WO2020203336A1 - Solid wire for gas metal arc welding and gas metal arc welding method - Google Patents

Solid wire for gas metal arc welding and gas metal arc welding method Download PDF

Info

Publication number
WO2020203336A1
WO2020203336A1 PCT/JP2020/012216 JP2020012216W WO2020203336A1 WO 2020203336 A1 WO2020203336 A1 WO 2020203336A1 JP 2020012216 W JP2020012216 W JP 2020012216W WO 2020203336 A1 WO2020203336 A1 WO 2020203336A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
arc welding
solid wire
metal arc
gas metal
Prior art date
Application number
PCT/JP2020/012216
Other languages
French (fr)
Japanese (ja)
Inventor
大地 泉
充志 ▲高▼田
直樹 ▲高▼山
植田 圭治
山下 賢
鵬 韓
Original Assignee
Jfeスチール株式会社
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, 株式会社神戸製鋼所 filed Critical Jfeスチール株式会社
Priority to KR1020217033873A priority Critical patent/KR102639546B1/en
Priority to JP2020553550A priority patent/JP6978614B2/en
Priority to CN202080022682.XA priority patent/CN113613827A/en
Publication of WO2020203336A1 publication Critical patent/WO2020203336A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a solid wire for gas metal arc welding and a gas metal arc welding method, and more particularly to a solid wire for welding high Mn-containing steel materials used in an extremely low temperature environment and a gas metal arc welding method using the same.
  • liquefied natural gas (hereinafter, also referred to as LNG) does not contain sulfur, it is said to be a clean fuel that does not generate air pollutants such as sulfide oxides, and its demand is increasing.
  • the container (tank) for transporting or storing LNG is required to maintain excellent cryogenic impact toughness at a temperature of -162 ° C or lower, which is the liquefaction temperature of LNG. ..
  • high Mn-containing steel containing about 10 to 35% of Mn in mass% (hereinafter, also referred to as high Mn steel). Is being considered for application.
  • the high Mn steel is in the austenitic phase even at extremely low temperatures, does not undergo brittle fracture, and has a higher strength than the austenitic stainless steel. Therefore, there has been a demand for the development of a welding material capable of stably welding such a high Mn-containing steel material.
  • Patent Document 1 proposes "solid wire for submerged arc welding and gas metal arc welding".
  • the solid wire described in Patent Document 1 is C: 0.15 to 0.8%, Si: 0.5 to 1.5%, Mn: 15 to 32%, Cr: 5.5% or less, Mo: 1.5 to 3%, S in% by weight. : 0.025% or less, P: 0.025% or less, B: 0.01% or less, Ti: 0.05 to 1.2%, N: 0.005 to 0.5%, and the balance is a solid wire having a composition of Fe and unavoidable impurities. ..
  • a welded joint portion having an excellent impact toughness with a Charpy impact test absorption energy of 32 J or more at a test temperature of -196 ° C can be secured.
  • Patent Document 2 proposes "a high-strength welded joint portion having excellent ultra-low temperature impact toughness and a flux cored arc welding wire for this purpose".
  • the flux cored arc welding wire described in Patent Document 2 has a weight% of C: 0.15 to 0.8%, Si: 0.2 to 1.2%, Mn: 15 to 34%, Cr: 6% or less, Mo: 1.5.
  • Patent Document 2 since it is a flux cored wire, there is a problem that the amount of fume generated during welding increases and the welder is exposed to an environment with a large amount of fume. According to the study by the present inventors, this problem can be avoided by using a solid wire instead of the flux cored wire and increasing the manufacturability of the solid wire by using a composition in which the content of carbide-forming elements and B is reduced. I found out that I can do it.
  • the present invention solves the above-mentioned problems of the prior art and has both high strength and high ductility suitable as a welding material for high Mn-containing steel materials used in an extremely low temperature environment and excellent extremely low temperature impact toughness. It is an object of the present invention to provide a solid wire for gas metal arc welding capable of producing a welded joint portion and a gas metal arc welding method using the solid wire.
  • high strength and high ductility means that the normal temperature yield strength (0.2% proof stress) of the weld metal (welded metal) manufactured in accordance with the provisions of JIS Z 3111 by gas metal arc welding is 400 MPa or more. It is assumed that the tensile strength is 660 MPa or more and the total elongation is 40% or more.
  • Excellent ultra-low temperature impact toughness means the Charpy impact test absorption energy of a weld metal (welded metal) manufactured in accordance with JIS Z 3111 by gas metal arc welding at a test temperature of -196 ° C. It is assumed that vE -196 is 28J or more and the brittle fracture surface ratio is 10% or less.
  • the present inventors have diligently studied the influence of the composition of the solid wire on the cryogenic impact toughness of the weld metal. As a result, it was found that in order to enhance the ultra-low temperature impact toughness of the weld metal and prevent the occurrence of brittle fracture, it is first necessary to sufficiently increase the stability of austenite.
  • the composition of the solid wire is adjusted so that C is 0.20 to 0.80%, Si is 0.15 to 0.90%, Mn is 15.0 to 28.0%, Ni is 0.01 to 10.0%, and Cr is 0.4 to 1.9.
  • % and B is adjusted to a specific range of 0.0010 to 0.0050% and adjusting each of the carbide-forming elements V, Ti, and Nb to a specific range of 0.5% or less, defects such as cracks during wire drawing can occur. It was found that the solid wire has excellent manufacturability.
  • the present inventors have decided that dendrites formed during welding solidification grow while discharging solute elements, so that microscopic regions where solute elements are diluted are formed, and therefore the stability of austenite is lowered.
  • the ultra-low temperature impact toughness of the weld metal can be further improved and the occurrence of brittle fracture of the welded joint can be prevented.
  • the present invention has been completed by further studying based on the above findings. That is, the gist of the present invention is as follows.
  • the composition is a total of one or more selected from V: 0.5% or less, Ti: 0.5% or less, and Nb: 0.5% or less in mass%.
  • a solid wire for gas metal arc welding characterized by a content of 1.0% or less.
  • the composition is further selected from Cu: 1.0% or less, Al: 0.10% or less, Ca: 0.01% or less, and REM: 0.02% or less in mass%.
  • a solid wire for gas metal arc welding which comprises one or more of the above.
  • a gas metal arc welding method in which a steel material containing high Mn is joined by forming a weld metal by gas metal arc welding using a solid wire.
  • the solid wire is by mass% C: 0.20 to 0.80%, Si: 0.15 to 0.90%, Mn: 15.0-28.0%, P: 0.030% or less, S: 0.030% or less, Ni: 0.01-10.0%, Cr: 0.4-1.9%, B: 0.0010-0.0050% Containing the balance Fe and unavoidable impurities, and the following equation (1)
  • SFE defined in has a composition satisfying 17 to 57 (mJ / m 2 ).
  • the gas metal arc welding is characterized by adjusting the cooling rate CR (° C / s) in the temperature range of 1300 to 1200 ° C so as to satisfy [SFE + (cooling rate CR) 1/2 ]: 20 to 70. Gas metal arc welding method.
  • the solid wire is further selected from V: 0.5% or less, Ti: 0.5% or less, Nb: 0.5% or less in mass%.
  • a gas metal arc welding method characterized in that two or more types are contained in a total of 1.0% or less.
  • the solid wire in addition to the composition, further has Cu: 1.0% or less, Al: 0.10% or less, Ca: 0.01% or less and REM: 0.02 in mass%.
  • a gas metal arc welding method characterized by containing one or more selected from less than or equal to.
  • a solid wire for gas metal arc welding and a solid wire for gas metal arc welding which is excellent in wire manufacturability and can easily manufacture a welded joint portion having high strength and excellent ultra-low temperature toughness as a welding material for steel materials containing high Mn. It is possible to provide a gas metal arc welding method using it, which is extremely effective in industry.
  • the solid wire of the present invention is a solid wire suitable for gas metal arc welding of high Mn-containing steel materials.
  • a weld metal (welded metal) produced in accordance with JIS Z3111 by gas metal arc welding is 400 MPa or more at 0.2% toughness at room temperature, 660 MPa or more in tensile strength, and 40% or more in total elongation.
  • It is a welding material capable of producing a welded joint portion having high strength and high ductility and excellent ultra-low temperature toughness.
  • C 0.20 to 0.80%
  • C is an element that has the effect of increasing the strength of the weld metal by strengthening the solid solution.
  • C also stabilizes the austenite phase and improves the cryogenic impact toughness of the weld metal.
  • a content of 0.20% or more is required.
  • C was limited to the range of 0.20 to 0.80%. Preferably, it is 0.30 to 0.70%.
  • Si acts as an antacid, has the effect of increasing the yield of Mn, increasing the viscosity of the molten metal, stably maintaining the bead shape, and reducing the occurrence of spatter.
  • Si needs to have a content of 0.15% or more.
  • Si is contained in excess of 0.90%, the cryogenic impact toughness of the weld metal is reduced.
  • segregation occurs during solidification to form a liquid phase at the interface of the solidified cell, which reduces high temperature crack resistance. Therefore, Si was limited to the range of 0.15 to 0.90%. It is preferably 0.20 to 0.70%.
  • Mn 15.0-28.0%
  • Mn is an element that stabilizes the austenite phase at low cost, and the content of Mn is required to be 15.0% or more in the present invention.
  • Mn is less than 15.0%, ⁇ -martensite is formed in the Mn-lean part in the weld metal (welded metal), and the toughness at extremely low temperatures is significantly reduced.
  • Mn was limited to the range of 15.0 to 28.0%. It is preferably 18.0 to 25.0%.
  • P 0.030% or less
  • P is an element that segregates at grain boundaries, induces high-temperature cracking, and lowers the cryogenic impact toughness of the weld metal. In the present invention, it is preferable to reduce it as an impurity element as much as possible. , 0.030% or less is acceptable. Therefore, P was limited to 0.030% or less. It is preferably 0.02% or less. On the other hand, excessive P reduction causes a rise in refining cost. Therefore, P is preferably adjusted to 0.003% or more.
  • S 0.030% or less S exists as a sulfide-based inclusion MnS in the weld metal (welded metal). Since MnS is the starting point of fracture, it reduces cryogenic toughness. Therefore, S was limited to 0.030% or less. It is preferably 0.02% or less. On the other hand, excessive S reduction causes a rise in refining cost. Therefore, it is preferable to adjust S to 0.001% or more.
  • Ni 0.01-10.0%
  • Ni is an element that strengthens austenite grain boundaries and segregates at grain boundaries to improve cryogenic impact toughness. In addition, Ni improves the mobility of dislocations. In order to obtain such an effect, Ni needs to be contained in an amount of 0.01% or more.
  • Ni also has the effect of stabilizing the austenite phase, so if the content is further increased, the austenite phase is stabilized and the ultra-low temperature impact toughness of the weld metal (welded metal) is improved.
  • Ni is an expensive element, and a content of more than 10.0% is economically disadvantageous. Therefore, Ni was limited to 0.01 to 10.0%. It is preferably 1.0 to 8.0%, more preferably 2.0 to 7.0%.
  • Cr 0.4-1.9% Cr has the effect of stabilizing the austenite phase at extremely low temperatures, improving the grain boundary strength, and improving the cryogenic impact toughness of the weld metal. Cr also has the effect of improving the strength of the weld metal. In addition, Cr works effectively to increase the liquidus line of the molten metal and suppress the occurrence of high temperature cracking. Furthermore, Cr also works effectively to enhance the corrosion resistance of the weld metal. In order to obtain such an effect, Cr must be contained in an amount of 0.4% or more. If Cr is less than 0.4%, the above effect cannot be ensured.
  • Cr carbides are formed at the austenite grain boundaries when the cooling rate is slow, resulting in a decrease in cryogenic impact toughness. Further, due to the formation of Cr carbide, the workability at the time of wire drawing is lowered. Therefore, Cr was limited to the range of 0.4 to 1.9%. It is preferably 0.5 to 1.8%.
  • B has the effect of improving the grain boundary strength and improving the cryogenic impact toughness of the weld metal by segregating at the austenite grain boundaries. Further, as the grain boundary strength is improved, it also has an effect of preventing breakage during wire drawing. In order to obtain such an effect, B needs to have a content of 0.0010% or more. If B is less than 0.0010%, the above effect cannot be ensured. On the other hand, if it is contained in excess of 0.0050%, it binds to N mixed as an unavoidable impurity to form boron nitride at the austenite grain boundary, which lowers the grain boundary strength.
  • B was limited to the range of 0.0010 to 0.0050%. Preferably, it is 0.0011 to 0.0030%.
  • the above-mentioned components are the basic components.
  • the cryogenic impact toughness of the weld metal welded metal
  • the SFE defined by Eq. (1) is limited to the range of 17 to 57 (mJ / m 2 ). It is preferably 20 to 55 (mJ / m 2 ). If the element described in the formula (1) is not contained, the content of the element is assumed to be zero and the value SFE of the formula (1) is calculated.
  • the solid wire of the present invention in addition to the above-mentioned basic components, if necessary, one selected from V: 0.5% or less, Ti: 0.5% or less, and Nb: 0.5% or less as optional components. Or two or more types in total 1.0% or less, and / or one or two or more types selected from Cu: 1.0% or less, Al: 0.10% or less, Ca: 0.01% or less and REM: 0.02% or less. , And / or Mo: 3.5% or less can be selected and contained.
  • V 0.5% or less
  • Ti 0.5% or less
  • Nb 0.5% or less and one or more selected from 1.0% or less in total V
  • Ti and Nb form carbides and are welded. It is an element that contributes to the improvement of the strength of the metal, and can be selected as necessary and contains 1 type or 2 or more types in a total of 1.0% or less.
  • V 0.5% or less
  • V is a carbide-forming element, which precipitates fine carbides and contributes to the improvement of the strength of the weld metal. In order to obtain such an effect, it is preferably contained in an amount of 0.001% or more. On the other hand, if the content exceeds 0.5%, the carbide becomes coarse and becomes a cracking starting point during wire drawing of the solid wire, the wire drawing workability is lowered, and the wire manufacturability is lowered. Therefore, when it is contained, it is preferable to limit V to 0.5% or less.
  • Ti 0.5% or less
  • Ti is a carbide-forming element, which precipitates fine carbides and contributes to the improvement of the strength of the weld metal.
  • Ti deposits carbides at the interface of the solidified cell of the weld metal and contributes to suppressing the occurrence of high temperature cracks. In order to obtain such an effect, it is preferably contained in an amount of 0.001% or more.
  • it is contained in excess of Ti: 0.5%, the carbide becomes coarse and becomes a starting point of cracking during wire drawing of the solid wire, which lowers the wire drawing workability and lowers the wire manufacturability.
  • Ti is contained in an amount of more than 0.5%, carbides are coarsened, fineness of crystal grains is suppressed, and cryogenic impact toughness is lowered. Therefore, when it is contained, Ti is preferably limited to 0.5% or less.
  • Nb 0.5% or less
  • Nb is a carbide-forming element, which is an element that precipitates carbides and contributes to the improvement of the strength of the weld metal.
  • Nb precipitates carbides at the interface of the solidified cell of the weld metal and contributes to suppressing the occurrence of high-temperature cracks.
  • it is preferably contained in an amount of 0.001% or more.
  • Nb is contained in an amount of more than 0.5%, the carbide becomes coarse and becomes a cracking starting point at the time of wire drawing of the solid wire, the wire drawing workability is lowered, and the wire manufacturability is lowered.
  • Nb when it is contained, it is preferable to limit Nb to 0.5% or less.
  • V, Ti, and Nb are contained in a large amount exceeding 1.0% in total, the wire manufacturability and cryogenic impact toughness will decrease. Therefore, when contained, it is preferable to limit V, Ti, and Nb to 1.0% or less in total.
  • Cu is an element that contributes to austenite stabilization
  • Al is welded. It is an element that improves workability
  • Ca and REM are elements that contribute to the improvement of workability, and can be selected and contained in one or more types as necessary.
  • Cu 1.0% or less
  • Cu is an element that stabilizes the austenite phase, stabilizes the austenite phase even at extremely low temperatures, and improves the cryogenic impact toughness of the weld metal (welded metal). In order to obtain such an effect, it is preferably contained in an amount of 0.01% or more. However, if it is contained in a large amount exceeding 1.0%, the hot ductility is lowered and the manufacturability of the wire is lowered. Therefore, when it is contained, it is preferable to limit Cu to 1.0% or less.
  • Al acts as an antacid, increases the viscosity of the molten metal, stably maintains the bead shape, and has an important effect of reducing the occurrence of spatter.
  • Al raises the liquidus temperature of the molten metal and contributes to suppressing the occurrence of high-temperature cracking of the weld metal. Since such an effect becomes remarkable when the content is 0.005% or more, it is preferable to contain 0.005% or more. However, if it is contained in excess of 0.10%, the viscosity of the molten metal becomes too high, and conversely, defects such as increased spatter and bead do not spread and fusion failure increase. Therefore, when it is contained, it is preferable to limit Al to 0.10% or less. More preferably, it is 0.005 to 0.04%.
  • Ca 0.01% or less Ca combines with S in the molten metal to form a high melting point sulfide CaS. Since CaS has a higher melting point than MnS, it maintains a spherical shape without advancing in the rolling direction during hot working of solid wire, which is advantageous for improving workability of solid wire. Such an effect becomes remarkable when the content is 0.001% or more. On the other hand, if the content exceeds 0.01%, the arc is disturbed during welding, which makes stable welding difficult. Therefore, when it is contained, it is preferable to limit Ca to 0.01% or less.
  • REM 0.02% or less REM is a strong deoxidizer and exists in the form of REM oxide in weld metals (welded metals).
  • the REM oxide acts as a nucleation site during solidification, thereby refining the crystal grains and contributing to the improvement of the strength of the weld metal (welded metal).
  • Such an effect becomes remarkable when the content is 0.001% or more.
  • the stability of the arc will decrease. Therefore, when it is contained, it is preferable to limit the REM to 0.02% or less.
  • Mo 3.5% or less Mo is an element that improves the strength by strengthening the solid solution, and it is desirable to contain 0.5% or more in order to obtain such an effect. On the other hand, if it is contained in excess of 3.5%, carbides are precipitated, the hot workability is lowered, and the manufacturability of the wire such as wire drawing is lowered. Therefore, when it is contained, it is preferable to limit Mo to 3.5% or less.
  • the rest other than the above components consist of Fe and unavoidable impurities.
  • the production of the solid wire of the present invention does not need to be particularly limited in the production method except that the molten steel having the above composition is used, and any of the conventional solid wire production methods for welding can be applied.
  • a heating step of heating the steel to a predetermined temperature and a hot rolling step of hot rolling the heated steel ingot to obtain a steel material (rod shape) having a predetermined shape are sequentially performed, and then the obtained steel material is obtained.
  • the solid wire of the present invention can be manufactured.
  • gas metal arc welding using the solid wire of the present invention having the above composition
  • a steel material containing high Mn is joined by forming a weld metal by gas metal arc welding using the solid wire of the present invention having the above composition as a welding material.
  • Gas metal arc welding is also called “gas shielded arc welding", and is generally called “melting electrode type (consumable electrode type)” that uses a welding material (additive material) as an electrode and “non-consumable electrode type” that uses a non-consumable electrode such as tungsten. It can be roughly divided into “consumable electrode type”.
  • the solid wire of the present invention is preferably used for electrodeposition type gas metal arc welding from the viewpoint of achieving high strength and high ductility and excellent cryogenic impact toughness.
  • Welding conditions such as welding posture, preheating, welding heat input (current, voltage, welding speed), shield gas, etc. can be applied to any of the usual welding conditions.
  • the high Mn-containing steel material that is gas metal arc welded using the solid wire of the present invention contains Mn as an alloying element in a high content.
  • the lower limit of the Mn content is not particularly limited, but is, for example, 10% by mass or more, preferably 15% by mass or more, and more preferably 20% by mass or more.
  • the upper limit of the Mn content is not particularly limited, but is, for example, 35% by mass or less, preferably 30% by mass or less, and more preferably 27% by mass or less.
  • the high Mn-containing steel material the composition of alloying elements other than Mn, the size and shape of the steel material, and the like are not particularly limited, and those suitable for the desired application can be adopted, but the desired high strength and high ductility and From the viewpoint of achieving excellent ultra-low temperature impact toughness, when the high Mn-containing steel material is a steel plate, the plate thickness is preferably 6 mm or more, more preferably 10 mm or more, preferably 40 mm or less, and more preferably 30 mm or less.
  • the gas metal arc welding method using the solid wire of the present invention is not particularly limited, but is preferably used, for example, for manufacturing a product provided with a weld metal that requires high strength and high ductility and excellent ultra-low temperature impact toughness. It can be used for manufacturing containers for transporting or storing LNG from steel materials containing high Mn.
  • the cooling rate CR (° C / s) in the temperature range of 1300 to 1200 ° C. in the weld bead (welded portion) is [SFE + (cooling rate CR) in the cooling during welding. ) 1/2 ]: Adjust the welding heat input so as to satisfy 20 to 70.
  • austenite is stabilized and the occurrence of brittle fracture in the weld metal (welded metal) can be suppressed, resulting in a weld metal (welded metal) having high strength and high ductility and excellent ultra-low temperature impact toughness. be able to.
  • the lower limit of [SFE + CR 1/2 ] is 20, and is not particularly limited, but is preferably 25 or more, and more preferably 30 or more. At CR (° C / s) where [SFE + (cooling rate CR) 1/2 ] is less than 20, cooling is slow and coarsening of the dendrite arm cannot be prevented. Therefore, in the dendrite arm part, solute elements during solidification The discharge amount increases, the region where the solute element is diluted expands, and microscopic austenite stability cannot be ensured.
  • the upper limit of [SFE + CR 1/2 ] is 70, and is not particularly limited, but is preferably 65 or less, and more preferably 60 or less.
  • the formed weld bead (welded portion) is cooled to a predetermined temperature and solidified, and then subsequent operations such as welding of the next pass and optional post-heat treatment are performed. I do.
  • [SFE + (cooling rate CR) 1/2 ]: 20 to 70 should be satisfied in all the cooling processes.
  • the formed weld bead (welded portion) is cooled by allowing it to stand in the air and allowed to cool.
  • the temperature is 1300 to 1200 ° C.
  • the cooling rate CR (° C / s) in the range can be controlled.
  • the welding heat input amount so as to have a cooling rate applicable to the above formula may be obtained in advance from a preliminary experiment or Inagaki's formula, and welding may be performed with that heat input amount.
  • the molten steel having the composition shown in Table 1 was melted and cast in a vacuum melting furnace to obtain 100 kg of steel ingot.
  • the obtained ingot was heated to 1200 ° C., then hot-rolled, and then cold-rolled to obtain a 1.2 mm ⁇ solid wire for gas metal arc welding.
  • the rolling load was measured and cracks were observed to evaluate the manufacturability of each solid wire. If it is determined that rolling (drawing) processing is impossible due to a high rolling load (drawing load), cracks are found, or the cracks that have occurred cause further steps to proceed. When it became impossible to do so, it was evaluated as "defective". Other than that, it was evaluated as "good”.
  • a high-Mn steel plate for ultra-low temperature (plate thickness: 6 to 40 mm) was prepared, and butt-welded to form a 45 ° V-shaped groove in accordance with JIS Z 3111, and the composition shown in Table 1 was formed.
  • a welded metal was obtained in the groove by performing welded gas metal arc welding using a solid wire manufactured from the molten steel of No. 1 as a welding material.
  • the steel sheet used as the test plate was a high Mn steel sheet for cryogenic temperature having a composition of 0.5% C-0.4% Si-25% Mn-3% Cr-residue Fe in mass%.
  • each solid wire (1.2 mm in diameter) manufactured from molten steel having the composition shown in Table 1 was used as an electrode, with no preheating, in a downward posture, inter-pass temperature: 100 to 150 ° C., shield gas: 80% Ar + 20. Conducted as% CO 2 .
  • the temperature history at the time of welding was actually measured using a thermocouple, and the cooling rate in the temperature range of 1300 to 1200 ° C. was calculated.
  • weld metal was observed with an optical microscope to determine the presence or absence of welding cracks.
  • Weld cracks are high-temperature cracks, and when cracks are observed, they are evaluated as "defective” because the high-temperature crack resistance is reduced. When no cracking was observed, it was evaluated as "good” because of its excellent high temperature cracking resistance.
  • the appearance of the weld bead was visually observed to determine the appearance of the weld bead. When undercuts, overlaps, and pits were observed, the appearance of the weld bead was evaluated as "defective". When these were not observed, the appearance of the weld bead was evaluated as "good".
  • a tensile test piece of weld metal (parallel part diameter 6 mm ⁇ ) and a Charpy impact test piece of weld metal (V notch) are collected in accordance with JIS Z 3111, and the tensile test and impact are performed. The test was carried out. For steel sheets with a thickness of less than 10 mm, a 5 mm sub-sized Charpy impact test piece (V notch) was sampled and an impact test was carried out. The tensile test was carried out at room temperature with three test pieces each, and the average value of the obtained values (0.2% proof stress, tensile strength, total elongation) was calculated as the tensile characteristics of the weld metal using the solid wire. And said.
  • the Charpy impact test was carried out with three test pieces each, and the absorbed energy vE -196 at the test temperature: -196 ° C was determined, and the average value was calculated as the ultra-low temperature impact of the weld metal using the solid wire. It was made tough.
  • V notch the value obtained by multiplying the obtained absorbed energy by 1.5 times was evaluated as the cryogenic impact toughness. The brittle fracture surface ratio was visually determined. The results obtained are shown in Table 2.
  • the wire manufacturability was excellent, welding cracks (high temperature cracks) did not occur during welding, the high temperature crack resistance was excellent, and the appearance of the weld bead was also good.
  • the yield strength (0.2% proof stress) at room temperature is 400 MPa or more
  • the tensile strength is 660 MPa or more
  • the total elongation is 40% or more
  • it has high strength and high ductility.
  • the absorption of the Charpy impact test at the test temperature -196 ° C. It was a welding material (solid wire) capable of obtaining a welded metal having excellent ultra-low temperature impact toughness with an energy vE -196 of 28 J or more and a brittle fracture surface ratio of 10% or less.
  • the wire manufacturability is inferior, the weld crack (high temperature crack) occurs and the high temperature crack resistance is lowered, the weld bead appearance is inferior, or at room temperature.
  • a weld metal having both desired high strength and high ductility and excellent ultra-low temperature impact toughness has not been obtained.

Abstract

The present invention provides a solid wire for gas metal arc welding that is suitable as a welding material for a high-Mn steel material, and a gas metal arc welding method using this solid wire. The solid wire has a composition that contains, by mass%, 0.20-0.80% C, 0.15-0.90% Si, 17.0-28.0% Mn, 0.030% or less P, 0.030% or less S, 0.01-10.0% Ni, 0.4-1.9% Cr, 0.0010-0.0050% B, with the remainder being Fe and unavoidable impurities, and in which the SFE, which is defined as SFE (mJm2) = −53 + 6.2Ni + 0.7Cr + 3.2Mn + 9.3Mo), satisfies the range of 17-57 (mJ/m2). This solid wire has superior manufacturability, has superior high-temperature cracking resistance with no generation of cracks during welding and, when used in gas metal arc welding, enables a weld joint portion that has high strength and ductility and superior ultra-low-temperature impact toughness to be easily produced.

Description

ガスメタルアーク溶接用ソリッドワイヤおよびガスメタルアーク溶接方法Solid wire for gas metal arc welding and gas metal arc welding method
 本発明は、ガスメタルアーク溶接用ソリッドワイヤおよびガスメタルアーク溶接方法に係り、とくに、極低温環境下で使用される高Mn含有鋼材溶接用ソリッドワイヤおよびそれを用いたガスメタルアーク溶接方法に関する。 The present invention relates to a solid wire for gas metal arc welding and a gas metal arc welding method, and more particularly to a solid wire for welding high Mn-containing steel materials used in an extremely low temperature environment and a gas metal arc welding method using the same.
 近年、環境に対する規制が厳しくなっている。液化天然ガス(以下、LNGともいう)は、硫黄を含まないため、硫化酸化物等の大気汚染物質を発生させないクリーンな燃料と言われ、その需要が増加している。LNGの輸送または保管のために、LNGを輸送または貯蔵する容器(タンク)は、LNGの液化温度である-162℃以下の温度で、優れた極低温衝撃靭性を保持することが求められている。 In recent years, environmental regulations have become stricter. Since liquefied natural gas (hereinafter, also referred to as LNG) does not contain sulfur, it is said to be a clean fuel that does not generate air pollutants such as sulfide oxides, and its demand is increasing. For transporting or storing LNG, the container (tank) for transporting or storing LNG is required to maintain excellent cryogenic impact toughness at a temperature of -162 ° C or lower, which is the liquefaction temperature of LNG. ..
 そして、優れた極低温衝撃靭性を保持することの必要性から、容器(タンク)等の材料用として、従来から、アルミニウム合金、9%Ni鋼、オーステナイト系ステンレス鋼等が、用いられてきた。 Since it is necessary to maintain excellent ultra-low temperature impact toughness, aluminum alloys, 9% Ni steel, austenitic stainless steel, etc. have been conventionally used as materials for containers (tanks) and the like.
 しかし、アルミニウム合金は、引張強さが低いため、構造物の板厚を大きく設計する必要があり、また溶接性が悪いという問題がある。また、9%Ni鋼は、溶接材料として高価なNi基材料を用いることが必要なため、経済的に不利となる。また、オーステナイト系ステンレス鋼は、高価であり、母材強度も低いという問題がある。 However, since aluminum alloy has low tensile strength, it is necessary to design a large plate thickness of the structure, and there is a problem that weldability is poor. Further, 9% Ni steel is economically disadvantageous because it is necessary to use an expensive Ni-based material as a welding material. Further, austenitic stainless steel has a problem that it is expensive and the strength of the base material is low.
 このような問題から、LNGを輸送または貯蔵する容器(タンク)用の材料として、最近では、質量%で、Mnを10~35%程度含有する高Mn含有鋼(以下、高Mn鋼ともいう)の適用が検討されている。高Mn鋼は、極低温においても、オーステナイト相であり、脆性破壊が発生せず、またオーステナイト系ステンレス鋼と比較して、高い強度を有するという特徴がある。そこで、このような高Mn含有鋼材を安定して溶接できる溶接材料の開発が要望されてきた。 Due to these problems, as a material for containers (tanks) that transport or store LNG, recently, high Mn-containing steel containing about 10 to 35% of Mn in mass% (hereinafter, also referred to as high Mn steel). Is being considered for application. The high Mn steel is in the austenitic phase even at extremely low temperatures, does not undergo brittle fracture, and has a higher strength than the austenitic stainless steel. Therefore, there has been a demand for the development of a welding material capable of stably welding such a high Mn-containing steel material.
 このような要望に対して、例えば特許文献1には、「サブマージアーク溶接およびガスメタルアーク溶接用ソリッドワイヤ」が提案されている。特許文献1に記載されたソリッドワイヤは、重量%で、C:0.15~0.8%、Si:0.5~1.5%、Mn:15~32%、Cr:5.5%以下、Mo:1.5~3%、S:0.025%以下、P:0.025%以下、B:0.01%以下、Ti:0.05~1.2%、N:0.005~0.5%、を含み、残部がFe及び不可避的不純物からなる組成を有するソリッドワイヤである。特許文献1に記載されたソリッドワイヤを用いて溶接すれば、試験温度:-196℃におけるシャルピー衝撃試験吸収エネルギーが32J以上の優れた衝撃靭性を有する溶接継手部を確保できるとしている。 In response to such a request, for example, Patent Document 1 proposes "solid wire for submerged arc welding and gas metal arc welding". The solid wire described in Patent Document 1 is C: 0.15 to 0.8%, Si: 0.5 to 1.5%, Mn: 15 to 32%, Cr: 5.5% or less, Mo: 1.5 to 3%, S in% by weight. : 0.025% or less, P: 0.025% or less, B: 0.01% or less, Ti: 0.05 to 1.2%, N: 0.005 to 0.5%, and the balance is a solid wire having a composition of Fe and unavoidable impurities. .. By welding using the solid wire described in Patent Document 1, it is said that a welded joint portion having an excellent impact toughness with a Charpy impact test absorption energy of 32 J or more at a test temperature of -196 ° C can be secured.
 また、特許文献2には、「極低温衝撃靭性に優れた高強度溶接継手部及びこのためのフラックスコアードアーク溶接用ワイヤ」が提案されている。特許文献2に記載されたフラックスコアードアーク溶接用ワイヤは、重量%で、C:0.15~0.8%、Si:0.2~1.2%、Mn:15~34%、Cr:6%以下、Mo:1.5~4%、S:0.02%以下、P:0.02%以下、B:0.01%以下、Ti:0.09~0.5%、N:0.001~0.3%、TiO2:4~15%、SiO2、ZrO2及びAl2O3のうちから選択された1種以上の合計:0.01~9%、K、Na及びLiのうちから選択された1種以上の合計:0.5~1.7%、FとCaのうち1種以上:0.2~1.5%、残部Fe及びその他の不可避的不純物を含む組成を有するワイヤである。特許文献2に記載されたフラックスコアードアーク溶接用ワイヤを用いて溶接すれば、-196℃でシャルピー衝撃試験吸収エネルギーが28J以上の優れた低温靭性および常温引張強さが400MPa以上の高強度を有する溶接継手部が効果的に得られ、また、ワイヤ組成をMo:1.5%以上に調整しており、優れた耐高温割れ性を有する溶接継手部を確保できるとしている。 Further, Patent Document 2 proposes "a high-strength welded joint portion having excellent ultra-low temperature impact toughness and a flux cored arc welding wire for this purpose". The flux cored arc welding wire described in Patent Document 2 has a weight% of C: 0.15 to 0.8%, Si: 0.2 to 1.2%, Mn: 15 to 34%, Cr: 6% or less, Mo: 1.5. ~ 4%, S: 0.02% or less, P: 0.02% or less, B: 0.01% or less, Ti: 0.09 to 0.5%, N: 0.001 to 0.3%, TiO 2 : 4 to 15%, SiO 2 , ZrO 2 and Total of one or more selected from Al 2 O 3 : 0.01-9%, total of one or more selected from K, Na and Li: 0.5-1.7%, one of F and Ca Above: A wire having a composition containing 0.2 to 1.5%, the balance Fe and other unavoidable impurities. When welded using the flux cored arc welding wire described in Patent Document 2, excellent low-temperature toughness with a Charpy impact test absorption energy of 28 J or more at -196 ° C and high strength with a room temperature tensile strength of 400 MPa or more can be obtained. It is said that the welded joint part to have is effectively obtained, and the wire composition is adjusted to Mo: 1.5% or more, so that the welded joint part having excellent high temperature crack resistance can be secured.
韓国登録特許第10-1560899号公報Korean Registered Patent No. 10-1560899 特表2017-502842号公報Special Table 2017-502842
 しかしながら、特許文献1に記載された技術では、溶接入熱量:0.9kJ/mmで溶接施工された溶接部について、試験温度:-196℃におけるシャルピー衝撃試験吸収エネルギーが32J以上を満足する極低温衝撃靭性を有することが確認されているだけである。本発明者らの検討によれば、特許文献1に記載された技術では、実施工溶接時におけるような種々の溶接条件で溶接施工した場合、極低温環境下で溶接部に脆性破壊が発生する恐れがあることを知見した。というのは、特許文献1に記載された技術では、実施工溶接時におけるような種々の溶接条件で溶接した際に、溶接部の粗大化したデンドライトアームで溶質元素が希薄となりオーステナイトの安定性が低下する場合があり、そのような場合には、極低温環境下で、溶接継手部に脆性破壊が発生することが懸念される。 However, in the technique described in Patent Document 1, for a welded portion welded at a welding heat input amount of 0.9 kJ / mm, a Charpy impact test at a test temperature of -196 ° C. An extremely low temperature impact that satisfies an absorbed energy of 32 J or more. It has only been confirmed to have toughness. According to the study by the present inventors, in the technique described in Patent Document 1, brittle fracture occurs in the welded portion in an extremely low temperature environment when welding is performed under various welding conditions as in the case of actual welding. I found that there was a risk. This is because, in the technique described in Patent Document 1, when welding is performed under various welding conditions as in the case of actual welding, the solute element is diluted by the coarsened dendrite arm of the welded portion, and the stability of austenite is improved. In such a case, there is a concern that brittle fracture may occur in the welded joint portion in an extremely low temperature environment.
 また、特許文献2に記載された技術では、フラックスコアードワイヤであるため、溶接時にヒュームの発生量が多くなり、溶接者がヒューム量の多い環境下に晒されるという問題があった。なお、本発明者らの検討によれば、フラックスコアードワイヤに代えてソリッドワイヤとし、炭化物形成元素やB含有量を低減した組成として、ソリッドワイヤの製造性を高めることにより、この問題は回避できることを知見した。 Further, in the technique described in Patent Document 2, since it is a flux cored wire, there is a problem that the amount of fume generated during welding increases and the welder is exposed to an environment with a large amount of fume. According to the study by the present inventors, this problem can be avoided by using a solid wire instead of the flux cored wire and increasing the manufacturability of the solid wire by using a composition in which the content of carbide-forming elements and B is reduced. I found out that I can do it.
 本発明は、上記した従来技術の問題を解決し、極低温環境下で使用される高Mn含有鋼材用の溶接材料として好適な、高強度高延性と、優れた極低温衝撃靭性とを兼備した溶接継手部を作製できる、ガスメタルアーク溶接用ソリッドワイヤおよびそれを用いたガスメタルアーク溶接方法を提供することを目的とする。 The present invention solves the above-mentioned problems of the prior art and has both high strength and high ductility suitable as a welding material for high Mn-containing steel materials used in an extremely low temperature environment and excellent extremely low temperature impact toughness. It is an object of the present invention to provide a solid wire for gas metal arc welding capable of producing a welded joint portion and a gas metal arc welding method using the solid wire.
 なお、ここでいう「高強度高延性」とは、ガスメタルアーク溶接によりJIS Z 3111の規定に準拠して作製した溶着金属(溶接金属)の常温降伏強さ(0.2%耐力)が400MPa以上、引張強さが660MPa以上、全伸びが40%以上であることをいうものとする。また、「優れた極低温衝撃靭性」とは、ガスメタルアーク溶接によりJIS Z 3111の規定に準拠して作製した溶着金属(溶接金属)の、試験温度:-196℃でのシャルピー衝撃試験吸収エネルギーvE-196が28J以上で、脆性破面率が10%以下であることをいうものとする。 The term "high strength and high ductility" as used herein means that the normal temperature yield strength (0.2% proof stress) of the weld metal (welded metal) manufactured in accordance with the provisions of JIS Z 3111 by gas metal arc welding is 400 MPa or more. It is assumed that the tensile strength is 660 MPa or more and the total elongation is 40% or more. "Excellent ultra-low temperature impact toughness" means the Charpy impact test absorption energy of a weld metal (welded metal) manufactured in accordance with JIS Z 3111 by gas metal arc welding at a test temperature of -196 ° C. It is assumed that vE -196 is 28J or more and the brittle fracture surface ratio is 10% or less.
 本発明者らは、上記した目的を達成するために、溶着金属の極低温衝撃靭性に及ぼすソリッドワイヤの組成の影響について鋭意検討した。その結果、溶着金属の極低温衝撃靭性を高め、脆性破壊の発生を防止するためには、まず、オーステナイトの安定度を十分に高める必要があることを知見した。そして、本発明者らは、含有する合金元素量との関連で、次(1)式
  SFE(mJ/m2)=-53+6.2Ni+0.7Cr+3.2Mn+9.3Mo  ……(1)
 (ここで、Ni、Cr、Mn、Mo:各元素の含有量(質量%))
で定義されるSFE値が、オーステナイトの安定度の指標として有効であることを知見した。
 そして、本発明者らは、上記したSFEが17~57(mJ/m2)の範囲を満足する組成のソリッドワイヤであれば、溶接時形成されるオーステナイトが安定化し、JIS Z 3111の規定に準拠して所定の溶接条件で作製された溶着金属が、所望の高強度高延性と、所望の優れた極低温衝撃靭性とを兼備した溶着金属となることを知見した。
In order to achieve the above object, the present inventors have diligently studied the influence of the composition of the solid wire on the cryogenic impact toughness of the weld metal. As a result, it was found that in order to enhance the ultra-low temperature impact toughness of the weld metal and prevent the occurrence of brittle fracture, it is first necessary to sufficiently increase the stability of austenite. Then, in relation to the amount of alloying elements contained, the present inventors have the following equation (1) SFE (mJ / m 2 ) = −53 + 6.2Ni + 0.7Cr + 3.2Mn + 9.3Mo …… (1)
(Here, Ni, Cr, Mn, Mo: content of each element (mass%))
It was found that the SFE value defined in is effective as an index of the stability of austenite.
Then, the present inventors, if the above-mentioned SFE is a solid wire having a composition satisfying the range of 17 to 57 (mJ / m 2 ), the austenite formed at the time of welding is stabilized, and it is specified in JIS Z 3111. It has been found that the weld metal produced under predetermined welding conditions in accordance with the above is a weld metal having both desired high strength and high ductility and desired excellent ultra-low temperature impact toughness.
 そして、さらに、ソリッドワイヤの組成を、とくに、Cを0.20~0.80%で、Siを0.15~0.90%に調整し、さらにMnを15.0~28.0%、Niを0.01~10.0%、Crを0.4~1.9%、Bを0.0010~0.0050%の特定範囲に調整し、炭化物形成元素であるV、Ti、Nbをそれぞれ0.5%以下の特定範囲に調整することにより、伸線加工時の割れ等の欠陥発生がなくソリッドワイヤの製造性に優れるソリッドワイヤとなることを知見した。 Further, the composition of the solid wire is adjusted so that C is 0.20 to 0.80%, Si is 0.15 to 0.90%, Mn is 15.0 to 28.0%, Ni is 0.01 to 10.0%, and Cr is 0.4 to 1.9. By adjusting% and B to a specific range of 0.0010 to 0.0050% and adjusting each of the carbide-forming elements V, Ti, and Nb to a specific range of 0.5% or less, defects such as cracks during wire drawing can occur. It was found that the solid wire has excellent manufacturability.
 また、本発明者らは、溶接凝固時に形成されるデンドライトは溶質元素を排出しながら成長するため、溶質元素が希薄になるミクロな領域が形成され、そのため、オーステナイトの安定度が低下することに思い至り、溶接時の冷却速度を調整することに思い至った。これにより、デンドライトアームの粗大化を防ぎ、溶質元素の吐出量を低減して、溶質元素が希薄になるミクロな領域が狭くなり、ミクロな領域においてもオーステナイトの安定化を図ることができること、それにより、溶着金属の極低温衝撃靭性が更に向上し、溶接継手部の脆性破壊の発生を防止することができることを知見した。 In addition, the present inventors have decided that dendrites formed during welding solidification grow while discharging solute elements, so that microscopic regions where solute elements are diluted are formed, and therefore the stability of austenite is lowered. I came up with the idea of adjusting the cooling rate during welding. As a result, it is possible to prevent the dendrite arm from becoming coarse, reduce the discharge amount of the solute element, narrow the micro region where the solute element becomes diluted, and stabilize austenite even in the micro region. As a result, it was found that the ultra-low temperature impact toughness of the weld metal can be further improved and the occurrence of brittle fracture of the welded joint can be prevented.
 本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。 The present invention has been completed by further studying based on the above findings. That is, the gist of the present invention is as follows.
(1)質量%で、
 C :0.20~0.80%、
 Si:0.15~0.90%、
 Mn:15.0~28.0%、
 P :0.030%以下、
 S :0.030%以下、
 Ni:0.01~10.0%、
 Cr:0.4~1.9%、
 B :0.0010~0.0050%
を含み、残部Feおよび不可避的不純物からなり、かつ、次(1)式
  SFE(mJ/m2)=-53+6.2Ni+0.7Cr+3.2Mn+9.3Mo  ……(1)
 (ここで、Ni、Cr、Mn、Mo:各元素の含有量(質量%))
で定義されるSFEが17~57(mJ/m2)を満足する組成を有することを特徴とするガスメタルアーク溶接用ソリッドワイヤ。
(1) By mass%
C: 0.20 to 0.80%,
Si: 0.15 to 0.90%,
Mn: 15.0-28.0%,
P: 0.030% or less,
S: 0.030% or less,
Ni: 0.01-10.0%,
Cr: 0.4-1.9%,
B: 0.0010-0.0050%
Containing the balance Fe and unavoidable impurities, and the following equation (1) SFE (mJ / m 2 ) =-53 + 6.2Ni + 0.7Cr + 3.2Mn + 9.3Mo …… (1)
(Here, Ni, Cr, Mn, Mo: content of each element (mass%))
A solid wire for gas metal arc welding, characterized in that the SFE defined in is having a composition satisfying 17 to 57 (mJ / m 2 ).
(2)上記(1)において、前記組成が、さらに、質量%で、V:0.5%以下、Ti:0.5%以下、Nb:0.5%以下のうちから選ばれた1種または2種以上を合計で1.0%以下含有するとを特徴とするガスメタルアーク溶接用ソリッドワイヤ。 (2) In the above (1), the composition is a total of one or more selected from V: 0.5% or less, Ti: 0.5% or less, and Nb: 0.5% or less in mass%. A solid wire for gas metal arc welding characterized by a content of 1.0% or less.
(3)上記(1)または(2)において、前記組成が、さらに、質量%で、Cu:1.0%以下、Al:0.10%以下、Ca:0.01%以下およびREM:0.02%以下のうちから選ばれた1種または2種以上を含有することを特徴とするガスメタルアーク溶接用ソリッドワイヤ。 (3) In the above (1) or (2), the composition is further selected from Cu: 1.0% or less, Al: 0.10% or less, Ca: 0.01% or less, and REM: 0.02% or less in mass%. A solid wire for gas metal arc welding, which comprises one or more of the above.
(4)上記(1)~(3)のいずれかにおいて、前記組成が、さらに、質量%で、Mo:3.5%以下を含有することを特徴とするガスメタルアーク溶接用ソリッドワイヤ。 (4) The solid wire for gas metal arc welding according to any one of (1) to (3) above, wherein the composition further contains Mo: 3.5% or less in mass%.
(5)高Mn含有鋼材を、ソリッドワイヤを用いたガスメタルアーク溶接により、溶接金属を形成して接合するガスメタルアーク溶接方法であって、
 前記ソリッドワイヤが、質量%で、
 C :0.20~0.80%、
 Si:0.15~0.90%、
 Mn:15.0~28.0%、
 P :0.030%以下、
 S :0.030%以下、
 Ni:0.01~10.0%、
 Cr:0.4~1.9%、
 B :0.0010~0.0050%
を含み、残部Feおよび不可避的不純物からなり、かつ、次(1)式
  SFE(mJ/m2)=-53+6.2Ni+0.7Cr+3.2Mn+9.3Mo  ……(1)
 (ここで、Ni、Cr、Mn、Mo:各元素の含有量(質量%))
で定義されるSFEが17~57(mJ/m2)を満足する組成を有し、
 前記ガスメタルアーク溶接を、1300~1200℃の温度範囲の冷却速度CR(℃/s)が[SFE+(冷却速度CR)1/2]:20~70を満足するように調整することを特徴とする、ガスメタルアーク溶接方法。
(5) A gas metal arc welding method in which a steel material containing high Mn is joined by forming a weld metal by gas metal arc welding using a solid wire.
The solid wire is by mass%
C: 0.20 to 0.80%,
Si: 0.15 to 0.90%,
Mn: 15.0-28.0%,
P: 0.030% or less,
S: 0.030% or less,
Ni: 0.01-10.0%,
Cr: 0.4-1.9%,
B: 0.0010-0.0050%
Containing the balance Fe and unavoidable impurities, and the following equation (1) SFE (mJ / m 2 ) =-53 + 6.2Ni + 0.7Cr + 3.2Mn + 9.3Mo …… (1)
(Here, Ni, Cr, Mn, Mo: content of each element (mass%))
SFE defined in has a composition satisfying 17 to 57 (mJ / m 2 ).
The gas metal arc welding is characterized by adjusting the cooling rate CR (° C / s) in the temperature range of 1300 to 1200 ° C so as to satisfy [SFE + (cooling rate CR) 1/2 ]: 20 to 70. Gas metal arc welding method.
(6)上記(5)において、前記ソリッドワイヤが、前記組成に加えてさらに、質量%で、V:0.5%以下、Ti:0.5%以下、Nb:0.5%以下のうちから選ばれた1種または2種以上を合計で1.0%以下含有することを特徴とするガスメタルアーク溶接方法。 (6) In the above (5), in addition to the composition, the solid wire is further selected from V: 0.5% or less, Ti: 0.5% or less, Nb: 0.5% or less in mass%. Alternatively, a gas metal arc welding method characterized in that two or more types are contained in a total of 1.0% or less.
(7)上記(5)または(6)において、前記ソリッドワイヤが、前記組成に加えてさらに、質量%で、Cu:1.0%以下、Al:0.10%以下、Ca:0.01%以下およびREM:0.02%以下のうちから選ばれた1種または2種以上を含有することを特徴とするガスメタルアーク溶接方法。 (7) In the above (5) or (6), in addition to the composition, the solid wire further has Cu: 1.0% or less, Al: 0.10% or less, Ca: 0.01% or less and REM: 0.02 in mass%. % A gas metal arc welding method characterized by containing one or more selected from less than or equal to.
(8)上記(5)~(7)のいずれかにおいて、前記ソリッドワイヤが、前記組成に加えてさらに、質量%で、Mo:3.5%以下含有することを特徴とするガスメタルアーク溶接方法。 (8) The gas metal arc welding method according to any one of (5) to (7) above, wherein the solid wire further contains Mo: 3.5% or less in mass% in addition to the composition.
 本発明によれば、ワイヤ製造性に優れ、さらに、高Mn含有鋼材の溶接材料として、高強度でかつ極低温靭性に優れた溶接継手部を容易に製造できる、ガスメタルアーク溶接用ソリッドワイヤおよびそれを用いたガスメタルアーク溶接方法を提供でき、産業上格段の効果を奏する。 According to the present invention, a solid wire for gas metal arc welding and a solid wire for gas metal arc welding, which is excellent in wire manufacturability and can easily manufacture a welded joint portion having high strength and excellent ultra-low temperature toughness as a welding material for steel materials containing high Mn. It is possible to provide a gas metal arc welding method using it, which is extremely effective in industry.
 本発明ソリッドワイヤは、高Mn含有鋼材のガスメタルアーク溶接用として好適な、ソリッドワイヤである。本発明ソリッドワイヤは、ガスメタルアーク溶接によりJIS Z 3111に準拠して作製した溶着金属(溶接金属)が、常温における0.2%耐力で400MPa以上、引張強さで660MPa以上、全伸びで40%以上の高強度高延性と、試験温度:-196℃でのシャルピー衝撃試験の吸収エネルギーが28J以上、脆性破面率が10%以下である、優れた極低温靭性とを兼備することができ、高強度高延性で極低温靭性に優れた溶接継手部を作製できる溶接材料である。 The solid wire of the present invention is a solid wire suitable for gas metal arc welding of high Mn-containing steel materials. In the solid wire of the present invention, a weld metal (welded metal) produced in accordance with JIS Z3111 by gas metal arc welding is 400 MPa or more at 0.2% toughness at room temperature, 660 MPa or more in tensile strength, and 40% or more in total elongation. High strength and high ductility, and excellent ultra-low temperature toughness with test temperature: -196 ° C, Charpy impact test absorption energy of 28J or more, brittle fracture surface ratio of 10% or less. It is a welding material capable of producing a welded joint portion having high strength and high ductility and excellent ultra-low temperature toughness.
 本発明ソリッドワイヤは、基本組成として、質量%で、C:0.20~0.80%、Si:0.15~0.90%、Mn:15.0~28.0%、P:0.030%以下、S:0.030%以下、Ni:0.01~10.0%、Cr:0.4~1.9%、B:0.0010~0.0050%を含み、残部Feおよび不可避的不純物からなり、かつ、次(1)式
  SFE(mJ/m2)=-53+6.2Ni+0.7Cr+3.2Mn+9.3Mo  ……(1)
 (ここで、Ni、Cr、Mn、Mo:各元素の含有量(質量%))
で定義されるSFEが17~57(mJ/m2)を満足する組成を有する。
The solid wire of the present invention has a basic composition of C: 0.20 to 0.80%, Si: 0.15 to 0.90%, Mn: 15.0 to 28.0%, P: 0.030% or less, S: 0.030% or less, Ni: 0.01. It contains ~ 10.0%, Cr: 0.4 ~ 1.9%, B: 0.0010 ~ 0.0050%, consists of the balance Fe and unavoidable impurities, and has the following equation (1) SFE (mJ / m 2 ) =-53 + 6.2Ni + 0.7Cr + 3 .2Mn + 9.3Mo …… (1)
(Here, Ni, Cr, Mn, Mo: content of each element (mass%))
It has a composition in which the SFE defined in is satisfied with 17 to 57 (mJ / m 2 ).
 まず、組成の限定理由について説明する。なお、以下、組成における「質量%」は、単に「%」で記す。 First, the reason for limiting the composition will be explained. Hereinafter, "mass%" in the composition is simply described as "%".
 C:0.20~0.80%
 Cは、固溶強化により、溶接金属の強度を上昇させる作用を有する元素である。また、Cは、オーステナイト相を安定化させ、溶接金属の極低温衝撃靭性を向上させる。このような効果を得るためには、0.20%以上の含有を必要とする。しかし、0.80%を超えて含有すると、炭化物が析出し,極低温衝撃靭性が低下し、さらに、溶接時の高温割れが生じやすくなる。そのため、Cは0.20~0.80%の範囲に限定した。好ましくは、0.30~0.70%である。
C: 0.20 to 0.80%
C is an element that has the effect of increasing the strength of the weld metal by strengthening the solid solution. C also stabilizes the austenite phase and improves the cryogenic impact toughness of the weld metal. In order to obtain such an effect, a content of 0.20% or more is required. However, if it is contained in excess of 0.80%, carbides are precipitated, the cryogenic impact toughness is lowered, and high temperature cracking is likely to occur during welding. Therefore, C was limited to the range of 0.20 to 0.80%. Preferably, it is 0.30 to 0.70%.
 Si:0.15~0.90%
 Siは、脱酸剤として作用し、Mnの歩留りを高めるとともに、溶融金属の粘性を高め、ビード形状を安定的に保持し、スパッタの発生を低減する効果がある。そのような効果を得るためには、Siは0.15%以上の含有を必要とする。しかし、0.90%を超えてSiを含有すると、溶接金属の極低温衝撃靭性を低下させる。また、凝固時に偏析し、凝固セル界面に液相を生成して、耐高温割れ性を低下させる。そのため、Siは0.15~0.90%の範囲に限定した。好ましくは0.20~0.70%である。
Si: 0.15 to 0.90%
Si acts as an antacid, has the effect of increasing the yield of Mn, increasing the viscosity of the molten metal, stably maintaining the bead shape, and reducing the occurrence of spatter. In order to obtain such an effect, Si needs to have a content of 0.15% or more. However, if Si is contained in excess of 0.90%, the cryogenic impact toughness of the weld metal is reduced. In addition, segregation occurs during solidification to form a liquid phase at the interface of the solidified cell, which reduces high temperature crack resistance. Therefore, Si was limited to the range of 0.15 to 0.90%. It is preferably 0.20 to 0.70%.
 Mn:15.0~28.0%
 Mnは、安価に、オーステナイト相を安定化する元素であり、本発明では15.0%以上の含有を必要とする。Mnが15.0%未満では、溶接金属(溶着金属)中のMn希薄部にε-マルテンサイトが生成し,極低温での靭性が著しく低下する。一方、Mnを28.0%を超えて含有しても、極低温衝撃靭性を改善する効果が飽和するだけでなく、凝固時に過度のMn偏析が発生し,高温割れを誘発する。そのため、Mnは15.0~28.0%の範囲に制限した。好ましくは18.0~25.0%である。
Mn: 15.0-28.0%
Mn is an element that stabilizes the austenite phase at low cost, and the content of Mn is required to be 15.0% or more in the present invention. When Mn is less than 15.0%, ε-martensite is formed in the Mn-lean part in the weld metal (welded metal), and the toughness at extremely low temperatures is significantly reduced. On the other hand, even if Mn is contained in excess of 28.0%, not only the effect of improving cryogenic impact toughness is saturated, but also excessive Mn segregation occurs during solidification, which induces high temperature cracking. Therefore, Mn was limited to the range of 15.0 to 28.0%. It is preferably 18.0 to 25.0%.
 P:0.030%以下
 Pは、結晶粒界に偏析し、高温割れを誘発するとともに、溶接金属の極低温衝撃靭性を低下させる元素であり、本発明では、不純物元素としてできるだけ低減することが好ましいが、0.030%以下であれば、許容できる。そのため、Pは0.030%以下に限定した。好ましくは0.02%以下である。一方、過度のP低減は、精練コストの高騰を招く。そのため、Pは0.003%以上に調整することが好ましい。
P: 0.030% or less P is an element that segregates at grain boundaries, induces high-temperature cracking, and lowers the cryogenic impact toughness of the weld metal. In the present invention, it is preferable to reduce it as an impurity element as much as possible. , 0.030% or less is acceptable. Therefore, P was limited to 0.030% or less. It is preferably 0.02% or less. On the other hand, excessive P reduction causes a rise in refining cost. Therefore, P is preferably adjusted to 0.003% or more.
 S:0.030%以下
 Sは、溶接金属(溶着金属)中では、硫化物系介在物MnSとして存在する。MnSは、破壊の発生起点となるため、極低温靭性を低下させる。そのため、Sは0.030%以下に限定した。好ましくは0.02%以下である。一方、過度のS低減は、精練コストの高騰を招く。そのため、Sは0.001%以上に調整することが好ましい。
S: 0.030% or less S exists as a sulfide-based inclusion MnS in the weld metal (welded metal). Since MnS is the starting point of fracture, it reduces cryogenic toughness. Therefore, S was limited to 0.030% or less. It is preferably 0.02% or less. On the other hand, excessive S reduction causes a rise in refining cost. Therefore, it is preferable to adjust S to 0.001% or more.
 Ni:0.01~10.0%
 Niは、オーステナイト粒界を強化する元素であり、粒界に偏析し、極低温衝撃靭性を向上させる。また、Niは転位の易動度を向上させる。このような効果を得るためには、Niは0.01%以上の含有を必要とする。また、Niは、オーステナイト相を安定化する効果もあるため、さらに含有量を増加すれば、オーステナイト相を安定化させて、溶接金属(溶着金属)の極低温衝撃靭性を向上させる。しかし、Niは高価な元素であり、10.0%を超える含有は、経済的に不利となる。そのため、Niは0.01~10.0%に限定した。好ましくは1.0~8.0%であり、より好ましくは2.0~7.0%である。
Ni: 0.01-10.0%
Ni is an element that strengthens austenite grain boundaries and segregates at grain boundaries to improve cryogenic impact toughness. In addition, Ni improves the mobility of dislocations. In order to obtain such an effect, Ni needs to be contained in an amount of 0.01% or more. In addition, Ni also has the effect of stabilizing the austenite phase, so if the content is further increased, the austenite phase is stabilized and the ultra-low temperature impact toughness of the weld metal (welded metal) is improved. However, Ni is an expensive element, and a content of more than 10.0% is economically disadvantageous. Therefore, Ni was limited to 0.01 to 10.0%. It is preferably 1.0 to 8.0%, more preferably 2.0 to 7.0%.
 Cr:0.4~1.9%
 Crは、極低温ではオーステナイト相を安定化させるとともに、粒界強度を向上させ、溶接金属の極低温衝撃靭性を向上させる作用を有する。また、Crは、溶接金属の強度を向上させる作用も有する。また、Crは、溶融金属の液相線を高めて、高温割れの発生を抑制するのに有効に作用する。さらに、Crは、溶接金属の耐食性を高めるのにも有効に作用する。このような効果を得るためには、Crは0.4%以上の含有を必要とする。Crが0.4%未満では、上記した効果を確保できない。一方、1.9%を超えて含有すると、冷却速度が遅い場合にオーステナイト粒界にCr炭化物が生成し、極低温衝撃靭性の低下を招く。さらに、Cr炭化物の生成により、ワイヤ伸線時の加工性が低下する。そのため、Crは0.4~1.9%の範囲に限定した。好ましくは、0.5~1.8%である。
Cr: 0.4-1.9%
Cr has the effect of stabilizing the austenite phase at extremely low temperatures, improving the grain boundary strength, and improving the cryogenic impact toughness of the weld metal. Cr also has the effect of improving the strength of the weld metal. In addition, Cr works effectively to increase the liquidus line of the molten metal and suppress the occurrence of high temperature cracking. Furthermore, Cr also works effectively to enhance the corrosion resistance of the weld metal. In order to obtain such an effect, Cr must be contained in an amount of 0.4% or more. If Cr is less than 0.4%, the above effect cannot be ensured. On the other hand, if it is contained in excess of 1.9%, Cr carbides are formed at the austenite grain boundaries when the cooling rate is slow, resulting in a decrease in cryogenic impact toughness. Further, due to the formation of Cr carbide, the workability at the time of wire drawing is lowered. Therefore, Cr was limited to the range of 0.4 to 1.9%. It is preferably 0.5 to 1.8%.
 B:0.0010%~0.0050%
 Bは、オーステナイト粒界に偏析することで、粒界強度を向上させ、溶接金属の極低温衝撃靭性を向上させる作用を有する。また、粒界強度の向上に伴い、伸線加工時の破断を防止する作用も有する。このような効果を得るために、Bは0.0010%以上の含有を必要とする。Bが0.0010%未満では、上記した効果を確保できない。一方、0.0050%を超えて含有すると、不可避的不純物として混入しているNと結合し、窒化ホウ素をオーステナイト粒界に形成し、粒界強度を低下させる。この粒界強度の低下により、ワイヤの伸線加工時に、オーステナイト粒界が破壊発生起点となり、断線を生じさせ、伸線加工性が低下し、ワイヤの製造性を低下させる。そのため、Bは0.0010~0.0050%の範囲に限定した。好ましくは、0.0011~0.0030%である。
B: 0.0010% -0.0050%
B has the effect of improving the grain boundary strength and improving the cryogenic impact toughness of the weld metal by segregating at the austenite grain boundaries. Further, as the grain boundary strength is improved, it also has an effect of preventing breakage during wire drawing. In order to obtain such an effect, B needs to have a content of 0.0010% or more. If B is less than 0.0010%, the above effect cannot be ensured. On the other hand, if it is contained in excess of 0.0050%, it binds to N mixed as an unavoidable impurity to form boron nitride at the austenite grain boundary, which lowers the grain boundary strength. Due to this decrease in grain boundary strength, the austenite grain boundary becomes the starting point of fracture occurrence during wire drawing, causing disconnection, reducing wire drawing workability, and reducing wire manufacturability. Therefore, B was limited to the range of 0.0010 to 0.0050%. Preferably, it is 0.0011 to 0.0030%.
 本発明ソリッドワイヤでは、上記した成分を基本の成分とする。
 溶接金属(溶着金属)の極低温衝撃靭性を向上するためには、オーステナイトの安定度を高め、溶接金属の脆性破壊の発生を抑制することが必要となる。そのために、本発明ソリッドワイヤでは、次(1)式
  SFE(mJ/m2)=-53+6.2Ni+0.7Cr+3.2Mn+9.3Mo  ……(1)
 (ここで、Ni、Cr、Mn、Mo:各元素の含有量(質量%))
で定義されるSFE(Stacking Fault Energy)が17~57(mJ/m2)を満足するように、上記した各成分の含有範囲内で各成分の含有量を調整する。SFEは、本発明で巨視的なオーステナイトの安定度の指標として採用した値であり、Ni、Cr、Mn、Moの各含有量から(1)式で定義される。SFEが17(mJ/m2)未満では、オーステナイトの安定度が低く、所望の極低温衝撃靭性を満足できない。一方、SFEが57(mJ/m2)を超えると、引張試験時の加工硬化能が低下し、所望の引張強さを満足できない。このため、(1)式で定義されるSFEは17~57(mJ/m2)の範囲に限定した。好ましくは20~55(mJ/m2)である。なお、(1)式に記載された元素を含有しない場合には、当該元素の含有量は零として、(1)式の値SFEを算出するものとする。
In the solid wire of the present invention, the above-mentioned components are the basic components.
In order to improve the cryogenic impact toughness of the weld metal (welded metal), it is necessary to increase the stability of austenite and suppress the occurrence of brittle fracture of the weld metal. Therefore, in the solid wire of the present invention, the following equation (1) SFE (mJ / m 2 ) = −53 + 6.2Ni + 0.7Cr + 3.2Mn + 9.3Mo …… (1)
(Here, Ni, Cr, Mn, Mo: content of each element (mass%))
The content of each component is adjusted within the content range of each component described above so that the SFE (Stacking Fault Energy) defined in the above satisfies 17 to 57 (mJ / m 2 ). SFE is a value adopted as an index of macroscopic austenite stability in the present invention, and is defined by Eq. (1) from each content of Ni, Cr, Mn, and Mo. If the SFE is less than 17 (mJ / m 2 ), the stability of austenite is low and the desired cryogenic impact toughness cannot be satisfied. On the other hand, if SFE exceeds 57 (mJ / m 2 ), the work hardening ability at the time of the tensile test is lowered, and the desired tensile strength cannot be satisfied. Therefore, the SFE defined by Eq. (1) is limited to the range of 17 to 57 (mJ / m 2 ). It is preferably 20 to 55 (mJ / m 2 ). If the element described in the formula (1) is not contained, the content of the element is assumed to be zero and the value SFE of the formula (1) is calculated.
 本発明ソリッドワイヤでは、上記した基本の成分に加えてさらに、必要に応じて、任意成分として、V:0.5%以下、Ti:0.5%以下およびNb:0.5%以下のうちから選ばれた1種または2種以上を合計で1.0%以下、および/または、Cu:1.0%以下、Al:0.10%以下、Ca:0.01%以下およびREM:0.02%以下のうちから選ばれた1種または2種以上、および/または、Mo:3.5%以下、を選択して含有できる。 In the solid wire of the present invention, in addition to the above-mentioned basic components, if necessary, one selected from V: 0.5% or less, Ti: 0.5% or less, and Nb: 0.5% or less as optional components. Or two or more types in total 1.0% or less, and / or one or two or more types selected from Cu: 1.0% or less, Al: 0.10% or less, Ca: 0.01% or less and REM: 0.02% or less. , And / or Mo: 3.5% or less can be selected and contained.
 V:0.5%以下、Ti:0.5%以下およびNb:0.5%以下のうちから選ばれた1種または2種以上を合計で1.0%以下
 V、Ti、Nbはいずれも、炭化物を形成し、溶接金属の強度向上に寄与する元素であり、必要に応じて選択して1種または2種以上を合計で1.0%以下含有できる。
V: 0.5% or less, Ti: 0.5% or less and Nb: 0.5% or less and one or more selected from 1.0% or less in total V, Ti and Nb form carbides and are welded. It is an element that contributes to the improvement of the strength of the metal, and can be selected as necessary and contains 1 type or 2 or more types in a total of 1.0% or less.
 V:0.5%以下
 Vは、炭化物形成元素であり、微細な炭化物を析出させて、溶接金属の強度向上に寄与する。このような効果を得るためには0.001%以上含有することが好ましい。一方、0.5%を超えて含有すると、炭化物が粗大化して、ソリッドワイヤの伸線加工時に割れの発生起点となり、伸線加工性が低下し、ワイヤの製造性を低下させる。そのため、含有する場合には、Vは0.5%以下に限定することが好ましい。
V: 0.5% or less V is a carbide-forming element, which precipitates fine carbides and contributes to the improvement of the strength of the weld metal. In order to obtain such an effect, it is preferably contained in an amount of 0.001% or more. On the other hand, if the content exceeds 0.5%, the carbide becomes coarse and becomes a cracking starting point during wire drawing of the solid wire, the wire drawing workability is lowered, and the wire manufacturability is lowered. Therefore, when it is contained, it is preferable to limit V to 0.5% or less.
 Ti:0.5%以下
 Tiは、炭化物形成元素であり、微細な炭化物を析出させて、溶接金属の強度向上に寄与する。また、Tiは、溶接金属の凝固セル界面に炭化物を析出させて、高温割れの発生抑制に寄与する。このような効果を得るためには0.001%以上含有することが好ましい。しかし、Ti:0.5%を超えて含有すると、炭化物が粗大化し、ソリッドワイヤの伸線加工時の割れの発生起点となり、伸線加工性を低下させ、ワイヤの製造性を低下させる。また、Tiを0.5%を超えて含有すると、炭化物が粗大化し、結晶粒の微細化が抑制され、極低温衝撃靭性が低下する。そのため、含有する場合には、Tiは0.5%以下に限定することが好ましい。
Ti: 0.5% or less Ti is a carbide-forming element, which precipitates fine carbides and contributes to the improvement of the strength of the weld metal. In addition, Ti deposits carbides at the interface of the solidified cell of the weld metal and contributes to suppressing the occurrence of high temperature cracks. In order to obtain such an effect, it is preferably contained in an amount of 0.001% or more. However, if it is contained in excess of Ti: 0.5%, the carbide becomes coarse and becomes a starting point of cracking during wire drawing of the solid wire, which lowers the wire drawing workability and lowers the wire manufacturability. Further, when Ti is contained in an amount of more than 0.5%, carbides are coarsened, fineness of crystal grains is suppressed, and cryogenic impact toughness is lowered. Therefore, when it is contained, Ti is preferably limited to 0.5% or less.
 Nb:0.5%以下
 Nbは、炭化物形成元素であり、炭化物を析出させて、溶接金属の強度向上に寄与する元素である。また、Nbは、溶接金属の凝固セル界面に炭化物を析出させて、高温割れの発生抑制に寄与する。このような効果を得るためには0.001%以上含有することが好ましい。しかし、Nbが0.5%を超えて含有すると、炭化物が粗大化し、ソリッドワイヤの伸線加工時に割れの発生起点となり、伸線加工性が低下し、ワイヤの製造性を低下させる。また、Nbが0.5%を超えて含有すると、炭化物が粗大化し、結晶粒の微細化が抑制され、極低温衝撃靭性も低下する。そのため、含有する場合には、Nbは0.5%以下に限定することが好ましい。
Nb: 0.5% or less Nb is a carbide-forming element, which is an element that precipitates carbides and contributes to the improvement of the strength of the weld metal. In addition, Nb precipitates carbides at the interface of the solidified cell of the weld metal and contributes to suppressing the occurrence of high-temperature cracks. In order to obtain such an effect, it is preferably contained in an amount of 0.001% or more. However, if Nb is contained in an amount of more than 0.5%, the carbide becomes coarse and becomes a cracking starting point at the time of wire drawing of the solid wire, the wire drawing workability is lowered, and the wire manufacturability is lowered. Further, when Nb is contained in an amount of more than 0.5%, carbides are coarsened, fineness of crystal grains is suppressed, and cryogenic impact toughness is also lowered. Therefore, when it is contained, it is preferable to limit Nb to 0.5% or less.
 なお、V、Ti、Nbは、合計で1.0%を超えて多量に含有すると、ワイヤの製造性、極低温衝撃靭性が低下する。そのため、含有する場合は、V、Ti、Nbは、合計で1.0%以下に限定することが好ましい。 If V, Ti, and Nb are contained in a large amount exceeding 1.0% in total, the wire manufacturability and cryogenic impact toughness will decrease. Therefore, when contained, it is preferable to limit V, Ti, and Nb to 1.0% or less in total.
 Cu:1.0%以下、Al:0.10%以下、Ca:0.01%以下およびREM:0.02%以下のうちから選ばれた1種または2種以上
 Cuはオーステナイト安定化に寄与する元素であり、Alは溶接作業性を向上させる元素であり、Ca、REMは加工性向上に寄与する元素であり、必要に応じて選択して1種または2種以上含有できる。
One or more selected from Cu: 1.0% or less, Al: 0.10% or less, Ca: 0.01% or less and REM: 0.02% or less Cu is an element that contributes to austenite stabilization, and Al is welded. It is an element that improves workability, and Ca and REM are elements that contribute to the improvement of workability, and can be selected and contained in one or more types as necessary.
 Cu:1.0%以下
 Cuは、オーステナイト相を安定化する元素であり、極低温でもオーステナイト相を安定化させて、溶接金属(溶着金属)の極低温衝撃靭性を向上させる。このような効果を得るためには、0.01%以上含有することが好ましい。しかし、1.0%を超えて多量に含有すると、熱間延性が低下し、ワイヤの製造性が低下する。そのため、含有する場合には、Cuは1.0%以下に限定することが好ましい。
Cu: 1.0% or less Cu is an element that stabilizes the austenite phase, stabilizes the austenite phase even at extremely low temperatures, and improves the cryogenic impact toughness of the weld metal (welded metal). In order to obtain such an effect, it is preferably contained in an amount of 0.01% or more. However, if it is contained in a large amount exceeding 1.0%, the hot ductility is lowered and the manufacturability of the wire is lowered. Therefore, when it is contained, it is preferable to limit Cu to 1.0% or less.
 Al:0.10%以下
 Alは、脱酸剤として作用し、溶融金属の粘性を高め、ビード形状を安定的に保持し、スパッタの発生を低減する重要な作用を有する。また、Alは、溶融金属の液相線温度を高め、溶接金属の高温割れ発生の抑制に寄与する。このような効果は、0.005%以上の含有で顕著となるため、0.005%以上含有することが好ましい。しかし、0.10%を超えて含有すると、溶融金属の粘性が高くなりすぎて、逆に、スパッタの増加や、ビードが広がらず融合不良などの欠陥が増加する。そのため、含有する場合には、Alは0.10%以下に限定することが好ましい。より好ましくは0.005~0.04%である。
Al: 0.10% or less Al acts as an antacid, increases the viscosity of the molten metal, stably maintains the bead shape, and has an important effect of reducing the occurrence of spatter. In addition, Al raises the liquidus temperature of the molten metal and contributes to suppressing the occurrence of high-temperature cracking of the weld metal. Since such an effect becomes remarkable when the content is 0.005% or more, it is preferable to contain 0.005% or more. However, if it is contained in excess of 0.10%, the viscosity of the molten metal becomes too high, and conversely, defects such as increased spatter and bead do not spread and fusion failure increase. Therefore, when it is contained, it is preferable to limit Al to 0.10% or less. More preferably, it is 0.005 to 0.04%.
 Ca:0.01%以下
 Caは、溶融金属中でSと結合し、高融点の硫化物CaSを形成する。CaSは、MnSよりも高融点であるため、ソリッドワイヤの熱間加工時に圧延方向に進展せずに球形を維持し,ソリッドワイヤの加工性向上に有利に作用する。このような効果は0.001%以上の含有で顕著となる。一方、0.01%を超えて含有すると、溶接時にアークに乱れが生じ、安定な溶接が困難となる。そのため、含有する場合には、Caは0.01%以下に限定することが好ましい。
Ca: 0.01% or less Ca combines with S in the molten metal to form a high melting point sulfide CaS. Since CaS has a higher melting point than MnS, it maintains a spherical shape without advancing in the rolling direction during hot working of solid wire, which is advantageous for improving workability of solid wire. Such an effect becomes remarkable when the content is 0.001% or more. On the other hand, if the content exceeds 0.01%, the arc is disturbed during welding, which makes stable welding difficult. Therefore, when it is contained, it is preferable to limit Ca to 0.01% or less.
 REM:0.02%以下
 REMは、強力な脱酸剤であり、溶接金属(溶着金属)中ではREM酸化物の形態で存在する。REM酸化物は凝固時の核生成サイトとなることで、結晶粒を微細化し、溶接金属(溶着金属)の強度の向上に寄与する。このような効果は0.001%以上の含有で顕著となる。しかし、0.02%を超えて含有すると、アークの安定性が低下する。そのため、含有する場合には、REMは0.02%以下に限定することが好ましい。
REM: 0.02% or less REM is a strong deoxidizer and exists in the form of REM oxide in weld metals (welded metals). The REM oxide acts as a nucleation site during solidification, thereby refining the crystal grains and contributing to the improvement of the strength of the weld metal (welded metal). Such an effect becomes remarkable when the content is 0.001% or more. However, if it is contained in excess of 0.02%, the stability of the arc will decrease. Therefore, when it is contained, it is preferable to limit the REM to 0.02% or less.
 Mo:3.5%以下
 Moは、固溶強化により強度を向上させる元素であり、このような効果を得るためには0.5%以上含有することが望ましい。一方、3.5%を超えて含有すると、炭化物が析出し、熱間加工性が低下し、ワイヤの伸線加工など、ワイヤの製造性が低下する。そのため、含有する場合には、Moは3.5%以下に限定することが好ましい。
Mo: 3.5% or less Mo is an element that improves the strength by strengthening the solid solution, and it is desirable to contain 0.5% or more in order to obtain such an effect. On the other hand, if it is contained in excess of 3.5%, carbides are precipitated, the hot workability is lowered, and the manufacturability of the wire such as wire drawing is lowered. Therefore, when it is contained, it is preferable to limit Mo to 3.5% or less.
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。 The rest other than the above components consist of Fe and unavoidable impurities.
 つぎに、本発明ソリッドワイヤの製造方法について説明する。
 本発明ソリッドワイヤの製造は、上記した組成を有する溶鋼を用いる以外は、とくにその製造方法を限定する必要はなく、常用の溶接用ソリッドワイヤの製造方法がいずれも適用できる。例えば、上記した組成を有する溶鋼を、電気炉、真空溶解炉等の常用の溶製炉で溶製し、所定形状の鋳型等に鋳造し、鋼塊を得る鋳造工程と、得られた鋼塊を、所定温度に加熱する加熱工程と、加熱された鋼塊に、熱間圧延を施し、所定形状の鋼素材(棒状)を得る熱延工程と、を順次行い、ついで、得られた鋼素材(棒状)を複数回の冷間圧延(冷間伸線加工)と必要に応じて、焼鈍温度:1000~1200℃とする焼鈍を施して、所望寸法のワイヤとする冷延工程を行うことで、本発明のソリッドワイヤを製造することができる。
Next, a method for manufacturing the solid wire of the present invention will be described.
The production of the solid wire of the present invention does not need to be particularly limited in the production method except that the molten steel having the above composition is used, and any of the conventional solid wire production methods for welding can be applied. For example, a casting step of melting molten steel having the above composition in a regular melting furnace such as an electric furnace or a vacuum melting furnace and casting it into a mold having a predetermined shape to obtain a steel ingot, and a obtained steel ingot. A heating step of heating the steel to a predetermined temperature and a hot rolling step of hot rolling the heated steel ingot to obtain a steel material (rod shape) having a predetermined shape are sequentially performed, and then the obtained steel material is obtained. By cold-rolling (rod-shaped) multiple times (cold wire drawing) and, if necessary, annealing to a quenching temperature of 1000 to 1200 ° C., a cold rolling process is performed to obtain a wire of the desired size. , The solid wire of the present invention can be manufactured.
 つぎに、上記した組成を有する本発明ソリッドワイヤを用いた、ガスメタルアーク溶接方法について説明する。
 前記溶接方法では、高Mn含有鋼材を、上記した組成を有する本発明ソリッドワイヤを溶接材料として、ガスメタルアーク溶接により、溶接金属を形成して接合する。ガスメタルアーク溶接は、「ガスシールドアーク溶接」とも称され、一般に、溶接材料(溶加材)を電極として用いる「溶極式(消耗電極式)」とタングステン等の非消耗電極を用いる「非消耗電極式」とに大別することができる。本発明ソリッドワイヤは、高強度高延性で優れた極低温衝撃靭性を達成する観点から、溶極式のガスメタルアーク溶接に用いることが好ましい。
 溶接姿勢、予熱、溶接入熱量(電流、電圧、溶接速度)、シールドガス等の溶接条件は、常用のものをいずれも適用できる。
Next, a gas metal arc welding method using the solid wire of the present invention having the above composition will be described.
In the welding method, a steel material containing high Mn is joined by forming a weld metal by gas metal arc welding using the solid wire of the present invention having the above composition as a welding material. Gas metal arc welding is also called "gas shielded arc welding", and is generally called "melting electrode type (consumable electrode type)" that uses a welding material (additive material) as an electrode and "non-consumable electrode type" that uses a non-consumable electrode such as tungsten. It can be roughly divided into "consumable electrode type". The solid wire of the present invention is preferably used for electrodeposition type gas metal arc welding from the viewpoint of achieving high strength and high ductility and excellent cryogenic impact toughness.
Welding conditions such as welding posture, preheating, welding heat input (current, voltage, welding speed), shield gas, etc. can be applied to any of the usual welding conditions.
 本発明ソリッドワイヤを用いてガスメタルアーク溶接される高Mn含有鋼材は、合金元素としてMnを高含有量で含む。Mn含有量の下限値は、特に限定されないが、例えば10質量%以上、好ましくは15質量%以上、より好ましくは20質量%以上である。Mn含有量の上限値は、特に限定されないが、例えば35質量%以下、好ましくは30質量%以下、より好ましくは27質量%以下である。高Mn含有鋼材のMn含有量が前記範囲内であれば、本発明ソリッドワイヤを溶接材料として用いてガスメタルアーク溶接することにより、耐高温割れ性および溶接ビード外観に優れ、所望の高強度高延性および優れた極低温衝撃靭性を兼備する溶接金属(溶着金属)および溶接継手を安定に得ることができる。
 前記高Mn含有鋼材において、Mn以外の合金元素の組成や鋼材のサイズや形状等は、特に限定されず、所望する用途に適したものを採用することができるが、所望の高強度高延性および優れた極低温衝撃靭性を達成する観点から、高Mn含有鋼材が鋼板である場合の板厚は6mm以上が好ましく、10mm以上がより好ましく、40mm以下が好ましく、30mm以下がより好ましい。
The high Mn-containing steel material that is gas metal arc welded using the solid wire of the present invention contains Mn as an alloying element in a high content. The lower limit of the Mn content is not particularly limited, but is, for example, 10% by mass or more, preferably 15% by mass or more, and more preferably 20% by mass or more. The upper limit of the Mn content is not particularly limited, but is, for example, 35% by mass or less, preferably 30% by mass or less, and more preferably 27% by mass or less. When the Mn content of the high Mn-containing steel material is within the above range, gas metal arc welding using the solid wire of the present invention as a welding material is excellent in high temperature crack resistance and weld bead appearance, and desired high strength and high strength. Welded metal (welded metal) and welded joints that have both ductility and excellent ultra-low temperature impact toughness can be stably obtained.
In the high Mn-containing steel material, the composition of alloying elements other than Mn, the size and shape of the steel material, and the like are not particularly limited, and those suitable for the desired application can be adopted, but the desired high strength and high ductility and From the viewpoint of achieving excellent ultra-low temperature impact toughness, when the high Mn-containing steel material is a steel plate, the plate thickness is preferably 6 mm or more, more preferably 10 mm or more, preferably 40 mm or less, and more preferably 30 mm or less.
 本発明ソリッドワイヤを用いた前記ガスメタルアーク溶接方法は、特に限定されないが、例えば、高強度高延性および優れた極低温衝撃靭性が要求される溶接金属を備えた製品の製造等、好ましくは、高Mn含有鋼材からLNGの輸送用または貯蔵用の容器等の製造等に用いることができる。 The gas metal arc welding method using the solid wire of the present invention is not particularly limited, but is preferably used, for example, for manufacturing a product provided with a weld metal that requires high strength and high ductility and excellent ultra-low temperature impact toughness. It can be used for manufacturing containers for transporting or storing LNG from steel materials containing high Mn.
 本発明ソリッドワイヤを用いたガスメタルアーク溶接方法では、溶接時の冷却において、溶接ビード(溶接部)における1300~1200℃の温度範囲の冷却速度CR(℃/s)が[SFE+(冷却速度CR)1/2]:20~70を満足するように、溶接入熱を調整する。これにより、オーステナイトが安定化し、溶接金属(溶着金属)における脆性破壊の発生を抑制することができ、その結果、高強度高延性および優れた極低温衝撃靭性を有する溶接金属(溶着金属)を得ることができる。
 [SFE+CR1/2]の下限値は、20であり、特に限定されないが、25以上であるのが好ましく、30以上であるのがより好ましい。[SFE+(冷却速度CR)1/2]が20未満となるようなCR(℃/s)では、冷却が遅く、デンドライトアームの粗大化を防止できないため、デンドライトアーム部分では凝固時の溶質元素の吐出量が多くなり、溶質元素が希薄な領域が拡大し、微視的なオーステナイトの安定性が確保できない。
 [SFE+CR1/2]の上限値は、70であり、特に限定されないが、65以下であるのが好ましく、60以下であるのがより好ましい。[SFE+(冷却速度CR)1/2]が70超となるようなCR(℃/s)では、引張試験時の加工硬化能が低下し、所望の引張強さを満足できない。なお、ここでいう「SFE」は、巨視的なオーステナイトの安定度の指標として、上記した(1)式で定義されるものである。
In the gas metal arc welding method using the solid wire of the present invention, the cooling rate CR (° C / s) in the temperature range of 1300 to 1200 ° C. in the weld bead (welded portion) is [SFE + (cooling rate CR) in the cooling during welding. ) 1/2 ]: Adjust the welding heat input so as to satisfy 20 to 70. As a result, austenite is stabilized and the occurrence of brittle fracture in the weld metal (welded metal) can be suppressed, resulting in a weld metal (welded metal) having high strength and high ductility and excellent ultra-low temperature impact toughness. be able to.
The lower limit of [SFE + CR 1/2 ] is 20, and is not particularly limited, but is preferably 25 or more, and more preferably 30 or more. At CR (° C / s) where [SFE + (cooling rate CR) 1/2 ] is less than 20, cooling is slow and coarsening of the dendrite arm cannot be prevented. Therefore, in the dendrite arm part, solute elements during solidification The discharge amount increases, the region where the solute element is diluted expands, and microscopic austenite stability cannot be ensured.
The upper limit of [SFE + CR 1/2 ] is 70, and is not particularly limited, but is preferably 65 or less, and more preferably 60 or less. At CR (° C / s) where [SFE + (cooling rate CR) 1/2 ] exceeds 70, the work hardening ability during the tensile test decreases, and the desired tensile strength cannot be satisfied. The "SFE" referred to here is defined by the above equation (1) as an index of the stability of macroscopic austenite.
 溶接では、一般に、1パスの溶接を行う毎に、形成した溶接ビード(溶接部)を所定温度まで冷却して凝固させてから、それに続く作業、例えば、次パスの溶接や任意の後熱処理などを行う。複数パスの溶接を行って1300~1200℃の温度範囲の冷却過程を複数回経る場合は、その全ての冷却過程において[SFE+(冷却速度CR)1/2]:20~70を満足するように、各パスにおける溶接入熱量を調整する。
 本発明の溶接方法では、形成した溶接ビード(溶接部)を大気中で静置して放冷することで冷却するため、各パスにおける溶接入熱量を調節することで、1300~1200℃の温度範囲の冷却速度CR(℃/s)を制御することができる。具体的には、上記式に当てはまる冷却速度となるような溶接入熱量を予め予備実験または稲垣の式から求めておき、その入熱量で溶接すればよい。
In welding, generally, every time one pass is welded, the formed weld bead (welded portion) is cooled to a predetermined temperature and solidified, and then subsequent operations such as welding of the next pass and optional post-heat treatment are performed. I do. When welding multiple passes and undergoing multiple cooling processes in the temperature range of 1300 to 1200 ° C, [SFE + (cooling rate CR) 1/2 ]: 20 to 70 should be satisfied in all the cooling processes. , Adjust the welding heat input in each pass.
In the welding method of the present invention, the formed weld bead (welded portion) is cooled by allowing it to stand in the air and allowed to cool. Therefore, by adjusting the amount of heat input to the weld in each pass, the temperature is 1300 to 1200 ° C. The cooling rate CR (° C / s) in the range can be controlled. Specifically, the welding heat input amount so as to have a cooling rate applicable to the above formula may be obtained in advance from a preliminary experiment or Inagaki's formula, and welding may be performed with that heat input amount.
 以下、実施例に基づき、さらに本発明について説明する。 Hereinafter, the present invention will be further described based on Examples.
 表1に示す組成の溶鋼を、真空溶解炉で溶製し、鋳造して鋼塊100kgを得た。得られた鋼塊を、1200℃に加熱したのち、熱間圧延し、ついで冷間圧延して、1.2mmφのガスメタルアーク溶接用ソリッドワイヤを得た。ワイヤ製造に際して、圧延荷重(伸線荷重)の測定、割れの観察を行って、各ソリッドワイヤの製造性を評価した。圧延荷重(伸線荷重)が高く、圧延(伸線)加工が不可能であると判断された場合、割れの発生が認められた場合、または発生した割れに起因して、それ以上工程を進めることができなくなった場合等を「不良」と評価した。それ以外は、「良」と評価した。 The molten steel having the composition shown in Table 1 was melted and cast in a vacuum melting furnace to obtain 100 kg of steel ingot. The obtained ingot was heated to 1200 ° C., then hot-rolled, and then cold-rolled to obtain a 1.2 mmφ solid wire for gas metal arc welding. When manufacturing the wire, the rolling load (drawing load) was measured and cracks were observed to evaluate the manufacturability of each solid wire. If it is determined that rolling (drawing) processing is impossible due to a high rolling load (drawing load), cracks are found, or the cracks that have occurred cause further steps to proceed. When it became impossible to do so, it was evaluated as "defective". Other than that, it was evaluated as "good".
 ついで、試験板として、極低温用高Mn鋼板(板厚:6~40mm)を用意し、JIS Z 3111に準拠して、突き合わせて、45°V形開先を形成し、表1に示す組成の溶鋼をから製造したソリッドワイヤを溶接材料として、溶極式のガスメタルアーク溶接を行って、該開先内に溶着金属を得た。試験板として使用した鋼板は、質量%で、0.5%C-0.4%Si-25%Mn-3%Cr-残部Feからなる組成を有する極低温用高Mn鋼板であった。
 前記溶接は、表1に示す組成の溶鋼から製造した各ソリッドワイヤ(直径1.2mm)を電極として用いて、予熱なし、下向き姿勢で、パス間温度:100~150℃、シールドガス:80%Ar+20%CO2、として、実施した。溶接時の温度履歴は、熱電対を用いて実測し、1300~1200℃の温度範囲における冷却速度を算出した。
Next, as a test plate, a high-Mn steel plate for ultra-low temperature (plate thickness: 6 to 40 mm) was prepared, and butt-welded to form a 45 ° V-shaped groove in accordance with JIS Z 3111, and the composition shown in Table 1 was formed. A welded metal was obtained in the groove by performing welded gas metal arc welding using a solid wire manufactured from the molten steel of No. 1 as a welding material. The steel sheet used as the test plate was a high Mn steel sheet for cryogenic temperature having a composition of 0.5% C-0.4% Si-25% Mn-3% Cr-residue Fe in mass%.
In the welding, each solid wire (1.2 mm in diameter) manufactured from molten steel having the composition shown in Table 1 was used as an electrode, with no preheating, in a downward posture, inter-pass temperature: 100 to 150 ° C., shield gas: 80% Ar + 20. Conducted as% CO 2 . The temperature history at the time of welding was actually measured using a thermocouple, and the cooling rate in the temperature range of 1300 to 1200 ° C. was calculated.
 溶接後、溶着金属を光学顕微鏡で観察し、溶接割れの有無を判定した。溶接割れは、高温割れであり、割れ発生が認められた場合は耐高温割れ性が低下しているとして「不良」と評価した。割れ発生が認められなかった場合は、耐高温割れ性に優れるとして「良」と評価した。 After welding, the weld metal was observed with an optical microscope to determine the presence or absence of welding cracks. Weld cracks are high-temperature cracks, and when cracks are observed, they are evaluated as "defective" because the high-temperature crack resistance is reduced. When no cracking was observed, it was evaluated as "good" because of its excellent high temperature cracking resistance.
 また、目視によって溶接ビードの外観を観察し、溶接ビード外観の判定を行った。アンダーカット、オーバーラップ、ピットが認められた場合は、溶接ビード外観が不良として「不良」と評価した。これらが認められなかった場合は、溶接ビード外観が良好として「良」と評価した。 In addition, the appearance of the weld bead was visually observed to determine the appearance of the weld bead. When undercuts, overlaps, and pits were observed, the appearance of the weld bead was evaluated as "defective". When these were not observed, the appearance of the weld bead was evaluated as "good".
 得られた溶着金属から、JIS Z 3111の規定に準拠して、溶接金属の引張試験片(平行部径6mmφ)、および溶接金属のシャルピー衝撃試験片(Vノッチ)を採取し、引張試験、衝撃試験を実施した。なお、板厚10mm未満の鋼板については、5mmサブサイズのシャルピー衝撃試験片(Vノッチ)を採取し、衝撃試験を実施した。
 引張試験は、室温で、各3本の試験片にて実施し、得られた値(0.2%耐力、引張強さ、全伸び)の平均値を、当該ソリッドワイヤを用いた溶着金属の引張特性とした。また、シャルピー衝撃試験は、各3本の試験片にて実施し、試験温度:-196℃における吸収エネルギーvE-196を求め、その平均値を、当該ソリッドワイヤを用いた溶着金属の極低温衝撃靭性とした。なお、5mmサブサイズのシャルピー衝撃試験片(Vノッチ)については、得られた吸収エネルギーを1.5倍にした値を、極低温衝撃靭性として評価した。なお、脆性破面率は目視で求めた。
 得られた結果を表2に示す。
From the obtained weld metal, a tensile test piece of weld metal (parallel part diameter 6 mmφ) and a Charpy impact test piece of weld metal (V notch) are collected in accordance with JIS Z 3111, and the tensile test and impact are performed. The test was carried out. For steel sheets with a thickness of less than 10 mm, a 5 mm sub-sized Charpy impact test piece (V notch) was sampled and an impact test was carried out.
The tensile test was carried out at room temperature with three test pieces each, and the average value of the obtained values (0.2% proof stress, tensile strength, total elongation) was calculated as the tensile characteristics of the weld metal using the solid wire. And said. In addition, the Charpy impact test was carried out with three test pieces each, and the absorbed energy vE -196 at the test temperature: -196 ° C was determined, and the average value was calculated as the ultra-low temperature impact of the weld metal using the solid wire. It was made tough. For the 5 mm sub-sized Charpy impact test piece (V notch), the value obtained by multiplying the obtained absorbed energy by 1.5 times was evaluated as the cryogenic impact toughness. The brittle fracture surface ratio was visually determined.
The results obtained are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明例はいずれも、ワイヤ製造性に優れ、溶接時に溶接割れ(高温割れ)の発生がなく耐高温割れ性に優れ、溶接ビード外観も良好であった。さらに、常温における降伏強さ(0.2%耐力)が400MPa以上、引張強さが660MPa以上、全伸びが40%以上と高強度高延性で、さらに、試験温度:-196℃におけるシャルピー衝撃試験の吸収エネルギーvE-196が28J以上で、脆性破面率が10%以下と優れた極低温衝撃靭性を有する溶着金属を得ることができる溶接材料(ソリッドワイヤ)であった。 In each of the examples of the present invention, the wire manufacturability was excellent, welding cracks (high temperature cracks) did not occur during welding, the high temperature crack resistance was excellent, and the appearance of the weld bead was also good. Furthermore, the yield strength (0.2% proof stress) at room temperature is 400 MPa or more, the tensile strength is 660 MPa or more, the total elongation is 40% or more, and it has high strength and high ductility. Furthermore, the absorption of the Charpy impact test at the test temperature: -196 ° C. It was a welding material (solid wire) capable of obtaining a welded metal having excellent ultra-low temperature impact toughness with an energy vE -196 of 28 J or more and a brittle fracture surface ratio of 10% or less.
 一方、本発明の範囲を外れる比較例では、ワイヤの製造性が劣るか、溶接割れ(高温割れ)が発生し耐高温割れ性が低下しているか、溶接ビード外観が劣るか、あるいは、常温における0.2%耐力が400MPa未満、引張強さが660MPa未満、全伸びが40%未満であるか、吸収エネルギーvE-196が28J未満であるか、脆性破面率が10%を超えているか、して、所望の高強度高延性と優れた極低温衝撃靭性を兼備する溶着金属が得られていなかった。 On the other hand, in the comparative example outside the scope of the present invention, the wire manufacturability is inferior, the weld crack (high temperature crack) occurs and the high temperature crack resistance is lowered, the weld bead appearance is inferior, or at room temperature. 0.2% toughness less than 400MPa, tensile strength less than 660MPa, total elongation less than 40%, absorbed energy vE -196 less than 28J, brittle fracture surface ratio more than 10%, , A weld metal having both desired high strength and high ductility and excellent ultra-low temperature impact toughness has not been obtained.

Claims (8)

  1.  質量%で、
     C :0.20~0.80%、
     Si:0.15~0.90%、
     Mn:15.0~28.0%、
     P :0.030%以下、
     S :0.030%以下、
     Ni:0.01~10.0%、
     Cr:0.4~1.9%および
     B :0.0010~0.0050%
    を含み、残部Feおよび不可避的不純物からなり、かつ、
     下記(1)式で定義されるSFEが17~57(mJ/m2)を満足する組成を有することを特徴とするガスメタルアーク溶接用ソリッドワイヤ。
                   記
     SFE(mJ/m2)=-53+6.2Ni+0.7Cr+3.2Mn+9.3Mo  ……(1)
     ここで、Ni、Cr、Mn、Mo:各元素の含有量(質量%)
    By mass%
    C: 0.20 to 0.80%,
    Si: 0.15 to 0.90%,
    Mn: 15.0-28.0%,
    P: 0.030% or less,
    S: 0.030% or less,
    Ni: 0.01-10.0%,
    Cr: 0.4 to 1.9% and B: 0.0010 to 0.0050%
    Containing, remaining Fe and unavoidable impurities, and
    A solid wire for gas metal arc welding, wherein the SFE defined by the following equation (1) has a composition satisfying 17 to 57 (mJ / m 2 ).
    Note SFE (mJ / m 2 ) =-53 + 6.2Ni + 0.7Cr + 3.2Mn + 9.3Mo …… (1)
    Here, Ni, Cr, Mn, Mo: content of each element (mass%)
  2.  前記組成が、さらに、質量%で、V:0.5%以下、Ti:0.5%以下、Nb:0.5%以下のうちから選ばれた1種または2種以上を合計で1.0%以下含有することを特徴とする請求項1に記載のガスメタルアーク溶接用ソリッドワイヤ。 The composition is further characterized in that, in mass%, one or more selected from V: 0.5% or less, Ti: 0.5% or less, and Nb: 0.5% or less are contained in a total of 1.0% or less. The solid wire for gas metal arc welding according to claim 1.
  3.  前記組成が、さらに、質量%で、Cu:1.0%以下、Al:0.10%以下、Ca:0.01%以下およびREM:0.02%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1または2に記載のガスメタルアーク溶接用ソリッドワイヤ。 The composition further contains one or more selected from Cu: 1.0% or less, Al: 0.10% or less, Ca: 0.01% or less, and REM: 0.02% or less in mass%. The solid wire for gas metal arc welding according to claim 1 or 2.
  4.  前記組成が、さらに、質量%で、Mo:3.5%以下を含有することを特徴とする請求項1~3のいずれかに記載のガスメタルアーク溶接用ソリッドワイヤ。 The solid wire for gas metal arc welding according to any one of claims 1 to 3, wherein the composition further contains Mo: 3.5% or less in mass%.
  5.  高Mn含有鋼材を、ソリッドワイヤを用いたガスメタルアーク溶接により、溶接金属を形成して接合するガスメタルアーク溶接方法であって、
     前記ソリッドワイヤが、質量%で、
     C :0.20~0.80%、
     Si:0.15~0.90%、
     Mn:15.0~28.0%、
     P :0.030%以下、
     S :0.030%以下、
     Ni:0.01~10.0%、
     Cr:0.4~1.9%および
     B :0.0010~0.0050%
    を含み、残部Feおよび不可避的不純物からなり、かつ、次(1)式
     SFE(mJ/m2)=-53+6.2Ni+0.7Cr+3.2Mn+9.3Mo  ……(1)
     (ここで、Ni、Cr、Mn、Mo:各元素の含有量(質量%))
    で定義されるSFEが17~57(mJ/m2)を満足する組成を有し、
     前記ガスメタルアーク溶接を、1300~1200℃の温度範囲の冷却速度CR(℃/s)が[SFE+(冷却速度CR)1/2]:20~70を満足するように調整することを特徴とする、ガスメタルアーク溶接方法。
    A gas metal arc welding method in which high Mn-containing steel materials are joined by forming weld metal by gas metal arc welding using solid wires.
    The solid wire is by mass%
    C: 0.20 to 0.80%,
    Si: 0.15 to 0.90%,
    Mn: 15.0-28.0%,
    P: 0.030% or less,
    S: 0.030% or less,
    Ni: 0.01-10.0%,
    Cr: 0.4 to 1.9% and B: 0.0010 to 0.0050%
    Containing the balance Fe and unavoidable impurities, and the following equation (1) SFE (mJ / m 2 ) =-53 + 6.2Ni + 0.7Cr + 3.2Mn + 9.3Mo …… (1)
    (Here, Ni, Cr, Mn, Mo: content of each element (mass%))
    SFE defined in has a composition satisfying 17 to 57 (mJ / m 2 ).
    The gas metal arc welding is characterized by adjusting the cooling rate CR (° C / s) in the temperature range of 1300 to 1200 ° C so as to satisfy [SFE + (cooling rate CR) 1/2 ]: 20 to 70. Gas metal arc welding method.
  6.  前記ソリッドワイヤが、前記組成に加えてさらに、質量%で、V:0.5%以下、Ti:0.5%以下、Nb:0.5%以下のうちから選ばれた1種または2種以上を合計で1.0%以下含有することを特徴とする請求項5に記載のガスメタルアーク溶接方法。 In addition to the composition, the solid wire is 1.0% in total of one or more selected from V: 0.5% or less, Ti: 0.5% or less, and Nb: 0.5% or less in mass%. The gas metal arc welding method according to claim 5, wherein the gas metal arc welding method contains the following.
  7.  前記ソリッドワイヤが、前記組成に加えてさらに、質量%で、Cu:1.0%以下、Al:0.10%以下、Ca:0.01%以下およびREM:0.02%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項5または6に記載のガスメタルアーク溶接方法。 In addition to the composition, the solid wire is one or two selected from Cu: 1.0% or less, Al: 0.10% or less, Ca: 0.01% or less, and REM: 0.02% or less in mass%. The gas metal arc welding method according to claim 5 or 6, which comprises the above.
  8.  前記ソリッドワイヤが、前記組成に加えてさらに、質量%で、Mo:3.5%以下含有することを特徴とする請求項5~7のいずれかに記載のガスメタルアーク溶接方法。 The gas metal arc welding method according to any one of claims 5 to 7, wherein the solid wire further contains Mo: 3.5% or less in mass% in addition to the composition.
PCT/JP2020/012216 2019-03-29 2020-03-19 Solid wire for gas metal arc welding and gas metal arc welding method WO2020203336A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217033873A KR102639546B1 (en) 2019-03-29 2020-03-19 Solid wire for gas metal arc welding and gas metal arc welding method
JP2020553550A JP6978614B2 (en) 2019-03-29 2020-03-19 Solid wire for gas metal arc welding and gas metal arc welding method
CN202080022682.XA CN113613827A (en) 2019-03-29 2020-03-19 Solid wire for gas metal arc welding and gas metal arc welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067061 2019-03-29
JP2019067061 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203336A1 true WO2020203336A1 (en) 2020-10-08

Family

ID=72667636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012216 WO2020203336A1 (en) 2019-03-29 2020-03-19 Solid wire for gas metal arc welding and gas metal arc welding method

Country Status (5)

Country Link
JP (1) JP6978614B2 (en)
KR (1) KR102639546B1 (en)
CN (1) CN113613827A (en)
TW (1) TWI744838B (en)
WO (1) WO2020203336A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273159A1 (en) * 2021-06-30 2023-01-05 南京钢铁股份有限公司 Co2 gas shielded welding wire for ultra-low temperature high manganese steel and preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115041866A (en) * 2022-06-30 2022-09-13 三一重机有限公司 Gas shielded welding wire and application thereof in welding of low-alloy high-strength steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524701A (en) * 1978-08-08 1980-02-22 Japan Steel Works Ltd:The Welding material for high mn stable austenite non- magnetic steel
JPH0321572B2 (en) * 1983-12-27 1991-03-25 Ube Industries
JP2013103232A (en) * 2011-11-10 2013-05-30 Kobe Steel Ltd Welding material for cryogenic steel
WO2017192619A1 (en) * 2016-05-02 2017-11-09 Exxonmobil Research And Engineering Company Field girth welding technology for high manganese steel slurry pipelines

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2890476C (en) * 2012-11-22 2017-03-21 Posco Welded joint of extremely low-temperature steel, and welding materials for preparing same
KR101560897B1 (en) * 2013-12-06 2015-10-15 주식회사 포스코 Welded joint having high strength and superior toughness at ultra low temterature
ES2753266T3 (en) 2013-12-06 2020-04-07 Posco High strength solder joint having excellent impact hardness at very low temperature, and a corresponding flux cored arc welding wire
KR101560899B1 (en) 2013-12-06 2015-10-15 주식회사 포스코 Submerged arc welding and gas metal arc welding wire having high strength and superior toughness at ultra low temperature
JP2017001094A (en) * 2015-06-05 2017-01-05 株式会社神戸製鋼所 Weld metal and welding structure
JP6399984B2 (en) * 2015-08-28 2018-10-03 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
KR102058602B1 (en) * 2015-12-18 2019-12-23 닛폰세이테츠 가부시키가이샤 Manufacturing method of welding material for ferritic heat resistant steel, welding joint for ferritic heat resistant steel and welding joint for ferritic heat resistant steel
JP6621572B1 (en) * 2018-08-23 2019-12-18 Jfeスチール株式会社 Solid wire for gas metal arc welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524701A (en) * 1978-08-08 1980-02-22 Japan Steel Works Ltd:The Welding material for high mn stable austenite non- magnetic steel
JPH0321572B2 (en) * 1983-12-27 1991-03-25 Ube Industries
JP2013103232A (en) * 2011-11-10 2013-05-30 Kobe Steel Ltd Welding material for cryogenic steel
WO2017192619A1 (en) * 2016-05-02 2017-11-09 Exxonmobil Research And Engineering Company Field girth welding technology for high manganese steel slurry pipelines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273159A1 (en) * 2021-06-30 2023-01-05 南京钢铁股份有限公司 Co2 gas shielded welding wire for ultra-low temperature high manganese steel and preparation method

Also Published As

Publication number Publication date
KR20210138102A (en) 2021-11-18
TWI744838B (en) 2021-11-01
TW202043504A (en) 2020-12-01
KR102639546B1 (en) 2024-02-21
JPWO2020203336A1 (en) 2021-04-30
JP6978614B2 (en) 2021-12-08
CN113613827A (en) 2021-11-05

Similar Documents

Publication Publication Date Title
KR102511652B1 (en) Solid wire for gas metal arc welding
JP6978613B2 (en) Manufacturing method of high-strength welded joint for ultra-low temperature
JP6978615B2 (en) Welding material for TIG welding
JP6621572B1 (en) Solid wire for gas metal arc welding
JP5928726B2 (en) Covered arc welding rod
JP7188646B1 (en) submerged arc welded fittings
JP6978614B2 (en) Solid wire for gas metal arc welding and gas metal arc welding method
JP7024931B1 (en) Solid wire for gas metal arc welding
JP7276597B2 (en) WIRE FOR SUBMERGED ARC WELDING AND METHOD FOR MANUFACTURING WELD JOINT USING THE SAME
JP7188647B1 (en) TIG welded joint
TWI775607B (en) Welded joint and method of making the same
JP7414126B2 (en) Filler metal for TIG welding and method for manufacturing a welded joint using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020553550

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217033873

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20782559

Country of ref document: EP

Kind code of ref document: A1