本発明の固相担体ともいう)。固相担体としては、例えば、基板、樹脂、プレート(例、マルチウェルプレート)、フィルター、カートリッジ、カラム、多孔質材が挙げられる。基板は、DNAチップやプロテインチップなどに使われているものなどであり得、例えば、ニッケル-PTFE(ポリテトラフルオロエチレン)基板やガラス基板、アパタイト基板、シリコン基板、アルミナ基板などで、これらの基板にポリマーなどのコーティングを施したものが挙げられる。樹脂としては、例えば、アガロース粒子、シリカ粒子、アクリルアミドとN,N’-メチレンビスアクリルアミドの共重合体、ポリスチレン架橋ジビニルベンゼン粒子、デキストランをエピクロロヒドリンで架橋した粒子、セルロースファイバー、アリルデキストランとN,N’-メチレンビスアクリルアミドの架橋ポリマー、単分散系合成ポリマー、単分散系親水性ポリマー、セファロース、トヨパールなどが挙げられ、また、これらの樹脂に各種官能基を結合させた樹脂も含まれる。本発明の固相担体は、例えば、FGF9の精製、及びFGF9の検出、定量に有用であり得る。 The present invention also provides a solid phase carrier on which the aptamer of the present invention or the complex of the present invention is immobilized (hereinafter, also referred to as the solid phase carrier of the present invention). Examples of the solid phase carrier include substrates, resins, plates (eg, multi-well plates), filters, cartridges, columns, and porous materials. The substrate may be one used for a DNA chip, a protein chip, or the like. For example, a nickel-PTFE (polytetrafluoroethylene) substrate, a glass substrate, an apatite substrate, a silicon substrate, an alumina substrate, or the like. Is coated with a polymer or the like. Examples of the resin include agarose particles, silica particles, a copolymer of acrylamide and N, N'-methylenebisacrylamide, polystyrene-crosslinked divinylbenzene particles, particles obtained by cross-linking dextran with epichlorohydrin, cellulose fibers, and allyl dextran. Examples thereof include crosslinked polymers of N, N'-methylenebisacrylamide, monodisperse synthetic polymers, monodisperse hydrophilic polymers, sepharose, toyopearl, and resins in which various functional groups are bonded to these resins. .. The solid phase carrier of the present invention can be useful, for example, for purification of FGF9 and detection and quantification of FGF9.
 本発明のアプタマー又は本発明の複合体は、自体公知の方法により固相担体に固定できる。例えば、親和性物質(例、上述したもの)や所定の官能基を本発明のアプタマー又は本発明の複合体に導入し、次いで当該親和性物質や所定の官能基を利用して固相担体に固定化する方法が挙げられる。本発明はまた、このような方法を提供する。所定の官能基は、カップリング反応に供することが可能な官能基であり得、例えば、アミノ基、チオール基、ヒドロキシル基、カルボキシル基が挙げられる。本発明はまた、このような官能基が導入されたアプタマーを提供する。 The aptamer of the present invention or the complex of the present invention can be immobilized on a solid phase carrier by a method known per se. For example, an affinity substance (eg, as described above) or a predetermined functional group is introduced into an aptamer of the present invention or a complex of the present invention, and then the affinity substance or a predetermined functional group is used as a solid phase carrier. A method of immobilization can be mentioned. The present invention also provides such a method. The predetermined functional group can be a functional group that can be subjected to a coupling reaction, and examples thereof include an amino group, a thiol group, a hydroxyl group, and a carboxyl group. The present invention also provides an aptamer into which such a functional group has been introduced.
 本発明はまた、FGF9の精製及び濃縮方法を提供する(以下、本発明の精製及び濃縮方法ともいう)。特に本発明はFGF9を他のファミリータンパク質から分離することが可能である。本発明の精製及び濃縮方法は、本発明の固相担体にFGF9を吸着させ、吸着したFGF9を溶出液により溶出させることを含み得る。本発明の固相担体へのFGF9の吸着は自体公知の方法により行うことができる。例えば、FGF9を含有する試料(例、細菌又は細胞の培養物又は培養上清、血液)を、本発明の固相担体又はその含有物に導入する。オートタキシンの溶出は、中性溶液等の溶出液を用いて行うことができる。中性溶出液は特に限定されるものではないが、例えばpH約6~約9、好ましくは約6.5~約8.5、より好ましくは約7~約8であり得る。中性溶液はまた、例えば、尿素、キレート剤(例、EDTA)、ナトリウム塩(例、NaCl)、カリウム塩(例、KCl)、マグネシウム塩(例、MgCl2)、界面活性剤(例、Tween20、Triton、NP40)、グリセリンを含むものであり得る。本発明の精製及び濃縮方法はさらに、オートタキシンの吸着後、洗浄液を用いて固相担体を洗浄することを含み得る。洗浄液としては、例えば、尿素、キレート剤(例、EDTA)、Tris、酸、アルカリ、Tranfer RNA、DNA、Tween 20などの表面活性剤、NaClなどの塩を含むものなどが挙げられる。本発明の精製及び濃縮方法はさらに、固相担体を加熱処理することを含み得る。かかる工程により、固相担体の再生、滅菌が可能である。 The present invention also provides a method for purifying and concentrating FGF9 (hereinafter, also referred to as the method for purifying and concentrating the present invention). In particular, the present invention is capable of separating FGF9 from other family proteins. The purification and concentration method of the present invention may include adsorbing FGF9 on the solid phase carrier of the present invention and eluting the adsorbed FGF9 with an eluate. Adsorption of FGF9 onto the solid phase carrier of the present invention can be carried out by a method known per se. For example, a sample containing FGF9 (eg, bacterial or cell culture or culture supernatant, blood) is introduced into the solid phase carrier of the invention or its content. The elution of autotaxine can be performed using an eluate such as a neutral solution. The neutral eluate is not particularly limited, but may have, for example, a pH of about 6 to about 9, preferably about 6.5 to about 8.5, and more preferably about 7 to about 8. Neutral solutions also include, for example, urea, chelating agents (eg, EDTA), sodium salts (eg, NaCl), potassium salts (eg, KCl), magnesium salts (eg, MgCl 2 ), surfactants (eg, Tween20). , Triton, NP40), glycerin. The purification and concentration method of the present invention may further include washing the solid phase carrier with a washing solution after adsorption of autotaxin. Examples of the cleaning solution include urea, a chelating agent (eg, EDTA), Tris, an acid, an alkali, a surface active agent such as Tranfer RNA, DNA, Tween 20, and a salt such as NaCl. The purification and concentration methods of the present invention may further include heat treating the solid phase carrier. By this step, the solid phase carrier can be regenerated and sterilized.
 本発明はまた、FGF9の検出及び定量方法を提供する(以下、本発明の検出及び定量方法ともいう)。特に本発明はFGF9と他のファミリータンパク質と区別して検出及び定量することができる。本発明の検出及び定量方法は、本発明のアプタマーを利用して(例、本発明の複合体及び固相担体の使用により)FGF9を測定することを含み得る。FGF9の検出及び定量方法は、抗体の代わりに本発明のアプタマーを用いること以外は、免疫学的方法と同様の方法により行われ得る。従って、抗体の代わりに本発明のアプタマーをプローブとして用いることにより、酵素免疫測定法(EIA)(例、直接競合ELISA、間接競合ELISA、サンドイッチELISA)、放射免疫測定法(RIA)、蛍光免疫測定法(FIA)、ウエスタンブロット法、免疫組織化学的染色法、セルソーティング法等の方法と同様の方法により、検出及び定量を行うことができる。また、PET等の分子プローブとしても、使用することができる。 The present invention also provides a method for detecting and quantifying FGF9 (hereinafter, also referred to as a method for detecting and quantifying FGF9 of the present invention). In particular, the present invention can be detected and quantified separately from FGF9 and other family proteins. The detection and quantification methods of the present invention may include measuring FGF9 using the aptamers of the present invention (eg, by using the complex and solid phase carriers of the present invention). The method for detecting and quantifying FGF9 can be carried out by the same method as the immunological method except that the aptamer of the present invention is used instead of the antibody. Therefore, by using the aptamers of the present invention as probes instead of antibodies, enzyme-linked immunosorbent assay (EIA) (eg, direct-competitive ELISA, indirect-competitive ELISA, sandwich ELISA), radioimmunoassay (RIA), fluorescence immunoassay. Detection and quantification can be performed by the same method as the method (FIA), Western blot method, immunohistochemical staining method, cell sorting method and the like. It can also be used as a molecular probe for PET and the like.
 以下は、本発明の実施のための特定の実施形態の例である。実施例は、説明のみを目的として提供し、本発明の範囲を制限することを決して意図しない。 The following are examples of specific embodiments for the practice of the present invention. The examples are provided for illustration purposes only and are by no means intended to limit the scope of the invention.
実施例1:FGF9に結合するRNAアプタマーの作製(1)
 FGF9に結合するRNAアプタマーはSELEX法を用いて作製した。SELEXはEllingtonらの方法(Ellington and Szostak, Nature 346, 818-822, 1990)及びTuerkらの方法(Tuerk and Gold, Science 249, 505-510, 1990)を参考にして行った。標的物質としてNHS-activated Sepharose 4 Fast Flow(GEヘルスケア社製)の担体に固相化したFGF9(R&D systems社製)を用いた。担体へのFGF9の固相化方法はGEヘルスケア社の仕様書に沿って行った。固相化量は、固相化前のFGF9溶液と固相化直後の上清をSDS-PAGEにより調べることで確認した。SDS-PAGEの結果、上清からはFGF9のバンドは検出されず、使用したFGF9のほぼ全てがカップリングされたことが確認された。約217 pmolのFGF9が約3μLの樹脂に固相化されたことになる。
Example 1: Preparation of RNA aptamer that binds to FGF9 (1)
RNA aptamers that bind to FGF9 were prepared using the SELEX method. SELEX was performed with reference to the method of Ellington et al. (Ellington and Szostak, Nature 346, 818-822, 1990) and the method of Tuerk et al. (Tuerk and Gold, Science 249, 505-510, 1990). As a target substance, FGF9 (manufactured by R & D systems) immobilized on a carrier of NHS-activated Sepharose 4 Fast Flow (manufactured by GE Healthcare) was used. The method for immobilizing FGF9 on the carrier was performed according to the specifications of GE Healthcare Japan. The amount of immobilization was confirmed by examining the FGF9 solution before immobilization and the supernatant immediately after immobilization by SDS-PAGE. As a result of SDS-PAGE, no band of FGF9 was detected from the supernatant, and it was confirmed that almost all of the FGF9 used was coupled. About 217 pmol of FGF9 was immobilized on about 3 μL of resin.
 最初のラウンドで用いたRNA(35N)は、化学合成によって得られたDNAを変異型T7 RNAポリメラーゼ(Sousa and Padilla, EMBO J. 14,4609-4621,1995)を用いて転写して得た。この転写反応の基質は、転写産物のプリンヌクレオチドがRNA、ピリミジンヌクレオチドがDNAとなるように選択した。DNA鋳型としては、以下に示す35ヌクレオチドのランダム配列の両端にプライマー配列を持った長さ71ヌクレオチドのDNAを用いた。DNA鋳型とプライマーは化学合成によって作製した。 The RNA (35N) used in the first round was obtained by transcribing the DNA obtained by chemical synthesis using mutant T7 RNA polymerase (Sousa and Padilla, EMBO J. 14,4609-4621, 1995). The substrate for this transcription reaction was selected so that the purine nucleotide of the transcript was RNA and the pyrimidine nucleotide was DNA. As the DNA template, a 71-nucleotide long DNA having primer sequences at both ends of the 35-nucleotide random sequence shown below was used. DNA templates and primers were made by chemical synthesis.
DNA鋳型:
5’-AGGAGCTACGCAGGCGTANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAGCTCGACGGAGCTTCCC-3’(配列番号39)
DNA template:
5'-AGGAGCTACGCAGGCGTANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAGCTCGACGGAGCTTCCC-3'(SEQ ID NO: 39)
プライマーFwd:
5’-TAATACGACTCACTATAGGGAAGCTCCGTCGAGCT-3’(配列番号40)
プライマーRev:
5’-AGGAGCTACGCAGGCGTA-3’(配列番号41)
Primer Fwd:
5'-TAATACGACTCACTATAGGGAAGCTCCGTCGAGCT-3'(SEQ ID NO: 40)
Primer Rev:
5'-AGGAGCTACGCAGGCGTA-3' (SEQ ID NO: 41)
 DNA鋳型(配列番号39)中のNの連続は任意の組み合わせの35個のヌクレオチド(35N:それぞれのNは、A、C、G又はTである)であり、得られるアプタマー独特の配列領域を生じる。プライマーFwdはT7 RNAポリメラーゼのプロモーター配列を含んでいる。最初のラウンドで用いたRNAプールのバリエーションは理論上1014であった。 The sequence of N in the DNA template (SEQ ID NO: 39) is any combination of 35 nucleotides (35N: each N is A, C, G or T) and the resulting aptamer-specific sequence region. Occurs. Primer Fwd contains the promoter sequence of T7 RNA polymerase. The variation of the RNA pool used in the first round was theoretically 10 14 .
 FGF9が固相化された担体にRNAプールを加え、30分室温で保持した後、FGF9に結合しないRNAを取り除くために、溶液Aで樹脂を洗浄した。ここで溶液Aは145mM 塩化ナトリウム、5.4mM 塩化カリウム、1.8mM 塩化カルシウム、0.8mM 塩化マグネシウム、20mM トリス(pH7.6)、0.05% Tween20の混合溶液である。FGF9に結合したRNAは、溶出液として溶液Bを加えて85℃で3分間熱処理を行い、その上清から回収した。ここで溶液Bは7M Urea、5mM EDTA、20mM トリス(pH6.6)の混合溶液である。回収されたRNAは逆転写PCRで増幅し、変異型T7 RNAポリメラーゼで転写して次のラウンドのプールとして用いた。以上を1ラウンドとし、同様の作業を複数回繰り返し行った。SELEX終了後、次世代シーケンサーを用いて塩基配列の解析を行った。次世代シーケンサーには、Ion PGMTMシステム(Thermo社製)を用い、解析はThermo社の仕様書に沿って行った。 An RNA pool was added to the carrier on which FGF9 was immobilized, and the mixture was kept at room temperature for 30 minutes, and then the resin was washed with Solution A to remove RNA that did not bind to FGF9. Here, Solution A is a mixed solution of 145 mM sodium chloride, 5.4 mM potassium chloride, 1.8 mM calcium chloride, 0.8 mM magnesium chloride, 20 mM tris (pH 7.6), and 0.05% Tween 20. RNA bound to FGF9 was recovered from the supernatant after adding solution B as an eluate and heat-treating at 85 ° C. for 3 minutes. Here, solution B is a mixed solution of 7M Urea, 5mM EDTA, and 20mM tris (pH 6.6). The recovered RNA was amplified by reverse transcription PCR, transcribed with mutant T7 RNA polymerase, and used as a pool for the next round. The above was regarded as one round, and the same work was repeated multiple times. After the completion of SELEX, the base sequence was analyzed using a next-generation sequencer. The Ion PGM TM system (manufactured by Thermo) was used for the next-generation sequencer, and the analysis was performed according to the specifications of Thermo.
 SELEXを6ラウンド実施した後、次世代シーケンサーによって40,314種類のクローン配列を特定し、25,205種類の配列に収束していることを確認した。配列番号1で表されるヌクレオチド配列はそれらのクローン配列の代表的な配列の1つであり、クローン配列内で65コピー存在した。配列番号1で表されるヌクレオチド配列には共通配列1が含まれていた。共通配列1は、25,205種類の配列中、少なくとも28種類の配列に存在した。これら28種類の配列の二次構造をMFOLDプログラム(Zukker, Nucleic Acids Res. 31, 3406-3415, 2003)を用いて予測したところ、共通配列1がよく似たループ構造を形成した。配列番号1で表されるヌクレオチド配列からなるアプタマーの二次構造を図1に示した。 After performing SELEX for 6 rounds, 40,314 types of clone sequences were identified by the next-generation sequencer, and it was confirmed that they converged to 25,205 types of sequences. The nucleotide sequence represented by SEQ ID NO: 1 is one of the representative sequences of those clonal sequences, and there were 65 copies in the clonal sequence. The nucleotide sequence represented by SEQ ID NO: 1 contained common sequence 1. Common sequence 1 was present in at least 28 of the 25,205 sequences. When the secondary structure of these 28 types of sequences was predicted using the MFOLD program (Zukker, Nucleic Acids Res. 31, 3406-3415, 2003), the common sequence 1 formed a similar loop structure. The secondary structure of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 is shown in FIG.
 以下に配列番号1で表されるヌクレオチド配列および共通配列1を示す。特に言及がなければ、以下に挙げられる個々の配列は5’から3’の方向で表すものとし、プリンヌクレオチド(A及びG)は2’-OH(即ち、リボヌクレオチド)であり、ピリミジンヌクレオチド(T及びC)は2’-H(即ち、デオキシリボヌクレオチド)である。また、配列中のHはT、CまたはAを示す。 The nucleotide sequence represented by SEQ ID NO: 1 and the common sequence 1 are shown below. Unless otherwise stated, the individual sequences listed below shall be represented in the 5'to 3'direction, with purine nucleotides (A and G) being 2'-OH (ie, ribonucleotides) and pyrimidine nucleotides (ie, ribonucleotides). T and C) are 2'-H (ie, deoxyribonucleotides). In addition, H in the sequence indicates T, C or A.
 配列番号1:
GGGAAGCTCCGTCGAGCTGAGGGCACCCAAGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGCTCCT
SEQ ID NO: 1:
GGGAAGCTCCGTCGAGCTGAGGGCACCCAAGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGCTCCT
 共通配列:
CAAGGHTGCCG(配列番号37)
Common sequence:
CAAGGHTGCCG (SEQ ID NO: 37)
 配列番号1で表されるヌクレオチド配列からなるアプタマーのFGF9に対する結合活性を表面プラズモン共鳴法により評価した。測定にはGEヘルスケア社製のBiacore T200を用いた。センサーチップにはストレプトアビジンが固定化されているSAチップを用いた。これに、5’末端にビオチンが結合している16ヌクレオチドのPoly dTを740RU程度結合させた。リガンドとなる核酸は3’末端に16ヌクレオチドのPoly Aを付加し、TとAのアニーリングによりSAチップに固定化した。流速10 μL/minで核酸を30秒間インジェクトし、約370 RUの核酸を固定化した。アナライト用のFGF9は0.1μMに調製し、流速30 μL/minで60秒間インジェクトした。ランニングバッファーには溶液Cを用いた。ここで溶液Cは300mM 塩化ナトリウム、5.4mM 塩化カリウム、1.8mM 塩化カルシウム、0.8mM 塩化マグネシウム、20mM トリス(pH7.6)、0.05% Tween20の混合溶液である。 The binding activity of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 to FGF9 was evaluated by the surface plasmon resonance method. A Biacore T200 manufactured by GE Healthcare was used for the measurement. As the sensor chip, an SA chip on which streptavidin was immobilized was used. About 740 RU of 16 nucleotides of PolydT to which biotin was bound at the 5'end was bound to this. For the nucleic acid serving as a ligand, 16 nucleotides of PolyA was added to the 3'end and immobilized on the SA chip by annealing T and A. Nucleic acid was injected for 30 seconds at a flow rate of 10 μL / min to immobilize approximately 370 RU of nucleic acid. FGF9 for analysis was prepared to 0.1 μM and injected at a flow rate of 30 μL / min for 60 seconds. Solution C was used as the running buffer. Here, the solution C is a mixed solution of 300 mM sodium chloride, 5.4 mM potassium chloride, 1.8 mM calcium chloride, 0.8 mM magnesium chloride, 20 mM tris (pH 7.6), and 0.05% Tween 20.
 測定の結果、配列番号1で表されるヌクレオチド配列からなるアプタマーはFGF9に結合することがわかった(図2)。ネガティブコントロールとして用いた35ヌクレオチドのランダム配列を含む1ラウンド目に使用した核酸プール(35N)はFGF9との結合が認められなかった。 As a result of the measurement, it was found that the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 binds to FGF9 (Fig. 2). Nucleic acid pool (35N) used in the first round containing a random sequence of 35 nucleotides used as a negative control did not show binding to FGF9.
 配列番号1で表されるヌクレオチド配列からなるアプタマーがFGF9の活性を阻害するかどうかを、下記の方法により評価した。FGF9の受容体としてFGFR3cとIgGのFc部分の融合タンパク質(R&D systems社製)を選択した。GEヘルスケア社製のBiacore T200を用いた。センサーチップにはCM5上にProtein Aを固定化したものを用いた。そこに、FGFR3cを約500RU固定化した。アナライトとしてFGF9(0.1μM)、ヘパリン(0.1μM)(Calbiochem社製)とアプタマー(0.5μM)を混合したものを流した。ランニングバッファーには溶液Dを用いた。ここで溶液Dは295mM 塩化ナトリウム、5.4mM 塩化カリウム、1.8mM 塩化カルシウム、0.8mM 塩化マグネシウム、20mM トリス(pH7.6)、0.05% Tween20の混合溶液である。阻害試験前にFGF9とヘパリンの混合体がFGFR3cと結合することを確認した。試験の結果、配列番号1で表わされるアプタマーは強い阻害活性を示した。配列番号1で表されるヌクレオチド配列からなるアプタマーがFGF9とFGFR3cの結合を阻害していることを示すセンサーグラムを図3に示す。 Whether or not the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 inhibits the activity of FGF9 was evaluated by the following method. A fusion protein of FGFR3c and the Fc portion of IgG (manufactured by R & D systems) was selected as the receptor for FGF9. Biacore T200 manufactured by GE Healthcare was used. The sensor chip used was a protein A immobilized on CM5. FGFR3c was immobilized there at about 500 RU. A mixture of FGF9 (0.1 μM), heparin (0.1 μM) (manufactured by Calbiochem) and aptamer (0.5 μM) was flowed as an analyzer. Solution D was used as the running buffer. Here, solution D is a mixed solution of 295 mM sodium chloride, 5.4 mM potassium chloride, 1.8 mM calcium chloride, 0.8 mM magnesium chloride, 20 mM tris (pH 7.6), and 0.05% Tween 20. Prior to the inhibition test, it was confirmed that a mixture of FGF9 and heparin binds to FGFR3c. As a result of the test, the aptamer represented by SEQ ID NO: 1 showed strong inhibitory activity. FIG. 3 shows a sensorgram showing that the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 inhibits the binding between FGF9 and FGFR3c.
 被験物質の阻害率は次式を用いて算出した。 The inhibition rate of the test substance was calculated using the following formula.
 阻害率(%)=(RMax-Rapt)/RMaxx100 Inhibition rate (%) = (R Max -R apt ) / R Max x100
 ここでRMaxおよびRaptは、被験物質未添加時および添加時のFGF9とヘパリンの混合体が示すRU値である。 Here, R Max and R apt are the RU values indicated by the mixture of FGF9 and heparin with and without the addition of the test substance.
 配列番号1で表されるヌクレオチド配列からなるアプタマーの阻害率は95.7%であった。また、ネガティブコントロールである35Nは阻害活性を示さなかった(阻害率0%)。
 以上の結果より、配列番号1で表されるヌクレオチド配列からなるアプタマーはFGF9に対する優れた阻害効果を示すと言える。
The inhibition rate of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 was 95.7%. In addition, 35N, which is a negative control, showed no inhibitory activity (inhibition rate 0%).
From the above results, it can be said that the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 exhibits an excellent inhibitory effect on FGF9.
実施例2:アプタマーの短鎖化(1)
 配列番号1で表されるヌクレオチド配列からなるアプタマーの短鎖化を行い、配列番号2~9で表されるヌクレオチド配列からなるアプタマーを得た。配列番号2~9で表されるヌクレオチド配列からなるアプタマーの二次構造の予測を図4に示す。
Example 2: Shortening the aptamer (1)
The aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 1 was shortened to obtain an aptamer consisting of the nucleotide sequence represented by SEQ ID NOs: 2-9. FIG. 4 shows a prediction of the secondary structure of the aptamer consisting of the nucleotide sequences represented by SEQ ID NOs: 2 to 9.
 以下に配列番号2~9で表されるヌクレオチド配列を示す。特に言及がなければ、以下に挙げられる個々の配列は5’から3’の方向で表すものとし、プリンヌクレオチド(A及びG)は2’-OH(即ち、リボヌクレオチド)であり、ピリミジンヌクレオチド(T及びC)は2’-H(即ち、デオキシリボヌクレオチド)である。 The nucleotide sequences represented by SEQ ID NOs: 2 to 9 are shown below. Unless otherwise stated, the individual sequences listed below shall be represented in the 5'to 3'direction, with purine nucleotides (A and G) being 2'-OH (ie, ribonucleotides) and pyrimidine nucleotides (ie, ribonucleotides). T and C) are 2'-H (ie, deoxyribonucleotides).
配列番号2:(配列番号1で表されるヌクレオチド配列を、共通配列を含む25ヌクレオチドに短鎖化した配列)
GGGCACCCAAGGCTGCCGGGTGCCA
配列番号3:(配列番号1で表されるヌクレオチド配列を、共通配列を含む59ヌクレオチドに短鎖化した配列)
GGAGCTGAGGGCACCCAAGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGCTCCT
配列番号4:(配列番号1で表されるヌクレオチド配列を、共通配列を含む43ヌクレオチドに短鎖化した配列)
GGGCACCCAAGGCTGCCGGGTGCCATGCACACATACGCCTGCG
配列番号5:(配列番号1で表されるヌクレオチド配列を、共通配列を含む57ヌクレオチドに短鎖化した配列)
GGGAAGCTCCGTCGAGCTGAGGGCACCCAAGGCTGCCGGGTGCCATGCGTAGCTCCT
配列番号6:(配列番号1で表されるヌクレオチド配列を、共通配列を含む53ヌクレオチドに短鎖化した配列)
GGCTGAGGGCACCCAAGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGC
配列番号7:(配列番号1で表されるヌクレオチド配列を、配列番号1のヌクレオチド番号29のAおよびヌクレオチド番号30のAを欠失させて得られる69ヌクレオチドに短鎖化した配列)
GGGAAGCTCCGTCGAGCTGAGGGCACCCGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGCTCCT
配列番号8:(配列番号1で表されるヌクレオチド配列を、共通配列の部分配列を含む39ヌクレオチドに短鎖化した配列)
GGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGCC
配列番号9:(配列番号1で表されるヌクレオチド配列を、共通配列の部分配列を含む31ヌクレオチドに短鎖化した配列)
GGCCGGGTGCCATGCACACATACGCCTGCGT
SEQ ID NO: 2: (Sequence in which the nucleotide sequence represented by SEQ ID NO: 1 is shortened to 25 nucleotides including a common sequence)
GGGCACCCAAGGCTGCCGGGTGCCA
SEQ ID NO: 3: (Sequence in which the nucleotide sequence represented by SEQ ID NO: 1 is shortened to 59 nucleotides including a common sequence)
GGAGCTGAGGGCACCCAAGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGCTCCT
SEQ ID NO: 4: (Sequence in which the nucleotide sequence represented by SEQ ID NO: 1 is shortened to 43 nucleotides including a common sequence)
GGGCACCCAAGGCTGCCGGGTGCCATGCACACATACGCCTGCG
SEQ ID NO: 5: (Sequence obtained by shortening the nucleotide sequence represented by SEQ ID NO: 1 to 57 nucleotides including a common sequence)
GGGAAGCTCCGTCGAGCTGAGGGCACCCAAGGCTGCCGGGTGCCATGCGTAGCTCCT
SEQ ID NO: 6: (Sequence obtained by shortening the nucleotide sequence represented by SEQ ID NO: 1 to 53 nucleotides including a common sequence)
GGCTGAGGGCACCCAAGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGC
SEQ ID NO: 7: (The nucleotide sequence represented by SEQ ID NO: 1 is shortened to 69 nucleotides obtained by deleting A of nucleotide No. 29 of SEQ ID NO: 1 and A of nucleotide No. 30).
GGGAAGCTCCGTCGAGCTGAGGGCACCCGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGCTCCT
SEQ ID NO: 8: (A sequence obtained by shortening the nucleotide sequence represented by SEQ ID NO: 1 to 39 nucleotides including a partial sequence of the common sequence).
GGGCTGCCGGGTGCCATGCACACATACGCCTGCGTAGCC
SEQ ID NO: 9: (Sequence obtained by shortening the nucleotide sequence represented by SEQ ID NO: 1 to 31 nucleotides including a partial sequence of the common sequence)
GGCCGGGTGCCATGCACACATACGCCTGCGT
 これらのアプタマーがFGF9と結合するか、実施例1と同様の表面プラズモン共鳴法により評価した。その結果共通配列(配列番号37)を有するアプタマーは全てFGF9への結合活性を保持していることが明らかとなった(配列番号1~6)。一方共通配列を部分的にしか含まないアプタマーはFGF9への結合活性を有しなかった(配列番号8、9)。その結果を表1に示す。また、これらのアプタマーがFGF9の酵素活性を阻害するかについても、実施例1と同様の方法で評価を行った。ただし、アプタマーの最終濃度を0.3μMに固定して評価した。その結果を表1に示す。 Whether these aptamers bind to FGF9 was evaluated by the same surface plasmon resonance method as in Example 1. As a result, it was clarified that all aptamers having a common sequence (SEQ ID NO: 37) retain the binding activity to FGF9 (SEQ ID NOs: 1 to 6). On the other hand, aptamers containing only a partial common sequence had no binding activity to FGF9 (SEQ ID NOs: 8 and 9). The results are shown in Table 1. In addition, whether these aptamers inhibit the enzymatic activity of FGF9 was also evaluated by the same method as in Example 1. However, the final concentration of aptamer was fixed at 0.3 μM for evaluation. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 配列番号7で表されるヌクレオチド配列からなるアプタマーの結果より、共通配列中のAAの欠失によりアプタマーによるFGF9の阻害活性が失われることが分かった。また、配列番号8、9で表されるヌクレオチド配列からなるアプタマーの結果から、共通配列の一部を欠く配列ではアプタマーによるFGF9の阻害活性が失われることが判明した。一方で、阻害活性がないものであっても、共通配列1を有するアプタマーは少なくともFGF9への結合活性を保持していることが明らかになった(配列番号2~4、6)。
 以上の結果より、共通配列を含むことがアプタマーの結合活性の維持に重要であることが示唆された。
From the results of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 7, it was found that the inhibitory activity of FGF9 by the aptamer was lost due to the deletion of AA in the common sequence. In addition, from the results of the aptamer consisting of the nucleotide sequences represented by SEQ ID NOs: 8 and 9, it was found that the inhibitory activity of FGF9 by the aptamer is lost in the sequence lacking a part of the common sequence. On the other hand, it was revealed that the aptamer having the common sequence 1 retains at least the binding activity to FGF9 even if it has no inhibitory activity (SEQ ID NOS: 2 to 4, 6).
From the above results, it was suggested that the inclusion of a common sequence is important for maintaining the binding activity of aptamers.
実施例3:FGF9に結合するRNAアプタマーの作製(2)
 実施例1のSELEX法では取得されるアプタマーの全長は約70塩基であり、その後短鎖化の作業が必要であった。しかしながら、短鎖化体はしばしば活性が大きく低下していた。そこで、NOXXON社によって開発されたTailored-SELEX法を参考にして(Vater et al. Nucleic Acids Res. 31, 2003, el30; Jarosch et al.NucleicAcids Res. 34, 2006, e86)、SELEXを実施した。
 標的の固定化および洗浄方法は実施例1とおおむね同様であり、NHS-activated Sepharose 4 Fast Flow(GEヘルスケア社製)の担体に固相化したFGF9(R&D systems社製)を用いた。DNA鋳型とプライマーは化学合成により作製した。また、転写反応の基質は、実施例1を参考にしてプリンヌクレオチドがRNA、ピリミジンヌクレオチドがDNAとなるように選択した。異なる鋳型とプライマーセットにより2通りのSELEXを実施した。使用した鋳型とプライマーの配列を以下に示す。
DNA鋳型1:
5’-TCGAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGCCCTATAGTGAGTCGTATTA-3’(配列番号42)
Forward ligate 1:
5’-UAAUACGACUCACUAUA-3’ (配列番号43)
Forward primer 1:
5’-TAGACCATTCGACTATAATACGACTCACTATAGGGC-3’ (配列番号44)
Forward bridge 1:
5’-GCCCTATAGTGAGTCGTATT-NH2-3’ (配列番号45)
Reverse bridge 1:
5’-TTACGTCTTGTTTTTCTCGAG-3’ (配列番号46)
Reverse ligate 1:
5’-p-GAAAAACAAGACGTAA-NH2-3’ (配列番号47)
DNA鋳型2:
5’-TCGAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTCCCTATAGTGAGTCGTATTA-3’ (配列番号48)
Forward ligate 2:
(Forward ligate 1 と同じ)
Forward primer 2:
5’-TACGAGGTAGCATGATAATACGACTCACTATAGGGA-3’ (配列番号49)
Forward bridge 2:
5’-TCCCTATAGTGAGTCGTATT-NH2-3’ (配列番号50)
Reverse bridge 2:
5’-TACGCTTTGTATTTTTTCTCGAG-3’ (配列番号51)
Reverse ligate 2:
5’-p-GAAAAAATACAAAGCGTA-NH2-3’ (配列番号52)
Example 3: Preparation of RNA aptamer that binds to FGF9 (2)
In the SELEX method of Example 1, the total length of the aptamer obtained was about 70 bases, and then the work of shortening the chain was required. However, the shortened form was often significantly reduced in activity. Therefore, SELEX was performed with reference to the Tailored-SELEX method developed by NOXXON (Vater et al. Nucleic Acids Res. 31, 2003, el30; Jarosch et al. Nucleic Acids Res. 34, 2006, e86).
The target immobilization and washing method was substantially the same as in Example 1, and FGF9 (manufactured by R & D systems) immobilized on a carrier of NHS-activated Sepharose 4 Fast Flow (manufactured by GE Healthcare) was used. DNA templates and primers were prepared by chemical synthesis. The substrate for the transcription reaction was selected so that the purine nucleotide was RNA and the pyrimidine nucleotide was DNA with reference to Example 1. Two SELEXs were performed with different molds and primer sets. The sequences of the templates and primers used are shown below.
DNA template 1:
5'-TCGAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNGCCCTATAGTGAGTCGTATTA-3' (SEQ ID NO: 42)
Forward ligate 1:
5'-UAAUACGACUCACUAUA-3' (SEQ ID NO: 43)
Forward primer 1:
5'-TAGACCATTCGACTATAATACGACTCACTATAGGGC-3' (SEQ ID NO: 44)
Forward bridge 1:
5'-GCCCTATAGTGAGTCGTATT-NH 2-3 ' (SEQ ID NO: 45)
Reverse bridge 1:
5'-TTACGTCTTGTTTTTCTCGAG-3' (SEQ ID NO: 46)
Reverse ligate 1:
5'-p-GAAAAACAAGACGTAA-NH 2-3 ' (SEQ ID NO: 47)
DNA template 2:
5'-TCGAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNTCCCTATAGTGAGTCGTATTA-3' (SEQ ID NO: 48)
Forward ligate 2:
(Same as Forward ligate 1)
Forward primer 2:
5'-TACGAGGTAGCATGATAATACGACTCACTATAGGGA-3' (SEQ ID NO: 49)
Forward bridge 2:
5'-TCCCTATAGTGAGTCGTATT-NH 2 -3' (SEQ ID NO: 50)
Reverse bridge 2:
5'-TACGCTTTGTATTTTTTCTCGAG-3' (SEQ ID NO: 51)
Reverse ligate 2:
5'-p-GAAAAAATACAAAGCGTA-NH 2 -3'(SEQ ID NO: 52)
 SELEXを6ラウンド実施した後、実施例1と同様に次世代シーケンサーによる配列解析を行った。DNA鋳型1を用いたSELEXからは12,737種類のクローン配列を特定し、353種類の配列に収束していることを確認した。DNA鋳型2を用いたSELEXからは28,646種類のクローン配列を特定し、3,852種類の配列に収束していることを確認した。これらのクローン配列には共通配列を有するクローン配列が存在した。配列番号10~27で表されるヌクレオチド配列は、それらクローン配列の代表的な配列である。配列番号10~27で表されるヌクレオチド配列からなるアプタマーの二次構造予測を図5に示す。 After performing SELEX for 6 rounds, sequence analysis was performed using the next-generation sequencer in the same manner as in Example 1. From SELEX using DNA template 1, 12,737 types of clone sequences were identified, and it was confirmed that they converged to 353 types of sequences. From SELEX using DNA template 2, 28,646 types of clone sequences were identified, and it was confirmed that they converged to 3,852 types of sequences. There were clone sequences having a common sequence in these clone sequences. The nucleotide sequences represented by SEQ ID NOs: 10 to 27 are representative sequences of those clonal sequences. FIG. 5 shows a secondary structure prediction of an aptamer consisting of the nucleotide sequences represented by SEQ ID NOs: 10 to 27.
 以下に配列番号10~27で表されるヌクレオチド配列を示す。特に言及がなければ、以下に挙げられる個々の配列は5’から3’の方向で表すものとし、プリンヌクレオチド(A及びG)は2’-OH(即ち、リボヌクレオチド)であり、ピリミジンヌクレオチド(T及びC)は2’-H(即ち、デオキシリボヌクレオチド)である。
配列番号10:
GGGCGGACGCAAGGTTGCCGCGTCCAGGAAGTAGCTCGA
配列番号11:
GGGCCAAGGATGCCGGTCCTGTGTAAAGTAGTGACTCGA
配列番号12:
GGGAGAGACCAAGGCTGCCGGTCTATATAGCAAGCTCGA
配列番号13:
GGGAGGAGATACCAAGGTTGCCGGTATCACTAGGCTCGA
配列番号14:
GGGAGAGGCCAAGGTTGCCGGTCTCGGATATGAGCTCGA
配列番号15:
GGGAGAGTGCCAAGGCTGCCGGCACTGATTATAGCTCGA
配列番号16:
GGGAGACAGCCAAGGTTGCCGGATTGTCCAACAGCTCGA
配列番号17:
GGGAGGAGACCAAGGCTGCCGGTCATCATGCATGCTCGA
配列番号18:
GGGAGTAGACCAAGGTTGCCGGTCACACAATATGCTCGA
配列番号19:
GGGAGGAGACCAAGGCTGCCGGTCTTACTAGTAGCTCGA
配列番号20:
GGGAAGATACCAAGGTTGCCGGTATTATTAATAGCTCGA
配列番号21:
GGGAAGATGCAAGGCTGCCGCATCTGGAAATAGGCTCGA
配列番号22:
GGGAGGATCCAAGGTTGCCGGATCGCACAGGTAGCTCGA
配列番号23:
GGGAGAAGACTGCAAGGTTGCCGCAGTCACGTGGCTCGA
配列番号24:
GGGAAGGACCAAGGTTGCCGGTCCACGGTACTAGCTCGA
配列番号25:
GGGAGAATAAGACCAAGGTTGCCGGTCCATGTAGCTCGA
配列番号26:
GGGAGGAGGGGCAAGGCTGCCGCCCCTGTAGTAGCTCGA
配列番号27:
GGGAGGTGCCAAGGTTGCCGGTACCAATAATGTGCTCGA
The nucleotide sequences represented by SEQ ID NOs: 10 to 27 are shown below. Unless otherwise stated, the individual sequences listed below shall be represented in the 5'to 3'direction, with purine nucleotides (A and G) being 2'-OH (ie, ribonucleotides) and pyrimidine nucleotides (ie, ribonucleotides). T and C) are 2'-H (ie, deoxyribonucleotides).
SEQ ID NO: 10:
GGGCGGACGCAAGGTTGCCGCGTCCAGGAAGTAGCTCGA
SEQ ID NO: 11:
GGGCCAAGGATGCCGGTCCTGTGTAAAGTAGTGACTCGA
SEQ ID NO: 12:
GGGAGAGACCAAGGCTGCCGGTCTATATAGCAAGCTCGA
SEQ ID NO: 13:
GGGAGGAGATACCAAGGTTGCCGGTATCACTAGGCTCGA
SEQ ID NO: 14:
GGGAGAGGCCAAGGTTGCCGGTCTCGGATATGAGCTCGA
SEQ ID NO: 15:
GGGAGAGTGCCAAGGCTGCCGGCACTGATTATAGCTCGA
SEQ ID NO: 16:
GGGAGACAGCCAAGGTTGCCGGATTGTCCAACAGCTCGA
SEQ ID NO: 17:
GGGAGGAGACCAAGGCTGCCGGTCATCATGCATGCTCGA
SEQ ID NO: 18:
GGGAGTAGACCAAGGTTGCCGGTCACACAATATGCTCGA
SEQ ID NO: 19:
GGGAGGAGACCAAGGCTGCCGGTCTTACTAGTAGCTCGA
SEQ ID NO: 20:
GGGAAGATACCAAGGTTGCCGGTATTATTAATAGCTCGA
SEQ ID NO: 21:
GGGAAGATGCAAGGCTGCCGCATCTGGAAATAGGCTCGA
SEQ ID NO: 22:
GGGAGGATCCAAGGTTGCCGGATCGCACAGGTAGCTCGA
SEQ ID NO: 23:
GGGAGAAGACTGCAAGGTTGCCGCAGTCACGTGGCTCGA
SEQ ID NO: 24:
GGGAAGGACCAAGGTTGCCGGTCCACGGTACTAGCTCGA
SEQ ID NO: 25:
GGGAGAATAAGACCAAGGTTGCCGGTCCATGTAGCTCGA
SEQ ID NO: 26:
GGGAGGAGGGGCAAGGCTGCCGCCCCTGTAGTAGCTCGA
SEQ ID NO: 27:
GGGAGGTGCCAAGGTTGCCGGTACCAATAATGTGCTCGA
 これらのアプタマーがFGF9と結合するか、実施例1と同様の表面プラズモン共鳴法により評価した。その結果共通配列を有するアプタマーは全てFGF9への結合活性を保持していることが明らかとなった。その結果を表2に示す。また、これらのアプタマーがFGF9の酵素活性を阻害するかについても、実施例1と同様の方法で評価を行った。アプタマーの最終濃度を0.3μMに固定して評価した。その結果を表2に示す。 Whether these aptamers bind to FGF9 was evaluated by the same surface plasmon resonance method as in Example 1. As a result, it was clarified that all aptamers having a common sequence retain the binding activity to FGF9. The results are shown in Table 2. In addition, whether these aptamers inhibit the enzymatic activity of FGF9 was also evaluated by the same method as in Example 1. The final concentration of aptamer was fixed at 0.3 μM for evaluation. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 これらの結果から、共通配列の5’端のCおよびその5’側に隣接するヌクレオチドを含むヌクレオチド配列と共通配列の3’端のGおよびその3’側に隣接するヌクレオチドを含むヌクレオチド配列によって形成されるステムは、最も短い場合で、4塩基対のステムであることが明らかとなった。また、配列番号11の結果から、そのステムの5’側に隣接するヌクレオチド配列は欠失可能であることが示された。 From these results, it is formed by a nucleotide sequence containing C at the 5'end of the common sequence and a nucleotide adjacent to its 5'side, and a nucleotide sequence containing G at the 3'end of the common sequence and a nucleotide adjacent to its 3'side. In the shortest case, the stem to be produced was found to be a 4-base pair stem. In addition, the result of SEQ ID NO: 11 showed that the nucleotide sequence adjacent to the 5'side of the stem can be deleted.
実施例4:アプタマーの短鎖化(2)
 配列番号27で表されるヌクレオチド配列からなるアプタマーの短鎖化を行い、配列番号28~35で表されるヌクレオチド配列からなるアプタマーを得た。配列番号28~35で表されるヌクレオチド配列からなるアプタマーの二次構造予測を図6に示す。
Example 4: Shortening the aptamer (2)
The aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 27 was shortened to obtain an aptamer consisting of the nucleotide sequence represented by SEQ ID NOs: 28 to 35. FIG. 6 shows a secondary structure prediction of an aptamer consisting of the nucleotide sequences represented by SEQ ID NOs: 28 to 35.
 以下に配列番号28~35で表されるヌクレオチド配列を示す。特に言及がなければ、以下に挙げられる個々の配列は5’から3’の方向で表すものとし、プリンヌクレオチド(A及びG)は2’-OH(即ち、シリボヌクレオチド)であり、ピリミジンヌクレオチド(T及びC)は2’-H(即ち、デオキシリボヌクレオチド)である。
配列番号28:(配列番号27で表されるヌクレオチド配列の3’側末端を2ヌクレオチド短くした配列)
GGGAGGTGCCAAGGTTGCCGGTACCAATAATGTGCTC
配列番号29:(配列番号27で表されるヌクレオチド配列の3’側末端を4ヌクレオチド短くした配列)
GGGAGGTGCCAAGGTTGCCGGTACCAATAATGTGC
配列番号30:(配列番号27で表されるヌクレオチド配列の3’側末端を5ヌクレオチド短くした配列)
GGGAGGTGCCAAGGTTGCCGGTACCAATAATGTG
配列番号31:(配列番号27で表されるヌクレオチド配列の3’側末端を6ヌクレオチド短くした配列)
GGGAGGTGCCAAGGTTGCCGGTACCAATAATGT
配列番号32:(配列番号27で表されるヌクレオチド配列の3’側末端を7ヌクレオチド短くした配列)
GGGAGGTGCCAAGGTTGCCGGTACCAATAATG
配列番号33:(配列番号27で表されるヌクレオチド配列の3’側末端を8ヌクレオチド短くした配列)
GGGAGGTGCCAAGGTTGCCGGTACCAATAAT
配列番号34:(配列番号27で表されるヌクレオチド配列の3’側末端を9ヌクレオチド短くした配列)
GGGAGGTGCCAAGGTTGCCGGTACCAATAA
配列番号35:(配列番号27で表されるヌクレオチド配列の3’側末端を10ヌクレオチド短くした配列)
GGGAGGTGCCAAGGTTGCCGGTACCAATA
The nucleotide sequences represented by SEQ ID NOs: 28 to 35 are shown below. Unless otherwise stated, the individual sequences listed below shall be represented in the 5'to 3'direction, with purine nucleotides (A and G) being 2'-OH (ie, siribonucleotides) and pyrimidine nucleotides. (T and C) are 2'-H (ie, deoxyribonucleotides).
SEQ ID NO: 28: (A sequence in which the 3'end of the nucleotide sequence represented by SEQ ID NO: 27 is shortened by 2 nucleotides)
GGGAGGTGCCAAGGTTGCCGGTACCAATAATGTGCTC
SEQ ID NO: 29: (A sequence in which the 3'end of the nucleotide sequence represented by SEQ ID NO: 27 is shortened by 4 nucleotides)
GGGAGGTGCCAAGGTTGCCGGTACCAATAATGTGC
SEQ ID NO: 30: (A sequence in which the 3'end of the nucleotide sequence represented by SEQ ID NO: 27 is shortened by 5 nucleotides)
GGGAGGTGCCAAGGTTGCCGGTACCAATAATGTG
SEQ ID NO: 31: (A sequence in which the 3'end of the nucleotide sequence represented by SEQ ID NO: 27 is shortened by 6 nucleotides)
GGGAGGTGCCAAGGTTGCCGGTACCAATAATGT
SEQ ID NO: 32: (A sequence in which the 3'end of the nucleotide sequence represented by SEQ ID NO: 27 is shortened by 7 nucleotides)
GGGAGGTGCCAAGGTTGCCGGTACCAATAATG
SEQ ID NO: 33: (A sequence in which the 3'end of the nucleotide sequence represented by SEQ ID NO: 27 is shortened by 8 nucleotides)
GGGAGGTGCCAAGGTTGCCGGTACCAATAAT
SEQ ID NO: 34: (A sequence in which the 3'end of the nucleotide sequence represented by SEQ ID NO: 27 is shortened by 9 nucleotides)
GGGAGGTGCCAAGGTTGCCGGTACCAATAA
SEQ ID NO: 35: (A sequence in which the 3'end of the nucleotide sequence represented by SEQ ID NO: 27 is shortened by 10 nucleotides)
GGGAGGTGCCAAGGTTGCCGGTACCAATA
 これらのアプタマーがFGF9の酵素活性を阻害するか、実施例1と同様の方法で評価を行った。アプタマーの最終濃度を0.3μMに固定して評価した。その結果を表3に示す。 Whether these aptamers inhibit the enzymatic activity of FGF9 was evaluated by the same method as in Example 1. The final concentration of aptamer was fixed at 0.3 μM for evaluation. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 配列番号28~35で表されるヌクレオチド配列からなるアプタマーの結果より、共通配列の5’端のCおよびその5’側に隣接するヌクレオチドを含むヌクレオチド配列と共通配列の3’端のGおよびその3’側に隣接するヌクレオチドを含むヌクレオチド配列によって形成される6塩基対のステムを維持しながら、本発明のアプタマーは、少なくとも29merまで短鎖化できることが示された。 From the results of the aptamer consisting of the nucleotide sequences represented by SEQ ID NOs: 28 to 35, the nucleotide sequence containing the 5'end C of the common sequence and the nucleotide adjacent to the 5'side thereof and the 3'end G of the common sequence and its It has been shown that the aptamers of the invention can be shortened to at least 29 mer while maintaining a 6 base pair stem formed by a nucleotide sequence containing nucleotides adjacent to the 3'side.
実施例5:アプタマーの改変
 配列番号30で表されるヌクレオチド配列からなるアプタマーの化学修飾の検討を行い、配列番号30(1)~30(22)で表されるヌクレオチド配列からなるアプタマーを得た。
Example 5: Modification of aptamer Chemical modification of the aptamer consisting of the nucleotide sequence represented by SEQ ID NO: 30 was examined, and an aptamer consisting of the nucleotide sequence represented by SEQ ID NOs: 30 (1) to 30 (22) was obtained. ..
 以下に配列番号30(1)~30(22)で表されるヌクレオチド配列を示す。以下に挙げられる個々の配列は5’から3’の方向で表すものとし、特に言及がなければ、プリンヌクレオチド(A及びG)は2’-OH(即ち、リボヌクレオチド)であり、ピリミジンヌクレオチド(T及びC)は2’-H(即ち、デオキシリボヌクレオチド)である。また、A(M)、G(M)、C(M)、U(M)はそれぞれA、G、C、Uのヌクレオチドの2’がメトキシ化されていることを示す。なお、Uはウリジン(リボヌクレオチド)である。また、_(T)はInverted dTを示す。
配列番号30(1):(配列番号30で表されるヌクレオチド配列の1、2、3、4番目のヌクレオチドの2’がメトキシ化された配列)
G(M)G(M)G(M)A(M)GGTGCCAAGGTTGCCGGTACCAATAATGTG_(T)
配列番号30(2):(配列番号30で表されるヌクレオチド配列の5、6、24、25番目のヌクレオチドの2’がメトキシ化された配列)
GGGAG(M)G(M)TGCCAAGGTTGCCGGTAC(M)C(M)AATAATGTG_(T)
配列番号30(3):(配列番号30で表されるヌクレオチド配列の7番目のヌクレオチドが2’位の炭素がメトキシ化されたウリジンに置換され、8、22、23番目のヌクレオチドの2’位の炭素がメトキシ化された配列)
GGGAGGU(M)G(M)CCAAGGTTGCCGGU(M)A(M)CCAATAATGTG_(T)
配列番号30(4):(配列番号30で表されるヌクレオチド配列の9、10、20、21番目のヌクレオチドの2’がメトキシ化された配列)
GGGAGGTGC(M)C(M)AAGGTTGCCG(M)G(M)TACCAATAATGTG_(T)
配列番号30(5):(配列番号30で表されるヌクレオチド配列の11、12番目のヌクレオチドの2’がメトキシ化された配列)
GGGAGGTGCCA(M)A(M)GGTTGCCGGTACCAATAATGTG_(T)
配列番号30(6):(配列番号30で表されるヌクレオチド配列の13、14番目のヌクレオチドの2’がメトキシ化された配列)
GGGAGGTGCCAAG(M)G(M)TTGCCGGTACCAATAATGTG_(T)
配列番号30(7):(配列番号30で表されるヌクレオチド配列の15番目のヌクレオチドが2’位の炭素がメトキシ化されたウリジンに置換された配列)
GGGAGGTGCCAAGGU(M)TGCCGGTACCAATAATGTG_(T)
配列番号30(8):(配列番号30で表されるヌクレオチド配列の17番目のヌクレオチドの2’がメトキシ化された配列)
GGGAGGTGCCAAGGTTG(M)CCGGTACCAATAATGTG_(T)
配列番号30(9):(配列番号30で表されるヌクレオチド配列の18、19番目のヌクレオチドの2’がメトキシ化された配列)
GGGAGGTGCCAAGGTTGC(M)C(M)GGTACCAATAATGTG_(T)
配列番号30(10):(配列番号30で表されるヌクレオチド配列の26、27番目のヌクレオチドの2’がメトキシ化され、28番目のヌクレオチドが2’位の炭素がメトキシ化されたウリジンに置換された配列)
GGGAGGTGCCAAGGTTGCCGGTACCA(M)A(M)U(M)AATGTG_(T)
配列番号30(11):(配列番号30で表されるヌクレオチド配列の29、30番目のヌクレオチドの2’がメトキシ化され、31番目のヌクレオチドが2’位の炭素がメトキシ化されたウリジンに置換された配列)
GGGAGGTGCCAAGGTTGCCGGTACCAATA(M)A(M)U(M)GTG_(T)
配列番号30(12):(配列番号30で表されるヌクレオチド配列の32、34番目のヌクレオチドの2’がメトキシ化され、33番目のヌクレオチドが2’位の炭素がメトキシ化されたウリジンに置換された配列)
GGGAGGTGCCAAGGTTGCCGGTACCAATAATG(M)U(M)G(M)_(T)
配列番号30(13):(配列番号30(1)、30(2)、30(3)、30(4)、30(10)、30(11)、30(12)‘の修飾を全て含む配列)
G(M)G(M)G(M)A(M)G(M)G(M)U(M)G(M)C(M)C(M)AAGGTTGCCG(M)G(M)U(M)A(M)C(M)C(M)A(M)A(M)U(M)A(M)A(M)U(M)G(M)U(M)G(M)_(T)
配列番号30(14):(配列番号30(13)で表されるヌクレオチド配列の11、12、13、14、17番目のヌクレオチドの2’がメトキシ化された配列)
G(M)G(M)G(M)A(M)G(M)G(M)U(M)G(M)C(M)C(M)A(M)A(M)G(M)G(M)TTG(M)CCG(M)G(M)U(M)A(M)C(M)C(M)A(M)A(M)U(M)A(M)A(M)U(M)G(M)U(M)G(M)_(T)
配列番号30(15):(配列番号30(13)で表されるヌクレオチド配列の11、12、14、17番目のヌクレオチドの2’がメトキシ化された配列)
G(M)G(M)G(M)A(M)G(M)G(M)U(M)G(M)C(M)C(M)A(M)A(M)GG(M)TTG(M)CCG(M)G(M)U(M)A(M)C(M)C(M)A(M)A(M)U(M)A(M)A(M)U(M)G(M)U(M)G(M)_(T)
配列番号30(16):(配列番号30(13)で表されるヌクレオチド配列の11、12、13、17番目のヌクレオチドの2’がメトキシ化された配列)
G(M)G(M)G(M)A(M)G(M)G(M)U(M)G(M)C(M)C(M)A(M)A(M)G(M)GTTG(M)CCG(M)G(M)U(M)A(M)C(M)C(M)A(M)A(M)U(M)A(M)A(M)U(M)G(M)U(M)G(M)_(T)
配列番号30(17):(配列番号30(13)で表されるヌクレオチド配列の11、12、17番目のヌクレオチドの2’がメトキシ化された配列)
G(M)G(M)G(M)A(M)G(M)G(M)U(M)G(M)C(M)C(M)A(M)A(M)GGTTG(M)CCG(M)G(M)U(M)A(M)C(M)C(M)A(M)A(M)U(M)A(M)A(M)U(M)G(M)U(M)G(M)_(T)
配列番号30(18):(配列番号30(13)で表されるヌクレオチド配列の12、14、17番目のヌクレオチドの2’がメトキシ化された配列)
G(M)G(M)G(M)A(M)G(M)G(M)U(M)G(M)C(M)C(M)AA(M)GG(M)TTG(M)CCG(M)G(M)U(M)A(M)C(M)C(M)A(M)A(M)U(M)A(M)A(M)U(M)G(M)U(M)G(M)_(T)
配列番号30(19):(配列番号30(13)で表されるヌクレオチド配列の11、14、17番目のヌクレオチドの2’がメトキシ化された配列)
G(M)G(M)G(M)A(M)G(M)G(M)U(M)G(M)C(M)C(M)A(M)AGG(M)TTG(M)CCG(M)G(M)U(M)A(M)C(M)C(M)A(M)A(M)U(M)A(M)A(M)U(M)G(M)U(M)G(M)_(T)
配列番号30(20):(配列番号30(13)で表されるヌクレオチド配列の12、13、17番目のヌクレオチドの2’がメトキシ化された配列)
G(M)G(M)G(M)A(M)G(M)G(M)U(M)G(M)C(M)C(M)AA(M)G(M)GTTG(M)CCG(M)G(M)U(M)A(M)C(M)C(M)A(M)A(M)U(M)A(M)A(M)U(M)G(M)U(M)G(M)_(T)
配列番号30(21):(配列番号30(13)で表されるヌクレオチド配列の11、13、17番目のヌクレオチドの2’がメトキシ化された配列)
G(M)G(M)G(M)A(M)G(M)G(M)U(M)G(M)C(M)C(M)A(M)AG(M)GTTG(M)CCG(M)G(M)U(M)A(M)C(M)C(M)A(M)A(M)U(M)A(M)A(M)U(M)G(M)U(M)G(M)_(T)
配列番号30(22):(配列番号30で表されるヌクレオチド配列の16番目のヌクレオチドが2’位の炭素がメトキシ化されたウリジンに置換された配列)
GGGAGGTGCCAAGGTU(M)GCCGGTACCAATAATGTG_(T)
The nucleotide sequences represented by SEQ ID NOs: 30 (1) to 30 (22) are shown below. The individual sequences listed below shall be represented in the 5'to 3'direction, and unless otherwise noted, purine nucleotides (A and G) are 2'-OH (ie, ribonucleotides) and pyrimidine nucleotides (ie, ribonucleotides). T and C) are 2'-H (ie, deoxyribonucleotides). In addition, A (M), G (M), C (M), and U (M) indicate that the nucleotides 2'of A, G, C, and U are methoxylated, respectively. U is uridine (ribonucleotide). Also, _ (T) indicates Inverted dT.
SEQ ID NO: 30 (1): (sequence in which 2'of the first, second, third, and fourth nucleotides of the nucleotide sequence represented by SEQ ID NO: 30 is methoxylated)
G (M) G (M) G (M) A (M) GGTGCCAAGGTTGCCGGTACCAATAATGTG_ (T)
SEQ ID NO: 30 (2): (sequence in which 2'of the nucleotides 5, 6, 24, and 25 of the nucleotide sequence represented by SEQ ID NO: 30 is methoxylated)
GGGAG (M) G (M) TGCCAAGGTTGCCGGTAC (M) C (M) AATAATGTG_ (T)
SEQ ID NO: 30 (3): (The 7th nucleotide of the nucleotide sequence represented by SEQ ID NO: 30 is replaced with uridine in which the carbon at the 2'position is methoxylated, and the 2'position of the 8th, 22nd, and 23rd nucleotides is replaced. Carbon methoxylated sequence)
GGGAGGU (M) G (M) CCAAGGTTGCCGGU (M) A (M) CCAATAATGTG_ (T)
SEQ ID NO: 30 (4): (Sequence in which 2'of the 9, 10, 20, and 21 nucleotides of the nucleotide sequence represented by SEQ ID NO: 30 is methoxylated)
GGGAGGTGC (M) C (M) AAGGTTGCCG (M) G (M) TACCAATAATGTG_ (T)
SEQ ID NO: 30 (5): (sequence in which 2'of the 11th and 12th nucleotides of the nucleotide sequence represented by SEQ ID NO: 30 is methoxylated)
GGGAGGTGCCA (M) A (M) GGTTGCCGGTACCAATAATGTG_ (T)
SEQ ID NO: 30 (6): (sequence in which 2'of the 13th and 14th nucleotides of the nucleotide sequence represented by SEQ ID NO: 30 is methoxylated)
GGGAGGTGCCAAG (M) G (M) TTGCCGGTACCAATAATGTG_ (T)
SEQ ID NO: 30 (7): (Sequence in which the 15th nucleotide of the nucleotide sequence represented by SEQ ID NO: 30 is replaced with uridine in which the carbon at the 2'position is methoxylated)
GGGAGGTGCCAAGGU (M) TGCCGGTACCAATAATGTG_ (T)
SEQ ID NO: 30 (8): (sequence in which 2'of the 17th nucleotide of the nucleotide sequence represented by SEQ ID NO: 30 is methoxylated)
GGGAGGTGCCAAGGTTG (M) CCGGTACCAATAATGTG_ (T)
SEQ ID NO: 30 (9): (sequence in which the 2'of the 18th and 19th nucleotides of the nucleotide sequence represented by SEQ ID NO: 30 is methoxylated)
GGGAGGTGCCAAGGTTGC (M) C (M) GGTACCAATAATGTG_ (T)
SEQ ID NO: 30 (10): (2'of the 26th and 27th nucleotides of the nucleotide sequence represented by SEQ ID NO: 30 are methoxylated, and the 28th nucleotide is replaced with uridine in which the carbon at the 2'position is methoxylated. Array)
GGGAGGTGCCAAGGTTGCCGGTACCA (M) A (M) U (M) AAT GTG_ (T)
SEQ ID NO: 30 (11): (2'of the 29th and 30th nucleotides of the nucleotide sequence represented by SEQ ID NO: 30 are methoxylated, and the 31st nucleotide is replaced with uridine in which the carbon at the 2'position is methoxylated. Array)
GGGAGGTGCCAAGGTTGCCGGTACCAATA (M) A (M) U (M) GTG_ (T)
SEQ ID NO: 30 (12): (2'of the 32nd and 34th nucleotides of the nucleotide sequence represented by SEQ ID NO: 30 are methoxylated, and the 33rd nucleotide is replaced with uridine in which the carbon at the 2'position is methoxylated. Array)
GGGAGGTGCCAAGGTTGCCGGTACCAATAATG (M) U (M) G (M) _ (T)
SEQ ID NO: 30 (13): (includes all modifications of SEQ ID NO: 30 (1), 30 (2), 30 (3), 30 (4), 30 (10), 30 (11), 30 (12)' Array)
G (M) G (M) G (M) A (M) G (M) G (M) U (M) G (M) C (M) C (M) AAGGTTTGCCG (M) G (M) U ( M) A (M) C (M) C (M) A (M) A (M) U (M) A (M) A (M) U (M) G (M) U (M) G (M) _ (T)
SEQ ID NO: 30 (14): (sequence in which 2'of the nucleotides 11, 12, 13, 14, and 17 of the nucleotide sequence represented by SEQ ID NO: 30 (13) is methoxylated)
G (M) G (M) G (M) A (M) G (M) G (M) U (M) G (M) C (M) C (M) A (M) A (M) G ( M) G (M) TTG (M) CCG (M) G (M) U (M) A (M) C (M) C (M) A (M) A (M) U (M) A (M) A (M) U (M) G (M) U (M) G (M) _ (T)
SEQ ID NO: 30 (15): (sequence in which the 2'of the nucleotides 11, 12, 14, and 17 of the nucleotide sequence represented by SEQ ID NO: 30 (13) is methoxylated)
G (M) G (M) G (M) A (M) G (M) G (M) U (M) G (M) C (M) C (M) A (M) A (M) GG ( M) TTG (M) CCG (M) G (M) U (M) A (M) C (M) C (M) A (M) A (M) U (M) A (M) A (M) U (M) G (M) U (M) G (M) _ (T)
SEQ ID NO: 30 (16): (sequence in which 2'of the nucleotides 11, 12, 13, and 17 of the nucleotide sequence represented by SEQ ID NO: 30 (13) is methoxylated)
G (M) G (M) G (M) A (M) G (M) G (M) U (M) G (M) C (M) C (M) A (M) A (M) G ( M) GTTG (M) CCG (M) G (M) U (M) A (M) C (M) C (M) A (M) A (M) U (M) A (M) A (M) U (M) G (M) U (M) G (M) _ (T)
SEQ ID NO: 30 (17): (sequence in which 2'of the nucleotides 11, 12, and 17 of the nucleotide sequence represented by SEQ ID NO: 30 (13) are methoxylated)
G (M) G (M) G (M) A (M) G (M) G (M) U (M) G (M) C (M) C (M) A (M) A (M) GGTTG ( M) CCG (M) G (M) U (M) A (M) C (M) C (M) A (M) A (M) U (M) A (M) A (M) U (M) G (M) U (M) G (M) _ (T)
SEQ ID NO: 30 (18): (sequence in which 2'of the nucleotides 12, 14, and 17 of the nucleotide sequence represented by SEQ ID NO: 30 (13) are methoxylated)
G (M) G (M) G (M) A (M) G (M) G (M) U (M) G (M) C (M) C (M) AA (M) GG (M) TTG ( M) CCG (M) G (M) U (M) A (M) C (M) C (M) A (M) A (M) U (M) A (M) A (M) U (M) G (M) U (M) G (M) _ (T)
SEQ ID NO: 30 (19): (sequence in which 2'of the nucleotides 11, 14, and 17 of the nucleotide sequence represented by SEQ ID NO: 30 (13) is methoxylated)
G (M) G (M) G (M) A (M) G (M) G (M) U (M) G (M) C (M) C (M) A (M) AGG (M) TTG ( M) CCG (M) G (M) U (M) A (M) C (M) C (M) A (M) A (M) U (M) A (M) A (M) U (M) G (M) U (M) G (M) _ (T)
SEQ ID NO: 30 (20): (sequence in which 2'of the nucleotides 12, 13, and 17 of the nucleotide sequence represented by SEQ ID NO: 30 (13) is methoxylated)
G (M) G (M) G (M) A (M) G (M) G (M) U (M) G (M) C (M) C (M) AA (M) G (M) GTTG ( M) CCG (M) G (M) U (M) A (M) C (M) C (M) A (M) A (M) U (M) A (M) A (M) U (M) G (M) U (M) G (M) _ (T)
SEQ ID NO: 30 (21): (sequence in which 2'of the nucleotides 11, 13, and 17 of the nucleotide sequence represented by SEQ ID NO: 30 (13) is methoxylated)
G (M) G (M) G (M) A (M) G (M) G (M) U (M) G (M) C (M) C (M) A (M) AG (M) GTTG ( M) CCG (M) G (M) U (M) A (M) C (M) C (M) A (M) A (M) U (M) A (M) A (M) U (M) G (M) U (M) G (M) _ (T)
SEQ ID NO: 30 (22): (Sequence in which the 16th nucleotide of the nucleotide sequence represented by SEQ ID NO: 30 is replaced with uridine in which the carbon at the 2'position is methoxylated)
GGGAGGTGCCAAGGTU (M) GCCGGTACCAATAATGTG_ (T)
 これらのアプタマーがFGF9の酵素活性を阻害するか、実施例1と同様の方法で評価を行った。アプタマーの最終濃度を0.15μMに固定して評価した。その結果を表4に示す。 Whether these aptamers inhibit the enzymatic activity of FGF9 was evaluated by the same method as in Example 1. The final concentration of aptamer was fixed at 0.15 μM for evaluation. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 配列番号30(1)~30(22)で表されるヌクレオチド配列からなるアプタマーの結果より、配列番号30で表されるヌクレオチド配列のいずれのヌクレオチドの2’をメトキシ化した場合であってもFGF9に対する阻害活性は失われないことが明らかとなった。 From the results of the aptamer consisting of the nucleotide sequences represented by SEQ ID NOs: 30 (1) to 30 (22), FGF9 is obtained even when 2'of any of the nucleotides of the nucleotide sequence represented by SEQ ID NO: 30 is methoxylated. It was clarified that the inhibitory activity against
 本発明のアプタマー又は複合体はまた、FGF9の精製及び濃縮、FGF9の標識、並びにFGF9の検出及び定量に有用であり得る。本出願は、日本で出願された特願2019-072337(出願日:平成31年4月4日)を基礎としており、その内容はすべて本明細書に包含されるものとする。 The aptamers or complexes of the present invention may also be useful for purification and enrichment of FGF9, labeling of FGF9, and detection and quantification of FGF9. This application is based on Japanese Patent Application No. 2019-072337 filed in Japan (Filing date: April 4, 2019), the contents of which are all incorporated herein by reference.

Claims (12)

  1.  FGF9に結合するアプタマー。 Aptamer that binds to FGF9.
  2.  式(I):
    CAAGGHTGCCG (配列番号37) (I)
    (式中、HはA、CまたはTを表す)
    で表されるヌクレオチド配列を含む、請求項1に記載のアプタマー。
    Equation (I):
    CAAGGHTGCCG (SEQ ID NO: 37) (I)
    (In the formula, H represents A, C or T)
    The aptamer according to claim 1, which comprises a nucleotide sequence represented by.
  3.  以下の(a)又は(b)のいずれかである、請求項2に記載のアプタマー:
    (a)該アプタマーに含まれるヌクレオチド配列において、
     (i)各ピリミジンヌクレオチドが、デオキシリボースであり、
     (ii)各プリンヌクレオチドが、リボースである;
    (b)該アプタマーに含まれるヌクレオチド配列において、
     (i)各ピリミジンヌクレオチドが、デオキシリボースであって、該デオキシリボースの2’位の水素原子が、それぞれ独立して、無置換であるか、メトキシ基で置換されており、
     (ii)各プリンヌクレオチドが、リボースであって、該リボースの2’位のヒドロキシ基が、それぞれ独立して、無置換であるか、メトキシ基で置換されている。
    The aptamer according to claim 2, which is either (a) or (b) below:
    (a) In the nucleotide sequence contained in the aptamer,
    (i) Each pyrimidine nucleotide is deoxyribose,
    (ii) Each purine nucleotide is ribose;
    (b) In the nucleotide sequence contained in the aptamer
    (i) Each pyrimidine nucleotide is deoxyribose, and the hydrogen atom at the 2'position of the deoxyribose is independently unsubstituted or substituted with a methoxy group.
    (ii) Each purine nucleotide is ribose, and the hydroxy group at the 2'position of the ribose is independently unsubstituted or substituted with a methoxy group.
  4.  式(I)で表されるヌクレオチド配列、該ヌクレオチド配列の5’末端に隣接するヌクレオチドX1、X2、X3および3’末端に隣接するヌクレオチドX4、X5、X6が、式(II): 
    Figure JPOXMLDOC01-appb-I000001

    (式中、HはA、CまたはTを表す;
     X1~X6は、それぞれ同一または異なって、A、G、CおよびTからなる群より選択されるヌクレオチドであり;
     X1およびX6、X2およびX5、X3およびX4、および式(I)で表されるヌクレオチド配列の5’末端のCおよび3’末端のGが、それぞれワトソンクリック塩基対を形成する)
    で表される潜在的2次構造を形成する、請求項3に記載のアプタマー。
    The nucleotide sequence represented by the formula (I), the nucleotides X1, X2, X3 and the nucleotides X4, X5, X6 adjacent to the 5'end of the nucleotide sequence are represented by the formula (II):
    Figure JPOXMLDOC01-appb-I000001

    (In the formula, H represents A, C or T;
    X1 to X6 are nucleotides selected from the group consisting of A, G, C and T, which are the same or different, respectively;
    X1 and X6, X2 and X5, X3 and X4, and the 5'end C and 3'end G of the nucleotide sequence represented by formula (I) form Watson-Crick base pairs, respectively)
    The aptamer according to claim 3, which forms a potential secondary structure represented by.
  5.  式(II)において、式(I)で表されるヌクレオチド配列におけるヌクレオチド番号4番目のGおよびヌクレオチド番号10番目のC、ヌクレオチド番号5番目のGおよびヌクレオチド番号9番目のCがさらに、それぞれワトソンクリック塩基対を形成する、請求項4に記載のアプタマー。 In formula (II), nucleotide number 4th G and nucleotide number 10th C, nucleotide number 5th G and nucleotide number 9th C in the nucleotide sequence represented by formula (I) are further Watson clicks, respectively. The aptamer according to claim 4, which forms a base pair.
  6.  下記(A)、(B)又は(C):
    (A)配列番号1~6、10~15、17、18、20、21および23~35からなる群から選択されるヌクレオチド配列、
    (B)配列番号1~6、10~15、17、18、20、21および23~35からなる群から選択されるヌクレオチド配列において、1~数個のヌクレオチドが置換、欠失、挿入又は付加された(但し、式(I)で表わされるヌクレオチド配列を除く)ヌクレオチド配列、
    (C)配列番号1~6、10~15、17、18、20、21および23~35からなる群から選択される
    クレオチド配列と95%以上の同一性を有する(但し、式(I)で表わされるヌクレオチド配列は同一である)ヌクレオチド配列
    のいずれかのヌクレオチド配列を含む、請求項4に記載のアプタマーであって、
    該アプタマーに含まれるヌクレオチド配列において、
     (i)各ピリミジンヌクレオチドが、デオキシリボースであり、
     (ii)各プリンヌクレオチドが、リボースである
    アプタマー。
    The following (A), (B) or (C):
    (A) Nucleotide sequences selected from the group consisting of SEQ ID NOs: 1-6, 10-15, 17, 18, 20, 21 and 23-35,
    (B) In a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1 to 6, 10 to 15, 17, 18, 20, 21 and 23 to 35, one to several nucleotides are substituted, deleted, inserted or added. (However, excluding the nucleotide sequence represented by the formula (I)), the nucleotide sequence,
    (C) Has 95% or more identity with the creothide sequence selected from the group consisting of SEQ ID NOs: 1-6, 10-15, 17, 18, 20, 21 and 23-35 (however, in formula (I)). The aptamer according to claim 4, which comprises any of the nucleotide sequences of the nucleotide sequences (the nucleotide sequences represented are identical).
    In the nucleotide sequence contained in the aptamer,
    (i) Each pyrimidine nucleotide is deoxyribose,
    (ii) An aptamer in which each purine nucleotide is ribose.
  7.  inverted dTが、アプタマーの3’末端に結合している、請求項4または5に記載のアプタマー。 The aptamer according to claim 4 or 5, wherein the inverted dT is bound to the 3'end of the aptamer.
  8.  さらにFGF9とその受容体の間の結合を阻害する、請求項1~7のいずれか一項に記載のアプタマー。 The aptamer according to any one of claims 1 to 7, which further inhibits the binding between FGF9 and its receptor.
  9.  請求項1~8のいずれか一項に記載のアプタマー及び機能性物質を含む複合体。 A complex containing the aptamer and the functional substance according to any one of claims 1 to 8.
  10.  機能性物質が、親和性物質、標識用物質、酵素、薬物送達媒体又は薬物である、請求項9に記載の複合体。 The complex according to claim 9, wherein the functional substance is an affinity substance, a labeling substance, an enzyme, a drug delivery medium or a drug.
  11.  請求項1~8のいずれか一項に記載のアプタマーあるいは請求項9又は10に記載の複合体を含む、医薬。 A pharmaceutical agent comprising the aptamer according to any one of claims 1 to 8 or the complex according to claim 9 or 10.
  12.  請求項1~8のいずれか一項に記載のアプタマーあるいは請求項9又は10に記載の複合体を含む、FGF9の検出試薬。 A reagent for detecting FGF9, which comprises the aptamer according to any one of claims 1 to 8 or the complex according to claim 9 or 10.
PCT/JP2020/015263 2019-04-04 2020-04-03 Aptamer to fgf9 and use thereof WO2020204151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-072337 2019-04-04
JP2019072337 2019-04-04

Publications (1)

Publication Number Publication Date
WO2020204151A1 true WO2020204151A1 (en) 2020-10-08

Family

ID=72668850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015263 WO2020204151A1 (en) 2019-04-04 2020-04-03 Aptamer to fgf9 and use thereof

Country Status (1)

Country Link
WO (1) WO2020204151A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532612A (en) * 2009-07-09 2012-12-20 ソマロジック・インコーポレーテッド Method for producing aptamers with improved off-rate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532612A (en) * 2009-07-09 2012-12-20 ソマロジック・インコーポレーテッド Method for producing aptamers with improved off-rate

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
17 December 2018 (2018-12-17), Retrieved from the Internet <URL:https://kaken.nii.ac.jp/ja/report/KAKENHI-PROJECT-15H04833/15H048332017jisseki> [retrieved on 20200604] *
ANALYST NET COMPANY REPORT, 26 November 2019 (2019-11-26), Retrieved from the Internet <URL:https://column.ifis.co.jp/wpcontent/uploads/2019/11/8d5886160e67e86bff919f21bda4543a.pdf> [retrieved on 20200604] *
GOLD L. ET AL.: "Aptamer-based Multiplexed Proteomic Technology for Biomarker Discovery", PLOS ONE, vol. 5, no. 12, 7 December 2010 (2010-12-07), pages e15004, XP055040606, DOI: 10.1371/journal.pone.0015004 *
HEGAB, A. E. ET AL.: "Effect of FGF/FGFR Pathway Blocking on Lung Adenocarcinoma and Its Cancer-Associated Fibroblasts", THE JOURNAL OF PATHOLOGY, vol. 249, no. 2, 24 June 2019 (2019-06-24), pages 193 - 205, XP055746801 *
MALEKZADEH A. ET AL.: "Plasma Proteome in Multiple Sclerosis Disease Progression", ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, vol. 6, no. 9, 31 July 2019 (2019-07-31), pages 1582 - 1594, XP055746800 *

Similar Documents

Publication Publication Date Title
Bayat et al. SELEX methods on the road to protein targeting with nucleic acid aptamers
EP2316935B1 (en) Aptamer against il-17 and use thereof
JP5190573B2 (en) Aptamers against midkine and their use
JP5810356B2 (en) Aptamers against chymase and their use
JP5899550B2 (en) Aptamer against FGF2 and use thereof
WO2013186857A1 (en) Aptamer to fgf2 and use thereof
JP2023099157A (en) Aptamer for adamts5, and use thereof
WO2020204151A1 (en) Aptamer to fgf9 and use thereof
JP6634554B2 (en) Aptamers to FGF2 and uses thereof
EP3135766B1 (en) Aptamer for bonding to autotaxin and inhibiting biological activity of autotaxin, and use for same
CN111655852B (en) Aptamer for chymase and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP