WO2020203187A1 - 金属イオン回収装置、金属回収システムおよび金属イオンの回収方法 - Google Patents

金属イオン回収装置、金属回収システムおよび金属イオンの回収方法 Download PDF

Info

Publication number
WO2020203187A1
WO2020203187A1 PCT/JP2020/011148 JP2020011148W WO2020203187A1 WO 2020203187 A1 WO2020203187 A1 WO 2020203187A1 JP 2020011148 W JP2020011148 W JP 2020011148W WO 2020203187 A1 WO2020203187 A1 WO 2020203187A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal ion
recovery
metal
ion recovery
recovery device
Prior art date
Application number
PCT/JP2020/011148
Other languages
English (en)
French (fr)
Inventor
星野 毅
Original Assignee
国立研究開発法人量子科学技術研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人量子科学技術研究開発機構 filed Critical 国立研究開発法人量子科学技術研究開発機構
Priority to US17/599,060 priority Critical patent/US20220176320A1/en
Priority to JP2021511365A priority patent/JP7385297B2/ja
Priority to KR1020217033281A priority patent/KR20220009374A/ko
Priority to AU2020250331A priority patent/AU2020250331A1/en
Publication of WO2020203187A1 publication Critical patent/WO2020203187A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B7/00Electrophoretic production of compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/02Electrolytic production, recovery or refining of metals by electrolysis of solutions of light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/04Elements in parallel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a metal ion recovery device, a metal recovery system, and a method for recovering metal ions.
  • Lithium-ion batteries have been widely used in recent years. Lithium-ion batteries are used, for example, as power sources for electric vehicles and portable devices. In addition, lithium is used as a raw material for lithium ion batteries. In addition to lithium-ion batteries, lithium is also used in the production of tritium, which is the fuel for fusion reactors. For these reasons, the demand for lithium has been expanding rapidly in recent years.
  • Lithium is contained in seawater. Therefore, a technique for recovering lithium contained in seawater is being studied. In addition, a technique for recovering lithium from a used lithium ion battery is being studied.
  • Patent Document 1 and Patent Document 2 describe a recovery device that recovers metal ions from a stock solution containing metal ions.
  • This recovery device includes a selective permeable membrane composed of a metal ion conductor, a first electrode fixed to one main surface side of the selective permeable membrane, and a first electrode fixed to the other main surface side of the selective permeable membrane. It has two electrodes.
  • the undiluted solution containing metal ions and the recovery solution are partitioned by a structure having a selective permeable membrane, a first electrode, and a second electrode, and the metal ions in the undiluted solution are partitioned. Is moved into the recovery liquid.
  • the conventional metal ion recovery device has a structure in which one metal ion conductor (selective permeation membrane) is used to partition the metal ion-containing stock solution and the metal ion recovery solution. Therefore, it is difficult to improve the recovery efficiency of metal ions per device, and it is difficult to recover a large amount of metal ions.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a metal ion recovery device capable of efficiently recovering metal ions. Another object of the present invention is to provide a metal recovery system using the metal ion recovery device and a method for recovering metal ions.
  • a metal ion recovery device comprising.
  • a plurality of metal ion recovery devices according to any one of [1] to [4] are provided.
  • a metal ion recovery device unit wherein each of the metal ion recovery devices is connected by a pipe connecting the stock solution tank and a pipe connecting the recovery liquid tank.
  • a metal ion recovery device according to any one of [1] to [4] or the metal ion recovery device unit according to [5].
  • a compound containing the metal ion (a solid substance containing a metal in the metal ion) that is connected to the recovery liquid tank of the metal ion recovery device or the metal ion recovery device unit and contains the metal ion in the metal ion recovery liquid.
  • a metal recovery system comprising a refining apparatus for taking out as.
  • the present invention it is possible to provide a metal ion recovery device capable of recovering a large amount of metal ions by improving the recovery efficiency of metal ions (for example, lithium ions). Further, according to the present invention, it is possible to provide a metal recovery system using the metal ion recovery device and a method for recovering metal ions.
  • metal ions for example, lithium ions
  • FIG. 1 It is a cross-sectional view of still another example of a recovery liquid tank that can be used in the metal ion recovery device according to the embodiment of the present invention.
  • FIG. 1 It is a block diagram of an example of the metal recovery system using the metal ion recovery device which is one Embodiment of this invention.
  • FIG. 1 It is a perspective view of another example of the metal ion recovery cell constituting the single-membrane type metal ion recovery device that can be used in the metal ion recovery device unit according to the embodiment of the present invention. It is an exploded perspective view of the metal ion recovery cell shown in FIG.
  • the metal ion recovery device of the present embodiment is a device that recovers metal ions from a metal ion-containing stock solution containing metal ions.
  • the metal ion to be recovered include ions such as alkali metal, alkaline earth metal, and transition metal.
  • alkali metal include lithium, sodium and cesium.
  • alkaline earth metals include beryllium, magnesium and calcium.
  • transition metal include cobalt, nickel and manganese.
  • the metal ion-containing stock solution is a lithium ion-containing stock solution containing lithium ions.
  • the lithium ion-containing stock solution for example, seawater, salt lake irrigation, bittern, waste battery treatment solution and the like can be used.
  • the lithium ion concentration in the lithium ion-containing stock solution is about 0.17 ppm for seawater, about 1000 ppm for salt lake irrigation, about 50 to 1000 times that of seawater for bittern, and about 2000 to 3000 ppm for waste battery treatment liquid.
  • the salt lake irrigation and waste battery treatment liquids are suitable as lithium ion-containing stock solutions because of their high lithium concentration.
  • bittern is effective as a lithium ion-containing stock solution because it can be easily produced from seawater.
  • the metal ion-containing stock solution (for example, lithium ion-containing stock solution) includes seawater, salt lake irrigation, bittern, waste battery treatment liquid, mineral lithium solution, concentrated seawater obtained in a seawater desalination plant, and hot spring water. Etc. may be used.
  • the metal ion-containing stock solution (for example, a lithium ion-containing stock solution) may contain water, an organic solvent, or the like as a solvent.
  • the solvent contained in the metal ion-containing stock solution (for example, lithium ion-containing stock solution) is preferably water from the viewpoint of environmental load.
  • the metal ion recovery liquid is a liquid that recovers metal ions that have passed through the metal ion selective permeation membrane.
  • the metal ion recovery solution is not particularly limited as long as it is a solvent in which metal ions can be dissolved.
  • the metal ion recovery solution may be, for example, the same as the solvent of the metal ion-containing stock solution.
  • As the metal ion recovery liquid for example, water (preferably water containing less metal ions such as pure water and RO water (reverse osmosis membrane permeated water)) is preferable.
  • a solvent effective for the subsequent step of purifying and recovering the recovered metal ions in the recovery liquid may be used.
  • a preferable example of the lithium ion recovery liquid for recovering lithium ions as metal ions is water (preferably water containing less metal ions such as pure water and RO water).
  • dilute hydrochloric acid can be mentioned as an effective solvent for the post-process of recovering the lithium ions recovered in the recovery liquid as solid lithium.
  • the metal ion recovery device includes a tubular metal ion selective permeable membrane (hereinafter, also simply referred to as “selective permeable membrane”) that separates the stock solution tank, the recovery liquid tank, the stock solution tank, and the recovery liquid tank, an anode, and a cathode. And include.
  • the undiluted solution tank is a tank that houses the undiluted solution containing metal ions.
  • the recovery liquid tank is a tank for accommodating a metal ion recovery liquid containing metal ions recovered from a metal ion-containing stock solution.
  • the selective permeation membrane is mainly composed of a metal ion conductor (hereinafter, also referred to as “metal ion conductor”).
  • metal ion conductor a metal ion conductor
  • "mainly a conductor of metal ions” means that 50% by mass or more of the total mass of the selective permeation membrane is a conductor of metal ions.
  • the mass% of the metal ion conductor in the total mass of the selective permeable membrane is preferably 70% by mass or more, more preferably 80% by mass or more, because the selective permeable membrane has high ionic conductivity. ..
  • the selective permeable membrane may be formed of, for example, a single metal ion conductor. Further, the selective permeation membrane may be formed of a composite material of a metal ion conductor and a support. Further, the selective permeation membrane may be formed of a composite material of a metal ion conductor and an adsorption layer that contributes to improving the conductivity of metal ions.
  • the metal ion conductor contained in the selective permeable membrane may be any material capable of conducting metal ions.
  • the metal ion conductor is preferably a ceramic material having a crystal structure containing a conductive metal element and exhibiting ionic conductivity by flowing metal ions in the crystal.
  • the metal ion conductor is determined according to the type of metal ion to be permeated through the selective transmission membrane, that is, the metal ion to be recovered.
  • the metal ion conductor preferably has an ionic conductivity of 10 -4 Scm -1 to 10 -1 Scm -1 , and more preferably 10 -3 Scm -1 to 10 -1 Scm -1 .
  • the ionic conductivity is 10 -4 Scm -1 or more, a selective permeable membrane having high permeability to metal ions is obtained. Therefore, the metal ions in the metal ion-containing stock solution can be efficiently recovered, which is preferable.
  • the upper limit of the ionic conductivity is not particularly limited, but may be, for example, 10 -1 Scm -1 or less.
  • the metal ion conductor used in the selective permeable membrane is determined according to the type of metal ion to be permeated through the selective permeable membrane, that is, the metal ion to be recovered. For example, if the metal ions to be transmitted through the selectively permeable membrane (i.e.
  • LLTO Li 1 + x + y Al x
  • a lithium ion conductor such as 2-x Si y P 3-y O 12 (here, 0 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.6) can be used. All of these lithium ion conductors are super-lithium ion conductors that exhibit a high lithium ion conductivity of 10 -4 Scm -1 or more and can obtain high selectivity for lithium ions. Therefore, a metal ion recovery device provided with a selective transmission film mainly composed of such a superlithium ion conductor can efficiently recover lithium ions in the undiluted solution. Among the above lithium ion conductors, lithium titanate (LLTO) is particularly preferable.
  • lithium titanate has high water resistance and its performance does not easily deteriorate even if it is immersed in a lithium ion-containing stock solution and a lithium ion recovery solution for a long time.
  • the lithium titanate lanthanum it is preferable to use Li 0.29 La 0.57 TiO 3 .
  • Alkali metals sodium and cesium, like lithium can be elements that form conductors of metal ions.
  • a sodium ion conductor is used as the selective permeation membrane.
  • the conductor of sodium ions for example, beta alumina, Na 2 (BH 4) ( NH 2), compounds containing sodium, such as Na 3 SbS 4 -Na 4 SnS 4 and the like.
  • BH 4 BH 4
  • compounds containing sodium such as Na 3 SbS 4 -Na 4 SnS 4 and the like.
  • a cesium ion conductor is used as the selective permeation membrane.
  • the cesium ion conductor for example (Cs x, La y) TiO z (wherein, x is 0.29, y is 0.57, z is 3) considered to use a compound containing cesium, such as Be done.
  • a compound containing the metal element as a conductor of the metal ion to be recovered as in the case of the above-mentioned alkali metal ion. Can be used.
  • the selective permeation membrane is preferably a sintered body made of a metal ion conductor.
  • the selective permeation membrane is particularly preferably a sintered body made of lithium titanate (LLTO).
  • LLTO lithium titanate
  • a sintered body of a metal ion conductor is preferable because it is a hard material having excellent water pressure resistance and therefore has excellent durability. Further, since the sintered body of the metal ion conductor is a porous body in which fine particles made of the metal ion conductor are bonded (sintered), there are fine irregularities on the surface. Therefore, if the selective permeation membrane is a sintered body of a metal ion conductor, the surface area will be large.
  • the metal ion recovery device provided with the selective permeation film formed of the sintered body of the metal ion conductor has a wide contact area between the metal ion-containing stock solution and the metal ion conductor, and can collect metal ions in the metal ion-containing stock solution. It can be recovered efficiently, which is preferable.
  • the shape of the selective permeable membrane is tubular.
  • the tubular selective permeable membrane preferably has a shape that separates the stock solution tank and the recovery liquid tank by surrounding one of the stock solution tank and the recovery liquid tank of the metal ion recovery device.
  • the tubular shape includes a shape in which the upper end and the lower end are open, a shape in which the lower end is closed (bottomed tubular shape), and a shape in which the upper end and the lower end are closed (box shape).
  • the tubular selective permeable membrane may be cylindrical or square tubular.
  • the tubular portion of the bottomed tubular selective permeable membrane may be cylindrical or square tubular.
  • the recovery of metal ions using a bottomed tubular selective permeation membrane is, for example, in a state where the metal ion recovery liquid is injected inside, so that the metal ion-containing stock solution does not invade through the opening at the upper end. This can be done by immersing the selective permeable membrane in the form of a metal ion-containing stock solution. In addition, with the metal ion-containing stock solution injected inside, the bottomed tubular selective permeable membrane is immersed in the metal ion recovery solution so that the metal ion recovery solution does not enter through the opening at the upper end.
  • the box-shaped selective permeable membrane may have a cubic shape, a cylindrical shape, or a spherical shape.
  • Recovery of metal ions using a box-shaped selective permeable membrane can be performed, for example, by immersing the box-shaped selective permeable membrane in a metal ion-containing stock solution with the metal ion recovery liquid injected inside. .. Further, it can be carried out by a method of immersing a box-shaped selective permeable membrane in a metal ion recovery solution in a state where a metal ion-containing stock solution is injected inside.
  • a part of the bottomed tubular or box-shaped selective permeable membrane is provided with a liquid passage port for injecting or discharging the metal ion recovery liquid inside the selective permeable membrane, and the metal ion recovery liquid inside the selective permeable membrane is provided. May be interchangeable.
  • a part of the bottomed tubular or box-shaped selective permeable membrane is provided with a liquid passage port for injecting or discharging a metal ion-containing stock solution inside the selective permeable membrane, and contains metal ions inside the selective permeable membrane.
  • the undiluted solution may be replaceable.
  • the size of the tubular selective permeable membrane is not particularly limited.
  • the average thickness of the tubular selective permeable membrane is preferably, for example, 0.01 to 20 mm, more preferably 0.1 to 5 mm.
  • the average thickness is more preferably 0.2 to 1.0 mm.
  • the opening diameter (maximum inner diameter, typically diameter) of the tubular selective permeable membrane may be, for example, 0.1 mm or more, preferably 10 mm or more, more preferably 50 mm or more, still more preferably 100 mm or more. ..
  • the upper limit of the opening diameter (maximum inner diameter, typically the diameter) of the tubular selective permeable membrane is not limited, but can be, for example, 5000 mm or less, preferably 1000 mm or less, and more preferably 500 mm or less.
  • the opening diameter is 0.1 mm or more, the contact area between the metal ion-containing stock solution and the selective permeation membrane is wide, and the metal ions in the metal ion-containing stock solution can be efficiently recovered, which is preferable.
  • a selective permeable membrane having a large opening diameter it is possible to increase the amount of liquid that can be passed through the cylinder of the selective permeable membrane.
  • the opening diameter of the selective permeable membrane (maximum inner diameter, typically the diameter) should be selected. It is preferable to set appropriately in the range of 80 mm or more and 750 mm or less.
  • the length of the tubular selective permeable membrane is not particularly limited, but may be, for example, 10 mm or more, preferably 100 mm or more.
  • the upper limit of the length is not particularly limited, but may be, for example, 5000 mm or less, and typically 4000 mm or less.
  • the opening diameter and length of the tubular selective permeable membrane For the opening diameter and length of the tubular selective permeable membrane, consider the amount of liquid to be passed through the cylinder of the selective permeable membrane (the amount of liquid per unit time) and the contact efficiency between the selective permeable membrane and the metal ion-containing stock solution. It is preferable to set an appropriate combination.
  • the tubular selective permeable membrane is a sintered body of a metal ion conductor
  • the average thickness is 1.0 to 20.0 mm
  • the opening diameter is 100 to 500 mm
  • the length is 100 to 100. It is preferably 2000 mm.
  • Such a tubular selective permeable membrane can be easily and efficiently manufactured, which is preferable.
  • the flow rate of the liquid sent into the cylinder and the contact efficiency of the metal ions with the selective permeable membrane are in a suitable balance, and the metal ions can be efficiently recovered. Therefore, it is preferable.
  • the anode is electrically connected to the surface of the selective permeable membrane on the stock solution tank side.
  • the anode and the surface of the selective permeable membrane on the stock solution tank side may be electrically connected via a porous current collector.
  • the anode may be electrically connected by arranging the anode in close contact with the surface of the selective permeable membrane on the stock solution tank side. That is, the anode may be integrally formed on the surface of the selective permeable membrane on the stock solution tank side.
  • the conductive material for the anode a conventionally known conductive material can be adopted.
  • the conductive material for the anode examples include Pt, Cu, Au, Ag, C, Fe, W, Mo, Ni, Co, Cr, Ti, Ir, Mn, La, Sr, Al, Pb, Zn, Rh. It is preferable to contain one or more elements selected from, and more preferably one or more elements selected from Pt, Cu, Fe, C, Ag and Ti.
  • the anode material may be an alloy, and examples thereof include TiIr and stainless steel. In particular, it is more preferable that the anode contains Pt, C or Ti as a main component.
  • An anode made of a material containing these as a main component can obtain excellent corrosion resistance even when corrosive gas such as chlorine gas and / or fluorine gas is generated by recovering metal ions in the stock solution, for example. This is to be done.
  • the shape of the anode is not particularly limited.
  • the shape of the anode may be a regular pattern such as a tubular shape, a plate shape, a mesh shape (mesh shape), a rod shape, a stripe shape, a dot shape, a grid shape, a honeycomb shape, or irregular patterns. It may be a pattern.
  • the shape of the anode is, for example, tubular, plate, mesh (mesh), rod, lattice, honeycomb. It can be a continuous shape such as a shape.
  • the shape of the anode is not particularly limited and may be any shape.
  • the porous current collector that electrically connects the anode and the selective transmission membrane for example, a felt-like or sponge-like conductive material can be used.
  • the conductive material for the porous current collector those exemplified as the conductive material for the anode can be used.
  • a conductive material containing C, Ti, Pt, Cu, Fe and Ag can be mentioned.
  • the cathode is electrically connected to the surface of the selective permeable membrane on the recovery liquid tank side.
  • the cathode and the surface of the selective permeable membrane on the recovery liquid tank side may be connected via a porous current collector.
  • the cathode may be electrically connected by arranging the cathode in close contact with the surface of the selective permeable membrane on the recovery liquid tank side. That is, the cathode may be integrally formed on the surface of the selective permeable membrane on the recovery liquid tank side.
  • the conductive material for the cathode those exemplified as the conductive material for the anode can be used. However, the conductive materials forming the anode and the cathode may be the same or different.
  • the shape of the cathode is not particularly limited, and the shape exemplified as the shape of the anode can be adopted. However, the shapes of the anode and the cathode may be the same or different.
  • a porous current collector that electrically connects the cathode and the selective transmission membrane for example, a felt-like or sponge-like conductive material can be used.
  • the conductive material for the porous current collector those exemplified as the conductive material for the anode can be used.
  • one or both of the anode and the selective permeable membrane and the cathode and the selective permeable membrane may be electrically connected via a porous current collector. Further, one or both of the anode and the cathode may be electrically connected by being arranged in close contact with different main surfaces of the selective transmission membrane.
  • the anode or cathode When the anode or cathode is placed in close contact with the selective permeable membrane to electrically connect the anode or cathode and the selective permeable membrane (when the electrode is integrally formed with the selective permeable membrane), the anode or cathode is used. It is preferable to use a conductive porous film. This is because the metal ion-containing stock solution or the metal ion recovery solution can be brought into contact with the selective permeation membrane via the anode or cathode.
  • the average pore size of the conductive porous membrane used as the anode or cathode is preferably 0.5 to 10 ⁇ m.
  • the average pore size of the conductive porous membrane is 10 ⁇ m or less, the effect of increasing the contact area between the surface of the selective permeation membrane, the conductive porous membrane, and the metal ion-containing stock solution or the metal ion recovery solution becomes remarkable. Therefore, the effect of increasing the amount of metal ion permeation is high, which is preferable.
  • the lower limit of the average pore size of the conductive porous membrane is not particularly limited as long as it is possible to bring the metal ion-containing stock solution or the metal ion recovery solution into contact with the selective permeation membrane via the conductive porous membrane.
  • the average pore size of the conductive porous membrane can be 0.001 ⁇ m or more, and typically 0.5 ⁇ m or more.
  • the conductive porous membrane can be formed, for example, by applying a paste containing a conductive material to the surface of the selective transmission membrane and firing it.
  • the anode may be arranged so as to cover at least a part of the liquid contact surface (metal ion-containing stock solution contact surface) of the selective transmission membrane.
  • the cathode may be arranged so as to cover at least a part of the liquid contact surface (metal ion recovery liquid contact surface) of the selective transmission membrane. That is, the anode and the cathode may have a shape that covers a part of the liquid contact surface of the selective transmission membrane.
  • the anode and cathode may be arranged so as to cover the entire liquid contact surface of the selective permeable membrane.
  • An anode or cathode having a shape (outer peripheral shape) that matches the shape (outer peripheral shape) of the liquid contact surface of the selective permeable membrane is a preferable example of this embodiment.
  • An anode or cathode having such a shape makes the potential of the entire liquid contact surface of the selective transmission film substantially constant, for example, when the anode or cathode is electrically connected to the selective transmission film via a porous current collector. It is suitable because it is easy to hold.
  • the shapes of the anode and the cathode may be the same or may be different.
  • the metal ion recovery device of the present embodiment can be a tubular selective permeable membrane-arranged metal ion recovery device in which a tubular selective permeable membrane is arranged as the selective permeable membrane.
  • FIG. 1 is a cross-sectional view of an example of a metal ion recovery device according to an embodiment of the present invention.
  • the metal ion recovery device 20 accommodates a stock solution tank 22 containing a metal ion-containing stock solution 1 containing metal ions and a metal ion recovery solution containing metal ions recovered from the metal ion-containing stock solution 1. It has a recovery liquid tank 23 to be used.
  • 11 recovery liquid tanks 23 are arranged in the stock liquid tank 22.
  • the lower end of the recovery liquid tank 23 is connected to the metal ion recovery liquid introduction pipe 28, and the upper end is connected to the metal ion recovery liquid extraction pipe 29. Is made to flow from the bottom to the top in the recovery liquid tank 23.
  • the direction in which the recovered liquid flows in the recovered liquid tank 23 is not limited to this.
  • the upper end of the recovery liquid tank 23 is connected to the metal ion recovery liquid introduction pipe 28, and the lower end is connected to the metal ion recovery liquid extraction pipe 29, so that the metal ion recovery liquid flows from the lower side to the upper side in the recovery liquid tank 23. You may do so.
  • FIG. 2 is a cross-sectional view of an example of a recovery liquid tank that can be used in the metal ion recovery device according to the embodiment of the present invention, and is a drawing corresponding to the cross-sectional view taken along the line AA'in FIG.
  • the recovery liquid tank 23 of the metal ion recovery device 20a shown in FIG. 2 is a tubular selective permeation membrane 24 that partitions the stock liquid tank 22 and the recovery liquid tank 23 and selectively permeates metal ions, and the selective permeation membrane 24.
  • An anode 25 electrically connected to the surface of the stock solution tank 22 side and a cathode 26 electrically connected to the surface of the selective transmission membrane 24 on the recovery liquid tank 23 side are provided.
  • the anode 25 is electrically connected by being arranged in close contact with the outer surface of the tubular selective permeable membrane 24.
  • the cathode 26 is electrically connected by being arranged in close contact with the inner surface of the tubular selective permeable membrane 24.
  • the recovery liquid tank 23 is a region surrounded by a tubular selective permeable membrane 24 (cathode 26 in FIG. 2), and has a tubular shape.
  • the anode 25 and the cathode 26 are both tubular porous films, but the shapes of the anode 25 and the cathode 26 are not limited to this.
  • the recovery of metal ions using the metal ion recovery device 20a is performed as follows. First, the metal ion-containing stock solution 1 is supplied to the stock solution tank 22, and the metal ion recovery liquid 2 is supplied to the tubular recovery liquid tank 23. Next, the anode 25 has a positive potential and the cathode 26 has a negative potential. As a result, among the metal ions 3 in the metal ion-containing undiluted solution 1, those that reach the anode 25 side of the tubular selective transmission membrane 24 move through the selective transmission membrane 24 by ion conduction from the anode 25 side to the cathode 26 side. It penetrates toward.
  • the metal ions 3 that have passed through the selective permeable membrane 24 are recovered by the metal ion recovery liquid 2 contained in the recovery liquid tank 23.
  • the method of applying a positive potential to the anode 25 and the method of applying a negative potential to the cathode 26 are not particularly limited. From the viewpoint of efficiently applying the potential to each electrode, it is preferable to apply a positive potential to the anode 25 and ground the cathode 26.
  • electrodes are arranged so that the surfaces of the selective transmission membranes 24 facing each other have the same polarity (positive and positive, negative and negative). That is, the anode 25 is arranged so that the surfaces of the selective permeable membranes 24 facing each other across the stock solution tank 22 have positive polarity, and the surfaces of the selective permeable membranes 24 facing each other across the recovery liquid tank 23 become negative.
  • the cathode 26 is arranged in the.
  • the selective transmission membrane 24 has a tubular shape, the area of the selective transmission membrane 24 in contact with the metal ion-containing stock solution 1 and the metal ion recovery solution 2 is large. Therefore, the recovery efficiency of metal ions is improved, and a large amount of metal ions can be recovered.
  • the porous current collector is not arranged in the tubular selective transmission membrane 24. Since the porous current collector is not used, a wide opening of the recovery liquid tank 23 arranged in the selective transmission membrane 24 can be secured, and the capacity of the recovery liquid tank 23 can be increased. Since the recovery liquid tank 23 is not provided with the porous current collector, the flow velocity does not decrease due to the porous current collector acting as a resistance. From this, the flow velocity of the metal ion recovery liquid 2 flowing through the recovery liquid tank 23 can be increased.
  • FIG. 3 is a cross-sectional view of another example of the recovery liquid tank that can be used in the metal ion recovery device according to the embodiment of the present invention, and is a drawing corresponding to the cross-sectional view taken along the line AA'in FIG. is there.
  • the metal ion recovery device 20b shown in FIG. 3 the same members as the metal ion recovery device 20a shown in FIG. 2 are designated by the same reference numerals as those in FIG. 2, and detailed description thereof will be omitted.
  • the anode 25 is electrically connected to the outer surface of the selective transmission film 24 via the porous current collector 27 (for example, carbon felt), and the cathode 26 is porous. It differs from the metal ion recovery device 20a shown in FIG. 2 in that it is electrically connected to the inner surface of the selective transmission film 24 via a sex collector 27 (for example, carbon felt).
  • the anode 25, the cathode 26, and the porous current collector 27 are all formed as a tubular porous membrane, but the shapes of the anode 25, the cathode 26, and the porous current collector 27 are formed. Is not limited to this.
  • the metal ion recovery efficiency is improved and a large amount of metal ions can be recovered as in the case of the metal ion recovery device 20a. It becomes. Further, since the anode 25 is electrically connected to the outer surface of the selective permeable membrane 24 via the porous current collector 27, the electrical connectivity between the anode 25 and the selective permeable membrane 24 is improved. Further, since the cathode 26 is electrically connected to the inner surface of the selective permeable membrane 24 via the porous current collector 27, the electrical connectivity between the cathode 26 and the selective permeable membrane 24 is improved. By improving the electrical connectivity between the anode 25 and the selective permeable membrane 24 and the cathode 26 and the selective permeable membrane 24, the efficiency of utilizing electrical energy is increased, so that the efficiency of recovering metal ions is further improved.
  • FIG. 4 is a cross-sectional view of still another example of a recovery liquid tank that can be used in the metal ion recovery device according to the embodiment of the present invention, and is a drawing corresponding to the AA'line cross-sectional view of FIG. Is.
  • the metal ion recovery device 20b shown in FIG. 4 the same members as the metal ion recovery device 20a shown in FIG. 2 are designated by the same reference numerals as those in FIG. 2, and detailed description thereof will be omitted.
  • the anode 25 is electrically connected to the outer surface of the selective transmission membrane 24 via a porous current collector 27 (for example, carbon felt). It is different from the metal ion recovery device 20a shown in 2.
  • the metal ion recovery efficiency is improved and a large amount of metal ions can be recovered as in the case of the metal ion recovery device 20a. It becomes. Further, since the anode 25 is electrically connected to the outer surface of the selective permeable membrane 24 via the porous current collector 27, the electrical connectivity between the anode 25 and the selective permeable membrane 24 is improved.
  • FIG. 5 is a cross-sectional view of another example of the recovery liquid tank that can be used in the metal ion recovery device according to the embodiment of the present invention, and is a drawing corresponding to the AA'line cross-sectional view of FIG. is there.
  • the metal ion recovery device 20d shown in FIG. 5 the same members as the metal ion recovery device 20a shown in FIG. 2 are designated by the same reference numerals as those in FIG. 2, and detailed description thereof will be omitted.
  • the cathode 26 is electrically connected to the inner surface of the selective transmission membrane 24 via a porous current collector 27 (for example, carbon felt). It is different from the metal ion recovery device 20a shown in 2.
  • the metal ion recovery efficiency is improved and a large amount of metal ions can be recovered as in the case of the metal ion recovery device 20a. It becomes. Further, since the cathode 26 is electrically connected to the inner surface of the selective permeable membrane 24 via the porous current collector 27, the electrical connectivity between the cathode 26 and the selective permeable membrane 24 is improved.
  • the metal ion recovery devices 20, 20a to 20d of the present embodiment described above for example, a recovery liquid tank 23 partitioned by a selective permeable membrane 24 as it is in a large stock liquid tank 22 such as a sea or a pool. It can be formed by throwing in. Therefore, the metal ion recovery devices 20, 20a to 20d (20) of the present embodiment are relatively simple in configuration and are suitable for recovering a large amount of the target metal (for example, lithium).
  • the target metal for example, lithium
  • the metal ion recovery device is not limited to the above embodiment.
  • the number of tubular selective permeable membranes is 11, but the number of tubular selective permeable membranes is not particularly limited.
  • the number of tubular selective permeable membranes may be 2 or more, preferably 5 or more, and more preferably 10 or more.
  • the number of selective permeable membranes mounted on one metal ion recovery device increases, the amount of metal ions that can be recovered by one metal ion recovery device can be increased. Therefore, the number of selective permeable membranes is, for example, preferably 100 or more, more preferably 500 or more, and even more preferably 1000 or more.
  • the number of recovery liquid tanks 23 may be 2 or more, preferably 5 or more, and more preferably 10 or more. From the viewpoint of increasing the amount of metal ions that can be recovered by one metal ion recovery device, for example, the number is preferably 100 or more, more preferably 500 or more, still more preferably 1000 or more.
  • the number of tubular selective permeable membranes, typically the recovery liquid tank 23, is usually two or more, but may be one. Further, for example, in the metal ion recovery devices 20, 20a to 20d, the region surrounded by the tubular selective permeable membrane 24 is designated as the recovery liquid tank 23, and the region outside the tubular selective permeable membrane 24 is referred to as the stock liquid tank 22.
  • the region surrounded by the tubular selective permeable membrane 24 may be the stock solution tank 22, and the region outside the tubular selective permeable membrane 24 may be the recovery liquid tank 23.
  • the anode 25 is arranged on the inner surface of the selective permeable membrane 24, and the cathode 26 is arranged on the outer surface of the selective permeable membrane 24.
  • FIG. 6 is a block diagram of an example of a metal recovery system using the metal ion recovery device according to the embodiment of the present invention.
  • the lithium recovery system 200 shown in FIG. 6 takes out the metal ion recovery device (lithium ion recovery device) 20 and the metal ion (lithium ion) 3 contained in the lithium ion recovery liquid as a lithium-containing compound (solid substance). It has a purification device 101.
  • the metal ion recovery device the above-mentioned metal ion recovery devices 20, 20a to 20d can be used.
  • a metal recovery system including a metal ion recovery device will be described as an example in FIG. 6, a metal ion recovery device unit described later may be provided in place of the metal ion recovery device.
  • the lithium purification device 101 is not particularly limited as long as it has a mechanism for extracting as a solid substance containing lithium.
  • the solid substance containing lithium include lithium hydroxide, lithium carbonate, metallic lithium and the like.
  • lithium ions are present in the lithium ion recovery liquid in the form of lithium hydroxide. Therefore, lithium hydroxide can be purified by providing a drying mechanism for evaporating the solvent of the lithium ion recovery liquid.
  • the lithium hydroxide dryer 102 that evaporates the solvent of the lithium ion recovery liquid is an example of the lithium purification apparatus 101. Further, by supplying carbon dioxide gas to the lithium ion recovery liquid, lithium carbonate can be purified as a precipitate in the lithium ion recovery liquid.
  • the carbon dioxide gas bubbling device 104 that supplies carbon dioxide gas to the lithium ion recovery liquid is an example of the lithium purification device 101.
  • the lithium purification device 101 that produces lithium carbonate is provided with a lithium carbonate dryer 105 that dries the lithium carbonate precipitated in the lithium recovery liquid.
  • These lithium purification devices 101 may employ only one type of mechanism, or may be mounted by combining a plurality of purification mechanisms.
  • the lithium purification device 101 as shown in FIG. 5, a configuration including a lithium hydroxide dryer 102, a carbon dioxide gas bubbling device 104, and a lithium carbonate dryer 105 will be described as an example.
  • the lithium recovery system 200 shown in FIG. 6 has a recovery liquid tank 108 for storing the lithium ion recovery liquid.
  • the stock solution tank 22 of the metal ion recovery device (lithium ion recovery device) 20 is connected to a source of the lithium ion-containing stock solution (for example, the sea or a processing factory for used lithium ion batteries).
  • the illustrated lithium recovery system 200 further includes a lithium hydroxide packing machine 103 and a lithium carbonate packing machine 106.
  • Lithium recovery using the lithium recovery system 200 is performed as follows. First, the lithium ion recovery liquid is stored in the recovery liquid tank 108. Next, the lithium ion recovery liquid stored in the recovery liquid tank 108 is supplied to the metal ion recovery device 20. Further, the lithium ion-containing stock solution is supplied to the stock solution tank 22 of the metal ion recovery device 20. The metal ion recovery device 20 recovers the lithium ions in the lithium ion-containing stock solution into the lithium ion recovery solution by the above method. When the lithium ion concentration of the lithium ion-containing stock solution becomes lower than a predetermined value, the stock solution tank 22 discharges the lithium ion-containing stock solution.
  • the lithium ion-containing undiluted solution is sent from the outside.
  • the lithium ion recovery liquid in which the lithium ions are recovered by the metal ion recovery device 20 is sent to the recovery liquid tank 108.
  • the recovery liquid tank 108 sends the lithium ion recovery liquid to the lithium purification device 101.
  • a new lithium ion recovery liquid is sent from the outside to the recovery liquid tank 108.
  • lithium ions in the lithium ion recovery liquid are taken out as a powder of lithium hydroxide (LiOH ⁇ H 2 O) or a powder of lithium carbonate (Li 2 CO 3 ).
  • the method shown below is used.
  • the lithium ion recovery liquid is sent to the lithium hydroxide dryer 102.
  • the water content of the lithium ion recovery liquid is evaporated.
  • lithium hydroxide crystals can be easily obtained from the lithium ion recovery solution.
  • the atmosphere typically, CO 2 gas in the atmosphere
  • the lithium hydroxide powder obtained in the lithium hydroxide dryer 102 is sent to the lithium hydroxide packing machine 103.
  • the lithium hydroxide powder is packed by the lithium hydroxide packing machine 103, and then transported to the place of use.
  • the method shown below is used.
  • the lithium ion recovery liquid is sent to the carbon dioxide gas bubbling device 104.
  • carbon dioxide gas is supplied to the lithium ion recovery liquid (lithium hydroxide aqueous solution) to change the lithium ions in the lithium ion recovery liquid into lithium carbonate.
  • lithium ion recovery liquid lithium hydroxide aqueous solution
  • the precipitate (lithium carbonate) of the lithium ion recovery solution is separated and recovered by filtration or decantation.
  • the obtained lithium carbonate is sent to the lithium carbonate dryer 105.
  • the lithium carbonate is dried in the lithium carbonate dryer 105 to obtain a lithium carbonate powder.
  • the lithium carbonate powder obtained in the lithium carbonate dryer 105 is sent to the lithium carbonate packing machine 106.
  • the lithium carbonate powder is packed by the lithium carbonate packing machine 106, and then transported to the place of use.
  • the lithium ion recovery system 200 of the present embodiment described above uses the above-mentioned metal ion recovery device as the lithium ion recovery device, the configuration is simple as compared with the case where the conventional metal ion recovery device is used. Moreover, it has the advantage that a large amount of lithium can be recovered. The same effect can be obtained even if the lithium ion recovery system 200 provided with the metal ion recovery device 20 is provided with the metal ion recovery device unit described later in place of the metal ion recovery device 20. That is, there is an advantage that the configuration is simple and a large amount of lithium can be recovered as compared with the case where a conventional metal ion recovery device is used.
  • FIG. 7 is a configuration diagram of an example of a metal ion recovery device unit in which a plurality of metal ion recovery devices according to an embodiment of the present invention are connected.
  • the metal ion recovery device in FIG. 7 is the metal ion recovery device 20 shown in FIG. 1
  • the metal ion recovery device 20 shown in FIG. 1 has 11 recovery liquid tanks 23, but the pipes connecting the metal ion recovery device 20 are each connected to the 11 recovery liquid tanks 23. ..
  • the metal ion recovery device unit 30 shown in FIG. 7 has eight metal ion recovery devices 20.
  • the metal ion-containing stock solution 1 and the metal ion recovery solution 2 taken out from the lower metal ion recovery device 20 are the upper metal ion recovery device 20. They are connected in series to be introduced in.
  • the two metal ion recovery devices 20 connected vertically in series are connected in parallel to the pipes of the metal ion-containing stock solution 1 and the metal ion recovery solution 2.
  • the metal ion recovery device 20 on the upper side (upstream side) and the metal ion recovery device 20 on the lower side (downstream side) will be described, but it is stated that the actual metal ion recovery device 20 is arranged vertically. It is not limited.
  • the configuration in which the metal ion-containing stock solution 1 and the metal ion recovery solution 2 are connected so as to be in series or in parallel as shown in FIG. 7 can be understood in the same manner as in FIG.
  • the recovery of the metal ion 3 using the metal ion recovery device unit 30 is performed as follows. First, the metal ion-containing stock solution 1 is continuously supplied to the metal ion-containing stock solution introduction port of the metal ion recovery device 20 on the lower side of the two metal ion recovery devices 20 arranged one above the other. As a result, the metal ion-containing stock solution 1 is housed in the stock solution tank 22. Further, the metal ion recovery liquid 2 is continuously supplied to the metal ion recovery liquid introduction port of the metal ion recovery device 20 on the lower side of the two metal ion recovery devices 20 arranged vertically. As a result, the metal ion recovery liquid 2 is housed in the recovery liquid tank 23.
  • the anode 25 of each metal ion recovery device 20 has a positive potential
  • the cathode 26 has a negative potential.
  • the metal ions 3 in the metal ion-containing undiluted solution 1 contained in the undiluted solution tank 22 those that reach the anode 25 side of the selective permeation membrane 24 move inside the selective permeation membrane 24 by ion conduction to the anode 25 side. Permeates toward the cathode 26 side.
  • the metal ions 3 that have passed through the selective permeable membrane 24 are recovered by the metal ion recovery liquid 2 contained in the recovery liquid tank 23 (see FIG. 1).
  • the metal ion-containing undiluted solution 1 contained in the undiluted solution tank 22 of the metal ion recovery device 20 on the lower side is taken out by the metal ion-containing undiluted solution outlet.
  • the extracted metal ion-containing undiluted solution 1 is supplied to the metal ion-containing undiluted solution introduction port of the metal ion recovery device 20 on the upper side and is housed in the undiluted solution tank 22.
  • the metal ion recovery liquid 2 contained in the recovery liquid tank 23 of the metal ion recovery device 20 on the lower side is taken out by the metal ion recovery liquid outlet.
  • the removed metal ion recovery liquid 2 is supplied to the metal ion recovery liquid introduction port of the metal ion recovery device 20 on the upper side, and is housed in the recovery liquid tank 23.
  • the metal ions 3 in the metal ion-containing undiluted solution 1 housed in the undiluted solution tank 22 of the metal ion recovery device 20 on the upper side those that reach the anode 25 side of the selective permeation membrane 24 are selected by ion conduction. It penetrates from the anode 25 side toward the cathode 26 side. Then, the metal ions 3 that have passed through the selective permeable membrane 24 are recovered by the metal ion recovery liquid 2 contained in the recovery liquid tank 23. In this way, the metal ion recovery liquid 2 taken out from a certain metal ion recovery device 20 is connected in series so as to be introduced into another metal ion recovery device 20, thereby recovering metal ions per unit volume. The amount of metal ions 3 recovered in the liquid 2 can be increased (the metal ion concentration of the metal ion recovery liquid 2 can be increased).
  • the metal ion recovery device unit 30 of the present embodiment having the above configuration is configured to include a plurality of metal ion recovery devices 20. Since one metal ion recovery device unit 30 includes a large number of selective permeable membranes, the amount of metal ions 3 that can be recovered can be increased. Further, since the stock solution tanks 22 of the independent metal ion recovery devices 20 are connected to each other by pipes and the recovery liquid tanks 23 are connected to each other by pipes, each metal ion recovery device 20 can be easily replaced.
  • the metal ion recovery device unit is not limited to the configuration shown in FIG. 7.
  • all the metal ion recovery devices 20 may be connected in series, or all the metal ion recovery devices 20 may be connected in parallel to the pipes of the metal ion-containing stock solution 1 and the metal ion recovery solution 2. May be good.
  • the connection mode in which the metal ion-containing stock solution 1 and the metal ion recovery solution 2 are led out and taken into the plurality of metal ion recovery devices 20 may be the same or different connection modes.
  • the liquid feeding pipes of the metal ion-containing stock solution 1 are connected in parallel so that all the metal ion-containing stock solution 1 derived from the metal ion recovery device 20 is introduced into the pipes of the metal ion-containing stock solution 1. May be good. Further, all the liquid feeding pipes of the metal ion recovery liquid 2 are connected in series so that the metal ion recovery liquid 2 derived from the metal ion recovery device 20 is introduced into another metal ion recovery device 20. May be good.
  • the number of is not particularly limited.
  • the number of the metal ion recovery devices 20 may be 2 or more, preferably 5 or more, and more preferably 10 or more.
  • the number of metal ion recovery devices 20 mounted on one device (metal ion recovery device unit 30) increases, the amount of metal ions 3 that can be recovered by one device can be increased. From this, the number of the metal ion recovery devices 20 is preferably, for example, 100 or more, more preferably 500 or more, and even more preferably 1000 or more.
  • the configuration of the metal ion recovery device unit is not limited to the one in which a plurality of the above-mentioned tubular selective permeable membrane-arranged metal ion recovery devices are arranged.
  • one or a plurality of conventional single-membrane type metal ion recovery cells (or metal ion recovery devices including the same) having one selective permeable film are used. It may be a thing.
  • one or a plurality of metal ion recovery devices having a plurality of non-cylindrical-shaped, typically plate-shaped selective permeable membranes are used together with the plurality of metal ion recovery devices of the present embodiment. You may. Therefore, the metal ion recovery device of the tubular selective transmission membrane arrangement type and the metal ion recovery device having another configuration may be connected and applied.
  • FIG. 8 is a perspective view of an example of a metal ion recovery cell.
  • FIG. 9 is an exploded perspective view of the metal ion recovery cell shown in FIG.
  • the metal ion recovery cell shown in FIG. 8 is a preferable example of the metal ion recovery device constituting the metal recovery device unit of the present invention.
  • the metal ion recovery cell 31a shown in FIGS. 8 and 9 has a cathode 36 and a recovery liquid tank forming frame 33 from the cell storage portion 38b side between the cell lid portion 38a and the recess provided in the cell storage portion 38b.
  • the selective permeable film 34, the undiluted solution tank forming frame 32, and the anode 35 are configured to accommodate a laminated body in which they are laminated in this order.
  • the recovery liquid tank forming frame 33 contains a porous current collector 37 for electrically connecting the cathode 36 and the selective permeable membrane 34.
  • the undiluted solution tank forming frame 32 accommodates a porous current collector 37 for electrically connecting the anode 35 and the selective permeable membrane 34.
  • the cell lid portion 38a and the cell accommodating portion 38b are fixed by tightening a bolt 39 penetrating the cell accommodating portion 38a into the screw hole 40 of the cell accommodating portion 38b.
  • a metal ion-containing stock solution introduction port 41a is provided in the lower part of the center, and a metal ion-containing stock solution outlet 41b is provided in the upper part of the center.
  • a metal ion recovery liquid introduction port 42a is provided in the lower part of the center, and a metal ion recovery liquid outlet 42b is provided in the upper part of the center.
  • the metal ion-containing stock solution 1 is introduced into the metal ion recovery cell 31a shown in FIGS. 8 and 9 from the metal ion-containing stock solution introduction port 41a provided in the lower part of the cell lid 38a. Further, the metal ion recovery liquid 2 is introduced into the metal ion recovery cell 31a from the metal ion recovery liquid introduction port 42a provided in the lower part of the cell accommodating portion 38b. Then, the metal ion-containing undiluted solution 1 is derived from the metal ion-containing undiluted solution outlet 41b provided above the cell lid 38a. Further, the metal ion recovery liquid 2 is led out from the metal ion recovery liquid outlet 42b provided above the cell accommodating portion 38b.
  • the metal ion-containing stock solution inlet 41a and the metal ion-containing stock solution introduction port 41a and the metal are below the metal ion-containing stock solution outlet 41b and the metal ion recovery liquid outlet 42b (hereinafter, these are also collectively referred to as “liquid outlets 41b and 42b”).
  • An ion recovery liquid introduction port 42a (hereinafter, these are also collectively referred to as “liquid introduction ports 41a, 42a”) is provided.
  • the bubbles generated in the metal ion recovery cell 31a (typically in the stock solution tank 22 and the recovery liquid tank 23) are smoothly discharged to the outside of the cell. According to such a configuration, residual air bubbles in the metal ion recovery cell 31a can be reduced.
  • liquid introduction ports 41a and 42a are provided below the cell lid 38a and the cell housing 38b, and are provided above the cell lid 38a and the cell housing 38b.
  • the configuration in which the liquid outlets 41b and 42b are provided has been described as an example, but the present invention is not limited to this.
  • a metal ion-containing stock solution outlet 41b may be provided below the cell lid 38a.
  • a metal ion recovery liquid outlet 42b may be provided below the cell accommodating portion 38b.
  • the metal ion recovery cell 31a shown in FIGS. 8 and 9 is provided with liquid inlets 41a and 42a and liquid outlets 41b and 42b on the wide surfaces (surfaces in the stacking direction) of the cell lid 38a and the cell housing 38b.
  • the above configuration has been described as an example, but the present invention is not limited to this.
  • the liquid introduction ports 41a and 42a or the liquid outlets 41b and 42b may be provided on the narrow surface (side surface) of the cell lid portion 38a or the cell storage portion 38b.
  • FIG. 10 is a perspective view of another example of a metal ion recovery cell that can be used in the metal ion recovery device unit according to the embodiment of the present invention.
  • FIG. 11 is an exploded perspective view of the metal ion recovery cell shown in FIG.
  • the same members as those in FIGS. 8 and 9 are designated by the same reference numerals as those in FIGS. 8 and 9, and detailed description thereof will be omitted.
  • the anode 35 is arranged in close contact with the surface of the selective transmission film 34 on the stock solution tank forming frame 32 side (the anode is integrally formed on the selective transmission film). By doing so, it is electrically connected.
  • the cathode 36 (not shown) is arranged in close contact with the surface of the selective permeable membrane 34 on the recovery liquid tank forming frame 33 side (the cathode is integrally formed on the selective permeable membrane 34) to be electrically connected. are doing.
  • the metal ion recovery cell 31b shown in FIGS. 10 and 11 is different from the metal ion recovery cell 31a shown in FIGS. 8 and 9.
  • the anode lead wire 43 connected to the anode 35 is drawn from the metal ion-containing stock solution outlet 41b. Further, the cathode lead-out line 44 connected to the cathode is drawn out from the metal ion recovery liquid outlet 42b.
  • the metal ion recovery cell 31b shown in FIGS. 10 and 11 does not accommodate the porous current collector in the stock solution tank forming frame 32 and the recovery liquid tank forming frame 33. Therefore, the stock solution tank forming frame 32 and the recovery liquid tank forming frame 33 can be slimmed down. Further, the flow velocity of the metal ion-containing stock solution 1 flowing through the stock solution tank forming frame 32 and the metal ion recovery liquid 2 flowing through the recovery liquid tank forming frame 33 can be increased. The more metal ions 3 that come into contact with the selective permeable membrane 34 per unit time, that is, the faster the flow velocity of the metal ion-containing stock solution 1 flowing through the stock solution tank forming frame 32, the more the metal ion recovery amount tends to improve. Therefore, the metal ion recovery cell 31b of the present embodiment can be slimmed down and a large amount of metal ions 3 can be recovered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

金属イオンを含む金属イオン含有原液を収容する原液槽と、前記金属イオン含有原液から回収された金属イオンを含む金属イオン回収液を収容する回収液槽と、前記原液槽と前記回収液槽とを仕切り、前記金属イオンを選択的に透過させる筒状の金属イオン選択透過膜と、前記選択透過膜の前記原液槽側の面に電気的に接続する陽極と、前記選択透過膜の前記回収液槽側の面に電気的に接続する陰極と、を有する金属イオン回収装置。

Description

金属イオン回収装置、金属回収システムおよび金属イオンの回収方法
 本発明は、金属イオン回収装置、金属回収システムおよび金属イオンの回収方法に関する。
 本出願は、2019年3月29日に日本に出願された特願2019-069131に基づき優先権を主張し、その内容をここに援用する。
 リチウムイオン電池は、近年、広く利用されている。リチウムイオン電池は、例えば、電気自動車の電源、携帯機器の電源などに用いられている。
 また、リチウムは、リチウムイオン電池の原料として使用されている。リチウムは、リチウムイオン電池の他に、核融合炉の燃料となる三重水素の製造においても使用されている。
 これらのことから、近年、リチウムの需要が急速に拡大している。
 リチウムは、海水中に含まれている。このため、海水中に含まれるリチウムを回収する技術が検討されている。また、使用済みのリチウムイオン電池からリチウムを回収する技術が検討されている。
 特許文献1および特許文献2には、金属イオンを含む原液から金属イオンを回収する回収装置が記載されている。この回収装置は、金属イオン伝導体で構成された選択透過膜と、選択透過膜の一方の主面側に固定された第1電極と、選択透過膜の他方の主面側に固定された第2電極とを有する。特許文献1および特許文献2に記載の回収装置では、選択透過膜と第1電極と第2電極とを有する構造によって、金属イオンを含む原液と回収液との間を仕切り、原液中の金属イオンを回収液中に移動させる。
特許第6233877号公報 国際公開第2017/131051号
 資源の有効利用の観点から、海水、廃電池処理液などのリチウムイオン含有原液から、リチウムイオンを効率よく回収することが望まれている。しかしながら、特許文献1および特許文献2に記載されている従来の金属イオン回収装置は、金属イオンの回収効率を向上させることが困難であった。すなわち、従来の金属イオン回収装置は、1個の金属イオン伝導体(選択透過膜)を用いて金属イオン含有原液と金属イオン回収液との間を仕切った構造である。このため、装置1台あたりの金属イオンの回収効率を向上させることが難しく、金属イオンを大量に回収することが困難であった。
 本発明は、上記事情を鑑みてなされたものであり、金属イオンを効率よく回収できる金属イオン回収装置を提供することを課題とする。また、本発明は、上記金属イオン回収装置を用いた金属回収システムおよび金属イオンの回収方法を提供することを他の課題とする。
 上記課題を解決するため、本発明は以下の構成を採用する。
[1]金属イオンを含む金属イオン含有原液を収容する原液槽と、
 前記金属イオン含有原液から回収された金属イオンを含む金属イオン回収液を収容する回収液槽と、
 前記原液槽と前記回収液槽とを仕切り、前記金属イオンを選択的に透過させる筒状の金属イオン選択透過膜と、
 前記金属イオン選択透過膜の前記原液槽側の面に電気的に接続する陽極と、
 前記金属イオン選択透過膜の前記回収液槽側の面に電気的に接続する陰極と、
 を備える金属イオン回収装置。
[2]前記回収液槽が筒状であって、前記筒状の回収液槽が前記原液槽の中に配列されていることを特徴とする[1]に記載の金属イオン回収装置。
[3]前記筒状の金属イオン選択透過膜を2個以上備える、[1]または[2]に記載の金属イオン回収装置。
[4]前記金属イオンがリチウムイオンである、[1]~[3]のいずれかに記載の金属イオン回収装置。
[5][1]~[4]のいずれかに記載の金属イオン回収装置を複数備え、
 それぞれの前記金属イオン回収装置が、前記原液槽を接続する配管と前記回収液槽を接続する配管とで接続されていることを特徴とする金属イオン回収装置ユニット。
[6][1]~[4]のいずれかに記載の金属イオン回収装置または[5]に記載の金属イオン回収装置ユニットと、
 前記金属イオン回収装置または前記金属イオン回収装置ユニットの前記回収液槽に接続し、前記金属イオン回収液に含まれる金属イオンを、前記金属イオンを含む化合物(金属イオン中の金属を含む固形物)として取り出す精製装置とを含むことを特徴とする金属回収システム。
 [7][1]~[4]のいずれかに記載の金属イオン回収装置または[5]に記載の金属イオン回収装置ユニットを用いて、
 前記金属イオン回収装置または前記金属イオン回収装置ユニットの前記原液槽に収容された前記金属イオン含有原液に含まれる金属イオンを、前記金属イオン選択透過膜に透過させ、前記回収液槽に収容された前記金属イオン回収液で回収することを特徴とする金属イオンの回収方法。
 本発明によれば、金属イオン(例えば、リチウムイオン)の回収効率が向上し、大量の金属イオンを回収できる金属イオン回収装置を提供可能となる。また、本発明によれば、上記金属イオン回収装置を用いた金属回収システムおよび金属イオンの回収方法を提供可能となる。
本発明の一実施形態である金属イオン回収装置の一例の断面図である。 本発明の一実施形態である金属イオン回収装置で用いることができる回収液槽の一例の横断面図であり、図1のA-A’線断面図に相当する図面である。 本発明の一実施形態である金属イオン回収装置で用いることができる回収液槽の別の一例の横断面図である。 本発明の一実施形態である金属イオン回収装置で用いることができる回収液槽のさらに別の一例の横断面図である。 本発明の一実施形態である金属イオン回収装置で用いることができる回収液槽のさらに別の一例の横断面図である。 本発明の一実施形態である金属イオン回収装置を用いた金属回収システムの一例の構成図である。 本発明の一実施形態である金属イオン回収装置ユニットの一例の構成図である。 本発明の一実施形態である金属イオン回収装置ユニットで用いることができる単膜式の金属イオン回収装置を構成する金属イオン回収セルの一例の斜視図である。 図8に示す金属イオン回収セルの分解斜視図である。 本発明の一実施形態である金属イオン回収装置ユニットで用いることができる単膜式の金属イオン回収装置を構成する金属イオン回収セルの別の一例の斜視図である。 図10に示す金属イオン回収セルの分解斜視図である。
 以下、本発明に係る金属イオン回収装置、金属回収システムおよび金属イオンの回収方法の実施形態を、図面を参照しながら詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。
 本実施形態の金属イオン回収装置は、金属イオンを含む金属イオン含有原液から金属イオンを回収する装置である。回収対象の金属イオンとしては、例えば、アルカリ金属、アルカリ土類金属、遷移金属などのイオンが挙げられる。アルカリ金属としては、リチウム、ナトリウム、セシウムなどが挙げられる。アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウムなどが挙げられる。遷移金属としては、コバルト、ニッケル、マンガンなどが挙げられる。
 例えば、金属イオンとしてリチウムイオンを回収する実施形態では、上記金属イオン含有原液は、リチウムイオンを含むリチウムイオン含有原液である。リチウムイオン含有原液としては、例えば、海水、塩湖灌水、にがり、廃電池処理液などを用いることができる。リチウムイオン含有原液中のリチウム濃度は、海水が0.17ppm程度、塩湖灌水が1000ppm程度、にがりが海水の50~1000倍程度、廃電池処理液が2000~3000ppm程度である。リチウムイオン含有原液としては、リチウム濃度が0.1モル/L以上であるリチウムイオンを含む溶液を用いることが好ましい。塩湖灌水、廃電池処理液は、リチウム濃度が高いため、リチウムイオン含有原液として好適である。また、にがりは、海水から容易に製造できるため、リチウムイオン含有原液として有効である。
 金属イオン含有原液(例えば、リチウムイオン含有原液)としては、海水、塩湖灌水、にがり、廃電池処理液の他に、鉱物リチウムの溶解液、海水淡水化プラントにて得られる濃縮海水、温泉水などを用いてもよい。
 金属イオン含有原液(例えば、リチウムイオン含有原液)には、溶媒として、水、有機溶剤などが含まれていてもよい。金属イオン含有原液(例えば、リチウムイオン含有原液)中に含まれる溶媒は、環境負荷の観点から水であることが好ましい。
 金属イオン回収液は、金属イオン選択透過膜を透過した金属イオンを回収する液体である。金属イオン回収液は、金属イオンが溶解し得る溶媒であれば特に限定されない。金属イオン回収液は、例えば、金属イオン含有原液の溶媒と同様のものとしうる。
 金属イオン回収液としては、例えば、水(好ましくは純水、RO水(逆浸透膜透過水)などの金属イオンの混入が少ない水)が好ましい。あるいは、回収液中に回収した金属イオンを精製して回収する後工程に有効な溶媒を用いてもよい。
 金属イオンとしてリチウムイオンを回収する場合のリチウムイオン回収液の好適例として、水(好ましくは純水、RO水などの金属イオンの混入が少ない水)が挙げられる。あるいは、回収液中に回収したリチウムイオンを固形状のリチウムとして回収する後工程に有効な溶媒として、例えば、希塩酸が挙げられる。
 金属イオン回収装置は、原液槽と、回収液槽と、原液槽と回収液槽とを仕切る筒状の金属イオン選択透過膜(以下、単に「選択透過膜」ともいう)と、陽極と、陰極とを含む。原液槽は、金属イオン含有原液を収容する槽である。回収液槽は、金属イオン含有原液から回収された金属イオンを含む金属イオン回収液を収容する槽である。
 選択透過膜は、金属イオンの伝導体(以下、「金属イオン伝導体」ともいう)を主体とするものである。
 本実施形態において「金属イオンの伝導体を主体とする」とは、選択透過膜の全質量の50質量%以上が金属イオンの伝導体であることを意味する。
 選択透過膜の全質量中の金属イオンの伝導体の質量%は、イオン伝導率の高い選択透過膜となるため、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。
 選択透過膜は、例えば、金属イオン伝導体単体から形成されていてもよい。また、選択透過膜は、金属イオン伝導体と支持体との複合材料から形成されていてもよい。さらに、選択透過膜は、金属イオン伝導体と金属イオンの伝導性向上に寄与する吸着層との複合材料から形成されていてもよい。
 選択透過膜に含まれる金属イオン伝導体は、金属イオンを伝導可能な材料であればよい。金属イオン伝導体は、伝導可能な金属元素を含む結晶構造を有し、結晶中を金属イオンが流れることによって、イオン伝導性を示すセラミックス材料であることが好ましい。金属イオン伝導体は、選択透過膜に透過させる金属イオン、即ち、回収する金属イオンの種類に応じて決定される。
 金属イオン伝導体は、イオン伝導率が10-4Scm-1~10-1Scm-1であることが好ましく、より好ましくは10-3Scm-1~10-1Scm-1である。イオン伝導率が高いほど、金属イオンに対する透過性が高くなる。例えば、イオン伝導率が10-4Scm-1以上であると、金属イオンに対する透過性が高い選択透過膜となる。このため、金属イオン含有原液中の金属イオンを効率よく回収でき、好ましい。イオン伝導率の上限は特に限定されないが、例えば、10-1Scm-1以下とすればよい。
 選択透過膜に用いられる金属イオン伝導体は、選択透過膜に透過させる金属イオン、即ち、回収する金属イオンの種類に応じて決定される。例えば、選択透過膜に透過させる金属イオン(即ち回収対象の金属イオン)がリチウムイオンである場合、選択透過膜に用いられる金属イオン伝導体としては、具体的には、窒化リチウム(LiN)、Li10GeP12、チタン酸リチウムランタン:(Li,La)TiO(ここで、x=3a-2b、y=2/3-a、z=3-b、0<a≦1/6、0≦b≦0.06、x>0)(以下、「LLTO」という場合がある。)、Li置換型NASICON(Na Super Ionic Conductor)型結晶であるLi1+x+yAl(Ti,Ge)2-xSi3-y12(ここで、0≦x≦0.6、0≦y≦0.6)などのリチウムイオン伝導体を用いることができる。これらのリチウムイオン伝導体は、いずれも10-4Scm-1以上の高いリチウムイオン伝導率を示し、リチウムイオンに対する高い選択性が得られる超リチウムイオン伝導体である。したがって、かかる超リチウムイオン伝導体を主体とする選択透過膜を備える金属イオン回収装置は、原液中のリチウムイオンを効率よく回収できる。上記のリチウムイオン伝導体の中でも特に、チタン酸リチウムランタン(LLTO)が好ましい。チタン酸リチウムランタンが、耐水性が高く、リチウムイオン含有原液およびリチウムイオン回収液に長時間浸漬しても性能が低下し難いためである。チタン酸リチウムランタンとしては、具体的にはLi0.29La0.57TiOを用いることが好ましい。
 アルカリ金属であるナトリウムおよびセシウムは、リチウムと同様に、金属イオンの導電体を形成する元素でありうる。
 回収対象の金属イオンがナトリウムイオンである場合、選択透過膜としてナトリウムイオンの伝導体を用いる。ナトリウムイオンの伝導体としては、例えば、βアルミナ、Na(BH)(NH)、NaSbS-NaSnSなどのナトリウムを含む化合物が挙げられる。
 また、回収対象の金属イオンがセシウムイオンである場合、選択透過膜としてセシウムイオンの伝導体を用いる。セシウムイオン伝導体としては、例えば(Cs,La)TiO(ここで、xは0.29、yは0.57、zは3である)などのセシウムを含む化合物を用いることが考えられる。
 回収対象の金属イオンが、アルカリ土類金属または遷移金属のイオンである場合も、上述したアルカリ金属のイオンである場合と同様に、回収対象の金属イオンの伝導体として、その金属元素を含む化合物を用いることができる。
 選択透過膜は、金属イオン伝導体からなる焼結体であることが好ましい。回収対象金属イオンがリチウムイオンである場合、選択透過膜は、特にチタン酸リチウムランタン(LLTO)からなる焼結体であることが好ましい。
 金属イオン伝導体の焼結体は、耐水圧性に優れる固い材料であるため耐久性に優れる点で好ましい。また、金属イオン伝導体の焼結体は、金属イオン伝導体からなる微細な粒子が結合(焼結)された多孔質のものであるため、表面に細かな凹凸が存在する。したがって、選択透過膜が金属イオン伝導体の焼結体であると、表面積の大きいものとなる。よって、金属イオン伝導体の焼結体で形成された選択透過膜を備える金属イオン回収装置は、金属イオン含有原液と金属イオン伝導体との接触面積が広く、金属イオン含有原液中の金属イオンを効率よく回収でき、好ましい。
 選択透過膜の形状は筒状である。筒状の選択透過膜は、金属イオン回収装置の原液槽および回収液槽の一方を囲うことによって、原液槽と回収液槽とを仕切る形状とされていることが好ましい。筒状は、上端および下端が開口した形状、下端が閉じた形状(有底筒状)、上端と下端が閉じた形状(箱状)を含む。筒状の選択透過膜を用いることによって、板状の選択透過膜を用いた場合と比較して、金属イオン含有原液および金属イオン回収液と接触する選択透過膜の面積を大きくすることができる。このため、金属イオンの回収効率が向上し、大量の金属イオンを回収することが可能となる。
 筒状の選択透過膜は、円筒状であってもよいし、角筒状であってもよい。有底筒状の選択透過膜の筒部は、円筒状であってもよいし、角筒状であってもよい。有底筒状の選択透過膜を用いた金属イオンの回収は、例えば、内部に金属イオン回収液を注液した状態で、上端の開口部から金属イオン含有原液が侵入しないように、有底筒状の選択透過膜を金属イオン含有原液に浸漬させる方法により行うことができる。また、内部に金属イオン含有原液を注液した状態で、上端の開口部から金属イオン回収液が侵入しないように、有底筒状の選択透過膜を金属イオン回収液に浸漬させる方法により行うことができる。箱状の選択透過膜は、立方体形状であってもよいし、円柱形状、或いは球形状であってもよい。箱状の選択透過膜を用いた金属イオンの回収は、例えば、内部に金属イオン回収液を注液した状態で、箱状の選択透過膜を金属イオン含有原液に浸漬させる方法により行うことができる。また、内部に金属イオン含有原液を注液した状態で、箱状の選択透過膜を金属イオン回収液に浸漬させる方法により行うことができる。
 なお、有底筒状あるいは箱状の選択透過膜の一部に、選択透過膜の内部に金属イオン回収液を注入あるいは排出するための通液口を設け、選択透過膜内部の金属イオン回収液を入替え可能としてもよい。あるいはまた、有底筒状あるいは箱状の選択透過膜の一部に、選択透過膜の内部に金属イオン含有原液を注入あるいは排出するための通液口を設け、選択透過膜内部の金属イオン含有原液を入替え可能としてもよい。
 筒状の選択透過膜のサイズは、特に限定されない。筒状の選択透過膜の平均厚みは、例えば、0.01~20mmとすることが好ましく、0.1~5mmとすることがより好ましい。選択透過膜が金属イオン伝導体の焼結体である場合は、平均厚みが0.2~1.0mmとするのがより好ましい。
 筒状の選択透過膜の開口径(内径の最大寸法、典型的には直径)は、例えば、0.1mm以上とすればよく、10mm以上が好ましく、50mm以上がより好ましく、100mm以上がさらに好ましい。筒状の選択透過膜の開口径(内径の最大寸法、典型的には直径)の上限は限定されないが、例えば、5000mm以下であり得、1000mm以下が好ましく、500mm以下がより好ましい。開口径が0.1mm以上であると、金属イオン含有原液と選択透過膜との接触面積が広く、金属イオン含有原液中の金属イオンを効率よく回収でき、好ましい。開口径が大きな選択透過膜を用いることで、当該選択透過膜の筒内に通液可能な液量を増大することができる。筒状の選択透過膜の製造コストの観点と、選択透過膜への通液量を確保する観点を両立するためは、選択透過膜の開口径(内径の最大寸法、典型的には直径)を80mm以上750mm以下の範囲で適宜設定するのが好ましい。
 筒状の選択透過膜の長さは、特に限定されないが、例えば、10mm以上とすればよく、100mm以上とするのが好ましい。選択透過膜の長さが10mm以上であると、金属イオン含有原液と選択透過膜との接触面積が広く、金属イオン含有原液中の金属イオンを効率よく回収できるものとなり、好ましい。長さの上限は特に制限されないが、例えば、5000mm以下とすればよく、典型的には4000mm以下である。
 筒状の選択透過膜の開口径と長さは、当該選択透過膜の筒内に通液したい液量(単位時間当たりの液量)と選択透過膜と金属イオン含有原液の接触効率を考慮して適切な組み合わせを設定するのが好ましい。
 特に、筒状の選択透過膜が金属イオン伝導体の焼結体である場合は、平均厚みが1.0~20.0mmであり、開口径が100~500mmであって、長さが100~2000mmであることが好ましい。このような筒状の選択透過膜は、容易に効率よく製造可能であり、好ましい。また、選択透過膜をこのような形状とすることで、筒内への送液流量と選択透過膜への金属イオンの接触効率とが好適なバランスとなり、金属イオンを効率よく回収することができるため、好ましい。
 陽極は、選択透過膜の原液槽側の面に電気的に接続する。陽極と選択透過膜の原液槽側の面とは、多孔性集電体を介して電気的に接続していてもよい。或いはまた、選択透過膜の原液槽側の面に陽極を密着して配置することで、電気的に接続していてもよい。即ち、選択透過膜の原液槽側の面に陽極を一体に形成してもよい。
 陽極用の導電性材料としては、従来公知の導電性材料を採用できる。陽極用の導電性材料としては、例えば、Pt、Cu、Au、Ag、C、Fe、W、Mo、Ni、Co、Cr、Ti、Ir、Mn、La、Sr、Al、Pb、Zn、Rhから選ばれる1種または2種以上の元素を含むことが好ましく、Pt、Cu、Fe、C、Ag、Tiから選ばれる1種または2種以上の元素を含むことがより好ましい。かかる陽極材料は、合金であっても良く、TiIr、ステンレス鋼等が例示される。特に、陽極は、Pt、CまたはTiを主成分とすることがさらに好ましい。これらを主成分とする材料からなる陽極は、例えば、原液中の金属イオンを回収することによって塩素ガスおよび/またはフッ素ガスなどの腐食性ガスが発生する場合であっても、優れた耐食性が得られるためである。陽極の形状としては、特に制限はない。陽極の形状は、例えば、筒状、板状、網目状(メッシュ状)、棒状、ストライプ状、ドット状、格子状、ハニカム状などの規則的なパターンであってもよいし、不規則的なパターンであってもよい。
 多孔性集電体を介して陽極と選択透過膜とを電気的に接続する場合には、陽極の形状は、例えば、筒状、板状、網目状(メッシュ状)、棒状、格子状、ハニカム状などの連続形状とし得る。選択透過膜に陽極が密着して配置されて電気的に接続される場合には、陽極の形状は特に限定されず、任意の形状とすればよい。選択透過膜に陽極が密着して配置されて電気的に接続される場合には、陽極の形状は特限定されず、任意の形状とすればよい。また、陽極と選択透過膜とを電気的に接続する多孔性集電体としては、例えば、フェルト状またはスポンジ状の導電性材料を用いることができる。多孔性集電体用の導電性材料としては、陽極用の導電性材料として例示したものを用いることができる。好ましくは、C、Ti、Pt、Cu、Fe、Agを含む導電性材料が挙げられる。
 陰極は、選択透過膜の回収液槽側の面に電気的に接続する。陰極と選択透過膜の回収液槽側の面とは、多孔性集電体を介して接続していてもよい。或いはまた、選択透過膜の回収液槽側の面に陰極を密着して配置することで、電気的に接続してもよい。即ち、選択透過膜の回収液槽側の面に陰極を一体に形成してもよい。
 陰極用の導電性材料としては、陽極用の導電性材料として例示したものを用いることができる。ただし、陽極と陰極を形成する導電性材料は同じであってもよいし、異なっていてもよい。陰極の形状としては、特に制限はなく、陽極の形状として例示したものを採用できる。ただし、陽極と陰極の形状は同じであってもよいし、異なっていてもよい。
 また、陰極と選択透過膜とを電気的に接続する多孔性集電体としては、例えば、フェルト状またはスポンジ状の導電性材料を用いることができる。多孔性集電体用の導電性材料としては、陽極用の導電性材料として例示したものを用いることができる。
 ここで、陽極と選択透過膜および陰極と選択透過膜の一方または両方が、多孔性集電体を介して電気的に接続されていてもよい。また、陽極と陰極の一方または両方が、選択透過膜の異なる主面に密着して配置されることでこれらが電気的に接続されていてもよい。
 陽極または陰極を選択透過膜に密着して配置することで、陽極または陰極と選択透過膜とを電気的に接続する場合(選択透過膜に電極を一体に形成する場合)は、陽極または陰極を導電性多孔質膜とすることが好ましい。陽極または陰極を介して、選択透過膜に金属イオン含有原液または金属イオン回収液を接触させることができるためである。
 陽極または陰極として用いる導電性多孔質膜の平均孔径は、0.5~10μmとすることが好ましい。導電性多孔質膜の平均孔径が小さいほど、選択透過膜と導電性多孔質膜と金属イオン含有原液または金属イオン回収液の3点の接触面積が増加し、金属イオンの透過量が増加する効果が得られる。導電性多孔質膜の平均孔径が10μm以下であると、選択透過膜の表面と導電性多孔質膜と金属イオン含有原液または金属イオン回収液の3点の接触面積の増加効果が顕著となる。このため、金属イオン透過量の増加効果が高く、好ましい。導電性多孔質膜の平均孔径の下限値は、導電性多孔質膜を介して選択透過膜に金属イオン含有原液または金属イオン回収液を接触させることが可能であればよく、特に限定されない。例えば、導電性多孔質膜の平均孔径は、0.001μm以上とすることができ、典型的には0.5μm以上とすればよい。
 導電性多孔質膜は、例えば、選択透過膜の表面に、導電性材料を含むペーストを塗工して焼成することによって形成することができる。
 陽極は、選択透過膜の液接触面(金属イオン含有原液接触面)の少なくとも一部を覆うように配置されていればよい。陰極は、選択透過膜の液接触面(金属イオン回収液接触面)の少なくとも一部を覆うように配置されていればよい。即ち、陽極および陰極は、選択透過膜の液接触面の一部を覆う形状であればよい。選択透過膜の液接触面よりも小さい陽極および/または陰極を用いることで、金属イオン回収装置をの小型化および/またはスリム化(薄型化)できるとともに、電極コストの削減を実現できる。
 陽極および陰極は、選択透過膜の液接触面全体を覆うように配置されていてもよい。選択透過膜の液接触面の形状(外周形状)と一致する形状(外周形状)の陽極または陰極は本実施形態の好適な一例である。このような形状の陽極または陰極は、例えば、多孔性集電体を介して陽極または陰極を選択透過膜と電気的に接続する場合において、選択透過膜の液接触面全体の電位を略一定に保持し易いことから好適である。
 ここで、陽極および陰極の形状は同一であってもよいし、異なる形状であってもよい。
 本実施形態の金属イオン回収装置は、選択透過膜として筒状の選択透過膜を配置した筒状選択透過膜配置型の金属イオン回収装置とすることができる。
「金属イオン回収装置」
 図1は、本発明の一実施形態である金属イオン回収装置の一例の断面図である。
 図1に示すように、金属イオン回収装置20は、金属イオンを含む金属イオン含有原液1を収容する原液槽22と、金属イオン含有原液1から回収された金属イオンを含む金属イオン回収液を収容する回収液槽23とを有する。本実施形態の金属イオン回収装置20は、11個の回収液槽23が、原液槽22の中に配列されている。また、本実施形態の金属イオン回収装置20では、回収液槽23は下端が金属イオン回収液導入管28と接続され、上端が金属イオン回収液取出管29と接続されており、金属イオン回収液が回収液槽23内を下方から上方に向かって流れるようにされている。回収液槽23内の回収液が流れる方向はこれに限定されない。回収液槽23の上端を金属イオン回収液導入管28と接続し、下端を金属イオン回収液取出管29と接続して、金属イオン回収液が回収液槽23内を下方から上方に向かって流れるようにしてもよい。
 次に、回収液槽23について説明する。
 図2は、本発明の一実施形態である金属イオン回収装置で用いることができる回収液槽の一例の横断面図であり、図1のA-A’線断面図に相当する図面である。
 図2に示す金属イオン回収装置20aの回収液槽23は、原液槽22と回収液槽23とを仕切り、金属イオンを選択的に透過させる筒状の選択透過膜24と、選択透過膜24の原液槽22側の面に電気的に接続する陽極25と、選択透過膜24の回収液槽23側の面に電気的に接続する陰極26と、を備える。陽極25は、筒状の選択透過膜24の外側面に密着して配置されることで電気的に接続している。陰極26は、筒状の選択透過膜24の内側面に密着して配置されることで電気的に接続している。本実施形態において、回収液槽23は、筒状の選択透過膜24(図2では陰極26)に囲まれた領域であり、筒状とされている。また、陽極25および陰極26はいずれも筒状の多孔質膜とされているが、陽極25、陰極26の形状はこれに限定されない。
 金属イオン回収装置20aを用いた金属イオンの回収は、次のようにして行われる。
 まず、原液槽22に金属イオン含有原液1を、筒状の回収液槽23に金属イオン回収液2をそれぞれ供給する。次いで、陽極25を正電位、陰極26を負電位とする。これによって、金属イオン含有原液1中の金属イオン3のうち、筒状の選択透過膜24の陽極25側に到達したものが、イオン伝導によって選択透過膜24内を、陽極25側から陰極26側に向かって透過する。そして、選択透過膜24を透過した金属イオン3は、回収液槽23に収容された金属イオン回収液2で回収される。
 このとき、陽極25へ正電位を印加する方法および陰極26へ負電位を印加する方法は特に限定されない。各電極に効率よく電位を印加する観点からは、陽極25に正電位を印加し、且つ、陰極26を接地するのが好ましい。
 本実施形態の金属イオン回収装置20aでは、互いに向かい合う選択透過膜24の表面が同一の極性(正と正、負と負)となるように電極が配置されている。すなわち、原液槽22を挟んで互いに向かい合う選択透過膜24の表面が正の極性となるように陽極25が配置され、回収液槽23を挟んで互いに向かい合う選択透過膜24の表面が負となるように陰極26が配置されている。
 金属イオン回収装置20aでは、選択透過膜24が筒状とされているため、金属イオン含有原液1および金属イオン回収液2と接触する選択透過膜24の面積が大きい。このため、金属イオンの回収効率が向上し、大量の金属イオンを回収することが可能となる。また、金属イオン回収装置20aでは、筒状の選択透過膜24内に多孔性集電体を配置しない。多孔性集電体を用いないため、選択透過膜24内に配置される回収液槽23の開口を広く確保することができ、回収液槽23の容量を増大することができる。回収液槽23内に多孔性集電体を備えないため、当該多孔性集電体が抵抗となることに起因する流速低下が生じない。このことから、回収液槽23を流れる金属イオン回収液2の流速を速くすることができる。
 図3は、本発明の一実施形態である金属イオン回収装置で用いることができる回収液槽の別の一例の横断面図であり、図1のA-A’線断面図に相当する図面である。なお、図3に示す金属イオン回収装置20bにおいて、図2に示す金属イオン回収装置20aと同一の部材には図2と同一の符号を付して、その詳細な説明は省略する。
 図3に示す金属イオン回収装置20bは、陽極25が、多孔性集電体27(例えば、カーボンフェルト)を介して、選択透過膜24の外側面に電気的に接続し、陰極26が、多孔性集電体27(例えば、カーボンフェルト)を介して、選択透過膜24の内側面に電気的に接続している点で、図2に示す金属イオン回収装置20aと相違する。なお、金属イオン回収装置20bにおいて、陽極25、陰極26よび多孔性集電体27はいずれも筒状の多孔質膜とされているが、陽極25、陰極26および多孔性集電体27の形状はこれに限定されない。
 金属イオン回収装置20bは、選択透過膜24が筒状とされているため、金属イオン回収装置20aの場合と同様に、金属イオンの回収効率が向上し、大量の金属イオンを回収することが可能となる。また、陽極25が、多孔性集電体27を介して、選択透過膜24の外側面に電気的に接続しているので、陽極25と選択透過膜24の電気接続性が向上する。また、陰極26が、多孔性集電体27を介して、選択透過膜24の内側面に電気的に接続しているので、陰極26と選択透過膜24の電気接続性が向上する。陽極25と選択透過膜24および陰極26と選択透過膜24の電気接続性が向上することによって、電気エネルギーの利用効率が高くなるので、金属イオンの回収効率がさらに向上する。
 図4は、本発明の一実施形態である金属イオン回収装置で用いることができる回収液槽のさらに別の一例の横断面図であり、図1のA-A’線断面図に相当する図面である。なお、図4に示す金属イオン回収装置20bにおいて、図2に示す金属イオン回収装置20aと同一の部材には図2と同一の符号を付して、その詳細な説明は省略する。
 図4に示す金属イオン回収装置20cは、陽極25が、多孔性集電体27(例えば、カーボンフェルト)を介して、選択透過膜24の外側面に電気的に接続している点で、図2に示す金属イオン回収装置20aと相違する。
 金属イオン回収装置20cは、選択透過膜24が筒状とされているため、金属イオン回収装置20aの場合と同様に、金属イオンの回収効率が向上し、大量の金属イオンを回収することが可能となる。また、陽極25が、多孔性集電体27を介して、選択透過膜24の外側面に電気的に接続しているので、陽極25と選択透過膜24の電気接続性が向上する。
 図5は、本発明の一実施形態である金属イオン回収装置で用いることができる回収液槽の別の一例の横断面図であり、図1のA-A’線断面図に相当する図面である。なお、図5に示す金属イオン回収装置20dにおいて、図2に示す金属イオン回収装置20aと同一の部材には図2と同一の符号を付して、その詳細な説明は省略する。
 図5に示す金属イオン回収装置20dは、陰極26が、多孔性集電体27(例えば、カーボンフェルト)を介して、選択透過膜24の内側面に電気的に接続している点で、図2に示す金属イオン回収装置20aと相違する。
 金属イオン回収装置20dは、選択透過膜24が筒状とされているため、金属イオン回収装置20aの場合と同様に、金属イオンの回収効率が向上し、大量の金属イオンを回収することが可能となる。また、陰極26が、多孔性集電体27を介して、選択透過膜24の内側面に電気的に接続しているので、陰極26と選択透過膜24の電気接続性が向上する。
 以上に述べた本実施形態の金属イオン回収装置20、20a~20dは、例えば、海やプールのような大型の原液槽22に、そのまま選択透過膜24を介して仕切られた回収液槽23を投入することによって形成することができる。よって、本実施形態の金属イオン回収装置20、20a~20d(20)は、構成が比較的簡単で目的金属(例えば、リチウム)を大量回収する際に適した連続回収装置である。
 ただし、金属イオン回収装置は、上記の実施形態に限定されるものではない。図1に示す金属イオン回収装置20では、筒状の選択透過膜の数が11個とされているが、筒状の選択透過膜の個数に特に制限はない。例えば、筒状の選択透過膜の個数は、2個以上であればよく、5個以上が好ましく、10個以上とすることがより好ましい。金属イオン回収装置1台に搭載される選択透過膜の個数が多いほど、金属イオン回収装置1台で回収可能な金属イオンの量を増大し得る。このため、選択透過膜の個数は、例えば、100個以上とするのが好ましく、500個以上がより好ましく、1000個以上がさらに好ましい。換言すると、例えば、回収液槽23の個数は2個以上であればよく、5個以上が好ましく、10個以上とすることがより好ましい。金属イオン回収装置1台で回収可能な金属イオンの量を増大する観点から、例えば、100個以上とするのが好ましく、500個以上がより好ましく、1000個以上がさらに好ましい。なお、筒状の選択透過膜、典型的には回収液槽23の個数は通常は2個以上であるが、1個でもよい。
 また、例えば、金属イオン回収装置20、20a~20dでは、筒状の選択透過膜24に囲まれた領域を回収液槽23とし、筒状の選択透過膜24の外部の領域を原液槽22とした構成であるが、筒状の選択透過膜24に囲まれた領域を原液槽22とし、筒状の選択透過膜24の外部の領域を回収液槽23としてもよい。この場合、陽極25は、選択透過膜24の内側面に配置され、陰極26は、選択透過膜24の外側面に配置される。
「金属回収システム」
 図6は、本発明の一実施形態である金属イオン回収装置を用いた金属回収システムの一例の構成図である。以下、回収対象の金属がリチウムである場合を例として説明する。
 図6に示すリチウム回収システム200は、金属イオン回収装置(リチウムイオン回収装置)20と、リチウムイオン回収液に含まれる金属イオン(リチウムイオン)3を、リチウムを含む化合物(固形物)として取り出すリチウム精製装置101とを有する。金属イオン回収装置としては、上述した金属イオン回収装置20、20a~20dを用いることができる。
 なお、図6には、金属イオン回収装置を備える金属回収システムを例に挙げて説明するが、該金属イオン回収装置に代えて後述する金属イオン回収装置ユニットを備えていてもよい。
 リチウム精製装置101は、リチウムを含む固形物として取り出す機構を備えていれば特に制限されない。リチウムを含む固形物とは、例えば、水酸化リチウム、炭酸リチウム、金属リチウム等が挙げられる。
 例えば、リチウムイオン回収液中にはリチウムイオンが水酸化リチウムの形態で存在する。このため、リチウムイオン回収液の溶媒を蒸発させる乾燥機構を備えることで水酸化リチウムを精製可能である。換言すると、リチウムイオン回収液の溶媒を蒸発させる水酸化リチウム乾燥器102は上記リチウム精製装置101の一例である。
 また、リチウムイオン回収液に炭酸ガスを供給することで、リチウムイオン回収液中に炭酸リチウムを沈殿物として精製可能である。即ち、上記リチウムイオン回収液へ炭酸ガスを供給する炭酸ガスバブリング装置104は上記リチウム精製装置101の一例である。ここで、炭酸リチウムを生成するリチウム精製装置101は、上記リチウム回収液中に沈殿した炭酸リチウムを乾燥させる炭酸リチウム乾燥器105を備えることが好ましい。
 これらリチウム精製装置101は1種の機構のみを採用してもよいし、複数の精製機構を組み合わせて搭載してもよい。以下、リチウム精製装置101として、図5に示すように、水酸化リチウム乾燥器102と、炭酸ガスバブリング装置104と、炭酸リチウム乾燥器105を備える構成を例として説明する。
 図6に示すリチウム回収システム200は、リチウムイオン回収液を貯留する回収液タンク108とを有する。金属イオン回収装置(リチウムイオン回収装置)20の原液槽22は、リチウムイオン含有原液の発生源(例えば、海や使用済みリチウムイオン電池の処理工場)に接続している。また、図示するリチウム回収システム200は、さらに水酸化リチウム梱包機103と炭酸リチウム梱包機106を備えている。
 リチウム回収システム200を用いたリチウムの回収は、次のようにして行われる。
 まず、リチウムイオン回収液を回収液タンク108に貯留する。
 次いで、回収液タンク108に貯留されたリチウムイオン回収液を、金属イオン回収装置20に供給する。また、リチウムイオン含有原液を、金属イオン回収装置20の原液槽22に供給する。金属イオン回収装置20は、上記の方法により、リチウムイオン含有原液中のリチウムイオンをリチウムイオン回収液に回収する。原液槽22は、リチウムイオン含有原液のリチウムイオン濃度が所定値よりも低くなったときは、リチウムイオン含有原液を排出する。それと共に、外部からリチウムイオン含有原液が送られるようになっている。一方、金属イオン回収装置20でリチウムイオンを回収したリチウムイオン回収液は、回収液タンク108に送られる。回収液タンク108は、リチウムイオン回収液が所望のリチウムイオン濃度以上になると、リチウムイオン回収液をリチウム精製装置101に送る。それと共に、外部から新たなリチウムイオン回収液が、回収液タンク108に送られるようになっている。
 図6に示すリチウム精製装置101では、リチウムイオン回収液中のリチウムイオンを水酸化リチウム(LiOH・HO)の粉末または炭酸リチウム(LiCO)の粉末として取り出す。
 リチウムイオン回収液中のリチウムイオンを水酸化リチウムの粉末として取り出す場合は、例えば、以下に示す方法を用いる。
 リチウムイオン回収液を水酸化リチウム乾燥器102に送る。水酸化リチウム乾燥器102にて、リチウムイオン回収液の水分を蒸発させる。これにより、リチウムイオン回収液から容易に水酸化リチウムの結晶を得ることができる。
 なお、リチウムイオン回収液中の水分を蒸発させる際には、リチウムイオン回収液が大気(典型的には大気中のCOガス)に触れない環境で行うことが好ましい。これにより、リチウムイオン回収液が大気に触れて、リチウムイオン回収液中のリチウムイオンと大気中のCOガスとが反応して、LiCOが生成することを防止できる。
 次いで、水酸化リチウム乾燥器102にて得られた水酸化リチウム粉末を、水酸化リチウム梱包機103に送る。水酸化リチウム梱包機103にて、水酸化リチウム粉末は梱包され、その後、使用場所に搬送される。
 リチウムイオン回収液中のリチウムイオンを炭酸リチウムの粉末として取り出す場合は、例えば、以下に示す方法を用いる。
 リチウムイオン回収液を炭酸ガスバブリング装置104に送る。炭酸ガスバブリング装置104にて、リチウムイオン回収液(水酸化リチウム水溶液)に炭酸ガスを供給し、リチウムイオン回収液中のリチウムイオンを炭酸リチウムに変化させる。これにより、リチウムイオン回収液から容易に炭酸リチウムの結晶を得ることができる。
 次いで、リチウムイオン回収液の沈殿物(炭酸リチウム)を、ろ過あるいはデカンテーションにより分離して回収する。得られた炭酸リチウムを炭酸リチウム乾燥器105に送る。そして炭酸リチウム乾燥器105にて、炭酸リチウムを乾燥して炭酸リチウム粉末を得る。
 次いで、炭酸リチウム乾燥器105にて得られた炭酸リチウム粉末を、炭酸リチウム梱包機106に送る。炭酸リチウム梱包機106にて、炭酸リチウム粉末は梱包され、その後、使用場所に搬送される。
 以上に述べた本実施形態のリチウム回収システム200は、リチウムイオン回収装置として、上述の金属イオン回収装置を用いるので、従来の金属イオン回収装置を用いた場合と比較して、構成が簡単で、かつリチウムを大量回収することが可能となるという利点を有する。
 なお、金属イオン回収装置20を備えるリチウム回収システム200において、金属イオン回収装置20に代えて後述する金属イオン回収装置ユニットを備えるものであっても、同様の効果が得られる。すなわち、従来の金属イオン回収装置を用いた場合と比較して、構成が簡単で、かつリチウムを大量回収することが可能となるという利点を有する。
「金属イオン回収装置ユニット」
 図7は、本発明の一実施形態である金属イオン回収装置を複数接続した金属イオン回収装置ユニットの一例の構成図である。以下、図7中の金属イオン回収装置が、図1に示す金属イオン回収装置20である場合を例として説明する。なお、図1に示す金属イオン回収装置20は11個の回収液槽23を有しているが、金属イオン回収装置20を接続する配管はそれぞれ、11個の回収液槽23に接続している。
 図7に示す金属イオン回収装置ユニット30は、8個の金属イオン回収装置20を有している。図7において、上下に配置された2個の金属イオン回収装置20は、下方の金属イオン回収装置20から取り出された金属イオン含有原液1および金属イオン回収液2が、上方の金属イオン回収装置20に導入されるように直列的に接続されている。直列的に上下に接続された2個の金属イオン回収装置20は、金属イオン含有原液1および金属イオン回収液2の配管に並列的に接続している。ここで、便宜上、上方側(上流側)の金属イオン回収装置20、下方(下流側)側の金属イオン回収装置20と説明するが、実際の金属イオン回収装置20が上下に配置されることを限定するものではない。金属イオン含有原液1および金属イオン回収液2の導出入が、図7に示すように直列的または並列的となるように接続された構成は、図7と同様に理解することができる。
 金属イオン回収装置ユニット30を用いた金属イオン3の回収は、次のようにして行われる。
 まず、上下に配置された2個の金属イオン回収装置20のうちの下方側の金属イオン回収装置20の金属イオン含有原液導入口に、金属イオン含有原液1を連続的に供給する。これにより、原液槽22に金属イオン含有原液1が収容される。また、上下に配置された2個の金属イオン回収装置20のうちの下方側の金属イオン回収装置20の金属イオン回収液導入口に、金属イオン回収液2を連続的に供給する。これにより、回収液槽23に金属イオン回収液2が収容される。次いで、各金属イオン回収装置20の陽極25を正電位とし、陰極26を負電位とする。これにより、原液槽22に収容された金属イオン含有原液1中の金属イオン3のうち、選択透過膜24の陽極25側に到達したものが、イオン伝導によって選択透過膜24内を、陽極25側から陰極26側に向かって透過する。そして、選択透過膜24を透過した金属イオン3は、回収液槽23に収容された金属イオン回収液2に回収される(図1参照)。
 次いで、下方側の金属イオン回収装置20の原液槽22に収容された金属イオン含有原液1は、金属イオン含有原液取出口により取り出される。取り出された金属イオン含有原液1は、上方側の金属イオン回収装置20の金属イオン含有原液導入口に供給され、原液槽22に収容される。また同様に、下方側の金属イオン回収装置20の回収液槽23に収容された金属イオン回収液2は、金属イオン回収液取出口により取り出される。取り出された金属イオン回収液2は、上方側の金属イオン回収装置20の金属イオン回収液導入口に供給され、回収液槽23に収容される。
 上方側の金属イオン回収装置20の原液槽22に収容された金属イオン含有原液1中の金属イオン3のうち、選択透過膜24の陽極25側に到達したものが、イオン伝導によって選択透過膜24内を、陽極25側から陰極26側に向かって透過する。そして、選択透過膜24を透過した金属イオン3は、回収液槽23に収容された金属イオン回収液2で回収される。
 このように、或る金属イオン回収装置20から取り出された金属イオン回収液2が、他の金属イオン回収装置20に導入されるように直列的に接続することで、単位容量当たりの金属イオン回収液2に回収される金属イオン3の量を多くできる(金属イオン回収液2の金属イオン濃度を増大することができる)。
 以上のような構成とされた本実施形態の金属イオン回収装置ユニット30は、複数の金属イオン回収装置20が搭載された構成である。1つの金属イオン回収装置ユニット30は多数の選択透過膜を備えるため、回収できる金属イオン3の量を増大できる。また、独立した金属イオン回収装置20の原液槽22同士が配管で接続されているとともに、回収液槽23同士が配管で接続されているので、各金属イオン回収装置20を容易に交換できる。
 金属イオン回収装置ユニットは、図7に示す構成に限定されない。
 たとえば、全ての金属イオン回収装置20が直列的に接続されていてもよいし、全ての金属イオン回収装置20が金属イオン含有原液1および金属イオン回収液2の配管に並列的に接続していてもよい。
 また、金属イオン含有原液1および金属イオン回収液2が、複数の金属イオン回収装置20に導出入する接続態様は、同一であってもよいし、それぞれ異なる接続態様であってもよい。例えば、金属イオン回収装置20から導出された金属イオン含有原液1が、全て金属イオン含有原液1の配管に導入されるように、金属イオン含有原液1の送液配管が並列的に接続されていてもよい。また、金属イオン回収装置20から導出された金属イオン回収液2が、他の金属イオン回収装置20に導入されるように、金属イオン回収液2の送液配管が全て直列的に接続されていてもよい。
 図7に示す金属イオン回収装置ユニット30は、8個の金属イオン回収装置20を有している場合を例に説明したが、1つの金属イオン回収装置ユニット30に搭載される金属イオン回収装置20の個数は特に制限されない。金属イオン回収装置20の個数は、2個以上であればよく、5個以上が好ましく、10個以上とすることがより好ましい。装置(金属イオン回収装置ユニット30)1台に搭載される金属イオン回収装置20の個数が多いほど、装置1台で回収可能な金属イオン3の量を増大し得る。このことから、金属イオン回収装置20の個数は、例えば、100個以上とするのが好ましく、500個以上がより好ましく、1000個以上がさらに好ましい。
 金属イオン回収装置ユニットの構成は、上述した筒状選択透過膜配置型の金属イオン回収装置のみを複数配列するものに限定されない。例えば、複数個の本実施形態の金属イオン回収装置とともに、選択透過膜を1枚備える従来の単膜式の金属イオン回収セル(またはこれを備える金属イオン回収装置)を1個または複数個用いたものであっても良い。あるいはまた、複数個の本実施形態の金属イオン回収装置とともに、筒状ではない形状、典型的には板状の選択透過膜を複数備えた金属イオン回収装置を一個又は複数個用いたものであってもよい。したがって、筒状選択透過膜配置型の金属イオン回収装置と他の構成の金属イオン回収装置とを接続して適用しても良い。
 次に、上記単膜式の金属イオン回収装置(セル型金属イオン回収装置)に用いることができる金属イオン回収セルの一例を示す。図8は、金属イオン回収セルの一例の斜視図である。図9は、図8に示す金属イオン回収セルの分解斜視図である。図8に示す金属イオン回収セルは、本発明の金属回収装置ユニットを構成する金属イオン回収装置の好適な一例である。
 図8および図9に示す金属イオン回収セル31aは、セル蓋部38aとセル収容部38bに設けられた凹部との間に、セル収容部38b側から、陰極36、回収液槽形成用枠33、選択透過膜34、原液槽形成用枠32、陽極35が、この順で積層された積層体が収容された構成とされている。回収液槽形成用枠33には、陰極36と選択透過膜34とを電気的に接続するための多孔性集電体37が収容されている。また、原液槽形成用枠32には、陽極35と選択透過膜34とを電気的に接続するための多孔性集電体37が収容されている。セル蓋部38aとセル収容部38bとは、セル蓋部38aを貫通するボルト39を、セル収容部38bのねじ穴40に締め込むことによって固定されている。セル蓋部38aの外側面には、中央の下部に金属イオン含有原液導入口41aが設けられ、中央の上部に金属イオン含有原液取出口41bが設けられている。セル収容部38bの外側面には、中央の下部に金属イオン回収液導入口42aが設けられ、中央の上部に金属イオン回収液取出口42bが設けられている。
 図8および図9に示す金属イオン回収セル31aには、セル蓋部38aの下部に設けられた金属イオン含有原液導入口41aから、金属イオン含有原液1が導入される。また、セル収容部38bの下部に設けられた金属イオン回収液導入口42aから、金属イオン回収セル31aに金属イオン回収液2が導入される。そして、セル蓋部38aの上部に設けられた金属イオン含有原液取出口41bから、金属イオン含有原液1が導出される。また、セル収容部38bの上部に設けられた金属イオン回収液取出口42bから、金属イオン回収液2が導出される。
 このように、金属イオン含有原液取出口41bおよび金属イオン回収液取出口42b(以下、これらを合わせて「液取出口41b、42b」ともいう)より下部に、金属イオン含有原液導入口41aおよび金属イオン回収液導入口42a(以下、これらを合わせて「液導入口41a、42a」ともいう)が設けられている。このことにより、金属イオン回収セル31a内(典型的には原液槽22内および回収液槽23内)に発生した気泡がセル外へスムーズに排出される。このような構成によると、金属イオン回収セル31a内への気泡残留を低減できる。
 なお、図8および図9に示す金属イオン回収セル31aでは、セル蓋部38aおよびセル収容部38bの下部に液導入口41a、42aが設けられ、セル蓋部38aおよびセル収容部38bの上部に液取出口41b、42bが設けられた構成を例に説明したが、これに限定されない。例えば、セル蓋部38aの下部に、金属イオン含有原液取出口41bが設けられてもよい。また、例えば、セル収容部38bの下部に、金属イオン回収液取出口42bが設けられてもよい。
 図8および図9に示す金属イオン回収セル31aは、セル蓋部38aおよびセル収容部38bの幅広面(積層方向の表面)に、液導入口41a、42aおよび液取出口41b、42bが設けられた構成を例に説明したが、これに限定されない。例えば、セル蓋部38aまたはセル収容部38bの幅狭面(側面)に液導入口41a、42aまたは液取出口41b、42bが設けられていてもよい。
 図10は、本発明の一実施形態である金属イオン回収装置ユニットで用いることができる金属イオン回収セルの別の一例の斜視図である。図11は、図10に示す金属イオン回収セルの分解斜視図である。なお、図11および図12において、図8および図9と同一の部材には、図8および図9と同一の符号を付して、その詳細な説明は省略する。
 図10および図11に示す金属イオン回収セル31bは、陽極35が選択透過膜34の原液槽形成用枠32側の面に密着して配置される(選択透過膜に陽極を一体に形成する)ことによって、電気的に接続している。また、陰極36(不図示)が選択透過膜34の回収液槽形成用枠33側の面に密着して配置される(選択透過膜に陰極を一体に形成する)ことによって、電気的に接続している。これらの点で、図10および図11に示す金属イオン回収セル31bは、図8および図9に示す金属イオン回収セル31aと相違する。ここで、図10および図11に示す金属イオン回収セル31bは、陽極35に接続する陽極引出線43が金属イオン含有原液取出口41bから引き出されている。また、陰極に接続する陰極引出線44が金属イオン回収液取出口42bから引き出されている。
 図10および図11に示す金属イオン回収セル31bは、原液槽形成用枠32および回収液槽形成用枠33に多孔性集電体を収容しない。このため、原液槽形成用枠32および回収液槽形成用枠33のスリム化が可能となる。また、原液槽形成用枠32を流れる金属イオン含有原液1および回収液槽形成用枠33を流れる金属イオン回収液2の流速を速くできる。単位時間当たりに選択透過膜34と触れる金属イオン3が多いほど、すなわち、原液槽形成用枠32を流れる金属イオン含有原液1の流速が速いほど、金属イオン回収量が向上する傾向がある。したがって、本実施形態の金属イオン回収セル31bは、スリム化と金属イオン3の大量回収が可能となる。
 1・・・金属イオン含有原液
 2・・・金属イオン回収液
 3・・・金属イオン
 20、20a、20b、20c、20d・・・金属イオン回収装置
 22・・・原液槽
 23・・・回収液槽
 24・・・選択透過膜
 25・・・陽極
 26・・・陰極
 27・・・多孔性集電体
 28・・・金属イオン回収液導入管
 29・・・金属イオン回収液取出管
 30・・・金属イオン回収装置ユニット
 31a、31b・・・金属イオン回収セル
 32・・・原液槽形成用枠
 33・・・回収液槽形成用枠
 34・・・選択透過膜
 35・・・陽極
 36・・・陰極
 37・・・多孔性集電体
 38a・・・セル蓋部
 38b・・・セル収容部
 39・・・ボルト
 40・・・ねじ穴
 41a・・・金属イオン含有原液導入口
 41b・・・金属イオン含有原液取出口
 42a・・・金属イオン回収液導入口
 42b・・・金属イオン回収液取出口
 43・・・陽極引出線
 44・・・陰極引出線
 200・・・リチウム回収システム
 101・・・リチウム精製装置
 102・・・水酸化リチウム乾燥器
 103・・・水酸化リチウム梱包機
 104・・・炭酸ガスバブリング装置
 105・・・炭酸リチウム乾燥器
 106・・・炭酸リチウム梱包機
 108・・・回収液タンク

Claims (7)

  1.  金属イオンを含む金属イオン含有原液を収容する原液槽と、
     前記金属イオン含有原液から回収された金属イオンを含む金属イオン回収液を収容する回収液槽と、
     前記原液槽と前記回収液槽とを仕切り、前記金属イオンを選択的に透過させる筒状の金属イオン選択透過膜と、
     前記金属イオン選択透過膜の前記原液槽側の面に電気的に接続する陽極と、
     前記金属イオン選択透過膜の前記回収液槽側の面に電気的に接続する陰極と、
     を備える金属イオン回収装置。
  2.  前記回収液槽が筒状であって、前記筒状の回収液槽が前記原液槽の中に配列されていることを特徴とする請求項1に記載の金属イオン回収装置。
  3.  前記筒状の金属イオン選択透過膜を2個以上備える、請求項1または2に記載の金属イオン回収装置。
  4.  前記金属イオンがリチウムイオンである、請求項1~3のいずれか一項に記載の金属イオン回収装置。
  5.  請求項1~4のいずれか一項に記載の金属イオン回収装置を複数備え、
     それぞれの前記金属イオン回収装置が、の前記原液槽を接続する配管と前記回収液槽を接続する配管とで接続されていることを特徴とする金属イオン回収装置ユニット。
  6.  請求項1~請求項4のいずれか一項に記載の金属イオン回収装置または請求項5に記載の金属イオン回収装置ユニットと、
     前記金属イオン回収装置または前記金属イオン回収装置ユニットの前記回収液槽に接続し、前記金属イオン回収液に含まれる金属イオンを、前記金属イオンを含む化合物として取り出す精製装置とを含むことを特徴とする金属回収システム。
  7.  請求項1~請求項4のいずれか一項に記載の金属イオン回収装置または請求項5に記載の金属イオン回収装置ユニットを用いて、
     前記金属イオン回収装置または前記金属イオン回収装置ユニットの前記原液槽に収容された前記金属イオン含有原液に含まれる金属イオンを、前記金属イオン選択透過膜に透過させ、前記回収液槽に収容された前記金属イオン回収液で回収することを特徴とする金属イオンの回収方法。
PCT/JP2020/011148 2019-03-29 2020-03-13 金属イオン回収装置、金属回収システムおよび金属イオンの回収方法 WO2020203187A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/599,060 US20220176320A1 (en) 2019-03-29 2020-03-13 Metal ion recovery device, metal recovery system, and metal ion recovery method
JP2021511365A JP7385297B2 (ja) 2019-03-29 2020-03-13 金属イオン回収装置、金属回収システムおよび金属イオンの回収方法
KR1020217033281A KR20220009374A (ko) 2019-03-29 2020-03-13 금속 이온 회수 장치, 금속 회수 시스템 및 금속 이온의 회수 방법
AU2020250331A AU2020250331A1 (en) 2019-03-29 2020-03-13 Metal ion recovery device, metal recovery system, and metal ion recovery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019069131 2019-03-29
JP2019-069131 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203187A1 true WO2020203187A1 (ja) 2020-10-08

Family

ID=72667917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011148 WO2020203187A1 (ja) 2019-03-29 2020-03-13 金属イオン回収装置、金属回収システムおよび金属イオンの回収方法

Country Status (7)

Country Link
US (1) US20220176320A1 (ja)
JP (1) JP7385297B2 (ja)
KR (1) KR20220009374A (ja)
AR (1) AR118308A1 (ja)
AU (1) AU2020250331A1 (ja)
CL (1) CL2021002507A1 (ja)
WO (1) WO2020203187A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459792B2 (ja) * 2018-06-26 2024-04-02 三菱ケミカル株式会社 分離膜モジュール
NL2034863A (en) * 2023-05-19 2024-06-04 Paqell B V Reactor for use in a bioelectrochemical process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102270A (ja) * 1996-09-26 1998-04-21 Ngk Spark Plug Co Ltd Li抽出方法及びLi抽出装置
JP2006231159A (ja) * 2005-02-23 2006-09-07 Masayoshi Iwahara 電気透析装置
JP2010088972A (ja) * 2008-10-03 2010-04-22 Chugoku Electric Manufacture Co Ltd 水素含有電解水生成装置及び給湯設備
WO2015020121A1 (ja) * 2013-08-08 2015-02-12 独立行政法人日本原子力研究開発機構 金属イオン回収装置、金属イオン回収方法
WO2017131051A1 (ja) * 2016-01-29 2017-08-03 国立研究開発法人量子科学技術研究開発機構 リチウム選択透過膜、リチウム回収装置、リチウム回収方法、水素製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054677A (ja) 1983-09-05 1985-03-29 Agency Of Ind Science & Technol ヒトインタ−フェロン産生細胞の培養方法
US5951843A (en) * 1996-09-26 1999-09-14 Ngk Spark Plug Co., Ltd. Method and apparatus for extracting lithium by applying voltage across lithium-ion conducting solid electrolyte
US20190296381A1 (en) * 2016-09-29 2019-09-26 Panasonic Corporation Microbial fuel cell and waste liquid treatment system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102270A (ja) * 1996-09-26 1998-04-21 Ngk Spark Plug Co Ltd Li抽出方法及びLi抽出装置
JP2006231159A (ja) * 2005-02-23 2006-09-07 Masayoshi Iwahara 電気透析装置
JP2010088972A (ja) * 2008-10-03 2010-04-22 Chugoku Electric Manufacture Co Ltd 水素含有電解水生成装置及び給湯設備
WO2015020121A1 (ja) * 2013-08-08 2015-02-12 独立行政法人日本原子力研究開発機構 金属イオン回収装置、金属イオン回収方法
WO2017131051A1 (ja) * 2016-01-29 2017-08-03 国立研究開発法人量子科学技術研究開発機構 リチウム選択透過膜、リチウム回収装置、リチウム回収方法、水素製造方法

Also Published As

Publication number Publication date
US20220176320A1 (en) 2022-06-09
AR118308A1 (es) 2021-09-29
CL2021002507A1 (es) 2022-04-22
AU2020250331A1 (en) 2021-10-28
JP7385297B2 (ja) 2023-11-22
KR20220009374A (ko) 2022-01-24
JPWO2020203187A1 (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6915198B2 (ja) 撥水性多孔質膜を備えた化学反応装置
US6462935B1 (en) Replaceable flow-through capacitors for removing charged species from liquids
US10259728B2 (en) Apparatus and process for separation and selective recomposition of ions
JP4843908B2 (ja) 二次電池及び発電方法
US11485652B2 (en) Integrated energy generation and desalination system and method
US9843052B2 (en) Electrolyte regeneration
WO2020203187A1 (ja) 金属イオン回収装置、金属回収システムおよび金属イオンの回収方法
JP2012055881A (ja) リチウムの回収方法およびリチウムの回収装置
US20030198862A1 (en) Liquid gallium alkaline electrolyte fuel cell
US11820681B2 (en) Voltage-controlled anion exchange membrane enabling selective ion affinities for water desalination and device containing the same
JP7360740B2 (ja) 金属イオン回収装置、金属回収システムおよび金属イオンの回収方法
JP2019141807A (ja) リチウム回収装置およびリチウム回収方法
JP2008525166A (ja) 導電率の増大と電解及び電気化学プロセスの向上
KR20150008348A (ko) 하이브리드 해수 담수화 시스템
US20170044032A1 (en) System for recovering multiple kinds of ions
US10522849B2 (en) Electrochemical cell comprising channel-type flowable electrode units
KR20170131531A (ko) 재생형 쌍극막 연료전지의 작동 방법 및 이를 위한 재생형 쌍극막 연료전지
US20210163319A1 (en) Water treatment apparatus and water treatment method using same
JP2016024944A (ja) 化学電池
WO2014195897A1 (en) Method and device to remove ions from an electrolytic media, such as water desalination, using suspension of divided materials in a flow capacitor
US20240209536A1 (en) System and process for purification and concentration of lithium
Wang et al. Direct Lithium Extraction Using Intercalation Materials
JP2006004832A (ja) 電源回路
US20230311074A1 (en) Redox membranes for lithium extraction
US12012664B1 (en) Membrane-based alkali metal extraction system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511365

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020250331

Country of ref document: AU

Date of ref document: 20200313

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20783726

Country of ref document: EP

Kind code of ref document: A1