WO2020203836A1 - Polyamide-based laminated film and method for producing same - Google Patents

Polyamide-based laminated film and method for producing same Download PDF

Info

Publication number
WO2020203836A1
WO2020203836A1 PCT/JP2020/014185 JP2020014185W WO2020203836A1 WO 2020203836 A1 WO2020203836 A1 WO 2020203836A1 JP 2020014185 W JP2020014185 W JP 2020014185W WO 2020203836 A1 WO2020203836 A1 WO 2020203836A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyamide
polyurethane resin
stretching
resin layer
Prior art date
Application number
PCT/JP2020/014185
Other languages
French (fr)
Japanese (ja)
Inventor
真美 松本
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2021512041A priority Critical patent/JPWO2020203836A1/ja
Publication of WO2020203836A1 publication Critical patent/WO2020203836A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating

Definitions

  • the present invention relates to a polyamide-based laminated film used for packaging or coating foods, electronic parts, etc.
  • Polyamide film has excellent toughness, so it is widely used from food packaging to industrial applications.
  • Resin films such as polyamide films are processed by a printing machine, laminator, etc., depending on the intended use. In these processing machines, the resin film is conveyed by running between rolls whose surfaces are made of metal or rubber. Since the roll and the resin film are in direct contact with each other, when the friction coefficient of the contact surface of the resin film is large, a difference occurs between the transport speed of the resin film and the rotation speed of the roll. As a result, the surface of the resin film may be scratched or the running of the resin film may become unstable. Therefore, a method has been proposed in which the resin film contains an inorganic filler to roughen the surface of the resin film to reduce the contact surface with the roll and reduce friction.
  • Patent Document 1 a method of incorporating inorganic particles and long-chain fatty acid-based bisamide in a polyamide film has been proposed (Patent Document 1).
  • Patent Document 1 a method of incorporating inorganic particles and long-chain fatty acid-based bisamide in a polyamide film has been proposed (Patent Document 1).
  • Patent Document 1 Although it is possible to suppress an increase in the dynamic friction coefficient under high humidity by containing an aliphatic amide, it is difficult to control the amount of bleed-out, so there are concerns about roll contamination and deterioration of printability.
  • Patent Document 2 a biaxially stretched polyamide film in which a coat layer containing a wax having a long-chain alkyl group and spherical fine particles is laminated on a polyamide film.
  • Patent Document 2 a biaxially stretched polyamide film in which a coat layer containing a wax having a long-chain alkyl group and spherical fine particles is laminated on a polyamide film.
  • the addition effect of the spherical fine particles is small when the particle size is small with respect to the thickness of the coating layer.
  • the particle size of the spherical fine particles is larger, the risk of the fine particles slipping or falling off increases.
  • high-definition printing is required, if the surface roughness is large, printing omission or the like may occur and the printing accuracy may be lowered.
  • the metal can type has been the mainstream as the exterior material for lithium-ion batteries.
  • the metal can type has drawbacks such as low degree of freedom in shape and difficulty in weight reduction. Therefore, it has been proposed to use a laminate composed of a base material layer (polyamide film) / metal foil layer (aluminum foil layer) / sealant layer as an exterior body.
  • a laminate composed of a base material layer (polyamide film) / metal foil layer (aluminum foil layer) / sealant layer as an exterior body.
  • a laminate has become widely used because it is more flexible than a metal can, has a high degree of freedom in shape, can be made lighter by thinning, and is easily miniaturized. ing.
  • the slipperiness of the film is one of the physical properties of the film that affects the moldability during cold molding.
  • the polyamide film and the molding die come into contact with each other. Therefore, if the polyamide film is not slippery (that is, the friction coefficient is large), the molding die is used. When pushed in, the surface of the laminate is wrinkled, and the laminate is more likely to cause delamination. Moreover, it is difficult to uniformly mold the entire laminate, and uneven thickness occurs, so that there is a concern that pinholes may occur. In particular, these problems become even more pronounced when cold forming is performed under high humidity. In this respect, the slipperiness of the film is also required to be humidity independent.
  • the present inventor has found that the above object can be achieved by adopting a specific layer structure including a polyamide film and a specific resin layer. Has been completed.
  • the present invention relates to the following polyamide-based laminated film and a method for producing the same.
  • 1. A laminated film containing a polyamide film and a polyurethane resin layer containing a polyurethane resin and an organic lubricant laminated on at least one surface of the film.
  • the glass transition temperature of the polyurethane resin is 50 ° C. or higher.
  • the arithmetic mean height (Ra) of the surface of the polyurethane resin layer is 0.010 to 0.060 ⁇ m, and the coefficient of dynamic friction of the surface of the polyurethane resin layer under a 20 ° C. ⁇ 90% RH environment is 0. 40 or less, A polyamide-based laminated film characterized by this. 2.
  • the polyamide-based laminated film according to Item 1 wherein the surface of the polyurethane resin layer has a coefficient of dynamic friction of 0.30 or less under a 23 ° C. ⁇ 50% RH environment. 3.
  • Item 2 The polyamide-based laminated film according to Item 1, wherein the polyurethane resin layer has a thickness of 0.005 to 0.150 ⁇ m. 4.
  • a laminate for food packaging containing the polyamide-based laminate according to any one of Items 1 to 3.
  • a laminate for cold molding containing the polyamide-based laminate film according to any one of Items 1 to 3. 6.
  • a method for producing a polyamide-based laminated film containing a polyamide film and a polyurethane resin layer containing a polyurethane resin and an organic lubricant on at least one surface of the film (1) A sheet molding step of obtaining an unstretched sheet by molding a melt-kneaded product containing a polyamide resin into a sheet. (2) A stretching step of obtaining a biaxially stretched film by MD stretching and TD stretching of the unstretched sheet, and (3) any one of the unstretched sheet, MD stretched film, TD stretched film or biaxially stretched film.
  • a method for producing a polyamide-based laminated film which comprises a coating step of applying a water-based coating liquid containing a polyurethane resin and an organic lubricant on one surface.
  • the water-based coating liquid is a mixed liquid of a dispersion liquid of a polyurethane resin and a dispersion liquid of an organic lubricant having a particle size of 0.010 ⁇ m to 0.500 ⁇ m.
  • the stretching step is carried out by simultaneous biaxial stretching, and the following formulas (a) and (b); (A) 0.80 ⁇ X / Y ⁇ 0.95 (B) 9.8 ⁇ X x Y ⁇ 11.6 (However, X indicates the stretching ratio in the MD direction, and Y indicates the stretching ratio in the TD direction.)
  • Item 6 The production method according to Item 6, wherein both of the above conditions are satisfied.
  • the stretching step is carried out by sequential biaxial stretching, and the following formulas (a) and (b); (A) 0.85 ⁇ X / Y ⁇ 0.95 (B) 8.5 ⁇ X x Y ⁇ 9.5 (However, X indicates the stretching ratio in the MD direction, and Y indicates the stretching ratio in the TD direction.)
  • Item 6 The production method according to Item 6, wherein both of the above conditions are satisfied.
  • the present invention it is possible to provide a polyamide-based laminated film having both high slipperiness and good printability. That is, in the present invention, it is possible to simultaneously improve slipperiness and printability (particularly ink transferability from a plate), which are mutually contradictory characteristics in the prior art.
  • the polyamide-based laminated film of the present invention has a low arithmetic mean height (Ra) of the polyurethane resin layer, high-definition printing can be performed. At the same time, even though the Ra is small, the coefficient of dynamic friction under high humidity is small, so that stable slipperiness can be exhibited without depending on the humidity. As a result, the polyamide-based laminated film of the present invention can be suitably used in various processes in addition to being suitable for transport by rolls.
  • polyurethane resin layer containing a polyurethane resin which is an organic substance, as a main component, it has excellent ink adhesion, so that it can exhibit excellent printability.
  • flexibility of the polyurethane resin layer is relatively good, it is possible to follow the dimensional change of the polyamide film in, for example, a boiling or retort treatment step. Therefore, when processing such as molding (particularly cold molding) using the polyamide-based laminated film of the present invention, it is possible to effectively suppress or prevent the occurrence of delamination and the like.
  • the polyamide-based laminated film of the present invention is molded because it has good followability with the aluminum foil and has little friction with the molding die even when laminated with the aluminum foil and cold-molded. Due to its excellent properties, it is possible to obtain a molded product having no delamination or pinholes.
  • the polyamide-based laminated film of the present invention can be obtained more reliably and with good productivity.
  • the polyamide-based laminated film of the present invention (the film of the present invention) is a laminated film containing a polyamide film and a polyurethane resin layer containing a polyurethane resin and an organic lubricant laminated on at least one surface of the film. And (1) The glass transition temperature of the polyurethane resin is 50 ° C. or higher. (2) The arithmetic mean height (Ra) of the surface of the polyurethane resin layer is 0.010 to 0.060 ⁇ m, and the coefficient of dynamic friction of the surface of the polyurethane resin layer under a 20 ° C. ⁇ 90% RH environment is 0. 40 or less, It is characterized by that.
  • the film of the present invention is a polyurethane resin layer containing a polyamide film, a polyurethane resin laminated on at least one surface of the film, and an organic lubricant (hereinafter, simply "polyurethane resin").
  • the basic structure is a laminated film containing "layers"). That is, the basic configuration is a laminated structure in which a polyurethane resin layer is formed so as to be adjacent to one side or both sides of the polyamide film without using an adhesive layer.
  • FIG. 1 shows an example of the layer structure of the film of the present invention.
  • FIG. 1A shows a laminate (film of the present invention) 10 in which a polyurethane resin layer 12 is laminated on one side of a polyamide film 11.
  • FIG. 1B shows a laminate (film of the present invention) 10'in which polyurethane resin layers 12 and 12 are laminated on both sides of the polyamide film 11.
  • the polyurethane resin layer is arranged as the outermost surface layer (outermost layer) (layer exposed to the outside).
  • the polyurethane resin layer is arranged as the outermost surface layer (outermost layer) (layer exposed to the outside) on at least one of the front surface and the back surface.
  • the polyurethane resin layer is directly formed on the surface of the polyamide film as described above and at least one polyurethane resin layer is arranged as the outermost surface layer, other films are required.
  • the layers may be further laminated.
  • barrier layer gas barrier layer, water vapor barrier layer, etc.
  • printing layer adhesive layer
  • heat fusion layer heat fusion layer
  • primer layer anchor coat layer
  • antistatic layer antistatic layer
  • vapor deposition layer ultraviolet rays.
  • examples include an absorption layer and an ultraviolet blocking layer.
  • FIG. 2 shows a layer configuration example of a polyamide-based laminated film in which other optional layers are further laminated in addition to the polyamide film and the polyurethane resin layer.
  • FIG. 2A shows a laminated body 20 in which a barrier layer 13 and a heat fusion layer 14 are further laminated on one side of the laminated body 10 of FIG. 1A.
  • the barrier layer 13 and the heat-sealing layer 14 are laminated on the surface of the polyamide film 11 on which the polyurethane resin layer 12 is not formed, so that the polyurethane resin layer 12 is exposed as the outermost surface layer. It is maintained.
  • FIG. 2B shows a laminate 20'in which a barrier layer 13 and a heat fusion layer 14 are further laminated on one side of the laminate 10'of FIG. 1B.
  • a barrier layer 13 and a heat-sealing layer 14 are laminated on one of the polyurethane resin layers 12 of the polyamide film 11, and the other polyurethane resin layer 12 is exposed as the outermost surface layer. Is maintained.
  • the heat-sealing layer 14 is arranged as the outermost surface layer. That is, when the film of the present invention has the heat-sealing layer 14, it is preferable to adopt a layer structure in which one outermost surface layer is the polyurethane resin layer 12 and the other outermost surface layer is the heat-sealing layer 14.
  • polyamide film serves as a base material (core material) for the film of the present invention, and is usually provided in the form of a preformed film.
  • core material for the film of the present invention
  • As the polyamide film itself a known or commercially available one can be used. Further, a film produced by a known production method can also be used.
  • the polyamide film may have a single-layer structure, or may have a multilayer structure in which two or more polyamide films are laminated. Further, in the case of a multi-layer structure, each layer may have the same composition or different compositions.
  • the polyamide film is mainly composed of a polyamide resin, but other components may be contained as long as the effects of the present invention are not impaired.
  • the content ratio of the polyamide resin in the polyamide film is not limited, but is usually about 70 to 100% by mass, particularly preferably 90 to 99.5% by mass, and among them, 95 to 99. It is more preferably mass%.
  • the polyamide resin may be any melt-moldable thermoplastic resin having an amide bond (-CONH-) in its molecule, and known or commercially available ones can be used. Therefore, for example, a polyamide obtained by polycondensation of lactams, ⁇ -amino acids or dibasic acids and a diamine can be mentioned.
  • lactams examples include ⁇ -caprolactam, enantractum, capril lactam, lauryl lactam and the like.
  • ⁇ -amino acids examples include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid and the like.
  • dibasic acids examples include adipic acid, glutaric acid, pimeric acid, suberic acid, azelaic acid, sebacic acid, undecandionic acid, dodecadioic acid, hexadecadioic acid, eikosandioic acid, eikosadiendioic acid, 2, Examples thereof include 2,4-trimethylazipic acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and xylylene dicarboxylic acid.
  • diamines examples include ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, 2,2,4 (or 2,4,4).
  • diamines include -trimethylhexamethylenediamine, cyclohexanediamine, bis- (4,4'-aminocyclohexyl) methane, and m-xylylenediamine.
  • biomass-derived compounds can also be used from the viewpoint of environmental protection and the like.
  • nylon 6, 7, 11, 12, 6.6, 6.9, 6.11, 6.12, 6T, 9T. , 10T, 6I, MXD6 (polymethylylene adipamide), 6 / 6.6, 6/12, 6 / 6T, 6 / 6I, 6 / MXD6 and the like can be used.
  • These can be used alone or in combination of two or more.
  • aliphatic polyamide resins such as nylon 6, nylon 6, 6 are preferable, and among them, nylon 6 is more preferably contained in that the balance between heat resistance and mechanical properties is excellent.
  • the relative viscosity of the polyamide resin used in the polyamide film is not limited, but is usually preferably about 1.5 to 5.0, and particularly preferably 2.0 to 4.0. More preferred. If the relative viscosity is less than 1.5, the mechanical properties of the resulting film are likely to be significantly reduced. On the other hand, if the relative viscosity exceeds 5.0, the film-forming property of the film tends to be hindered.
  • the relative viscosity is a value measured by using a Ubbelohde viscometer in a sample solution (liquid temperature 25 ° C.) in which polyamide is dissolved in 96% sulfuric acid so as to have a concentration of 1.0 g / dl.
  • the relative viscosity of the polyamide film in the finally obtained film of the present invention is also preferably within the above range.
  • the polyamide film may contain other components in addition to the polyamide resin as long as the effects of the present invention are not impaired.
  • other components include known or commercially available additives. More specifically, metals (metal ions), pigments, heat stabilizers, antioxidants, weather resistant agents, flame retardants, plasticizers, mold release agents, strengthening agents (fillers) and the like are exemplified.
  • metals metal ions
  • pigments heat stabilizers
  • antioxidants weather resistant agents
  • flame retardants plasticizers
  • mold release agents strengthening agents (fillers) and the like
  • strengthening agents fillers
  • heat stabilizer or antioxidant hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, alkali metal halides and the like can be preferably used.
  • the polyamide film may contain a lubricant if necessary.
  • lubricants include clay, talc, calcium carbonate, zinc carbonate, wallastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, magnesium aluminosilicate, glass balloon, carbon black, and oxidation.
  • Inorganic lubricants such as zinc, antimony trioxide, zeolite, hydrotalside, layered silicate, erucic acid amide, oleic acid amide, stearic acid amide, ethylene bisstearic acid amide, ethylene biss ethylene bisoleic acid amide, hexamethylene
  • organic lubricants such as bisstearic acid amide and hexamethylene bisoleic acid amide methylene bisstearic acid amide. These can be used alone or in combination of two or more.
  • the thickness of the polyamide film is not particularly limited, but is generally preferably 4 to 35 ⁇ m, and more preferably 5 to 25 ⁇ m. If the thickness is less than 4 ⁇ m, the mechanical strength tends to be insufficient and the moldability is lowered. On the other hand, if the thickness exceeds 35 ⁇ m, the amount of raw materials used may increase or the productivity may decrease.
  • the polyamide film is preferably stretched from the viewpoint of mechanical strength. That is, it is preferable to have a structure having orientation. In this case, either uniaxial stretching or biaxial stretching may be used, but it is particularly preferable to have orientation due to biaxial stretching.
  • the draw ratio can be appropriately set within the range shown later.
  • the polyamide film has a surface that has been subjected to known surface treatments such as corona treatment, plasma treatment, ozone treatment, etc. on at least one side in order to improve the adhesion between each layer constituting the laminated body when formed into a laminated body. Is preferable.
  • the polyurethane resin layer constituting the film of the present invention is mainly a layer for exhibiting slipperiness and printability, and contains a polyurethane resin and an organic lubricant.
  • the polyurethane resin is, for example, a polymer obtained by reacting a polyfunctional isocyanate with a hydroxyl group-containing compound. More specifically, aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane isocyanate and polymethylene polyphenylene polyisocyanate, or polyfunctional isocyanates such as aliphatic polyisocyanates such as hexamethylene diisocyanate and xylene isocyanate, and polyether polyols, A urethane resin obtained by reacting with a hydroxyl group-containing compound such as a polyester polyol, a polyacrylate polyol, or a polycarbonate polyol can be exemplified. As these polyurethane resins themselves, known or commercially available ones can be used.
  • an anionic functional group such as an anionic functional group, a cationic functional group and a nonionic functional group may be introduced as long as the effects of the present invention are not impaired.
  • an anionic functional group is contained from the viewpoint of dispersibility in the state of the coating liquid.
  • the anionic functional group include a carboxyl group and a sulfone group.
  • the method for introducing an anionic functional group into the polyurethane resin is not particularly limited, and for example, a) a method using a diol having an anionic functional group as a polyol component, b) a diol having an anionic functional group as a chain extender. And the like.
  • the diol having an anionic functional group include glyceric acid, dioxymaleic acid, dioxyfumaric acid, tartaric acid, dimethylol propionic acid, dimethylol butanoic acid, 2,2-dimethylol valeric acid, and 2,2-di.
  • aromatic carboxylic acids such as 2,6-dioxybenzoic acid Can be mentioned.
  • the polyurethane resin layer preferably has a crosslinked structure.
  • the crosslinked structure can be formed by a) a method of reacting with a polyurethane resin and adding a crosslinking agent capable of forming a crosslinked structure, b) a method of using a polyurethane resin containing a reactive group in the skeleton, or the like. ..
  • a cross-linking agent capable of reacting with a polyurethane resin terminal group is preferable.
  • the number of polar groups in the molecule of the polyurethane resin can be reduced, so that the slipperiness can be further improved.
  • Specific examples of the cross-linking agent include isocyanate, oxazoline, carbodiimide, melamine resin and the like. Among these, it is preferable to use a melamine resin from the viewpoint of reactivity, economy and the like.
  • a typical melamine resin is tri (alkoxymethyl) melamine. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. One kind or two or more kinds of these melamine resins can be used.
  • the amount to be added may be appropriately set depending on the type of the cross-linking agent used and the like, but usually it can be set within the range of 1 to 10 parts by mass with respect to 100 parts by mass of the polyurethane resin.
  • the glass transition temperature of the polyurethane resin needs to be 50 ° C. or higher, particularly preferably 70 ° C. or higher, and more preferably 90 ° C. or higher, particularly from the viewpoint of improving slipperiness.
  • the glass transition temperature is less than 50 ° C., it may exceed the range of the dynamic friction coefficient specified in the present invention, and the slipperiness also tends to decrease particularly under high humidity.
  • the upper limit of the glass transition temperature is not limited, but can be, for example, about 150 ° C.
  • the content of the polyurethane resin in the polyurethane resin layer is not particularly limited, but is usually about 50 to 98% by weight (particularly 70 to 95% by weight), but is not limited thereto.
  • the organic lubricant has a function of simultaneously enhancing both slipperiness and printability, which are contradictory to each other, by coexisting with a polyurethane resin having a glass transition temperature of 50 ° C. or higher.
  • the organic lubricant is not particularly limited, and includes various organic compounds such as hydrocarbon-based, fatty acid-based, aliphatic bisamide-based, and metal soap-based, as well as resin-based lubricants such as phenol resin, melamine resin, and polymethylmethacrylate resin. Examples include organic lubricants.
  • an organic lubricant having a melting point of 50 to 200 ° C. is particularly preferable.
  • the organic lubricant is not particularly limited, but it is preferable to use at least one of polyethylene wax, a silicon-acrylic copolymer, a silicon-urethane copolymer, and an aliphatic amide. Since these organic lubricants can be liquid, the smoothness of the surface of the polyurethane resin layer is not impaired. Further, since it is added to the polyurethane resin layer, it is possible to obtain the effect as a lubricant with a smaller addition amount, and it becomes easier to control the bleed-out amount. Commercially available products can also be used as these organic lubricants.
  • the polyethylene wax preferably contains high crystalline polyethylene as a main component, preferably has a melting point of 90 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. Most preferably. As long as the melting point is 90 ° C. or higher, polyethylene alone, a polyethylene copolymer, or a mixture of polyethylene and a polyethylene copolymer may be used. The upper limit of the melting point can be, for example, about 150 ° C.
  • the side chain is polymerized with respect to the main chain by graft polymerization from the viewpoint of compatibility with the polyurethane resin.
  • the side chain is preferably an acrylic or urethane component, and if the main chain is an acrylic or urethane component, the side chain is preferably a silicon component.
  • the aliphatic amide preferably has a carbon number of C8 or more and 20 or less, particularly preferably C12 or more and C18 or less, and more preferably C16 or more and C18 or less. If it exceeds C20, printability may decrease. If it is less than C8, the effect of improving slipperiness may not be sufficient.
  • Specific examples of such fatty acid amide include saturated fatty acids such as stearic acid (C18) and monoamides of unsaturated fatty acids such as oleic acid (C18). Among these, at least one of stearic acid amide and ethylene bisstearic acid amide is preferable because it is compatible with the water-based coating liquid.
  • the organic lubricant may be contained in the polyurethane resin layer, but may be particularly unevenly distributed on the surface of the polyurethane resin layer. When the organic lubricant is unevenly distributed on the surface of the polyurethane resin layer, slipperiness can be reliably imparted with less organic lubricant.
  • the content (solid content ratio) of the organic lubricant is preferably 5 to 30 parts by mass, particularly 10 to 30 parts by mass, based on 100 parts by mass of the polyurethane resin from the viewpoint of improving slipperiness and printability. It is more preferably parts, and most preferably 15 to 30 parts by mass. If the amount of the organic lubricant exceeds 0 parts by mass, the printability is deteriorated and the effect of lowering the dynamic friction coefficient is also reduced. When the amount of the organic lubricant is less than 5 parts by mass, the printability is good, but it becomes difficult to reduce the dynamic friction coefficient.
  • the polyurethane resin layer may contain additives other than the organic lubricant, if necessary, as long as its properties are not significantly impaired.
  • additives such as surfactants, defoamers, heat stabilizers, antioxidants, reinforcing materials, pigments, deterioration inhibitors, weather resistant agents, flame retardants, plasticizers, and mold release agents may be contained.
  • the thickness of the polyurethane resin layer is not particularly limited, but is usually preferably 0.005 to 0.150 ⁇ m, more preferably 0.010 to 0.150 ⁇ m, and 0.020 among them. Most preferably, it is ⁇ 0.100 ⁇ m. If the thickness of the polyurethane resin layer is less than 0.005 ⁇ m, it becomes difficult to form a polyurethane resin layer having a uniform film thickness on the polyamide film, and thus it becomes difficult to obtain sufficient slipperiness. On the other hand, if the thickness of the polyurethane resin layer exceeds 0.150 ⁇ m, the slipperiness improving effect of the polyurethane resin layer is saturated, which is economically disadvantageous.
  • the film of the present invention can be laminated with various layers as needed, in addition to the polyamide film and the polyurethane resin layer. That is, the polyamide-based laminated film of the present invention includes a laminated body including a basic structure of a polyamide film and a polyurethane resin layer, and in which other layers are laminated. Therefore, in the present specification, a laminated body in which other layers are laminated in addition to the basic configuration (the laminated film) is also referred to as a “laminated body”.
  • Such a laminate can be suitably used as a packaging laminate for, for example, food packaging, battery packaging (exterior material), and the like.
  • the film of the present invention is also suitable for cold molding (for example, molding temperature of 50 ° C. or lower) as a laminate for cold molding, it can also be used in a method for producing a molded product including a step of cold molding the film of the present invention. Applicable.
  • the present invention includes a polyamide-based laminated film particularly used for food packaging or cold molding.
  • the same layer as that used for known packaging materials or the like can be used.
  • a barrier layer, a primer layer, a heat-sealing layer, an adhesive layer, a clear layer, a printing layer and the like can be mentioned.
  • the same ones as the known laminates can be adopted, but it is desirable to set the barrier layer and the heat-sealing layer as follows.
  • the barrier layer has excellent barrier properties (gas barrier properties, especially oxygen barrier properties, etc.), and includes, for example, known metal foils, metal vapor-deposited films, transparent vapor-deposited films, and other inorganic barrier layers, polyvinyl alcohol, and the like. Examples thereof include various barrier films of an organic coat layer such as an ethylene-vinyl alcohol copolymer. Among these, metal foils such as aluminum foils and copper foils are preferable from the viewpoint of versatility, and aluminum foils are particularly preferable.
  • the thickness of the metal foil is not particularly limited, but is usually about 5 to 200 ⁇ m, more preferably 5 to 150 ⁇ m, and most preferably 7 to 50 ⁇ m. ..
  • one or both surfaces of the metal foil may be surface-treated to enhance adhesiveness, corrosion resistance, and the like.
  • the surface treatment include chemical conversion treatment and chromate treatment.
  • these surface treatments are preferably applied to the surface on the side in contact with the heat fusion layer.
  • the heat-sealing layer is not particularly limited as long as it can be heat-sealed, and known ones can be used, and examples thereof include a polyvinyl chloride film and a polyolefin film.
  • polyolefins include polyethylene, polypropylene, polyethylene, copolymers containing polypropylene as a main component, and acid-modified products thereof.
  • As the heat-sealing layer either a stretched film or a non-stretched film can be used, and the molten resin may be directly laminated.
  • the thickness of the heat-sealing layer is not particularly limited, but is usually preferably 20 to 200 ⁇ m, and more preferably 30 to 100 ⁇ m.
  • a method for adhering the polyamide film and the metal foil for example, a dry laminate, a thermal laminate, or the like using a two-component type urethane adhesive can be preferably adopted.
  • a dry laminate, a heat laminate, an extrusion laminate, a sandwich laminate method and the like can be preferably used.
  • An anchor coat layer, a primer layer, or the like may be provided in advance on the surface of the film, metal foil, or heat-sealing layer on which the adhesive layer is formed, as long as the effects of the present invention are not impaired. good.
  • a laminate or the like containing the layer 12 / metal foil 13 / heat-sealing layer 14 is effective as a packaging material such as an exterior material for a battery.
  • the thickness of the film of the present invention is not particularly limited and can be appropriately set depending on, for example, the intended use and method of use.
  • the thickness of the laminate 10 or 10'in FIG. 1 can be, for example, in the range of about 10 to 25 ⁇ m, or in the range of, for example, 15 to 25 ⁇ m. It can, but is not limited to this.
  • the film of the present invention has a dynamic friction coefficient of the surface of the polyurethane resin layer under a 20 ° C. ⁇ 90% RH environment of usually 0.40 or less, preferably 0.35 or less, and more preferably 0.30 or less.
  • the lower limit of the dynamic friction coefficient in an environment of 20 ° C. ⁇ 90% RH is not particularly limited, but is usually about 0.20.
  • the coefficient of kinetic friction in an environment of 20 ° C. ⁇ 90% RH is 0.40 or less, excellent workability and printability can be obtained more reliably even in high humidity.
  • the film of the present invention has a dynamic friction coefficient of the surface of the polyurethane resin layer under a 23 ° C. ⁇ 50% RH environment of usually 0.30 or less, preferably 0.25 or less, from the viewpoint of improving moldability and printability. It is more preferably 0.20 or less.
  • the lower limit of the dynamic friction coefficient in an environment of 23 ° C. ⁇ 50% RH is not particularly limited, but is usually about 0.10.
  • the arithmetic mean height (Ra) calculated from the measurement of the two-dimensional surface roughness of the surface of the polyurethane resin layer needs to be usually 0.010 to 0.060 ⁇ m, particularly 0.010 to 0.060 ⁇ m. It is preferably 0.055 ⁇ m, more preferably 0.020 to 0.050 ⁇ m, and most preferably 0.010 to 0.040 ⁇ m. If the Ra exceeds 0.060 ⁇ m, the unevenness of the surface of the resin layer becomes large, so that printing omission may occur, and it becomes difficult to perform high-definition printing.
  • the contact angle of water on the surface of the polyurethane resin layer of the film of the present invention is preferably 82 ° to 98 °, more preferably 86 ° to 98 °, from the viewpoint of improving slipperiness or printability. Among them, 90 ° to 98 ° is most preferable. If the contact angle is less than 82 °, the frictional resistance becomes large and the slipperiness may decrease. Further, if the contact angle exceeds 98 °, the printability may be lowered due to the deterioration of the ink adhesion. Further, since the surface of the polyurethane resin layer of the film of the present invention has few irregularities, it is possible to suppress variations in the measured contact angle values.
  • the film of the present invention is a method for producing a polyamide-based laminated film containing, for example, a polyamide film and a polyurethane resin layer containing a polyurethane resin and an organic lubricant laminated on at least one surface of the film.
  • It can be suitably produced by a method for producing a polyamide-based laminated film, which comprises a coating step of applying a water-based coating liquid containing a polyurethane resin and an organic lubricant on one surface.
  • Sheet molding step an unstretched sheet is obtained by molding a melt-kneaded product containing a polyamide resin into a sheet.
  • the unstretched sheet can be obtained by molding a melt-kneaded product containing a polyamide resin into a film.
  • the preparation of the melt-kneaded product itself may be carried out according to a known method. For example, it can be produced by molding a melt-kneaded product obtained by melting a resin composition containing a polyamide-based resin into a film shape (sheet shape). This can be done by using a known or commercially available device. For example, a melt extruder with a T-die can be used.
  • the starting material for example, pellet-shaped raw material
  • the melt-kneaded product is extruded into a sheet from a T-die attached to the tip of the extruder and cooled by a cast roll. Solidify.
  • the melt-kneaded product can be pressed against the cast roll by air to obtain an unstretched sheet.
  • additives can be added to the above resin composition as needed.
  • examples of the additive include an additive added to the polyamide film.
  • the average thickness of the unstretched sheet in this case is not particularly limited, but is generally about 15 to 250 ⁇ m, and particularly preferably 50 to 235 ⁇ m. By setting within such a range, the stretching step can be carried out more efficiently.
  • the unstretched sheet is MD-stretched and TD-stretched to obtain a biaxially stretched film.
  • the preheating temperature is not limited, but is preferably set within ⁇ 50 ° C. of the stretching temperature. By preheating, a biaxially stretched film having good physical properties can be obtained more reliably.
  • the preheating time depends on the preheating temperature and the like, but is usually preferably about 0.5 to 5 seconds.
  • the method of preheating is not particularly limited.
  • a method of setting the temperature of the hot air blown on the film traveling in the preheating zone of the stretching machine to the above temperature range can be preferably adopted.
  • the method of setting the stretching temperature to the above temperature is not limited, but it is preferable to set the temperature of the hot air blown to the film traveling in the stretching zone of the stretching machine to the above temperature range.
  • the time for the polyamide film to travel in the stretch zone is usually preferably about 0.5 to 5 seconds.
  • the stretching method when the film of the present invention is finally obtained by biaxial stretching, a simultaneous biaxial stretching method or a sequential biaxial stretching method can be adopted.
  • the classification by the stretching device for example, there are a tubular method, a tenter method and the like, and any of them can be applied.
  • the stretching method by the tenter method is particularly preferable in terms of quality stability and dimensional stability. Therefore, the tenter type simultaneous biaxial stretching method or the tenter type sequential biaxial stretching method can be preferably adopted.
  • the tenter type biaxial stretching method include a pantograph type tenter, a screw type tenter, and a linear motor type tenter.
  • an unstretched sheet is coated with a water-based coating liquid containing a urethane resin and an organic lubricant, and then biaxially stretched in the MD direction and the TD direction at the same time.
  • the film of the present invention in which a urethane resin layer is formed on a predetermined biaxially stretched polyamide film can be obtained.
  • a water-based coating liquid containing a urethane resin and an organic lubricant is previously applied to a film uniaxially stretched in the MD direction or the TD direction, and then substantially orthogonal to the uniaxial stretching direction.
  • the film of the present invention in which a urethane resin layer is formed on a predetermined biaxially stretched polyamide film can be obtained.
  • the stretching ratio is not particularly limited, but usually it may be stretched to about 2.0 to 4.5 times in the MD direction and the TD direction, respectively.
  • the draw ratios in the MD direction and the TD direction may be the same or different from each other.
  • the polyamide-based laminated film of the present invention needs to satisfy the following conditions (a) and (b) at the same time in order to keep the arithmetic mean height (Ra) of the polyurethane resin layer within the range specified in the present invention. ..
  • X indicates a stretching ratio in the MD direction
  • Y indicates a stretching ratio in the TD direction
  • X / Y indicates the draw ratio of the MD draw ratio (X) and the TD draw ratio (Y).
  • X ⁇ Y indicates the surface magnification.
  • the stretching temperature is not limited, and can be appropriately set within the range of 225 ° C. or lower (preferably 40 to 220 ° C.) depending on, for example, the stretching method, the application of the film of the present invention, the mode of use, and the like.
  • the film stretched in the stretching step is further heat-treated.
  • the heat treatment temperature is not particularly limited, but is usually preferably about 190 to 220 ° C, and more preferably 195 to 215 ° C. If the heat treatment temperature is less than 190 ° C., the film has a large shrinkage rate, which is not preferable as a polyamide film for packaging. Further, when an organic lubricant, a cross-linking agent or the like is added, the former does not bleed out sufficiently, and the latter does not sufficiently proceed with the cross-linking reaction, so that the effect of the addition may not be sufficiently obtained. On the other hand, when the heat treatment temperature exceeds 220 ° C., the strength of the polyamide film decreases.
  • the heat treatment time can be appropriately set according to the heat treatment temperature and the like, but is usually preferably about 1 to 15 seconds.
  • the heat treatment method is not particularly limited, and for example, a method of blowing hot air, a method of irradiating infrared rays, a method of irradiating microwaves, and the like can be adopted.
  • the method of blowing hot air is preferable from the viewpoint that the heating can be performed uniformly and accurately.
  • the heat fixing process can be performed by blowing hot air set in the above temperature range onto the film traveling in the heat fixing zone of the stretching machine.
  • Coating step In the coating step, a water-based coating liquid containing a polyurethane resin and an organic lubricant is applied on the surface of any one of the unstretched sheet, MD stretched film, TD stretched film and biaxially stretched film.
  • the method for preparing the water-based coating liquid can be carried out by dissolving or dispersing the polyurethane resin and the organic lubricant in the water-based medium.
  • the desired film of the present invention can be efficiently obtained, and it is also advantageous in terms of workability, environment and the like.
  • the aqueous medium is water or a mixed solvent containing water as a main component (usually, water is a liquid of 50% by mass or more).
  • a mixed solvent of water and a water-soluble organic solvent can be used.
  • the water-soluble organic solvent include, but are not limited to, alcohols such as methanol, ethanol and isopropanol, and ketones such as acetone and methyl ethyl ketone (MEK).
  • MEK acetone and methyl ethyl ketone
  • the water-soluble organic solvent can be used alone or in combination of two or more.
  • By mixing the water-soluble organic solvent it is possible to obtain effects such as improving the applicability to the polyamide film and shortening the drying process.
  • additives such as a cross-linking agent are used in addition to polyurethane resin and the like, these additives are preferably water-based (aqueous solution or aqueous dispersion (emulsion)).
  • the mixing order of each component such as polyurethane resin, organic lubricant, and water-based medium is not limited, and for example, a method of adding the organic lubricant to a pre-prepared aqueous dispersion or aqueous solution of polyurethane resin is suitable.
  • a water-based coating solution can be prepared.
  • this method will be described as a typical example.
  • the polyurethane resin used for the water-based coating liquid is not particularly limited, but as shown above, it is preferable to use a polyurethane resin (anionic polyurethane resin) into which an anionic functional group has been introduced.
  • a polyurethane resin anionic polyurethane resin
  • it can be more uniformly and stably dispersed in water.
  • it is preferable to use the polyurethane resin in the form of an aqueous dispersion to prepare a coating liquid.
  • a volatile base when dispersing the anionic polyurethane resin in an aqueous medium, it is generally preferable to use a volatile base.
  • the volatile base is not particularly limited, and known ones can be used. More specifically, ammonia, methylamine, ethylamine, dimethylamine, diethylamine, triethylamine, morpholine, ethanolamine and the like are exemplified. Among these, triethylamine is more preferable because it has good liquid stability of the water-dispersible polyurethane resin and has a relatively low boiling point, so that the amount remaining in the primer layer is small.
  • aqueous dispersion of such a polyurethane resin a known or commercially available one can be used.
  • commercially available products for example, as anionic water-dispersible polyurethane resin, "Takelac W-5030", “Takelac WS-4000”, “Takelac WS-4022” manufactured by Mitsui Chemicals Polyurethane, and "Hydran AP40F” manufactured by DIC Corporation. Etc. can be used.
  • an organic lubricant is added and mixed with the aqueous dispersion of polyurethane resin.
  • the type of organic lubricant, the amount of the organic lubricant added, and the like may be the same as those shown above.
  • the form of the organic lubricant may be one dispersed in a solvent (water or a solvent), or may be used as a simple substance (powder).
  • the particle size of the organic lubricant in the dispersion in this case is not particularly limited, but is usually preferably about 0.010 ⁇ m to 0.500 ⁇ m, and more preferably 0.010 ⁇ m to 0.400 ⁇ m. Further, it is particularly preferably 0.010 ⁇ m to 0.200 ⁇ m, and most preferably 0.010 ⁇ m to 0.100 ⁇ m.
  • the particle size is smaller than 0.010 ⁇ m, the particles are dispersed very finely in the polyurethane resin layer, so that the printability is improved, but the effect of lowering the dynamic friction coefficient is reduced.
  • the particle size exceeds 0.500 ⁇ m, the effect of lowering the dynamic friction coefficient can be obtained, but the organic lubricant tends to aggregate, so that the printability is lowered.
  • the particle size of the organic lubricant in the dispersion is determined by a laser diffraction / scattering method (dispersion medium: water) based on the Mie theory using a laser diffraction type particle size distribution measuring device (product name "Mastersizer 3000" manufactured by Malvern Instruments LTD). ) Indicates the median diameter obtained by.
  • the refractive index of the dispersion medium (water) was set to 1.330.
  • the refractive index of the organic lubricant was 1.500 for polyethylene wax, 1.59 for silicon-acrylic copolymer, 1.49 for silicon-urethane copolymer, and 1.46 for fatty acid amide.
  • the mixing of the polyurethane resin and the organic lubricant is not particularly limited as long as the organic lubricant can be uniformly dispersed, and can be carried out using a mixing device such as a known or commercially available mixer or kneader.
  • a mixing device such as a known or commercially available mixer or kneader.
  • heating can be appropriately performed, and it can be preferably carried out using a melting pot or the like equipped with a stirrer.
  • the mixing temperature is not particularly limited and can be, for example, about 5 to 40 ° C.
  • the water-based coating liquid may contain other components as long as the effects of the present invention are not impaired.
  • various additives exemplified above can be blended.
  • a surfactant can be added for the purpose of improving the coatability on the polyamide film.
  • the surfactant is not particularly limited, but is an anionic surface such as polyethylene alkylphenyl ether, polyoxyethylene-fatty acid ester, glycerin fatty acid ester, fatty acid metal soap, alkyl sulfate, alkyl sulfonate, alkyl sulfosuccinate and the like.
  • a nonionic surfactant such as acetylene glycol can be mentioned.
  • the content of the surfactant is not particularly limited, but it is generally preferable that the surfactant content is 0.01 to 1% by mass in the water-based coating liquid. Further, it is preferable that the polyamide-based laminated film is volatilized by heat treatment in the manufacturing process.
  • the solid content concentration of the water-based coating liquid can be appropriately adjusted depending on, for example, the specifications of the coating device used, the drying / heat treatment device, and the like. However, if the coating liquid is too dilute, it takes a long time in the drying process, and the coating thickness after drying becomes too thin, so that a uniform coating cannot be formed and the risk of defects increases. Problems are likely to occur. On the other hand, a water-based coating liquid having an excessively high concentration tends to cause a problem in coatability because the coated surface is difficult to be uniform. Therefore, from such a viewpoint, the solid content concentration of the water-based coating liquid is generally preferably about 5 to 70% by mass.
  • the method of applying the water-based coating liquid to the polyamide film is not particularly limited, and a known method can be appropriately adopted.
  • a known method can be appropriately adopted.
  • gravure roll coating method, reverse roll coating method, wire bar coating method, air knife coating method, curtain coating method, doctor knife method, die coating method, dip coating method, bar coating method, etc. as well as a combination of these methods Can be adopted.
  • the drying step after coating is not particularly limited, and a known method is used, for example, a drying treatment in a drying atmosphere such as an oven, a drying treatment by contacting with a heat roll, a drying treatment in a stretching machine, and the like.
  • a drying treatment in a drying atmosphere such as an oven
  • a drying treatment by contacting with a heat roll a drying treatment in a stretching machine
  • the drying temperature is not limited, but can usually be set in the range of about 30 to 200 ° C.
  • the drying time can be appropriately set depending on the drying temperature and the like, but generally it may be in the range of 0.5 to 60 seconds.
  • the timing of applying the water-based coating liquid is such that the water-based coating liquid can be applied on the surface of any one of the unstretched sheet, MD stretched film, TD stretched film, and biaxially stretched film. That is, any method such as an in-line coating method and a post-coating method (offline coating method) can be adopted.
  • the film thickness can be made thinner and more uniform than the offline coating method, and the productivity is improved, so that a high-quality product can be manufactured at low cost. It becomes possible.
  • both slipperiness and printability can be improved. The reason is not clear, but the slipperiness and printability are improved by orienting the molecular chains of the polyurethane resin and promoting the cross-linking reaction or bleed-out of the organic lubricant by performing heat treatment at the same time as stretching by the in-line coating method. It is expected to be better.
  • the organic lubricant bleeds out to the surface of the stretched film, so that the organic lubricant can be unevenly distributed on the surface of the stretched film, and the stretched film can be modified to have a slippery property even with a relatively small amount of the organic lubricant.
  • the in-line coating method is not particularly limited as long as the coating film formation by the water-based coating liquid and the stretching of the film can be carried out substantially at the same time.
  • a) After applying the water-based coating liquid to the unstretched sheet sequentially Alternatively, a method of simultaneous biaxial stretching, b) a method of applying a water-based coating liquid to an MD-stretched uniaxially stretched film and then TD stretching, c) a method of applying a water-based coating liquid to a TD-stretched uniaxially stretched film. , MD stretching method and the like.
  • the post-coating method is a method of forming a coating film with a water-based coating liquid on the film after biaxial stretching.
  • a preferred embodiment of the in-line coating method in the case of simultaneous biaxial stretching is a method including a step of molding a polyamide resin into a sheet to obtain an unstretched polyamide sheet and then applying a water-based coating liquid. is there.
  • the unstretched polyamide sheet coated with the water-based coating liquid is dried at 50 to 220 ° C., preferably 80 ° C. to 180 ° C., more preferably 120 ° C. to 160 ° C. in the drying step, and then has a stretching temperature of 215 ° C. or lower ( It is preferable to perform simultaneous biaxial stretching under the conditions of a stretching ratio of 2.5 to 3.8 times in both the MD and TD directions (preferably 190 to 215 ° C.).
  • the method of simultaneously biaxially stretching the unstretched polyamide sheet can be performed by a known stretching method. Among them, from the viewpoint of economic efficiency such as productivity, it is preferable to use the tenter type simultaneous biaxial stretching method or the Lisim simultaneous biaxial stretching method.
  • a preferred embodiment of the in-line coating method in the case of sequential biaxial stretching includes a method including the following steps. After the sheet molding step of molding the polyamide resin into a sheet to obtain an unstretched sheet, the unstretched sheet is stretched at a stretching temperature of 40 to 80 ° C (preferably 50 to 65 ° C) and 2.5 in the flow direction of the sheet. It is stretched to 3.5 times (MD stretch), and then a water-based coating liquid is applied to the uniaxially stretched polyamide film. The uniaxially stretched film coated with the water-based coating liquid also serves as a drying step, and is 2.5 to 3.5 times in the width direction under the conditions of preheating and stretching temperature of 50 to 220 ° C. (preferably 60 to 130 ° C.).
  • the film of the present invention can be produced by a stretching step of stretching (TD stretching).
  • TD stretching a stretching step of stretching
  • the method of laminating each layer is not particularly limited, and for example, a) a method of forming a coating film with a coating liquid, b) a method of laminating a preformed film, c) a PVD method, a CVD method, etc. Any method of forming a vapor-deposited film can be adopted. Further, in the case of b), any of a method of laminating via an adhesive, a method of laminating by simultaneous extrusion molding, and the like can be adopted. In particular, when the film of the present invention is used as an exterior material of a battery such as a lithium ion secondary battery, a known method for producing the exterior material can also be adopted. In this case, it is also possible to laminate using a known adhesive.
  • a two-component type of a laminate containing a urethane resin layer / polyamide film or a laminate containing a urethane resin layer / polyamide film / urethane resin layer and a metal foil for forming a barrier layer is used. It is possible to adopt a method such as dry laminating or thermal laminating via a urethane-based adhesive or the like.
  • a known method dry laminating, heat laminating, extruded laminating, sandwich laminating method, etc.
  • an anchor coat layer On the surfaces of the polyamide film, barrier layer, and heat-sealing layer on which the adhesive layer is formed, an anchor coat layer, a primer layer, a printing layer, and a clear layer are required as long as the effects of the present invention are not impaired. Etc. may be provided.
  • the film (or laminate) of the present invention can be used for various purposes, but can be particularly preferably used as a packaging material. That is, it can be used as a packaging material for packaging the contents.
  • the contents are not limited, and for example, contents such as foods and drinks, electronic parts, chemical products, cosmetics, and medical products (medical devices) can be packaged.
  • the form when used as a packaging material is not particularly limited, and can be used, for example, as a packaging bag or a packaging container.
  • the packaging bag for example, it can be used as various bag bodies such as a pillow bag, a gusset bag, and a stand bag.
  • the method of molding the bag may also be carried out according to a known method.
  • the present invention also includes a product (packaging product) in which the contents are packaged by the above-mentioned packaging material or packaging bag.
  • a product packaging product
  • packaging state in this case include a state in which the contents are sealed from the outside by a packaging material or a packaging bag.
  • Polyurethane resin As the polyurethane resin, the following polyurethane aqueous dispersions (a) to (d) were used.
  • C Product name "Takelac WS-4022” (manufactured by Mitsui Chemicals, glass transition temperature 115 ° C., solid content concentration 30%)
  • a water-based coating liquid A having a solid content concentration of 9% by mass was applied to an MD stretched film so that the thickness after drying and stretching was 0.10 ⁇ m, and then TD under the conditions of a preheating temperature of 80 ° C. and a stretching temperature of 120 ° C. It was stretched in the direction at a stretching ratio of 3.20 times. Further, after heat treatment was performed under the conditions of a heat treatment temperature of 210 ° C. and a heat treatment time of 3 seconds, a relaxation treatment of 3% was performed in the TD direction.
  • the surface of the polyamide film of the obtained laminated film was subjected to corona treatment to obtain a polyamide-based laminated film (thickness 15 ⁇ m) in which a polyurethane resin layer having a thickness of 0.10 ⁇ m was laminated.
  • (3) Preparation of Laminated Body A two-component polyurethane adhesive (TM-K55 / CAT-10L, manufactured by Toyo Morton Co., Ltd.) was applied to the corona-treated surface of the obtained polyamide-based laminated film with a coating amount of 5 g / m 2 . And dried at 80 ° C. for 10 seconds. An aluminum foil (thickness 50 ⁇ m) was attached to the adhesive-coated surface.
  • Examples 2, 5 to 17 and Comparative Examples 1, 2, 4, 7 A polyamide-based laminated film was produced in the same manner as in Example 1 except that the conditions shown in Table 1 were used.
  • the coating liquid was prepared in the same manner as in Example 1 except that the types and blending ratios of the polyurethane aqueous dispersion and the organic lubricant were changed as shown in Table 1.
  • the order of addition of the organic lubricant in the coating liquid to which two kinds of organic lubricants are added is not limited and can be arbitrarily selected. Further, the obtained polyamide-based laminated film was used to prepare a laminated body in the same manner as in Example 1.
  • Example 3 A polyamide-based laminated film was produced in the same manner as in Example 1 except that the stretching method was changed as follows. Using an extruder equipped with a T-die, nylon 6 (manufactured by Unitika Ltd., A1030BRF, relative viscosity 3.1) is extruded into a sheet from the T-die and brought into close contact with a casting roll adjusted to a surface temperature of 18 ° C. It was rapidly cooled to obtain an unstretched sheet. Next, a water-based coating liquid B having a solid content concentration of 9% by mass was applied to this unstretched sheet using a gravure coater so that the thickness after drying and stretching was 0.10 ⁇ m, dried by a hot air dryer, and then pantographed.
  • nylon 6 manufactured by Unitika Ltd., A1030BRF, relative viscosity 3.1
  • the method was guided to a tenter simultaneous biaxial stretching machine, and simultaneous biaxial stretching was performed at a stretching ratio of 3.0 times in the MD direction and 3.3 times in the TD direction under the condition of a preheating stretching temperature of 200 ° C. Further, the heat treatment was performed under the conditions of a heat treatment temperature of 215 ° C. and a heat treatment time of 3 seconds, and then a relaxation treatment of 3% was performed in the TD direction.
  • the surface of the polyamide film of the obtained laminated film was subjected to corona treatment to obtain a polyamide-based laminated film having a thickness of 15 ⁇ m in which a polyurethane resin layer having a thickness of 0.10 ⁇ m was laminated. Further, the obtained polyamide-based laminated film was used to prepare a laminated body in the same manner as in Example 1.
  • Example 4 A polyamide-based laminated film was obtained in the same manner as in Example 3 except that the simultaneous biaxial stretching machine was changed from a pantograph type tenter to a linear motor type tenter and a relaxation treatment of 1% was also applied in the MD direction. Further, the obtained polyamide-based laminated film was used to prepare a laminated body in the same manner as in Example 1.
  • Comparative Example 3 A polyamide-based laminated film was produced in the same manner as in Example 1 except that silica was contained in the aqueous coating liquid in an amount of 2.0% by mass based on 100% by mass of the solid content of the polyurethane aqueous dispersion. Further, the obtained polyamide-based laminated film was used to prepare a laminated body in the same manner as in Example 1.
  • Comparative Example 5 A polyamide-based laminated film was obtained in the same manner as in Example 1 except that the coating step of the water-based coating liquid was changed from during the stretching step to after stretching.
  • the stretched polyamide film is guided to a gravure coater, a water-based coating liquid R is applied so that the coating thickness is 0.5 ⁇ m, and a drying furnace consisting of five zones ⁇ Zone 1 (80 ° C.) ⁇ Zone 2 (
  • a polyamide-based laminated film was obtained by passing through 100 ° C.) ⁇ Zone 3 (120 ° C.) ⁇ Zone 4 (110 ° C.) ⁇ Zone 5 (80 ° C.)> and drying. Further, the obtained polyamide-based laminated film was used to prepare a laminated body in the same manner as in Example 1.
  • Comparative Example 6 A polyamide-based laminated film was produced in the same manner as in Example 1 except that the aqueous coating liquid contained 2.0% by mass of acrylic particles with respect to 100% by mass of the solid content of the polyurethane aqueous dispersion. Further, the obtained polyamide-based laminated film was used to prepare a laminated body in the same manner as in Example 1.
  • Test Example 1 The following characteristics were measured for the polyamide-based laminated films or laminates obtained in each Example and Comparative Example. The results are shown in Table 2.
  • the dynamic friction coefficient of the surface of the polyurethane resin layer in the present invention was measured according to the Japanese Industrial Standard "JIS K7125".
  • JIS K7125 a desktop material testing machine "STB-1225S” manufactured by A & D Co., Ltd. and a data processing system "TACT” were used, and the measuring environment was set to 23 ° C. ⁇ 50% RH and 20 ° C. ⁇ 90% RH.
  • the humidity of a sample of the polyamide-based laminated film at 23 ° C. ⁇ 50% RH or 20 ° C. ⁇ 90% RH for 2 hours, the polyurethane resin layers of the polyamide-based laminated film are placed at the same temperature and humidity as described above.
  • the printability in the present invention was measured under the same temperature and humidity conditions after adjusting the humidity of a sample of a polyamide-based laminated film at 23 ° C. ⁇ 50% RH for 2 hours.
  • the polyurethane resin layer of the polyamide-based laminated film is printed using a gravure printing method so that the number of dot patterns within 1 cm x 1 cm is 100, and the number of defects of the dot patterns within 1 cm x 1 cm is counted, and the average value of the three locations is counted.
  • the ink a commercially available ink (Rio Alpha R39 Indigo, manufactured by Toyo Ink Co., Ltd.) was used.
  • the number of defects of the dot pattern is preferably 7.0 or less, more preferably 3.5 or less, and most preferably 1.0 or less. ..
  • the polyamide-based laminated film of each example has a small coefficient of dynamic friction on the surface of the polyurethane resin layer under a 20 ° C. ⁇ 90% RH environment, and has good printability and moldability. You can see that.
  • the glass transition temperature of the polyurethane aqueous dispersion was less than 50 ° C., so that the coefficient of kinetic friction on the surface of the polyurethane resin layer was large.
  • Comparative Example 5 adopted a post-coating method, so that sufficient slipperiness could not be obtained.
  • Comparative Example 6 the coefficient of dynamic friction on the surface of the polyurethane resin layer was small due to the addition of acrylic particles, but the arithmetic mean height Ra exceeded the range specified in the present invention, and the printability and moldability were inferior.
  • Comparative Example 7 although the glass transition temperature was 50 ° C. or higher, the coefficient of kinetic friction on the surface of the polyurethane resin layer was high because no organic lubricant was added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a polyamide-based laminated film endowed with both high slipperiness and good printability. [Solution] The present invention pertains to a laminated film including a polyamide film and a polyurethane resin layer containing a polyurethane resin and an organic lubricant on at least one surface of the polyamide film, wherein the polyamide-based laminated film is characterized in that (1) the glass transition temperature of the polyurethane resin is 50°C or higher, (2) the arithmetic mean height (Ra) of the polyurethane resin layer surface is 0.010 to 0.060 μm, and the dynamic friction coefficient of the polyurethane resin layer surface in a 20°C×90% RH environment is 0.40 or lower.

Description

ポリアミド系積層フィルム及びその製造方法Polyamide-based laminated film and its manufacturing method
 本発明は、食品、電子部品等を包装又は被覆するために用いられるポリアミド系積層フィルムに関する。 The present invention relates to a polyamide-based laminated film used for packaging or coating foods, electronic parts, etc.
 ポリアミドフィルムは、優れた強靭性を有するため、食品包装から工業用途まで幅広く用いられている。ポリアミドフィルムをはじめとする樹脂フィルムは、使用用途に応じて印刷機、ラミネ―タ―等で加工される。これら加工機内において、樹脂フィルムは、表面が金属又はゴムから構成されるロール間を走行することで搬送される。ロールと樹脂フィルムとは直接接触しているため、樹脂フィルムの接触面の摩擦係数が大きい場合、樹脂フィルムの搬送速度とロール回転速度との間に差が生じる。その結果、樹脂フィルム表面に擦り傷が入ったり、樹脂フィルムの走行が不安定となることがある。このため、樹脂フィルムに無機フィラーを含有させ、樹脂フィルム表面を粗面化することによりロールとの接触面を減らし、摩擦低減を図る方法が提案されている。 Polyamide film has excellent toughness, so it is widely used from food packaging to industrial applications. Resin films such as polyamide films are processed by a printing machine, laminator, etc., depending on the intended use. In these processing machines, the resin film is conveyed by running between rolls whose surfaces are made of metal or rubber. Since the roll and the resin film are in direct contact with each other, when the friction coefficient of the contact surface of the resin film is large, a difference occurs between the transport speed of the resin film and the rotation speed of the roll. As a result, the surface of the resin film may be scratched or the running of the resin film may become unstable. Therefore, a method has been proposed in which the resin film contains an inorganic filler to roughen the surface of the resin film to reduce the contact surface with the roll and reduce friction.
 しかしながら、近年では、生産性向上の観点から樹脂フィルムの走行速度の高速化が求められており、従来のように物理的な手法によるフィルム表面の粗面化だけでは摩擦低減効果が十分ではないうえ、過剰な粗面化により印刷適性を損なうおそれがある。さらに、フィルム表面の粗面化だけでは、高湿度下における摩擦係数が上昇するという問題が生じる。 However, in recent years, from the viewpoint of improving productivity, it has been required to increase the traveling speed of the resin film, and the friction reducing effect is not sufficient only by roughening the film surface by a physical method as in the past. , There is a risk of impairing printability due to excessive roughening. Further, the roughening of the film surface alone causes a problem that the coefficient of friction increases under high humidity.
 これに対し、ポリアミドフィルム中に無機粒子と長鎖脂肪酸系ビスアミドを含有させる方法が提案されている(特許文献1)。しかし、脂肪族アミドを含有させることにより高湿度下での動摩擦係数の上昇を抑制することができるものの、ブリードアウト量のコントロールが難しいため、ロール汚染、印刷適性低下等の懸念がある。 On the other hand, a method of incorporating inorganic particles and long-chain fatty acid-based bisamide in a polyamide film has been proposed (Patent Document 1). However, although it is possible to suppress an increase in the dynamic friction coefficient under high humidity by containing an aliphatic amide, it is difficult to control the amount of bleed-out, so there are concerns about roll contamination and deterioration of printability.
 他方、ポリアミドフィルム上に長鎖アルキル基を有するワックス及び球状微粒子を含有するコート層を積層した二軸延伸ポリアミドフィルムが提案されている(特許文献2)。このフィルムによれば、スリップ剤及び粒子を含有したコート層を設けることにより、それらを樹脂フィルム中に含有する場合よりも少量で所定の効果は得られる。しかし、球状微粒子は、コーティング層の厚みに対して粒子径が小さい場合は添加効果が小さい。一方、球状微粒子の粒子径のほうが大きい場合には、この微粒子が滑落又は脱落するリスクが大きくなる。また、高精細な印刷が求められる場合において、表面粗さが大きい場合、印刷抜け等が発生し、印刷精度が低下する場合がある。 On the other hand, a biaxially stretched polyamide film in which a coat layer containing a wax having a long-chain alkyl group and spherical fine particles is laminated on a polyamide film has been proposed (Patent Document 2). According to this film, by providing a coat layer containing a slip agent and particles, a predetermined effect can be obtained with a smaller amount than when they are contained in a resin film. However, the addition effect of the spherical fine particles is small when the particle size is small with respect to the thickness of the coating layer. On the other hand, when the particle size of the spherical fine particles is larger, the risk of the fine particles slipping or falling off increases. Further, when high-definition printing is required, if the surface roughness is large, printing omission or the like may occur and the printing accuracy may be lowered.
 このように、従来技術においては、フィルムを滑りやすくすると印刷適性が犠牲となってしまう一方、印刷適性を向上させるとフィルムが滑りにくくなるという問題が生じるため、両者を一挙に改善することは困難とされている。 As described above, in the prior art, if the film is slippery, the printability is sacrificed, but if the printability is improved, the film becomes difficult to slip, so it is difficult to improve both at once. It is said that.
 ところで、近年、工業分野におけるポリアミドフィルムの用途として、リチウムイオン電池の外装材がある。このような用途においても、フィルムの滑り性が問題となる。 By the way, in recent years, as an application of polyamide film in the industrial field, there is an exterior material of a lithium ion battery. Even in such applications, the slipperiness of the film becomes a problem.
 リチウムイオン電池の外装材としては、従来では金属缶タイプが主流である。ところが、金属缶タイプにおいては、形状の自由度の低さ、軽量化の困難さ等の欠点が指摘されている。このため、基材層(ポリアミドフィルム)/金属箔層(アルミニウム箔層)/シーラント層からなる積層体を外装体として用いることが提案されている。このような積層体は、金属缶と比較して柔軟で形状の自由度が高く、さらに薄膜化による軽量化が可能であり、かつ、小型化が容易であることから、広く用いられるようになっている。 Conventionally, the metal can type has been the mainstream as the exterior material for lithium-ion batteries. However, it has been pointed out that the metal can type has drawbacks such as low degree of freedom in shape and difficulty in weight reduction. Therefore, it has been proposed to use a laminate composed of a base material layer (polyamide film) / metal foil layer (aluminum foil layer) / sealant layer as an exterior body. Such a laminate has become widely used because it is more flexible than a metal can, has a high degree of freedom in shape, can be made lighter by thinning, and is easily miniaturized. ing.
 そして、上記のような積層体を冷間成形により、所定の形状に加工することにより、容器等の各種の製品を得ることが行われる。冷間成形時の成形性に影響を与えるフィルムの物性として、フィルムの滑り性がある。例えば、ポリアミドフィルムを最外層とする積層体を冷間成形する場合、ポリアミドフィルムと成形金型とが接触するため、ポリアミドフィルムが滑りにくい(すなわち、摩擦係数が大きい)場合は、成形金型が押し込まれる際に積層体表面にシワが生じたり、積層体がデラミネーションを引き起こすおそれが高くなる。しかも、積層体全体を均一に成形することが難しく、厚みムラが生じるため、ピンホールの発生が懸念される。特に、高湿度下で冷間成形を行う際には、これらの問題がよりいっそう顕著となる。この点において、フィルムの滑りやすさは、湿度に依存しないことも必要とされている。 Then, various products such as containers can be obtained by processing the above-mentioned laminate into a predetermined shape by cold molding. The slipperiness of the film is one of the physical properties of the film that affects the moldability during cold molding. For example, when a laminate having a polyamide film as the outermost layer is cold-molded, the polyamide film and the molding die come into contact with each other. Therefore, if the polyamide film is not slippery (that is, the friction coefficient is large), the molding die is used. When pushed in, the surface of the laminate is wrinkled, and the laminate is more likely to cause delamination. Moreover, it is difficult to uniformly mold the entire laminate, and uneven thickness occurs, so that there is a concern that pinholes may occur. In particular, these problems become even more pronounced when cold forming is performed under high humidity. In this respect, the slipperiness of the film is also required to be humidity independent.
特開2002-348465号公報JP-A-2002-348465 特開2015-168125号公報JP-A-2015-168125
 以上のようなことから、湿度に関係なく、滑り性に優れ、ひいては冷間成形性又は各種の加工性にも優れ、かつ、高精細な印刷を施すことも可能なポリアミドフィルムが要望されているが、そのようなフィルムは未だ開発されるに至っていない。 From the above, there is a demand for a polyamide film having excellent slipperiness regardless of humidity, excellent in cold formability or various workability, and capable of performing high-definition printing. However, such a film has not yet been developed.
 従って、本発明は、高い滑り性と良好な印刷適性とを兼ね備えたポリアミド系積層フィルムを提供することを主な目的とする。 Therefore, it is a main object of the present invention to provide a polyamide-based laminated film having both high slipperiness and good printability.
 本発明者は、上記の問題点を解決するために鋭意研究を重ねた結果、ポリアミドフィルムと特定の樹脂層とを含む特定の層構成を採用することによって上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventor has found that the above object can be achieved by adopting a specific layer structure including a polyamide film and a specific resin layer. Has been completed.
 すなわち、本発明は、下記のポリアミド系積層フィルム及びその製造方法に係る。
1. ポリアミドフィルムと、前記フィルムの少なくとも一方の表面上に積層されたポリウレタン樹脂及び有機滑剤を含有するポリウレタン樹脂層とを含む積層フィルムであって、
(1)前記ポリウレタン樹脂のガラス転移温度が50℃以上であり、
(2)前記ポリウレタン樹脂層表面の算術平均高さ(Ra)が0.010~0.060μmであり、かつ、前記ポリウレタン樹脂層表面の20℃×90%RH環境下での動摩擦係数が0.40以下である、
ことを特徴とするポリアミド系積層フィルム。
2. 前記ポリウレタン樹脂層表面の23℃×50%RH環境下での動摩擦係数が0.30以下である、前記項1に記載のポリアミド系積層フィルム。
3. 前記ポリウレタン樹脂層の厚みが0.005~0.150μmである、前記項1に記載のポリアミド系積層フィルム。
4. 前記項1~3のいずれかに記載のポリアミド系積層フィルムを含む食品包装用積層体。
5. 前記項1~3のいずれかに記載のポリアミド系積層フィルムを含む冷間成形用積層体。
6. ポリアミドフィルムと、前記フィルムの少なくとも一方の表面上にポリウレタン樹脂及び有機滑剤を含有するポリウレタン樹脂層とを含むポリアミド系積層フィルムを製造する方法であって、
(1)ポリアミド樹脂を含む溶融混練物をシート状に成形することにより未延伸シートを得るシート成形工程、
(2)前記未延伸シートをMD延伸及びTD延伸することによって二軸延伸フィルムを得る延伸工程、及び
(3)前記の未延伸シート、MD延伸フィルム、TD延伸フィルム又は二軸延伸フィルムのいずれか一方の表面上に、ポリウレタン樹脂及び有機滑剤を含む水系塗工液を塗布するコーティング工程
を含むことを特徴とするポリアミド系積層フィルムの製造方法。
7. 水系塗工液が、ポリウレタン樹脂の分散液と、粒径0.010μm~0.500μmの有機滑剤の分散液との混合液である、前記項6に記載の製造方法。
8. 延伸工程が同時二軸延伸によって実施され、かつ、下記式(a)及び(b);
   (a)0.80≦X/Y≦0.95
   (b)9.8≦X×Y≦11.6
(但し、Xは前記MD方向の延伸倍率を示し、Yは前記TD方向の延伸倍率を示す。)
の両方を満たす、前記項6に記載の製造方法。
9. 延伸工程が逐次二軸延伸によって実施され、かつ、下記式(a)及び(b);
   (a)0.85≦X/Y≦0.95
   (b)8.5≦X×Y≦9.5
(但し、Xは前記MD方向の延伸倍率を示し、Yは前記TD方向の延伸倍率を示す。)
の両方を満たす、前記項6に記載の製造方法。
That is, the present invention relates to the following polyamide-based laminated film and a method for producing the same.
1. 1. A laminated film containing a polyamide film and a polyurethane resin layer containing a polyurethane resin and an organic lubricant laminated on at least one surface of the film.
(1) The glass transition temperature of the polyurethane resin is 50 ° C. or higher.
(2) The arithmetic mean height (Ra) of the surface of the polyurethane resin layer is 0.010 to 0.060 μm, and the coefficient of dynamic friction of the surface of the polyurethane resin layer under a 20 ° C. × 90% RH environment is 0. 40 or less,
A polyamide-based laminated film characterized by this.
2. Item 2. The polyamide-based laminated film according to Item 1, wherein the surface of the polyurethane resin layer has a coefficient of dynamic friction of 0.30 or less under a 23 ° C. × 50% RH environment.
3. 3. Item 2. The polyamide-based laminated film according to Item 1, wherein the polyurethane resin layer has a thickness of 0.005 to 0.150 μm.
4. A laminate for food packaging containing the polyamide-based laminate according to any one of Items 1 to 3.
5. A laminate for cold molding containing the polyamide-based laminate film according to any one of Items 1 to 3.
6. A method for producing a polyamide-based laminated film containing a polyamide film and a polyurethane resin layer containing a polyurethane resin and an organic lubricant on at least one surface of the film.
(1) A sheet molding step of obtaining an unstretched sheet by molding a melt-kneaded product containing a polyamide resin into a sheet.
(2) A stretching step of obtaining a biaxially stretched film by MD stretching and TD stretching of the unstretched sheet, and (3) any one of the unstretched sheet, MD stretched film, TD stretched film or biaxially stretched film. A method for producing a polyamide-based laminated film, which comprises a coating step of applying a water-based coating liquid containing a polyurethane resin and an organic lubricant on one surface.
7. Item 6. The production method according to Item 6, wherein the water-based coating liquid is a mixed liquid of a dispersion liquid of a polyurethane resin and a dispersion liquid of an organic lubricant having a particle size of 0.010 μm to 0.500 μm.
8. The stretching step is carried out by simultaneous biaxial stretching, and the following formulas (a) and (b);
(A) 0.80 ≦ X / Y ≦ 0.95
(B) 9.8 ≤ X x Y ≤ 11.6
(However, X indicates the stretching ratio in the MD direction, and Y indicates the stretching ratio in the TD direction.)
Item 6. The production method according to Item 6, wherein both of the above conditions are satisfied.
9. The stretching step is carried out by sequential biaxial stretching, and the following formulas (a) and (b);
(A) 0.85 ≤ X / Y ≤ 0.95
(B) 8.5 ≤ X x Y ≤ 9.5
(However, X indicates the stretching ratio in the MD direction, and Y indicates the stretching ratio in the TD direction.)
Item 6. The production method according to Item 6, wherein both of the above conditions are satisfied.
 本発明によれば、高い滑り性と良好な印刷適性とを兼ね備えたポリアミド系積層フィルムを提供することができる。すなわち、本発明では、従来技術において互いに相反する特性とされていた滑り性と印刷適性(特に版からのインキ転移性)とを同時に向上させることが可能となる。 According to the present invention, it is possible to provide a polyamide-based laminated film having both high slipperiness and good printability. That is, in the present invention, it is possible to simultaneously improve slipperiness and printability (particularly ink transferability from a plate), which are mutually contradictory characteristics in the prior art.
 本発明のポリアミド系積層フィルムは、ポリウレタン樹脂層の算術平均高さ(Ra)が低いので、高精細な印刷を施すことができる。また同時に、前記Raが小さいにもかかわらず、高湿度下での動摩擦係数が小さいため、湿度に依存することなく安定した滑り性を発揮することができる。その結果、本発明のポリアミド系積層フィルムは、ロールによる搬送に適することに加え、各種加工において好適に使用することができる。 Since the polyamide-based laminated film of the present invention has a low arithmetic mean height (Ra) of the polyurethane resin layer, high-definition printing can be performed. At the same time, even though the Ra is small, the coefficient of dynamic friction under high humidity is small, so that stable slipperiness can be exhibited without depending on the humidity. As a result, the polyamide-based laminated film of the present invention can be suitably used in various processes in addition to being suitable for transport by rolls.
 特に、有機物であるポリウレタン樹脂を主成分とするポリウレタン樹脂層であることから、インキ密着性に優れるため、優れた印刷適性を発揮することができる。これに加え、ポリウレタン樹脂層の柔軟性が比較的良好であるため、例えばボイル又はレトルト処理工程におけるポリアミドフィルムの寸法変化にも追従可能である。そのため、本発明のポリアミド系積層フィルムを用いて成形(特に冷間成形)等の加工を行う際において、デラミネーションの発生等を効果的に抑制ないしは防止することができる。 In particular, since it is a polyurethane resin layer containing a polyurethane resin, which is an organic substance, as a main component, it has excellent ink adhesion, so that it can exhibit excellent printability. In addition to this, since the flexibility of the polyurethane resin layer is relatively good, it is possible to follow the dimensional change of the polyamide film in, for example, a boiling or retort treatment step. Therefore, when processing such as molding (particularly cold molding) using the polyamide-based laminated film of the present invention, it is possible to effectively suppress or prevent the occurrence of delamination and the like.
 さらに、本発明のポリアミド系積層フィルムは、アルミニウム箔と積層し、冷間成形を行う際にも、アルミニウム箔との追従性が良好であるとともに、成形金型との摩擦が小さいことから、成形性に優れるがゆえに、デラミネーション又はピンホールを有しない成形体を得ることができる。 Further, the polyamide-based laminated film of the present invention is molded because it has good followability with the aluminum foil and has little friction with the molding die even when laminated with the aluminum foil and cold-molded. Due to its excellent properties, it is possible to obtain a molded product having no delamination or pinholes.
 本発明のポリアミド系積層フィルムの製造方法によれば、本発明のポリアミド系積層フィルムをより確実にかつ生産性良く得ることができる。 According to the method for producing a polyamide-based laminated film of the present invention, the polyamide-based laminated film of the present invention can be obtained more reliably and with good productivity.
本発明のポリアミド系積層フィルムの層構成例を示す図である。It is a figure which shows the layer structure example of the polyamide-based laminated film of this invention. 本発明のポリアミド系積層フィルムの実施形態を示す図である。It is a figure which shows the embodiment of the polyamide-based laminated film of this invention.
発明の実施の形態Embodiment of the invention
1.ポリアミド系積層フィルム
 本発明のポリアミド系積層フィルム(本発明フィルム)は、ポリアミドフィルムと、前記フィルムの少なくとも一方の表面上に積層されたポリウレタン樹脂及び有機滑剤を含有するポリウレタン樹脂層とを含む積層フィルムであって、
(1)前記ポリウレタン樹脂のガラス転移温度が50℃以上であり、
(2)前記ポリウレタン樹脂層表面の算術平均高さ(Ra)が0.010~0.060μmであり、かつ、前記ポリウレタン樹脂層表面の20℃×90%RH環境下での動摩擦係数が0.40以下である、
ことを特徴とする。
1. 1. Polyamide-based laminated film The polyamide-based laminated film of the present invention (the film of the present invention) is a laminated film containing a polyamide film and a polyurethane resin layer containing a polyurethane resin and an organic lubricant laminated on at least one surface of the film. And
(1) The glass transition temperature of the polyurethane resin is 50 ° C. or higher.
(2) The arithmetic mean height (Ra) of the surface of the polyurethane resin layer is 0.010 to 0.060 μm, and the coefficient of dynamic friction of the surface of the polyurethane resin layer under a 20 ° C. × 90% RH environment is 0. 40 or less,
It is characterized by that.
 A.本発明フィルムの層構成
 本発明フィルムは、上記のように、ポリアミドフィルムと、前記フィルムの少なくとも一方の表面上に積層されたポリウレタン樹脂及び有機滑剤を含有するポリウレタン樹脂層(以下、単に「ポリウレタン樹脂層」ともいう。)とを含む積層フィルムを基本構成とする。すなわち、接着剤層を介することなく、ポリアミドフィルムの片面又は両面に隣接するようにポリウレタン樹脂層が形成されている積層構造を基本構成とするものである。
A. Layer structure of the film of the present invention As described above, the film of the present invention is a polyurethane resin layer containing a polyamide film, a polyurethane resin laminated on at least one surface of the film, and an organic lubricant (hereinafter, simply "polyurethane resin"). The basic structure is a laminated film containing "layers"). That is, the basic configuration is a laminated structure in which a polyurethane resin layer is formed so as to be adjacent to one side or both sides of the polyamide film without using an adhesive layer.
 図1には、本発明フィルムの層構成例を示す。図1Aには、ポリアミドフィルム11の片面にポリウレタン樹脂層12が積層されている積層体(本発明フィルム)10を示す。図1Bには、ポリアミドフィルム11の両面にポリウレタン樹脂層12,12が積層されている積層体(本発明フィルム)10’を示す。これらの場合、いずれもポリウレタン樹脂層が最表面層(最外層)(外部に露出する層)として配置されている。このように、ポリウレタン樹脂層が最表面層として露出することで、例えばポリウレタン樹脂層を外側に向けた状態で本発明フィルムによる包装体(袋体等)を作製した場合、その包装体の内容物を外部から保護することができる。従って、本発明フィルムにおいては、おもて面及び裏面の少なくとも一方にポリウレタン樹脂層が最表面層(最外層)(外部に露出する層)として配置されていることが望ましい。 FIG. 1 shows an example of the layer structure of the film of the present invention. FIG. 1A shows a laminate (film of the present invention) 10 in which a polyurethane resin layer 12 is laminated on one side of a polyamide film 11. FIG. 1B shows a laminate (film of the present invention) 10'in which polyurethane resin layers 12 and 12 are laminated on both sides of the polyamide film 11. In each of these cases, the polyurethane resin layer is arranged as the outermost surface layer (outermost layer) (layer exposed to the outside). By exposing the polyurethane resin layer as the outermost surface layer in this way, for example, when a package (bag body or the like) made of the film of the present invention is produced with the polyurethane resin layer facing outward, the contents of the package. Can be protected from the outside. Therefore, in the film of the present invention, it is desirable that the polyurethane resin layer is arranged as the outermost surface layer (outermost layer) (layer exposed to the outside) on at least one of the front surface and the back surface.
 本発明フィルムでは、上記のようにポリアミドフィルム表面上に前記ポリウレタン樹脂層が直接に形成され、なおかつ、少なくとも1つのポリウレタン樹脂層が最表面層として配置されている限り、必要に応じて、他の層がさらに積層されていても良い。例えば、バリア層(ガスバリア層、水蒸気バリア層等)、印刷層、接着剤層、熱融着層(シーラント層、ヒートシール層)、プライマー層(アンカーコート層)、帯電防止層、蒸着層、紫外線吸収層、紫外線遮断層等が挙げられる。 In the film of the present invention, as long as the polyurethane resin layer is directly formed on the surface of the polyamide film as described above and at least one polyurethane resin layer is arranged as the outermost surface layer, other films are required. The layers may be further laminated. For example, barrier layer (gas barrier layer, water vapor barrier layer, etc.), printing layer, adhesive layer, heat fusion layer (sealant layer, heat seal layer), primer layer (anchor coat layer), antistatic layer, vapor deposition layer, ultraviolet rays. Examples include an absorption layer and an ultraviolet blocking layer.
 図2には、ポリアミドフィルム及びポリウレタン樹脂層のほかに、他の任意的な層がさらに積層されたポリアミド系積層フィルムの層構成例を示す。 FIG. 2 shows a layer configuration example of a polyamide-based laminated film in which other optional layers are further laminated in addition to the polyamide film and the polyurethane resin layer.
 図2Aには、図1Aの積層体10の片面にさらにバリア層13、熱融着層14が順に積層されてなる積層体20を示す。この積層体20は、ポリアミドフィルム11においてポリウレタン樹脂層12が形成されていない面にバリア層13、熱融着層14が積層されているため、ポリウレタン樹脂層12が最表面層として露出した状態が維持されている。 FIG. 2A shows a laminated body 20 in which a barrier layer 13 and a heat fusion layer 14 are further laminated on one side of the laminated body 10 of FIG. 1A. In this laminate 20, the barrier layer 13 and the heat-sealing layer 14 are laminated on the surface of the polyamide film 11 on which the polyurethane resin layer 12 is not formed, so that the polyurethane resin layer 12 is exposed as the outermost surface layer. It is maintained.
 図2Bには、図1Bの積層体10’の片面にさらにバリア層13、熱融着層14が順に積層されてなる積層体20’を示す。この積層体20’は、ポリアミドフィルム11のいずれか一方のポリウレタン樹脂層12上にバリア層13、熱融着層14が積層されており、他方のポリウレタン樹脂層12が最表面層として露出した状態が維持されている。 FIG. 2B shows a laminate 20'in which a barrier layer 13 and a heat fusion layer 14 are further laminated on one side of the laminate 10'of FIG. 1B. In this laminate 20', a barrier layer 13 and a heat-sealing layer 14 are laminated on one of the polyurethane resin layers 12 of the polyamide film 11, and the other polyurethane resin layer 12 is exposed as the outermost surface layer. Is maintained.
 また、図2A又は図2Bに示すように、本発明フィルムが熱融着層14を有する場合は、熱融着層14は最表面層として配置される。すなわち、本発明フィルムが熱融着層14を有する場合、一方の最表面層がポリウレタン樹脂層12であり、他方の最表面層が熱融着層14となる層構成を採用することが好ましい。 Further, as shown in FIG. 2A or FIG. 2B, when the film of the present invention has a heat-sealing layer 14, the heat-sealing layer 14 is arranged as the outermost surface layer. That is, when the film of the present invention has the heat-sealing layer 14, it is preferable to adopt a layer structure in which one outermost surface layer is the polyurethane resin layer 12 and the other outermost surface layer is the heat-sealing layer 14.
 以下においては、本発明フィルムを構成するポリアミドフィルム及びポリウレタン樹脂層に加え、任意的な層についてそれぞれ説明する。 In the following, in addition to the polyamide film and the polyurethane resin layer constituting the film of the present invention, arbitrary layers will be described respectively.
 A-1.ポリアミドフィルム
 ポリアミドフィルムは、本発明フィルムの基材(芯材)となるものであり、通常は予め成形されたフィルムの形態で提供される。ポリアミドフィルム自体は、公知又は市販のものを使用することができる。また、公知の製造方法によって製造されたフィルムを使用することもできる。
A-1. Polyamide film The polyamide film serves as a base material (core material) for the film of the present invention, and is usually provided in the form of a preformed film. As the polyamide film itself, a known or commercially available one can be used. Further, a film produced by a known production method can also be used.
 ポリアミドフィルムは、単層構造であっても良いし、2つ又はそれ以上のポリアミドフィルムが積層された多層構造であっても良い。また、多層構造である場合は、各層は互いに同じ組成であっても良いし、異なる組成であっても良い。 The polyamide film may have a single-layer structure, or may have a multilayer structure in which two or more polyamide films are laminated. Further, in the case of a multi-layer structure, each layer may have the same composition or different compositions.
 ポリアミドフィルムは、ポリアミド系樹脂が主成分となるものであるが、本発明の効果を妨げない範囲内において、他の成分が含まれていても良い。この場合、ポリアミドフィルム中におけるポリアミド系樹脂の含有割合は、限定的ではないが、通常は70~100質量%程度とし、特に90~99.5質量%とすることが好ましく、その中でも95~99質量%とすることがより好ましい。 The polyamide film is mainly composed of a polyamide resin, but other components may be contained as long as the effects of the present invention are not impaired. In this case, the content ratio of the polyamide resin in the polyamide film is not limited, but is usually about 70 to 100% by mass, particularly preferably 90 to 99.5% by mass, and among them, 95 to 99. It is more preferably mass%.
 ポリアミド系樹脂としては、その分子内にアミド結合(-CONH-)を有する溶融成形可能な熱可塑性樹脂であれば良く、公知又は市販のものを使用することができる。従って、例えばラクタム類、ω-アミノ酸類又は二塩基酸類とジアミンとの重縮合によって得られるポリアミドを挙げることができる。 The polyamide resin may be any melt-moldable thermoplastic resin having an amide bond (-CONH-) in its molecule, and known or commercially available ones can be used. Therefore, for example, a polyamide obtained by polycondensation of lactams, ω-amino acids or dibasic acids and a diamine can be mentioned.
 ラクタム類としては、例えばε-カプロラクタム、エナントラクタム、カプリルラクタム、ラウリルラクタム等を挙げることができる。 Examples of lactams include ε-caprolactam, enantractum, capril lactam, lauryl lactam and the like.
 ω-アミノ酸類としては、例えば6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸等を挙げることができる。 Examples of ω-amino acids include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid and the like.
 二塩基酸類としては、例えばアジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジオン酸、ドデカジオン酸、ヘキサデカジオン酸、エイコサンジオン酸、エイコサジエンジオン酸、2,2,4-トリメチルアジピン酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、キシリレンジカルボン酸等が挙げられる。 Examples of dibasic acids include adipic acid, glutaric acid, pimeric acid, suberic acid, azelaic acid, sebacic acid, undecandionic acid, dodecadioic acid, hexadecadioic acid, eikosandioic acid, eikosadiendioic acid, 2, Examples thereof include 2,4-trimethylazipic acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and xylylene dicarboxylic acid.
 ジアミン類としては、例えばエチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、2,2,4(又は2,4,4)-トリメチルヘキサメチレンジアミン、シクロヘキサンジアミン、ビス-(4,4′-アミノシクロヘキシル)メタン、メタキシリレンジアミン等を挙げることができる。 Examples of diamines include ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, 2,2,4 (or 2,4,4). Examples thereof include -trimethylhexamethylenediamine, cyclohexanediamine, bis- (4,4'-aminocyclohexyl) methane, and m-xylylenediamine.
 本発明では、これらの化合物(出発材料)は、環境保護等の見地より、バイオマス由来の化合物を使用することもできる。 In the present invention, as these compounds (starting materials), biomass-derived compounds can also be used from the viewpoint of environmental protection and the like.
 これらのモノマー成分を重縮合して得られる重合体又はこれらの共重合体として、例えばナイロン6、7、11、12、6.6、6.9、6.11、6.12、6T、9T、10T、6I、MXD6(ポリメタキシリレンアジパミド)、6/6.6、6/12、6/6T、6/6I、6/MXD6等を用いることができる。これらは1種又は2種以上で用いることができる。これらの中でも、ナイロン6、ナイロン6,6等の脂肪族ポリアミド樹脂が好ましく、その中でも耐熱性と機械特性とのバランスに優れるという点でナイロン6を含むことがより好ましい。 As a polymer obtained by polycondensing these monomer components or a copolymer thereof, for example, nylon 6, 7, 11, 12, 6.6, 6.9, 6.11, 6.12, 6T, 9T. , 10T, 6I, MXD6 (polymethylylene adipamide), 6 / 6.6, 6/12, 6 / 6T, 6 / 6I, 6 / MXD6 and the like can be used. These can be used alone or in combination of two or more. Among these, aliphatic polyamide resins such as nylon 6, nylon 6, 6 are preferable, and among them, nylon 6 is more preferably contained in that the balance between heat resistance and mechanical properties is excellent.
 また、ポリアミドフィルムに採用されるポリアミド系樹脂の相対粘度は、限定的ではないが、通常は1.5~5.0程度であることが好ましく、特に2.0~4.0であることがより好ましい。相対粘度が1.5未満であると、得られるフィルムの力学的特性が著しく低下しやすくなる。一方、相対粘度が5.0を超えると、フィルムの製膜性に支障をきたしやすくなる。なお、上記相対粘度は、ポリアミドを96%硫酸に濃度1.0g/dlとなるよう溶解させた試料溶液(液温25℃)をウベローデ型粘度計を用いて測定される値である。本発明では、最終的に得られる本発明フィルム中のポリアミドフィルムの相対粘度も、上記範囲内にあることが好ましい。 The relative viscosity of the polyamide resin used in the polyamide film is not limited, but is usually preferably about 1.5 to 5.0, and particularly preferably 2.0 to 4.0. More preferred. If the relative viscosity is less than 1.5, the mechanical properties of the resulting film are likely to be significantly reduced. On the other hand, if the relative viscosity exceeds 5.0, the film-forming property of the film tends to be hindered. The relative viscosity is a value measured by using a Ubbelohde viscometer in a sample solution (liquid temperature 25 ° C.) in which polyamide is dissolved in 96% sulfuric acid so as to have a concentration of 1.0 g / dl. In the present invention, the relative viscosity of the polyamide film in the finally obtained film of the present invention is also preferably within the above range.
 ポリアミドフィルムは、前記のように、ポリアミド系樹脂のほか、本発明の効果を妨げない範囲内で他の成分を含んでいても良い。他の成分としては、公知又は市販の添加剤を挙げることができる。より具体的には、金属(金属イオン)、顔料、熱安定剤、酸化防止剤、耐候剤、難燃剤、可塑剤、離形剤、強化剤(フィラー)等が例示される。特に、熱安定剤又は酸化防止剤としては、ヒンダードフェノール類、リン化合物、ヒンダードアミン類、硫黄化合物、銅化合物、アルカリ金属ハロゲン化物等を好適に用いることができる。 As described above, the polyamide film may contain other components in addition to the polyamide resin as long as the effects of the present invention are not impaired. Examples of other components include known or commercially available additives. More specifically, metals (metal ions), pigments, heat stabilizers, antioxidants, weather resistant agents, flame retardants, plasticizers, mold release agents, strengthening agents (fillers) and the like are exemplified. In particular, as the heat stabilizer or antioxidant, hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, alkali metal halides and the like can be preferably used.
 また、ポリアミドフィルム中には、必要に応じて滑剤が含まれていても良い。滑剤の具体例としては、クレー、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、珪酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸マグネシウム、ガラスバルーン、カーボンブラック、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイド、層状ケイ酸塩等の無機滑剤、エルカ酸アミド、オレイン酸アミド、ステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビススエチレンビスオレイン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスオレイン酸アミドメチレンビスステアリン酸アミド等の有機滑剤が挙げられる。これらは1種又は2種以上で用いることができる。 Further, the polyamide film may contain a lubricant if necessary. Specific examples of lubricants include clay, talc, calcium carbonate, zinc carbonate, wallastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, magnesium aluminosilicate, glass balloon, carbon black, and oxidation. Inorganic lubricants such as zinc, antimony trioxide, zeolite, hydrotalside, layered silicate, erucic acid amide, oleic acid amide, stearic acid amide, ethylene bisstearic acid amide, ethylene biss ethylene bisoleic acid amide, hexamethylene Examples thereof include organic lubricants such as bisstearic acid amide and hexamethylene bisoleic acid amide methylene bisstearic acid amide. These can be used alone or in combination of two or more.
 ポリアミドフィルムの厚みは、特に制限されないが、一般的には4~35μmであることが好ましく、特に5~25μmであることがより好ましい。厚みが4μm未満では機械的強度が不足しやすく、成形性が低下する。一方、厚みが35μmを超えると原料使用量の増加あるいは生産性の低下を招くおそれがある。 The thickness of the polyamide film is not particularly limited, but is generally preferably 4 to 35 μm, and more preferably 5 to 25 μm. If the thickness is less than 4 μm, the mechanical strength tends to be insufficient and the moldability is lowered. On the other hand, if the thickness exceeds 35 μm, the amount of raw materials used may increase or the productivity may decrease.
 また、ポリアミドフィルムは、機械的強度の観点から、延伸されたものであることが好ましい。すなわち、配向性を有する構造をとることが好ましい。この場合、一軸延伸又は二軸延伸のいずれであっても良いが、特に二軸延伸による配向性を有することが好ましい。延伸倍率は、後記で示すような範囲内で適宜設定することができる。 Further, the polyamide film is preferably stretched from the viewpoint of mechanical strength. That is, it is preferable to have a structure having orientation. In this case, either uniaxial stretching or biaxial stretching may be used, but it is particularly preferable to have orientation due to biaxial stretching. The draw ratio can be appropriately set within the range shown later.
 ポリアミドフィルムは、積層体とした際の積層体を構成する各層間の密着力を向上させるため、少なくとも片面にコロナ処理、プラズマ処理、オゾン処理等の公知の表面処理が施されている表面を有することが好ましい。 The polyamide film has a surface that has been subjected to known surface treatments such as corona treatment, plasma treatment, ozone treatment, etc. on at least one side in order to improve the adhesion between each layer constituting the laminated body when formed into a laminated body. Is preferable.
 A-2.ポリウレタン樹脂層
 本発明フィルムを構成するポリウレタン樹脂層は、主として、滑り性と印刷適性とを発揮させるための層であって、ポリウレタン樹脂及び有機滑剤を含む。
A-2. Polyurethane resin layer The polyurethane resin layer constituting the film of the present invention is mainly a layer for exhibiting slipperiness and printability, and contains a polyurethane resin and an organic lubricant.
 ポリウレタン樹脂は、例えば多官能イソシアネートと水酸基含有化合物との反応により得られるポリマーである。より詳細には、トリレンジイソイアネート、ジフェニルメタンイソシアネート、ポリメチレンポリフェニレンポリイソシアネート等の芳香族ポリイソシアネート、又はヘキサメチレンジイソシアネート、キシレンイソシアネート等の脂肪族ポリイソシアネート等の多官能イソシアネートと、ポリエーテルポリオール、ポリエステルポリオール、ポリアクリレートポリオール、ポリカーボネートポリオール等の水酸基含有化合物との反応により得られるウレタン樹脂を例示することができる。これらのポリウレタン樹脂自体は、公知又は市販のものを使用することもできる。 The polyurethane resin is, for example, a polymer obtained by reacting a polyfunctional isocyanate with a hydroxyl group-containing compound. More specifically, aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane isocyanate and polymethylene polyphenylene polyisocyanate, or polyfunctional isocyanates such as aliphatic polyisocyanates such as hexamethylene diisocyanate and xylene isocyanate, and polyether polyols, A urethane resin obtained by reacting with a hydroxyl group-containing compound such as a polyester polyol, a polyacrylate polyol, or a polycarbonate polyol can be exemplified. As these polyurethane resins themselves, known or commercially available ones can be used.
 また、ポリウレタン樹脂は、本発明の効果を妨げない範囲内において、アニオン性官能基、カチオン性官能基、ノニオン性官能基等の各種の官能基が導入されていても良い。特に、塗工液の状態における分散性等の見地でアニオン性官能基が含まれることが好ましい。アニオン性官能基としては、例えばカルボキシル基、スルホン基等が挙げられる。 Further, in the polyurethane resin, various functional groups such as an anionic functional group, a cationic functional group and a nonionic functional group may be introduced as long as the effects of the present invention are not impaired. In particular, it is preferable that an anionic functional group is contained from the viewpoint of dispersibility in the state of the coating liquid. Examples of the anionic functional group include a carboxyl group and a sulfone group.
 ポリウレタン樹脂中にアニオン性官能基を導入する方法は、特に制限されず、例えばa)ポリオール成分としてアニオン性官能基を有するジオール等を用いる方法、b)鎖伸張剤としてアニオン性官能基を有するジオール等を用いる方法等が挙げられる。ここに、アニオン性官能基を有するジオールとしては、例えばグリセリン酸、ジオキシマレイン酸、ジオキシフマル酸、酒石酸、ジメチロールプロピオン酸、ジメチロールブタン酸、2,2-ジメチロール吉草酸、2,2-ジメチロールペンタン酸、4,4-ジ(ヒドロキシフェニル)吉草酸、4,4-ジ(ヒドロキシフェニル)酪酸等の脂肪族カルボン酸のほか、2,6-ジオキシ安息香酸等の芳香族カルボン酸等が挙げられる。 The method for introducing an anionic functional group into the polyurethane resin is not particularly limited, and for example, a) a method using a diol having an anionic functional group as a polyol component, b) a diol having an anionic functional group as a chain extender. And the like. Examples of the diol having an anionic functional group include glyceric acid, dioxymaleic acid, dioxyfumaric acid, tartaric acid, dimethylol propionic acid, dimethylol butanoic acid, 2,2-dimethylol valeric acid, and 2,2-di. In addition to aliphatic carboxylic acids such as methylolpentanoic acid, 4,4-di (hydroxyphenyl) valeric acid, and 4,4-di (hydroxyphenyl) butyric acid, aromatic carboxylic acids such as 2,6-dioxybenzoic acid Can be mentioned.
 ポリウレタン樹脂層は、架橋構造を形成していることが好ましい。架橋構造は、a)ポリウレタン樹脂と反応し、架橋構造形成可能な架橋剤を添加することにより形成する方法、b)反応基を骨格中に含むポリウレタン樹脂を使用する方法等によって形成することができる。 The polyurethane resin layer preferably has a crosslinked structure. The crosslinked structure can be formed by a) a method of reacting with a polyurethane resin and adding a crosslinking agent capable of forming a crosslinked structure, b) a method of using a polyurethane resin containing a reactive group in the skeleton, or the like. ..
 上記の架橋剤としては、ポリウレタン樹脂末端基と反応できる架橋剤が好ましい。これにより、ポリウレタン樹脂の分子内の極性基を減らすことができることから、さらに滑り性を向上させることができる。架橋剤の具体例としては、例えばイソシアネート、オキサゾリン、カルボジイミド、メラミン樹脂等が挙げられる。この中でも、反応性、経済性等の観点からメラミン樹脂を用いることが好ましい。メラミン樹脂の代表的なものとして、トリ(アルコキシメチル)メラミンが挙げられる。前記アルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。これらメラミン樹脂は、1種又は2種以上を使用することができる。 As the above-mentioned cross-linking agent, a cross-linking agent capable of reacting with a polyurethane resin terminal group is preferable. As a result, the number of polar groups in the molecule of the polyurethane resin can be reduced, so that the slipperiness can be further improved. Specific examples of the cross-linking agent include isocyanate, oxazoline, carbodiimide, melamine resin and the like. Among these, it is preferable to use a melamine resin from the viewpoint of reactivity, economy and the like. A typical melamine resin is tri (alkoxymethyl) melamine. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like. One kind or two or more kinds of these melamine resins can be used.
 架橋剤を用いる場合の添加量は、用いる架橋剤の種類等によって適宜設定すれば良いが、通常はポリウレタン樹脂100質量部に対して1~10質量部の範囲内で設定することができる。 When a cross-linking agent is used, the amount to be added may be appropriately set depending on the type of the cross-linking agent used and the like, but usually it can be set within the range of 1 to 10 parts by mass with respect to 100 parts by mass of the polyurethane resin.
 ポリウレタン樹脂のガラス転移温度は、特に滑り性向上の観点から50℃以上であることが必要であり、特に70℃以上であることが好ましく、その中でも90℃以上であることがより好ましい。ガラス転移温度が50℃未満である場合、本発明で規定する動摩擦係数の範囲を超えることがあり、特に高湿度下での滑り性も低下する傾向にある。なお、ガラス転移温度の上限は、限定的ではないが、例えば150℃程度とすることができる。 The glass transition temperature of the polyurethane resin needs to be 50 ° C. or higher, particularly preferably 70 ° C. or higher, and more preferably 90 ° C. or higher, particularly from the viewpoint of improving slipperiness. When the glass transition temperature is less than 50 ° C., it may exceed the range of the dynamic friction coefficient specified in the present invention, and the slipperiness also tends to decrease particularly under high humidity. The upper limit of the glass transition temperature is not limited, but can be, for example, about 150 ° C.
 ポリウレタン樹脂層中におけるポリウレタン樹脂の含有量は、特に限定されないが、通常は50~98重量%程度(特に70~95重量%)とすることができるが、これに限定されない。 The content of the polyurethane resin in the polyurethane resin layer is not particularly limited, but is usually about 50 to 98% by weight (particularly 70 to 95% by weight), but is not limited thereto.
 有機滑剤は、本発明において、ガラス転移温度が50℃以上のポリウレタン樹脂と共存することにより、滑り性及び印刷適性という互いに相反する両特性を同時に高める機能を果たす。 In the present invention, the organic lubricant has a function of simultaneously enhancing both slipperiness and printability, which are contradictory to each other, by coexisting with a polyurethane resin having a glass transition temperature of 50 ° C. or higher.
 有機滑剤としては、特に限定されず、例えば炭化水素系、脂肪酸系、脂肪族ビスアミド系、金属石鹸系等の各種の有機化合物のほか、フェノール樹脂、メラミン樹脂、ポリメチルメタクリレート樹脂等の樹脂系の有機滑剤が挙げられる。 The organic lubricant is not particularly limited, and includes various organic compounds such as hydrocarbon-based, fatty acid-based, aliphatic bisamide-based, and metal soap-based, as well as resin-based lubricants such as phenol resin, melamine resin, and polymethylmethacrylate resin. Examples include organic lubricants.
 これらの有機滑剤の中でも、本発明では、特に融点が50~200℃の有機滑剤であることが好ましい。このような有機滑剤としては、特に限定されないが、ポリエチレンワックス、シリコン-アクリル共重合体、シリコン-ウレタン共重合体及び脂肪族アマイドの少なくとも1種を用いることが好ましい。これらの有機滑剤は、液状になり得るため、ポリウレタン樹脂層表面の平滑性を損なうことがない。また、ポリウレタン樹脂層へ添加するため、より少ない添加量で滑剤としての効果を得ることができることが可能であり、ブリードアウト量の制御もより容易となる。これらの有機滑剤は、市販品を用いることもできる。 Among these organic lubricants, in the present invention, an organic lubricant having a melting point of 50 to 200 ° C. is particularly preferable. The organic lubricant is not particularly limited, but it is preferable to use at least one of polyethylene wax, a silicon-acrylic copolymer, a silicon-urethane copolymer, and an aliphatic amide. Since these organic lubricants can be liquid, the smoothness of the surface of the polyurethane resin layer is not impaired. Further, since it is added to the polyurethane resin layer, it is possible to obtain the effect as a lubricant with a smaller addition amount, and it becomes easier to control the bleed-out amount. Commercially available products can also be used as these organic lubricants.
 ポリエチレンワックスは、滑り性の観点から高結晶性ポリエチレンを主成分とするものが好ましく、融点が90℃以上であるものが好ましく、特に100℃以上であることがより好ましく、その中でも120℃以上であることが最も好ましい。融点が90℃以上である限り、ポリエチレン単体でも良いし、ポリエチレン共重合体であっても良く、ポリエチレンとポリエチレン共重合体の混合物でも良い。なお、融点の上限は、例えば150℃程度とすることができる。 From the viewpoint of slipperiness, the polyethylene wax preferably contains high crystalline polyethylene as a main component, preferably has a melting point of 90 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. Most preferably. As long as the melting point is 90 ° C. or higher, polyethylene alone, a polyethylene copolymer, or a mixture of polyethylene and a polyethylene copolymer may be used. The upper limit of the melting point can be, for example, about 150 ° C.
 シリコン-アクリル共重合体及びシリコン-ウレタン共重合体は、主鎖に対してグラフト重合により側鎖を重合させていることが、ポリウレタン樹脂との相溶性の観点から好ましい。主鎖がシリコン成分であれば側鎖はアクリル又はウレタン成分であり、主鎖がアクリル又はウレタン成分であれば側鎖はシリコン成分であることが好ましい。 For the silicon-acrylic copolymer and the silicon-urethane copolymer, it is preferable that the side chain is polymerized with respect to the main chain by graft polymerization from the viewpoint of compatibility with the polyurethane resin. If the main chain is a silicon component, the side chain is preferably an acrylic or urethane component, and if the main chain is an acrylic or urethane component, the side chain is preferably a silicon component.
 脂肪族アマイドは、炭素数がC8以上20以下であることが好ましく、特にC12以上C18以下であることが好ましく、その中でもC16以上C18以下であることがより好ましい。C20を超える場合は、印刷適性が低下するおそれがある。また、C8未満である場合は、滑り性の改良効果が十分ではないことがある。このような脂肪酸アマイドの具体例としては、ステアリン酸(C18)等の飽和脂肪酸のほか、オレイン酸(C18)等の不飽和脂肪酸のモノアミドが挙げられる。これらの中でも、ステアリン酸アミド及びエチレンビスステアリン酸アミドの少なくとも1種が水系塗工液との相性が良いために好ましい。 The aliphatic amide preferably has a carbon number of C8 or more and 20 or less, particularly preferably C12 or more and C18 or less, and more preferably C16 or more and C18 or less. If it exceeds C20, printability may decrease. If it is less than C8, the effect of improving slipperiness may not be sufficient. Specific examples of such fatty acid amide include saturated fatty acids such as stearic acid (C18) and monoamides of unsaturated fatty acids such as oleic acid (C18). Among these, at least one of stearic acid amide and ethylene bisstearic acid amide is preferable because it is compatible with the water-based coating liquid.
 有機滑剤は、ポリウレタン樹脂層中に含有されていれば良いが、特にポリウレタン樹脂層表面に偏在していても良い。有機滑剤がポリウレタン樹脂層表面に偏在する場合は、より少ない有機滑剤で滑りやすさを確実に付与することができる。 The organic lubricant may be contained in the polyurethane resin layer, but may be particularly unevenly distributed on the surface of the polyurethane resin layer. When the organic lubricant is unevenly distributed on the surface of the polyurethane resin layer, slipperiness can be reliably imparted with less organic lubricant.
 有機滑剤の含有量(固形分比)は、滑り性向上及び印刷適性向上の観点から、ポリウレタン樹脂100質量部に対して有機滑剤が5~30質量部であることが好ましく、特に10~30質量部であることがより好ましく、その中でも15~30質量部であることが最も好ましい。有機滑剤が0質量部を超えると、印刷適性が悪化することに加え、動摩擦係数の低下効果も小さくなる。有機滑剤が5質量部を下回ると、印刷適性は良好であるものの、動摩擦係数を低下させることが困難となる。 The content (solid content ratio) of the organic lubricant is preferably 5 to 30 parts by mass, particularly 10 to 30 parts by mass, based on 100 parts by mass of the polyurethane resin from the viewpoint of improving slipperiness and printability. It is more preferably parts, and most preferably 15 to 30 parts by mass. If the amount of the organic lubricant exceeds 0 parts by mass, the printability is deteriorated and the effect of lowering the dynamic friction coefficient is also reduced. When the amount of the organic lubricant is less than 5 parts by mass, the printability is good, but it becomes difficult to reduce the dynamic friction coefficient.
 ポリウレタン樹脂層中には、その特性を大きく損なわない限りにおいて、必要に応じて、有機滑剤以外の添加剤が含まれていても良い。例えば、界面活性剤、消泡剤、熱安定剤、酸化防止剤、強化材、顔料、劣化防止剤、耐候剤、難燃剤、可塑剤、離型剤等の添加剤を含有しても良い。 The polyurethane resin layer may contain additives other than the organic lubricant, if necessary, as long as its properties are not significantly impaired. For example, additives such as surfactants, defoamers, heat stabilizers, antioxidants, reinforcing materials, pigments, deterioration inhibitors, weather resistant agents, flame retardants, plasticizers, and mold release agents may be contained.
 ポリウレタン樹脂層の厚みは、特に限定されるものではないが、通常0.005~0.150μmであることが好ましく、特に0.010~0.150μmであることがより好ましく、その中でも0.020~0.100μmであることが最も好ましい。ポリウレタン樹脂層の厚みが0.005μm未満であると、ポリアミドフィルム上に均一な膜厚のポリウレタン樹脂層を形成することが困難となるため、十分な滑り性を得ることが困難となる。一方、ポリウレタン樹脂層の厚みが0.150μmを超えると、ポリウレタン樹脂層の滑り性向上効果は飽和し、経済的に不利となる。 The thickness of the polyurethane resin layer is not particularly limited, but is usually preferably 0.005 to 0.150 μm, more preferably 0.010 to 0.150 μm, and 0.020 among them. Most preferably, it is ~ 0.100 μm. If the thickness of the polyurethane resin layer is less than 0.005 μm, it becomes difficult to form a polyurethane resin layer having a uniform film thickness on the polyamide film, and thus it becomes difficult to obtain sufficient slipperiness. On the other hand, if the thickness of the polyurethane resin layer exceeds 0.150 μm, the slipperiness improving effect of the polyurethane resin layer is saturated, which is economically disadvantageous.
 A-3.その他の層
 前記のように、本発明フィルムは、ポリアミドフィルム及びポリウレタン樹脂層のほかにも、必要に応じて各種の層を積層することができる。すなわち、本発明のポリアミド系積層フィルムは、ポリアミドフィルム及びポリウレタン樹脂層という基本構成を含み、かつ、他の層が積層されている積層体も包含する。従って、本明細書においては、前記基本構成(前記の積層フィルム)に加えて他の層が積層されている積層体を「積層体」ともいう。
A-3. Other Layers As described above, the film of the present invention can be laminated with various layers as needed, in addition to the polyamide film and the polyurethane resin layer. That is, the polyamide-based laminated film of the present invention includes a laminated body including a basic structure of a polyamide film and a polyurethane resin layer, and in which other layers are laminated. Therefore, in the present specification, a laminated body in which other layers are laminated in addition to the basic configuration (the laminated film) is also referred to as a “laminated body”.
 このような積層体は、例えば食品包装用、電池包装用(外装材)等の包装用積層体として好適に用いることができる。また、本発明フィルムは、冷間成形用積層体として冷間成形(例えば成形温度50℃以下)にも適しているので、本発明フィルムを冷間成形する工程を含む成形体の製造方法にも適用可能である。このように、本発明においては、特に食品包装用又は冷間成形用として用いられるポリアミド系積層フィルムを包含する。 Such a laminate can be suitably used as a packaging laminate for, for example, food packaging, battery packaging (exterior material), and the like. Further, since the film of the present invention is also suitable for cold molding (for example, molding temperature of 50 ° C. or lower) as a laminate for cold molding, it can also be used in a method for producing a molded product including a step of cold molding the film of the present invention. Applicable. As described above, the present invention includes a polyamide-based laminated film particularly used for food packaging or cold molding.
 上記の基本構成以外の層としては、公知の包装材料等で採用されているものと同様のものを使用することもできる。例えば、バリア層、プライマー層、熱融着層、接着剤層、クリア層、印刷層等を挙げることができる。これらは、公知の積層体と同様のものを採用できるが、このうちバリア層及び熱融着層は、以下のように設定することが望ましい。 As the layer other than the above basic composition, the same layer as that used for known packaging materials or the like can be used. For example, a barrier layer, a primer layer, a heat-sealing layer, an adhesive layer, a clear layer, a printing layer and the like can be mentioned. As these, the same ones as the known laminates can be adopted, but it is desirable to set the barrier layer and the heat-sealing layer as follows.
 バリア層としては、バリア性(ガスバリア性、特に酸素バリア性等)に優れた性能を有するものであり、例えば公知の金属箔、金属蒸着フィルム、透明蒸着フィルム等の無機系バリア層、ポリビニルアルコール、エチレン-ビニルアルコール共重合体等の有機系コート層の各種バリアフィルム等が挙げられる。この中でも、汎用性という点でアルミニウム箔、銅箔等の金属箔が好ましく、特にアルミニウム箔がより好ましい。 The barrier layer has excellent barrier properties (gas barrier properties, especially oxygen barrier properties, etc.), and includes, for example, known metal foils, metal vapor-deposited films, transparent vapor-deposited films, and other inorganic barrier layers, polyvinyl alcohol, and the like. Examples thereof include various barrier films of an organic coat layer such as an ethylene-vinyl alcohol copolymer. Among these, metal foils such as aluminum foils and copper foils are preferable from the viewpoint of versatility, and aluminum foils are particularly preferable.
 バリア層として金属箔を用いる場合、金属箔の厚みは、特に限定されないが、通常は5~200μm程度とし、特に5~150μmであることがより好ましく、その中でも7~50μmであることが最も好ましい。 When a metal foil is used as the barrier layer, the thickness of the metal foil is not particularly limited, but is usually about 5 to 200 μm, more preferably 5 to 150 μm, and most preferably 7 to 50 μm. ..
 また、金属箔の片方又は両方の面に接着性、腐食耐性等を高めるための表面処理を施しても良い。表面処理としては、例えば化成処理、クロメート処理等が挙げられる。特にこれら表面処理は、熱融着層に接する側の面に施されていることが好ましい。 Further, one or both surfaces of the metal foil may be surface-treated to enhance adhesiveness, corrosion resistance, and the like. Examples of the surface treatment include chemical conversion treatment and chromate treatment. In particular, these surface treatments are preferably applied to the surface on the side in contact with the heat fusion layer.
 熱融着層は、ヒートシール可能な層であれば特に限定されず、公知のものを用いることができ、例えば、ポリ塩化ビニルフィルム、ポリオレフィンフィルム等が挙げられる。ポリオレフィンとしては、ポリエチレン、ポリプロピレン、ポリエチレンのほか、ポリプロピレンを主成分とした共重合体、これらの酸変性物が挙げられる。熱融着層は、延伸フィルム又は無延伸フィルムのいずれも使用でき、溶融させた樹脂を直接積層しても良い。 The heat-sealing layer is not particularly limited as long as it can be heat-sealed, and known ones can be used, and examples thereof include a polyvinyl chloride film and a polyolefin film. Examples of polyolefins include polyethylene, polypropylene, polyethylene, copolymers containing polypropylene as a main component, and acid-modified products thereof. As the heat-sealing layer, either a stretched film or a non-stretched film can be used, and the molten resin may be directly laminated.
 熱融着層の厚みは、特に限定されないが、通常20~200μmであることが好ましく、特に30~100μmであることがより好ましい。 The thickness of the heat-sealing layer is not particularly limited, but is usually preferably 20 to 200 μm, and more preferably 30 to 100 μm.
 また、これらのを積層する場合、例えば公知の接着剤等を使用して積層することも可能であるが、これに限定されない。 Further, when laminating these, for example, it is possible, but not limited to, laminating using a known adhesive or the like.
 本発明において、ポリアミドフィルムと金属箔とを接着する方法としては、例えば2液タイプのウレタン系接着剤を用いてドライラミネート、熱ラミネート等を好適に採用することができる。 In the present invention, as a method for adhering the polyamide film and the metal foil, for example, a dry laminate, a thermal laminate, or the like using a two-component type urethane adhesive can be preferably adopted.
 また、金属箔と熱融着層とを接着する方法としては、例えばドライラミネート、熱ラミネート、押出しラミネート、サンドイッチラミネート法等を好適に用いることができる。 Further, as a method for adhering the metal foil and the heat-sealing layer, for example, a dry laminate, a heat laminate, an extrusion laminate, a sandwich laminate method and the like can be preferably used.
 上記接着剤層が形成されるフィルム、金属箔、熱融着層の表面には、本発明の効果を損なわない限りにおいて、必要に応じてアンカーコート層、プライマー層等が予め設けられていても良い。 An anchor coat layer, a primer layer, or the like may be provided in advance on the surface of the film, metal foil, or heat-sealing layer on which the adhesive layer is formed, as long as the effects of the present invention are not impaired. good.
 本発明において、他の層を積層した場合、特にポリウレタン樹脂層を最表層に配置することによって、滑り性及び印刷適性に優れることから、食品、電子・電気部品等の包装用途をはじめとして、各種の工業用途にも好適に用いることが可能である。 In the present invention, when other layers are laminated, particularly by arranging the polyurethane resin layer on the outermost layer, slipperiness and printability are excellent. Therefore, various applications such as packaging for foods, electronic and electrical parts, etc. It can also be suitably used for industrial applications.
 本発明フィルムとして、図2A又は図2Bに示すように、例えばポリウレタン樹脂層12/ポリアミドフィルム11/金属箔13/熱融着層14を含む積層体、ポリウレタン樹脂層12/ポリアミドフィルム11/ポリウレタン樹脂層12/金属箔13/熱融着層14を含む積層体等は、例えば電池の外装材等をはじめとする包装材料として有効である。 As the film of the present invention, as shown in FIG. 2A or FIG. 2B, for example, a laminate including a polyurethane resin layer 12 / polyamide film 11 / metal foil 13 / heat-sealing layer 14, polyurethane resin layer 12 / polyamide film 11 / polyurethane resin. A laminate or the like containing the layer 12 / metal foil 13 / heat-sealing layer 14 is effective as a packaging material such as an exterior material for a battery.
 B.本発明フィルムの特性
 本発明フィルムの厚みは、特に限定されず、例えば用途、使用方法等によって適宜設定することができる。例えば、本発明フィルムを電池の外装材として用いる場合は、図1の積層体10又は10’における厚みとして、例えば10~25μm程度の範囲とすることができ、また例えば15~25μmの範囲とすることもできるが、これに限定されない。
B. Characteristics of the film of the present invention The thickness of the film of the present invention is not particularly limited and can be appropriately set depending on, for example, the intended use and method of use. For example, when the film of the present invention is used as an exterior material of a battery, the thickness of the laminate 10 or 10'in FIG. 1 can be, for example, in the range of about 10 to 25 μm, or in the range of, for example, 15 to 25 μm. It can, but is not limited to this.
 本発明フィルムは、ポリウレタン樹脂層表面の20℃×90%RH環境下での動摩擦係数が通常0.40以下であり、好ましくは0.35以下であり、より好ましくは0.30以下である。なお、本発明フィルムにおいて、20℃×90%RH環境下での動摩擦係数の下限値は、特に限定されないが、通常は0.20程度である。20℃×90%RH環境下での動摩擦係数が0.40以下であれば、高湿度下においても優れた加工性及び印刷適性をより確実に得ることができる。 The film of the present invention has a dynamic friction coefficient of the surface of the polyurethane resin layer under a 20 ° C. × 90% RH environment of usually 0.40 or less, preferably 0.35 or less, and more preferably 0.30 or less. In the film of the present invention, the lower limit of the dynamic friction coefficient in an environment of 20 ° C. × 90% RH is not particularly limited, but is usually about 0.20. When the coefficient of kinetic friction in an environment of 20 ° C. × 90% RH is 0.40 or less, excellent workability and printability can be obtained more reliably even in high humidity.
 さらに、本発明フィルムは、成形性、印刷適性向上等の観点から、ポリウレタン樹脂層表面の23℃×50%RH環境下での動摩擦係数が通常0.30以下であり、好ましくは0.25以下であり、より好ましくは0.20以下である。なお、23℃×50%RH環境下での動摩擦係数の下限値は、特に限定されないが、通常は0.10程度である。 Further, the film of the present invention has a dynamic friction coefficient of the surface of the polyurethane resin layer under a 23 ° C. × 50% RH environment of usually 0.30 or less, preferably 0.25 or less, from the viewpoint of improving moldability and printability. It is more preferably 0.20 or less. The lower limit of the dynamic friction coefficient in an environment of 23 ° C. × 50% RH is not particularly limited, but is usually about 0.10.
 また、本発明フィルムは、ポリウレタン樹脂層表面の二次元表面粗さ測定から算出される算術平均高さ(Ra)は、通常0.010~0.060μmである必要があり、特に0.010~0.055μmであることが好ましく、さらに0.020~0.050μmであることがより好ましく、その中でも0.010~0.040μmであることが最も好ましい。前記Raが0.060μmを超えると、樹脂層表面の凹凸が大きくなるため、印刷抜けが発生する可能性があり、高精細な印刷を施すことが難しくなる。 Further, in the film of the present invention, the arithmetic mean height (Ra) calculated from the measurement of the two-dimensional surface roughness of the surface of the polyurethane resin layer needs to be usually 0.010 to 0.060 μm, particularly 0.010 to 0.060 μm. It is preferably 0.055 μm, more preferably 0.020 to 0.050 μm, and most preferably 0.010 to 0.040 μm. If the Ra exceeds 0.060 μm, the unevenness of the surface of the resin layer becomes large, so that printing omission may occur, and it becomes difficult to perform high-definition printing.
 さらに、本発明フィルムのポリウレタン樹脂層表面における水の接触角は、滑り性又は印刷適性向上の観点から82°~98°であることが好ましく、特に86°~98°であることがより好ましく、その中でも90°~98°であることが最も好ましい。接触角が82°未満では摩擦抵抗が大きくなるため、滑り性が低下することがある。また、接触角が98°を超えるとインキ密着性の低下により印刷適性が低下するおそれがある。さらに本発明フィルムのポリウレタン樹脂層表面は凹凸が少ないため、接触角測定値のバラツキを抑制することができる。 Further, the contact angle of water on the surface of the polyurethane resin layer of the film of the present invention is preferably 82 ° to 98 °, more preferably 86 ° to 98 °, from the viewpoint of improving slipperiness or printability. Among them, 90 ° to 98 ° is most preferable. If the contact angle is less than 82 °, the frictional resistance becomes large and the slipperiness may decrease. Further, if the contact angle exceeds 98 °, the printability may be lowered due to the deterioration of the ink adhesion. Further, since the surface of the polyurethane resin layer of the film of the present invention has few irregularities, it is possible to suppress variations in the measured contact angle values.
2.ポリアミド系積層フィルムの製造
 本発明フィルムは、例えばポリアミドフィルムと、前記フィルムの少なくとも一方の表面上に積層されたポリウレタン樹脂及び有機滑剤を含有するポリウレタン樹脂層とを含むポリアミド系積層フィルムを製造する方法であって、
(1)ポリアミド樹脂を含む溶融混練物をシート状に成形することにより未延伸シートを得るシート成形工程、
(2)前記未延伸シートをMD延伸及びTD延伸することによって二軸延伸フィルムを得る延伸工程、及び
(3)前記の未延伸シート、MD延伸フィルム、TD延伸フィルム又は二軸延伸フィルムのいずれか一方の表面上に、ポリウレタン樹脂及び有機滑剤を含む水系塗工液を塗布するコーティング工程
を含む、ことを特徴とするポリアミド系積層フィルムの製造方法によって好適に製造することができる。
2. Production of Polyamide-based Laminated Film The film of the present invention is a method for producing a polyamide-based laminated film containing, for example, a polyamide film and a polyurethane resin layer containing a polyurethane resin and an organic lubricant laminated on at least one surface of the film. And
(1) A sheet molding step of obtaining an unstretched sheet by molding a melt-kneaded product containing a polyamide resin into a sheet.
(2) A stretching step of obtaining a biaxially stretched film by MD stretching and TD stretching of the unstretched sheet, and (3) any one of the unstretched sheet, MD stretched film, TD stretched film or biaxially stretched film. It can be suitably produced by a method for producing a polyamide-based laminated film, which comprises a coating step of applying a water-based coating liquid containing a polyurethane resin and an organic lubricant on one surface.
 シート成形工程
 シート成形工程では、ポリアミド樹脂を含む溶融混練物をシート状に成形することにより未延伸シートを得る。
Sheet molding step In the sheet molding step, an unstretched sheet is obtained by molding a melt-kneaded product containing a polyamide resin into a sheet.
 未延伸シートは、ポリアミド系樹脂を含む溶融混練物をフィルム状に成形することにより得ることができる。溶融混練物の調製自体は、公知の方法に従って実施すれば良い。例えば、ポリアミド系樹脂を含む樹脂組成物を溶融することにより得られる溶融混練物をフィルム状(シート状)に成形することによって製造することができる。これは、公知又は市販の装置を使用することにより実施することが可能である。例えば、Tダイを有する溶融押出機を使用することができる。すなわち、まずホッパーに出発材料(例えばペレット状原料)を供給し、溶融押出機で可塑化溶融し、溶融混練物を押出機の先端に取り付けられたTダイよりシート状に押し出し、キャストロールで冷却固化する。このとき、空気により溶融混練物をキャストロールに押し付けて未延伸シートを得ることができる。 The unstretched sheet can be obtained by molding a melt-kneaded product containing a polyamide resin into a film. The preparation of the melt-kneaded product itself may be carried out according to a known method. For example, it can be produced by molding a melt-kneaded product obtained by melting a resin composition containing a polyamide-based resin into a film shape (sheet shape). This can be done by using a known or commercially available device. For example, a melt extruder with a T-die can be used. That is, first, the starting material (for example, pellet-shaped raw material) is supplied to the hopper, plasticized and melted by a melt extruder, and the melt-kneaded product is extruded into a sheet from a T-die attached to the tip of the extruder and cooled by a cast roll. Solidify. At this time, the melt-kneaded product can be pressed against the cast roll by air to obtain an unstretched sheet.
 上記の樹脂組成物には、ポリアミド系樹脂のほか、必要に応じて各種の添加剤を配合することができる。添加剤としては、ポリアミドフィルムに添加される添加剤を挙げることができる。 In addition to the polyamide resin, various additives can be added to the above resin composition as needed. Examples of the additive include an additive added to the polyamide film.
 この場合の未延伸シートの平均厚みは、特に限定されないが、一般的には15~250μm程度とし、特に50~235μmとすることが好ましい。このような範囲内に設定することによって、より効率的に延伸工程を実施することができる。 The average thickness of the unstretched sheet in this case is not particularly limited, but is generally about 15 to 250 μm, and particularly preferably 50 to 235 μm. By setting within such a range, the stretching step can be carried out more efficiently.
 延伸工程
 延伸工程では、前記未延伸シートをMD延伸及びTD延伸することによって二軸延伸フィルムを得る。
Stretching Step In the stretching step, the unstretched sheet is MD-stretched and TD-stretched to obtain a biaxially stretched film.
 延伸工程に先立って、未延伸シート又は一軸延伸フィルムを予熱することが好ましい。予熱温度は、限定的ではないが、延伸温度の±50℃以内に設定することが好ましい。予熱することによって、物理的特性が良好な二軸延伸フィルムをより確実に得ることができる。予熱時間は、予熱温度等にもよるが、通常は0.5~5秒間程度とすることが好ましい。 It is preferable to preheat the unstretched sheet or the uniaxially stretched film prior to the stretching step. The preheating temperature is not limited, but is preferably set within ± 50 ° C. of the stretching temperature. By preheating, a biaxially stretched film having good physical properties can be obtained more reliably. The preheating time depends on the preheating temperature and the like, but is usually preferably about 0.5 to 5 seconds.
 予熱する方法は、特に限定されない。例えば、延伸機の予熱ゾーンを走行するフィルムに吹き付ける熱風の温度を上記の温度範囲に設定することによって実施する方法を好適に採用することができる。 The method of preheating is not particularly limited. For example, a method of setting the temperature of the hot air blown on the film traveling in the preheating zone of the stretching machine to the above temperature range can be preferably adopted.
 また、延伸温度を上記の温度にする方法は、限定的ではないが、延伸機の延伸ゾーンを走行するフィルムに吹き付ける熱風の温度を上記の温度範囲に設定することによって行うことが好ましい。この場合、ポリアミドフィルムが延伸ゾーンを走行する時間は、通常0.5~5秒間程度とすることが好ましい。 Further, the method of setting the stretching temperature to the above temperature is not limited, but it is preferable to set the temperature of the hot air blown to the film traveling in the stretching zone of the stretching machine to the above temperature range. In this case, the time for the polyamide film to travel in the stretch zone is usually preferably about 0.5 to 5 seconds.
 延伸方法としては、最終的に二軸延伸された本発明フィルムを得る場合、同時二軸延伸法又は逐次二軸延伸法を採用することができる。また、延伸装置による分類としては、例えばチューブラー法、テンター法等があり、いずれも適用可能である。本発明では、特に品質安定性及び寸法安定性の面でテンター法による延伸法が好ましい。従って、テンター式同時二軸延伸法又はテンター式逐次二軸延伸法を好適に採用することができる。テンター式二軸延伸法は、例えばパンタグラフ方式テンター、スクリュー方式テンター、リニアモーター方式テンター等が挙げられる。 As the stretching method, when the film of the present invention is finally obtained by biaxial stretching, a simultaneous biaxial stretching method or a sequential biaxial stretching method can be adopted. Further, as the classification by the stretching device, for example, there are a tubular method, a tenter method and the like, and any of them can be applied. In the present invention, the stretching method by the tenter method is particularly preferable in terms of quality stability and dimensional stability. Therefore, the tenter type simultaneous biaxial stretching method or the tenter type sequential biaxial stretching method can be preferably adopted. Examples of the tenter type biaxial stretching method include a pantograph type tenter, a screw type tenter, and a linear motor type tenter.
 なお、延伸方法として同時二軸延伸法を採用する場合には、未延伸シートにウレタン樹脂及び有機滑剤を含む水系塗工液を塗布した後、同時にMD方向とTD方向に二軸延伸することによって、所定の二軸延伸ポリアミドフィルム上にウレタン樹脂層が形成された本発明フィルムを得ることができる。 When the simultaneous biaxial stretching method is adopted as the stretching method, an unstretched sheet is coated with a water-based coating liquid containing a urethane resin and an organic lubricant, and then biaxially stretched in the MD direction and the TD direction at the same time. , The film of the present invention in which a urethane resin layer is formed on a predetermined biaxially stretched polyamide film can be obtained.
 また、逐次二軸延伸法を採用する場合は、予めMD方向又はTD方向に一軸延伸されたフィルムにウレタン樹脂及び有機滑剤を含む水系塗工液を塗布した後、その一軸延伸方向と略直交する方向(TD方向又はMD方向)に延伸することによって、所定の二軸延伸ポリアミドフィルム上にウレタン樹脂層が形成された本発明フィルムを得ることができる。 When the sequential biaxial stretching method is adopted, a water-based coating liquid containing a urethane resin and an organic lubricant is previously applied to a film uniaxially stretched in the MD direction or the TD direction, and then substantially orthogonal to the uniaxial stretching direction. By stretching in the direction (TD direction or MD direction), the film of the present invention in which a urethane resin layer is formed on a predetermined biaxially stretched polyamide film can be obtained.
 延伸倍率は、特に限定されないが、通常はMD方向とTD方向にそれぞれ2.0~4.5倍程度に延伸すれば良い。この場合、MD方向とTD方向の延伸倍率は、互いに同じでも良いし、互いに異なっていても良い。このような延伸によって引張強度、引張伸度等の物理的特性が良好な延伸フィルムを得ることができる。 The stretching ratio is not particularly limited, but usually it may be stretched to about 2.0 to 4.5 times in the MD direction and the TD direction, respectively. In this case, the draw ratios in the MD direction and the TD direction may be the same or different from each other. By such stretching, a stretched film having good physical properties such as tensile strength and tensile elongation can be obtained.
 本発明のポリアミド系積層フィルムは、ポリウレタン樹脂層の算術平均高さ(Ra)を本発明で規定する範囲とするために、下記(a)及び(b)の条件を同時に満たすことが必要である。下記(a)及び(b)の数式において、XはMD方向の延伸倍率を示し、YはTD方向の延伸倍率を示す。また、X/Yは、MD延伸倍率(X)と、TD延伸倍率(Y)との延伸倍率比を示す。X×Yは、面倍率を示す。 The polyamide-based laminated film of the present invention needs to satisfy the following conditions (a) and (b) at the same time in order to keep the arithmetic mean height (Ra) of the polyurethane resin layer within the range specified in the present invention. .. In the mathematical formulas (a) and (b) below, X indicates a stretching ratio in the MD direction, and Y indicates a stretching ratio in the TD direction. Further, X / Y indicates the draw ratio of the MD draw ratio (X) and the TD draw ratio (Y). X × Y indicates the surface magnification.
 同時二軸延伸を実施する場合は、特に
(a)0.80≦X/Y≦0.94
(b)9.8≦X×Y≦11.6
を満たすことが好ましい。
When performing simultaneous biaxial stretching, in particular (a) 0.80 ≦ X / Y ≦ 0.94
(B) 9.8 ≤ X x Y ≤ 11.6
It is preferable to satisfy.
 逐次二軸延伸を実施する場合は、特に
(a)0.85≦X/Y≦0.95
(b)8.5≦X×Y≦9.5
を満たすことが好ましい。
When sequentially biaxial stretching is carried out, in particular, (a) 0.85 ≦ X / Y ≦ 0.95
(B) 8.5 ≤ X x Y ≤ 9.5
It is preferable to satisfy.
 延伸温度は、限定的ではなく、例えば延伸方法、本発明フィルムの用途、使用形態等に応じて225℃以下(好ましくは40~220℃)の範囲内で適宜設定することができる。 The stretching temperature is not limited, and can be appropriately set within the range of 225 ° C. or lower (preferably 40 to 220 ° C.) depending on, for example, the stretching method, the application of the film of the present invention, the mode of use, and the like.
 延伸工程で延伸されたフィルムは、さらに熱処理することが好ましい。熱処理温度は、特に制限されないが、通常は190~220℃程度とすることが好ましく、特に195~215℃とすることがより好ましい。熱処理温度が190℃未満では、収縮率が大きいフィルムとなるため包装用ポリアミドフィルムとして好ましくない。また、有機滑剤、架橋剤等を添加した場合には、前者は十分にブリードアウトしないため、後者は架橋反応が十分に進行しないため、添加による効果が十分に得られないことがある。一方、熱処理温度が220℃を超えると、ポリアミドフィルムの強度が低下する。なお、上記熱処理で有機滑剤のブリードアウトあるいは架橋剤の架橋反応の進行が不十分な場合は、延伸完了後にエージング処理を施しても良い。また、熱処理の時間は、熱処理温度等に応じて適宜設定できるが、通常は1~15秒間程度とすることが好ましい。 It is preferable that the film stretched in the stretching step is further heat-treated. The heat treatment temperature is not particularly limited, but is usually preferably about 190 to 220 ° C, and more preferably 195 to 215 ° C. If the heat treatment temperature is less than 190 ° C., the film has a large shrinkage rate, which is not preferable as a polyamide film for packaging. Further, when an organic lubricant, a cross-linking agent or the like is added, the former does not bleed out sufficiently, and the latter does not sufficiently proceed with the cross-linking reaction, so that the effect of the addition may not be sufficiently obtained. On the other hand, when the heat treatment temperature exceeds 220 ° C., the strength of the polyamide film decreases. If the heat treatment does not sufficiently proceed with the bleed-out of the organic lubricant or the cross-linking reaction of the cross-linking agent, an aging treatment may be performed after the stretching is completed. The heat treatment time can be appropriately set according to the heat treatment temperature and the like, but is usually preferably about 1 to 15 seconds.
 熱処理方法としては、特に限定されず、例えば熱風を吹き付ける方法、赤外線を照射する方法、マイクロ波を照射する方法等を採用することができる。これらの中でも、均一に精度良く加熱することができるという見地より、熱風を吹き付ける方法が好ましい。例えば、延伸機の熱固定ゾーンを走行するフィルムに上記温度範囲に設定された熱風を吹き付けることによって熱固定処理を行うことができる。 The heat treatment method is not particularly limited, and for example, a method of blowing hot air, a method of irradiating infrared rays, a method of irradiating microwaves, and the like can be adopted. Among these, the method of blowing hot air is preferable from the viewpoint that the heating can be performed uniformly and accurately. For example, the heat fixing process can be performed by blowing hot air set in the above temperature range onto the film traveling in the heat fixing zone of the stretching machine.
 コーティング工程
 コーティング工程では、前記の未延伸シート、MD延伸フィルム、TD延伸フィルム又は二軸延伸フィルムのいずれか一方の表面上に、ポリウレタン樹脂及び有機滑剤を含む水系塗工液を塗布する。
Coating step In the coating step, a water-based coating liquid containing a polyurethane resin and an organic lubricant is applied on the surface of any one of the unstretched sheet, MD stretched film, TD stretched film and biaxially stretched film.
 水系塗工液の調製方法としては、ポリウレタン樹脂及び有機滑剤を水系媒体に溶解又は分散させることによって実施することができる。水系塗工液を用いることによって、所望の本発明フィルムが効率的に得られるほか、作業性、環境面等の点においても有利となる。 The method for preparing the water-based coating liquid can be carried out by dissolving or dispersing the polyurethane resin and the organic lubricant in the water-based medium. By using the water-based coating liquid, the desired film of the present invention can be efficiently obtained, and it is also advantageous in terms of workability, environment and the like.
 本発明において、水系媒体とは、水又は水を主成分とする混合溶媒(通常は水が50質量%以上の液体)である。前記混合溶媒としては、水と水溶性有機溶剤との混合溶媒を用いることができる。水溶性有機溶剤としては、限定的ではなく、例えばメタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン(MEK)等のケトン類等が例示される。水溶性有機溶剤は、1種又は2種以上で用いることができる。水溶性有機溶剤を混合させることによって、ポリアミドフィルムへの塗れ性を高めたり、乾燥工程を短縮させる等の効果を得ることができる。この点において、ポリウレタン樹脂等のほか、架橋剤等の添加剤を使用する場合も、これら添加剤は水系(水溶液又は水分散体(エマルション))であることが好ましい。 In the present invention, the aqueous medium is water or a mixed solvent containing water as a main component (usually, water is a liquid of 50% by mass or more). As the mixed solvent, a mixed solvent of water and a water-soluble organic solvent can be used. Examples of the water-soluble organic solvent include, but are not limited to, alcohols such as methanol, ethanol and isopropanol, and ketones such as acetone and methyl ethyl ketone (MEK). The water-soluble organic solvent can be used alone or in combination of two or more. By mixing the water-soluble organic solvent, it is possible to obtain effects such as improving the applicability to the polyamide film and shortening the drying process. In this respect, when additives such as a cross-linking agent are used in addition to polyurethane resin and the like, these additives are preferably water-based (aqueous solution or aqueous dispersion (emulsion)).
 水系塗工液の調製に際し、ポリウレタン樹脂、有機滑剤、水系媒体等の各成分の混合順序も限定されず、例えば予め調製されたポリウレタン樹脂の水分散液又は水溶液に有機滑剤を添加する方法によって好適に水系塗工液を調製することができる。以下、この方法を代表例として説明する。 When preparing the water-based coating liquid, the mixing order of each component such as polyurethane resin, organic lubricant, and water-based medium is not limited, and for example, a method of adding the organic lubricant to a pre-prepared aqueous dispersion or aqueous solution of polyurethane resin is suitable. A water-based coating solution can be prepared. Hereinafter, this method will be described as a typical example.
 水系塗工液に用いるポリウレタン樹脂としては、特に限定されないが、前記で示したように、アニオン性官能基が導入されたポリウレタン樹脂(アニオン型ポリウレタン樹脂)を用いることが好ましい。アニオン型ポリウレタン樹脂を用いることによって、より均一かつ安定的に水に分散させることができる。このように、本発明では、ポリウレタン樹脂は、水分散液の形態で用いて塗工液を調製することが好ましい。 The polyurethane resin used for the water-based coating liquid is not particularly limited, but as shown above, it is preferable to use a polyurethane resin (anionic polyurethane resin) into which an anionic functional group has been introduced. By using an anionic polyurethane resin, it can be more uniformly and stably dispersed in water. As described above, in the present invention, it is preferable to use the polyurethane resin in the form of an aqueous dispersion to prepare a coating liquid.
 さらに、アニオン型ポリウレタン樹脂を水系媒体に分散させる際には、一般的に揮発性塩基を用いることが好ましい。揮発性塩基は、特に限定的でなく、公知のものを使用することができる。より具体的には、アンモニア、メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリエチルアミン、モルホリン、エタノールアミン等が例示される。この中でも、トリエチルアミンは、水分散性ポリウレタン樹脂の液安定性が良好であり、さらに沸点が比較的低温であることからプライマー層への残留量が少ないという点でより好ましい。 Furthermore, when dispersing the anionic polyurethane resin in an aqueous medium, it is generally preferable to use a volatile base. The volatile base is not particularly limited, and known ones can be used. More specifically, ammonia, methylamine, ethylamine, dimethylamine, diethylamine, triethylamine, morpholine, ethanolamine and the like are exemplified. Among these, triethylamine is more preferable because it has good liquid stability of the water-dispersible polyurethane resin and has a relatively low boiling point, so that the amount remaining in the primer layer is small.
 このようなポリウレタン樹脂の水分散液そのものは、公知又は市販のものを使用することができる。市販品としては、例えばアニオン型水分散性ポリウレタン樹脂として、三井化学ポリウレタン社製の「タケラックW-5030」、「タケラックWS-4000」、「タケラックWS-4022」、DIC社製の「ハイドランAP40F」等を用いることができる。 As the aqueous dispersion of such a polyurethane resin, a known or commercially available one can be used. As commercially available products, for example, as anionic water-dispersible polyurethane resin, "Takelac W-5030", "Takelac WS-4000", "Takelac WS-4022" manufactured by Mitsui Chemicals Polyurethane, and "Hydran AP40F" manufactured by DIC Corporation. Etc. can be used.
 次に、ポリウレタン樹脂の水分散液に有機滑剤を添加・混合する。有機滑剤の種類、添加量等は、前記で示したものと同様にすれば良い。この場合、有機滑剤の形態は、溶媒(水又は溶剤)に分散させたものを用いても良いし、単体(粉末)で用いても構わない。特に、本発明では、有機滑剤を溶媒に分散させてなる分散液(例えば水分散液)の形態で用いることが好ましい。従って、水系塗工液が、ポリウレタン樹脂の分散液と、有機滑剤の分散液との混合液であることが望ましい。 Next, an organic lubricant is added and mixed with the aqueous dispersion of polyurethane resin. The type of organic lubricant, the amount of the organic lubricant added, and the like may be the same as those shown above. In this case, the form of the organic lubricant may be one dispersed in a solvent (water or a solvent), or may be used as a simple substance (powder). In particular, in the present invention, it is preferable to use it in the form of a dispersion liquid (for example, an aqueous dispersion liquid) in which an organic lubricant is dispersed in a solvent. Therefore, it is desirable that the water-based coating liquid is a mixed liquid of a dispersion liquid of a polyurethane resin and a dispersion liquid of an organic lubricant.
 この場合の分散液中における有機滑剤の粒子径は、特に限定されないが、通常は0.010μm~0.500μm程度であることが好ましく、特に0.010μm~0.400μmであることがより好ましく、さらに0.010μm~0.200μmであることが特に好ましく、その中でも0.010μm~0.100μmであることが最も好ましい。粒子径0.010μmよりも小さい場合はポリウレタン樹脂層に非常に細かく分散するため、印刷適性は向上するものの、動摩擦係数を低下させる効果が小さくなる。それに対して、粒子径0.500μmを超える場合は動摩擦係数を低下させる効果を得ることはできるものの、有機滑剤が凝集しやすくなるため、印刷適性が低下する。 The particle size of the organic lubricant in the dispersion in this case is not particularly limited, but is usually preferably about 0.010 μm to 0.500 μm, and more preferably 0.010 μm to 0.400 μm. Further, it is particularly preferably 0.010 μm to 0.200 μm, and most preferably 0.010 μm to 0.100 μm. When the particle size is smaller than 0.010 μm, the particles are dispersed very finely in the polyurethane resin layer, so that the printability is improved, but the effect of lowering the dynamic friction coefficient is reduced. On the other hand, when the particle size exceeds 0.500 μm, the effect of lowering the dynamic friction coefficient can be obtained, but the organic lubricant tends to aggregate, so that the printability is lowered.
 前記分散液中の有機滑剤の粒子径は、レーザー回折式粒子径分布測定装置(製品名「マスターサイザー3000」MalVern Instruments LTD製)を用い、Mie理論に基づくレーザー回折/散乱法(分散媒:水)により得られるメディアン径を示す。この場合、分散媒(水)の屈折率は1.330とした。また、有機滑剤の屈折率にはポリエチレンワックスは1.500、シリコンーアクリル共重合体は1.59、シリコンーウレタン共重合体は1.49、脂肪酸アマイドは1.46とした。 The particle size of the organic lubricant in the dispersion is determined by a laser diffraction / scattering method (dispersion medium: water) based on the Mie theory using a laser diffraction type particle size distribution measuring device (product name "Mastersizer 3000" manufactured by Malvern Instruments LTD). ) Indicates the median diameter obtained by. In this case, the refractive index of the dispersion medium (water) was set to 1.330. The refractive index of the organic lubricant was 1.500 for polyethylene wax, 1.59 for silicon-acrylic copolymer, 1.49 for silicon-urethane copolymer, and 1.46 for fatty acid amide.
 ポリウレタン樹脂と有機滑剤との混合は、有機滑剤が均一に分散させることができる限り、特に限定されず、公知又は市販のミキサー、ニーダー等の混合装置を用いて実施することができる。特に、本発明では、加熱を適宜行えることができ、撹拌機を備えた溶解釜等を用いて好適に実施することができる。混合温度は、特に限定されず、例えば5~40℃程度とすることができる。 The mixing of the polyurethane resin and the organic lubricant is not particularly limited as long as the organic lubricant can be uniformly dispersed, and can be carried out using a mixing device such as a known or commercially available mixer or kneader. In particular, in the present invention, heating can be appropriately performed, and it can be preferably carried out using a melting pot or the like equipped with a stirrer. The mixing temperature is not particularly limited and can be, for example, about 5 to 40 ° C.
 水系塗工液中には、ポリウレタン樹脂及び有機滑剤のほか、本発明の効果を損なわない範囲内で他の成分が含まれていても良い。例えば、前記で例示した各種の添加剤を配合することができる。 In addition to the polyurethane resin and organic lubricant, the water-based coating liquid may contain other components as long as the effects of the present invention are not impaired. For example, various additives exemplified above can be blended.
 上記添加剤として、本発明では、ポリアミドフィルムへの塗工性向上の目的で界面活性剤を加えることができる。界面活性剤としては、特に限定されないが、例えばポリエチレンアルキルフェニルエーテル、ポリオキシエチレン-脂肪酸エステル、グリセリン脂肪酸エステル、脂肪酸金属石鹸、アルキル硫酸塩、アルキルスルホン酸塩、アルキルスルホコハク酸塩等のアニオン型界面活性剤のほか、アセチレングリコール等のノニオン型界面活性剤を挙げることができる。 As the above additive, in the present invention, a surfactant can be added for the purpose of improving the coatability on the polyamide film. The surfactant is not particularly limited, but is an anionic surface such as polyethylene alkylphenyl ether, polyoxyethylene-fatty acid ester, glycerin fatty acid ester, fatty acid metal soap, alkyl sulfate, alkyl sulfonate, alkyl sulfosuccinate and the like. In addition to the activator, a nonionic surfactant such as acetylene glycol can be mentioned.
 界面活性剤の含有量は、特に限定されないが、一般的には水系塗工液中0.01~1質量%含まれていることが好ましい。また、ポリアミド系積層フィルムの製造工程における熱処理で揮発するものであることが好ましい。 The content of the surfactant is not particularly limited, but it is generally preferable that the surfactant content is 0.01 to 1% by mass in the water-based coating liquid. Further, it is preferable that the polyamide-based laminated film is volatilized by heat treatment in the manufacturing process.
 水系塗工液の固形分濃度は、例えば用いる塗工装置、乾燥・熱処理装置の仕様等によって適宜調整することができる。ただし、あまりに希薄なコート液は、乾燥工程において、長時間を要するという問題、乾燥後のコート厚みが薄くなりすぎるため、均一なコーティングを形成することができず、欠点発生のリスクが上昇するという問題が生じやすい。一方、濃度が高すぎる水系塗工液は、塗布面が均一になりにくく、塗工性に問題を生じやすい。従って、このような観点から水系塗工液の固形分濃度は、一般的には5~70質量%程度とすることが好ましい。 The solid content concentration of the water-based coating liquid can be appropriately adjusted depending on, for example, the specifications of the coating device used, the drying / heat treatment device, and the like. However, if the coating liquid is too dilute, it takes a long time in the drying process, and the coating thickness after drying becomes too thin, so that a uniform coating cannot be formed and the risk of defects increases. Problems are likely to occur. On the other hand, a water-based coating liquid having an excessively high concentration tends to cause a problem in coatability because the coated surface is difficult to be uniform. Therefore, from such a viewpoint, the solid content concentration of the water-based coating liquid is generally preferably about 5 to 70% by mass.
 水系塗工液をポリアミドフィルムに塗布する方法は、特に限定されず、公知の方法を適宜採用することができる。例えば、グラビアロールコート法、リバースロールコート法、ワイヤーバーコート法、エアーナイフコート法、カーテンコート法、ドクターナイフ法、ダイコート法、ディップコート法、バーコーティング法等のほか、これらを組み合わせた方法も採用することができる。 The method of applying the water-based coating liquid to the polyamide film is not particularly limited, and a known method can be appropriately adopted. For example, gravure roll coating method, reverse roll coating method, wire bar coating method, air knife coating method, curtain coating method, doctor knife method, die coating method, dip coating method, bar coating method, etc., as well as a combination of these methods Can be adopted.
 塗布後の乾燥工程は、特に限定されず、例えばオーブン等の乾燥雰囲気下での乾燥処理、熱ロールと接触させることによる乾燥処理、延伸機内での乾燥処理等のように、公知の方法を用いて乾燥させることができる。乾燥温度は、限定的ではないが、通常は30~200℃程度の範囲内で設定することができる。乾燥時間は、乾燥温度等により適宜設定できるが、一般的には0.5~60秒の範囲内とすれば良い。 The drying step after coating is not particularly limited, and a known method is used, for example, a drying treatment in a drying atmosphere such as an oven, a drying treatment by contacting with a heat roll, a drying treatment in a stretching machine, and the like. Can be dried. The drying temperature is not limited, but can usually be set in the range of about 30 to 200 ° C. The drying time can be appropriately set depending on the drying temperature and the like, but generally it may be in the range of 0.5 to 60 seconds.
 水系塗工液を塗布するタイミングは、前記の未延伸シート、MD延伸フィルム、TD延伸フィルム又は二軸延伸フィルムのいずれか一方の表面上に水系塗工液を塗布できれば良い。すなわち、インラインコート法、ポストコート法(オフラインコート法)等のいずれの方法も採用することができる。 The timing of applying the water-based coating liquid is such that the water-based coating liquid can be applied on the surface of any one of the unstretched sheet, MD stretched film, TD stretched film, and biaxially stretched film. That is, any method such as an in-line coating method and a post-coating method (offline coating method) can be adopted.
 特に、本発明では、インラインコート法を採用することにより、オフラインコート法よりも膜厚を薄く、かつ、均一することができ、生産性も向上するため、低コストで高品質な製品を製造することが可能となる。特に、インラインコート法を採用する場合は、滑り性及び印刷適性をともに高めることができる。その理由は定かではないが、インラインコート法で延伸と同時に熱処理を行うことによってポリウレタン樹脂の分子鎖が配向したり、架橋反応あるいは有機滑剤のブリードアウトが促進されることにより滑り性と印刷適性がより優れたものとなると考えられる。特に、有機滑剤が延伸フィルム表面にブリードアウトすることで延伸フィルム表面に有機滑剤を偏在させることが可能となり、比較的少量の有機滑剤でも延伸フィルムを滑りやすい性質に改質できると推察される。 In particular, in the present invention, by adopting the in-line coating method, the film thickness can be made thinner and more uniform than the offline coating method, and the productivity is improved, so that a high-quality product can be manufactured at low cost. It becomes possible. In particular, when the in-line coating method is adopted, both slipperiness and printability can be improved. The reason is not clear, but the slipperiness and printability are improved by orienting the molecular chains of the polyurethane resin and promoting the cross-linking reaction or bleed-out of the organic lubricant by performing heat treatment at the same time as stretching by the in-line coating method. It is expected to be better. In particular, it is presumed that the organic lubricant bleeds out to the surface of the stretched film, so that the organic lubricant can be unevenly distributed on the surface of the stretched film, and the stretched film can be modified to have a slippery property even with a relatively small amount of the organic lubricant.
 インラインコート法としては、水系塗工液による塗膜形成とフィルムの延伸とを実質的に同時に実施できる限り、特に限定されず、例えばa)未延伸シートに水系塗工液を塗布した後、逐次又は同時二軸延伸する方法、b)MD延伸された一軸延伸フィルムに水系塗工液を塗布した後、TD延伸する方法、c)TD延伸された一軸延伸フィルムに水系塗工液を塗布した後、MD延伸する方法等が挙げられる。これに対し、ポストコート法は、二軸延伸された後のフィルムに水系塗工液による塗膜を形成する方法である。 The in-line coating method is not particularly limited as long as the coating film formation by the water-based coating liquid and the stretching of the film can be carried out substantially at the same time. For example, a) After applying the water-based coating liquid to the unstretched sheet, sequentially Alternatively, a method of simultaneous biaxial stretching, b) a method of applying a water-based coating liquid to an MD-stretched uniaxially stretched film and then TD stretching, c) a method of applying a water-based coating liquid to a TD-stretched uniaxially stretched film. , MD stretching method and the like. On the other hand, the post-coating method is a method of forming a coating film with a water-based coating liquid on the film after biaxial stretching.
 同時二軸延伸する場合の好ましいインラインコート法の実施形態としては、ポリアミド樹脂をシート状に成形して、未延伸ポリアミドシートを得るシート成形工程の後に水系塗工液を塗布する工程を含む方法である。水系塗工液が塗布された未延伸ポリアミドシートは、乾燥工程にて50~220℃、好ましく80℃~180℃、より好ましくは120℃~160℃で乾燥された後、延伸温度215℃以下(好ましくは190~215℃)、MD及びTD方向ともに2.5~3.8倍の延伸倍率の条件で同時二軸延伸することが好ましい。未延伸ポリアミドシートを同時二軸延伸する方法は、公知の延伸方法で行うことが可能である。その中でも生産性等の経済性の観点からテンター式同時二軸延伸又はLisim同時二軸延伸法で行うことが好ましい。 A preferred embodiment of the in-line coating method in the case of simultaneous biaxial stretching is a method including a step of molding a polyamide resin into a sheet to obtain an unstretched polyamide sheet and then applying a water-based coating liquid. is there. The unstretched polyamide sheet coated with the water-based coating liquid is dried at 50 to 220 ° C., preferably 80 ° C. to 180 ° C., more preferably 120 ° C. to 160 ° C. in the drying step, and then has a stretching temperature of 215 ° C. or lower ( It is preferable to perform simultaneous biaxial stretching under the conditions of a stretching ratio of 2.5 to 3.8 times in both the MD and TD directions (preferably 190 to 215 ° C.). The method of simultaneously biaxially stretching the unstretched polyamide sheet can be performed by a known stretching method. Among them, from the viewpoint of economic efficiency such as productivity, it is preferable to use the tenter type simultaneous biaxial stretching method or the Lisim simultaneous biaxial stretching method.
 逐次二軸延伸する場合の好ましいインラインコート法の実施形態としては、以下の工程を含む方法が挙げられる。ポリアミド樹脂をシート状に成形して、未延伸シートを得るシート成形工程の後に、未延伸シートを延伸温度40~80℃(好ましくは50~65℃)の条件でシートの流れ方向に2.5~3.5倍に延伸(MD延伸)し、次いで一軸延伸ポリアミドフィルムに水系塗工液を塗布する。水系塗工液が塗布された一軸延伸フィルムは、乾燥工程を兼ねて、予熱・延伸温度を50~220℃(好ましくは60~130℃)の条件で幅方向に2.5~3.5倍に延伸(TD延伸)する延伸工程によって、本発明フィルムを製造することができる。逐次二軸延伸する際には、ロール延伸法とテンター式延伸法とを併用して行うことが好ましい。より具体的にはロール延伸法でMD延伸を実施し、テンター式延伸法でTD延伸を行うことにより好適に逐次二軸延伸を実施することができる。 A preferred embodiment of the in-line coating method in the case of sequential biaxial stretching includes a method including the following steps. After the sheet molding step of molding the polyamide resin into a sheet to obtain an unstretched sheet, the unstretched sheet is stretched at a stretching temperature of 40 to 80 ° C (preferably 50 to 65 ° C) and 2.5 in the flow direction of the sheet. It is stretched to 3.5 times (MD stretch), and then a water-based coating liquid is applied to the uniaxially stretched polyamide film. The uniaxially stretched film coated with the water-based coating liquid also serves as a drying step, and is 2.5 to 3.5 times in the width direction under the conditions of preheating and stretching temperature of 50 to 220 ° C. (preferably 60 to 130 ° C.). The film of the present invention can be produced by a stretching step of stretching (TD stretching). When sequentially biaxially stretching, it is preferable to use both the roll stretching method and the tenter stretching method in combination. More specifically, MD stretching can be carried out by a roll stretching method, and TD stretching can be carried out by a tenter-type stretching method, whereby sequential biaxial stretching can be preferably carried out.
 その他の工程
 各層を積層する方法としては、特に限定されず、例えばa)塗工液による塗膜を形成する方法、b)予め成形されたフィルムを積層する方法、c)PVD法、CVD法等により蒸着膜を形成する方法等のいずれも採用することができる。また、前記b)の場合は、接着剤を介して積層する方法、同時押出成形により積層する方法等のいずれも採用することができる。特に、本発明フィルムをリチウムイオン二次電池等の電池の外装材に用いる場合は、公知の外装材の製造方法を採用することもできる。この場合は、公知の接着剤を使用して積層することも可能である。
Other Steps The method of laminating each layer is not particularly limited, and for example, a) a method of forming a coating film with a coating liquid, b) a method of laminating a preformed film, c) a PVD method, a CVD method, etc. Any method of forming a vapor-deposited film can be adopted. Further, in the case of b), any of a method of laminating via an adhesive, a method of laminating by simultaneous extrusion molding, and the like can be adopted. In particular, when the film of the present invention is used as an exterior material of a battery such as a lithium ion secondary battery, a known method for producing the exterior material can also be adopted. In this case, it is also possible to laminate using a known adhesive.
 例えば、バリア層と積層する場合は、ウレタン樹脂層/ポリアミドフィルムを含む積層体あるいはウレタン樹脂層/ポリアミドフィルム/ウレタン樹脂層を含む積層体と、バリア層形成用の金属箔等とを2液タイプのウレタン系接着剤等を介してドライラミネート、熱ラミネート等の方法を採用することが可能である。 For example, when laminating with a barrier layer, a two-component type of a laminate containing a urethane resin layer / polyamide film or a laminate containing a urethane resin layer / polyamide film / urethane resin layer and a metal foil for forming a barrier layer is used. It is possible to adopt a method such as dry laminating or thermal laminating via a urethane-based adhesive or the like.
 また、バリア層と熱融着層とを接合する方法としては、公知の方法(ドライラミネート、熱ラミネート、押出しラミネート、サンドイッチラミネート法等)を用いることができる。 Further, as a method for joining the barrier layer and the heat-sealing layer, a known method (dry laminating, heat laminating, extruded laminating, sandwich laminating method, etc.) can be used.
 上記接着剤の層が形成されるポリアミドフィルム、バリア層、熱融着層の表面には、本発明の効果を損なわない限りにおいて、必要に応じてアンカーコート層、プライマー層、印刷層、クリア層等を設けても良い。 On the surfaces of the polyamide film, barrier layer, and heat-sealing layer on which the adhesive layer is formed, an anchor coat layer, a primer layer, a printing layer, and a clear layer are required as long as the effects of the present invention are not impaired. Etc. may be provided.
3.ポリアミド系積層フィルムの使用
 本発明フィルム(又は積層体)は、各種の用途に用いることができるが、特に包装材として好適に用いることができる。すなわち、内容物を包装するための包装材として利用することができる。内容物は限定的でなく、例えば飲食品、電子部品、化成品、化粧品、医療品(医療機器)等の内容物を包装することができる。
3. 3. Use of Polyamide-based Laminated Film The film (or laminate) of the present invention can be used for various purposes, but can be particularly preferably used as a packaging material. That is, it can be used as a packaging material for packaging the contents. The contents are not limited, and for example, contents such as foods and drinks, electronic parts, chemical products, cosmetics, and medical products (medical devices) can be packaged.
 包装材として用いる場合の形態も特に限定されず、例えば包装用袋又包装用容器として使用できる。包装用袋としては、例えばピロー袋、ガゼット袋、スタンド袋等の各種の袋体として用いることができる。袋体の成形方法も、公知の方法に従って実施すれば良い。 The form when used as a packaging material is not particularly limited, and can be used, for example, as a packaging bag or a packaging container. As the packaging bag, for example, it can be used as various bag bodies such as a pillow bag, a gusset bag, and a stand bag. The method of molding the bag may also be carried out according to a known method.
 さらに、本発明は、上記のような包装材又は包装用袋によって内容物が包装されてなる製品(包装製品)も包含する。この場合の包装状態としては、例えば包装材又は包装用袋によって内容物が外部から密封された状態等を挙げることができる。 Furthermore, the present invention also includes a product (packaging product) in which the contents are packaged by the above-mentioned packaging material or packaging bag. Examples of the packaging state in this case include a state in which the contents are sealed from the outside by a packaging material or a packaging bag.
 以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、以下に記載の重量又は濃度に関する「%」は「質量%」を示す。 Examples and comparative examples are shown below, and the features of the present invention will be described more specifically. However, the scope of the present invention is not limited to the examples. In addition, "%" regarding weight or concentration described below indicates "mass%".
1.使用材料について
(1)ポリウレタン樹脂
 ポリウレタン樹脂としては、以下のポリウレタン水分散体(a)~(d)を用いた。
(a)製品名「ハイドランAP40F」(DIC社製、ガラス転移温度55℃、固形分濃度25%)
(b)製品名「タケラックW-5030」(三井化学社製、ガラス転移温度85℃、固形分濃度30%)
(c)製品名「タケラックWS-4022」(三井化学社製、ガラス転移温度115℃、固形分濃度30%)
(d)製品名「ハイドランAP-201」(DIC社製、ガラス転移温度7℃、固形分濃度25%)
1. 1. Materials used (1) Polyurethane resin As the polyurethane resin, the following polyurethane aqueous dispersions (a) to (d) were used.
(A) Product name "Hydran AP40F" (manufactured by DIC Corporation, glass transition temperature 55 ° C., solid content concentration 25%)
(B) Product name "Takelac W-5030" (manufactured by Mitsui Chemicals, glass transition temperature 85 ° C, solid content concentration 30%)
(C) Product name "Takelac WS-4022" (manufactured by Mitsui Chemicals, glass transition temperature 115 ° C., solid content concentration 30%)
(D) Product name "Hydran AP-201" (manufactured by DIC Corporation, glass transition temperature 7 ° C., solid content concentration 25%)
(2)有機滑剤
 有機滑剤としては、下記の(a)~(g)を用いた。いずれも分散液の形態である。
(a)製品名「AQUACER517」(BYK社製、ポリエチレンワックス、固形分濃度35%、粒子径0.150μm、融点120℃)
(b)製品名「ハイテックE6400」(東邦化学工業社製、ポリエチレンワックス、固形分濃度35%、粒子径0.050μm、融点120℃)
(c)製品名「シャリーヌE E-370」(日信化学工業社製、シリコン-アクリル共重合体、固形分濃度50%、粒子径0.450μm)
(d)製品名「サイマックUS-450」(東亜合成社製、シリコン-アクリル共重合体、固形分濃度30%、粒子径0.350μm)
(e)製品名「シャリーヌE RU-911」(日信化学工業社製、シリコン-ウレタン共重合体、固形分濃度40%、粒子径0.330μm)
(f)製品名「アルフローH-50ES」(日油社製、脂肪酸アマイド、固形分濃度42%、粒子径0.450μm、融点113℃、147℃)
(g)製品名「スリパックスE SA-20」(三菱ケミカル社製、脂肪酸アマイド、固形分濃度22%、粒子径0.460μm、融点113℃、147℃)
(2) Organic Lubricants As the organic lubricants, the following (a) to (g) were used. Both are in the form of dispersions.
(A) Product name "AQUACER517" (manufactured by BYK, polyethylene wax, solid content concentration 35%, particle size 0.150 μm, melting point 120 ° C.)
(B) Product name "Hi-Tech E6400" (manufactured by Toho Chemical Industry Co., Ltd., polyethylene wax, solid content concentration 35%, particle size 0.050 μm, melting point 120 ° C.)
(C) Product name "Charine EE-370" (manufactured by Nissin Chemical Industry Co., Ltd., silicon-acrylic copolymer, solid content concentration 50%, particle size 0.450 μm)
(D) Product name "Cymac US-450" (manufactured by Toagosei Co., Ltd., silicon-acrylic copolymer, solid content concentration 30%, particle size 0.350 μm)
(E) Product name "Charine E RU-911" (manufactured by Nissin Chemical Industry Co., Ltd., silicon-urethane copolymer, solid content concentration 40%, particle size 0.330 μm)
(F) Product name "Alflow H-50ES" (manufactured by NOF CORPORATION, fatty acid amide, solid content concentration 42%, particle size 0.450 μm, melting point 113 ° C., 147 ° C.)
(G) Product name "Slipax E SA-20" (manufactured by Mitsubishi Chemical Corporation, fatty acid amide, solid content concentration 22%, particle size 0.460 μm, melting point 113 ° C., 147 ° C.)
(3)その他の添加剤
 その他の添加剤としては、下記の(a)~(b)を用いた。
(a)製品名「アエロジル200」(日本アエロジル社製、シリカ粒子、一次粒子径12nm)
(b)製品名「MX100W」(日本触媒社製、アクリル粒子、平均粒子径150nm)
(3) Other Additives The following (a) to (b) were used as other additives.
(A) Product name "Aerosil 200" (manufactured by Nippon Aerosil, silica particles, primary particle diameter 12 nm)
(B) Product name "MX100W" (manufactured by Nippon Shokubai Co., Ltd., acrylic particles, average particle diameter 150 nm)
2.実施例及び比較例について
 実施例1
(1)塗工液の調製
 固形分濃度が9質量%となるように、水にポリウレタン水分散体「ハイドランAP40F」と有機滑剤「AQUACER515」をこの順番で混合し、攪拌することにより水系塗工液Aを得た。なお、前記「ハイドランAP40F」と「AQUACER515」は、固形分質量比がハイドランAP40F/AQUACER515=100/20となるように計量した。
(2)ポリアミド系積層フィルムの製造(逐次二軸延伸)
 Tダイを備えた押出機を使用し、Tダイよりナイロン6(ユニチカ社製、A1030BRF、相対粘度3.1)をシート状に押出し、表面温度18℃に調節されたキャスティングロール上に密着させて急冷し、未延伸シートを得た。
 次いで、この未延伸シートを予熱温度58℃、延伸温度61℃に加熱した延伸用ロールに通過させることにより、MD方向へ延伸倍率2.85倍となるように延伸してMD延伸フィルムを得た。続いて、固形分濃度9質量%の水系塗工液Aを乾燥延伸後の厚みが0.10μmになるようにMD延伸フィルムに塗布した後、予熱温度80℃、延伸温度120℃の条件でTD方向へ3.20倍の延伸倍率で延伸した。さらに、熱処理温度210℃、熱処理時間3秒の条件で熱処理を施した後、TD方向に3%の弛緩処理を施した。
得られた積層フィルムのポリアミドフィルム面にコロナ処理を施し、0.10μm厚みのポリウレタン樹脂層が積層されたポリアミド系積層フィルム(厚み15μm)を得た。
(3)積層体の作製
 得られたポリアミド系積層フィルムの前記コロナ処理面に、二液型ポリウレタン系接着剤(東洋モートン社製、TM-K55/CAT-10L)を塗布量5g/mとなるように塗布し、80℃で10秒間乾燥した。その接着剤塗布面に、アルミニウム箔(厚み50μm)を貼り合せた。
 次に、アルミニウム箔面に上記接着剤を同じ条件で塗布・乾燥し、熱融着層として未延伸ポリプロピレンフィルム(三井化学東セロ社製、GHC、厚み50μm)を貼り合わせ、60℃の雰囲気下で7日間エージング処理を実施し、「ポリウレタン樹脂層/ポリアミドフィルム/接着剤層/アルミニウム箔/熱融着層」の順に積層された積層体を得た。
2. Examples and Comparative Examples Example 1
(1) Preparation of coating liquid Water-based coating is performed by mixing the polyurethane aqueous dispersion "Hydran AP40F" and the organic lubricant "AQUACER515" in this order with water so that the solid content concentration becomes 9% by mass, and stirring the mixture. Liquid A was obtained. The "Hydran AP40F" and "AQUACER515" were weighed so that the solid content mass ratio was Hydran AP40F / AQUACER515 = 100/20.
(2) Manufacture of polyamide-based laminated film (sequential biaxial stretching)
Using an extruder equipped with a T-die, nylon 6 (manufactured by Unitika Ltd., A1030BRF, relative viscosity 3.1) is extruded into a sheet from the T-die and brought into close contact with a casting roll adjusted to a surface temperature of 18 ° C. It was rapidly cooled to obtain an unstretched sheet.
Next, the unstretched sheet was passed through a stretching roll heated to a preheating temperature of 58 ° C. and a stretching temperature of 61 ° C., and stretched in the MD direction so as to have a stretching ratio of 2.85 times to obtain an MD stretched film. .. Subsequently, a water-based coating liquid A having a solid content concentration of 9% by mass was applied to an MD stretched film so that the thickness after drying and stretching was 0.10 μm, and then TD under the conditions of a preheating temperature of 80 ° C. and a stretching temperature of 120 ° C. It was stretched in the direction at a stretching ratio of 3.20 times. Further, after heat treatment was performed under the conditions of a heat treatment temperature of 210 ° C. and a heat treatment time of 3 seconds, a relaxation treatment of 3% was performed in the TD direction.
The surface of the polyamide film of the obtained laminated film was subjected to corona treatment to obtain a polyamide-based laminated film (thickness 15 μm) in which a polyurethane resin layer having a thickness of 0.10 μm was laminated.
(3) Preparation of Laminated Body A two-component polyurethane adhesive (TM-K55 / CAT-10L, manufactured by Toyo Morton Co., Ltd.) was applied to the corona-treated surface of the obtained polyamide-based laminated film with a coating amount of 5 g / m 2 . And dried at 80 ° C. for 10 seconds. An aluminum foil (thickness 50 μm) was attached to the adhesive-coated surface.
Next, the above adhesive was applied and dried on the aluminum foil surface under the same conditions, and an unstretched polypropylene film (manufactured by Mitsui Chemicals Tohcello Co., Ltd., GHC, thickness 50 μm) was attached as a heat-sealing layer under an atmosphere of 60 ° C. Aging treatment was carried out for 7 days to obtain a laminate in which "polyurethane resin layer / polyamide film / adhesive layer / aluminum foil / heat fusion layer" were laminated in this order.
 実施例2,5~17及び比較例1~2,4,7
 表1に示す条件としたほかは、実施例1と同様にしてポリアミド系積層フィルムを作製した。塗工液は、ポリウレタン水分散体及び有機滑剤の種類及び配合比を表1記載の通りに変更した以外は実施例1と同様にして調製した。なお、有機滑剤を2種類添加する塗工液における当該有機滑剤の添加順序は、限定されず、任意に選択することができる。さらに、得られたポリアミド系積層フィルムを用いて実施例1と同様にして積層体を作製した。
Examples 2, 5 to 17 and Comparative Examples 1, 2, 4, 7
A polyamide-based laminated film was produced in the same manner as in Example 1 except that the conditions shown in Table 1 were used. The coating liquid was prepared in the same manner as in Example 1 except that the types and blending ratios of the polyurethane aqueous dispersion and the organic lubricant were changed as shown in Table 1. The order of addition of the organic lubricant in the coating liquid to which two kinds of organic lubricants are added is not limited and can be arbitrarily selected. Further, the obtained polyamide-based laminated film was used to prepare a laminated body in the same manner as in Example 1.
 実施例3
 延伸方法を下記のように変更した以外は実施例1と同様にしてポリアミド系積層フィルムを作製した。
 Tダイを備えた押出機を使用し、Tダイよりナイロン6(ユニチカ社製、A1030BRF、相対粘度3.1)をシート状に押出し、表面温度18℃に調節されたキャスティングロール上に密着させて急冷し、未延伸シートを得た。
 次いで、この未延伸シートにグラビアコーターを用いて固形分濃度9質量%の水系塗工液Bを乾燥延伸後の厚みが0.10μmになるように塗布し熱風乾燥機にて乾燥した後、パンタグラフ方式テンター同時二軸延伸機に導き、予熱延伸温度200℃の条件でMD方向へ3.0倍、TD方向へ3.3倍の延伸倍率で同時二軸延伸した。さらに熱処理温度215℃、熱処理時間3秒の条件で熱処理を施した後、TD方向に3%の弛緩処理を施した。
 得られた積層フィルムのポリアミドフィルム面にコロナ処理を施し、0.10μm厚みのポリウレタン樹脂層が積層した厚み15μmのポリアミド系積層フィルムを得た。さらに、得られたポリアミド系積層フィルムを用いて実施例1と同様にして積層体を作製した。
Example 3
A polyamide-based laminated film was produced in the same manner as in Example 1 except that the stretching method was changed as follows.
Using an extruder equipped with a T-die, nylon 6 (manufactured by Unitika Ltd., A1030BRF, relative viscosity 3.1) is extruded into a sheet from the T-die and brought into close contact with a casting roll adjusted to a surface temperature of 18 ° C. It was rapidly cooled to obtain an unstretched sheet.
Next, a water-based coating liquid B having a solid content concentration of 9% by mass was applied to this unstretched sheet using a gravure coater so that the thickness after drying and stretching was 0.10 μm, dried by a hot air dryer, and then pantographed. The method was guided to a tenter simultaneous biaxial stretching machine, and simultaneous biaxial stretching was performed at a stretching ratio of 3.0 times in the MD direction and 3.3 times in the TD direction under the condition of a preheating stretching temperature of 200 ° C. Further, the heat treatment was performed under the conditions of a heat treatment temperature of 215 ° C. and a heat treatment time of 3 seconds, and then a relaxation treatment of 3% was performed in the TD direction.
The surface of the polyamide film of the obtained laminated film was subjected to corona treatment to obtain a polyamide-based laminated film having a thickness of 15 μm in which a polyurethane resin layer having a thickness of 0.10 μm was laminated. Further, the obtained polyamide-based laminated film was used to prepare a laminated body in the same manner as in Example 1.
 実施例4
 同時二軸延伸機をパンタグラフ方式テンターからリニアモーター方式テンターに変更し、MD方向にも1%の弛緩処理を施した以外は実施例3と同様にしてポリアミド系積層フィルムを得た。さらに、得られたポリアミド系積層フィルムを用いて実施例1と同様にして積層体を作製した。
Example 4
A polyamide-based laminated film was obtained in the same manner as in Example 3 except that the simultaneous biaxial stretching machine was changed from a pantograph type tenter to a linear motor type tenter and a relaxation treatment of 1% was also applied in the MD direction. Further, the obtained polyamide-based laminated film was used to prepare a laminated body in the same manner as in Example 1.
 比較例3
 水系塗工液にシリカをポリウレタン水分散体の固形分100質量%に対して2.0質量%含有させた以外は実施例1と同様にしてポリアミド系積層フィルムを作製した。さらに、得られたポリアミド系積層フィルムを用いて実施例1と同様にして積層体を作製した。
Comparative Example 3
A polyamide-based laminated film was produced in the same manner as in Example 1 except that silica was contained in the aqueous coating liquid in an amount of 2.0% by mass based on 100% by mass of the solid content of the polyurethane aqueous dispersion. Further, the obtained polyamide-based laminated film was used to prepare a laminated body in the same manner as in Example 1.
 比較例5
 水系塗工液の塗布工程を延伸工程中から延伸後に変更した以外は実施例1と同様にしてポリアミド系積層フィルムを得た。塗布工程は延伸後のポリアミドフィルムをグラビアコーターに導きコート厚みが0.5μmとなるように水系塗工液Rを塗布し、5つゾーンからなる乾燥炉<ゾーン1(80℃)→ゾーン2(100℃)→ゾーン3(120℃)→ゾーン4(110℃)→ゾーン5(80℃)>を通過させて乾燥することでポリアミド系積層フィルムを得た。さらに、得られたポリアミド系積層フィルムを用いて実施例1と同様にして積層体を作製した。
Comparative Example 5
A polyamide-based laminated film was obtained in the same manner as in Example 1 except that the coating step of the water-based coating liquid was changed from during the stretching step to after stretching. In the coating process, the stretched polyamide film is guided to a gravure coater, a water-based coating liquid R is applied so that the coating thickness is 0.5 μm, and a drying furnace consisting of five zones <Zone 1 (80 ° C.) → Zone 2 ( A polyamide-based laminated film was obtained by passing through 100 ° C.) → Zone 3 (120 ° C.) → Zone 4 (110 ° C.) → Zone 5 (80 ° C.)> and drying. Further, the obtained polyamide-based laminated film was used to prepare a laminated body in the same manner as in Example 1.
 比較例6
 水系塗工液にアクリル粒子をポリウレタン水分散体の固形分100質量%に対して2.0質量%含有させた以外は実施例1と同様にしてポリアミド系積層フィルムを作製した。さらに、得られたポリアミド系積層フィルムを用いて実施例1と同様にして積層体を作製した。
Comparative Example 6
A polyamide-based laminated film was produced in the same manner as in Example 1 except that the aqueous coating liquid contained 2.0% by mass of acrylic particles with respect to 100% by mass of the solid content of the polyurethane aqueous dispersion. Further, the obtained polyamide-based laminated film was used to prepare a laminated body in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試験例1
 各実施例及び比較例で得られたポリアミド系積層フィルム又は積層体について下記の特性をそれぞれ測定した。その結果を表2に示す。
Test Example 1
The following characteristics were measured for the polyamide-based laminated films or laminates obtained in each Example and Comparative Example. The results are shown in Table 2.
(1)動摩擦係数
 本発明におけるポリウレタン樹脂層表面の動摩擦係数は、日本産業規格「JIS K7125」に従って測定した。測定装置は、エー・アンド・デイ社製卓上型材料試験機「STB-1225S」、データ処理システム「TACT」を用い、測定環境は23℃×50%RH及び20℃×90%RHとした。具体的には、ポリアミド系積層フィルムのサンプルを23℃×50%RH又は20℃×90%RHで2時間調湿した後、上記と同じ温度及び湿度下でポリアミド系積層フィルムのポリウレタン樹脂層同士を重ね合わせて測定を実施した。本発明フィルムを最外層として含む積層体の場合においても、その最外層となるポリウレタン樹脂層表面を測定面とし、上記同様に測定を行った。実用的には、動摩擦係数は23℃×50%RHでは0.30以下、20℃×90%RHでは0.40以下が求められる。なお、測定はn=5で実施し、その平均値を測定値とした。
(1) Dynamic friction coefficient The dynamic friction coefficient of the surface of the polyurethane resin layer in the present invention was measured according to the Japanese Industrial Standard "JIS K7125". As the measuring device, a desktop material testing machine "STB-1225S" manufactured by A & D Co., Ltd. and a data processing system "TACT" were used, and the measuring environment was set to 23 ° C. × 50% RH and 20 ° C. × 90% RH. Specifically, after adjusting the humidity of a sample of the polyamide-based laminated film at 23 ° C. × 50% RH or 20 ° C. × 90% RH for 2 hours, the polyurethane resin layers of the polyamide-based laminated film are placed at the same temperature and humidity as described above. Was superimposed and the measurement was carried out. Even in the case of a laminate containing the film of the present invention as the outermost layer, the measurement was carried out in the same manner as described above, with the surface of the polyurethane resin layer as the outermost layer as the measurement surface. Practically, the coefficient of dynamic friction is required to be 0.30 or less at 23 ° C. × 50% RH and 0.40 or less at 20 ° C. × 90% RH. The measurement was carried out at n = 5, and the average value was used as the measured value.
(2)算術平均高さ(Ra)
 本発明における算術平均高さ測定(Ra)は、(株)小坂研究所,接触式表面粗さ測定機 「Surfcorder SE500A」を用いて日本産業規格「JIS B 0601」に準拠した。具体的には、ポリアミド系積層フィルムのサンプルを23℃×50%RHで2時間調湿した後、上記と同じ温度及び湿度下でポリウレタン樹脂層表面の測定を実施した。本発明フィルムを最外層として含む積層体の場合は、その最外層となるポリウレタン樹脂層表面を測定面とした。なお、測定はn=5で実施し、その平均値を測定値とした。
(2) Arithmetic mean height (Ra)
The arithmetic mean height measurement (Ra) in the present invention conformed to the Japanese Industrial Standards "JIS B 0601" using the contact type surface roughness measuring machine "Surfcorder SE500A" of Kosaka Laboratory Co., Ltd. Specifically, after adjusting the humidity of a sample of the polyamide-based laminated film at 23 ° C. × 50% RH for 2 hours, the surface of the polyurethane resin layer was measured under the same temperature and humidity as described above. In the case of a laminate containing the film of the present invention as the outermost layer, the surface of the polyurethane resin layer as the outermost layer was used as the measurement surface. The measurement was carried out at n = 5, and the average value was used as the measured value.
(3)接触角
 接触角は、KRUSS社製自動接触角計,型式DSA30Sにて水を用いて測定した。具体的には、ポリアミド系積層フィルムのサンプルを23℃×50%RHで2時間調湿した後、上記と同じ温度及び湿度下で測定を実施した。なお、測定はn=5で実施し、その平均値を測定値とした。
(3) Contact angle The contact angle was measured using water with an automatic contact angle meter manufactured by KRUSS, model DSA30S. Specifically, a sample of the polyamide-based laminated film was humidity-controlled at 23 ° C. × 50% RH for 2 hours, and then measurements were carried out under the same temperature and humidity as described above. The measurement was carried out at n = 5, and the average value was used as the measured value.
(4)印刷適性(版からのインキ転移性)
 本発明における印刷適性は、ポリアミド系積層フィルムのサンプルを23℃×50%RHで2時間調湿した後、同温湿度条件下で測定を実施した。ポリアミド系積層フィルムのポリウレタン樹脂層にグラビア印刷法を用いて1cm×1cm内のドット模様が100点となるように印刷し、1cm×1cm内のドット模様の欠点数を数え、3ヶ所の平均値を算出して印刷適性を評価した。なお、インキとして、市販インキ(リオアルファR39藍,東洋インキ社製)を使用した。印刷適性については、実用的には、ドット模様の欠点数が7.0以下であることが好ましく、特に3.5以下であることがより好ましく、その中でも1.0以下であることが最も好ましい。
(4) Printability (ink transferability from plate)
The printability in the present invention was measured under the same temperature and humidity conditions after adjusting the humidity of a sample of a polyamide-based laminated film at 23 ° C. × 50% RH for 2 hours. The polyurethane resin layer of the polyamide-based laminated film is printed using a gravure printing method so that the number of dot patterns within 1 cm x 1 cm is 100, and the number of defects of the dot patterns within 1 cm x 1 cm is counted, and the average value of the three locations is counted. Was calculated to evaluate printability. As the ink, a commercially available ink (Rio Alpha R39 Indigo, manufactured by Toyo Ink Co., Ltd.) was used. Regarding printability, practically, the number of defects of the dot pattern is preferably 7.0 or less, more preferably 3.5 or less, and most preferably 1.0 or less. ..
(5)積層体の成形性(エリクセン試験)
 日本産業規格「JIS Z 2247」に基づいて、エリクセン試験機(安田精機製作所社製No.5755)を用い、23℃×50%RHで2時間調湿した積層体のサンプルを上記と同じ温度及び湿度下で測定を実施した。積層体のサンプルのポリウレタン樹脂層面に鋼球ポンチを所定の押し込み深さで押し付け、エリクセン値を求め、下記評価基準で成形性を評価した。エリクセン値は0.5mmごとに測定した。実用的には、エリクセン値が5.0mm以上であることが好ましく、特に8.0mm以上がより好ましく、その中でも9.0mm以上が最も好ましい。なお、測定はn=5で実施し、その平均値を測定値とした。
(5) Formability of laminated body (Eriksen test)
Based on the Japanese Industrial Standards "JIS Z 2247", a sample of the laminate prepared by using an Eriksen testing machine (No. 5755 manufactured by Yasuda Seiki Seisakusho Co., Ltd.) at 23 ° C. x 50% RH for 2 hours was sampled at the same temperature and temperature as above. The measurement was carried out under humidity. A steel ball punch was pressed against the polyurethane resin layer surface of the sample of the laminated body at a predetermined pushing depth to obtain an Eriksen value, and the moldability was evaluated according to the following evaluation criteria. The Eriksen value was measured every 0.5 mm. Practically, the Eriksen value is preferably 5.0 mm or more, more preferably 8.0 mm or more, and most preferably 9.0 mm or more. The measurement was carried out at n = 5, and the average value was used as the measured value.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果からも明らかなように、各実施例のポリアミド系積層フィルムは、20℃×90%RH環境下でのポリウレタン樹脂層表面の動摩擦係数が小さく、良好な印刷適性及び成形性を兼ね備えていることがわかる。
 比較例1~3に記載のポリアミド系積層フィルムはポリウレタン水分散体のガラス転移温度が50℃未満であったため、ポリウレタン樹脂層表面の動摩擦係数が大きくなっていた。また、比較例4に記載のポリアミド系積層フィルムは有機滑剤を含有していなかったため、比較例5はポストコート方式を採用したため、十分な滑り性が得られなかった。比較例6はアクリル粒子を添加することでポリウレタン樹脂層表面の動摩擦係数は小さかったが、算術平均高さRaが本発明で規定する範囲を超え、印刷適性及び成形性が劣っていた。比較例7はガラス転移温度が50℃以上であるものの、有機滑剤が添加されていないためポリウレタン樹脂層表面の動摩擦係数が高くなっていた。
As is clear from the results in Table 2, the polyamide-based laminated film of each example has a small coefficient of dynamic friction on the surface of the polyurethane resin layer under a 20 ° C. × 90% RH environment, and has good printability and moldability. You can see that.
In the polyamide-based laminated films described in Comparative Examples 1 to 3, the glass transition temperature of the polyurethane aqueous dispersion was less than 50 ° C., so that the coefficient of kinetic friction on the surface of the polyurethane resin layer was large. Further, since the polyamide-based laminated film described in Comparative Example 4 did not contain an organic lubricant, Comparative Example 5 adopted a post-coating method, so that sufficient slipperiness could not be obtained. In Comparative Example 6, the coefficient of dynamic friction on the surface of the polyurethane resin layer was small due to the addition of acrylic particles, but the arithmetic mean height Ra exceeded the range specified in the present invention, and the printability and moldability were inferior. In Comparative Example 7, although the glass transition temperature was 50 ° C. or higher, the coefficient of kinetic friction on the surface of the polyurethane resin layer was high because no organic lubricant was added.

Claims (9)

  1. ポリアミドフィルムと、前記フィルムの少なくとも一方の表面上に積層されたポリウレタン樹脂及び有機滑剤を含有するポリウレタン樹脂層とを含む積層フィルムであって、
    (1)前記ポリウレタン樹脂のガラス転移温度が50℃以上であり、
    (2)前記ポリウレタン樹脂層表面の算術平均高さ(Ra)が0.010~0.060μmであり、かつ、前記ポリウレタン樹脂層表面の20℃×90%RH環境下での動摩擦係数が0.40以下である、
    ことを特徴とするポリアミド系積層フィルム。
    A laminated film containing a polyamide film and a polyurethane resin layer containing a polyurethane resin and an organic lubricant laminated on at least one surface of the film.
    (1) The glass transition temperature of the polyurethane resin is 50 ° C. or higher.
    (2) The arithmetic mean height (Ra) of the surface of the polyurethane resin layer is 0.010 to 0.060 μm, and the coefficient of dynamic friction of the surface of the polyurethane resin layer under a 20 ° C. × 90% RH environment is 0. 40 or less,
    A polyamide-based laminated film characterized by this.
  2. 前記ポリウレタン樹脂層表面の23℃×50%RH環境下での動摩擦係数が0.30以下である、請求項1に記載のポリアミド系積層フィルム。 The polyamide-based laminated film according to claim 1, wherein the dynamic friction coefficient of the surface of the polyurethane resin layer under a 23 ° C. × 50% RH environment is 0.30 or less.
  3. 前記ポリウレタン樹脂層の厚みが0.005~0.150μmである、請求項1に記載のポリアミド系積層フィルム。 The polyamide-based laminated film according to claim 1, wherein the polyurethane resin layer has a thickness of 0.005 to 0.150 μm.
  4. 請求項1~3のいずれかに記載のポリアミド系積層フィルムを含む食品包装用積層体。 A laminate for food packaging containing the polyamide-based laminate according to any one of claims 1 to 3.
  5. 請求項1~3のいずれかに記載のポリアミド系積層フィルムを含む冷間成形用積層体。 A laminate for cold molding containing the polyamide-based laminate film according to any one of claims 1 to 3.
  6. ポリアミドフィルムと、前記フィルムの少なくとも一方の表面上にポリウレタン樹脂及び有機滑剤を含有するポリウレタン樹脂層とを含むポリアミド系積層フィルムを製造する方法であって、
    (1)ポリアミド樹脂を含む溶融混練物をシート状に成形することにより未延伸シートを得るシート成形工程、
    (2)前記未延伸シートをMD延伸及びTD延伸することによって二軸延伸フィルムを得る延伸工程、及び
    (3)前記の未延伸シート、MD延伸フィルム、TD延伸フィルム又は二軸延伸フィルムのいずれか一方の表面上に、ポリウレタン樹脂及び有機滑剤を含む水系塗工液を塗布するコーティング工程
    を含むことを特徴とするポリアミド系積層フィルムの製造方法。
    A method for producing a polyamide-based laminated film containing a polyamide film and a polyurethane resin layer containing a polyurethane resin and an organic lubricant on at least one surface of the film.
    (1) A sheet molding step of obtaining an unstretched sheet by molding a melt-kneaded product containing a polyamide resin into a sheet.
    (2) A stretching step of obtaining a biaxially stretched film by MD stretching and TD stretching of the unstretched sheet, and (3) any one of the unstretched sheet, MD stretched film, TD stretched film or biaxially stretched film. A method for producing a polyamide-based laminated film, which comprises a coating step of applying a water-based coating liquid containing a polyurethane resin and an organic lubricant on one surface.
  7. 水系塗工液が、ポリウレタン樹脂の分散液と、粒径0.010μm~0.500μmの有機滑剤の分散液との混合液である、請求項6に記載の製造方法。 The production method according to claim 6, wherein the water-based coating liquid is a mixed liquid of a dispersion liquid of a polyurethane resin and a dispersion liquid of an organic lubricant having a particle size of 0.010 μm to 0.500 μm.
  8. 延伸工程が同時二軸延伸によって実施され、かつ、下記式(a)及び(b);
       (a)0.80≦X/Y≦0.95
       (b)9.8≦X×Y≦11.6
    (但し、Xは前記MD方向の延伸倍率を示し、Yは前記TD方向の延伸倍率を示す。)
    の両方を満たす、請求項6に記載の製造方法。
    The stretching step is carried out by simultaneous biaxial stretching, and the following formulas (a) and (b);
    (A) 0.80 ≦ X / Y ≦ 0.95
    (B) 9.8 ≤ X x Y ≤ 11.6
    (However, X indicates the stretching ratio in the MD direction, and Y indicates the stretching ratio in the TD direction.)
    The manufacturing method according to claim 6, wherein both of the above are satisfied.
  9. 延伸工程が逐次二軸延伸によって実施され、かつ、下記式(a)及び(b);
       (a)0.85≦X/Y≦0.95
       (b)8.5≦X×Y≦9.5
    (但し、Xは前記MD方向の延伸倍率を示し、Yは前記TD方向の延伸倍率を示す。)
    の両方を満たす、請求項6に記載の製造方法。
    The stretching step is carried out by sequential biaxial stretching, and the following formulas (a) and (b);
    (A) 0.85 ≤ X / Y ≤ 0.95
    (B) 8.5 ≤ X x Y ≤ 9.5
    (However, X indicates the stretching ratio in the MD direction, and Y indicates the stretching ratio in the TD direction.)
    The manufacturing method according to claim 6, wherein both of the above are satisfied.
PCT/JP2020/014185 2019-03-29 2020-03-27 Polyamide-based laminated film and method for producing same WO2020203836A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021512041A JPWO2020203836A1 (en) 2019-03-29 2020-03-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019067375 2019-03-29
JP2019-067375 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203836A1 true WO2020203836A1 (en) 2020-10-08

Family

ID=72668176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014185 WO2020203836A1 (en) 2019-03-29 2020-03-27 Polyamide-based laminated film and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2020203836A1 (en)
TW (1) TW202102370A (en)
WO (1) WO2020203836A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084775A1 (en) * 2022-10-21 2024-04-25 東洋紡株式会社 Biaxially oriented polyamide film for cold molding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248886A (en) * 1996-03-15 1997-09-22 Toyobo Co Ltd Laminated polyamide film and its manufacture
JPH09248887A (en) * 1996-03-15 1997-09-22 Toyobo Co Ltd Laminated polyamide film and its manufacture
JP2006123465A (en) * 2004-11-01 2006-05-18 Unitika Ltd Laminated polyamide film
JP2015168125A (en) * 2014-03-06 2015-09-28 興人フィルム&ケミカルズ株式会社 polyamide film
WO2017217435A1 (en) * 2016-06-15 2017-12-21 ユニチカ株式会社 Polyamide film and production method for same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248886A (en) * 1996-03-15 1997-09-22 Toyobo Co Ltd Laminated polyamide film and its manufacture
JPH09248887A (en) * 1996-03-15 1997-09-22 Toyobo Co Ltd Laminated polyamide film and its manufacture
JP2006123465A (en) * 2004-11-01 2006-05-18 Unitika Ltd Laminated polyamide film
JP2015168125A (en) * 2014-03-06 2015-09-28 興人フィルム&ケミカルズ株式会社 polyamide film
WO2017217435A1 (en) * 2016-06-15 2017-12-21 ユニチカ株式会社 Polyamide film and production method for same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084775A1 (en) * 2022-10-21 2024-04-25 東洋紡株式会社 Biaxially oriented polyamide film for cold molding

Also Published As

Publication number Publication date
TW202102370A (en) 2021-01-16
JPWO2020203836A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6197895B2 (en) Stretched polyamide film
JP6506470B2 (en) Polyamide film and method for producing the same
JP6962364B2 (en) Laminated film
EP3521016B1 (en) Mold release sheet
JP6927336B2 (en) Gas barrier laminated film and its manufacturing method
CN101977767B (en) Biaxially stretched polyamide resin film having gas barrier properties and process for producing the biaxially stretched polyamide resin film
CN108602968B (en) Matt polyamide film and process for producing the same
WO2020203836A1 (en) Polyamide-based laminated film and method for producing same
CN109715402B (en) Mold release film and method for producing same
CN113727853B (en) Polyethylene resin multilayer film, and vapor-deposited film, laminate, and package each using same
JP6841484B2 (en) Polyamide-based film and its manufacturing method
JP2016162558A (en) Packaging material for battery and battery
JP7231004B2 (en) laminate laminate
JP2019064075A (en) Laminated laminate
JPH1024489A (en) Manufacture of stretched multilayer polyamide film
CN112703111B (en) Polyamide laminated film and method for producing same
JP6963781B2 (en) Method for manufacturing polyester film, laminate and polyester film
JP2016155928A (en) Polyamide film for cold molding and laminate and container for cold molding using the same
TWI782095B (en) Laminated film
JP7193198B1 (en) Semi-aromatic polyamide film and laminate obtained therefrom
JP7000694B2 (en) Laminated film
JP2007261023A (en) Film for metal sheet laminate
JP2021088190A (en) Polyamide-based film and method for producing the same
CN113631368A (en) Gas barrier polyamide film
JP2023018931A (en) Method for producing polyamide resin laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783735

Country of ref document: EP

Kind code of ref document: A1