WO2020203590A1 - Thermoplastic resin composition and coated molded article - Google Patents

Thermoplastic resin composition and coated molded article Download PDF

Info

Publication number
WO2020203590A1
WO2020203590A1 PCT/JP2020/013486 JP2020013486W WO2020203590A1 WO 2020203590 A1 WO2020203590 A1 WO 2020203590A1 JP 2020013486 W JP2020013486 W JP 2020013486W WO 2020203590 A1 WO2020203590 A1 WO 2020203590A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
copolymer
vinyl
thermoplastic resin
resin composition
Prior art date
Application number
PCT/JP2020/013486
Other languages
French (fr)
Japanese (ja)
Inventor
小林 正典
隆志 上田
佐藤 大輔
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020535004A priority Critical patent/JP6981552B2/en
Publication of WO2020203590A1 publication Critical patent/WO2020203590A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • C08F212/10Styrene with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a thermoplastic resin composition which is excellent in mechanical properties and heat resistance and can significantly reduce coating defects, and a coated molded product thereof.
  • Polycarbonate resin has excellent heat resistance and impact resistance, so it is widely used in a wide range of fields including the fields of automobiles, home appliances, OA equipment, and building materials.
  • the polycarbonate resin alone is inferior in molding processability at the time of injection molding and secondary processability such as plating and painting, alloying with a rubber-reinforced styrene resin such as ABS resin is performed for the purpose of compensating for the drawbacks of the polycarbonate resin. It has been known.
  • ABS resin and PC / ABS resin are often used for painting interior and exterior parts, especially in the field of automobiles, and bubble-like coating defects called "armpits" may occur in the coating process.
  • Bubble-like coating defects are closely related to residual strain during molding, and when the thinner of the paint penetrates, cracks occur in the strained part, and the thinner volatilizes through the cracks, causing bubble-like defects. It is considered.
  • measures such as annealing the molded product before painting to remove residual strain are known, but this annealing treatment requires dedicated equipment, so for the reason of cost increase, A material that does not require annealing has been desired.
  • Patent Document 1 shows that "suction", which is a kind of poor coating, can be suppressed by using a high vinyl cyanide copolymer.
  • Patent Document 2 shows that the fluidity is improved by using a low vinyl cyanide copolymer.
  • Patent Document 3 shows that the generation of bubbles is suppressed by adding an ethylene / (meth) acrylic acid ester / carbon monoxide copolymer to the heat-resistant ABS.
  • Patent Documents 1 and 2 are insufficient for suppressing the generation of bubbles.
  • Patent Document 3 is effective in suppressing the generation of air bubbles to some extent, there is a problem that the molded product is peeled off from the surface layer at the time of mold release from the mold in the injection molding process.
  • An object of the present invention is to provide a thermoplastic resin composition and a molded product which are excellent in mechanical properties and heat resistance and can significantly suppress the generation of air bubbles during painting.
  • the present inventors have made a polycarbonate resin, a rubber-containing graft copolymer, a vinyl-based copolymer, and an ethylene / acrylic ester / maleic anhydride copolymer.
  • a thermoplastic tree composition containing at least one selected from an ethylene / glycidyl methacrylate copolymer and a polyester elastomer, and arrived at the present invention. That is, the present invention is composed of the following (1) to (7).
  • Ethylene / acrylic acid ester / maleic anhydride as the elastomer component (D) with respect to a total of 100 parts by weight of the polycarbonate resin (A), the rubber-containing graft copolymer (B) and the vinyl-based copolymer (C). 1 to 5 parts by weight of at least one selected from a copolymer (D-1), an ethylene / glycidyl methacrylate copolymer (excluding graft copolymers) (D-2), and a polyester elastomer (D-3).
  • a thermoplastic resin composition comprising.
  • thermoplastic resin composition according to (1) or (2) above wherein the average vinyl cyanide content of the vinyl-based copolymer (C) is in the range of 22 to 42% by weight.
  • thermoplastic resin composition according to any one of (1) to (3) above which is used for a molded product for coating.
  • a molded article for coating which comprises the thermoplastic resin composition according to any one of (1) to (4) above.
  • a painted molded product obtained by painting the molded product for painting according to (5) above.
  • An automobile part comprising the thermoplastic resin composition according to any one of (1) to (4) above.
  • thermoplastic resin composition of the present invention it is possible to obtain a molded product having excellent mechanical properties and heat resistance and which can significantly suppress the occurrence of air bubble coating defects.
  • FIG. 1A is a plan view of the flat plate test piece used for the coatability test
  • FIG. 1B is a cross-sectional view taken along the line AA of the flat plate test piece shown in FIG. 1A.
  • the polycarbonate resin (A) used in the present invention is a resin having a repeating structural unit represented by the following general formula (1). n is the number of repeating units.
  • the polycarbonate resin (A) is obtained by reacting an aromatic dihydroxy compound with a carbonate precursor.
  • aromatic dihydroxy compound examples include 2,2-bis (4-hydroxyphenyl) propane (hereinafter, may be referred to as “bisphenol A”), 1,1-bis (4-hydroxyphenyl) ethane, 2, 2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (3-tert) -Butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (3-phenyl-4-hydroxyphenyl) propane, 2,2- Bis (hydroxyaryl) alkanes exemplified by bis (3-cyclohexyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, bis (4-hydroxyphenyl) diphenylmethane and the like.
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • dihydroxydiaryl ethers exemplified by 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, etc .
  • 4,4'-dihydroxydiphenylsulfide 4,4'-dihydroxy- Dihydroxydiarylsulfides exemplified by 3,3'-dimethyldiphenyl sulfide and the like
  • dihydroxydiaryl sulfoxide exemplified by 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide and the like.
  • bis (hydroxyaryl) alkanes are preferable, and bisphenol A is particularly preferable.
  • aromatic dihydroxy compounds one kind or a combination of two or more kinds and copolymerized ones may be used.
  • carbonate precursor to react with the aromatic dihydroxy compound carbonyl halide, carbonate ester, haloformate and the like are used, and specifically, phosgene; diaryl carbonates such as diphenyl carbonate and ditril carbonate; dimethyl carbonate, diethyl carbonate and the like. Dialkyl carbonates; dihaloformates of dihydric phenols and the like can be mentioned. Of these, phosgene is often preferably used. These carbonate precursors may also be used alone or in combination of two or more.
  • the method for producing the polycarbonate resin (A) used in the present invention is not particularly limited, and it can be produced by a conventionally known method.
  • Examples of the production method include an interfacial polymerization method (phosgen method), a melt transesterification method, a solution polymerization method (pyridine method), a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • a manufacturing method by the interfacial polymerization method is illustrated.
  • the pH is usually maintained at 9 or higher to prevent the oxidation of aromatic dihydroxy compounds and, if necessary, molecular weight modifiers (terminal terminators) and aromatic dihydroxy compounds.
  • a polymerization catalyst such as a tertiary amine or a quaternary ammonium salt is added, and interfacial polymerization is carried out to obtain a polycarbonate resin.
  • the addition of the molecular weight modifier is not particularly limited as long as it is between the time of phosgenation and the start of the polymerization reaction.
  • the reaction temperature is, for example, 0 to 40 ° C.
  • the reaction time is, for example, 2 to 5 hours.
  • the organic solvent applicable to the interfacial polymerization is not particularly limited as long as it is inert to the interfacial polymerization reaction, does not mix with water, and can dissolve the polycarbonate resin.
  • examples thereof include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, tetrachloroethane, chloroform, monochlorobenzene and dichlorobenzene, and aromatic hydrocarbons such as benzene, toluene and xylene.
  • the alkaline compound used in the alkaline aqueous solution include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide.
  • Examples of the molecular weight modifier include compounds having a monovalent phenolic hydroxyl group and phenylchloroformates.
  • Examples of the compound having a monovalent phenolic hydroxyl group include m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol and p-long chain alkyl-substituted phenol.
  • the amount of the molecular weight modifier used is preferably 0.1 to 1 mol with respect to 100 mol of the aromatic dihydroxy compound.
  • polymerization catalyst examples include tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, trihexylamine, and pyridine; trimethylbenzylammonium chloride, tetrabutylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride, and tri. Examples thereof include quaternary ammonium salts such as octylmethylammonium chloride.
  • the blending amount of the polycarbonate resin (A) is in the range of 50 to 70 parts by weight. Impact resistance and heat resistance are improved by setting the blending amount of the polycarbonate resin (A) to 50 parts by weight or more, while by setting the blending amount to 70 parts by weight or less, the fluidity is not impaired and the moldability is improved. Excellent.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin (A) is not particularly limited, but is preferably 15,000 or more and 26,000 or less, more preferably 16,000 or more and 25,000 or less. ..
  • Mv is 15,000 or more
  • mechanical properties such as impact resistance and heat resistance are improved
  • Mv is 26,000 or less
  • fluidity is excellent and moldability is improved.
  • the rubbery-containing graft copolymer (B) used in the present invention is at least an aromatic vinyl-based monomer (b) and cyanide in the presence of 40 to 65% by weight of the diene-based rubbery polymer (a). It is obtained by graft-copolymerizing 35 to 60% by weight of a monomer mixture containing a vinyl compound-based monomer (c). By containing the rubbery-containing graft copolymer (B), the impact resistance of the molded product can be improved.
  • the rubber-containing graft copolymer (B) referred to here includes a copolymer obtained by graft-copolymerizing a monomer mixture with a rubber polymer and a copolymer of an ungrafted vinyl-based monomer mixture. It may be.
  • the copolymer of such ungrafted vinyl-based monomer mixture is soluble in acetone.
  • Examples of the diene rubber polymer (a) constituting the rubber-containing graft copolymer (B) include polybutadiene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, and block copolymer of styrene-butadiene. Examples include coalescing and butyl-butadiene copolymers acrylate. These may be used alone or two or more kinds may be used.
  • the glass transition temperature of the diene-based rubbery polymer (a) is preferably 0 ° C. or lower, and the lower limit thereof is practically about ⁇ 80 ° C.
  • polybutadiene is preferably used as the diene-based rubbery polymer (a) from the viewpoint of impact resistance.
  • the weight average particle size of the diene-based rubbery polymer (a) is not particularly limited, but is preferably 0.10 ⁇ m or more, more preferably 0.15 ⁇ m or more, from the viewpoint of further improving the impact resistance of the molded product.
  • the weight average particle size can be measured by a particle size distribution measuring device by a laser diffraction / scattering method obtained by diluting latex of a rubbery polymer with pure water 300 to 500 times.
  • the weight fraction of the diene-based rubbery polymer (a) constituting the rubbery-containing graft copolymer (B) is preferably adjusted in the range of 40 to 65% by weight. Impact resistance is improved by setting the weight fraction of the rubbery polymer to 40% by weight or more, while heat resistance is improved by setting it to 65% by weight or less.
  • aromatic vinyl-based monomer (b) constituting the rubbery-containing graft copolymer (B) examples include styrene, vinyltoluene, o-ethylstyrene, p-methylstyrene, chlorostyrene and bromostyrene. Can be mentioned. These may be used alone or two or more kinds may be used. In the present specification, it is assumed that the aromatic vinyl-based monomer (b) does not contain ⁇ -methylstyrene. Styrene is preferably used from the viewpoint of further improving the fluidity during the molding process.
  • the weight fraction of the aromatic vinyl-based monomer (b) in the rubbery-containing graft copolymer (B) is preferably 26 to 43% by weight. Coloring can be suppressed by setting the weight fraction of the aromatic vinyl monomer (b) to 26% by weight or more, while graft polymerization is likely to proceed and the graft ratio is improved by setting it to 43% by weight or less. , Impact resistance is improved.
  • Examples of the vinyl cyanide-based monomer (c) constituting the rubbery-containing graft copolymer (B) include acrylonitrile, methacrylonitrile, and etacrylonitrile. Two or more of these may be used. In particular, acrylonitrile is preferably used from the viewpoint of impact resistance.
  • the weight fraction of the vinyl cyanide-based monomer (c) in the rubber-containing graft copolymer (B) is preferably 9 to 17% by weight.
  • the rubber-containing graft copolymer (B) in the present invention another copolymerizable monomer may be used to the extent that the effect of the present invention is not lost.
  • copolymerizable monomers include N-phenylmaleimide, N-methylmaleimide, and methyl methacrylate, which can be selected according to their respective purposes. These can be used alone or in plurals. N-Phenylmaleimide is preferable if there is an intention to improve heat resistance and flame retardancy. Further, for the purpose of improving hardness, methyl methacrylate is preferably used.
  • the graft ratio of the rubber-containing graft copolymer (B) is not particularly limited, but the graft ratio is preferably 7 to 40%, more preferably 20 to 28%, still more preferably, from the viewpoint of the balance between impact resistance and heat resistance. Is 22-26%.
  • the graft ratio (%) of the rubber-containing graft copolymer (B) is represented by the following formula.
  • Graft rate (%) ⁇ [Amount of copolymer graft-polymerized on rubber polymer] / [Rubber content of rubber-containing graft copolymer] ⁇ x 100
  • the blending amount of the rubbery-containing graft copolymer (B) is preferably in the range of 10 to 30 parts by weight. Impact resistance is improved by blending the rubber-containing graft copolymer (B) to 10 parts by weight or more, while fluidity and heat resistance are improved by blending 30 parts by weight or less. To do.
  • the vinyl-based copolymer (C) used in the present invention is a copolymer obtained by copolymerizing an aromatic vinyl-based monomer and a vinyl cyanide-based monomer.
  • the aromatic vinyl-based monomer constituting the vinyl-based copolymer (C) is styrene, similarly to the aromatic vinyl-based monomer (b) in the rubbery-containing graft copolymer (B) described above.
  • styrene similarly to the aromatic vinyl-based monomer (b) in the rubbery-containing graft copolymer (B) described above.
  • styrene is particularly preferably used from the viewpoint of fluidity during molding.
  • the vinyl cyanide-based monomer constituting the vinyl-based copolymer (C) is, for example, the same as the vinyl cyanide-based monomer (c) in the rubbery-containing graft copolymer (B) described above.
  • Acrylonitrile, methacrylonitrile, etacrylonitrile and the like may be used alone or in combination of two or more.
  • acrylonitrile is particularly preferably used from the viewpoint of impact resistance.
  • copolymerizable monomers may be used for the vinyl-based copolymer (C) to the extent that the effects of the present invention are not lost.
  • examples of the other copolymerizable monomer include those exemplified as the other copolymerizable monomer constituting the rubbery-containing graft copolymer (B) described above.
  • the weight average molecular weight of the vinyl-based copolymer (C) used in the present invention is preferably 130,000 to 340,000, more preferably 150,000 to 320,000. Further, two or more kinds of vinyl-based copolymers having different molecular weights may be combined. By setting the weight average molecular weight of the vinyl-based copolymer to 130,000 or more, defective bubble coating can be suppressed, and by setting it to 340,000 or less, the moldability is improved without impairing the fluidity.
  • the content of the vinyl cyanide-based monomer contained in the vinyl-based copolymer (C) can have a composition distribution, and the composition distribution may be sharp or broad.
  • the average vinyl cyanide content of the entire composition is preferably 22 to 42% by weight, more preferably 24 to 40% by weight, and particularly preferably 25 to 40% by weight.
  • the average vinyl cyanide content means that it is the vinyl cyanide content of the entire vinyl-based copolymer (C) having a composition distribution, and can be calculated by the following method.
  • Each 1 g of vinyl-based copolymer (C) is formed into a film of about 40 ⁇ m by a heating press and analyzed with a Fourier transform infrared spectrophotometer (“FT / IR4100” manufactured by Nippon Kogaku Co., Ltd.).
  • the composition of the vinyl-based copolymer (C) can be determined from the peak height ratio.
  • the correspondence between each structural unit and the peak is as follows. Structural unit derived from styrene: A peak of 1605 cm -1 attributed to the vibration of the benzene nucleus.
  • Structural unit derived from acrylonitrile 2240 cm -1 peak attributed to -C ⁇ N expansion and contraction.
  • the blending amount of the vinyl-based copolymer (C) is in the range of 10 to 30 parts by weight.
  • the coating property is improved by setting the blending amount of the vinyl copolymer (C) to 10 parts by weight or more, while the impact resistance and fluidity are improved by blending the vinyl copolymer (C) to 30 parts by weight or less.
  • the rubbery-containing graft copolymer (B) and the vinyl-based copolymer (C) for example, bulk polymerization, suspension polymerization, bulk suspension polymerization, solution polymerization, emulsion polymerization, precipitation Polymerization methods such as polymerization can be mentioned, and two or more of these may be combined.
  • the method for charging the monomers constituting each copolymer is not particularly limited, and the monomers may be charged all at once at the initial stage, or the number of monomers may be adjusted in order to adjust the composition distribution of the copolymers to a desired range. It may be prepared in batches.
  • an ethylene / acrylic acid ester is further added as an elastomer component (D) to a total of 100 parts by weight of the polycarbonate resin (A), the rubber-containing graft copolymer (B) and the vinyl-based copolymer (C).
  • / Contains at least one selected from maleic anhydride copolymer (D-1), ethylene / glycidyl methacrylate copolymer (excluding graft copolymer) (D-2), and polyester elastomer (D-3). It is characterized by doing.
  • Examples of ethylene / acrylic acid ester / maleic anhydride copolymer (D-1) include ethylene / ethyl acrylate / maleic anhydride copolymer, ethylene / methyl acrylate / maleic anhydride copolymer, ethylene / Examples thereof include a butyl acrylate / maleic anhydride copolymer.
  • ethylene / methyl acrylate / maleic anhydride copolymer and ethylene / ethyl acrylate / maleic anhydride copolymer are preferable from the viewpoint of suppressing defective bubble coating.
  • these copolymers may be used alone or in combination of two or more.
  • Examples of ethylene / glycidyl methacrylate copolymer (excluding graft copolymer) (D-2) include ethylene / glycidyl methacrylate copolymer, ethylene / glycidyl methacrylate / vinyl acetate copolymer, ethylene / methacryl. Examples thereof include glycidyl acid / acrylic ester copolymer, ethylene / glycidyl acrylate / vinyl acetate copolymer and the like.
  • ethylene / glycidyl methacrylate copolymer and ethylene / glycidyl methacrylate / acrylic acid ester copolymer are preferable from the viewpoint of suppressing defective bubble coating.
  • these copolymers may be used alone or in combination of two or more.
  • the polyester elastomer (D-3) is a polyether ester block copolymer or a polyester ester block copolymer having an aromatic polyester as a hard segment and a poly (alkylene oxide) glycol and / or an aliphatic polyester as a soft segment.
  • Polyester ester / ester block copolymer is a polymer obtained by polycondensing a dicarboxylic acid component and a diol component, which are usually 60 mol% or more, which are terephthalic acid components.
  • aromatic polyester component examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene (terephthalate / isophthalate), polybutylene (terephthalate / isophthalate) and the like.
  • poly (alkylene oxide) glycol and the aliphatic polyester constituting the soft segment here include polyethylene glycol, poly (1,2- and 1,3-propylene oxide) glycol, and poly (tetramethylene oxide).
  • Preferred examples thereof include glycol, a copolymer of ethylene oxide and propylene oxide, a copolymer of ethylene oxide and hydrofuran, polyethylene adipate, polybutylene adipate, poly- ⁇ -caprolactone, polyethylene sebacate, and polybutylene sebacate.
  • the ratio of the polyester hard segment to the soft segment of the polyester elastomer is preferably 95/5 to 10/90 by weight, particularly 90/10 to 30/70.
  • polyester elastomer resin examples include polyethylene terephthalate poly (tetramethylene oxide) glycol block copolymer, polyethylene terephthalate / isophthalate poly (tetramethylene oxide) glycol block copolymer, and polybutylene terephthalate poly (tetramethylene oxide).
  • Glycol block copolymer polybutylene terephthalate / isophthalate poly (tetramethylene oxide) glycol block copolymer, polybutylene terephthalate / decandicarboxylate poly (tetramethylene oxide) glycol block copolymer, polybutylene Terephthalate poly (propylene oxide / ethylene oxide) glycol block copolymer, polybutylene terephthalate / isophthalate poly (propylene oxide / ethylene oxide) glycol block copolymer, polybutylene terephthalate / decandicarboxylate poly (propylene oxide / ethylene oxide) ) Glycol block copolymer, polybutylene terephthalate poly (ethylene oxide) glycol block copolymer and the like are preferably mentioned.
  • polyester elastomer resins polybutylene terephthalate / poly (tetramethylene oxide) glycol block copolymer and polybutylene terephthalate / isophthalate / poly (tetramethylene oxide) glycol are particularly effective from the viewpoint of suppressing air bubble coating defects.
  • Block copolymers are preferably used.
  • the blending amount of the elastomer component (D) is a total of 100 weights of the polycarbonate resin (A), the rubber-containing graft copolymer (B), and the vinyl-based copolymer (C).
  • the range is 1 to 5 parts by weight with respect to the part.
  • thermoplastic resin composition of the present invention includes other thermoplastic resins such as nylon resin and polyester resin, hindered phenol-based, sulfur-containing organic compound-based, and phosphorus-containing organic compound-based, as long as the effects of the present invention are not impaired.
  • Antioxidants such as antioxidants, heat stabilizers such as phenols and acrylates, UV absorbers such as benzotriazoles, benzophenones and salicylates, light stabilizers such as organic nickels and hindered amines, plasticizers, lubricants and drips.
  • Liquids such as inhibitor, mold release agent, antistatic agent, pigments and dyes, water, silicone oil, and liquid phenol can also be added.
  • fillers can be blended.
  • the filler include those having a fibrous, plate-like, powder-like, and granular shape, and any of them may be used in the present invention.
  • PAN polyacrylonitrile
  • PAN polyacrylonitrile
  • metal fibers such as aluminum fibers and brass fibers
  • organic fibers such as aromatic polyamide fibers
  • gypsum fibers ceramic fibers
  • asbestos fibers and zirconia.
  • Fibrous or whisker-like fillers such as fibers, alumina fibers, silica fibers, titanium oxide fibers, silicon carbide fibers, glass fibers, rock wool, potassium titanate whisker, barium titanate whisker, aluminum borate whisker, silicon nitride whisker, etc.
  • Powders such as mica, talc, kaolin, silica, calcium carbonate, glass flakes, glass beads, glass microballoons, clay, molybdenum disulfide, wallastenite, montmorillonite, titanium oxide, zinc oxide, barium sulfate, calcium polyphosphate, graphite, etc.
  • Granular or plate-shaped fillers and the like can be mentioned. These may be used alone or two or more kinds may be used.
  • the thermoplastic resin composition can be obtained by melting and mixing each of the constituent resin components.
  • the melt-mixing method is not particularly limited, but a heating device, a cylinder having a vent, and a method of melt-mixing using a single-screw or biaxial screw can be adopted.
  • the heating temperature during melt mixing is preferably selected from the temperature range of 230 to 300 ° C., but the temperature gradient during melt mixing can be freely set within a range that does not impair the object of the present invention. is there. Further, when a biaxial screw is used, the same rotation direction or different rotation directions may be used.
  • thermoplastic resin composition of the present invention can be molded by a known method such as injection molding, extrusion molding, blow molding, vacuum forming, compression molding, gas assist molding and the like. Although not particularly limited, it is preferably molded by injection molding.
  • the cylinder temperature during injection molding is preferably in the temperature range of 230 to 270 ° C.
  • the mold temperature is preferably in the temperature range of 30 to 80 ° C.
  • a painted molded product having a coating layer By applying a coating to the surface of the obtained molded product, a painted molded product having a coating layer can be obtained.
  • This painted molded product suppresses the generation of air bubbles during painting and has an excellent painted appearance.
  • thermoplastic resin composition of the present invention a molded product having excellent mechanical properties and heat resistance and capable of suppressing the occurrence of air bubble coating defects can be obtained. Therefore, housings for OA equipment, home appliances and the like and their parts It can be suitably used for painting parts such as automobile parts. In particular, it is extremely useful for painting interior parts such as instrument panels, center consoles, center clusters, and navigation panels, which are automobile parts, and exterior parts such as rear spoilers, garnishes, and roof rails.
  • Weight average particle size of rubber polymer The weight average particle size of rubber polymer is determined by diluting and dispersing the rubber polymer with an aqueous medium, and using a laser scattering diffraction method particle size distribution measuring device “LS 13 320” ( The volume average particle size was measured by Beckman Coulter Co., Ltd.).
  • Weight average molecular weight of vinyl-based copolymer (C) For the vinyl-based copolymer obtained in each reference example, a differential refractometer was used as a detector using a gel permeation chromatography (GPC) apparatus manufactured by Water. (Water2414), using Polymer Laboratories MIXED-B (2 bottles) as the column, and acetone as the distillate, the weight average molecular weight in terms of polystyrene (PS) under the conditions of a flow velocity of 1 ml / min and a column temperature of 40 ° C. It was measured.
  • GPC gel permeation chromatography
  • MFR Melt flow rate
  • Heat resistance Thermal deformation temperature Measured in accordance with ISO75-2 (2013) (measured under 1.8 MPa conditions). The test piece was obtained by molding a multipurpose test piece type A1 specified in JIS K 7139 (2009) using an injection molding machine in which the cylinder temperature was set to 250 ° C. and the mold temperature was set to 60 ° C. When the thermal deformation temperature is 100 ° C. or higher, the heat resistance is good.
  • Impact resistance A multipurpose test specified in JIS K 7139 using an injection molding machine in which the cylinder temperature is set to 250 ° C. and the mold temperature is set to 60 ° C. from the pellets obtained in each Example and Comparative Example.
  • the Charpy impact strength was measured in accordance with ISO179 / 1eA (2012) using a type B2 test piece obtained by molding a piece type A1 and cutting it out. When the Charpy impact strength is 35 kJ / m 2 or more, the impact resistance is good.
  • FIGS. 1 (a) and 1 (b) Paintability (poor bubble coating of molded products with edges)
  • FIGS. 1 (a) and 1 (b) is a cross-sectional view taken along the line AA of the flat plate test piece).
  • a two-component acrylic urethane resin paint (urethane PG60, manufactured by Kansai Paint Co., Ltd.) was applied to one side of the flat plate test piece using a spray gun with a coating thickness of 30 ⁇ m, and then 30 with a hot air dryer set at a temperature of 80 ° C. Allowed to dry for minutes. The number of air bubbles generated on the surface of the painted molded product after drying was counted, and a score of 1 point (inferior) to 5 points (excellent) was given according to the following index. It should be noted that 2 points or less are practically at a level at which it can be judged that painting without measures against bubble generation such as annealing is impossible.
  • a mixed solution of 33% by weight of acrylonitrile, 67% by weight of styrene, 0.22% by weight of t-dodecyl mercaptan, and 0.30% by weight of 2,2'-azobisisobutynitrile was added with stirring in the reaction system.
  • the copolymerization reaction was started at 70 ° C.
  • a vinyl-based copolymer (C-1) is prepared by raising the temperature to 100 ° C. over 3 hours from the start of the copolymerization, holding the slurry for 30 minutes, and then washing, dehydrating, and drying the slurry obtained by cooling. did.
  • the weight average molecular weight of the vinyl-based copolymer (C-1) measured with an acetone solvent (temperature 40 ° C.) was 200,000.
  • the average vinyl cyanide content was 30.5% by weight.
  • (C-2) A vinyl-based copolymer (C-1) was subjected to the same process as the vinyl-based copolymer (C-1) except that acrylonitrile was 27% by weight, styrene was 73% by weight, and t-dodecyl mercaptan was 0.25% by weight.
  • C-2) was prepared.
  • the weight average molecular weight of the vinyl-based copolymer (C-2) measured in an acetone solvent (temperature 40 ° C.) was 150,000, and the average vinyl cyanide content was 25.4% by weight.
  • C-3) A vinyl-based copolymer (C-1) by the same process as the vinyl-based copolymer (C-1) except that acrylonitrile is 45% by weight, styrene is 55% by weight, and t-dodecyl mercaptan is 0.25% by weight. C-3) was prepared.
  • the weight average molecular weight of the vinyl-based copolymer (C-3) measured in an acetone solvent (temperature 40 ° C.) was 150,000, and the average vinyl cyanide content was 40.0% by weight.
  • C-4 A vinyl-based copolymer (C-1) was subjected to the same process as the vinyl-based copolymer (C-1) except that acrylonitrile was 27% by weight, styrene was 73% by weight, and t-dodecyl mercaptan was 0.15% by weight. C-4) was prepared.
  • the weight average molecular weight of the vinyl-based copolymer (C-4) measured in an acetone solvent (temperature 40 ° C.) was 320,000, and the average vinyl cyanide content was 25.5% by weight.
  • C-5) A vinyl-based copolymer (C-1) by the same process as the vinyl-based copolymer (C-1) except that acrylonitrile is 45% by weight, styrene is 55% by weight, and t-dodecyl mercaptan is 0.15% by weight. C-5) was prepared.
  • the weight average molecular weight of the vinyl-based copolymer (C-5) measured in an acetone solvent (temperature 40 ° C.) was 320,000, and the average vinyl cyanide content was 40.7% by weight.
  • C-6 A vinyl-based copolymer (C-6) by the same process as the vinyl-based copolymer (C-1) except that acrylonitrile is 27% by weight, styrene is 73% by weight, and t-dodecyl mercaptan is 0.30% by weight. C-6) was prepared.
  • the weight average molecular weight of the vinyl-based copolymer (C-6) measured in an acetone solvent (temperature 40 ° C.) was 130,000, and the average vinyl cyanide content was 25.4% by weight.
  • C-7) A vinyl-based copolymer (C-1) was subjected to the same process as the vinyl-based copolymer (C-1) except that acrylonitrile was 24% by weight, styrene was 76% by weight, and t-dodecyl mercaptan was 0.25% by weight. C-7) was prepared.
  • the weight average molecular weight of the vinyl-based copolymer (C-7) measured in an acetone solvent (temperature 40 ° C.) was 150,000, and the average vinyl cyanide content was 24.0% by weight.
  • C-8 A vinyl-based copolymer (C-1) by the same process as the vinyl-based copolymer (C-1) except that acrylonitrile is 27% by weight, styrene is 73% by weight, and t-dodecyl mercaptan is 0.010% by weight. C-8) was prepared.
  • the weight average molecular weight of the vinyl-based copolymer (C-8) measured in an acetone solvent (temperature 40 ° C.) was 340,000, and the average vinyl cyanide content was 25.4% by weight.
  • C-9 A vinyl-based copolymer (C-1) by the same process as the vinyl-based copolymer (C-1) except that acrylonitrile is 45% by weight, styrene is 55% by weight, and t-dodecyl mercaptan is 0.25% by weight. C-9) was prepared.
  • the weight average molecular weight of the vinyl-based copolymer (C-9) measured in an acetone solvent (temperature 40 ° C.) was 150,000, and the average vinyl cyanide content was 40.7% by weight.
  • Examples 1 to 21, Comparative Examples 1 to 9 The polycarbonate resin (A), rubber-containing graft copolymer (B), vinyl-based copolymer (C), and ethylene / acrylic acid ester / maleic anhydride copolymer (D-1) as the elastomer component (D). , Ethylene / glycidyl methacrylate copolymer (D-2) and polyester elastomer (D-3) are blended in parts by weight shown in Tables 1, 2 and 3 and further manufactured by ADEKA Co., Ltd. as an antioxidant. 0.1 part by weight of "Adecaster” 135A was added and mixed at 23 ° C.
  • thermoplastic resin composition After the pellets of the obtained thermoplastic resin composition are dried in a box-shaped hot air dryer set at 100 ° C. for 3 hours or more, various types are used at a cylinder temperature of 250 ° C. and a mold temperature of 60 ° C. using an injection molding machine. Specimens were prepared and various evaluations were carried out. The results of the examples are shown in Tables 1 and 2, and the results of the comparative examples are shown in Table 3.
  • thermoplastic resin compositions of the present invention are all excellent in fluidity, heat resistance, impact resistance and coating property.
  • Comparative Example 1 since the amount of the polycarbonate resin (A) was small, the heat resistance and impact resistance were low, and in Comparative Example 2, the amount of the polycarbonate resin (A) was too large, so that the fluidity was low and molding was performed. Bad sex. Comparative Example 3 has a low impact resistance because the amount of the rubber-containing graft copolymer (B) is small, and Comparative Example 4 has a large amount of the rubber-containing graft copolymer (B), so that it has heat resistance. Is low. In Comparative Example 5, since the amount of the vinyl copolymer (C) blended is small, the fluidity and coatability are low.
  • Comparative Example 6 is inferior in coatability because the ethylene / glycidyl methacrylate copolymer (excluding the graft copolymer) (D-2), which is the elastomer component (D), is not blended.
  • Comparative Examples 7 to 9 have low heat resistance because the amount of the elastomer components (D-1 to D-3) is too large.
  • thermoplastic resin composition of the present invention it is possible to obtain a thermoplastic resin composition and a molded product which are excellent in mechanical properties and heat resistance and can significantly suppress the generation of air bubbles during painting. Taking advantage of such characteristics, it can be suitably used for painted parts such as automobile exteriors and interiors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention pertains to a thermoplastic resin composition that contains 50-70 parts by weight of a polycarbonate resin (A), 10-30 parts by weight of a specific rubber-containing graft copolymer (B), and 10-30 parts by weight of a specific vinyl copolymer (C), the thermoplastic resin composition also containing 1-5 parts by weight of a specific elastomer component (D) per 100 total parts by weight of the resin (A), the copolymer (B), and the copolymer (C).

Description

熱可塑性樹脂組成物および塗装成形品Thermoplastic resin composition and paint molded product
 本発明は、機械特性、耐熱性に優れ、塗装不良が大幅に低減できる熱可塑性樹脂組成物およびその塗装成形品に関するものである。 The present invention relates to a thermoplastic resin composition which is excellent in mechanical properties and heat resistance and can significantly reduce coating defects, and a coated molded product thereof.
 ポリカーボネート樹脂は、耐熱性、耐衝撃性に優れていることから、自動車分野、家電分野、OA機器分野、建材分野をはじめとする多岐の分野にわたって幅広く使用されている。しかしながら、ポリカーボネート樹脂単体では、射出成形時の成形加工性、めっきや塗装等の二次加工性に劣るため、ポリカーボネート樹脂の欠点を補う目的で、ABS樹脂等のゴム強化スチレン樹脂とアロイ化することが知られている。 Polycarbonate resin has excellent heat resistance and impact resistance, so it is widely used in a wide range of fields including the fields of automobiles, home appliances, OA equipment, and building materials. However, since the polycarbonate resin alone is inferior in molding processability at the time of injection molding and secondary processability such as plating and painting, alloying with a rubber-reinforced styrene resin such as ABS resin is performed for the purpose of compensating for the drawbacks of the polycarbonate resin. It has been known.
 ABS樹脂やPC/ABS樹脂は、特に自動車分野において、内外装部品の塗装に供されることが多く、その塗装工程において「ワキ」と呼ばれる気泡状の塗装不良が発生することがある。気泡状塗装不良は成形時の残留ひずみと密接な関係があり、塗料のシンナーが浸透した際にひずみ部でクラックを生じ、そのクラックを介してシンナーが揮発することで気泡状の不良を生じると考えられている。気泡の発生対策として塗装前の成形品をアニール処理し、残留ひずみを除去する等の対策が知られているが、このアニール処理には専用の設備が必要となるため、コスト増の理由から、アニールが不要となる材料が望まれていた。 ABS resin and PC / ABS resin are often used for painting interior and exterior parts, especially in the field of automobiles, and bubble-like coating defects called "armpits" may occur in the coating process. Bubble-like coating defects are closely related to residual strain during molding, and when the thinner of the paint penetrates, cracks occur in the strained part, and the thinner volatilizes through the cracks, causing bubble-like defects. It is considered. As a countermeasure against the generation of air bubbles, measures such as annealing the molded product before painting to remove residual strain are known, but this annealing treatment requires dedicated equipment, so for the reason of cost increase, A material that does not require annealing has been desired.
 塗装性を向上させる技術として、例えば特許文献1には高シアン化ビニル共重合体を使用することで塗装不良の一種である「吸い込み」が抑制できることが示されている。また、特許文献2には低シアン化ビニル共重合体を使用することで流動性が向上することが示されている。さらに、特許文献3では、耐熱ABSにエチレン/(メタ)アクリル酸エステル/一酸化炭素共重合体を添加することで、気泡発生が抑制されることが示されている。 As a technique for improving coatability, for example, Patent Document 1 shows that "suction", which is a kind of poor coating, can be suppressed by using a high vinyl cyanide copolymer. Further, Patent Document 2 shows that the fluidity is improved by using a low vinyl cyanide copolymer. Further, Patent Document 3 shows that the generation of bubbles is suppressed by adding an ethylene / (meth) acrylic acid ester / carbon monoxide copolymer to the heat-resistant ABS.
日本国特開2019-6920号公報Japanese Patent Application Laid-Open No. 2019-6920 日本国特開2015-168814号公報Japanese Patent Application Laid-Open No. 2015-168814 日本国特開2012-36384号公報Japanese Patent Application Laid-Open No. 2012-36384
 しかしながら、特許文献1及び2に記載の技術では気泡発生の抑制には不十分であった。
 また、特許文献3に記載の技術では、気泡発生の抑制にはある程度効果があるものの、射出成形工程において金型からの離型時に成形品が表層剥離するという課題があった。
However, the techniques described in Patent Documents 1 and 2 are insufficient for suppressing the generation of bubbles.
Further, although the technique described in Patent Document 3 is effective in suppressing the generation of air bubbles to some extent, there is a problem that the molded product is peeled off from the surface layer at the time of mold release from the mold in the injection molding process.
 本発明は、機械特性、耐熱性に優れ、かつ塗装時の気泡発生を大幅に抑制できる熱可塑性樹脂組成物および成形品を提供することを課題とする。 An object of the present invention is to provide a thermoplastic resin composition and a molded product which are excellent in mechanical properties and heat resistance and can significantly suppress the generation of air bubbles during painting.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、ポリカーボネート樹脂、ゴム質含有グラフト共重合体、ビニル系共重合体にエチレン/アクリル酸エステル/無水マレイン酸共重合体、エチレン/メタクリル酸グリシジル共重合体、ポリエステルエラストマーから選択される少なくとも一種を含有する熱可塑性樹組成物とすることにより、上記課題を解決できることを見出し本発明に到達した。すなわち、本発明は以下の(1)~(7)で構成される。
(1)ポリカーボネート樹脂(A)を50~70重量部、
 ジエン系ゴム質重合体(a)40~65重量%の存在下に、少なくとも芳香族ビニル系単量体(b)およびシアン化ビニル系単量体(c)を含有する単量体混合物35~60重量%をグラフト共重合してなるゴム質含有グラフト共重合体(B)を10~30重量部、
 芳香族ビニル系単量体とシアン化ビニル系単量体を共重合してなるビニル系共重合体(C)を10~30重量部含有してなり、
 前記ポリカーボネート樹脂(A)とゴム質含有グラフト共重合体(B)とビニル系共重合体(C)の合計100重量部に対し、さらにエラストマー成分(D)としてエチレン/アクリル酸エステル/無水マレイン酸共重合体(D-1)、エチレン/メタクリル酸グリシジル共重合体(グラフト共重合体を除く)(D-2)、ポリエステルエラストマー(D-3)から選択される少なくとも一種を1~5重量部を含有してなる熱可塑性樹脂組成物。
(2)前記ビニル系共重合体(C)の重量平均分子量が130,000~340,000の範囲である上記(1)に記載の熱可塑性樹脂組成物。
(3)前記ビニル系共重合体(C)の平均シアン化ビニル含有率が22~42重量%の範囲である上記(1)または(2)に記載の熱可塑性樹脂組成物。
(4)塗装用成形品に用いられる上記(1)~(3)のいずれかに記載の熱可塑性樹脂組成物。
(5)上記(1)~(4)のいずれかに記載の熱可塑性樹脂組成物からなる塗装用成形品。
(6)上記(5)に記載の塗装用成形品が塗装されてなる塗装成形品。
(7)上記(1)~(4)のいずれかに記載の熱可塑性樹脂組成物からなる自動車部品。
As a result of diligent studies to solve the above problems, the present inventors have made a polycarbonate resin, a rubber-containing graft copolymer, a vinyl-based copolymer, and an ethylene / acrylic ester / maleic anhydride copolymer. We have found that the above problems can be solved by preparing a thermoplastic tree composition containing at least one selected from an ethylene / glycidyl methacrylate copolymer and a polyester elastomer, and arrived at the present invention. That is, the present invention is composed of the following (1) to (7).
(1) 50 to 70 parts by weight of the polycarbonate resin (A),
Diene-based rubbery polymer (a) A monomer mixture 35 to containing at least an aromatic vinyl-based monomer (b) and a vinyl cyanide-based monomer (c) in the presence of 40 to 65% by weight. 10 to 30 parts by weight of a rubbery-containing graft copolymer (B) obtained by graft-copolymerizing 60% by weight.
It contains 10 to 30 parts by weight of a vinyl copolymer (C) obtained by copolymerizing an aromatic vinyl monomer and a vinyl cyanide monomer.
Ethylene / acrylic acid ester / maleic anhydride as the elastomer component (D) with respect to a total of 100 parts by weight of the polycarbonate resin (A), the rubber-containing graft copolymer (B) and the vinyl-based copolymer (C). 1 to 5 parts by weight of at least one selected from a copolymer (D-1), an ethylene / glycidyl methacrylate copolymer (excluding graft copolymers) (D-2), and a polyester elastomer (D-3). A thermoplastic resin composition comprising.
(2) The thermoplastic resin composition according to (1) above, wherein the weight average molecular weight of the vinyl copolymer (C) is in the range of 130,000 to 340,000.
(3) The thermoplastic resin composition according to (1) or (2) above, wherein the average vinyl cyanide content of the vinyl-based copolymer (C) is in the range of 22 to 42% by weight.
(4) The thermoplastic resin composition according to any one of (1) to (3) above, which is used for a molded product for coating.
(5) A molded article for coating, which comprises the thermoplastic resin composition according to any one of (1) to (4) above.
(6) A painted molded product obtained by painting the molded product for painting according to (5) above.
(7) An automobile part comprising the thermoplastic resin composition according to any one of (1) to (4) above.
 本発明の熱可塑性樹脂組成物によれば、機械特性、耐熱性に優れ、かつ気泡状塗装不良の発生を大幅に抑制できる成形品を得ることができる。また、塗装不良の抑制のみならず、従来気泡発生として実施されていたアニール処理のための設備費用削減、工程削減が可能となり、塗装成形品としてのトータルコストダウンを可能とする。 According to the thermoplastic resin composition of the present invention, it is possible to obtain a molded product having excellent mechanical properties and heat resistance and which can significantly suppress the occurrence of air bubble coating defects. In addition to suppressing coating defects, it is possible to reduce equipment costs and processes for annealing treatment, which was conventionally performed as bubble generation, and it is possible to reduce the total cost of painted molded products.
図1(a)は、塗装性試験に用いた平板試験片の平面図であり、図1(b)は、図1(a)に示す平板試験片の矢視A-A断面図である。FIG. 1A is a plan view of the flat plate test piece used for the coatability test, and FIG. 1B is a cross-sectional view taken along the line AA of the flat plate test piece shown in FIG. 1A.
 以下、本発明の熱可塑性樹脂組成物とその成形品について、具体的に説明する。
 本発明に用いられるポリカーボネート樹脂(A)とは、下記一般式(1)で表される繰り返し構造単位を有する樹脂である。nは繰り返し単位数である。
Hereinafter, the thermoplastic resin composition of the present invention and a molded product thereof will be specifically described.
The polycarbonate resin (A) used in the present invention is a resin having a repeating structural unit represented by the following general formula (1). n is the number of repeating units.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ポリカーボネート樹脂(A)は、芳香族ジヒドロキシ化合物と、カーボネート前駆体との反応によって得られる。 The polycarbonate resin (A) is obtained by reacting an aromatic dihydroxy compound with a carbonate precursor.
 芳香族ジヒドロキシ化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」と記載することがある。)、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン等で例示されるビス(ヒドロキシアリール)アルカン類;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等で例示されるビス(ヒドロキシアリール)シクロアルカン類;9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等で例示されるカルド構造含有ビスフェノール類;4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル等で例示されるジヒドロキシジアリールエーテル類;4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等で例示されるジヒドロキシジアリールスルフィド類;4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等で例示されるジヒドロキシジアリールスルホキシド類;4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等で例示されるジヒドロキシジアリールスルホン類;ハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル等が挙げられる。 Examples of the aromatic dihydroxy compound include 2,2-bis (4-hydroxyphenyl) propane (hereinafter, may be referred to as “bisphenol A”), 1,1-bis (4-hydroxyphenyl) ethane, 2, 2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (3-tert) -Butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (3-phenyl-4-hydroxyphenyl) propane, 2,2- Bis (hydroxyaryl) alkanes exemplified by bis (3-cyclohexyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, bis (4-hydroxyphenyl) diphenylmethane and the like. With 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, etc. Exemplified bis (hydroxyaryl) cycloalkans; cardo structure-containing bisphenol exemplified by 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene and the like. Classes; dihydroxydiaryl ethers exemplified by 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, etc .; 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxy- Dihydroxydiarylsulfides exemplified by 3,3'-dimethyldiphenyl sulfide and the like; dihydroxydiaryl sulfoxide exemplified by 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide and the like. Classes; dihydroxydiarylsulfones exemplified by 4,4'-dihydroxydiphenylsulfone, 4,4′-dihydroxy-3,3′-dimethyldiphenylsulfone, etc .; hydroquinone, resorcin, 4,4′-dihydroxydiphenyl and the like. Be done.
 これらの中で好ましいのは、ビス(ヒドロキシアリール)アルカン類であり、特に好ましいのは、ビスフェノールAである。これらの芳香族ジヒドロキシ化合物は、1種類でも2種類以上を組み合わせ、共重合されたものを用いてもよい。 Of these, bis (hydroxyaryl) alkanes are preferable, and bisphenol A is particularly preferable. As these aromatic dihydroxy compounds, one kind or a combination of two or more kinds and copolymerized ones may be used.
 芳香族ジヒドロキシ化合物と反応させるカーボネート前駆体としては、カルボニルハライド、カーボネートエステル、ハロホルメート等が使用され、具体的にはホスゲン;ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;二価フェノールのジハロホルメート等が挙げられる。中でもホスゲンが好ましく用いられることが多い。これらカーボネート前駆体もまた1種類でも2種類以上を組み合わせて用いてもよい。 As the carbonate precursor to react with the aromatic dihydroxy compound, carbonyl halide, carbonate ester, haloformate and the like are used, and specifically, phosgene; diaryl carbonates such as diphenyl carbonate and ditril carbonate; dimethyl carbonate, diethyl carbonate and the like. Dialkyl carbonates; dihaloformates of dihydric phenols and the like can be mentioned. Of these, phosgene is often preferably used. These carbonate precursors may also be used alone or in combination of two or more.
 本発明で使用するポリカーボネート樹脂(A)の製造方法は、特に限定されるものではなく、従来から知られている方法によって製造することができる。製造方法としては、界面重合法(ホスゲン法)、溶融エステル交換法、溶液重合法(ピリジン法)、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法等を挙げることができる。 The method for producing the polycarbonate resin (A) used in the present invention is not particularly limited, and it can be produced by a conventionally known method. Examples of the production method include an interfacial polymerization method (phosgen method), a melt transesterification method, a solution polymerization method (pyridine method), a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
 代表的な製造方法として界面重合法による製造方法を例示する。反応に不活性な有機溶媒、アルカリ水溶液の存在下で、通常pHを9以上に保ち、芳香族ジヒドロキシ化合物、ならびに必要に応じて分子量調整剤(末端停止剤)及び芳香族ジヒドロキシ化合物の酸化防止のための酸化防止剤を用い、ホスゲンと反応させた後、第三級アミン又は第四級アンモニウム塩等の重合触媒を添加し、界面重合を行うことによってポリカーボネート樹脂を得る。分子量調節剤の添加はホスゲン化時から重合反応開始時までの間であれば特に限定されない。なお反応温度は例えば、0~40℃で、反応時間は例えば2~5時間である。 As a typical manufacturing method, a manufacturing method by the interfacial polymerization method is illustrated. In the presence of an organic solvent that is inert to the reaction and an alkaline aqueous solution, the pH is usually maintained at 9 or higher to prevent the oxidation of aromatic dihydroxy compounds and, if necessary, molecular weight modifiers (terminal terminators) and aromatic dihydroxy compounds. After reacting with phosgen using an antioxidant for this purpose, a polymerization catalyst such as a tertiary amine or a quaternary ammonium salt is added, and interfacial polymerization is carried out to obtain a polycarbonate resin. The addition of the molecular weight modifier is not particularly limited as long as it is between the time of phosgenation and the start of the polymerization reaction. The reaction temperature is, for example, 0 to 40 ° C., and the reaction time is, for example, 2 to 5 hours.
 ここで、界面重合に適用できる有機溶媒としては、界面重合反応に不活性であり、水と混ざり合わず、ポリカーボネート樹脂を溶解することができれば特に制限されるものではない。例えば、ジクロロメタン、1,2-ジクロロエタン、テトラクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。またアルカリ水溶液に用いられるアルカリ化合物としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物が挙げられる。 Here, the organic solvent applicable to the interfacial polymerization is not particularly limited as long as it is inert to the interfacial polymerization reaction, does not mix with water, and can dissolve the polycarbonate resin. Examples thereof include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, tetrachloroethane, chloroform, monochlorobenzene and dichlorobenzene, and aromatic hydrocarbons such as benzene, toluene and xylene. Examples of the alkaline compound used in the alkaline aqueous solution include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide.
 分子量調節剤としては、一価のフェノール性水酸基を有する化合物やフェニルクロロフォルメートが挙げられる。一価のフェノール性水酸基を有する化合物としては、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、p-tert-ブチルフェノール及びp-長鎖アルキル置換フェノール等が挙げられる。分子量調節剤の使用量は、芳香族ジヒドロキシ化合物100モルに対して、好ましくは0.1~1モルである。
 重合触媒としては、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン、ピリジン等の第三級アミン類;トリメチルベンジルアンモニウムクロライド、テトラブチルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド、トリオクチルメチルアンモニウムクロライド等の第四級アンモニウム塩等が挙げられる。
Examples of the molecular weight modifier include compounds having a monovalent phenolic hydroxyl group and phenylchloroformates. Examples of the compound having a monovalent phenolic hydroxyl group include m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol and p-long chain alkyl-substituted phenol. The amount of the molecular weight modifier used is preferably 0.1 to 1 mol with respect to 100 mol of the aromatic dihydroxy compound.
Examples of the polymerization catalyst include tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, trihexylamine, and pyridine; trimethylbenzylammonium chloride, tetrabutylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride, and tri. Examples thereof include quaternary ammonium salts such as octylmethylammonium chloride.
 本発明の熱可塑性樹脂組成物において、ポリカーボネート樹脂(A)の配合量は、50~70重量部の範囲である。ポリカーボネート樹脂(A)の配合量を50重量部以上とすることで耐衝撃性と耐熱性が向上し、一方、配合量を70重量部以下とすることで、流動性を損なわず、成形性に優れる。 In the thermoplastic resin composition of the present invention, the blending amount of the polycarbonate resin (A) is in the range of 50 to 70 parts by weight. Impact resistance and heat resistance are improved by setting the blending amount of the polycarbonate resin (A) to 50 parts by weight or more, while by setting the blending amount to 70 parts by weight or less, the fluidity is not impaired and the moldability is improved. Excellent.
 本発明において、ポリカーボネート樹脂(A)の粘度平均分子量(Mv)は、特に制限は無いが、好ましくは15,000以上、26,000以下、より好ましくは16,000以上、25,000以下である。Mvを15,000以上とすることで、耐衝撃性などの機械特性、耐熱性が向上し、一方、Mvを26,000以下とすることで流動性に優れ、成形性が向上する。 In the present invention, the viscosity average molecular weight (Mv) of the polycarbonate resin (A) is not particularly limited, but is preferably 15,000 or more and 26,000 or less, more preferably 16,000 or more and 25,000 or less. .. When Mv is 15,000 or more, mechanical properties such as impact resistance and heat resistance are improved, while when Mv is 26,000 or less, fluidity is excellent and moldability is improved.
 本明細書において、ポリカーボネート樹脂(A)の粘度平均分子量(Mv)は、次の方法により求めることができる。まず、塩化メチレン100mlにポリカーボネート樹脂(A)0.7gを20℃で溶解した溶液(濃度c=0.7)から、オストワルド粘度計を用いて、次式にて算出される比粘度(ηSP)を求める。
 比粘度(ηSP)=(t-t)/t
  [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
 続いて、求められた比粘度(ηSP)から次のSchnellの式により粘度平均分子量Mvを算出することができる。
 ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
 [η]=1.23×10-4Mv0.83
In the present specification, the viscosity average molecular weight (Mv) of the polycarbonate resin (A) can be determined by the following method. First, the specific viscosity (ηSP) calculated by the following formula from a solution (concentration c = 0.7) in which 0.7 g of polycarbonate resin (A) is dissolved in 100 ml of methylene chloride at 20 ° C. using an Ostwald viscometer. Ask for.
Specific viscosity (η SP ) = (tt 0 ) / t 0
[T 0 is the number of seconds for methylene chloride to fall, t is the number of seconds for the sample solution to fall]
Subsequently, the viscosity average molecular weight Mv can be calculated from the obtained specific viscosity (η SP ) by the following Schnell's formula.
η SP / c = [η] + 0.45 × [η] 2 c (where [η] is the ultimate viscosity)
[Η] = 1.23 × 10 -4 Mv 0.83
 本発明に用いられるゴム質含有グラフト共重合体(B)とは、ジエン系ゴム質重合体(a)40~65重量%の存在下に、少なくとも芳香族ビニル系単量体(b)およびシアン化ビニル系単量体(c)を含有する単量体混合物35~60重量%をグラフト共重合して得られるものである。かかるゴム質含有グラフト共重合体(B)を含有することにより、成形品の耐衝撃性を向上させることができる。ここでいうゴム質含有グラフト共重合体(B)とは、ゴム質重合体に単量体混合物をグラフト共重合したものの他に、グラフトしていないビニル系単量体混合物の共重合体を含んでもよい。かかるグラフトしていないビニル系単量体混合物の共重合体は、アセトンに溶解する。 The rubbery-containing graft copolymer (B) used in the present invention is at least an aromatic vinyl-based monomer (b) and cyanide in the presence of 40 to 65% by weight of the diene-based rubbery polymer (a). It is obtained by graft-copolymerizing 35 to 60% by weight of a monomer mixture containing a vinyl compound-based monomer (c). By containing the rubbery-containing graft copolymer (B), the impact resistance of the molded product can be improved. The rubber-containing graft copolymer (B) referred to here includes a copolymer obtained by graft-copolymerizing a monomer mixture with a rubber polymer and a copolymer of an ungrafted vinyl-based monomer mixture. It may be. The copolymer of such ungrafted vinyl-based monomer mixture is soluble in acetone.
 ゴム質含有グラフト共重合体(B)を構成するジエン系ゴム質重合体(a)としては、例えば、ポリブタジエン、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、スチレン-ブタジエンのブロック共重合体およびアクリル酸ブチル-ブタジエン共重合体などが挙げられる。これらを単独で用いても、2種以上を用いてもよい。 Examples of the diene rubber polymer (a) constituting the rubber-containing graft copolymer (B) include polybutadiene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, and block copolymer of styrene-butadiene. Examples include coalescing and butyl-butadiene copolymers acrylate. These may be used alone or two or more kinds may be used.
 ジエン系ゴム質重合体(a)のガラス転移温度は0℃以下が好ましく、その下限値は実用上-80℃程度である。本発明においては、ジエン系ゴム質重合体(a)としては、耐衝撃性の観点からポリブタジエンが好ましく用いられる。 The glass transition temperature of the diene-based rubbery polymer (a) is preferably 0 ° C. or lower, and the lower limit thereof is practically about −80 ° C. In the present invention, polybutadiene is preferably used as the diene-based rubbery polymer (a) from the viewpoint of impact resistance.
 ジエン系ゴム質重合体(a)の重量平均粒子径は、特に制限しないが、成形品の耐衝撃性をより向上させる観点から、0.10μm以上が好ましく、0.15μm以上がより好ましい。ここで、重量平均粒子径は、ゴム質重合体のラテックスを純水にて300~500倍に希釈し、レーザー回析・散乱法による粒子径分布測定装置により測定することができる。 The weight average particle size of the diene-based rubbery polymer (a) is not particularly limited, but is preferably 0.10 μm or more, more preferably 0.15 μm or more, from the viewpoint of further improving the impact resistance of the molded product. Here, the weight average particle size can be measured by a particle size distribution measuring device by a laser diffraction / scattering method obtained by diluting latex of a rubbery polymer with pure water 300 to 500 times.
 ゴム質含有グラフト共重合体(B)を構成するジエン系ゴム質重合体(a)の重量分率は、40~65重量%の範囲で調整することが好ましい。ゴム質重合体の重量分率を40重量%以上とすることで耐衝撃性が向上し、一方、65重量%以下とすることで耐熱性が向上する。 The weight fraction of the diene-based rubbery polymer (a) constituting the rubbery-containing graft copolymer (B) is preferably adjusted in the range of 40 to 65% by weight. Impact resistance is improved by setting the weight fraction of the rubbery polymer to 40% by weight or more, while heat resistance is improved by setting it to 65% by weight or less.
 ゴム質含有グラフト共重合体(B)を構成する芳香族ビニル系単量体(b)としては、例えば、スチレン、ビニルトルエン、o-エチルスチレン、p-メチルスチレン、クロロスチレンおよびブロモスチレンなどが挙げられる。これらを単独で用いても、2種以上を用いてもよい。なお本明細書において、芳香族ビニル系単量体(b)はαメチルスチレンを含まないものとする。成形加工時の流動性をより向上させる観点から、スチレンが好ましく用いられる。 Examples of the aromatic vinyl-based monomer (b) constituting the rubbery-containing graft copolymer (B) include styrene, vinyltoluene, o-ethylstyrene, p-methylstyrene, chlorostyrene and bromostyrene. Can be mentioned. These may be used alone or two or more kinds may be used. In the present specification, it is assumed that the aromatic vinyl-based monomer (b) does not contain α-methylstyrene. Styrene is preferably used from the viewpoint of further improving the fluidity during the molding process.
 ゴム質含有グラフト共重合体(B)における芳香族ビニル系単量体(b)の重量分率は、好ましくは26~43重量%である。芳香族ビニル系単量体(b)の重量分率を26重量%以上とすることで着色を抑制でき、一方、43重量%以下とすることでグラフト重合が進行しやすく、グラフト率が向上し、耐衝撃性が向上する。 The weight fraction of the aromatic vinyl-based monomer (b) in the rubbery-containing graft copolymer (B) is preferably 26 to 43% by weight. Coloring can be suppressed by setting the weight fraction of the aromatic vinyl monomer (b) to 26% by weight or more, while graft polymerization is likely to proceed and the graft ratio is improved by setting it to 43% by weight or less. , Impact resistance is improved.
 ゴム質含有グラフト共重合体(B)を構成するシアン化ビニル系単量体(c)としては、例えば、アクリロニトリル、メタクリロニトリルおよびエタクリロニトリルなどが挙げられる。これらを2種以上用いてもよい。特に耐衝撃性の観点からアクリロニトリルが好ましく用いられる。 Examples of the vinyl cyanide-based monomer (c) constituting the rubbery-containing graft copolymer (B) include acrylonitrile, methacrylonitrile, and etacrylonitrile. Two or more of these may be used. In particular, acrylonitrile is preferably used from the viewpoint of impact resistance.
 ゴム質含有グラフト共重合体(B)におけるシアン化ビニル系単量体(c)の重量分率は、好ましくは9~17重量%である。シアン化ビニル系単量体(c)の重量分率を9重量%以上とすることでグラフト重合が進行しやすく、グラフト率が向上し、耐衝撃性が向上でき、一方、17重量%以下とすることで着色を抑制できる。 The weight fraction of the vinyl cyanide-based monomer (c) in the rubber-containing graft copolymer (B) is preferably 9 to 17% by weight. By setting the weight fraction of the vinyl cyanide-based monomer (c) to 9% by weight or more, graft polymerization can easily proceed, the graft ratio can be improved, and the impact resistance can be improved, while 17% by weight or less. By doing so, coloring can be suppressed.
 また、本発明におけるゴム質含有グラフト共重合体(B)には、本発明の効果を失わない程度に他の共重合可能な単量体を用いてもよい。他の共重合可能な単量体としては、例えば、N-フェニルマレイミド、N-メチルマレイミドおよびメタクリル酸メチルなどが挙げられ、それぞれの目的に応じて選択することができる。これらは単独でも複数でも用いることが可能である。耐熱性や難燃性を向上させる意図があれば、N-フェニルマレイミドが好ましい。また、硬度を向上させる目的であれば、メタクリル酸メチルが好ましく用いられる。 Further, as the rubber-containing graft copolymer (B) in the present invention, another copolymerizable monomer may be used to the extent that the effect of the present invention is not lost. Examples of other copolymerizable monomers include N-phenylmaleimide, N-methylmaleimide, and methyl methacrylate, which can be selected according to their respective purposes. These can be used alone or in plurals. N-Phenylmaleimide is preferable if there is an intention to improve heat resistance and flame retardancy. Further, for the purpose of improving hardness, methyl methacrylate is preferably used.
 ゴム質含有グラフト共重合体(B)のグラフト率は特に制限はないが、耐衝撃性と耐熱性のバランスから、グラフト率は7~40%が好ましく、より好ましくは20~28%、さらに好ましくは22~26%である。なお、ゴム質含有グラフト共重合体(B)のグラフト率(%)は、次式で示される。 The graft ratio of the rubber-containing graft copolymer (B) is not particularly limited, but the graft ratio is preferably 7 to 40%, more preferably 20 to 28%, still more preferably, from the viewpoint of the balance between impact resistance and heat resistance. Is 22-26%. The graft ratio (%) of the rubber-containing graft copolymer (B) is represented by the following formula.
 グラフト率(%)={[ゴム質重合体にグラフト重合した共重合体量]/[ゴム質含有グラフト共重合体のゴム質含有量]}×100 Graft rate (%) = {[Amount of copolymer graft-polymerized on rubber polymer] / [Rubber content of rubber-containing graft copolymer]} x 100
 本発明の熱可塑性樹脂組成物において、ゴム質含有グラフト共重合体(B)の配合量は、10~30重量部の範囲が好ましい。ゴム質含有グラフト共重合体(B)の配合量を10重量部以上とすることで耐衝撃性が向上し、一方、配合量を30重量部以下とすることで、流動性や耐熱性が向上する。 In the thermoplastic resin composition of the present invention, the blending amount of the rubbery-containing graft copolymer (B) is preferably in the range of 10 to 30 parts by weight. Impact resistance is improved by blending the rubber-containing graft copolymer (B) to 10 parts by weight or more, while fluidity and heat resistance are improved by blending 30 parts by weight or less. To do.
 本発明に用いられるビニル系共重合体(C)は、芳香族ビニル系単量体およびシアン化ビニル系単量体を共重合してなる共重合体である。 The vinyl-based copolymer (C) used in the present invention is a copolymer obtained by copolymerizing an aromatic vinyl-based monomer and a vinyl cyanide-based monomer.
 ビニル系共重合体(C)を構成する芳香族ビニル系単量体としては、前述のゴム質含有グラフト共重合体(B)での芳香族ビニル系単量体(b)と同様に、スチレン、α-メチルスチレン、ビニルトルエン、o-エチルスチレン、p-メチルスチレン、クロロスチレン、ブロモスチレンなどが挙げられる。これらは単独で使用しても、複数種を併用して使用してもよい。これらの中で特に成形時の流動性の観点からスチレンが好ましく採用される。 The aromatic vinyl-based monomer constituting the vinyl-based copolymer (C) is styrene, similarly to the aromatic vinyl-based monomer (b) in the rubbery-containing graft copolymer (B) described above. , Α-Methylstyrene, vinyltoluene, o-ethylstyrene, p-methylstyrene, chlorostyrene, bromostyrene and the like. These may be used alone or in combination of two or more. Of these, styrene is particularly preferably used from the viewpoint of fluidity during molding.
 ビニル系共重合体(C)を構成するシアン化ビニル系単量体としては、前述のゴム質含有グラフト共重合体(B)でのシアン化ビニル系単量体(c)と同様に、例えば、アクリロニトリル、メタクリロニトリルおよびエタクリロニトリルなどが挙げられる。これらは単独で使用しても、複数種を併用して使用してもよい。これらの中で特に耐衝撃性の観点からアクリロニトリルが好ましく採用される。 The vinyl cyanide-based monomer constituting the vinyl-based copolymer (C) is, for example, the same as the vinyl cyanide-based monomer (c) in the rubbery-containing graft copolymer (B) described above. , Acrylonitrile, methacrylonitrile, etacrylonitrile and the like. These may be used alone or in combination of two or more. Of these, acrylonitrile is particularly preferably used from the viewpoint of impact resistance.
 また、ビニル系共重合体(C)には、上記以外にも本発明の効果を失わない程度に他の共重合可能な単量体を用いてもよい。共重合可能な他の単量体としては、前述のゴム質含有グラフト共重合体(B)を構成する共重合可能な他の単量体として例示したものが挙げられる。 In addition to the above, other copolymerizable monomers may be used for the vinyl-based copolymer (C) to the extent that the effects of the present invention are not lost. Examples of the other copolymerizable monomer include those exemplified as the other copolymerizable monomer constituting the rubbery-containing graft copolymer (B) described above.
 本発明に用いられるビニル系共重合体(C)の重量平均分子量は、130,000~340,000が好ましく、150,000~320,000がより好ましい。また、分子量の異なる2種以上のビニル系共重合体を組み合わせてもよい。ビニル系共重合体の重量平均分子量を130,000以上とすることで、気泡状塗装不良を抑制でき、また340,000以下とすることで流動性を損なうことなく、成形性が向上する。 The weight average molecular weight of the vinyl-based copolymer (C) used in the present invention is preferably 130,000 to 340,000, more preferably 150,000 to 320,000. Further, two or more kinds of vinyl-based copolymers having different molecular weights may be combined. By setting the weight average molecular weight of the vinyl-based copolymer to 130,000 or more, defective bubble coating can be suppressed, and by setting it to 340,000 or less, the moldability is improved without impairing the fluidity.
 また、ビニル系共重合体(C)に含まれるシアン化ビニル系単量体の含有率は組成分布を持つことができ、その組成分布はシャープでもブロードでも良い。組成全体の平均シアン化ビニル含有率は、22~42重量%が好ましく、24~40重量%がより好ましく、25~40重量%が特に好ましい。ビニル系共重合体(C)の平均シアン化ビニル含有率を22重量%以上とすることで、気泡状塗装不良を抑制でき、また42重量%以下とすることでポリカーボネート樹脂(A)との相溶性が損なわれず、耐衝撃性が向上する。
 なお、平均シアン化ビニル含有率とは、組成分布を持つビニル系共重合体(C)全体のシアン化ビニル含有率であることを意味し、以下の方法により算出できる。
 ビニル系共重合体(C)1gを加熱プレスにより40μm程度のフィルム状にし、フーリエ変換赤外分光光度計(日本光学株式会社製、“FT/IR4100”)で分析して得られるチャートに現れる各ピークの高さの比から、ビニル系共重合体(C)の組成を求めることができる。各構造単位とピークとの対応関係は次の通りである。
 スチレン由来の構造単位:ベンゼン核の振動に帰属される1605cm-1のピーク。
 アクリロニトリル由来の構造単位:-C≡N伸縮に帰属される2240cm-1のピーク。
Further, the content of the vinyl cyanide-based monomer contained in the vinyl-based copolymer (C) can have a composition distribution, and the composition distribution may be sharp or broad. The average vinyl cyanide content of the entire composition is preferably 22 to 42% by weight, more preferably 24 to 40% by weight, and particularly preferably 25 to 40% by weight. By setting the average vinyl cyanide content of the vinyl-based copolymer (C) to 22% by weight or more, defective air bubble coating can be suppressed, and by setting it to 42% by weight or less, the phase with the polycarbonate resin (A) Impact resistance is improved without impairing solubility.
The average vinyl cyanide content means that it is the vinyl cyanide content of the entire vinyl-based copolymer (C) having a composition distribution, and can be calculated by the following method.
Each 1 g of vinyl-based copolymer (C) is formed into a film of about 40 μm by a heating press and analyzed with a Fourier transform infrared spectrophotometer (“FT / IR4100” manufactured by Nippon Kogaku Co., Ltd.). The composition of the vinyl-based copolymer (C) can be determined from the peak height ratio. The correspondence between each structural unit and the peak is as follows.
Structural unit derived from styrene: A peak of 1605 cm -1 attributed to the vibration of the benzene nucleus.
Structural unit derived from acrylonitrile: 2240 cm -1 peak attributed to -C≡N expansion and contraction.
 本発明の熱可塑性樹脂組成物において、ビニル系共重合体(C)の配合量は、10~30重量部の範囲である。ビニル系共重合体(C)の配合量を10重量部以上とすることで塗装性が向上し、一方、配合量を30重量部以下とすることで、耐衝撃性や流動性が向上する。 In the thermoplastic resin composition of the present invention, the blending amount of the vinyl-based copolymer (C) is in the range of 10 to 30 parts by weight. The coating property is improved by setting the blending amount of the vinyl copolymer (C) to 10 parts by weight or more, while the impact resistance and fluidity are improved by blending the vinyl copolymer (C) to 30 parts by weight or less.
 本発明において、ゴム質含有グラフト共重合体(B)、ビニル系共重合体(C)の製造方法としては、例えば、塊状重合、懸濁重合、塊状懸濁重合、溶液重合、乳化重合、沈殿重合などの重合方法が挙げられ、これらを2種以上組み合わせてもよい。各共重合体を構成する単量体の仕込み方法も特に制限はなく、初期に一括して仕込んでもよいし、共重合体の組成分布を所望の範囲に調整するために、単量体を数回に分けて仕込んでもよい。 In the present invention, as a method for producing the rubbery-containing graft copolymer (B) and the vinyl-based copolymer (C), for example, bulk polymerization, suspension polymerization, bulk suspension polymerization, solution polymerization, emulsion polymerization, precipitation Polymerization methods such as polymerization can be mentioned, and two or more of these may be combined. The method for charging the monomers constituting each copolymer is not particularly limited, and the monomers may be charged all at once at the initial stage, or the number of monomers may be adjusted in order to adjust the composition distribution of the copolymers to a desired range. It may be prepared in batches.
 本発明では前記ポリカーボネート樹脂(A)とゴム質含有グラフト共重合体(B)とビニル系共重合体(C)の合計100重量部に対し、さらにエラストマー成分(D)として、エチレン/アクリル酸エステル/無水マレイン酸共重合体(D-1)、エチレン/メタクリル酸グリシジル共重合体(グラフト共重合体を除く)(D-2)、ポリエステルエラストマー(D-3)から選択される少なくとも一種を含有することを特徴とする。 In the present invention, an ethylene / acrylic acid ester is further added as an elastomer component (D) to a total of 100 parts by weight of the polycarbonate resin (A), the rubber-containing graft copolymer (B) and the vinyl-based copolymer (C). / Contains at least one selected from maleic anhydride copolymer (D-1), ethylene / glycidyl methacrylate copolymer (excluding graft copolymer) (D-2), and polyester elastomer (D-3). It is characterized by doing.
 エチレン/アクリル酸エステル/無水マレイン酸共重合体(D-1)の例としては、エチレン/アクリル酸エチル/無水マレイン酸共重合体、エチレン/アクリル酸メチル/無水マレイン酸共重合体、エチレン/アクリル酸ブチル/無水マレイン酸共重合体などが挙げられる。これらの中でも、気泡状塗装不良の抑制の観点から、エチレン/アクリル酸メチル/無水マレイン酸共重合体、エチレン/アクリル酸エチル/無水マレイン酸共重合体が好ましい。また、これらの共重合体は、単独、あるいは2種類以上を併用してもよい。 Examples of ethylene / acrylic acid ester / maleic anhydride copolymer (D-1) include ethylene / ethyl acrylate / maleic anhydride copolymer, ethylene / methyl acrylate / maleic anhydride copolymer, ethylene / Examples thereof include a butyl acrylate / maleic anhydride copolymer. Among these, ethylene / methyl acrylate / maleic anhydride copolymer and ethylene / ethyl acrylate / maleic anhydride copolymer are preferable from the viewpoint of suppressing defective bubble coating. In addition, these copolymers may be used alone or in combination of two or more.
 エチレン/メタクリル酸グリシジル共重合体(グラフト共重合体を除く)(D-2)の例としては、エチレン/メタクリル酸グリシジル共重合体、エチレン/メタクリル酸グリシジル/酢酸ビニル共重合体、エチレン/メタクリル酸グリシジル/アクリル酸エステル共重合体、エチレン/アクリル酸グリシジル/酢酸ビニル共重合体などが挙げられる。これらの中でも、気泡状塗装不良の抑制の観点から、エチレン/メタクリル酸グリシジル共重合体、エチレン/メタクリル酸グリシジル/アクリル酸エステル共重合体が好ましい。また、これらの共重合体は、単独、あるいは2種類以上を併用してもよい。 Examples of ethylene / glycidyl methacrylate copolymer (excluding graft copolymer) (D-2) include ethylene / glycidyl methacrylate copolymer, ethylene / glycidyl methacrylate / vinyl acetate copolymer, ethylene / methacryl. Examples thereof include glycidyl acid / acrylic ester copolymer, ethylene / glycidyl acrylate / vinyl acetate copolymer and the like. Among these, ethylene / glycidyl methacrylate copolymer and ethylene / glycidyl methacrylate / acrylic acid ester copolymer are preferable from the viewpoint of suppressing defective bubble coating. In addition, these copolymers may be used alone or in combination of two or more.
 ポリエステルエラストマー(D-3)としては、芳香族ポリエステルをハードセグメントとし、ポリ(アルキレンオキシド)グリコールおよび/又は脂肪族ポリエステルをソフトセグメントとするポリエーテルエステルブロック共重合体、ポリエステル・エステルブロック共重合体、ポリエーテルエステル・エステルブロック共重合体が挙げられる。ここでハードセグメントを構成する芳香族ポリエステルとは、通常60モル%以上がテレフタル酸成分であるジカルボン酸成分とジオール成分を縮重合して得られる重合体である。 The polyester elastomer (D-3) is a polyether ester block copolymer or a polyester ester block copolymer having an aromatic polyester as a hard segment and a poly (alkylene oxide) glycol and / or an aliphatic polyester as a soft segment. , Polyester ester / ester block copolymer. Here, the aromatic polyester constituting the hard segment is a polymer obtained by polycondensing a dicarboxylic acid component and a diol component, which are usually 60 mol% or more, which are terephthalic acid components.
 芳香族ポリエステル成分の具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン(テレフタレート/イソフタレート)、ポリブチレン(テレフタレート/イソフタレート)などが好ましく挙げられる。
 また、ここでソフトセグメントを構成するポリ(アルキレンオキシド)グリコールおよび脂肪族ポリエステルの具体例としては、ポリエチレングリコール、ポリ(1,2-および1,3-プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、エチレンオキシドとヒドロフランの共重合体、ポリエチレンアジペート、ポリブチレンアジペート、ポリ-ε-カプロラクトン、ポリエチレンセバケート、ポリブチレンセバケートなどが好ましく挙げられる。
Specific examples of the aromatic polyester component include polyethylene terephthalate, polybutylene terephthalate, polyethylene (terephthalate / isophthalate), polybutylene (terephthalate / isophthalate) and the like.
Specific examples of the poly (alkylene oxide) glycol and the aliphatic polyester constituting the soft segment here include polyethylene glycol, poly (1,2- and 1,3-propylene oxide) glycol, and poly (tetramethylene oxide). Preferred examples thereof include glycol, a copolymer of ethylene oxide and propylene oxide, a copolymer of ethylene oxide and hydrofuran, polyethylene adipate, polybutylene adipate, poly-ε-caprolactone, polyethylene sebacate, and polybutylene sebacate.
 ポリエステルエラストマーのポリエステルハードセグメント対ソフトセグメントの占める割合は、重量比で95/5~10/90、特に90/10~30/70であることが好ましい。 The ratio of the polyester hard segment to the soft segment of the polyester elastomer is preferably 95/5 to 10/90 by weight, particularly 90/10 to 30/70.
 ポリエステルエラストマー樹脂の具体例としては、ポリエチレンテレフタレート・ポリ(テトラメチレンオキシド)グリコールブロック共重合体、ポリエチレンテレフタレート/イソフタレート・ポリ(テトラメチレンオキシド)グリコールブロック共重合体、ポリブチレンテレフタレート・ポリ(テトラメチレンオキシド)グリコールブロック共重合体、ポリブチレンテレフタレート/イソフタレート・ポリ(テトラメチレンオキシド)グリコールブロック共重合体、ポリブチレンテレフタレート/デカンジカルボキシレート・ポリ(テトラメチレンオキシド)グリコールブロック共重合体、ポリブチレンテレフタレート・ポリ(プロピレンオキシド/エチレンオキシド)グリコールブロック共重合体、ポリブチレンテレフタレート/イソフタレート・ポリ(プロピレンオキシド/エチレンオキシド)グリコールブロック共重合体、ポリブチレンテレフタレート/デカンジカルボキシレート・ポリ(プロピレンオキシド/エチレンオキシド)グリコールブロック共重合体、ポリブチレンテレフタレート・ポリ(エチレンオキシド)グリコールブロック共重合体などが好ましく挙げられる。 Specific examples of the polyester elastomer resin include polyethylene terephthalate poly (tetramethylene oxide) glycol block copolymer, polyethylene terephthalate / isophthalate poly (tetramethylene oxide) glycol block copolymer, and polybutylene terephthalate poly (tetramethylene oxide). Oxide) Glycol block copolymer, polybutylene terephthalate / isophthalate poly (tetramethylene oxide) glycol block copolymer, polybutylene terephthalate / decandicarboxylate poly (tetramethylene oxide) glycol block copolymer, polybutylene Terephthalate poly (propylene oxide / ethylene oxide) glycol block copolymer, polybutylene terephthalate / isophthalate poly (propylene oxide / ethylene oxide) glycol block copolymer, polybutylene terephthalate / decandicarboxylate poly (propylene oxide / ethylene oxide) ) Glycol block copolymer, polybutylene terephthalate poly (ethylene oxide) glycol block copolymer and the like are preferably mentioned.
 これらのポリエステルエラストマー樹脂のなかでも、気泡状塗装不良の抑制の観点から、特にポリブチレンテレフタレート・ポリ(テトラメチレンオキシド)グリコールブロック共重合体、ポリブチレンテレフタレート/イソフタレート・ポリ(テトラメチレンオキシド)グリコールブロック共重合体が好ましく用いられる。 Among these polyester elastomer resins, polybutylene terephthalate / poly (tetramethylene oxide) glycol block copolymer and polybutylene terephthalate / isophthalate / poly (tetramethylene oxide) glycol are particularly effective from the viewpoint of suppressing air bubble coating defects. Block copolymers are preferably used.
 本発明の熱可塑性樹脂組成物において、エラストマー成分(D)の配合量は、前記ポリカーボネート樹脂(A)とゴム質含有グラフト共重合体(B)とビニル系共重合体(C)の合計100重量部に対し、1~5重量部の範囲である。エラストマー成分(D)の配合量を1重量部以上とすることで、気泡状塗装不良が抑制でき、5重量部以下とすることで、耐熱性が向上する。 In the thermoplastic resin composition of the present invention, the blending amount of the elastomer component (D) is a total of 100 weights of the polycarbonate resin (A), the rubber-containing graft copolymer (B), and the vinyl-based copolymer (C). The range is 1 to 5 parts by weight with respect to the part. By setting the blending amount of the elastomer component (D) to 1 part by weight or more, defective bubble coating can be suppressed, and by setting it to 5 parts by weight or less, heat resistance is improved.
 本発明の熱可塑性樹脂組成物には、本発明の効果を損なわない範囲で、ナイロン樹脂やポリエステル樹脂などの他の熱可塑性樹脂、ヒンダードフェノール系、含硫黄有機化合物系、含リン有機化合物系などの酸化防止剤、フェノール系、アクリレート系などの熱安定剤、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系などの紫外線吸収剤、有機ニッケル系、ヒンダードアミン系などの光安定剤、可塑剤、滑剤、ドリップ防止剤、離型剤、帯電防止剤、顔料および染料、水やシリコーンオイル、流動パラフィンなどの液体を配合することもできる。 The thermoplastic resin composition of the present invention includes other thermoplastic resins such as nylon resin and polyester resin, hindered phenol-based, sulfur-containing organic compound-based, and phosphorus-containing organic compound-based, as long as the effects of the present invention are not impaired. Antioxidants such as antioxidants, heat stabilizers such as phenols and acrylates, UV absorbers such as benzotriazoles, benzophenones and salicylates, light stabilizers such as organic nickels and hindered amines, plasticizers, lubricants and drips. Liquids such as inhibitor, mold release agent, antistatic agent, pigments and dyes, water, silicone oil, and liquid phenol can also be added.
 また、各種充填材を配合することもできる。
 充填材としては、繊維状、板状、粉末状、粒状などの形状のものが挙げられ、本発明においてはいずれを用いてもよい。具体的には、ポリアクリロニトリル(PAN)系やピッチ系の炭素繊維、ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維、芳香族ポリアミド繊維などの有機繊維、石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、ガラス繊維、ロックウール、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ホウ酸アルミニウムウィスカー、窒化ケイ素ウィスカーなどの繊維状またはウィスカー状充填材、マイカ、タルク、カオリン、シリカ、炭酸カルシウム、ガラスフレーク、ガラスビーズ、ガラスマイクロバルーン、クレー、二硫化モリブデン、ワラステナイト、モンモリロナイト、酸化チタン、酸化亜鉛、硫酸バリウム、ポリリン酸カルシウム、グラファイトなどの粉状、粒状または板状の充填材などが挙げられる。これらを単独で用いても、2種以上を用いてもよい。
Further, various fillers can be blended.
Examples of the filler include those having a fibrous, plate-like, powder-like, and granular shape, and any of them may be used in the present invention. Specifically, polyacrylonitrile (PAN) -based and pitch-based carbon fibers, stainless fibers, metal fibers such as aluminum fibers and brass fibers, organic fibers such as aromatic polyamide fibers, gypsum fibers, ceramic fibers, asbestos fibers, and zirconia. Fibrous or whisker-like fillers such as fibers, alumina fibers, silica fibers, titanium oxide fibers, silicon carbide fibers, glass fibers, rock wool, potassium titanate whisker, barium titanate whisker, aluminum borate whisker, silicon nitride whisker, etc. Powders such as mica, talc, kaolin, silica, calcium carbonate, glass flakes, glass beads, glass microballoons, clay, molybdenum disulfide, wallastenite, montmorillonite, titanium oxide, zinc oxide, barium sulfate, calcium polyphosphate, graphite, etc. Granular or plate-shaped fillers and the like can be mentioned. These may be used alone or two or more kinds may be used.
 熱可塑性樹脂組成物は、構成する各樹脂成分を溶融混合して得ることができる。溶融混合方法に関しては、特に制限は無いが、加熱装置、ベントを有するシリンダーで単軸または2軸のスクリューを使用して溶融混合する方法などが採用可能である。溶融混合の際の加熱温度は、好ましくは230~300℃の温度範囲から選択されるが、本発明の目的を損なわない範囲で、溶融混合時の温度勾配等を自由に設定することも可能である。また、2軸のスクリューを用いる場合は、同一回転方向でも異回転方向でも良い。 The thermoplastic resin composition can be obtained by melting and mixing each of the constituent resin components. The melt-mixing method is not particularly limited, but a heating device, a cylinder having a vent, and a method of melt-mixing using a single-screw or biaxial screw can be adopted. The heating temperature during melt mixing is preferably selected from the temperature range of 230 to 300 ° C., but the temperature gradient during melt mixing can be freely set within a range that does not impair the object of the present invention. is there. Further, when a biaxial screw is used, the same rotation direction or different rotation directions may be used.
 本発明の熱可塑性樹脂組成物は、射出成形、押出成形、ブロー成形、真空成形、圧縮成形、ガスアシスト成形などの公知の方法によって成形することができる。特に制限されるものではないが、好ましくは、射出成形により成形される。射出成形時のシリンダー温度は230~270℃の温度範囲が好ましく、金型温度は30~80℃の温度範囲が好ましい。 The thermoplastic resin composition of the present invention can be molded by a known method such as injection molding, extrusion molding, blow molding, vacuum forming, compression molding, gas assist molding and the like. Although not particularly limited, it is preferably molded by injection molding. The cylinder temperature during injection molding is preferably in the temperature range of 230 to 270 ° C., and the mold temperature is preferably in the temperature range of 30 to 80 ° C.
 得られた成形品の表面に塗装を施すことにより、塗装層を有する塗装成形品を得ることができる。この塗装成形品は、塗装時の気泡の発生が抑制され、塗装外観が優れる。 By applying a coating to the surface of the obtained molded product, a painted molded product having a coating layer can be obtained. This painted molded product suppresses the generation of air bubbles during painting and has an excellent painted appearance.
 本発明の熱可塑性樹脂組成物によれば、機械特性、耐熱性に優れ、気泡状塗装不良の発生を抑制できる成形品を得ることができるため、OA機器、家電機器などのハウジングおよびそれらの部品類、自動車部品などの塗装用部品に好適に用いることができる。特に、自動車部品であるインストルメントパネル、センターコンソール、センタークラスター、ナビパネルなどに代表される内装部品や、リヤスポイラー、ガーニッシュ、ルーフレールなどに代表される外装部品の塗装用途には極めて有用である。 According to the thermoplastic resin composition of the present invention, a molded product having excellent mechanical properties and heat resistance and capable of suppressing the occurrence of air bubble coating defects can be obtained. Therefore, housings for OA equipment, home appliances and the like and their parts It can be suitably used for painting parts such as automobile parts. In particular, it is extremely useful for painting interior parts such as instrument panels, center consoles, center clusters, and navigation panels, which are automobile parts, and exterior parts such as rear spoilers, garnishes, and roof rails.
 本発明をさらに具体的に説明するため、以下に実施例を挙げるが、これらの実施例は本発明を何ら制限するものではない。ここで特に断りのない限り「%」は重量%を表し、「部」は重量部を表す。 In order to explain the present invention more concretely, examples are given below, but these examples do not limit the present invention in any way. Here, unless otherwise specified, "%" represents% by weight, and "part" represents parts by weight.
 まず、各実施例および比較例における評価方法を以下に説明する。
(1)ゴム質重合体の重量平均粒子径
 ゴム質重合体の重量平均粒子径は、ゴム質重合体を水媒体で希釈、分散させ、レーザー散乱回折法粒度分布測定装置“LS 13 320”(ベックマン・コールター株式会社製)により体積平均粒子径を測定した。
First, the evaluation method in each Example and Comparative Example will be described below.
(1) Weight average particle size of rubber polymer The weight average particle size of rubber polymer is determined by diluting and dispersing the rubber polymer with an aqueous medium, and using a laser scattering diffraction method particle size distribution measuring device “LS 13 320” ( The volume average particle size was measured by Beckman Coulter Co., Ltd.).
(2)ゴム質含有グラフト共重合体(B)のグラフト率
 ゴム質含有グラフト共重合体の所定量(m;約1g)にアセトン200mlを加え、70℃の温度の湯浴中で3時間還流した。この溶液を8800r/m(10000G)で40分間遠心分離した後、不溶分を濾過した。この不溶分を60℃の温度で5時間減圧乾燥し、その重量(n)を測定した。グラフト率は、下記式より算出した。ここでLは、ゴム質含有グラフト共重合体のゴム質含有量である。
 グラフト率(%)={[(n)-((m)×L)]/[(m)×L]}×100
(2) Graft rate of rubber-containing graft copolymer (B) 200 ml of acetone is added to a predetermined amount (m; about 1 g) of the rubber-containing graft copolymer, and reflux is carried out in a hot water bath at a temperature of 70 ° C. for 3 hours. did. The solution was centrifuged at 8800 r / m (10000 G) for 40 minutes and then the insoluble material was filtered. This insoluble matter was dried under reduced pressure at a temperature of 60 ° C. for 5 hours, and its weight (n) was measured. The graft ratio was calculated from the following formula. Here, L is the rubber content of the rubber-containing graft copolymer.
Graft rate (%) = {[(n)-((m) x L)] / [(m) x L]} x 100
(3)ビニル系共重合体(C)の重量平均分子量
 各参考例により得られたビニル系共重合体について、Water社製ゲルパーミエーションクロマトグラフィー(GPC)装置を用い、検出器として示差屈折計(Water2414)、カラムとしてポリマーラボラトリーズ社製MIXED-B(2本)、留出液としてアセトンを用いて、流速1ml/min、カラム温度40℃の条件で、ポリスチレン(PS)換算の重量平均分子量を測定した。
(3) Weight average molecular weight of vinyl-based copolymer (C) For the vinyl-based copolymer obtained in each reference example, a differential refractometer was used as a detector using a gel permeation chromatography (GPC) apparatus manufactured by Water. (Water2414), using Polymer Laboratories MIXED-B (2 bottles) as the column, and acetone as the distillate, the weight average molecular weight in terms of polystyrene (PS) under the conditions of a flow velocity of 1 ml / min and a column temperature of 40 ° C. It was measured.
(4)ビニル系共重合体(C)における平均シアン化ビニル含有率
 各参考例により得られたビニル系共重合体(C)1gを加熱プレスにより40μm程度のフィルム状にし、フーリエ変換赤外分光光度計(日本光学株式会社製、“FT/IR4100”)で分析して得られたチャートに現れた各ピークの高さの比から平均シアン化ビニル含有率を求めた。各構造単位とピークとの対応関係は次の通りである。
 スチレン由来の構造単位:ベンゼン核の振動に帰属される1605cm-1のピーク。
 アクリロニトリル由来の構造単位:-C≡N伸縮に帰属される2240cm-1のピーク。
(4) Average vinyl cyanide content in vinyl-based copolymer (C) 1 g of vinyl-based copolymer (C) obtained in each reference example was formed into a film of about 40 μm by heating and pressing, and Fourier transform infrared spectroscopy was performed. The average vinyl cyanide content was determined from the ratio of the heights of each peak appearing in the chart obtained by analysis with a photometric meter (manufactured by Nippon Kogaku Co., Ltd., "FT / IR4100"). The correspondence between each structural unit and the peak is as follows.
Structural unit derived from styrene: A peak of 1605 cm -1 attributed to the vibration of the benzene nucleus.
Structural unit derived from acrylonitrile: 2240 cm -1 peak attributed to -C≡N expansion and contraction.
(5)流動性(メルトフローレート(MFR))
 ISO1133(2011年)(温度:240℃、荷重:98N)に準拠してMFRを測定した。
 MFRが20g/10分以上であれば、流動性が良好である。
(5) Liquidity (melt flow rate (MFR))
MFR was measured according to ISO1133 (2011) (temperature: 240 ° C., load: 98N).
When the MFR is 20 g / 10 minutes or more, the fluidity is good.
(6)耐熱性
 熱変形温度:ISO75-2(2013年)(1.8MPa条件で測定)に準拠して測定した。試験片は、シリンダー温度を250℃、金型温度を60℃に設定した射出成形機を用いて、JIS K 7139(2009年)に規定される多目的試験片タイプA1を成形して得た。
 熱変形温度が100℃以上であれば、耐熱性が良好である。
(6) Heat resistance Thermal deformation temperature: Measured in accordance with ISO75-2 (2013) (measured under 1.8 MPa conditions). The test piece was obtained by molding a multipurpose test piece type A1 specified in JIS K 7139 (2009) using an injection molding machine in which the cylinder temperature was set to 250 ° C. and the mold temperature was set to 60 ° C.
When the thermal deformation temperature is 100 ° C. or higher, the heat resistance is good.
(7)耐衝撃性
 各実施例および比較例により得られたペレットから、シリンダー温度を250℃、金型温度を60℃に設定した射出成形機を用いて、JIS K 7139に規定される多目的試験片タイプA1を成形し、これを切り出したタイプB2試験片を用いて、ISO179/1eA(2012年)に準拠してシャルピー衝撃強さを測定した。
 シャルピー衝撃強さが35kJ/m以上であれば、耐衝撃性が良好である。
(7) Impact resistance A multipurpose test specified in JIS K 7139 using an injection molding machine in which the cylinder temperature is set to 250 ° C. and the mold temperature is set to 60 ° C. from the pellets obtained in each Example and Comparative Example. The Charpy impact strength was measured in accordance with ISO179 / 1eA (2012) using a type B2 test piece obtained by molding a piece type A1 and cutting it out.
When the Charpy impact strength is 35 kJ / m 2 or more, the impact resistance is good.
(8)塗装性(エッジ付成形品の気泡状塗装不良)
 図1(a),(b)に模式的に示す、長手方向の両端に角度45°のエッジを有する幅70mm、長さ150mm、厚さ3mmの平板試験片を使用した(図1(a)は、平板試験片の平面図、図1(b)は、平板試験片の矢視A-A断面図である。)。平板試験片の片面にスプレーガンを用いて2液アクリルウレタン樹脂系塗料(ウレタンPG60、関西ペイント(株)製)を塗膜厚み30μmで塗装した後、温度80℃に設定した熱風乾燥機で30分間乾燥させた。乾燥後の塗装成形品表面に発生した気泡数をカウントし、以下の指標にて1点(劣)~5点(優)の点数付けを行った。なお、2点以下は実用上、アニールなどの気泡発生対策なしでの塗装は不可と判断できるレベルである。
5点:気泡発生なし(優)
4点:気泡発生数が1~10個(良)
3点:気泡発生数が11~30個(可)
2点:気泡発生数が31~100個(不可)
1点:気泡発生数が100個以上(不可)
(8) Paintability (poor bubble coating of molded products with edges)
A flat plate test piece having a width of 70 mm, a length of 150 mm, and a thickness of 3 mm having edges at an angle of 45 ° at both ends in the longitudinal direction, which is schematically shown in FIGS. 1 (a) and 1 (b), was used (FIG. 1 (a)). Is a plan view of the flat plate test piece, and FIG. 1 (b) is a cross-sectional view taken along the line AA of the flat plate test piece). A two-component acrylic urethane resin paint (urethane PG60, manufactured by Kansai Paint Co., Ltd.) was applied to one side of the flat plate test piece using a spray gun with a coating thickness of 30 μm, and then 30 with a hot air dryer set at a temperature of 80 ° C. Allowed to dry for minutes. The number of air bubbles generated on the surface of the painted molded product after drying was counted, and a score of 1 point (inferior) to 5 points (excellent) was given according to the following index. It should be noted that 2 points or less are practically at a level at which it can be judged that painting without measures against bubble generation such as annealing is impossible.
5 points: No bubbles generated (excellent)
4 points: 1 to 10 bubbles generated (good)
3 points: 11 to 30 bubbles are generated (possible)
2 points: The number of bubbles generated is 31 to 100 (impossible)
1 point: The number of bubbles generated is 100 or more (impossible)
 次に、各実施例および比較例に用いた原料を以下に示す。
(参考例1)ポリカーボネート樹脂(A)
(A-1)出光興産(株)製“タフロン”A1700(Mv=17,000)
Next, the raw materials used in each Example and Comparative Example are shown below.
(Reference Example 1) Polycarbonate resin (A)
(A-1) "Taflon" A1700 (Mv = 17,000) manufactured by Idemitsu Kosan Co., Ltd.
(参考例2)[ゴム質含有グラフト共重合体の製造(B)]
(B-1)ポリブタジエンラテックス(重量平均粒子径が350nmであるポリブタジエンラテックスと800nmであるポリブタジエンラテックスを、質量比率8:2で混合したもの)45重量%(固形分換算)の存在下で、スチレン40重量%とアクリロニトリル15重量%からなる単量体混合物を、ステアリン酸カリウムを使用して乳化重合してゴム強化スチレン樹脂ラテックスを得た。これを、90℃の0.3重量%希硫酸水溶液中に添加して凝集させた後、水酸化ナトリウム水溶液により中和し、洗浄・脱水・乾燥工程を経て、ゴム質含有グラフト共重合体(B-1)を調製した。グラフト率は25重量%であった。
(Reference Example 2) [Production of rubber-containing graft copolymer (B)]
(B-1) Polybutadiene latex (a mixture of polybutadiene latex having a weight average particle size of 350 nm and polybutadiene latex having a weight average particle size of 800 nm at a mass ratio of 8: 2) Styrene in the presence of 45% by weight (in terms of solid content) A monomer mixture consisting of 40% by weight and 15% by weight of acrylonitrile was emulsion-polymerized using potassium stearate to obtain a rubber-reinforced styrene resin latex. This was added to a 0.3 wt% dilute sulfuric acid aqueous solution at 90 ° C. to agglomerate, neutralized with an aqueous sodium hydroxide solution, washed, dehydrated, and dried, and then a rubber-containing graft copolymer ( B-1) was prepared. The graft ratio was 25% by weight.
(参考例3)[ビニル系共重合体の製造(C)]
(C-1)容量が20Lで、バッフルおよびファウドラ型攪拌翼を備えたステンレス製オートクレーブに、0.05重量%のメタクリル酸メチル/アクリルアミド共重合体(日本国特公昭45-24151号公報記載)を165重量%のイオン交換水に溶解した溶液を400rpmで攪拌し、系内を窒素ガスで置換した。次に、アクリロニトリル33重量%、スチレン67重量%、t-ドデシルメルカプタン0.22重量%、2,2’-アゾビスイソブチルニトリル0.30重量%の混合溶液を反応系にて攪拌しながら添加し、70℃にて共重合反応を開始した。共重合開始から3時間かけて100℃に昇温して30分間保持し、その後冷却して得られたスラリーを洗浄・脱水・乾燥工程を経て、ビニル系共重合体(C-1)を調製した。アセトン溶媒(温度40℃)で測定したビニル系共重合体(C-1)の重量平均分子量は、200,000であった。また、平均シアン化ビニル含有率は30.5重量%であった。
(C-2)アクリロニトリル27重量%、スチレン73重量%、t-ドデシルメルカプタン0.25重量%とする以外はビニル系共重合体(C-1)と同様の工程により、ビニル系共重合体(C-2)を調製した。アセトン溶媒(温度40℃)で測定したビニル系共重合体(C-2)の重量平均分子量は150,000、平均シアン化ビニル含有率は25.4重量%であった。
(C-3)アクリロニトリル45重量%、スチレン55重量%、t-ドデシルメルカプタン0.25重量%とする以外はビニル系共重合体(C-1)と同様の工程により、ビニル系共重合体(C-3)を調製した。アセトン溶媒(温度40℃)で測定したビニル系共重合体(C-3)の重量平均分子量は150,000、平均シアン化ビニル含有率は40.0重量%であった。
(C-4)アクリロニトリル27重量%、スチレン73重量%、t-ドデシルメルカプタン0.15重量%とする以外はビニル系共重合体(C-1)と同様の工程により、ビニル系共重合体(C-4)を調製した。アセトン溶媒(温度40℃)で測定したビニル系共重合体(C-4)の重量平均分子量は320,000、平均シアン化ビニル含有率は25.5重量%であった。
(C-5)アクリロニトリル45重量%、スチレン55重量%、t-ドデシルメルカプタン0.15重量%とする以外はビニル系共重合体(C-1)と同様の工程により、ビニル系共重合体(C-5)を調製した。アセトン溶媒(温度40℃)で測定したビニル系共重合体(C-5)の重量平均分子量は320,000、平均シアン化ビニル含有率は40.7重量%であった。
(C-6)アクリロニトリル27重量%、スチレン73重量%、t-ドデシルメルカプタン0.30重量%とする以外はビニル系共重合体(C-1)と同様の工程により、ビニル系共重合体(C-6)を調製した。アセトン溶媒(温度40℃)で測定したビニル系共重合体(C-6)の重量平均分子量は130,000、平均シアン化ビニル含有率は25.4重量%であった。
(C-7)アクリロニトリル24重量%、スチレン76重量%、t-ドデシルメルカプタン0.25重量%とする以外はビニル系共重合体(C-1)と同様の工程により、ビニル系共重合体(C-7)を調製した。アセトン溶媒(温度40℃)で測定したビニル系共重合体(C-7)の重量平均分子量は150,000、平均シアン化ビニル含有率は24.0重量%であった。
(C-8)アクリロニトリル27重量%、スチレン73重量%、t-ドデシルメルカプタン0.010重量%とする以外はビニル系共重合体(C-1)と同様の工程により、ビニル系共重合体(C-8)を調製した。アセトン溶媒(温度40℃)で測定したビニル系共重合体(C-8)の重量平均分子量は340,000、平均シアン化ビニル含有率は25.4重量%であった。
(C-9)アクリロニトリル45重量%、スチレン55重量%、t-ドデシルメルカプタン0.25重量%とする以外はビニル系共重合体(C-1)と同様の工程により、ビニル系共重合体(C-9)を調製した。アセトン溶媒(温度40℃)で測定したビニル系共重合体(C-9)の重量平均分子量は150,000、平均シアン化ビニル含有率は40.7重量%であった。
(Reference Example 3) [Production of Vinyl Copolymer (C)]
(C-1) 0.05% by weight of methyl methacrylate / acrylamide copolymer in a stainless steel autoclave having a capacity of 20 L and equipped with a baffle and a Faudra-type stirring blade (described in Japanese Patent Publication No. 45-24151). Was dissolved in 165% by weight of ion-exchanged water, and the solution was stirred at 400 rpm, and the inside of the system was replaced with nitrogen gas. Next, a mixed solution of 33% by weight of acrylonitrile, 67% by weight of styrene, 0.22% by weight of t-dodecyl mercaptan, and 0.30% by weight of 2,2'-azobisisobutynitrile was added with stirring in the reaction system. , The copolymerization reaction was started at 70 ° C. A vinyl-based copolymer (C-1) is prepared by raising the temperature to 100 ° C. over 3 hours from the start of the copolymerization, holding the slurry for 30 minutes, and then washing, dehydrating, and drying the slurry obtained by cooling. did. The weight average molecular weight of the vinyl-based copolymer (C-1) measured with an acetone solvent (temperature 40 ° C.) was 200,000. The average vinyl cyanide content was 30.5% by weight.
(C-2) A vinyl-based copolymer (C-1) was subjected to the same process as the vinyl-based copolymer (C-1) except that acrylonitrile was 27% by weight, styrene was 73% by weight, and t-dodecyl mercaptan was 0.25% by weight. C-2) was prepared. The weight average molecular weight of the vinyl-based copolymer (C-2) measured in an acetone solvent (temperature 40 ° C.) was 150,000, and the average vinyl cyanide content was 25.4% by weight.
(C-3) A vinyl-based copolymer (C-1) by the same process as the vinyl-based copolymer (C-1) except that acrylonitrile is 45% by weight, styrene is 55% by weight, and t-dodecyl mercaptan is 0.25% by weight. C-3) was prepared. The weight average molecular weight of the vinyl-based copolymer (C-3) measured in an acetone solvent (temperature 40 ° C.) was 150,000, and the average vinyl cyanide content was 40.0% by weight.
(C-4) A vinyl-based copolymer (C-1) was subjected to the same process as the vinyl-based copolymer (C-1) except that acrylonitrile was 27% by weight, styrene was 73% by weight, and t-dodecyl mercaptan was 0.15% by weight. C-4) was prepared. The weight average molecular weight of the vinyl-based copolymer (C-4) measured in an acetone solvent (temperature 40 ° C.) was 320,000, and the average vinyl cyanide content was 25.5% by weight.
(C-5) A vinyl-based copolymer (C-1) by the same process as the vinyl-based copolymer (C-1) except that acrylonitrile is 45% by weight, styrene is 55% by weight, and t-dodecyl mercaptan is 0.15% by weight. C-5) was prepared. The weight average molecular weight of the vinyl-based copolymer (C-5) measured in an acetone solvent (temperature 40 ° C.) was 320,000, and the average vinyl cyanide content was 40.7% by weight.
(C-6) A vinyl-based copolymer (C-6) by the same process as the vinyl-based copolymer (C-1) except that acrylonitrile is 27% by weight, styrene is 73% by weight, and t-dodecyl mercaptan is 0.30% by weight. C-6) was prepared. The weight average molecular weight of the vinyl-based copolymer (C-6) measured in an acetone solvent (temperature 40 ° C.) was 130,000, and the average vinyl cyanide content was 25.4% by weight.
(C-7) A vinyl-based copolymer (C-1) was subjected to the same process as the vinyl-based copolymer (C-1) except that acrylonitrile was 24% by weight, styrene was 76% by weight, and t-dodecyl mercaptan was 0.25% by weight. C-7) was prepared. The weight average molecular weight of the vinyl-based copolymer (C-7) measured in an acetone solvent (temperature 40 ° C.) was 150,000, and the average vinyl cyanide content was 24.0% by weight.
(C-8) A vinyl-based copolymer (C-1) by the same process as the vinyl-based copolymer (C-1) except that acrylonitrile is 27% by weight, styrene is 73% by weight, and t-dodecyl mercaptan is 0.010% by weight. C-8) was prepared. The weight average molecular weight of the vinyl-based copolymer (C-8) measured in an acetone solvent (temperature 40 ° C.) was 340,000, and the average vinyl cyanide content was 25.4% by weight.
(C-9) A vinyl-based copolymer (C-1) by the same process as the vinyl-based copolymer (C-1) except that acrylonitrile is 45% by weight, styrene is 55% by weight, and t-dodecyl mercaptan is 0.25% by weight. C-9) was prepared. The weight average molecular weight of the vinyl-based copolymer (C-9) measured in an acetone solvent (temperature 40 ° C.) was 150,000, and the average vinyl cyanide content was 40.7% by weight.
(参考例4)[エラストマー成分(D)]
(D-1)アルケマ(株)製“ロタダー”4613(エチレン/アクリル酸メチル/無水マレイン酸共重合体)
(D-2)アルケマ(株)製“ロタダー”AX8900(エチレン/メタクリル酸グリシジル/アクリル酸メチル共重合体)
(D-3)東レ・デュポン(株)製“ハイトレル”2401(ポリエステルエラストマー)
(Reference Example 4) [Elastomer component (D)]
(D-1) "Rotader" 4613 manufactured by Arkema Co., Ltd. (ethylene / methyl acrylate / maleic anhydride copolymer)
(D-2) "Rotader" AX8900 manufactured by Arkema Co., Ltd. (ethylene / glycidyl methacrylate / methyl acrylate copolymer)
(D-3) "Hitrel" 2401 (polyester elastomer) manufactured by Toray DuPont Co., Ltd.
 以下、実施例および比較例について説明する。
(実施例1~21、比較例1~9)
 前記ポリカーボネート樹脂(A)、ゴム質含有グラフト共重合体(B)、ビニル系共重合体(C)、エラストマー成分(D)としてエチレン/アクリル酸エステル/無水マレイン酸共重合体(D-1)、エチレン/メタクリル酸グリシジル共重合体(D-2)、ポリエステルエラストマー(D-3)を表1、表2ならびに表3に示した重量部で配合し、さらに酸化防止剤として(株)ADEKA製“アデカスタブ”135Aを0.1重量部加え、ヘンシェルミキサーを用いて23℃で混合した。得られた混合物を、スクリュー径30mmのベント付二軸押出機((株)池貝製PCM30)を用いて、シリンダー設定温度250℃で溶融混練し、熱可塑性樹脂組成物のペレットを得た。
 得られた熱可塑性樹脂組成物のペレットを100℃に設定した箱形熱風乾燥機にて3時間以上乾燥させた後、射出成形機を用いてシリンダー温度250℃、金型温度60℃にて各種試験片を作製し、各種評価を実施した。実施例の結果を表1および表2、比較例の結果を表3に示す。
Hereinafter, Examples and Comparative Examples will be described.
(Examples 1 to 21, Comparative Examples 1 to 9)
The polycarbonate resin (A), rubber-containing graft copolymer (B), vinyl-based copolymer (C), and ethylene / acrylic acid ester / maleic anhydride copolymer (D-1) as the elastomer component (D). , Ethylene / glycidyl methacrylate copolymer (D-2) and polyester elastomer (D-3) are blended in parts by weight shown in Tables 1, 2 and 3 and further manufactured by ADEKA Co., Ltd. as an antioxidant. 0.1 part by weight of "Adecaster" 135A was added and mixed at 23 ° C. using a Henchel mixer. The obtained mixture was melt-kneaded at a cylinder set temperature of 250 ° C. using a twin-screw extruder with a vent having a screw diameter of 30 mm (PCM30 manufactured by Ikegai Co., Ltd.) to obtain pellets of a thermoplastic resin composition.
After the pellets of the obtained thermoplastic resin composition are dried in a box-shaped hot air dryer set at 100 ° C. for 3 hours or more, various types are used at a cylinder temperature of 250 ° C. and a mold temperature of 60 ° C. using an injection molding machine. Specimens were prepared and various evaluations were carried out. The results of the examples are shown in Tables 1 and 2, and the results of the comparative examples are shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1および表2の評価結果から、本発明の熱可塑性樹脂組成物(実施例1~21)は、いずれも流動性、耐熱性、耐衝撃性および塗装性が優れていることが分かる。 From the evaluation results in Tables 1 and 2, it can be seen that the thermoplastic resin compositions of the present invention (Examples 1 to 21) are all excellent in fluidity, heat resistance, impact resistance and coating property.
 一方、比較例1はポリカーボネート樹脂(A)の配合量が少ないため、耐熱性や耐衝撃性が低く、比較例2はポリカーボネート樹脂(A)の配合量が多すぎるため、流動性が低く、成形性が悪い。比較例3はゴム質含有グラフト共重合体(B)の配合量が少ないため、耐衝撃性が低く、比較例4はゴム質含有グラフト共重合体(B)の配合量が多いため、耐熱性が低い。比較例5はビニル系共重合体(C)の配合量が少ないため、流動性と塗装性が低い。比較例6はエラストマー成分(D)であるエチレン/メタクリル酸グリシジル共重合体(グラフト共重合体を除く)(D-2)が配合されていないため塗装性に劣る。比較例7~9はエラストマー成分(D-1~D-3)の配合量が多すぎるため、耐熱性が低い。 On the other hand, in Comparative Example 1, since the amount of the polycarbonate resin (A) was small, the heat resistance and impact resistance were low, and in Comparative Example 2, the amount of the polycarbonate resin (A) was too large, so that the fluidity was low and molding was performed. Bad sex. Comparative Example 3 has a low impact resistance because the amount of the rubber-containing graft copolymer (B) is small, and Comparative Example 4 has a large amount of the rubber-containing graft copolymer (B), so that it has heat resistance. Is low. In Comparative Example 5, since the amount of the vinyl copolymer (C) blended is small, the fluidity and coatability are low. Comparative Example 6 is inferior in coatability because the ethylene / glycidyl methacrylate copolymer (excluding the graft copolymer) (D-2), which is the elastomer component (D), is not blended. Comparative Examples 7 to 9 have low heat resistance because the amount of the elastomer components (D-1 to D-3) is too large.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2019年3月29日出願の日本特許出願(特願2019-68395)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on March 29, 2019 (Japanese Patent Application No. 2019-68395), the contents of which are incorporated herein by reference.
 本発明の熱可塑性樹脂組成物は、機械特性、耐熱性に優れ、かつ塗装時の気泡発生を大幅に抑制できる熱可塑性樹脂組成物および成形品を得ることができる。かかる特性を活かして、自動車外装、内装などの塗装部品に好適に利用することができる。 With the thermoplastic resin composition of the present invention, it is possible to obtain a thermoplastic resin composition and a molded product which are excellent in mechanical properties and heat resistance and can significantly suppress the generation of air bubbles during painting. Taking advantage of such characteristics, it can be suitably used for painted parts such as automobile exteriors and interiors.

Claims (7)

  1.  ポリカーボネート樹脂(A)を50~70重量部、
     ジエン系ゴム質重合体(a)40~65重量%の存在下に、少なくとも芳香族ビニル系単量体(b)およびシアン化ビニル系単量体(c)を含有する単量体混合物35~60重量%をグラフト共重合してなるゴム質含有グラフト共重合体(B)を10~30重量部、
     芳香族ビニル系単量体とシアン化ビニル系単量体を共重合してなるビニル系共重合体(C)を10~30重量部含有してなり、
     前記ポリカーボネート樹脂(A)とゴム質含有グラフト共重合体(B)とビニル系共重合体(C)の合計100重量部に対し、さらにエラストマー成分(D)としてエチレン/アクリル酸エステル/無水マレイン酸共重合体(D-1)、エチレン/メタクリル酸グリシジル共重合体(グラフト共重合体を除く)(D-2)、ポリエステルエラストマー(D-3)から選択される少なくとも一種を1~5重量部を含有してなる熱可塑性樹脂組成物。
    50 to 70 parts by weight of polycarbonate resin (A),
    Diene-based rubbery polymer (a) A monomer mixture 35 to containing at least an aromatic vinyl-based monomer (b) and a vinyl cyanide-based monomer (c) in the presence of 40 to 65% by weight. 10 to 30 parts by weight of a rubbery-containing graft copolymer (B) obtained by graft-copolymerizing 60% by weight.
    It contains 10 to 30 parts by weight of a vinyl copolymer (C) obtained by copolymerizing an aromatic vinyl monomer and a vinyl cyanide monomer.
    Ethylene / acrylic acid ester / maleic anhydride as the elastomer component (D) with respect to a total of 100 parts by weight of the polycarbonate resin (A), the rubber-containing graft copolymer (B) and the vinyl-based copolymer (C). 1 to 5 parts by weight of at least one selected from a copolymer (D-1), an ethylene / glycidyl methacrylate copolymer (excluding graft copolymers) (D-2), and a polyester elastomer (D-3). A thermoplastic resin composition comprising.
  2.  前記ビニル系共重合体(C)の重量平均分子量が130,000~340,000の範囲である請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the vinyl-based copolymer (C) has a weight average molecular weight in the range of 130,000 to 340,000.
  3.  前記ビニル系共重合体(C)の平均シアン化ビニル含有率が22~42重量%の範囲である請求項1または2に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1 or 2, wherein the average vinyl cyanide content of the vinyl-based copolymer (C) is in the range of 22 to 42% by weight.
  4.  塗装用成形品に用いられる請求項1~3のいずれか1項に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 3, which is used for a molded product for painting.
  5.  請求項1~4のいずれか1項に記載の熱可塑性樹脂組成物からなる塗装用成形品。 A molded product for coating, which comprises the thermoplastic resin composition according to any one of claims 1 to 4.
  6.  請求項5に記載の塗装用成形品が塗装されてなる塗装成形品。 A painted molded product obtained by painting the molded product for painting according to claim 5.
  7.  請求項1~4のいずれか1項に記載の熱可塑性樹脂組成物からなる自動車部品。 An automobile part made of the thermoplastic resin composition according to any one of claims 1 to 4.
PCT/JP2020/013486 2019-03-29 2020-03-25 Thermoplastic resin composition and coated molded article WO2020203590A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020535004A JP6981552B2 (en) 2019-03-29 2020-03-25 Thermoplastic resin compositions and painted products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068395 2019-03-29
JP2019-068395 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203590A1 true WO2020203590A1 (en) 2020-10-08

Family

ID=72667832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013486 WO2020203590A1 (en) 2019-03-29 2020-03-25 Thermoplastic resin composition and coated molded article

Country Status (3)

Country Link
JP (1) JP6981552B2 (en)
TW (1) TW202043392A (en)
WO (1) WO2020203590A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113304709B (en) * 2021-06-22 2023-01-13 万华化学(四川)有限公司 Devolatilization device and SAN resin devolatilization process

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506264A (en) * 1990-04-12 1993-09-16 ザ ダウ ケミカル カンパニー Polycarbonate/aromatic polyester blends containing olefinic modifiers
JPH05271422A (en) * 1992-03-24 1993-10-19 Teijin Chem Ltd Production of polycarbonate/polyolefin copolymer
JPH06192554A (en) * 1993-07-01 1994-07-12 Nippon G Ii Plast Kk Aromatic polycarbonate resin composition
JP2006348246A (en) * 2005-06-20 2006-12-28 Matsushita Electric Works Ltd Thermoplastic resin composition and molded article
JP2012171989A (en) * 2011-02-17 2012-09-10 Furukawa Electric Co Ltd:The Damping resin composition, and method for producing the same
JP2013224406A (en) * 2012-03-19 2013-10-31 Canon Inc Polymer composition and method for manufacturing the same
JP2015168814A (en) * 2014-03-11 2015-09-28 東レ株式会社 Thermoplastic resin composition and molded article
WO2018083975A1 (en) * 2016-11-02 2018-05-11 東レ株式会社 Thermoplastic resin composition and molded article thereof
JP2019006920A (en) * 2017-06-26 2019-01-17 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition, and resin molded article and coated processed article thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095863B2 (en) * 2018-04-20 2022-07-05 ピクシーダストテクノロジーズ株式会社 Acoustic systems, acoustic processing methods, and programs

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506264A (en) * 1990-04-12 1993-09-16 ザ ダウ ケミカル カンパニー Polycarbonate/aromatic polyester blends containing olefinic modifiers
JPH05271422A (en) * 1992-03-24 1993-10-19 Teijin Chem Ltd Production of polycarbonate/polyolefin copolymer
JPH06192554A (en) * 1993-07-01 1994-07-12 Nippon G Ii Plast Kk Aromatic polycarbonate resin composition
JP2006348246A (en) * 2005-06-20 2006-12-28 Matsushita Electric Works Ltd Thermoplastic resin composition and molded article
JP2012171989A (en) * 2011-02-17 2012-09-10 Furukawa Electric Co Ltd:The Damping resin composition, and method for producing the same
JP2013224406A (en) * 2012-03-19 2013-10-31 Canon Inc Polymer composition and method for manufacturing the same
JP2015168814A (en) * 2014-03-11 2015-09-28 東レ株式会社 Thermoplastic resin composition and molded article
WO2018083975A1 (en) * 2016-11-02 2018-05-11 東レ株式会社 Thermoplastic resin composition and molded article thereof
JP2019006920A (en) * 2017-06-26 2019-01-17 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition, and resin molded article and coated processed article thereof

Also Published As

Publication number Publication date
JPWO2020203590A1 (en) 2021-04-30
TW202043392A (en) 2020-12-01
JP6981552B2 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
JP7081882B2 (en) Method for manufacturing polycarbonate-based resin composition
JP5293537B2 (en) Millimeter wave radar cover and millimeter wave radar
JP2017179331A (en) Polycarbonate resin composition and molded product
JP7455134B2 (en) Polycarbonate resin composition and molded products thereof
US11485855B2 (en) Composition and thermoplastic moulding compound for production of moulded articles having elevated gloss
WO2020203590A1 (en) Thermoplastic resin composition and coated molded article
US9783672B2 (en) Polycarbonate resin composition and molded product formed from same
JP2007191538A (en) Thermoplastic resin composition and resin molded product
JP2017218567A (en) Polycarbonate resin composition and molded article
JP2013209568A (en) Polycarbonate resin composition and molded product thereof
JP4848788B2 (en) Thermoplastic resin composition and resin molded product
US10822494B2 (en) Polycarbonate resin composition and molded product using the same
JP7254588B2 (en) Polycarbonate resin composition and molded article
JP7139124B2 (en) Polycarbonate resin composition and molded article
WO2022091613A1 (en) Thermoplastic resin composition, and coated molded product and method for producing same
JP6723783B2 (en) Polycarbonate resin composition and molded article
CN110088202B (en) Composition and thermoplastic moulding material having reduced gloss and good chemical resistance
CN110088195B (en) Compositions and thermoplastic moulding materials having good low-temperature toughness, high gloss and high processing stability
TW201713724A (en) Glass-fibre reinforced polycarbonate moulding compositions with improved toughness
JP2014111764A (en) Method for producing polycarbonate-based resin composition pellet
JPWO2019087653A1 (en) Thermoplastic resin composition for plating molded products, molded products using it, plating molded products
JP2017171810A (en) Polycarbonate resin composition
JP2008088334A (en) Thermoplastic resin composition
JP2012177088A (en) Thermoplastic resin composition, and molding thereof
US20220340749A1 (en) Thermoplastic Resin Composition and Molded Product Using Same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020535004

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20785296

Country of ref document: EP

Kind code of ref document: A1