WO2020203288A1 - Plasma processing device and plasma processing method - Google Patents

Plasma processing device and plasma processing method Download PDF

Info

Publication number
WO2020203288A1
WO2020203288A1 PCT/JP2020/011933 JP2020011933W WO2020203288A1 WO 2020203288 A1 WO2020203288 A1 WO 2020203288A1 JP 2020011933 W JP2020011933 W JP 2020011933W WO 2020203288 A1 WO2020203288 A1 WO 2020203288A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation speed
window member
chamber
plasma processing
conductive window
Prior art date
Application number
PCT/JP2020/011933
Other languages
French (fr)
Japanese (ja)
Inventor
光司 小谷
伸彦 山本
長田 勇輝
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020203288A1 publication Critical patent/WO2020203288A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • This disclosure relates to a plasma processing apparatus and a plasma processing method.
  • Patent Document 1 proposes forming a silicon nitride film in a plasma CVD apparatus that introduces microwaves into a processing container by a planar antenna having a plurality of holes.
  • the present disclosure provides a plasma processing apparatus and a plasma processing method capable of achieving film uniformity.
  • a microwave processing apparatus having a drive mechanism for causing the operation.
  • the uniformity of the film can be achieved.
  • the cross-sectional schematic diagram which shows an example of the plasma processing apparatus which concerns on one Embodiment.
  • the figure which shows an example of the microwave introduction part which concerns on one Embodiment. An enlarged view of the conductive window member and its surroundings according to the embodiment.
  • the flowchart which shows an example of the plasma processing method which concerns on one Embodiment.
  • FIG. 1A is a schematic cross-sectional view showing an example of the plasma processing apparatus 10 according to the embodiment.
  • FIG. 1B is a cross section taken along the line AA of FIG. 1A, showing the ceiling surface of the plasma processing apparatus 10 according to the embodiment.
  • the plasma processing apparatus 10 performs a predetermined plasma treatment such as a film forming treatment on the wafer W by using surface wave plasma formed by microwaves.
  • the plasma processing device 10 has a chamber 1.
  • the chamber 1 has a bottomed cylindrical shape with an open top and is grounded.
  • the upper opening of the chamber 1 is closed by a top plate 9 provided on the ceiling, whereby the inside can be kept airtight.
  • the chamber 1 and the top plate 9 are formed of a metal material such as aluminum or stainless steel.
  • a stage 3 on which the wafer W is placed is supported by a support member 4 erected via an insulating member in the center of the bottom portion in the chamber 1.
  • Examples of the material constituting the stage 3 include a metal such as aluminum whose surface is anodized (anodized) and an insulating member (ceramics and the like) having an electrode for high frequency inside.
  • the stage 3 may be provided with an electrostatic chuck for electrostatically adsorbing the wafer W, a temperature control mechanism, a gas flow path for supplying a gas for heat transfer to the back surface of the wafer W, and the like.
  • a high frequency bias power supply may be electrically connected to the stage 3 via a matching device. By supplying high-frequency power to the stage 3 from the high-frequency bias power supply, ions in the plasma can be drawn into the wafer W side.
  • the high frequency bias power supply may not be provided depending on the characteristics of plasma processing.
  • An exhaust pipe 13 is connected to the bottom of the chamber 1, and an exhaust device 14 including a vacuum pump is connected to the exhaust pipe 13.
  • an exhaust device 14 including a vacuum pump is connected to the exhaust pipe 13.
  • exhaust device 14 When the exhaust device 14 is operated, exhaust is started, and the inside of the chamber 1 is depressurized to a predetermined degree of vacuum.
  • a carry-in outlet 15 for carrying in and out the wafer W and a gate valve 16 for opening and closing the carry-in outlet 15 are provided on the side wall of the chamber 1.
  • the top plate 9 is provided with a microwave introduction unit 2 that radiates microwaves in the chamber 1.
  • one radiation port 2a at the tip of the microwave introduction portion 2 is exposed from the inner wall of the top plate 9 in the center.
  • FIG. 2 shows an enlarged vertical cross section of the microwave introduction unit 2.
  • the microwave introduction unit 2 has a coaxial cable shape, and has an inner conductor 121, an outer conductor 122 on the outer side thereof, and a dielectric material 123 such as Teflon (registered trademark) provided between them.
  • the side portion of the tip of the microwave introduction portion 2 near the radiation port 2a is a notch portion 124 in which the outer conductor 122 does not exist, and constitutes a monopole antenna 11 composed of the inner conductor 121.
  • the radiation port 2a at the tip of the monopole antenna 11 is a surface having the same height as the back surface 9a of the top plate 9 of the chamber 1 and is exposed to the internal space of the chamber 1.
  • microwaves are radiated into the chamber 1 from the radiation port through the notch 124 at the tip.
  • the number of microwave introduction units 2 is not limited to one, and may be two or more.
  • the cavity chamber 17 is connected to the microwave introduction unit 2 and forms a space V in the chamber 1.
  • the cavity chamber 17 is an example of a first chamber in the chamber 1 connected to the microwave introduction unit 2.
  • the dielectric window 5 is arranged in the chamber 1 below the cavity chamber 17 facing the stage 3 so as to be separated from the radiation port 2a and the stage 3.
  • the dielectric window 5 is a partition plate that divides the inside of the chamber 1 into a cavity chamber 17 and a processing chamber 18.
  • the space U formed by the processing chamber 18 under the dielectric window 5 is a vacuum space.
  • the dielectric window 5 is formed of, for example, ceramics such as quartz and alumina (Al 2 O 3 ), a fluorine-based resin such as polytetrafluoroethylene, and a polyimide-based resin.
  • the microwave output from the microwave output unit 6 is introduced into the cavity chamber 17 through the microwave transmission path of the microwave introduction unit 2.
  • the frequency of the microwave output from the microwave output unit 6 may be, for example, 2.45 GHz.
  • the space V formed by the cavity chamber 17 under the microwave introduction portion 2 is the atmospheric space.
  • a free space having a height of about several tens of mm to several hundreds of mm exists, and microwaves radiated from the microwave introduction unit 2 propagate.
  • the plasma processing device 10 has a control device 30 that controls each part of the plasma processing device 10.
  • the control device 30 controls the flow rate of air supplied from the air supply unit 8 to the cavity chamber 17 based on the monitor value of the encoder 12 attached to the conductive window member 7 as described later.
  • the wafer W is carried into the chamber 1 from the opened gate valve 16 through the carry-in / outlet 15 while being held on the transport arm. ..
  • the gate valve 16 is closed after the wafer W is carried in.
  • the wafer W is conveyed above the stage 3, the wafer W is moved from the transfer arm to the pusher pin, and the pusher pin is lowered to be placed on the stage 3.
  • the pressure inside the chamber 1 is maintained at a predetermined degree of vacuum by the exhaust device 14.
  • the processing gas is introduced into the space U of the processing chamber 18, and the microwave is radiated from the microwave introduction unit 2 (monopole antenna 11).
  • the microwave propagating in the cavity chamber 17 passes through the conductive window member 7 under the cavity chamber 17 and passes through the dielectric window 5.
  • the processing gas supplied to the plasma space U is turned into plasma by the electric field of the microwave formed under the dielectric window 5, and plasma P is generated below the dielectric window 5.
  • a predetermined plasma treatment is applied to the wafer W by the generated plasma P.
  • the microwave introduction unit 2 is connected to the upper part of the cavity chamber 17, and is not limited to radiating microwaves from the top plate 9.
  • the microwave introduction unit 2 may be connected to the side portion of the cavity chamber 17 and emit microwaves from the side wall.
  • the position where the microwave introduction unit 2 should be connected is determined by the electromagnetic field mode of the microwave formed in the cavity chamber 17.
  • FIG. 3 is an enlarged view of the conductive window member 7 and its surroundings according to the embodiment.
  • the cavity chamber 17 functions as a cavity resonator. Therefore, the cavity chamber 17 is a cylindrical chamber having a height and a diameter corresponding to the frequency of the microwave. That is, the cavity chamber 17 is made into a size and shape in which cavity resonance is likely to occur according to the frequency of the microwave.
  • the electromagnetic field mode of the microwave introduced into the cavity chamber 17 causes a cavity resonance by forming a standing wave in the space V, and the maximum power of the microwave is efficiently applied to the space U of the processing chamber 18. Can be propagated to.
  • the conductive window member 7 has a disk shape, is arranged between the dielectric window 5 and the cavity chamber 17, and has an opening 7a through which microwaves pass. The shape of the opening 7a of the conductive window member 7 will be described later.
  • the conductive window member 7 is rotated by the air supplied from the air supply unit 8 to the cavity chamber 17.
  • the air supply unit 8 is an example of a drive mechanism that rotates the conductive window member 7.
  • the gas supplied from the air supply unit 8 is not limited to air, and may be, for example, an inert gas.
  • the air supply unit 8 may have a pressure control element such as a PCV valve, and may adjust the flow rate of air by controlling the pressure in the pipe that supplies air with the pressure control element.
  • the air supply unit 8 has a flow rate control valve, and the flow rate of air may be directly adjusted by controlling the opening degree of the flow rate control valve.
  • the air supply unit 8 supplies air from the air introduction port 22 provided in the cavity chamber 17.
  • the air is supplied from the outer peripheral side directly above the conductive window member 7.
  • the six blade members 27 are attached at an angle in the same direction with respect to the circumferential direction.
  • the blade member 27 provided on the conductive window member 7 forms a constant flow of air passing through the upper surface of the conductive window member 7, and serves as a force to rotate the conductive window member 7.
  • the material of the blade member 27 is preferably an insulating material such as a lightweight resin.
  • the conductive window member 7 can be easily rotated, and the blade member 27 can be formed of an insulating material to prevent abnormal discharge due to microwaves.
  • the material of the blade member 27 is not limited to this, and may be metal. Further, the number, shape, and arrangement of the blade members 27 are not limited to this.
  • the air supplied to the cavity chamber 17 is exhausted to the outside from the air discharge port 23 provided on the top plate 9.
  • the number of air inlets 22 and 23 is not limited to one, and a plurality of air inlets 23 may be provided.
  • the air introduction port 22 is provided at a position where the conductive window member 7 can rotate smoothly.
  • the air discharge port 23 is provided at a position where air can be smoothly discharged without disturbing the flow of air that rotates the conductive window member 7.
  • a conical shaft 5a provided at the center of the dielectric window 5 is formed in the recess 7c formed at the center of the back surface of the conductive window member 7.
  • the diameter of the conductive window member 7 is smaller than the diameter of the cavity chamber 17. Therefore, the conductive window member 7 can be rotated in the horizontal direction around the shaft 5a like a top.
  • the conductive window member 7 can rotate stably by inserting the annular member 28 rotatably into a spring 21 such as a leaf spring fixed to a recess provided in the side wall of the cavity chamber 17.
  • the spring 21 is grounded.
  • the conductive window member 7 can be grounded, and it is possible to prevent an abnormal discharge due to the microwave when the microwave passes through the opening 7a of the rotating conductive window member 7.
  • the number of springs 21 may be two or more in the circumferential direction of the side wall, but it is preferable that three or more springs 21 are provided because the rotation of the conductive window member 7 is stable. Further, the spring 21 may be provided in a ring shape over the entire circumference.
  • the conductive window member 7 has an opening 7a on a part of the surface thereof.
  • the conductive window member 7 has a fan-shaped opening 7a at an angle ⁇ , and functions as a window portion through which microwaves pass.
  • the opening of the conductive window member 7 is not limited to this.
  • the conductive window member 7 may have a pattern of openings 7b formed on the entire surface.
  • the conductive window member 7 may have a pattern of openings 7b formed on a part of the surface thereof.
  • the pattern of the opening 7b is formed on the fan-shaped surface of the conductive window member 7 at an angle ⁇ .
  • the angle ⁇ of the opening 7a in FIGS. 5 (a) and 5 (c) is designed to be an appropriate angle according to the frequency of the microwave.
  • the angle ⁇ is preferably, for example, about 1/6 to 1/7 of 360 °.
  • the microwave propagating in the cavity chamber 17 is radiated from the opening 7a in FIG. 5A, the opening 7b in FIG. 5B or the opening 7b in FIG. 5C toward the processing chamber 18.
  • the opening 7b of FIGS. 5 (b) and 5 (c) has an elongated rectangular shape (slit shape), and two adjacent microwave radiation holes form a pair to form a T shape.
  • the microwave radiation holes arranged in combination in a predetermined shape may be further arranged concentrically as a whole. Circularly polarized waves can be generated in the chamber 1 by the opening 7b that functions as such a microwave radiation hole.
  • the power of microwaves supplied to the processing chamber 18 per unit area changes depending on the size of the openings 7a of the conductive window member 7 and the number of openings 7b. For example, when the opening 7a is made smaller, the power of the microwave supplied from the opening 7a per unit area can be increased as compared with the case where the opening 7a is made larger. That is, by changing the size of the openings 7a and the number of openings 7b of the conductive window member 7, the magnitude of the power of the microwave introduced into the processing chamber 18 can be controlled, thereby increasing the width of the possible process. A process window can be widened.
  • the spacing between the rows in which the openings 7b are provided is determined according to the wavelength ⁇ of the microwave.
  • the radial intervals of the openings 7b provided concentrically are arranged so as to be in the range of ⁇ / 4 to ⁇ .
  • the shape of the microwave radiation hole of the opening 7b may be circular, slit-shaped, or the like.
  • the arrangement form of the microwave radiation holes is not particularly limited, and the microwave radiation holes can be arranged in a spiral shape, a radial shape, or the like in addition to the concentric circle shape.
  • the dielectric window 5 is fitted and fixed in the recess on the side wall of the chamber 1.
  • An O-ring 20 is provided between the lower surface of the dielectric window 5 and the wall of the chamber 1 in the recess, and the vacuum space of the processing chamber 18 is sealed from the air space V of the cavity chamber 17 to make the processing chamber 18 airtight. It is designed to hold.
  • An encoder 12 is attached to the conductive window member 7.
  • the encoder 12 detects the rotation speed (hereinafter, simply referred to as the rotation speed) or the rotation speed of the conductive window member 7 per unit time.
  • the encoder 12 is an example of a detection unit that detects the rotation speed or rotation speed of the conductive window member 7, and the detection unit is not limited to this, and for example, an optical rotation detection sensor or the like can be used.
  • the optical rotation detection sensor is provided outside the plasma processing device 10, and among the light received from the inspection window provided in the plasma processing device 10, the reflected light from the conductive window member 7 is used.
  • the rotation speed or the rotation speed may be detected based on the above.
  • the control device 30 may be a computer including a processor, an input device, a display device, a signal input / output interface, and the like that realize the functions of the control unit 110. Further, the control device 30 has a storage unit that stores correlation data 111 between the rotation speed of the conductive window member 7 and the flow rate of air, and a monitor value 112 indicating the rotation speed or rotation speed detected by the encoder 12.
  • the control unit 110 is realized by executing each step of the control program for executing the process according to a recipe showing the procedure of a predetermined process applied to the wafer W.
  • the storage unit is realized by a memory such as a ROM or a RAM.
  • control device 30 the operator can perform a command input operation or the like in order to manage the plasma processing device 10 by using the input device. Further, in the control device 30, the operation status of the plasma processing device 10 can be visualized and displayed by the display device.
  • the control device 30 matches or approaches the target rotation speed Rg shown in the correlation data 111 set for a predetermined process from the detected current rotation speed Rc based on the rotation speed or rotation speed detected by the encoder 12.
  • the rotation speed of the conductive window member 7 is feedback-controlled as described above.
  • the control unit 110 sets the flow rate of air output from the air supply unit 8 so as to approach the target rotation speed Rg shown in the correlation data 111 from the detected current rotation speed Rc as the current flow rate Fc. Feedback control is performed according to the difference from the target flow rate Fg.
  • the rotation speed of the conductive window member 7 can be made to match or approach the target rotation speed Rg.
  • the correlation data 111 may be data showing the correlation between the rotation speed of the conductive window member 7 and the flow rate of air.
  • the control unit 110 receives air output from the air supply unit 8 so as to approach the target rotation speed of the conductive window member 7 shown in the correlation data 111 from the detected current rotation speed of the conductive window member 7.
  • the flow rate may be feedback-controlled according to the difference between the current flow rate Fc and the target flow rate Fg.
  • the microwave propagating in the space V of the cavity chamber 17 has a fan shape formed in the conductive window member 7. It passes through the opening 7a of the above, passes through the dielectric window 5, and reaches the processing chamber 18.
  • the opening 7a of the conductive window member 7 moves in the circumferential direction around the center O by rotating the conductive window member 7 around the axis of the center O.
  • the direction of rotation may be clockwise or counterclockwise.
  • the propagation path of the microwave passing through the opening 7a can be changed with time.
  • the electric field distribution formed in the dielectric window 5 when the microwave introduced from the microwave introduction unit 2 reaches the space U of the processing chamber 18 through the dielectric window 5 is distributed to the conductive window member 7. It can be controlled by the number of rotations or the rotation speed of.
  • the plasma distribution can be controlled by the rotation speed or the rotation speed of the conductive window member 7.
  • the uniformity of the film formed on the wafer W can be achieved according to the controlled plasma distribution.
  • FIG. 7 is a flowchart showing an example of the plasma processing method according to the embodiment. This process is controlled by the control device 30.
  • control device 30 When this process is started, the control device 30 carries the wafer W into the chamber and places it on the stage 3 to prepare it (step S1). Next, the control device 30 supplies a predetermined processing gas from the gas supply unit (step S2).
  • control device 30 supplies air of a predetermined flow rate from the air supply unit 8 to the cavity chamber 17 and controls the conductive window member 7 to rotate at a predetermined rotation speed or rotation speed (step S3).
  • the microwave propagating in the cavity chamber 17 passes through the opening 7a of the conductive window member 7, passes through the dielectric window 5, and is introduced into the processing chamber 18.
  • the control device 30 acquires the monitor value 112 detected by the encoder 12 (step S4).
  • the timing at which the control device 30 acquires the monitor value 112 from the encoder 12 is not limited to this, and the control device 30 can acquire the monitor value 112 periodically or irregularly.
  • the control device 30 acquires or calculates the current rotation speed of the conductive window member 7 from the acquired monitor value 112, and based on the correlation data 111 stored in the storage unit, the current rotation of the conductive window member 7. The difference between the speed Rc (see FIG. 3) and the target rotation speed Rg is calculated. Then, the control device 30 controls the flow rate of air so as to reduce or eliminate the difference.
  • the control device 30 performs feedback control so that the rotation speed of the conductive window member 7 approaches the target rotation speed Rg (step S5).
  • the control device 30 supplies microwaves from the microwave output unit 6 (step S6).
  • the microwave is radiated from the microwave introduction unit 2 to the cavity chamber 17, propagates in the space V, and the distribution of the plasma generated in the processing chamber 18 by the power of the microwave is distributed to the rotation of the conductive window member 7. It can be controlled by speed.
  • the uniformity of the film formed on the wafer W can be achieved according to the controlled plasma distribution.
  • control device 30 determines whether the plasma processing on the wafer W has been completed (step S7). According to the recipe, the control device 30 waits until the plasma processing on the wafer W is completed, and when it is determined that the plasma processing on the wafer W is completed, the control device 30 ends this processing.
  • the air flowing from the air supply unit 8 into the cavity chamber 17 is stopped to stop the rotation of the conductive window member 7, the microwave output is stopped, and the processing gas supply is stopped. ..
  • the opening through which microwaves pass by controlling the rotation speed or rotation speed of the conductive window member 7. 7a can be moved.
  • the plasma distribution can be controlled and the uniformity of the film formed on the wafer W by the plasma treatment can be improved.
  • the conductive window member 7 can be made lightweight by forming the conductive window member 7 with a resin or the like, and the conductive window member 7 can be rotated by using a simple mechanism for rotation.
  • the air supply unit 8 is provided as a mechanism for rotating the conductive window member 7.
  • the mechanism for rotating the conductive window member 7 is not limited to this, and the conductive window member 7 may be rotated by having a magnet around the conductive window member 7 and applying a rotating magnetic field.
  • the cavity chamber 17 may be filled with a liquid and has a drive unit for generating a flow for rotating the liquid, whereby the conductive window member 7 may be rotated.
  • the conductive window member 7 may be divided into a plurality of parts such as an outer peripheral side and an inner peripheral side. When divided into an outer peripheral side and an inner peripheral side, only the inner peripheral side of the conductive window member 7 may be rotated to fix the outer peripheral side. On the contrary, only the outer peripheral side of the conductive window member 7 may be rotated to fix the inner peripheral side. The rotation speed of the conductive window member 7 on the inner peripheral side and the outer peripheral side may be changed.
  • the plasma processing apparatus of the present disclosure includes an ALD (Atomic Layer Deposition) apparatus, a Capacitively Coupled Plasma (CCP), an Inductively Coupled Plasma (ICP), a Radial Line Slot Antenna, an Electron Cyclotron Resonance Plasma (ECR), and a Helicon Wave Plasma. It is applicable to any type of device.
  • ALD Atomic Layer Deposition
  • CCP Capacitively Coupled Plasma
  • ICP Inductively Coupled Plasma
  • ECR Electron Cyclotron Resonance Plasma
  • Helicon Wave Plasma a Helicon Wave Plasma
  • the energy used in the plasma processing apparatus of the present disclosure is not limited to microwaves, and may be electromagnetic waves having a frequency in the range of 500 MHz to 5.8 GHz.

Abstract

Provided is a plasma processing device comprising: a dielectric window that is disposed inside a chamber and facing a stage; a microwave introduction unit that introduces microwaves into the chamber; a first compartment that is inside the chamber and that is connected to the microwave introduction unit; an electroconductive window member that is disposed between the dielectric window and the first compartment, and that has an opening through which the microwaves pass; and a driving mechanism for rotating the electroconductive window member.

Description

プラズマ処理装置及びプラズマ処理方法Plasma processing equipment and plasma processing method
 本開示は、プラズマ処理装置及びプラズマ処理方法に関する。 This disclosure relates to a plasma processing apparatus and a plasma processing method.
 マイクロ波のパワーによりガスからプラズマを生成し、生成したプラズマによりウエハに成膜するプラズマCVD装置が提案されている。例えば、特許文献1は、複数の孔を有する平面アンテナにより処理容器にマイクロ波を導入するプラズマCVD装置において、窒化珪素膜を形成することを提案している。 A plasma CVD apparatus has been proposed in which plasma is generated from a gas by the power of microwaves and a film is formed on a wafer by the generated plasma. For example, Patent Document 1 proposes forming a silicon nitride film in a plasma CVD apparatus that introduces microwaves into a processing container by a planar antenna having a plurality of holes.
特開2009-267391号公報Japanese Unexamined Patent Publication No. 2009-267391
 本開示は、膜の均一性を図ることが可能なプラズマ処理装置及びプラズマ処理方法を提供する。 The present disclosure provides a plasma processing apparatus and a plasma processing method capable of achieving film uniformity.
 本開示の一の態様によれば、ステージに対向してチャンバ内に配置される誘電体窓と、前記チャンバ内にマイクロ波を導入するマイクロ波導入部と、前記マイクロ波導入部に接続される、前記チャンバ内の第1の室と、前記誘電体窓と前記第1の室との間に配置され、マイクロ波が通過する開口部を有する導電性窓部材と、前記導電性窓部材を回転させる駆動機構と、を有する、プラズマ処理装置が提供される。 According to one aspect of the present disclosure, it is connected to a dielectric window arranged in the chamber facing the stage, a microwave introduction section for introducing microwaves into the chamber, and the microwave introduction section. , A conductive window member arranged between the dielectric window and the first chamber in the chamber and having an opening through which microwaves pass, and the conductive window member are rotated. Provided is a microwave processing apparatus having a drive mechanism for causing the operation.
 一の側面によれば、膜の均一性を図ることができる。 According to one aspect, the uniformity of the film can be achieved.
一実施形態に係るプラズマ処理装置の一例を示す断面模式図。The cross-sectional schematic diagram which shows an example of the plasma processing apparatus which concerns on one Embodiment. 一実施形態に係るマイクロ波導入部の一例を示す図。The figure which shows an example of the microwave introduction part which concerns on one Embodiment. 一実施形態に係る導電性窓部材とその周辺の拡大図。An enlarged view of the conductive window member and its surroundings according to the embodiment. 一実施形態に係る導電性窓部材に設けられた羽根部材の一例を示す図。The figure which shows an example of the blade member provided in the conductive window member which concerns on one Embodiment. 一実施形態に係る導電性窓部材の開口部一例を示す図。The figure which shows an example of the opening of the conductive window member which concerns on one Embodiment. 一実施形態に係るマイクロ波導入の一例を示す図。The figure which shows an example of the microwave introduction which concerns on one Embodiment. 一実施形態に係るプラズマ処理方法の一例を示すフローチャート。The flowchart which shows an example of the plasma processing method which concerns on one Embodiment.
 以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, a mode for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted.
 [プラズマ処理装置]
 一実施形態に係るプラズマ処理装置10について、図1を用いて説明する。図1(a)は、一実施形態に係るプラズマ処理装置10の一例を示す断面模式図である。図1(b)ば、図1(a)のA-A断面であり、一実施形態に係るプラズマ処理装置10の天井面を示す。
[Plasma processing equipment]
The plasma processing apparatus 10 according to the embodiment will be described with reference to FIG. FIG. 1A is a schematic cross-sectional view showing an example of the plasma processing apparatus 10 according to the embodiment. FIG. 1B is a cross section taken along the line AA of FIG. 1A, showing the ceiling surface of the plasma processing apparatus 10 according to the embodiment.
 プラズマ処理装置10は、マイクロ波によって形成される表面波プラズマにより、ウエハWに対して成膜処理等の所定のプラズマ処理を行う。プラズマ処理装置10は、チャンバ1を有する。チャンバ1は、上部が開口した有底の円筒状であり、接地されている。チャンバ1は、天井に設けられた天板9にて上部開口を閉塞され、これにより、内部を気密に保持することが可能である。チャンバ1及び天板9は、アルミニウムまたはステンレス鋼等の金属材料から形成される。 The plasma processing apparatus 10 performs a predetermined plasma treatment such as a film forming treatment on the wafer W by using surface wave plasma formed by microwaves. The plasma processing device 10 has a chamber 1. The chamber 1 has a bottomed cylindrical shape with an open top and is grounded. The upper opening of the chamber 1 is closed by a top plate 9 provided on the ceiling, whereby the inside can be kept airtight. The chamber 1 and the top plate 9 are formed of a metal material such as aluminum or stainless steel.
 チャンバ1内の底部中央にはウエハWを載置するステージ3が、絶縁部材を介して立設された支持部材4により支持されている。ステージ3を構成する材料としては、表面をアルマイト処理(陽極酸化処理)したアルミニウム等の金属や内部に高周波用の電極を有した絶縁部材(セラミックス等)が例示される。ステージ3には、ウエハWを静電吸着するための静電チャック、温度制御機構、ウエハWの裏面に熱伝達用のガスを供給するガス流路等が設けられてもよい。 A stage 3 on which the wafer W is placed is supported by a support member 4 erected via an insulating member in the center of the bottom portion in the chamber 1. Examples of the material constituting the stage 3 include a metal such as aluminum whose surface is anodized (anodized) and an insulating member (ceramics and the like) having an electrode for high frequency inside. The stage 3 may be provided with an electrostatic chuck for electrostatically adsorbing the wafer W, a temperature control mechanism, a gas flow path for supplying a gas for heat transfer to the back surface of the wafer W, and the like.
 また、ステージ3には、整合器を介して高周波バイアス電源が電気的に接続されてもよい。高周波バイアス電源からステージ3に高周波電力が供給されることにより、ウエハW側にプラズマ中のイオンを引き込むことができる。ただし、高周波バイアス電源はプラズマ処理の特性によっては設けなくてもよい。 Further, a high frequency bias power supply may be electrically connected to the stage 3 via a matching device. By supplying high-frequency power to the stage 3 from the high-frequency bias power supply, ions in the plasma can be drawn into the wafer W side. However, the high frequency bias power supply may not be provided depending on the characteristics of plasma processing.
 チャンバ1の底部には排気管13が接続されており、排気管13には真空ポンプを含む排気装置14が接続されている。排気装置14を作動させると排気が開始され、チャンバ1内が所定の真空度まで減圧される。チャンバ1の側壁には、ウエハWの搬入及び搬出を行うための搬入出口15と、搬入出口15を開閉するゲートバルブ16とが設けられている。 An exhaust pipe 13 is connected to the bottom of the chamber 1, and an exhaust device 14 including a vacuum pump is connected to the exhaust pipe 13. When the exhaust device 14 is operated, exhaust is started, and the inside of the chamber 1 is depressurized to a predetermined degree of vacuum. On the side wall of the chamber 1, a carry-in outlet 15 for carrying in and out the wafer W and a gate valve 16 for opening and closing the carry-in outlet 15 are provided.
 [マイクロ波導入部]
 天板9には、チャンバ1内にマイクロ波を放射するマイクロ波導入部2が設けられている。
[Microwave introduction part]
The top plate 9 is provided with a microwave introduction unit 2 that radiates microwaves in the chamber 1.
 図1(a)のA-A断面を示す図1(b)を参照すると、マイクロ波導入部2の先端の放射口2aが、中央に1つ天板9の内壁から露出している。 With reference to FIG. 1 (b) showing the AA cross section of FIG. 1 (a), one radiation port 2a at the tip of the microwave introduction portion 2 is exposed from the inner wall of the top plate 9 in the center.
 図2に、マイクロ波導入部2の縦断面を拡大して示す。マイクロ波導入部2は、同軸ケーブル状をなし、内部導体121と、その外側の外部導体122と、これらの間に設けられたテフロン(登録商標)等の誘電体123とを有する。マイクロ波導入部2の先端の放射口2a付近の側部は、外部導体122が存在しない切欠部124となっており、内部導体121からなるモノポールアンテナ11を構成している。 FIG. 2 shows an enlarged vertical cross section of the microwave introduction unit 2. The microwave introduction unit 2 has a coaxial cable shape, and has an inner conductor 121, an outer conductor 122 on the outer side thereof, and a dielectric material 123 such as Teflon (registered trademark) provided between them. The side portion of the tip of the microwave introduction portion 2 near the radiation port 2a is a notch portion 124 in which the outer conductor 122 does not exist, and constitutes a monopole antenna 11 composed of the inner conductor 121.
 モノポールアンテナ11の先端の放射口2aは、チャンバ1の天板9の裏面9aと同じ高さの面であって、チャンバ1の内部空間に露出する。モノポールアンテナ11の先端の放射口2aを天板9の裏面9aに近接させることにより、先端の切欠部124を通して放射口からマイクロ波がチャンバ1内に放射される。なお、マイクロ波導入部2の数は1つに限られず、2以上であってもよい。 The radiation port 2a at the tip of the monopole antenna 11 is a surface having the same height as the back surface 9a of the top plate 9 of the chamber 1 and is exposed to the internal space of the chamber 1. By bringing the radiation port 2a at the tip of the monopole antenna 11 close to the back surface 9a of the top plate 9, microwaves are radiated into the chamber 1 from the radiation port through the notch 124 at the tip. The number of microwave introduction units 2 is not limited to one, and may be two or more.
 図1に戻り、キャビティ室17は、マイクロ波導入部2に接続され、チャンバ1内にて空間Vを形成する。キャビティ室17は、マイクロ波導入部2に接続される、チャンバ1内の第1の室の一例である。誘電体窓5は、ステージ3に対向してキャビティ室17の下方のチャンバ1内に、放射口2aとステージ3とから離隔して配置される。言い換えれば、誘電体窓5は、チャンバ1の内部を、キャビティ室17と処理室18に分ける仕切り板となっている。誘電体窓5の下の処理室18が形成する空間Uは真空空間である。 Returning to FIG. 1, the cavity chamber 17 is connected to the microwave introduction unit 2 and forms a space V in the chamber 1. The cavity chamber 17 is an example of a first chamber in the chamber 1 connected to the microwave introduction unit 2. The dielectric window 5 is arranged in the chamber 1 below the cavity chamber 17 facing the stage 3 so as to be separated from the radiation port 2a and the stage 3. In other words, the dielectric window 5 is a partition plate that divides the inside of the chamber 1 into a cavity chamber 17 and a processing chamber 18. The space U formed by the processing chamber 18 under the dielectric window 5 is a vacuum space.
 誘電体窓5は、例えば、石英、アルミナ(Al)等のセラミックス、ポリテトラフルオロエチレン等のフッ素系樹脂やポリイミド系樹脂により形成されている。 The dielectric window 5 is formed of, for example, ceramics such as quartz and alumina (Al 2 O 3 ), a fluorine-based resin such as polytetrafluoroethylene, and a polyimide-based resin.
 マイクロ波出力部6から出力されたマイクロ波は、マイクロ波導入部2のマイクロ波伝送路を通ってキャビティ室17に導入される。マイクロ波出力部6から出力されるマイクロ波の周波数は、例えば2.45GHzであってもよい。 The microwave output from the microwave output unit 6 is introduced into the cavity chamber 17 through the microwave transmission path of the microwave introduction unit 2. The frequency of the microwave output from the microwave output unit 6 may be, for example, 2.45 GHz.
 マイクロ波導入部2の下のキャビティ室17が形成する空間Vは大気空間である。キャビティ室17には、例えば、高さが数10mm~数100mm程度の自由空間が存在し、マイクロ波導入部2から放射されたマイクロ波が伝播する。 The space V formed by the cavity chamber 17 under the microwave introduction portion 2 is the atmospheric space. In the cavity chamber 17, for example, a free space having a height of about several tens of mm to several hundreds of mm exists, and microwaves radiated from the microwave introduction unit 2 propagate.
 プラズマ処理装置10は、プラズマ処理装置10の各部を制御する制御装置30を有する。例えば、制御装置30は、後述するように導電性窓部材7に取り付けられたエンコーダ12のモニター値に基づき、エアー供給部8からキャビティ室17に供給するエアーの流量を制御する。 The plasma processing device 10 has a control device 30 that controls each part of the plasma processing device 10. For example, the control device 30 controls the flow rate of air supplied from the air supply unit 8 to the cavity chamber 17 based on the monitor value of the encoder 12 attached to the conductive window member 7 as described later.
 かかる構成のプラズマ処理装置10においてプラズマ処理を行う際には、まず、ウエハWが、搬送アーム上に保持された状態で、開口したゲートバルブ16から搬入出口15を通りチャンバ1内に搬入される。 When performing plasma processing in the plasma processing apparatus 10 having such a configuration, first, the wafer W is carried into the chamber 1 from the opened gate valve 16 through the carry-in / outlet 15 while being held on the transport arm. ..
 ゲートバルブ16はウエハWを搬入後に閉じられる。ウエハWは、ステージ3の上方まで搬送されると、搬送アームからプッシャーピンに移され、プッシャーピンが降下することによりステージ3に載置される。チャンバ1の内部の圧力は、排気装置14により所定の真空度に保持される。また、処理ガスが処理室18の空間Uに導入され、マイクロ波導入部2(モノポールアンテナ11)からマイクロ波が放射される。キャビティ室17を伝播したマイクロ波は、キャビティ室17の下の導電性窓部材7を通過し、誘電体窓5を透過する。これにより、誘電体窓5の下に形成されるマイクロ波の電界によってプラズマ空間Uに供給された処理ガスがプラズマ化し、誘電体窓5の下方にてプラズマPが生成される。生成されたプラズマPによってウエハWに所定のプラズマ処理が施される。 The gate valve 16 is closed after the wafer W is carried in. When the wafer W is conveyed above the stage 3, the wafer W is moved from the transfer arm to the pusher pin, and the pusher pin is lowered to be placed on the stage 3. The pressure inside the chamber 1 is maintained at a predetermined degree of vacuum by the exhaust device 14. Further, the processing gas is introduced into the space U of the processing chamber 18, and the microwave is radiated from the microwave introduction unit 2 (monopole antenna 11). The microwave propagating in the cavity chamber 17 passes through the conductive window member 7 under the cavity chamber 17 and passes through the dielectric window 5. As a result, the processing gas supplied to the plasma space U is turned into plasma by the electric field of the microwave formed under the dielectric window 5, and plasma P is generated below the dielectric window 5. A predetermined plasma treatment is applied to the wafer W by the generated plasma P.
 なお、マイクロ波導入部2は、キャビティ室17の上部に接続され、天板9からマイクロ波を放射することに限られない。例えば、マイクロ波導入部2は、キャビティ室17の側部に接続され、側壁からマイクロ波を放射してもよい。キャビティ室17に形成されるマイクロ波の電磁界モードによってマイクロ波導入部2をどの位置に接続すべきかが決定される。 The microwave introduction unit 2 is connected to the upper part of the cavity chamber 17, and is not limited to radiating microwaves from the top plate 9. For example, the microwave introduction unit 2 may be connected to the side portion of the cavity chamber 17 and emit microwaves from the side wall. The position where the microwave introduction unit 2 should be connected is determined by the electromagnetic field mode of the microwave formed in the cavity chamber 17.
 図3は、一実施形態に係る導電性窓部材7とその周辺の拡大図である。キャビティ室17は、空洞共振器として機能する。このため、キャビティ室17は、マイクロ波の周波数に応じた高さ及び直径を有する円筒状の室になっている。つまり、キャビティ室17をマイクロ波の周波数に応じて、空洞共振が起こり易いサイズ及び形状にする。これにより、キャビティ室17に導入されるマイクロ波の電磁界モードによって、空間Vに定在波を形成することにより空洞共振を生じさせ、マイクロ波の最大パワーを効率的に処理室18の空間Uに伝播させることができる。 FIG. 3 is an enlarged view of the conductive window member 7 and its surroundings according to the embodiment. The cavity chamber 17 functions as a cavity resonator. Therefore, the cavity chamber 17 is a cylindrical chamber having a height and a diameter corresponding to the frequency of the microwave. That is, the cavity chamber 17 is made into a size and shape in which cavity resonance is likely to occur according to the frequency of the microwave. As a result, the electromagnetic field mode of the microwave introduced into the cavity chamber 17 causes a cavity resonance by forming a standing wave in the space V, and the maximum power of the microwave is efficiently applied to the space U of the processing chamber 18. Can be propagated to.
 導電性窓部材7は、円盤状であり、誘電体窓5とキャビティ室17との間に配置され、マイクロ波が通過する開口部7aを有する。導電性窓部材7の開口部7aの形状については後述する。導電性窓部材7は、エアー供給部8からキャビティ室17に供給されるエアーにより回転する。エアー供給部8は、導電性窓部材7を回転させる駆動機構の一例である。エアー供給部8から供給するガスは、エアーに限られず、例えば不活性ガスでもよい。エアー供給部8は、PCVバルブ等の圧力制御素子を有し、圧力制御素子によりエアーを供給する管内の圧力を制御することによってエアーの流量を調整してもよい。エアー供給部8は、流量制御バルブを有し、流量制御バルブの開度を制御することによってエアーの流量を直接調整してもよい。 The conductive window member 7 has a disk shape, is arranged between the dielectric window 5 and the cavity chamber 17, and has an opening 7a through which microwaves pass. The shape of the opening 7a of the conductive window member 7 will be described later. The conductive window member 7 is rotated by the air supplied from the air supply unit 8 to the cavity chamber 17. The air supply unit 8 is an example of a drive mechanism that rotates the conductive window member 7. The gas supplied from the air supply unit 8 is not limited to air, and may be, for example, an inert gas. The air supply unit 8 may have a pressure control element such as a PCV valve, and may adjust the flow rate of air by controlling the pressure in the pipe that supplies air with the pressure control element. The air supply unit 8 has a flow rate control valve, and the flow rate of air may be directly adjusted by controlling the opening degree of the flow rate control valve.
 エアー供給部8は、キャビティ室17に設けられたエアー導入口22からエアーを供給する。エアーは、導電性窓部材7の直上に外周側から供給される。導電性窓部材7の上面には、図4に一例を示す6つの羽根部材27が導電性窓部材7の中心Oの周りに放射状に配置されている。図4では、導電性窓部材7の開口部7aの図示を省略している。6つの羽根部材27は、円周方向に対して同一方向に斜めに傾けて取り付けられている。導電性窓部材7に設けられた羽根部材27によって導電性窓部材7の上面を通るエアーに一定の流れが形成され、導電性窓部材7を回転させる力となる。羽根部材27の材質は、軽量な樹脂等の絶縁物が好ましい。これにより、導電性窓部材7が回転し易くなるとともに、羽根部材27を絶縁物により形成することでマイクロ波による異常放電を防止することができる。ただし、羽根部材27の材質は、これに限られず、金属にしても良い。また、羽根部材27の個数、形状、配置は、これに限らない。 The air supply unit 8 supplies air from the air introduction port 22 provided in the cavity chamber 17. The air is supplied from the outer peripheral side directly above the conductive window member 7. On the upper surface of the conductive window member 7, six blade members 27 shown as an example in FIG. 4 are radially arranged around the center O of the conductive window member 7. In FIG. 4, the opening 7a of the conductive window member 7 is not shown. The six blade members 27 are attached at an angle in the same direction with respect to the circumferential direction. The blade member 27 provided on the conductive window member 7 forms a constant flow of air passing through the upper surface of the conductive window member 7, and serves as a force to rotate the conductive window member 7. The material of the blade member 27 is preferably an insulating material such as a lightweight resin. As a result, the conductive window member 7 can be easily rotated, and the blade member 27 can be formed of an insulating material to prevent abnormal discharge due to microwaves. However, the material of the blade member 27 is not limited to this, and may be metal. Further, the number, shape, and arrangement of the blade members 27 are not limited to this.
 キャビティ室17に供給されたエアーは、天板9に設けられたエアー排出口23から外部に排気される。なお、エアー導入口22及びエアー排出口23は、1つに限られず、複数設けられても良い。エアー導入口22は、導電性窓部材7をスムーズに回転できる位置に設けられる。エアー排出口23は、導電性窓部材7を回転させるエアーの流れを乱さずに、スムーズにエアーを排出できる位置に設けられる。 The air supplied to the cavity chamber 17 is exhausted to the outside from the air discharge port 23 provided on the top plate 9. The number of air inlets 22 and 23 is not limited to one, and a plurality of air inlets 23 may be provided. The air introduction port 22 is provided at a position where the conductive window member 7 can rotate smoothly. The air discharge port 23 is provided at a position where air can be smoothly discharged without disturbing the flow of air that rotates the conductive window member 7.
 図3に戻り、導電性窓部材7をエアーによって回転させるために、導電性窓部材7の裏面の中心に形成された凹み7cに誘電体窓5の中心に設けられた円錐状の軸5aを当接させる。導電性窓部材7の直径は、キャビティ室17の直径よりも小さい。よって、軸5aの回りに導電性窓部材7をコマのように水平方向に回転させることができる。 Returning to FIG. 3, in order to rotate the conductive window member 7 by air, a conical shaft 5a provided at the center of the dielectric window 5 is formed in the recess 7c formed at the center of the back surface of the conductive window member 7. Make a contact. The diameter of the conductive window member 7 is smaller than the diameter of the cavity chamber 17. Therefore, the conductive window member 7 can be rotated in the horizontal direction around the shaft 5a like a top.
 導電性窓部材7の外周には、その側部から外側に向かって突出する導電性窓部材7よりも厚さが薄い環状部材28が取り付けられている。導電性窓部材7は、キャビティ室17の側壁に設けられた窪みに固定された板バネなどのスプリング21に回転可能に環状部材28を挿し入れることで、安定して回転することができる。 An annular member 28, which is thinner than the conductive window member 7 and protrudes outward from the side thereof, is attached to the outer periphery of the conductive window member 7. The conductive window member 7 can rotate stably by inserting the annular member 28 rotatably into a spring 21 such as a leaf spring fixed to a recess provided in the side wall of the cavity chamber 17.
 スプリング21は接地されている。これにより、導電性窓部材7をグラウンドにすることができ、回転する導電性窓部材7の開口部7aをマイクロ波が通過するときにマイクロ波による異常放電が発生することを防止できる。なお、スプリング21は、側壁の円周方向に2つ以上あればよいが、3つ以上が設けられると導電性窓部材7の回転が安定するため好ましい。また、スプリング21は、全周に渡ってリング状に設けられてもよい。 The spring 21 is grounded. As a result, the conductive window member 7 can be grounded, and it is possible to prevent an abnormal discharge due to the microwave when the microwave passes through the opening 7a of the rotating conductive window member 7. The number of springs 21 may be two or more in the circumferential direction of the side wall, but it is preferable that three or more springs 21 are provided because the rotation of the conductive window member 7 is stable. Further, the spring 21 may be provided in a ring shape over the entire circumference.
 導電性窓部材7は、その一部の面に開口部7aを有する。例えば、図5(a)に示すように、導電性窓部材7は、角度θの扇状の開口部7aを有し、マイクロ波が通過する窓部として機能する。ただし、導電性窓部材7の開口部は、これに限られない。例えば、図5(b)に示すように、導電性窓部材7は、全面に開口部7bのパターンが形成されても良い。また、図5(c)に示すように、導電性窓部材7は、その一部の面に開口部7bのパターンが形成されても良い。図5(c)の例では、導電性窓部材7の角度θの扇状の面に開口部7bのパターンが形成されている。図5(a)及び図5(c)の開口部7aの角度θは、マイクロ波の周波数に応じて適切な角度に設計される。角度θは、例えば、360°の1/6~1/7程度が好ましい。 The conductive window member 7 has an opening 7a on a part of the surface thereof. For example, as shown in FIG. 5A, the conductive window member 7 has a fan-shaped opening 7a at an angle θ, and functions as a window portion through which microwaves pass. However, the opening of the conductive window member 7 is not limited to this. For example, as shown in FIG. 5B, the conductive window member 7 may have a pattern of openings 7b formed on the entire surface. Further, as shown in FIG. 5C, the conductive window member 7 may have a pattern of openings 7b formed on a part of the surface thereof. In the example of FIG. 5C, the pattern of the opening 7b is formed on the fan-shaped surface of the conductive window member 7 at an angle θ. The angle θ of the opening 7a in FIGS. 5 (a) and 5 (c) is designed to be an appropriate angle according to the frequency of the microwave. The angle θ is preferably, for example, about 1/6 to 1/7 of 360 °.
 キャビティ室17を伝播したマイクロ波は、図5(a)の開口部7a、図5(b)の開口部7b又は図5(c)の開口部7bから処理室18に向けて放射される。図5(b)及び図5(c)の開口部7bは、細長い長方形状(スリット状)をなし、隣接する2つのマイクロ波放射孔が対をなし、T字状に形成されている。 The microwave propagating in the cavity chamber 17 is radiated from the opening 7a in FIG. 5A, the opening 7b in FIG. 5B or the opening 7b in FIG. 5C toward the processing chamber 18. The opening 7b of FIGS. 5 (b) and 5 (c) has an elongated rectangular shape (slit shape), and two adjacent microwave radiation holes form a pair to form a T shape.
 また、このように所定の形状(例えばT字状)に組み合わせて配置されたマイクロ波放射孔は、さらに全体として同心円状に配置されてもよい。このようなマイクロ波放射孔として機能する開口部7bによって、チャンバ1内に円偏波を生じさせることができる。 Further, the microwave radiation holes arranged in combination in a predetermined shape (for example, T-shape) in this way may be further arranged concentrically as a whole. Circularly polarized waves can be generated in the chamber 1 by the opening 7b that functions as such a microwave radiation hole.
 導電性窓部材7の開口部7aの大きさや開口部7bの数によって、処理室18に単位面積当たりに供給されるマイクロ波のパワーが変わる。例えば、開口部7aを小さくすると、開口部7aから単位面積当たりに供給されるマイクロ波のパワーを、開口部7aをより大きくした場合と比較して大きくすることができる。すなわち、導電性窓部材7の開口部7aの大きさや開口部7bの数を変えることで、処理室18に導入されるマイクロ波のパワーの大小を制御し、これにより、可能なプロセスの幅であるプロセスウィンドウを広くすることができる。 The power of microwaves supplied to the processing chamber 18 per unit area changes depending on the size of the openings 7a of the conductive window member 7 and the number of openings 7b. For example, when the opening 7a is made smaller, the power of the microwave supplied from the opening 7a per unit area can be increased as compared with the case where the opening 7a is made larger. That is, by changing the size of the openings 7a and the number of openings 7b of the conductive window member 7, the magnitude of the power of the microwave introduced into the processing chamber 18 can be controlled, thereby increasing the width of the possible process. A process window can be widened.
 開口部7bが設けられる列の間隔は、マイクロ波の波長λに応じて決定される。例えば、同心円状に設けられた開口部7bの径方向の間隔は、λ/4~λの範囲となるように配置される。なお、開口部7bのマイクロ波放射孔の形状は、円形状、スリット状等であってもよい。さらに、マイクロ波放射孔の配置形態は特に限定されず、同心円状のほか、例えば、螺旋状、放射状等に配置することもできる。 The spacing between the rows in which the openings 7b are provided is determined according to the wavelength λ of the microwave. For example, the radial intervals of the openings 7b provided concentrically are arranged so as to be in the range of λ / 4 to λ. The shape of the microwave radiation hole of the opening 7b may be circular, slit-shaped, or the like. Further, the arrangement form of the microwave radiation holes is not particularly limited, and the microwave radiation holes can be arranged in a spiral shape, a radial shape, or the like in addition to the concentric circle shape.
 図3に戻り、誘電体窓5は、チャンバ1の側壁の凹部に嵌め込まれ、固定されている。凹部には誘電体窓5の下面とチャンバ1の壁との間にOリング20が設けられ、処理室18の真空空間を、キャビティ室17の大気空間Vからシールし、処理室18の気密を保持するようになっている。 Returning to FIG. 3, the dielectric window 5 is fitted and fixed in the recess on the side wall of the chamber 1. An O-ring 20 is provided between the lower surface of the dielectric window 5 and the wall of the chamber 1 in the recess, and the vacuum space of the processing chamber 18 is sealed from the air space V of the cavity chamber 17 to make the processing chamber 18 airtight. It is designed to hold.
 導電性窓部材7には、エンコーダ12が取り付けられている。エンコーダ12は、導電性窓部材7の単位時間当たりの回転数(以下、単に回転数という。)又は回転速度を検出する。エンコーダ12は、導電性窓部材7の回転数又は回転速度を検出する検出部の一例であり、検出部はこれに限られず、例えば光学式回転検出センサ等を用いることができる。この場合、光学式回転検出センサは、プラズマ処理装置10の外部に設けられ、プラズマ処理装置10に設けられた検査用窓から入光させた光のうち、導電性窓部材7からの反射光に基づき回転数又は回転速度を検出してもよい。 An encoder 12 is attached to the conductive window member 7. The encoder 12 detects the rotation speed (hereinafter, simply referred to as the rotation speed) or the rotation speed of the conductive window member 7 per unit time. The encoder 12 is an example of a detection unit that detects the rotation speed or rotation speed of the conductive window member 7, and the detection unit is not limited to this, and for example, an optical rotation detection sensor or the like can be used. In this case, the optical rotation detection sensor is provided outside the plasma processing device 10, and among the light received from the inspection window provided in the plasma processing device 10, the reflected light from the conductive window member 7 is used. The rotation speed or the rotation speed may be detected based on the above.
 制御装置30は、制御部110の機能を実現するプロセッサ、入力装置、表示装置、信号の入出力インターフェイス等を備えるコンピュータであり得る。また、制御装置30は、導電性窓部材7の回転速度とエアーの流量との相関データ111、エンコーダ12が検出した回転数又は回転速度を示すモニター値112を記憶する記憶部を有する。制御部110は、ウエハWに施す所定のプロセスの手順を示したレシピに従い、プロセスを実行するための制御プログラムの各ステップを実行することで実現される。記憶部は、ROM、RAM等のメモリにより実現される。 The control device 30 may be a computer including a processor, an input device, a display device, a signal input / output interface, and the like that realize the functions of the control unit 110. Further, the control device 30 has a storage unit that stores correlation data 111 between the rotation speed of the conductive window member 7 and the flow rate of air, and a monitor value 112 indicating the rotation speed or rotation speed detected by the encoder 12. The control unit 110 is realized by executing each step of the control program for executing the process according to a recipe showing the procedure of a predetermined process applied to the wafer W. The storage unit is realized by a memory such as a ROM or a RAM.
 制御装置30では、入力装置を用いて、オペレータがプラズマ処理装置10を管理するためにコマンドの入力操作等を行うことができる。また、制御装置30では、表示装置により、プラズマ処理装置10の稼働状況を可視化して表示することができる。 In the control device 30, the operator can perform a command input operation or the like in order to manage the plasma processing device 10 by using the input device. Further, in the control device 30, the operation status of the plasma processing device 10 can be visualized and displayed by the display device.
 制御装置30は、エンコーダ12が検出した回転数又は回転速度に基づき、検出した現在の回転速度Rcから、所定のプロセスに対して設定された相関データ111に示す目標回転速度Rgに一致する又は近づくように導電性窓部材7の回転速度をフィードバック制御する。具体的には、制御部110は、検出した現在の回転速度Rcから、相関データ111に示す目標回転速度Rgに近づくようにエアー供給部8から出力されるエアーの流量を、現在の流量Fcと目標流量Fgとの差分に応じてフィードバック制御する。このようにしてキャビティ室17に供給するエアーの流量を制御することで、導電性窓部材7の回転速度を目標回転速度Rgに一致させる又は近づけることができる。相関データ111は、導電性窓部材7の回転数とエアーの流量との相関を示すデータであってもよい。この場合、制御部110は、検出した現在の導電性窓部材7の回転数から、相関データ111に示す導電性窓部材7の目標回転数に近づくようにエアー供給部8から出力されるエアーの流量を、現在の流量Fcと目標流量Fgとの差分に応じてフィードバック制御してもよい。 The control device 30 matches or approaches the target rotation speed Rg shown in the correlation data 111 set for a predetermined process from the detected current rotation speed Rc based on the rotation speed or rotation speed detected by the encoder 12. The rotation speed of the conductive window member 7 is feedback-controlled as described above. Specifically, the control unit 110 sets the flow rate of air output from the air supply unit 8 so as to approach the target rotation speed Rg shown in the correlation data 111 from the detected current rotation speed Rc as the current flow rate Fc. Feedback control is performed according to the difference from the target flow rate Fg. By controlling the flow rate of the air supplied to the cavity chamber 17 in this way, the rotation speed of the conductive window member 7 can be made to match or approach the target rotation speed Rg. The correlation data 111 may be data showing the correlation between the rotation speed of the conductive window member 7 and the flow rate of air. In this case, the control unit 110 receives air output from the air supply unit 8 so as to approach the target rotation speed of the conductive window member 7 shown in the correlation data 111 from the detected current rotation speed of the conductive window member 7. The flow rate may be feedback-controlled according to the difference between the current flow rate Fc and the target flow rate Fg.
 これにより、図6に、一実施形態に係る導電性窓部材7の回転制御の一例を示すように、キャビティ室17の空間Vを伝播したマイクロ波は、導電性窓部材7に形成された扇状の開口部7aを通り、誘電体窓5を透過して処理室18に到達する。導電性窓部材7の開口部7aは、中心Oの軸回りに導電性窓部材7を回転させることにより、中心Oの周りに円周方向に移動する。回転方向は、時計回りでも反時計回りでも良い。 As a result, as shown in FIG. 6 as an example of rotation control of the conductive window member 7 according to the embodiment, the microwave propagating in the space V of the cavity chamber 17 has a fan shape formed in the conductive window member 7. It passes through the opening 7a of the above, passes through the dielectric window 5, and reaches the processing chamber 18. The opening 7a of the conductive window member 7 moves in the circumferential direction around the center O by rotating the conductive window member 7 around the axis of the center O. The direction of rotation may be clockwise or counterclockwise.
 これにより、開口部7aを通るマイクロ波の伝搬経路を時間とともに変化させることができる。これにより、マイクロ波導入部2から導入されたマイクロ波が誘電体窓5を介して処理室18の空間Uに到達することで誘電体窓5に形成される電界分布を、導電性窓部材7の回転数又は回転速度によって制御することができる。これにより、導電性窓部材7の回転数又は回転速度によってプラズマ分布を制御することができる。この結果、制御されたプラズマ分布に応じてウエハWに形成される膜の均一性を図ることができる。 As a result, the propagation path of the microwave passing through the opening 7a can be changed with time. As a result, the electric field distribution formed in the dielectric window 5 when the microwave introduced from the microwave introduction unit 2 reaches the space U of the processing chamber 18 through the dielectric window 5 is distributed to the conductive window member 7. It can be controlled by the number of rotations or the rotation speed of. Thereby, the plasma distribution can be controlled by the rotation speed or the rotation speed of the conductive window member 7. As a result, the uniformity of the film formed on the wafer W can be achieved according to the controlled plasma distribution.
 [プラズマ処理方法]
 次に、プラズマ処理装置10にて実行されるプラズマ処理方法の一例について、図7を参照して説明する。図7は、一実施形態に係るプラズマ処理方法の一例を示すフローチャートである。なお、本処理は制御装置30により制御される。
[Plasma processing method]
Next, an example of the plasma processing method executed by the plasma processing apparatus 10 will be described with reference to FIG. 7. FIG. 7 is a flowchart showing an example of the plasma processing method according to the embodiment. This process is controlled by the control device 30.
 本処理が開始されると、制御装置30は、ウエハWをチャンバ内に搬入し、ステージ3に載置して準備する(ステップS1)。次に、制御装置30は、ガス供給部から所定の処理ガスを供給する(ステップS2)。 When this process is started, the control device 30 carries the wafer W into the chamber and places it on the stage 3 to prepare it (step S1). Next, the control device 30 supplies a predetermined processing gas from the gas supply unit (step S2).
 次に、制御装置30は、エアー供給部8から所定流量のエアーをキャビティ室17に供給し、導電性窓部材7を所定の回転数又は回転速度で回転させるように制御する(ステップS3)。これにより、キャビティ室17を伝播したマイクロ波が、導電性窓部材7の開口部7aを通り、誘電体窓5を透過し、処理室18に導入される。 Next, the control device 30 supplies air of a predetermined flow rate from the air supply unit 8 to the cavity chamber 17 and controls the conductive window member 7 to rotate at a predetermined rotation speed or rotation speed (step S3). As a result, the microwave propagating in the cavity chamber 17 passes through the opening 7a of the conductive window member 7, passes through the dielectric window 5, and is introduced into the processing chamber 18.
 次に、制御装置30は、エンコーダ12が検出したモニター値112を取得する(ステップS4)。ただし、制御装置30がエンコーダ12からモニター値112を取得するタイミングは、これに限られず、制御装置30は、定期的又は不定期にモニター値112を取得できる。次に、制御装置30は、取得したモニター値112から現在の導電性窓部材7の回転速度を取得又は算出し、記憶部に記憶した相関データ111に基づき、現在の導電性窓部材7の回転速度Rc(図3参照)と目標回転速度Rgとの差分を算出する。そして、制御装置30は、その差分を小さくする又はなくすようにエアーの流量を制御する。これにより、制御装置30は、導電性窓部材7の回転速度が目標回転速度Rgに近づくようにフィードバック制御を行う(ステップS5)。次に、制御装置30は、マイクロ波出力部6からマイクロ波を供給する(ステップS6)。これにより、マイクロ波は、マイクロ波導入部2からキャビティ室17に放射され、空間Vを伝播し、マイクロ波のパワーにより処理室18に生成されたプラズマの分布を、導電性窓部材7の回転速度によって制御することができる。この結果、制御されたプラズマ分布に応じてウエハWに形成される膜の均一性を図ることができる。 Next, the control device 30 acquires the monitor value 112 detected by the encoder 12 (step S4). However, the timing at which the control device 30 acquires the monitor value 112 from the encoder 12 is not limited to this, and the control device 30 can acquire the monitor value 112 periodically or irregularly. Next, the control device 30 acquires or calculates the current rotation speed of the conductive window member 7 from the acquired monitor value 112, and based on the correlation data 111 stored in the storage unit, the current rotation of the conductive window member 7. The difference between the speed Rc (see FIG. 3) and the target rotation speed Rg is calculated. Then, the control device 30 controls the flow rate of air so as to reduce or eliminate the difference. As a result, the control device 30 performs feedback control so that the rotation speed of the conductive window member 7 approaches the target rotation speed Rg (step S5). Next, the control device 30 supplies microwaves from the microwave output unit 6 (step S6). As a result, the microwave is radiated from the microwave introduction unit 2 to the cavity chamber 17, propagates in the space V, and the distribution of the plasma generated in the processing chamber 18 by the power of the microwave is distributed to the rotation of the conductive window member 7. It can be controlled by speed. As a result, the uniformity of the film formed on the wafer W can be achieved according to the controlled plasma distribution.
 次に、制御装置30は、ウエハWへのプラズマ処理が終了したかを判定する(ステップS7)。制御装置30は、レシピに従い、ウエハWへのプラズマ処理が終了するまで待ち、ウエハWへのプラズマ処理が終了したと判定したとき、本処理を終了する。 Next, the control device 30 determines whether the plasma processing on the wafer W has been completed (step S7). According to the recipe, the control device 30 waits until the plasma processing on the wafer W is completed, and when it is determined that the plasma processing on the wafer W is completed, the control device 30 ends this processing.
 なお、本処理の終了時には、エアー供給部8からキャビティ室17に流入させるエアーを停止して導電性窓部材7の回転を停止し、マイクロ波の出力を停止し、処理ガスの供給を停止する。 At the end of this processing, the air flowing from the air supply unit 8 into the cavity chamber 17 is stopped to stop the rotation of the conductive window member 7, the microwave output is stopped, and the processing gas supply is stopped. ..
 以上に説明したように、本実施形態のプラズマ処理装置10により実行されるプラズマ処理方法によれば、導電性窓部材7の回転数又は回転速度を制御することで、マイクロ波が通過する開口部7aを移動させることができる。これにより、プラズマ分布を制御し、プラズマ処理によりウエハWに形成される膜の均一性の向上を図ることができる。 As described above, according to the plasma processing method executed by the plasma processing apparatus 10 of the present embodiment, the opening through which microwaves pass by controlling the rotation speed or rotation speed of the conductive window member 7. 7a can be moved. As a result, the plasma distribution can be controlled and the uniformity of the film formed on the wafer W by the plasma treatment can be improved.
 また、導電性窓部材7を大気空間で回転させることで、真空空間の処理室18においてパーティクルが発生することを回避でき、歩留まりの低下を防止できる。また、導電性窓部材7を樹脂などで形成することで軽量にでき、回転のための簡易な機構を用いて導電性窓部材7を回転させることができる。 Further, by rotating the conductive window member 7 in the atmospheric space, it is possible to avoid the generation of particles in the processing chamber 18 in the vacuum space, and it is possible to prevent a decrease in the yield. Further, the conductive window member 7 can be made lightweight by forming the conductive window member 7 with a resin or the like, and the conductive window member 7 can be rotated by using a simple mechanism for rotation.
 上記実施形態では、導電性窓部材7を回転させる機構としてエアー供給部8を設けた。ただし、導電性窓部材7を回転させる機構はこれに限られず、導電性窓部材7の周辺に磁石を有し、回転磁場を印可して導電性窓部材7を回転させてもよい。また、キャビティ室17を液体で満たしその液体を回転させる流れを生成する駆動部を有し、これにより、導電性窓部材7を回転させてもよい。 In the above embodiment, the air supply unit 8 is provided as a mechanism for rotating the conductive window member 7. However, the mechanism for rotating the conductive window member 7 is not limited to this, and the conductive window member 7 may be rotated by having a magnet around the conductive window member 7 and applying a rotating magnetic field. Further, the cavity chamber 17 may be filled with a liquid and has a drive unit for generating a flow for rotating the liquid, whereby the conductive window member 7 may be rotated.
 導電性窓部材7は、外周側と内周側等、複数に分割してもよい。外周側と内周側に分割した場合、導電性窓部材7の内周側のみを回転させ、外周側を固定させてもよい。逆に、導電性窓部材7の外周側のみを回転させ、内周側を固定させてもよい。導電性窓部材7の内周側と外周側との回転速度を変えてもよい。 The conductive window member 7 may be divided into a plurality of parts such as an outer peripheral side and an inner peripheral side. When divided into an outer peripheral side and an inner peripheral side, only the inner peripheral side of the conductive window member 7 may be rotated to fix the outer peripheral side. On the contrary, only the outer peripheral side of the conductive window member 7 may be rotated to fix the inner peripheral side. The rotation speed of the conductive window member 7 on the inner peripheral side and the outer peripheral side may be changed.
 今回開示された一実施形態に係るプラズマ処理装置及びプラズマ処理方法は、すべての点において例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で変形及び改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で他の構成も取り得ることができ、また、矛盾しない範囲で組み合わせることができる。 It should be considered that the plasma processing apparatus and the plasma processing method according to the embodiment disclosed this time are exemplary in all respects and are not restrictive. The above embodiment can be modified and improved in various forms without departing from the scope of the appended claims and the gist thereof. The matters described in the plurality of embodiments may have other configurations within a consistent range, and may be combined within a consistent range.
 本開示のプラズマ処理装置は、ALD(Atomic Layer Deposition )装置、Capacitively Coupled Plasma(CCP),Inductively Coupled Plasma(ICP),Radial Line Slot Antenna, Electron Cyclotron Resonance Plasma(ECR),Helicon Wave Plasma(HWP)のいずれのタイプの装置でも適用可能である。 The plasma processing apparatus of the present disclosure includes an ALD (Atomic Layer Deposition) apparatus, a Capacitively Coupled Plasma (CCP), an Inductively Coupled Plasma (ICP), a Radial Line Slot Antenna, an Electron Cyclotron Resonance Plasma (ECR), and a Helicon Wave Plasma. It is applicable to any type of device.
 また、本開示のプラズマ処理装置にて使用されるエネルギーは、マイクロ波に限られず、周波数が500MHz~5.8GHzの範囲の電磁波であってもよい。 Further, the energy used in the plasma processing apparatus of the present disclosure is not limited to microwaves, and may be electromagnetic waves having a frequency in the range of 500 MHz to 5.8 GHz.
 以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載の範囲内で様々な変形が可能である。 Although the present invention has been described above based on the examples, the present invention is not limited to the above examples, and various modifications can be made within the scope of the claims.
 本願は、日本特許庁に2019年4月1日に出願された基礎出願2019-070111号の優先権を主張するものであり、その全内容を参照によりここに援用する。 This application claims the priority of Basic Application No. 2019-070111 filed with the Japan Patent Office on April 1, 2019, and the entire contents thereof are incorporated herein by reference.
1   チャンバ
2   マイクロ波導入部
2a  放射口
3   ステージ
4   支持部材
5   誘電体窓
6   マイクロ波出力部
7   導電性窓部材
7a,7b 開口部
8   エアー供給部
9   天板
10  プラズマ処理装置
11  モノポールアンテナ
17  キャビティ室
18  処理室
20  Oリング
21  スプリング
27  羽根部材
30  制御装置
110 制御部
111 相関データ
112 モニター値
121 内部導体
122 外部導体
124 切欠部
1 Chamber 2 Microwave introduction part 2a Radiation port 3 Stage 4 Support member 5 Dielectric window 6 Microwave output part 7 Conductive window member 7a, 7b Opening 8 Air supply part 9 Top plate 10 Plasma processing device 11 Monopole antenna 17 Cavity chamber 18 Processing chamber 20 O-ring 21 Spring 27 Blade member 30 Control device 110 Control unit 111 Correlation data 112 Monitor value 121 Internal conductor 122 External conductor 124 Notch

Claims (8)

  1.  ステージに対向してチャンバ内に配置される誘電体窓と、
     前記チャンバ内にマイクロ波を導入するマイクロ波導入部と、
     前記マイクロ波導入部に接続される、前記チャンバ内の第1の室と、
     前記誘電体窓と前記第1の室との間に配置され、マイクロ波が通過する開口部を有する導電性窓部材と、
     前記導電性窓部材を回転させる駆動機構と、
     を有する、プラズマ処理装置。
    Dielectric windows placed in the chamber facing the stage,
    A microwave introduction unit that introduces microwaves into the chamber,
    A first chamber in the chamber connected to the microwave introduction section and
    A conductive window member arranged between the dielectric window and the first chamber and having an opening through which microwaves pass.
    A drive mechanism for rotating the conductive window member and
    A plasma processing device having.
  2.  前記第1の室は、空洞共振器として機能する、
     請求項1に記載のプラズマ処理装置。
    The first chamber functions as a cavity resonator.
    The plasma processing apparatus according to claim 1.
  3.  前記第1の室は、大気空間である、
     請求項1又は2に記載のプラズマ処理装置。
    The first chamber is an atmospheric space.
    The plasma processing apparatus according to claim 1 or 2.
  4.  前記導電性窓部材は、円盤状の一部又は全部の面に前記開口部を有する、
     請求項1~3のいずれか一項に記載のプラズマ処理装置。
    The conductive window member has the opening on a part or all of a disk-shaped surface.
    The plasma processing apparatus according to any one of claims 1 to 3.
  5.  前記駆動機構は、前記第1の室にエアーを供給し、前記導電性窓部材を回転させる、
     請求項1~4のいずれか一項に記載のプラズマ処理装置。
    The drive mechanism supplies air to the first chamber to rotate the conductive window member.
    The plasma processing apparatus according to any one of claims 1 to 4.
  6.  前記導電性窓部材の回転数又は回転速度を検出する検出部と、
     検出した前記回転数又は前記回転速度に基づき、所定のプロセスに対して設定された目標回転数又は目標回転速度に一致する又は近づくように前記導電性窓部材の回転数又は回転速度を制御する制御部と、
     を有する、請求項1~5のいずれか一項に記載のプラズマ処理装置。
    A detection unit that detects the rotation speed or rotation speed of the conductive window member,
    Control to control the rotation speed or rotation speed of the conductive window member so as to match or approach the target rotation speed or target rotation speed set for a predetermined process based on the detected rotation speed or rotation speed. Department and
    The plasma processing apparatus according to any one of claims 1 to 5.
  7.  前記制御部は、前記第1の室に供給するエアーの流量を調整し、前記導電性窓部材の回転数又は回転速度を制御する、
     請求項6に記載のプラズマ処理装置。
    The control unit adjusts the flow rate of air supplied to the first chamber and controls the rotation speed or rotation speed of the conductive window member.
    The plasma processing apparatus according to claim 6.
  8.  請求項1~7のいずれか一項に記載のプラズマ処理装置にて行うプラズマ処理方法であって、
     導電性窓部材の回転数又は回転速度を検出する工程と、
     検出した前記回転数又は前記回転速度に基づき、所定のプロセスに対して設定された目標回転数又は目標回転速度に一致する又は近づくように前記導電性窓部材の回転数又は回転速度を制御する工程と、
     前記導電性窓部材の回転数又は回転速度を制御しながら、載置台に載置された基板の上方に生成されるプラズマにより基板を処理する工程と、
     を有するプラズマ処理方法。
    A plasma processing method performed by the plasma processing apparatus according to any one of claims 1 to 7.
    The process of detecting the rotation speed or rotation speed of the conductive window member,
    A step of controlling the rotation speed or rotation speed of the conductive window member so as to match or approach the target rotation speed or target rotation speed set for a predetermined process based on the detected rotation speed or rotation speed. When,
    A step of processing the substrate by plasma generated above the substrate mounted on the mounting table while controlling the rotation speed or the rotation speed of the conductive window member.
    Plasma processing method having.
PCT/JP2020/011933 2019-04-01 2020-03-18 Plasma processing device and plasma processing method WO2020203288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019070111A JP2020170600A (en) 2019-04-01 2019-04-01 Plasma processing device and plasma processing method
JP2019-070111 2019-04-01

Publications (1)

Publication Number Publication Date
WO2020203288A1 true WO2020203288A1 (en) 2020-10-08

Family

ID=72668754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011933 WO2020203288A1 (en) 2019-04-01 2020-03-18 Plasma processing device and plasma processing method

Country Status (2)

Country Link
JP (1) JP2020170600A (en)
WO (1) WO2020203288A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262119A (en) * 1990-03-13 1991-11-21 Canon Inc Plasma treatment method and device therefor
JPH04136176A (en) * 1990-09-25 1992-05-11 Sony Corp Microwave plasma treating device
JPH0536641A (en) * 1991-08-01 1993-02-12 Mitsubishi Electric Corp Semiconductor manufacturing equipment
JPH05283196A (en) * 1992-03-31 1993-10-29 Sumitomo Metal Ind Ltd Plasma device and using method for its device
JPH05343334A (en) * 1992-06-09 1993-12-24 Hitachi Ltd Plasma generator
JP2018507508A (en) * 2015-01-07 2018-03-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Workpiece processing chamber having a rotating microplasma antenna with a slotted helical waveguide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262119A (en) * 1990-03-13 1991-11-21 Canon Inc Plasma treatment method and device therefor
JPH04136176A (en) * 1990-09-25 1992-05-11 Sony Corp Microwave plasma treating device
JPH0536641A (en) * 1991-08-01 1993-02-12 Mitsubishi Electric Corp Semiconductor manufacturing equipment
JPH05283196A (en) * 1992-03-31 1993-10-29 Sumitomo Metal Ind Ltd Plasma device and using method for its device
JPH05343334A (en) * 1992-06-09 1993-12-24 Hitachi Ltd Plasma generator
JP2018507508A (en) * 2015-01-07 2018-03-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Workpiece processing chamber having a rotating microplasma antenna with a slotted helical waveguide

Also Published As

Publication number Publication date
JP2020170600A (en) 2020-10-15

Similar Documents

Publication Publication Date Title
US9574270B2 (en) Plasma processing apparatus
CN108766881B (en) Plasma processing apparatus and control method
US10937631B2 (en) Plasma processing apparatus and plasma processing method
JP6509049B2 (en) Microwave plasma source and plasma processing apparatus
US10211032B2 (en) Microwave plasma source and plasma processing apparatus
CN108735568B (en) Plasma processing apparatus and control method
JP6999697B2 (en) Modular microwave source with local Lorentz force
US8261691B2 (en) Plasma processing apparatus
US8273210B2 (en) Plasma processing apparatus and method for adjusting plasma density distribution
WO2020203288A1 (en) Plasma processing device and plasma processing method
KR20200136317A (en) Plasma density monitor, plasma processing apparatus, and plasma processing method
US20150176125A1 (en) Substrate processing apparatus
WO2020250506A1 (en) Microwave supply mechanism, plasma treatment apparatus, and plasma treatment method
US5961776A (en) Surface processing apparatus
US20170076914A1 (en) Plasma processing apparatus
JP6313983B2 (en) Plasma processing apparatus and plasma processing method
JP6914149B2 (en) Plasma processing equipment
JP5916467B2 (en) Microwave radiation antenna, microwave plasma source, and plasma processing apparatus
JPH10298786A (en) Surface treating device
JP6700128B2 (en) Microwave plasma processing equipment
US10930477B2 (en) Plasma processing apparatus
JP2006114676A (en) Plasma processing apparatus
JP2020202052A (en) Plasma electric field monitor, plasma processing apparatus, and plasma processing method
JP2000173798A (en) Microwave plasma processing device
JP2016225203A (en) Plasma processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782432

Country of ref document: EP

Kind code of ref document: A1