WO2020202821A1 - Force sensor - Google Patents

Force sensor Download PDF

Info

Publication number
WO2020202821A1
WO2020202821A1 PCT/JP2020/005491 JP2020005491W WO2020202821A1 WO 2020202821 A1 WO2020202821 A1 WO 2020202821A1 JP 2020005491 W JP2020005491 W JP 2020005491W WO 2020202821 A1 WO2020202821 A1 WO 2020202821A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
shaped
force
force sensor
ring
Prior art date
Application number
PCT/JP2020/005491
Other languages
French (fr)
Japanese (ja)
Inventor
英二 丹羽
義久 杉山
謙 鈴木
Original Assignee
公益財団法人電磁材料研究所
株式会社ワコム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人電磁材料研究所, 株式会社ワコム filed Critical 公益財団法人電磁材料研究所
Priority to JP2021511181A priority Critical patent/JP7408638B2/en
Publication of WO2020202821A1 publication Critical patent/WO2020202821A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force

Definitions

  • the present invention relates to a force sensor that detects the received force based on detecting a displacement such as strain generated according to the received force.
  • a strain gauge using a strain gauge that utilizes a phenomenon in which the electrical resistance of a strain-sensitive material changes due to the strain of the strain-sensitive material (including not only elastic strain but also plastic strain) is known.
  • the strain gauge uses the piezoresistive effect, in which the electrical resistivity of the strain-sensitive material changes due to stress, and the piezoelectric effect, in which polarization (surface charge) proportional to the applied force appears. Is.
  • FIG. 7 shows an example of the triaxial force detecting member of Patent Document 1 described above.
  • the force detecting member of this example includes a strain generating portion 101, a force receiving portion 102 integrally coupled to the strain generating portion 101, and a force sensor 103 attached to the strain generating portion 101.
  • the direction orthogonal to the plane of the strain generating portion 101 is the Z-axis direction
  • the direction parallel to the plane of the strain generating portion 101
  • the directions orthogonal to each other are the X-axis direction and the Y-axis direction.
  • FIG. 7A is a view of the force detecting member of this example from the lateral direction (X-axis direction or Y-axis direction), and FIG. 7B is a perspective view of the force detecting member of this example.
  • .. 7 (C) to 7 (E) are vertical cross-sectional views (cross-sectional views in the direction including the Z-axis direction) of the force detecting member of this example, and FIG. 7 (C) shows the force receiving unit 102.
  • 7 (D) shows a state in which the force receiving unit 102 receives a force in the Z-axis direction
  • FIG. 7 (E) shows a state in which the force receiving unit 102 receives a force in the X-axis direction or the Y-axis direction.
  • the state of receiving is shown respectively.
  • the force receiving unit 102 shows only the vicinity of the strain generating unit 101.
  • the force receiving unit 102 has a function of receiving a force applied to the tip portion on the side opposite to the coupling side with the strain generating portion 101 and transmitting the force to the strain generating portion 101.
  • the force receiving portion 102 is a rod-shaped member. Will be done.
  • the strain-causing portion 101 has a structure in which a thin disk-shaped diaphragm 101a is provided on one opening side of the cylindrical diaphragm holding portion 101b. I have.
  • the strain generating portion 101 is coupled to the rod-shaped force receiving portion 102 at the central portion of the disc-shaped diaphragm 101a.
  • a force sensor 103 is attached to the surface of the diaphragm 101a on the side opposite to the connection side with the force receiving portion 102.
  • FIG. 8A shows an example of the conventional configuration of the force sensor 103.
  • the force sensor 103 of this example is a strain-sensitive material that changes its resistance value according to the strain displacement received on a flexible substrate 103a made of, for example, a disk-shaped insulating film sheet.
  • 104 is composed of a plurality of arranged ones.
  • the strain-sensitive material 104 six strain-sensitive materials 104X1, 104X2, 104Y1, 104Y2, 104Z1, 104Z2, 104Z3, 104Z4 are arranged on the flexible substrate. It is installed.
  • the resistance values of the strain-sensitive materials 104X1, 104X2, 104Y1, 104Y2, 104Z1, 104Z2, 104Z3, 104Z4 are set to be equal to each other when no strain is applied.
  • the strain-sensitive material 104 when it is not necessary to distinguish each of the plurality of strain-sensitive materials 104, the strain-sensitive material 104 will be described.
  • the strain-sensitive materials 104X1 and 104X2 are for detecting strain in the X-axis direction, which is a direction orthogonal to the axial direction of the force receiving portion 102, and are the center positions 103ac (force application position) of the flexible substrate 103a. On a straight line in the X-axis direction passing through the above, both sides of the center position 103ac are provided at equal distances from the center position 103ac.
  • the strain-sensitive materials 104Y1 and 104Y2 are for detecting strain in the Y-axis direction, which is orthogonal to the axial direction of the force receiving unit 102 and orthogonal to the X-axis direction, and Y passes through the center position 103ac. On a straight line in the axial direction, they are provided at positions equal to each other from the center position 103ac on both sides of the center position 103ac.
  • the strain-sensitive materials 104Z1, 104Z2, 104Z3, 104Z4 are for detecting strain in the Z-axis direction, which is the axial direction of the force receiving unit 102.
  • the center position 103ac is sandwiched on a straight line that passes through the center position 103ac and is inclined at a predetermined angle so as not to overlap with other strain-sensitive materials 104X1, 104X2, 104Y1, 104Y2.
  • Two strain-sensitive materials 104Z1 and 104Z3 and two strain-sensitive materials 104Z2 and 104Z4 are provided at point-symmetrical positions on both sides.
  • the force detecting member of this example when a force in the Z-axis direction is applied to the strain generating portion 101 via the force receiving portion 102, the diaphragm 101a of the strain generating portion 101 receives tensile / compressive stress, and the figure. As shown in 7 (D), the force receiving portion 102 is curved so as to be convex downward according to the displacement in the Z-axis direction. Then, the force sensor 103 is also displaced according to the curvature of the diaphragm 101a. In this case, as shown in FIG.
  • the strain-sensitive materials 104Z1 and 104Z3 By detecting the difference between the two, the force component in the Z-axis direction can be detected.
  • the force detecting member can make the applied force a force in the Z-axis direction.
  • the detection output of the component can be obtained.
  • a power supply voltage is applied to the terminal E, the terminal G is grounded, and a detected output voltage of the force component in the Z-axis direction is obtained between the terminals Za and Zb.
  • the force component in the X-axis direction or the force component in the Y-axis direction of the applied force acts as a bending moment according to the length of the force receiving portion 102, and the diaphragm of the strain generating portion 101 Bending stress and shear stress are applied to 101a.
  • FIG. 7 (E) in the direction of applying the force in the X-axis direction or the Y-axis direction, on one side of both sides of the coupling portion (center position 101ac of the diaphragm 101a) with the force receiving portion 102. , The diaphragm 101a is displaced so as to contract, and on the other side, the diaphragm 101a is displaced so as to extend.
  • the strain-sensitive materials 104X1 and 104X2 or the strain-sensitive materials 104Y1 and 104Y2 arranged on the force sensor 103 change their resistance in an increasing direction and decrease in the other depending on the generated displacement.
  • the resistance changes. Therefore, by detecting the difference in resistance between the strain-sensitive material 104X1 and the strain-sensitive material 104X2, the force component in the X-axis direction can be detected, and the resistance value between the strain-sensitive materials 104Y1 and 104Y2 can be detected. By detecting the difference, the force component in the Y-axis direction can be detected.
  • FIG. 9B shows a configuration example of a bridge circuit that obtains a detected output voltage of a force in the Y-axis direction
  • FIG. 9C shows a configuration example of a bridge circuit that obtains a detected output voltage of a force in the X-axis direction. ..
  • the resistance value of RY1, RY2 and RX1, RX2 is the same as that when strain is not applied to the strain-sensitive material 104X1, X2, Y1, Y2. It is a fixed resistance (reference resistance) indicating a value, and these are provided outside the force sensor 103 of this example.
  • Cu—Ni alloy as a material constituting the strain sensitive material 104 has a small gauge ratio for determining strain sensitivity (for example, the gauge ratio is 2), but the temperature constant is linear and stable, so that the bridge It is often used in a circuit because it is stable against temperature changes because the resistance values of strain-sensitive materials can cancel each other's temperature conversions.
  • the strain-sensitive material 104 semiconductor carbon, silicon, germanium, etc. are also known, but these have a relatively large gauge coefficient (gauge coefficient is 10 to 170), but the strain-sensitive direction is different. Its use is limited because it has a high property, a high temperature coefficient, and is anisotropy, so that it fluctuates greatly with respect to temperature changes and lacks stability.
  • strain-sensitive material 104 When the strain-sensitive material 104 is made of, for example, a Cu—Ni alloy, its longitudinal direction is the radial direction (strain generation direction) as shown in the enlarged view of FIG. 8B. ), It is configured to be bent in a zigzag shape and arranged in a direction orthogonal to the radial direction (circumferential direction).
  • FIG. 8B shows an example of the strain-sensitive material 104Y1, but the same applies to the other strain-sensitive materials 104X1, 104X2, 104Y1, 104Z1, 104Z2, 104Z3, 104Z4.
  • the strip-shaped strain-sensitive material 104 made of fine metal wire or metal foil is arranged along the radial direction and is bent in a zigzag shape and arranged in the circumferential direction as follows. For some reason. That is, in the conventional strain-sensitive material, the strain-sensitive sensitivity in the longitudinal direction is high, but the strain-sensitive sensitivity in the width direction (direction orthogonal to the longitudinal direction) is very low, so that the strip-shaped conductivity The strain-sensitive material made of the material needs to be arranged in the longitudinal direction along the radial direction of the diaphragm 101a, which is the direction in which the strain generated in the diaphragm 101a is generated according to the applied force.
  • the resistance value is too small if only one strip-shaped conductive member is arranged in the radial direction. Therefore, the total length of the thin metal wire or the metal foil is lengthened to obtain a desired resistance. It was necessary to secure a value to obtain an appropriate detection output voltage.
  • each of the strain-sensitive materials 104X1, 104X2, 104Y1, 104Y2, 104Z1, 104Z2, 104Z3, 104Z4 has a strain-sensitive length L of the diaphragm 102 in the radial direction. Although it is long, a relatively large area is required because a large resistance value is secured by bending it in a zigzag shape in the circumferential direction.
  • the diaphragm 101a undergoes strain deformation not only in the radial direction but also in the circumferential direction. Then, as described above, the strain-sensitive material 104 is in a state of being arranged in the circumferential direction of the diaphragm 101a, but as described above, the conventional strain-sensitive material 104 has a strip shape. Since the strain-sensitive sensitivity is very small (almost not detected) in the width direction of the conductive material, the conventional strain-sensitive material 104 hardly detects strain deformation in the circumferential direction.
  • strain-sensitive material 104 is made of a semiconductor material such as carbon, silicon, or germanium
  • the crystal orientations of the semiconductor materials having a high gauge ratio are arranged in the longitudinal direction according to the above, and the longitudinal direction thereof is It is provided along the radial direction (strain generation direction).
  • the above-mentioned conventional strain-sensitive material 104 (104X1, 104X2, 104Y1, 104Y2, 104Z1, 104Z2, 104Z3, 104Z4) receives strain only in the longitudinal direction thereof, as described above. Since the effective part that senses strain is the length part in the radial direction (strain generation direction) of the force sensor 103, the applied force is detected with a predetermined strain sensitivity. This means that it is difficult to reduce the diameter of the force sensor 103.
  • a bridge circuit for each axial direction is required, and the conductor pattern for forming the bridge circuit is the flexible substrate 103a of the force sensor 103. Often formed on top.
  • the conventional strain-sensitive material 104 occupies a large occupied area in the radial direction and the circumferential direction of the force sensor 103, there is also a problem that it is difficult to take a space for forming the bridge circuit.
  • a reference resistor is required as the bridge circuit for the X-axis direction and the Y-axis direction, and this reference resistor needs to be provided outside the force sensor 103. There is also.
  • An object of the present invention is to provide a force sensor capable of solving the above problems.
  • a strain-sensitive material is arranged on at least one surface of the plate-shaped member, and the strain-sensitive material senses the strain generated in the plate-shaped member in response to the force applied to the surface of the plate-shaped member.
  • the strain-sensitive material is made of a strip-shaped conductive material, and has a first surface portion of the plate-shaped member centered on a force applied portion applied to the surface portion of the plate-shaped member.
  • a force sensor characterized in that the ring-shaped region of the above and the first ring-shaped region are arranged corresponding to each of the second ring-shaped regions having different distances from the force application portion.
  • the strain sensitizer is arranged in the first ring-shaped region and the second ring-shaped region centered on the force applied portion applied to the surface portion of the plate-shaped member. Therefore, it is possible to detect the extension strain on one side of the strain-sensitive material in the first ring-shaped region and the strain-sensitive material in the second ring-shaped region, and the contraction strain on the other side.
  • strain-sensitive material for example, by using a Cr thin film composed of Cr and unavoidable impurities, or a strip-shaped conductive material composed of a Cr—N thin film composed of Cr, N and unavoidable impurities, a compact and highly sensitive material is used. A force sensor can be obtained.
  • FIG. 1 shows a force detecting member 2 using the force sensor 1 of this embodiment.
  • the force detecting member 2 of this example is composed of a pedestal portion 21, a force receiving portion 22, and a force sensor 1.
  • FIG. 1A is a side view of the force detecting member 2 of this example viewed from a direction parallel to the surface portion 10a of the plate-shaped member 10 of the force sensor 1
  • FIG. 1B is one of the plate-shaped members 10.
  • FIG. 1 (C) is a perspective view of the surface portion 10b on the side opposite to the surface portion 10a of the plate-shaped member 10 viewed from an oblique direction
  • FIG. 1 (C) is a perspective view of one surface portion 10a side of the plate-shaped member 10 viewed from an oblique direction.
  • FIG. 1 (E) is a vertical cross-sectional view of the force detecting member 2 on the pedestal portion 21 side.
  • FIG. 2 and 3 are diagrams for explaining a configuration example of the force sensor 1 according to the embodiment of the present invention.
  • the force sensor 1 of this example is formed by disposing a plurality of strain-sensitive materials 11 on one surface portion 10a of a plate-shaped member 10 made of an elastic insulating member.
  • FIG. 2 shows the arrangement positions of the plurality of strain-sensitive members 11 arranged on one surface portion 10a of the plate-shaped member 10 of the force sensor 1 of this embodiment, and the plate-shaped member 10 according to the applied force. The relationship with the strain generated in is shown.
  • FIG. 3A one surface portion 10a of the plate-shaped member 10 is formed with a plurality of strain-sensitive materials 11 and a conductive pattern 12 for electrically connecting them.
  • the conductive pattern 12 is omitted.
  • FIG. 3B is a side view of the force sensor 1 as viewed from a direction parallel to the surface portion of the plate-shaped member 10.
  • the plate-shaped member 10 is formed of a disc shape having a constant thickness d.
  • the plate-shaped member 10 is composed of a plate made of an elastic material, for example, a metal plate, and in this example, a SUS.
  • an insulating layer (not shown) is provided on one surface 10a side of the plate-shaped member 10 to form an insulating member. Then, as will be described later, the strain-sensitive material 11 and the conductive pattern 12 are formed by forming a film on the insulating layer on one surface 10a side of the plate-shaped member 10, so that the force sensor 1 is formed. ..
  • a strain-sensitive material is arranged on a flexible substrate as in the conventional case, and the strain-sensitive material is not adhered to the strain-generating body constituting the diaphragm by an adhesive. It is possible to avoid problems such as variations in strain-sensitive characteristics due to the influence of the material.
  • the pedestal portion 21 of the force detecting member 2 is composed of a tubular member having the same outer diameter as the disc-shaped plate-shaped member 10 of the force sensor 1. ..
  • the pedestal portion 21 is made of SUS in this example.
  • the peripheral edge portion 10E (see FIGS. 2 and 3) of the surface portion 10a of the plate-shaped member 10 of the force sensor 1 is joined to the end surface having a thickness determined by the outer diameter and the inner diameter of the pedestal portion 21. As a result, the force sensor 1 is fixed to the pedestal portion 21.
  • the joining method in this case may be welding or a method of joining with an adhesive.
  • the method of connecting the pedestal portion 21 and the force sensor 1 is not limited to the joining as in this example, and the pedestal portion 21 and the plate-shaped member 10 may be integrally formed, or the pedestal portion 21 may be integrally formed.
  • the plate-shaped member 10 may be sandwiched and fixed by a tubular body having the same outer diameter and inner diameter.
  • the force receiving unit 22 has a function of receiving the applied force and transmitting it to the plate-shaped member 10 of the force sensor 1, and in this example, it is a rod-shaped member made of, for example, SUS.
  • One end of the force receiving portion 22 in the axial direction is coupled to the plate-shaped member 10 at the central portion of the plate-shaped member 10 of the force sensor 1.
  • the screw 23 is screwed into the axial end of the force receiving portion 22 via the plate-shaped member 10, so that the force receiving portion 22 is screwed. Is bonded to the plate-shaped body portion 10. As shown in FIG.
  • a through hole 10c into which the screw 23 is inserted is formed in the central portion of the plate-shaped member 10 of the force sensor 1.
  • the plate-shaped member 10 is sandwiched between the columnar head 23a of the screw 23 and the axial end of the force receiving portion 22 at the center thereof, so that the force receiving portion 22 is a force sensor.
  • the method of connecting the force receiving unit 22 and the force sensor 1 is not limited to screwing as in this example.
  • one end of the force receiving portion 22 in the axial direction may be joined to the central portion on the opposite side of the surface portion 10a of the plate-shaped member 10 by welding or the like, or may be joined by an adhesive material. May be good.
  • the force receiving unit 22 and the plate-shaped member 10 may be integrally formed.
  • one end of the force receiving portion 22 in the axial direction is connected at the center of the surface portion opposite to the one surface portion 10a of the force sensor 1, but the plate-shaped member 10
  • the coupling may be performed on the surface portion 10a side.
  • the peripheral portion 10E thereof is fixed to the pedestal portion 21, and the force receiving portion 22 is screwed at the central portion thereof by, for example, a screw 23. Since they are combined, as shown in FIG. 1D, a ring-shaped region RG having a width W between the position of the peripheral edge of the cylindrical head 23a of the screw 23 and the position of the inner diameter of the tubular pedestal portion 21. Is a region where elastic strain can be generated according to the force applied to the force receiving unit 22.
  • the plate-shaped member 10 of the force sensor 1 The ring-shaped region RG whose radius centered on the center position Occ is in the range of ri ⁇ r ⁇ ro is a region where elastic strain is generated corresponding to the force transmitted from the force receiving unit 22.
  • the ring-shaped region RG having a width W of one surface portion 10a of the plate-shaped member 10 Is provided with a plurality of strain-sensitive materials 11.
  • the plate-shaped member 10 of the force sensor 1 has a disk shape having a constant thickness d, is fixed by the peripheral edge portion 10E thereof, and has its center position Occ. (See FIG. 2A), a force is applied through the force receiving unit 22.
  • the plate-shaped member 10 of the force sensor 1 receives a force (force in the Z-axis direction) in the direction orthogonal to the surface portion 10a via the force receiving portion 22, the plate-shaped member 10 is shown in FIG. 2 (B). As shown, it elastically deforms so that it protrudes downward. In this case, when the force other than the force in the Z-axis direction is zero, the plate-shaped member 10 causes the same strain over the entire circumference at the same radial position in the radial direction from the center Occ. Then, the strain becomes according to the magnitude of the applied force, and as shown in FIG. 2 (B), becomes an extension strain in the first ring-shaped region RG1, and also becomes a second ring. In the shape region RG2, shrinkage strain occurs, and strains in opposite directions occur.
  • strain-sensitive materials 11 are provided in the first ring-shaped region RG1 and the second ring-shaped region RG2, respectively, and the elongation strain in the first ring-shaped region RG1 and the second ring-shaped region RG2 are provided.
  • the force in the Z-axis direction can be detected. That is, the resistance values of the strain-sensitive material 11 provided in the first ring-shaped region RG1 and the strain-sensitive material provided in the second ring-shaped region RG2 change in opposite directions (increase direction and decrease direction). Therefore, the force applied to the force sensor 1 in the Z-axis direction can be detected based on the change in the resistance value.
  • the plate-shaped member 10 when a force (force in the X-axis direction or Y-axis direction) in the direction parallel to the surface portion 10a of the plate-shaped member 10 of the force sensor 1 is received via the force receiving portion 22, the plate-shaped member 10 is shown in FIG. As shown in C), strain deformation is performed so as to asymmetrically undulate around the center position Occ of the plate-shaped member 10. The degree of strain deformation depends on the magnitude of the applied force, and as shown in FIG. 2C, the plate-shaped member 10 has strains in opposite directions with the center Occ as the center. Occurs.
  • contraction strain occurs in the first ring-shaped region RG1 on the front side of the center position Occ when viewed from the direction of the force applied to the force receiving unit 22. Further, elongation strain occurs in the second ring-shaped region RG2. Further, when viewed from the direction of the force applied to the force receiving unit 22, extension strain occurs in the first ring-shaped region RG1 behind the center position Occ, and the outer second ring-shaped region Shrinkage strain occurs in RG2.
  • the strain in the innermost peripheral portion thereof becomes large
  • the strain-sensitive material 11 is arranged corresponding to the portion where the strain becomes large.
  • the change in resistance value according to the strain of the strain-sensitive material 11 arranged in the first ring-shaped region RG1 and the strain of the strain-sensitive material 11 arranged in the second ring-shaped region RG2 The force component in the X-axis direction or the Y-axis direction can be detected from the corresponding change in the resistance value.
  • the first ring-shaped region RG1 and the second ring-shaped region RG2 on the front side of the center position Occ, and the first ring-shaped region RG1 and the second ring-shaped region RG2 on the rear side are Then, since the mode of the generated strain is opposite, the difference between the strain detection outputs detected by the strain sensitive material 11 on each of the front side and the back side of the center position Occ is taken in the X-axis direction. Alternatively, as the detection output of the force component in the Y-axis direction, a detection output having a synergistic magnitude can be obtained.
  • the force detecting member 2 of the embodiment has the plate-shaped member of the force sensor 1.
  • a 3-axis force sensor is configured.
  • a force applied in the axial direction of the force receiving unit 22 orthogonal to the surface portion 10a of the plate-shaped member 10 of the force sensor 1 is received as a force in the Z-axis direction. Detect the size.
  • the force in the orthogonal direction is received as the force in the X-axis direction and the Y-axis direction, and the magnitude thereof is detected.
  • a plate-shaped member 10 made of a disk is shown as shown by being divided by a dotted line in FIGS. 2 (A) and 3 (A).
  • One surface portion 10a is divided into four in the circumferential direction, and each is divided into four fan-shaped regions SX1, SY1, SX2, and SY2 in a 90 degree angle range.
  • the fan-shaped regions SX1 and SX2 face each other in the X-axis direction with the center position Occ as the center, and the fan-shaped regions SY1 and SY2 have the center position Occ. It is configured to face the Y-axis direction as a center.
  • the first ring-shaped region RG1 and the second ring-shaped region RG1 and the second ring-shaped region RG1 and the second ring-shaped region RG1 and the second ring-shaped region RG1 and the second ring-shaped region RG1 and the second ring-shaped region RG1 and the second The strain-sensitive material 11 is arranged so as to detect strains (extension strain and contraction strain) that occur in opposite directions in the ring-shaped region RG2.
  • a strain-sensitive material 11 is provided for each of the above.
  • the first ring-shaped region RG1 and the second ring can be configured so that the bridge circuit constituting the strain detection circuit can be configured.
  • Two strain-sensitive materials 11 are provided in each circumferential direction with the shape region RG2.
  • the strain-sensitive material 11 provided in each of the fan-shaped regions SX1, SY1, SX2, and SY2 of one surface portion 10a of the plate-shaped member 10 can be distinguished.
  • a parenthesis is attached to the reference code 11, and another reference code is attached in the parentheses.
  • the reference code in parentheses is used. I decided to.
  • the first ring-shaped region RG1 has two strain-sensitive materials X1 and X2 along the circumferential direction thereof.
  • the second ring-shaped region RG2 is provided with two strain-sensitive materials X3 and X4, respectively, along the circumferential direction thereof.
  • the first ring-shaped region RG1 has two strain-sensitive materials X5 and X6 along the circumferential direction thereof, and the second ring-shaped region RG2 has two strain-sensitive materials X5 and X6 in the circumferential direction.
  • Two strain-sensitive materials X7 and X8 are provided along the line, respectively.
  • the first ring-shaped region RG1 has two strain-sensitive materials Y1 and Y2 along its circumferential direction
  • the second ring-shaped region RG2 has two strain-sensitive materials Y1 and Y2 in its circumferential direction.
  • Two strain-sensitive materials Y3 and Y4 are provided along the line.
  • the first ring-shaped region RG1 has two strain-sensitive materials Y5 and Y6 along the circumferential direction thereof
  • the second ring-shaped region RG2 has two strain-sensitive materials Y5 and Y6 in the circumferential direction.
  • Two strain-sensitive materials Y7 and Y8 are provided along the line.
  • the strain-sensitive material 11 in this embodiment, a conductive material whose resistance value changes according to strain deformation, and a strip-shaped conductor (strip-shaped conductor) having a predetermined width k is used.
  • a strip-shaped conductive material of a strain-sensitive material having excellent characteristics as described below is used.
  • a strip-shaped conductor strip-shaped conductor using a strain-sensitive material such as a Cu—Ni alloy, which is generally used in the past, has a strain-sensitive sensitivity only in the longitudinal direction thereof. Not done. Therefore, as shown in FIG. 8B, the strain-sensitive material made of strip-shaped conductors has its longitudinal direction in the radial direction (radiation direction seen from the point where the force is applied), which is the direction in which the strain is generated. In addition to arranging them together, since the resistance value of the material is low, it is necessary to form a zigzag pattern in which a plurality of folds are made in the circumferential direction to increase the resistance value.
  • the pattern area thereof becomes large, and in particular, it is necessary to set the length of the plate-shaped member 10 of the strain-sensitive material pattern in the radial direction to a predetermined length. If this is arranged in the first ring-shaped region RG1 and the second ring-shaped region RG2, the size (diameter) of the plate-shaped member 10 (diaphragm) cannot be reduced. , It is difficult to miniaturize the force sensor 1.
  • the strip-shaped conductive material used as the strain-sensitive material is composed of a Cr thin film composed of Cr and unavoidable impurities, or a Cr—N thin film composed of Cr, N and unavoidable impurities (Patent No. 6084393). See Publication No. 2 (described in the column of Prior Art Documents as Patent Document 2). In the embodiment described below, a Cr—N thin film is used as the strain sensitive material 11.
  • the strip-shaped conductive material composed of this Cr—N thin film has no directional sensitivity to strain (isotropic), and has sensitivity not only in the longitudinal direction but also in the width direction (lateral direction). Moreover, the gauge rate that regulates the magnitude of the sensitivity is also high. Further, as described in Patent Document 2, the Cr—N thin film not only has a high gauge ratio, but also has a temperature coefficient of resistance (TCR) that can be controlled to about zero ( ⁇ 50 ppm / ° C.). It is stable against temperature changes, has a high resistance (several tens of k ⁇ ), and has a feature that the pattern area of the strain sensitive material 11 may be small.
  • TCR temperature coefficient of resistance
  • the strain-sensitive material 11 is arranged on one surface portion 10a of the plate-shaped member 10 as described below by utilizing the above-mentioned characteristics of the strain-sensitive material 11.
  • the strain-sensitive material 11 having a high resistivity provides a high resistance value in a small area, and the strain generated by this can be detected pinpointly, so that high sensitivity can be achieved, and further, the high resistance makes it small.
  • the strain-sensitive material 11 having an area may be sufficient, and the force sensor 1 can be miniaturized.
  • the strain-sensitive material 11 made of a strip-shaped conductive material has a plate-like longitudinal direction as shown by hatching in FIGS. 2 (A) and 3 (A).
  • the radial direction seen from the point where the force is applied to the member 10 is not aligned in the longitudinal direction, but is arranged along the circumferential direction.
  • each of the plurality of strain-sensitive materials 11 has an arc shape, and is arranged on the surface portion 10a of the plate-shaped member 10 along the circumferential direction.
  • the strip-shaped conductive materials constituting the strain-sensitive material 11 are the first ring-shaped region RG1 and the second ring according to the force applied to the plate-shaped member 10.
  • the width direction is aligned with the pinpoint at the site where the strain generated in each of the shape regions RG2 is generated.
  • the force sensor 1 can detect the strain with sufficient sensitivity and while maintaining the magnitude of the detected output voltage. That is, when the longitudinal direction of the strain-sensitive material 11 made of a strip-shaped conductive material having a width k is arranged along the circumferential direction, the width direction portion of the width k of the strain-sensitive material 11 Strain is detected in, and strain detection in the width direction portion of the width k is performed over the length of the strain sensitizing material 11 in the longitudinal direction.
  • the plate-shaped member 10 is elastically deformed according to the applied force, strain is generated not only in the radial direction centered on the center position Occ of the plate-shaped member 10 but also in the circumferential direction, but the strain is received.
  • the sensitive material 11 is also displaced according to the strain in the circumferential direction, and by changing its resistance value, the strain in the circumferential direction is also detected.
  • the resistance value of the conductive material constituting the strain-sensitive material 11 of this embodiment is high, and the strain-sensitive material having a small area can be provided according to the local strain while maintaining low power consumption. .. Therefore, in the force sensor 1 of this embodiment, the strain corresponding to the applied force can be sufficiently detected in each of the strain-sensitive materials 11.
  • the strain-sensitive materials X1, X2, X5, X6 and the strain-sensitive materials Y1, Y2, which are arranged in the first ring-shaped region RG1 on one surface portion 10a of the plate-shaped member 10.
  • Y5 and Y6 are positions where a large strain is generated in response to the force applied in the first ring-shaped region RG1, in this example, in the width direction (radial direction) of the first ring-shaped region RG1. It is arranged at or near the innermost peripheral position separated by a radius ri from the central position Occ.
  • the width direction of the strip-shaped conductive material constituting each of the strain-sensitive materials X1, X2, X5, X6 and the strain-sensitive materials Y1, Y2, Y5, Y6 is set in the first ring-shaped region RG1.
  • the width direction (radial direction) where the generated strain is large pinpoint the position on the innermost peripheral side or its vicinity, which is separated from the center position Oct by a radius of ri, and the longitudinal direction of the strip-shaped conductive material. It is arranged according to the circumferential direction in which strain is generated.
  • the strain-sensitive materials X1, X2, X5, X6 and the strain-sensitive materials Y1, Y2, Y5, Y6 are located at the same radial position from the center position Occ on one surface portion 10a of the plate-shaped member 10. Is arranged along the circumferential direction according to the strain generation position.
  • strain-sensitive materials X3, X4, X7, X8 and the strain-sensitive materials Y3, Y4, Y7, Y8 arranged in the second ring-shaped region RG2 are applied in the second ring-shaped region RG2.
  • a position where a large amount of strain is generated according to the applied force in this example, the outermost peripheral side position in the width direction (radial direction) of the second ring-shaped region RG2, which is separated by a radius r0 from the center position Occ, or its vicinity. Is arranged in.
  • the strain-sensitive materials X3, X4, X7, X8 and the strain-sensitive materials Y3, Y4, Y7, Y8 are located in the second ring-shaped region RG2 of one surface portion 10a of the plate-shaped member 10 from the center position Occ. At the same radial position, they are arranged along the circumferential direction according to the strain generation position.
  • the strain sensitive material 11 is arranged at the center of the first ring-shaped region RG1 and the second ring-shaped region RG2 in the radial direction, but in practice.
  • the strain is arranged at the position where the magnitude of the strain is maximized.
  • strain-sensitive materials X1, X2, X5, X6 and the strain-sensitive materials Y1, Y2, Y5, Y6 arranged in the first ring-shaped region RG1 and the strain-sensitive materials Y1, Y2, Y5, Y6 are arranged in the second ring-shaped region RG2.
  • the strain-sensitive materials X3, X4, X7, X8 and the strain-sensitive materials Y3, Y4, Y7, Y8 are the center positions of the plate-shaped member 10 as shown in FIGS. 2 (A) and 3 (A). It is arranged so as to be aligned in the radial direction centered on Occ, that is, in the strain generation direction.
  • the strain-sensitive materials X3, X4, X7, X8 and the strain-sensitive materials Y3, Y4, Y7, Y8 arranged in the region RG2 at least two of them are arranged in the radial direction (radial direction) from the center position Occ.
  • the strain-sensitive material 11 is configured so that the resistance values when no strain is generated are equal.
  • the plate-shaped member 10 is arranged in the circumferential direction in the first ring-shaped region RG1 so that the strain sensitivity is equal in all the radial directions set to the central position Occ.
  • the strain-sensitive materials X1, X2, X5, X6 and the strain-sensitive materials Y1, Y2, Y5, and Y6 all have the same resistance value when no strain is generated. Therefore, in this example, all of the strain-sensitive materials X1 to X8 and the strain-sensitive materials Y1 to Y8 are formed so that the resistance values when no strain is generated are equal.
  • the resistance value of the strain-sensitive material 11 is determined by the width of the strip-shaped conductive material, the length in the longitudinal direction, the thickness, and the material of the conductive material.
  • Cr—N is used as the material for all the strip-shaped conductive materials of the strain-sensitive materials X1 to X8 and the strain-sensitive materials Y1 to Y8, the width and length of the conductive material.
  • the resistance value when no strain is generated is made equal.
  • strain is not generated by adjusting the width, length, and thickness of the strip-shaped conductive materials of the strain-sensitive materials X1 to X8 and the strain-sensitive materials Y to Y8, respectively.
  • the resistance values of may be equal.
  • the strip-shaped conductive material made of Cr—N used in the strain-sensitive material 11 of the force sensor 1 of this embodiment is formed on a flexible substrate as in a conventional example. Instead, it can be formed directly on the plate-shaped member 10 itself, which is a strain-causing body, as a thin film.
  • each of the strain-sensitive materials 11 is formed into a thin film in advance on one surface portion 10a of the plate-shaped member 10, and the conductor pattern 12 is the same. It is formed by forming a film. Therefore, the production of the force sensor 1 of this embodiment does not require a step of adhering the flexible substrate in which the strain-sensitive material is patterned and arranged by the adhesive, so that mass production is easy. Then, the force sensor 1 of this embodiment is connected to the pedestal portion 21 at the peripheral edge portion 10E of the plate-shaped member 10, and the force receiving portion 22 is connected by, for example, screwing at the central portion of the plate-shaped member 10. Since the force detecting member 2 can be generated, the force detecting member 2 is also characterized by being easy to manufacture.
  • the four strain-sensitive materials arranged in each of the fan-shaped regions SX1, SY1, SX2, and SY2 of the one surface portion 10a of the plate-shaped member 10 are used.
  • the bridge circuit that constitutes the strain detection circuit is configured.
  • a bridge circuit is formed in each of the fan-shaped regions SX1, SY1, SX2, and SY2.
  • the conductive pattern 12 is shown as a white line pattern in order to distinguish it from the strain-sensitive material 11 shown with hatching.
  • FIG. 4 is a diagram showing a configuration of a bridge circuit formed by electrically connecting four strain-sensitive materials X1 to X4 by a conductive pattern 12 in a fan-shaped region SX1 as a typical example.
  • the force is applied to the first ring-shaped region RG1 in which the strain-sensitive material X1 exists and the second ring-shaped region RG2 in which the strain-sensitive material X3 exists. Since strains are received in opposite directions according to the force applied, the resistance values of the strain-sensitive material X1 and the strain-sensitive material X3 change in opposite directions. Then, a voltage corresponding to the difference between the resistance value of the strain-sensitive material X1 and the resistance value of the strain-sensitive material X3 is obtained at the output terminal tO ( ⁇ ), and the output terminal tO (+) is strained.
  • a voltage in the direction opposite to that of the output terminal tO ( ⁇ ) is obtained according to the difference between the resistance value of the sensitive material X2 and the resistance value of the strain sensitive material X4. Therefore, the difference voltage between the voltage obtained at the output terminal tO ( ⁇ ) and the output voltage obtained at the output terminal tO (+) corresponds to the force component of the force applied to the force sensor 1 in the X-axis direction.
  • the output voltage EX1 is obtained.
  • a bridge circuit is formed in the same manner, and an output voltage corresponding to the force applied to the force sensor 1 can be obtained. That is, in the case of the fan-shaped region SX2, as shown in parentheses in FIG. 4, the strain-sensitive material X5 replaces the strain-sensitive material X1 in the fan-shaped region SX1, and the strain-sensitive material X5 replaces the strain-sensitive material X2.
  • the sensitive material X6 is obtained at the output terminal tO (-) by connecting the strain sensitive material X7 instead of the strain sensitive material X3 and the strain sensitive material X8 instead of the strain sensitive material X4. As the difference voltage between the voltage and the output voltage obtained at the output terminal tO (+), the output voltage EX2 corresponding to the force component of the force applied to the force sensor 1 in the X-axis direction is obtained.
  • the strain-sensitive material Y1 replaces the strain-sensitive material X1 and the strain-sensitive material Y2 replaces the strain-sensitive material X2 in FIG.
  • the strain-sensitive material Y3 instead of the strain-sensitive material X4
  • the strain-sensitive material Y4 instead of the strain-sensitive material X4
  • the voltage obtained at the output terminal tO (-) and the voltage obtained at the output terminal tO (+) are obtained.
  • an output voltage EY1 corresponding to the force component of the force applied to the force sensor 1 in the Y-axis direction is obtained.
  • the strain-sensitive material Y5 replaces the strain-sensitive material X1 and the strain-sensitive material Y6 replaces the strain-sensitive material X2 in FIG.
  • the strain-sensitive material Y7 instead of the strain-sensitive material X4 and the strain-sensitive material Y8 instead of the strain-sensitive material X4
  • the voltage obtained at the output terminal tO (-) and the voltage obtained at the output terminal tO (+) are obtained.
  • an output voltage EY2 corresponding to the force component of the force applied to the force sensor 1 in the Y-axis direction is obtained.
  • the output voltage EZ for the Z-axis direction force component of the force applied to the receiving unit 22 the output voltage EX for the X-axis direction force component, and the output voltage EY for the Y-axis direction force component are as follows. Obtained from the arithmetic formula.
  • the first ring-shaped region RG1 which is a region different from the center position of the disc-shaped plate-shaped member 10 in the radial direction (radial direction).
  • the strain-sensitive material 11 sets the width direction position of the strip-shaped conductive material to the radial position of each of the ring-shaped regions RG1 and RG2 in accordance with the strain generation position, and also sets the strip-shaped conductive material. Since the longitudinal direction of the material is arranged along the circumferential direction that matches the strain generation position, the area of the strain-sensitive material 11 that occupies the radial direction of the disc-shaped plate-shaped member 10 can be reduced. The radius of the plate-shaped member 10 can be reduced, and the force sensor 1 can be miniaturized.
  • the force sensor 1 of this embodiment a thin film of the strain-sensitive material 11 is directly formed on the plate-shaped member 10, and the strain-sensitive materials 11 for forming a bridge circuit are electrically connected to each other. Since the conductive pattern for this purpose is also formed on the plate-shaped member 10, a strain-sensitive material is formed on the flexible substrate and the flexible substrate is used as a strain-causing body as in the conventional force sensor described at the beginning. It is not necessary to adhere to the plate-shaped member of the above with an adhesive. Therefore, the force sensor 1 can be easily manufactured, and there is an advantage that the strain sensitivity is not lowered or varied due to the presence of the adhesive as in the conventional case, and the stress-strain characteristic is not changed. Further, since the temperature characteristics of the flexible substrate (polyimide, etc.) are different from those of the diaphragm and the plate-shaped member, the temperature characteristics of the force sensor are affected, but there is an advantage that it is not necessary to consider this.
  • the strain sensitive material 11 is composed of a Cr—N thin film composed of Cr, N and unavoidable impurities, the strain sensitive sensitivity does not depend on the directionality and is high. It also has the effect of realizing a sensitive force sensor. As described above, the strain sensitive material 11 may be a Cr thin film composed of Cr and unavoidable impurities.
  • a bridge circuit can be configured to detect, and the outputs of the plurality of bridge circuits can be used to detect the X-axis direction component, Y-axis direction component, and Z-axis direction component of the applied force with high sensitivity. Can be detected.
  • the applicant created a force sensor using a conventional strain-sensitive material as a comparative example, and simulated the strain detection of both.
  • This comparative example and the simulation result will be described with reference to FIG.
  • FIG. 5B shows the force sensor 1 of this embodiment.
  • the shape of the strain-sensitive material arranged in each fan-shaped region SX1, SX2, SY1, SY2 is this. It is different from the strain-sensitive material 11 of the force sensor 1 of the embodiment. That is, the strain-sensitive material of the force sensor 1'in the comparative example has a zigzag pattern as shown in the figure.
  • FIGS. 5A and 5B reference numerals are arranged on behalf of the fan-shaped region SX1, and in the force sensor 1'of the comparative example, the fan-shaped region SX1 is zigzag.
  • the strain-sensitive materials X1'to X4' of the shape pattern are arranged.
  • the strain-sensitive materials generally used in the past are not limited to Cu—Ni alloys, but have a large anisotropy in the strain-sensitive direction, and the sensitivity of the strip-shaped strain-sensitive material in the width direction. Therefore, it was necessary to arrange the pattern so that the length of the plate-shaped member 10 changes in the radial direction. Since the resistance value of the strain-sensitive material is low, the strain-sensitive materials X1'to X4' are formed into a zigzag pattern in which a plurality of times are folded back, as shown in FIG. 5A, from the viewpoint of heat generation and current consumption. The resistance value is increased.
  • the force sensor 1'of the comparative example of FIG. 5 (A) and the force sensor 1 of this embodiment of FIG. 5 (B) having the above configuration are coupled to the center position of the plate-shaped member 10.
  • the simulation result when the same force in the Z-axis direction (direction orthogonal to the plate-shaped member 10) is applied through the rod-shaped force receiving unit 22 (not shown in FIG. 5) is shown in FIG. 5 (FIG. 5). It will be as shown in the table of C).
  • the detected strain amount shown at the right end of FIG. 5C is the total strain amount detected in the fan-shaped region SX1 by the strain-sensitive materials X1'to X4' in the force sensor 1'.
  • the outer diameter of the plate-shaped member 10 of the force sensor 1 and the force sensor 1' is 6 mm
  • the thickness of the plate-shaped member 10 is 0.5 mm
  • the diameter of the force receiving portion 22 is 2 mm
  • the plate-shaped member is set to 0.7 mm.
  • the strain-sensitive materials X1'to X4' have the diameters of the plate-shaped members 10. It can be seen that only the strain change in the direction is detected, and the strain change in the circumferential direction of the plate-shaped member 10 cannot be detected.
  • the strain-sensitive materials X1'to X4' have a zigzag pattern in order to increase the resistance value, so that the detection area becomes large and the maximum strain concentrated on the pinpoint. Is difficult to detect. Then, in the force sensor 1'of the comparative example, it is not possible to obtain a practical resistance value, considering that the strain-sensitive materials X1'to X4' are formed as a pattern with a full bridge configuration and the like with high accuracy (plate). When the diameter of the shape member 10 is 6 mm, it is 100 ⁇ or less), and the detection output detected when the bridge circuit as shown in FIG. 4 is configured can be obtained, for example, only a value of 0.1 mV / V or less.
  • the strain-sensitive materials X1 to X4 of the force sensor 1 of this embodiment not only the strain change in the radial direction of the plate-shaped member 10 but also the strain change in the circumferential direction of the plate-shaped member 10 can be detected. I understand. Then, as shown at the right end of FIG. 5C, the total amount of strain detected in the fan-shaped region SX1 of the force sensor 1 of this embodiment is detected in the sector region SX1 of the force sensor 1 ′ of the comparative example. It can be seen that the amount of distortion is more than twice the total amount.
  • the strain-sensitive materials X1 to X4 of the force sensor 1 of this embodiment are composed of Cr—N thin films capable of forming a thin film into a pattern by a fine process, a high resistance (a thin pattern of 50 ⁇ m or less is formed by the fine process). It can be formed, the surface resistance is high because the film is thin, and the k ⁇ order is possible). Further, according to the strain-sensitive materials X1 to X4 of the force sensor 1 of this embodiment, it is possible to form the strip-shaped pattern by the width direction (lateral sensitivity) of the strip-shaped pattern. It saves space and enables pinpoint strain detection. Further, since the Cr—N thin film itself has a high gauge ratio, a high output can be obtained even with the same strain value. An output of several mV / V can be obtained as an output when the bridge circuit as shown in FIG. 4 is configured, and a high-output compact force sensor can be realized.
  • strain-sensitive material 11 is arranged along the longitudinal direction of the strip-shaped conductive material along the circumferential direction of the plate-shaped member 10
  • the plate-shaped member 10 is divided in the circumferential direction.
  • the length in the longitudinal direction is shorter than the angle of the fan-shaped region, the length in the longitudinal direction of the strip-shaped conductive material is limited, and the resistance value. Will also be restricted.
  • FIG. 6 shows an example force sensor 1A that improves this problem.
  • the same reference numerals are given to the same parts as the force sensor 1 of the above-described embodiment, and detailed description thereof will be omitted.
  • the first ring-shaped region RG1 and Two strain-sensitive materials 11A are provided in each of the second ring-shaped region RG2 in the circumferential direction, and the pattern shape of the strain-sensitive material 11A in the force sensor 1A of this example is the above-described embodiment. It is different from the strain sensitive material 11 of the force sensor 1.
  • Other configurations are the same as the force sensor 1A of this example and the force sensor 1 of the example of the above-described embodiment.
  • the portion of the strain-sensitive material 11A is shown with hatching, and the conductive pattern 12A that electrically connects the strain-sensitive material 11A is shown as a white line pattern.
  • the strain-sensitive material 11A is arranged at the center of the first ring-shaped region RG1 and the second ring-shaped region RG2 in the radial direction, but in practice. Of course, as shown in FIG. 2, the strain is arranged at the position where the magnitude of the strain is maximized.
  • a parenthesis is attached to the reference numeral 11A so that the material 11A can be distinguished, and another reference numeral is attached within the parenthesis.
  • the strain-sensitive material 11A when it is not necessary to distinguish the strain-sensitive material 11A, it will be described as it is as the strain-sensitive material 11A, and when it is necessary to distinguish it, it will be described using the reference reference numerals in parentheses.
  • two strain-sensitive materials X1A and X2A are provided in the first ring-shaped region RG1 and two strain-sensitive materials X1A and X2A are provided in the second ring-shaped region RG2.
  • the strain-sensitive materials X3A and X4A are provided in their circumferential directions, respectively.
  • two strain-sensitive materials X5A and X6A are provided in the first ring-shaped region RG1
  • two strain-sensitive materials X7A and X8A are provided in the second ring-shaped region RG2. It is provided in each of the circumferential directions.
  • two strain-sensitive materials Y1A and Y2A are provided in the first ring-shaped region RG1, and two strain-sensitive materials Y3A and Y4A are provided in the second ring-shaped region RG2. It is provided in each direction.
  • two strain-sensitive materials Y5A and Y6A are provided in the first ring-shaped region RG1, and two strain-sensitive materials Y7A and Y8A are provided in the second ring-shaped region RG2. It is provided in each direction.
  • the strain-sensitive material 11A is composed of a Cr thin film composed of Cr and unavoidable impurities, or a Cr—N thin film composed of Cr, N and unavoidable impurities, similarly to the strain-sensitive material 11 of the above-described embodiment.
  • a strip-shaped conductive material having a predetermined width is used.
  • a Cr—N thin film is used as the strip-shaped conductive material of the strain-sensitive material 11A.
  • the strain-sensitive material 11A has the longitudinal direction of the strip-shaped conductive material as the direction along the circumferential direction of the plate-shaped member 10. At the same time, by folding back in a zigzag shape in the radial direction, the total length of the strip-shaped conductive material in the longitudinal direction is made longer than the strain-sensitive material 11 of the force sensor 1 of the above-described embodiment.
  • a plurality of strip-shaped conductive materials in the circumferential direction centered on the center position Occ of the plate-shaped member 10 are centered on the center position Occ of the plate-shaped member 10. It is arranged in the radial direction, and the longitudinal ends of the plurality of strip-shaped conductive materials are sequentially connected to each other to form one strip-shaped conductive material.
  • all of the strain-sensitive materials X1A to X8A and the strain-sensitive materials Y1A to Y8A are formed so that the resistance values when no strain is generated are equal.
  • strain is generated by making the width and thickness of all the strip-shaped conductive materials of the strain-sensitive materials X1A to X8A and the strain-sensitive materials Y1A to Y8A equal to the total length in the longitudinal direction. The resistance values when not set are equal.
  • the strain-sensitive material 11 is composed of one strip-shaped conductive material without folding back, it is arranged in the first ring-shaped region RG1.
  • the lengths (longitudinal direction) of the strip-shaped conductive material in the circumferential direction are made equal to those of Y7 and Y8.
  • the strain-sensitive material 11A is configured to be folded back in the radial direction of the plate-shaped member 10, the total length of the strip-shaped conductive material of the strain-sensitive material 11A in the longitudinal direction is , Can be the length including the folded part. Therefore, as shown in FIG. 6, the strain-sensitive materials X1, X2, X5, X6 and Y1, Y2, Y5, Y6 arranged in the first ring-shaped region RG1 and the second ring-shaped region RG2
  • the strain-sensitive materials X3, X4, X7, X8 and Y3, Y4, Y7, Y8 to be arranged can have different lengths in the circumferential direction.
  • Y4, Y7, Y8 differ in the number of wrappings and the like.
  • the four strain-sensitive materials 11A arranged in each of the fan-shaped regions SX1, SY1, SX2, and SY2 of the plate-shaped member 10 of the force sensor 1A are shown by the conductor pattern 12A.
  • the bridge circuit is formed by being connected.
  • the strain-sensitive material X1 is changed to X1A
  • the strain-sensitive material X2 is changed to X2A
  • the strain-sensitive material X3 is changed to X3A
  • the strain-sensitive material X4 is changed to X4A.
  • a bridge circuit is generated.
  • the voltage obtained as the difference between the voltage obtained at the output terminal tO ( ⁇ ) and the output voltage obtained at the output terminal tO (+) corresponds to the applied force.
  • the output voltage EX1A is obtained.
  • a bridge circuit is formed in the same manner, and output voltages EX2A, EY1A, and EY2A corresponding to the force applied to the force sensor 1 can be obtained.
  • EZA EX1A + EX2A + EY1A + EY2A
  • EXA EX1A-EX2A
  • EYA EY1A-EY2A Is calculated as.
  • the total length of the strain-sensitive material 11A in the longitudinal direction can be made longer than the length of the fan-shaped region in which the strain-sensitive material 11A is arranged in the circumferential direction.
  • the resistance value of the strain-sensitive material 11A can be increased, and the power consumption can be reduced by increasing the resistance value while suppressing the decrease in sensitivity as much as possible.
  • each of the ring-shaped region RG, the first ring-shaped region RG1 and the second ring-shaped region RG2 is taken up as a region where elastic strain occurs, but a region where elastic strain occurs. Is not limited to these areas.
  • elastic strain is also generated in the outer peripheral portion region, and the outer peripheral portion 10E is located on one surface portion 10b of the plate-shaped member 10. It is also possible to detect the elastic strain that occurs.
  • one surface portion 10a of the plate-shaped member 10 is divided into four fan-shaped regions SX1, SX2, SY1, SY2, and strain-sensitive materials 11 and 11A are provided in each region.
  • it is not limited to such a configuration.
  • strain detection output corresponding to the force component in the Z-axis direction of the force applied to the force sensors 1 and 1A, and one of the force component in the X-axis direction and the force component in the Y-axis direction in the biaxial direction.
  • Two strain-sensitive materials 11 or 11A may be arranged in the ring-shaped region RG1 of 1, and two strain-sensitive materials 11 or 11A may be arranged in the second ring-shaped region RG1, respectively.
  • the first ring-shaped region RG1 has two strain-sensitive materials 11 or 11A
  • the second ring-shaped region RG2 has two strain-sensitive materials 11 or 11A.
  • the strain sensitive material 11 or 11A may be arranged respectively.
  • one ring-shaped strain-sensitive material 11 or 11A is arranged in the first ring-shaped region RG1.
  • one ring-shaped strain-sensitive material 11 or 11A may be arranged in the second ring-shaped region RG2, respectively.
  • the resistance values of the two ring-shaped strain-sensitive materials 11 or 11A are formed to be equal to each other, and a reference resistor having the same resistance value is provided outside, thereby bridging.
  • one surface portion 10a of the plate-shaped member 10 is divided into two semicircles in the X-axis direction.
  • the strain-sensitive material 11 or 11A may be arranged in the first ring-shaped region RG1 and the strain-sensitive material 11 or 11A may be arranged in the second ring-shaped region RG2, respectively.
  • one surface portion 10a of the plate-shaped member 10 is divided into two semicircles in the Y-axis direction.
  • the strain-sensitive material 11 or 11A may be arranged in the first ring-shaped region RG1 and the strain-sensitive material 11 or 11A may be arranged in the second ring-shaped region RG2, respectively. ..
  • the strain-sensitive materials 11 and 11A are formed in an arc shape along the circumferential direction of the plate-shaped member 10, but may be formed in a straight line.
  • the longitudinal direction of the strain sensitizing materials 11 and 11A does not need to be arranged exactly along the circumferential direction in the first and second ring-shaped regions RG1 and RG2 of the plate-shaped member 10, and is a circle. It may be arranged in a direction intersecting with the circumferential direction.
  • the longitudinal direction of the strain-sensitive materials 11, 11A does not have to be along the direction orthogonal to the radiation direction centered on the center position Occ, which is the force application portion of the force sensors 1, 1A.
  • the strain may be displaced to the + direction side or the-direction side to an angle of 90 degrees.
  • the plate-shaped member 10 of the force sensors 1 and 1A is made of SUS, but it goes without saying that the plate-shaped member 10 is not limited to SUS and other elastic materials can be used.
  • the conductive material constituting the strain-sensitive materials 11 and 11A is not limited to a Cr thin film composed of Cr and unavoidable impurities, or a Cr—N thin film composed of Cr, N and unavoidable impurities, and is strip-shaped conductive.
  • any material may be used as long as it has strain sensitivity in the width direction.
  • the circuit formed on one surface portion 10a of the plate-shaped member 10 of the force sensor together with the strain-sensitive material may be a part of the bridge circuit, not the whole.
  • the circuit formed together with the strain-sensitive material is not limited to a bridge circuit, and any circuit can be used as long as it is a circuit for sensing strain according to the applied force using the strain-sensitive material. May be good.
  • each of the strain-sensitive materials constituting the bridge circuit may have a different resistance value, and each resistance value of the strain-sensitive material may be set so as to satisfy the equilibrium condition of the bridge circuit.
  • the plate-shaped member 10 of the force sensor may have a polygonal shape instead of a disk, and the ring-shaped region in that case may also have a polygonal shape.
  • the plate-shaped member 10 of the force sensor has a constant thickness
  • the thickness may change in the radial direction centered on the force application portion.
  • strain deformation is likely to occur in the vicinity of the portion where the strain-sensitive material is arranged.
  • the thickness may be made thinner than other parts as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The present invention makes it possible to obtain a highly sensitive force sensor having a small size. In this force sensor, a strain-sensing material is arranged on at least one surface section of a plate-shaped member, strain occurring in the plate-shaped member in response to force being applied to the surface section of the plate-shaped member is sensed by the strain-sensing material, and the force applied to the plate-shaped member is thereby sensed. The strain-sensing material is formed from a strip-shaped conductive material. The strain-sensing material is arranged on the surface section of the plate-shaped member so as to correspond to each of a first ring-shaped area serving as the center of a force application section in which force is applied to the surface section of the plate-shaped member and a second ring-shaped area at a different distance from the force application section than the first ring-shaped area.

Description

力センサForce sensor
 この発明は、受けた力に応じて生じるひずみなどの変位を検出することに基づいて、前記受けた力を検出するようにする力センサに関する。 The present invention relates to a force sensor that detects the received force based on detecting a displacement such as strain generated according to the received force.
 力センサとして、ひずみ受感材の電気抵抗が、当該ひずみ受感材のひずみ(弾性ひずみだけでなく塑性ひずみを含む)によって変化する現象を利用したひずみゲージを用いるものが知られている。ひずみゲージは、ひずみ受感材の電気抵抗率が応力により変化するピエゾ抵抗効果(piezoresistive effect)や、印加された力に比例した分極(表面電荷)が現れる圧電効果(piezoelectric effect)を利用したものである。 As a force sensor, a strain gauge using a strain gauge that utilizes a phenomenon in which the electrical resistance of a strain-sensitive material changes due to the strain of the strain-sensitive material (including not only elastic strain but also plastic strain) is known. The strain gauge uses the piezoresistive effect, in which the electrical resistivity of the strain-sensitive material changes due to stress, and the piezoelectric effect, in which polarization (surface charge) proportional to the applied force appears. Is.
 ひずみゲージを用いた力センサとしては、印加された力の互いに直交する3軸方向(X軸方向、Y軸方向、Z軸方向)の力成分を検出する、いわゆる3軸力センサも提案されている(特許文献1参照)。このひずみゲージを用いた3軸力検出部材を、電子ペンに用いた場合、電子ペンの軸心方向の圧力(筆圧)のみならず、電子ペンの傾き角や電子ペンのペン先の摩擦力なども検出することができて便利である。 As a force sensor using a strain gauge, a so-called three-axis force sensor that detects force components in the three-axis directions (X-axis direction, Y-axis direction, Z-axis direction) orthogonal to each other of the applied force has also been proposed. (See Patent Document 1). When a 3-axis force detecting member using this strain gauge is used for an electronic pen, not only the pressure (writing pressure) in the axial direction of the electronic pen, but also the tilt angle of the electronic pen and the frictional force of the pen tip of the electronic pen It is convenient to be able to detect such things as well.
 図7は、前述の特許文献1の3軸力検出部材の一例を示すものである。この例の力検出部材は、起歪部101と、この起歪部101に一体に結合された力受付部102と、起歪部101に取り付けられる力センサ103とからなる。この例では、起歪部101の平面に対して直交する方向をZ軸方向、起歪部101の平面に平行な方向であって、互いに直交する方向をX軸方向及びY軸方向としている。 FIG. 7 shows an example of the triaxial force detecting member of Patent Document 1 described above. The force detecting member of this example includes a strain generating portion 101, a force receiving portion 102 integrally coupled to the strain generating portion 101, and a force sensor 103 attached to the strain generating portion 101. In this example, the direction orthogonal to the plane of the strain generating portion 101 is the Z-axis direction, the direction parallel to the plane of the strain generating portion 101, and the directions orthogonal to each other are the X-axis direction and the Y-axis direction.
 図7(A)は、この例の力検出部材を横方向(X軸方向あるいはY軸方向)から見た図であり、図7(B)は、この例の力検出部材の斜視図である。そして、図7(C)~(E)は、この例の力検出部材の縦断面図(Z軸方向を含む方向の断面図)であり、図7(C)は、力受付部102に何等の力も受けていない状態、図7(D)は、力受付部102にZ軸方向の力を受けた状態、図7(E)は、力受付部102にX軸方向又はY軸方向の力を受けた状態、をそれぞれ示している。なお、図7(B)~(E)では、便宜上、力受付部102は起歪部101の近傍のみ示している。 FIG. 7A is a view of the force detecting member of this example from the lateral direction (X-axis direction or Y-axis direction), and FIG. 7B is a perspective view of the force detecting member of this example. .. 7 (C) to 7 (E) are vertical cross-sectional views (cross-sectional views in the direction including the Z-axis direction) of the force detecting member of this example, and FIG. 7 (C) shows the force receiving unit 102. 7 (D) shows a state in which the force receiving unit 102 receives a force in the Z-axis direction, and FIG. 7 (E) shows a state in which the force receiving unit 102 receives a force in the X-axis direction or the Y-axis direction. The state of receiving is shown respectively. In FIGS. 7B to 7E, for convenience, the force receiving unit 102 shows only the vicinity of the strain generating unit 101.
 力受付部102は、起歪部101との結合側とは反対側の先端部に印加される力を受け付けて、起歪部101に伝達する機能を備えるもので、この例では、棒状部材とされる。 The force receiving unit 102 has a function of receiving a force applied to the tip portion on the side opposite to the coupling side with the strain generating portion 101 and transmitting the force to the strain generating portion 101. In this example, the force receiving portion 102 is a rod-shaped member. Will be done.
 起歪部101は、図7(B)及び図7(C)に示すように、円筒状のダイヤフラム保持部101bの一方の開口部側に、薄い円板状のダイヤフラム101aが設けられた構造を備えている。そして、起歪部101は、円板状のダイヤフラム101aの中央部において棒状の力受付部102と結合されている。 As shown in FIGS. 7B and 7C, the strain-causing portion 101 has a structure in which a thin disk-shaped diaphragm 101a is provided on one opening side of the cylindrical diaphragm holding portion 101b. I have. The strain generating portion 101 is coupled to the rod-shaped force receiving portion 102 at the central portion of the disc-shaped diaphragm 101a.
 ダイヤフラム101aの、力受付部102との結合側と反対側の面には、力センサ103が貼り付けられて取り付けられている。図8(A)は、力センサ103の従来の構成の一例を示すものである。 A force sensor 103 is attached to the surface of the diaphragm 101a on the side opposite to the connection side with the force receiving portion 102. FIG. 8A shows an example of the conventional configuration of the force sensor 103.
 この例の力センサ103は、図8(A)に示すように、例えば円板形状の絶縁性フィルムシートからなるフレキシブル基板103a上に、受けたひずみ変位に応じて抵抗値を変えるひずみ受感材104が、複数個配設されたものからなる。図8(A)に示すように、この例では、ひずみ受感材104としては、6個のひずみ受感材104X1,104X2,104Y1,104Y2,104Z1,104Z2,104Z3,104Z4がフレキシブル基板上に配設されている。この例では、ひずみ受感材104X1,104X2,104Y1,104Y2,104Z1,104Z2,104Z3,104Z4の抵抗値は、ひずみが印加されていないときには、互いに等しくなるようにされている。なお、以下の説明で、複数個のひずみ受感材104のそれぞれを区別する必要がないときには、ひずみ受感材104と記述することとする。 As shown in FIG. 8A, the force sensor 103 of this example is a strain-sensitive material that changes its resistance value according to the strain displacement received on a flexible substrate 103a made of, for example, a disk-shaped insulating film sheet. 104 is composed of a plurality of arranged ones. As shown in FIG. 8A, in this example, as the strain-sensitive material 104, six strain-sensitive materials 104X1, 104X2, 104Y1, 104Y2, 104Z1, 104Z2, 104Z3, 104Z4 are arranged on the flexible substrate. It is installed. In this example, the resistance values of the strain-sensitive materials 104X1, 104X2, 104Y1, 104Y2, 104Z1, 104Z2, 104Z3, 104Z4 are set to be equal to each other when no strain is applied. In the following description, when it is not necessary to distinguish each of the plurality of strain-sensitive materials 104, the strain-sensitive material 104 will be described.
 ひずみ受感材104X1と104X2とは、力受付部102の軸心方向に直交する方向であるX軸方向のひずみを検知するためのもので、フレキシブル基板103aの中心位置103ac(力の印加位置)を通るX軸方向の直線上において、中心位置103acを挟む両側において、当該中心位置103acから等距離の位置にそれぞれ設けられている。 The strain-sensitive materials 104X1 and 104X2 are for detecting strain in the X-axis direction, which is a direction orthogonal to the axial direction of the force receiving portion 102, and are the center positions 103ac (force application position) of the flexible substrate 103a. On a straight line in the X-axis direction passing through the above, both sides of the center position 103ac are provided at equal distances from the center position 103ac.
 ひずみ受感材104Y1と104Y2とは、力受付部102の軸心方向に直交すると共にX軸方向と直交する方向であるY軸方向のひずみを検知するためのもので、中心位置103acを通るY軸方向の直線上において、中心位置103acを挟む両側において、当該中心位置103acから等距離の位置にそれぞれ設けられている。 The strain-sensitive materials 104Y1 and 104Y2 are for detecting strain in the Y-axis direction, which is orthogonal to the axial direction of the force receiving unit 102 and orthogonal to the X-axis direction, and Y passes through the center position 103ac. On a straight line in the axial direction, they are provided at positions equal to each other from the center position 103ac on both sides of the center position 103ac.
 そして、ひずみ受感材104Z1,104Z2,104Z3,104Z4は、力受付部102の軸心方向であるZ軸方向のひずみを検知するためのものである。図8(A)の例では、中心位置103acを通る直線であって、他のひずみ受感材104X1,104X2,104Y1,104Y2と重ならないように所定角度傾いた直線上において、中心位置103acを挟む両側において、2個ずつのひずみ受感材104Z1,104Z3と、ひずみ受感材104Z2,104Z4とが点対称の位置に設けられている。 The strain-sensitive materials 104Z1, 104Z2, 104Z3, 104Z4 are for detecting strain in the Z-axis direction, which is the axial direction of the force receiving unit 102. In the example of FIG. 8A, the center position 103ac is sandwiched on a straight line that passes through the center position 103ac and is inclined at a predetermined angle so as not to overlap with other strain-sensitive materials 104X1, 104X2, 104Y1, 104Y2. Two strain-sensitive materials 104Z1 and 104Z3 and two strain-sensitive materials 104Z2 and 104Z4 are provided at point-symmetrical positions on both sides.
 この例の力検出部材において、Z軸方向の力が力受付部102を介して起歪部101に印加された場合には、起歪部101のダイヤフラム101aは、引張・圧縮応力を受け、図7(D)に示すように、力受付部102のZ軸方向の変位に応じて下側に凸となるように湾曲する。そして、力センサ103も、ダイヤフラム101aの湾曲に応じて変位する。この場合に、図7(D)に示すように、ダイヤフラム101a、つまり、力センサ103においては、中心位置103acの近傍においては、伸長変位を生じ、中心位置103acから離れたダイヤフラム保持部101b側においては、収縮変位を生じる。 In the force detecting member of this example, when a force in the Z-axis direction is applied to the strain generating portion 101 via the force receiving portion 102, the diaphragm 101a of the strain generating portion 101 receives tensile / compressive stress, and the figure. As shown in 7 (D), the force receiving portion 102 is curved so as to be convex downward according to the displacement in the Z-axis direction. Then, the force sensor 103 is also displaced according to the curvature of the diaphragm 101a. In this case, as shown in FIG. 7 (D), in the diaphragm 101a, that is, in the force sensor 103, an extension displacement occurs in the vicinity of the center position 103ac, and the diaphragm holding portion 101b away from the center position 103ac causes an extension displacement. Causes contraction displacement.
 したがって、ひずみ受感材104Z1と104Z3とでは、一方は増加する方向の抵抗変化をし、他方は減少する方向の抵抗変化をするので、ひずみ受感材104Z1とひずみ受感材104Z3との抵抗値の差を検出することで、Z軸方向の力成分を検出することができる。ひずみ受感材104Z2とひずみ受感材104Z4とにおいても、同様となる。そこで、ひずみ受感材104Z1とひずみ受感材104Z3との抵抗値の差の出力と、ひずみ受感材104Z2とひずみ受感材104Z4との抵抗値の差の出力とを加算して、Z軸方向の力成分の検出出力とすることができる。 Therefore, in the strain-sensitive materials 104Z1 and 104Z3, one changes the resistance in the increasing direction and the other changes the resistance in the decreasing direction. Therefore, the resistance values of the strain-sensitive material 104Z1 and the strain-sensitive material 104Z3 By detecting the difference between the two, the force component in the Z-axis direction can be detected. The same applies to the strain-sensitive material 104Z2 and the strain-sensitive material 104Z4. Therefore, the output of the difference in resistance between the strain-sensitive material 104Z1 and the strain-sensitive material 104Z3 and the output of the difference in resistance between the strain-sensitive material 104Z2 and the strain-sensitive material 104Z4 are added to form the Z-axis. It can be the detection output of the force component in the direction.
 すなわち、4個のひずみ受感材104Z1,104Z2,104Z3,104Z4により、図9(A)に示すようなブリッジ回路を構成することで、力検出部材は、印加された力のZ軸方向の力成分の検出出力を得ることができる。図9(A)において、端子Eには電源電圧が印加され、端子Gは接地され、端子Za,Zb間に、Z軸方向の力成分の検出出力電圧が得られる。 That is, by forming a bridge circuit as shown in FIG. 9A with the four strain-sensitive materials 104Z1, 104Z2, 104Z3, 104Z4, the force detecting member can make the applied force a force in the Z-axis direction. The detection output of the component can be obtained. In FIG. 9A, a power supply voltage is applied to the terminal E, the terminal G is grounded, and a detected output voltage of the force component in the Z-axis direction is obtained between the terminals Za and Zb.
 また、力検出部材においては、印加された力のX軸方向の力成分あるいはY軸方向の力成分は、力受付部102の長さに応じた曲げモーメントとして作用し、起歪部101のダイヤフラム101aには、曲げ応力及びせん断応力が加わる。これにより、図7(E)に示すように、X軸方向あるいはY軸方向の力の印加方向において、力受付部102との結合部(ダイヤフラム101aの中心位置101ac)を挟む両側の一方側では、ダイヤフラム101aが収縮するように変位し、他方側では、ダイヤフラム101aが伸長するように変位する。 Further, in the force detecting member, the force component in the X-axis direction or the force component in the Y-axis direction of the applied force acts as a bending moment according to the length of the force receiving portion 102, and the diaphragm of the strain generating portion 101 Bending stress and shear stress are applied to 101a. As a result, as shown in FIG. 7 (E), in the direction of applying the force in the X-axis direction or the Y-axis direction, on one side of both sides of the coupling portion (center position 101ac of the diaphragm 101a) with the force receiving portion 102. , The diaphragm 101a is displaced so as to contract, and on the other side, the diaphragm 101a is displaced so as to extend.
 力センサ103に配設されているひずみ受感材104X1と104X2、あるいはひずみ受感材104Y1と104Y2は、生じた変位に応じて、一方は増加する方向の抵抗変化をし、他方は減少する方向の抵抗変化をする。したがって、ひずみ受感材104X1とひずみ受感材104X2との抵抗値の差を検出することで、X軸方向の力成分を検出することができ、ひずみ受感材104Y1と104Y2との抵抗値の差を検出することで、Y軸方向の力成分を検出することができる。 The strain-sensitive materials 104X1 and 104X2 or the strain-sensitive materials 104Y1 and 104Y2 arranged on the force sensor 103 change their resistance in an increasing direction and decrease in the other depending on the generated displacement. The resistance changes. Therefore, by detecting the difference in resistance between the strain-sensitive material 104X1 and the strain-sensitive material 104X2, the force component in the X-axis direction can be detected, and the resistance value between the strain-sensitive materials 104Y1 and 104Y2 can be detected. By detecting the difference, the force component in the Y-axis direction can be detected.
 図9(B)にY軸方向の力の検出出力電圧を得るブリッジ回路の構成例を、図9(C)にX軸方向の力の検出出力電圧を得るブリッジ回路の構成例を、それぞれ示す。なお、図9(B)及び図9(C)において、RY1,RY2及びRX1,RX2は、抵抗値がひずみ受感材104X1,X2,Y1,Y2にひずみが印加されていないときと同一の抵抗値を示す固定抵抗(リファレンス抵抗)であり、これらは、この例の力センサ103の外部に設けられる。 FIG. 9B shows a configuration example of a bridge circuit that obtains a detected output voltage of a force in the Y-axis direction, and FIG. 9C shows a configuration example of a bridge circuit that obtains a detected output voltage of a force in the X-axis direction. .. In addition, in FIG. 9B and FIG. 9C, the resistance value of RY1, RY2 and RX1, RX2 is the same as that when strain is not applied to the strain-sensitive material 104X1, X2, Y1, Y2. It is a fixed resistance (reference resistance) indicating a value, and these are provided outside the force sensor 103 of this example.
 従来、ひずみ受感材104を構成する材料として例えばCu-Ni合金が、ひずみ感度を決定するゲージ率は小さい(例えばゲージ率は2)が、温度定数が直線的で安定しているので、ブリッジ回路でひずみ受感材の抵抗値の互いの温度変換分を打ち消せるため温度変化に対して安定であるという点で良く用いられている。なお、ひずみ受感材104としては、半導体の炭素、ケイ素、ゲルマニウム等も知られているが、これらはゲージ率は比較的大きい(ゲージ率は10~170)が、ひずみ受感方向の異方性が大きく、また、温度係数が高く、また、非直線的であるために、温度変化に対する変動が大きく安定性に欠けるので、その用途は限定的となっている。 Conventionally, for example, Cu—Ni alloy as a material constituting the strain sensitive material 104 has a small gauge ratio for determining strain sensitivity (for example, the gauge ratio is 2), but the temperature constant is linear and stable, so that the bridge It is often used in a circuit because it is stable against temperature changes because the resistance values of strain-sensitive materials can cancel each other's temperature conversions. As the strain-sensitive material 104, semiconductor carbon, silicon, germanium, etc. are also known, but these have a relatively large gauge coefficient (gauge coefficient is 10 to 170), but the strain-sensitive direction is different. Its use is limited because it has a high property, a high temperature coefficient, and is anisotropy, so that it fluctuates greatly with respect to temperature changes and lacks stability.
 ひずみ受感材104が、例えばCu-Ni合金からなる場合には、その金属細線や金属箔を、図8(B)の拡大図に示すように、その長手方向が半径方向(ひずみの発生方向)に沿うような状態で、ジグザグ状に折り曲げて半径方向に直交する方向(円周方向)に配設したものとして構成されている。図8(B)では、ひずみ受感材104Y1の例を示しているが、他のひずみ受感材104X1,104X2,104Y1,104Z1,104Z2,104Z3,104Z4も同様である。 When the strain-sensitive material 104 is made of, for example, a Cu—Ni alloy, its longitudinal direction is the radial direction (strain generation direction) as shown in the enlarged view of FIG. 8B. ), It is configured to be bent in a zigzag shape and arranged in a direction orthogonal to the radial direction (circumferential direction). FIG. 8B shows an example of the strain-sensitive material 104Y1, but the same applies to the other strain-sensitive materials 104X1, 104X2, 104Y1, 104Z1, 104Z2, 104Z3, 104Z4.
 このように、金属細線や金属箔からなるストリップ状のひずみ受感材104の長手方向が半径方向に沿うようにすると共に、ジグザグ状に折り曲げて円周方向にも配設するのは、以下のような理由による。すなわち、従来のひずみ受感材では、長手方向のひずみ受感感度は大きいが、幅方向(長手方向に直交する方向)のひずみ受感感度は非常に低いものであるため、ストリップ状の導電性材からなるひずみ受感材は、その長手方向を、印加される力に応じてダイヤフラム101aに生じるひずみの発生方向であるダイヤフラム101aの半径方向に沿って配設する必要がある。 In this way, the strip-shaped strain-sensitive material 104 made of fine metal wire or metal foil is arranged along the radial direction and is bent in a zigzag shape and arranged in the circumferential direction as follows. For some reason. That is, in the conventional strain-sensitive material, the strain-sensitive sensitivity in the longitudinal direction is high, but the strain-sensitive sensitivity in the width direction (direction orthogonal to the longitudinal direction) is very low, so that the strip-shaped conductivity The strain-sensitive material made of the material needs to be arranged in the longitudinal direction along the radial direction of the diaphragm 101a, which is the direction in which the strain generated in the diaphragm 101a is generated according to the applied force.
 しかし、従来のひずみ受感材104では、1本のストリップ状の導電部材を半径方向に配設しただけでは抵抗値が小さすぎるために、金属細線や金属箔の全長を長くして所望の抵抗値を確保して適当な検出出力電圧を得るようにする必要があった。 However, in the conventional strain-sensitive material 104, the resistance value is too small if only one strip-shaped conductive member is arranged in the radial direction. Therefore, the total length of the thin metal wire or the metal foil is lengthened to obtain a desired resistance. It was necessary to secure a value to obtain an appropriate detection output voltage.
 したがって、ひずみ受感材104X1,104X2,104Y1,104Y2,104Z1,104Z2,104Z3,104Z4のそれぞれは、図8(B)に示すように、ダイヤフラム102の半径方向の長さLが有効なひずみ受感長であるが、周方向にジグザク状に折り曲げることで大きな抵抗値を確保しているために、比較的大きな面積を必要とすることになる。 Therefore, as shown in FIG. 8B, each of the strain-sensitive materials 104X1, 104X2, 104Y1, 104Y2, 104Z1, 104Z2, 104Z3, 104Z4 has a strain-sensitive length L of the diaphragm 102 in the radial direction. Although it is long, a relatively large area is required because a large resistance value is secured by bending it in a zigzag shape in the circumferential direction.
 なお、ダイヤフラム101aには、半径方向のみではなく、周方向にもひずみ変形は生じる。そして、上述のように、ひずみ受感材104は、ダイヤフラム101aの周方向にも配設されているような状態となるが、前述もしたように、従来のひずみ受感材104は、ストリップ状の導電性材の幅方向にはひずみ受感感度は非常に小さい(殆ど感知しない)ので、従来のひずみ受感材104では、周方向のひずみ変形は殆ど検知しない。 Note that the diaphragm 101a undergoes strain deformation not only in the radial direction but also in the circumferential direction. Then, as described above, the strain-sensitive material 104 is in a state of being arranged in the circumferential direction of the diaphragm 101a, but as described above, the conventional strain-sensitive material 104 has a strip shape. Since the strain-sensitive sensitivity is very small (almost not detected) in the width direction of the conductive material, the conventional strain-sensitive material 104 hardly detects strain deformation in the circumferential direction.
 なお、ひずみ受感材104を炭素、ケイ素、ゲルマニウムなどの半導体材料で構成する場合にも、上記に倣ってそれらの半導体材料のゲージ率の高い結晶方位を長手方向に配し、その長手方向が半径方向(ひずみの発生方向)に沿うような状態で設けられる。 Even when the strain-sensitive material 104 is made of a semiconductor material such as carbon, silicon, or germanium, the crystal orientations of the semiconductor materials having a high gauge ratio are arranged in the longitudinal direction according to the above, and the longitudinal direction thereof is It is provided along the radial direction (strain generation direction).
特開2010-164495号公報JP-A-2010-164495 特許第6084393号公報Japanese Patent No. 6084393
 ところで、最近は、この種の力センサについては、更なる小型化の要請が大きくなっている。しかしながら、図7及び図8を用いて説明した力センサ103では、更なる小型化が困難となる問題があった。 By the way, recently, there has been an increasing demand for further miniaturization of this type of force sensor. However, the force sensor 103 described with reference to FIGS. 7 and 8 has a problem that further miniaturization becomes difficult.
 すなわち、その主たる理由は、上述した従来のひずみ受感材104(104X1,104X2,104Y1,104Y2,104Z1,104Z2,104Z3,104Z4)は、上述したように、ほぼその長手方向のみでしかひずみを受感することができず、このため、ひずみを受感する有効部分が、力センサ103の半径方向(ひずみの発生方向)の長さ部分であるため、印加される力を所定のひずみ感度で検出するには、力センサ103の径を小さくすることが困難であるということである。 That is, the main reason is that the above-mentioned conventional strain-sensitive material 104 (104X1, 104X2, 104Y1, 104Y2, 104Z1, 104Z2, 104Z3, 104Z4) receives strain only in the longitudinal direction thereof, as described above. Since the effective part that senses strain is the length part in the radial direction (strain generation direction) of the force sensor 103, the applied force is detected with a predetermined strain sensitivity. This means that it is difficult to reduce the diameter of the force sensor 103.
 また、上述したように、印加された力を検出するためには、各軸方向用のブリッジ回路が必要となるが、当該ブリッジ回路を構成するための導体パターンは、力センサ103のフレキシブル基板103a上に形成することが多い。しかし、上述のように、従来のひずみ受感材104が、力センサ103の半径方向及び周方向に大きな占有面積を占めるので、ブリッジ回路を構成するためのスペースが取り難くなるという問題もある。さらに、上述の従来の力センサ103の例では、X軸方向用及びY軸方向用のブリッジ回路としては基準抵抗を必要とし、この基準抵抗は、力センサ103の外部に設ける必要があるという問題もある。 Further, as described above, in order to detect the applied force, a bridge circuit for each axial direction is required, and the conductor pattern for forming the bridge circuit is the flexible substrate 103a of the force sensor 103. Often formed on top. However, as described above, since the conventional strain-sensitive material 104 occupies a large occupied area in the radial direction and the circumferential direction of the force sensor 103, there is also a problem that it is difficult to take a space for forming the bridge circuit. Further, in the above-mentioned example of the conventional force sensor 103, a reference resistor is required as the bridge circuit for the X-axis direction and the Y-axis direction, and this reference resistor needs to be provided outside the force sensor 103. There is also.
 この発明は、以上の問題点を解決することができるようにした力センサを提供することを目的とする。 An object of the present invention is to provide a force sensor capable of solving the above problems.
 上記の課題を解決するために、
 板状部材の少なくとも一方の面部にひずみ受感材が配設されており、前記板状部材の前記面部に印加された力に応じて前記板状部材に生じるひずみを前記ひずみ受感材で感知することで、前記面部に印加された力を感知する力センサであって、
 前記ひずみ受感材は、ストリップ状の導電性材で構成されているとともに、前記板状部材の前記面部において、前記板状部材の前記面部に印加される力の印加部を中心とした第1のリング状領域と前記第1のリング状領域とは前記力の印加部からの距離が異なる第2のリング状領域のそれぞれに対応して配設されていることを特徴とする力センサを提供する。
To solve the above problems
A strain-sensitive material is arranged on at least one surface of the plate-shaped member, and the strain-sensitive material senses the strain generated in the plate-shaped member in response to the force applied to the surface of the plate-shaped member. By doing so, it is a force sensor that senses the force applied to the surface portion.
The strain-sensitive material is made of a strip-shaped conductive material, and has a first surface portion of the plate-shaped member centered on a force applied portion applied to the surface portion of the plate-shaped member. Provided is a force sensor characterized in that the ring-shaped region of the above and the first ring-shaped region are arranged corresponding to each of the second ring-shaped regions having different distances from the force application portion. To do.
 上述の構成の力センサにおいては、板状部材の面部に印加される力の印加部を中心とした第1のリング状領域と前記第2のリング状領域とにひずみ受感材が配置されているので、第1のリング状領域のひずみ受感材と、第2のリング状領域のひずみ受感材との一方で伸長ひずみ、他方で収縮ひずみを検知するようにすることが可能となる。 In the force sensor having the above configuration, the strain sensitizer is arranged in the first ring-shaped region and the second ring-shaped region centered on the force applied portion applied to the surface portion of the plate-shaped member. Therefore, it is possible to detect the extension strain on one side of the strain-sensitive material in the first ring-shaped region and the strain-sensitive material in the second ring-shaped region, and the contraction strain on the other side.
 ひずみ受感材として、例えばCrおよび不可避不純物からなるCr薄膜、またはCr、N及び不可避不純物からなるCr-N薄膜で構成されているストリップ状の導電性材を用いることで、小型で高感度の力センサを得ることができる。 As the strain-sensitive material, for example, by using a Cr thin film composed of Cr and unavoidable impurities, or a strip-shaped conductive material composed of a Cr—N thin film composed of Cr, N and unavoidable impurities, a compact and highly sensitive material is used. A force sensor can be obtained.
この発明による力センサの実施形態を備える力検出部材の構成例を説明するための図である。It is a figure for demonstrating the structural example of the force detecting member provided with the embodiment of the force sensor by this invention. この発明による力センサの実施形態の構成例を説明するための図である。It is a figure for demonstrating the structural example of the embodiment of the force sensor by this invention. この発明による力センサの実施形態の構成例を説明するための図である。It is a figure for demonstrating the structural example of the embodiment of the force sensor by this invention. この発明による力センサの実施形態に適用される回路の例を示す回路図である。It is a circuit diagram which shows the example of the circuit applied to the embodiment of the force sensor by this invention. この発明による力センサの実施形態と比較例とのシミュレーション結果の例を説明するための図である。It is a figure for demonstrating the example of the simulation result of the embodiment of the force sensor by this invention, and the comparative example. この発明による力センサの他の実施形態の構成を説明するための図である。It is a figure for demonstrating the structure of the other embodiment of the force sensor by this invention. 従来の力センサを備える力検出部材の例を説明するための図である。It is a figure for demonstrating the example of the force detecting member provided with the conventional force sensor. 従来の力センサの一例を説明するための図である。It is a figure for demonstrating an example of the conventional force sensor. 従来の力センサの一例を説明するための回路図である。It is a circuit diagram for demonstrating an example of a conventional force sensor.
 以下、この発明による力センサの実施形態を、図を参照しながら説明する。 Hereinafter, embodiments of the force sensor according to the present invention will be described with reference to the drawings.
 図1は、この実施形態の力センサ1を用いた力検出部材2を示すものである。この例の力検出部材2は、台座部21と、力受付部22と、力センサ1とにより構成される。図1(A)は、この例の力検出部材2を、力センサ1の板状部材10の面部10aに平行な方向から見た側面図、図1(B)は、板状部材10の一方の面部10aとは反対側の面部10bを斜め方向から見た斜視図、図1(C)は、板状部材10の一方の面部10a側を斜め方向から見た斜視図、図1(D)は、板状部材10の面部10aを当該面部10aに直交する方向から見た底面図である。図1(E)は、力検出部材2における、台座部21側の縦断面図である。 FIG. 1 shows a force detecting member 2 using the force sensor 1 of this embodiment. The force detecting member 2 of this example is composed of a pedestal portion 21, a force receiving portion 22, and a force sensor 1. FIG. 1A is a side view of the force detecting member 2 of this example viewed from a direction parallel to the surface portion 10a of the plate-shaped member 10 of the force sensor 1, and FIG. 1B is one of the plate-shaped members 10. FIG. 1 (C) is a perspective view of the surface portion 10b on the side opposite to the surface portion 10a of the plate-shaped member 10 viewed from an oblique direction, and FIG. 1 (C) is a perspective view of one surface portion 10a side of the plate-shaped member 10 viewed from an oblique direction. Is a bottom view of the surface portion 10a of the plate-shaped member 10 as viewed from a direction orthogonal to the surface portion 10a. FIG. 1 (E) is a vertical cross-sectional view of the force detecting member 2 on the pedestal portion 21 side.
 図2及び図3は、この発明の実施形態の力センサ1の構成例を説明するための図である。この例の力センサ1は、弾性を有する絶縁性部材からなる板状部材10の一方の面部10aに、複数個のひずみ受感材11が配設されて形成されている。図2は、この実施形態の力センサ1の板状部材10の一方の面部10aに配設される複数のひずみ受感材11の配設位置と、印加された力に応じて板状部材10に発生するひずみとの関係を示している。図3(A)に示すように、板状部材10の一方の面部10aには、複数のひずみ受感材11と共に、それらを電気的に接続するための導電パターン12も形成されるが、図2(A)では、その導電パターン12は省略してある。 2 and 3 are diagrams for explaining a configuration example of the force sensor 1 according to the embodiment of the present invention. The force sensor 1 of this example is formed by disposing a plurality of strain-sensitive materials 11 on one surface portion 10a of a plate-shaped member 10 made of an elastic insulating member. FIG. 2 shows the arrangement positions of the plurality of strain-sensitive members 11 arranged on one surface portion 10a of the plate-shaped member 10 of the force sensor 1 of this embodiment, and the plate-shaped member 10 according to the applied force. The relationship with the strain generated in is shown. As shown in FIG. 3A, one surface portion 10a of the plate-shaped member 10 is formed with a plurality of strain-sensitive materials 11 and a conductive pattern 12 for electrically connecting them. In 2 (A), the conductive pattern 12 is omitted.
 図2(A)及び図3(A)は、力センサ1を、その板状部材10の一方の面部10aに対して直交する方向であって、当該一方の面部10a側から見た図を示している。また、図3(B)は、力センサ1を、板状部材10の面部に平行な方向から見た側面図である。この図3(B)に示すように、この例では、板状部材10は、一定の厚さdを有する円板状で構成されている。 2 (A) and 3 (A) show a view of the force sensor 1 in a direction orthogonal to one surface portion 10a of the plate-shaped member 10 and viewed from the one surface portion 10a side. ing. Further, FIG. 3B is a side view of the force sensor 1 as viewed from a direction parallel to the surface portion of the plate-shaped member 10. As shown in FIG. 3B, in this example, the plate-shaped member 10 is formed of a disc shape having a constant thickness d.
 この実施形態の力センサ1では、板状部材10は、弾性を有する材料からなる板例えば金属板、この例では、SUSで構成されている。この例では、板状部材10の一方の面10a側に絶縁層(図示は省略)が設けられて絶縁性部材とされる。そして、板状部材10の一方の面10a側の絶縁層上に、後述するように、ひずみ受感材11及び導電パターン12が成膜されて形成されることで、力センサ1が形成される。この実施形態の力センサ1では、従来のようにフレキシブル基板にひずみ受感材を配設したものを、ダイヤフラムを構成する起歪体に接着材により接着する構成ではないので、従来のような接着材の影響によりひずみ受感特性がばらつくなどという不具合を回避することができる。 In the force sensor 1 of this embodiment, the plate-shaped member 10 is composed of a plate made of an elastic material, for example, a metal plate, and in this example, a SUS. In this example, an insulating layer (not shown) is provided on one surface 10a side of the plate-shaped member 10 to form an insulating member. Then, as will be described later, the strain-sensitive material 11 and the conductive pattern 12 are formed by forming a film on the insulating layer on one surface 10a side of the plate-shaped member 10, so that the force sensor 1 is formed. .. In the force sensor 1 of this embodiment, a strain-sensitive material is arranged on a flexible substrate as in the conventional case, and the strain-sensitive material is not adhered to the strain-generating body constituting the diaphragm by an adhesive. It is possible to avoid problems such as variations in strain-sensitive characteristics due to the influence of the material.
 図1(A)~(C)に示すように、力検出部材2の台座部21は、力センサ1の円板状の板状部材10と同じ外径を有する筒状部材で構成されている。台座部21は、この例では、SUSで構成されている。この台座部21の外径と内径とにより決まる厚さ分の端面に対して、力センサ1の板状部材10の面部10aの周縁部10E(図2及び図3参照)が、例えば接合されることで、台座部21に力センサ1が固定される。 As shown in FIGS. 1A to 1C, the pedestal portion 21 of the force detecting member 2 is composed of a tubular member having the same outer diameter as the disc-shaped plate-shaped member 10 of the force sensor 1. .. The pedestal portion 21 is made of SUS in this example. For example, the peripheral edge portion 10E (see FIGS. 2 and 3) of the surface portion 10a of the plate-shaped member 10 of the force sensor 1 is joined to the end surface having a thickness determined by the outer diameter and the inner diameter of the pedestal portion 21. As a result, the force sensor 1 is fixed to the pedestal portion 21.
 なお、この場合の接合方法は、溶接でもよいし、接着材により接合する方法でもよい。また、台座部21と力センサ1との結合方法は、この例のような接合に限られる訳ではなく、台座部21と板状部材10とを一体に構成してもよいし、台座部21と外径及び内径寸法が等しい筒状体により、板状部材10を挟持して固定するように構成してもよい。 Note that the joining method in this case may be welding or a method of joining with an adhesive. Further, the method of connecting the pedestal portion 21 and the force sensor 1 is not limited to the joining as in this example, and the pedestal portion 21 and the plate-shaped member 10 may be integrally formed, or the pedestal portion 21 may be integrally formed. The plate-shaped member 10 may be sandwiched and fixed by a tubular body having the same outer diameter and inner diameter.
 力受付部22は、印加される力を受け付けて、力センサ1の板状部材10に伝達する機能を備えるもので、この例では、例えばSUSで構成された棒状部材とされる。この力受付部22は、その軸心方向の一方の端部が、力センサ1の板状部材10の中心部において、板状部材10と結合される。この例では、図1(E)の断面図に示すように、板状部材10を介してネジ23が力受付部22の軸心方向の端部に対してねじ込まれることにより、力受付部22が、板状体部10に対して結合される。力センサ1の板状部材10の中心部には、図1(DE)に示すように、ネジ23が挿入される貫通孔10cが形成されている。この例では、板状部材10が、その中心部において、ネジ23の円柱状頭部23aと力受付部22の軸心方向の端部とにより挟持されることにより、力受付部22が力センサ1に対して結合される。 The force receiving unit 22 has a function of receiving the applied force and transmitting it to the plate-shaped member 10 of the force sensor 1, and in this example, it is a rod-shaped member made of, for example, SUS. One end of the force receiving portion 22 in the axial direction is coupled to the plate-shaped member 10 at the central portion of the plate-shaped member 10 of the force sensor 1. In this example, as shown in the cross-sectional view of FIG. 1 (E), the screw 23 is screwed into the axial end of the force receiving portion 22 via the plate-shaped member 10, so that the force receiving portion 22 is screwed. Is bonded to the plate-shaped body portion 10. As shown in FIG. 1 (DE), a through hole 10c into which the screw 23 is inserted is formed in the central portion of the plate-shaped member 10 of the force sensor 1. In this example, the plate-shaped member 10 is sandwiched between the columnar head 23a of the screw 23 and the axial end of the force receiving portion 22 at the center thereof, so that the force receiving portion 22 is a force sensor. Combined with respect to 1.
 なお、力受付部22と力センサ1との結合方法は、この例のようなネジ止めに限られるものではないことは言うまでもない。例えば、力受付部22の軸心方向の一方の端部が、板状部材10の面部10aの反対側の中心部と溶接などにより接合されていてもよいし、接着材により接合するようにしてもよい。また、力受付部22と板状部材10とを一体に構成してもよい。 Needless to say, the method of connecting the force receiving unit 22 and the force sensor 1 is not limited to screwing as in this example. For example, one end of the force receiving portion 22 in the axial direction may be joined to the central portion on the opposite side of the surface portion 10a of the plate-shaped member 10 by welding or the like, or may be joined by an adhesive material. May be good. Further, the force receiving unit 22 and the plate-shaped member 10 may be integrally formed.
 なお、この例では、力受付部22の軸心方向の一方の端部は、力センサ1の一方の面部10aとは反対側の面部の中央で結合するようにしたが、板状部材10の面部10a側において結合するようにしても、勿論よい。 In this example, one end of the force receiving portion 22 in the axial direction is connected at the center of the surface portion opposite to the one surface portion 10a of the force sensor 1, but the plate-shaped member 10 Of course, the coupling may be performed on the surface portion 10a side.
 この例では、以上のように、力センサ1の板状部材10は、その周縁部10Eが台座部21に固定されると共に、その中心部において力受付部22が例えばネジ23によりネジ止めされて結合されるので、図1(D)に示すように、ネジ23の円柱状頭部23aの周縁の位置と、筒状の台座部21の内径の位置との間の幅Wのリング状領域RGが、力受付部22に印加される力に応じて弾性ひずみを生じることが可能である領域となる。 In this example, as described above, in the plate-shaped member 10 of the force sensor 1, the peripheral portion 10E thereof is fixed to the pedestal portion 21, and the force receiving portion 22 is screwed at the central portion thereof by, for example, a screw 23. Since they are combined, as shown in FIG. 1D, a ring-shaped region RG having a width W between the position of the peripheral edge of the cylindrical head 23a of the screw 23 and the position of the inner diameter of the tubular pedestal portion 21. Is a region where elastic strain can be generated according to the force applied to the force receiving unit 22.
 すなわち、ねじ23の円柱状頭部23aの半径をri、台座部21の内径をroとすると、図1(D)及び図2(A)に示すように、力センサ1の板状部材10において、その中心位置Ocを中心とする半径が、ri≦r≦roの範囲であるリング状領域RGが、力受付部22から伝達される力に対応して弾性ひずみが発生する領域となる。 That is, assuming that the radius of the cylindrical head 23a of the screw 23 is ri and the inner diameter of the pedestal portion 21 is ro, as shown in FIGS. 1 (D) and 2 (A), the plate-shaped member 10 of the force sensor 1 The ring-shaped region RG whose radius centered on the center position Occ is in the range of ri ≦ r ≦ ro is a region where elastic strain is generated corresponding to the force transmitted from the force receiving unit 22.
 図1(D)、図2(A)及び図3(A)に示すように、この実施形態の力センサ1においては、板状部材10の一方の面部10aの、幅Wのリング状領域RGに、ひずみ受感材11が複数個設けられる。 As shown in FIGS. 1 (D), 2 (A) and 3 (A), in the force sensor 1 of this embodiment, the ring-shaped region RG having a width W of one surface portion 10a of the plate-shaped member 10 Is provided with a plurality of strain-sensitive materials 11.
 ところで、この例の力検出部材2においては、力センサ1の板状部材10は、一定の厚さdを有する円板形状であって、その周縁部10Eで固定されると共に、その中心位置Oc(図2(A)参照)に、力受付部22を通じて力が印加される。 By the way, in the force detecting member 2 of this example, the plate-shaped member 10 of the force sensor 1 has a disk shape having a constant thickness d, is fixed by the peripheral edge portion 10E thereof, and has its center position Occ. (See FIG. 2A), a force is applied through the force receiving unit 22.
 ここで、板状部材10の幅Wのリング状領域RGの幅方向の中心位置の半径をrc(rc=(ri+ro)/2)に設定して、当該リング状領域RGを、半径ri~半径rcの範囲の内側に位置する第1のリング状領域RG1と、半径rc~半径roの範囲の外側に位置する第2のリング状領域RG2とに分割する。すると、リング状領域RGの内側の第1のリング状領域RG1と外側の第2のリング状領域RG2とでは、力受付部22に力が印加されたときには、互いに逆向きのひずみが生じる。 Here, the radius of the center position in the width direction of the ring-shaped region RG having the width W of the plate-shaped member 10 is set to rc (rc = (ri + ro) / 2), and the ring-shaped region RG is set to the radius ri to the radius. It is divided into a first ring-shaped region RG1 located inside the range of rc and a second ring-shaped region RG2 located outside the range of radius rc to radius ro. Then, when a force is applied to the force receiving portion 22, strains in opposite directions occur in the first ring-shaped region RG1 inside the ring-shaped region RG and the second ring-shaped region RG2 outside.
 すなわち、力センサ1の板状部材10が、力受付部22を介して面部10aに直交する方向の力(Z軸方向の力)を受けると、板状部材10は、図2(B)に示すように、下に突となるように弾性変形する。この場合に、Z軸方向の力以外の力が零であるときには、板状部材10においては、中心Ocから放射方向における同じ半径位置においては、全周に亘って等しいひずみを生じる。そして、そのひずみは、印加された力の大きさに応じたものとなると共に、図2(B)に示すように、第1のリング状領域RG1では、伸長ひずみとなり、また、第2のリング状領域RG2では、収縮ひずみとなって、互いに逆方向のひずみが生じる。 That is, when the plate-shaped member 10 of the force sensor 1 receives a force (force in the Z-axis direction) in the direction orthogonal to the surface portion 10a via the force receiving portion 22, the plate-shaped member 10 is shown in FIG. 2 (B). As shown, it elastically deforms so that it protrudes downward. In this case, when the force other than the force in the Z-axis direction is zero, the plate-shaped member 10 causes the same strain over the entire circumference at the same radial position in the radial direction from the center Occ. Then, the strain becomes according to the magnitude of the applied force, and as shown in FIG. 2 (B), becomes an extension strain in the first ring-shaped region RG1, and also becomes a second ring. In the shape region RG2, shrinkage strain occurs, and strains in opposite directions occur.
 したがって、第1のリング状領域RG1と第2のリング状領域RG2とに、それぞれひずみ受感材11を設けて、第1のリング状領域RG1での伸長ひずみと、第2のリング状領域RG2での収縮ひずみとをそれぞれ検知することで、Z軸方向の力を検出することができる。すなわち、第1のリング状領域RG1に設けたひずみ受感材11と第2のリング状領域RG2に設けたひずみ受感材と、互いに逆方向(増加方向と減少方向)に抵抗値が変化するので、その抵抗値の変化分に基づいて、力センサ1に印加されるZ軸方向の力を検出することができる。 Therefore, strain-sensitive materials 11 are provided in the first ring-shaped region RG1 and the second ring-shaped region RG2, respectively, and the elongation strain in the first ring-shaped region RG1 and the second ring-shaped region RG2 are provided. By detecting each of the contraction strains in the above, the force in the Z-axis direction can be detected. That is, the resistance values of the strain-sensitive material 11 provided in the first ring-shaped region RG1 and the strain-sensitive material provided in the second ring-shaped region RG2 change in opposite directions (increase direction and decrease direction). Therefore, the force applied to the force sensor 1 in the Z-axis direction can be detected based on the change in the resistance value.
 また、力受付部22を介して力センサ1の板状部材10の面部10aに平行する方向の力(X軸方向またはY軸方向の力)を受けると、板状部材10は、図2(C)に示すように、板状部材10の中心位置Ocを中心として非対称に波打つようなひずみ変形をする。そして、そのひずみ変形の度合は、印加された力の大きさに応じたものとなると共に、図2(C)に示すように、板状部材10では、中心Ocを中心として互いに逆向きのひずみが生じる。 Further, when a force (force in the X-axis direction or Y-axis direction) in the direction parallel to the surface portion 10a of the plate-shaped member 10 of the force sensor 1 is received via the force receiving portion 22, the plate-shaped member 10 is shown in FIG. As shown in C), strain deformation is performed so as to asymmetrically undulate around the center position Occ of the plate-shaped member 10. The degree of strain deformation depends on the magnitude of the applied force, and as shown in FIG. 2C, the plate-shaped member 10 has strains in opposite directions with the center Occ as the center. Occurs.
 すなわち、図2(C)に示すように、力受付部22に印加される力の方向から見て、中心位置Ocよりも手前側においては、第1のリング状領域RG1では収縮ひずみが生じ、また、第2のリング状領域RG2では伸長ひずみが生じる。また、力受付部22に印加される力の方向から見て、中心位置Ocよりも後ろ側においては、第1のリング状領域RG1では伸長ひずみが生じ、また、外側の第2のリング状領域RG2では収縮ひずみが生じる。なおこの例の場合、図2(C)に示すように、第1のリング状領域RG1では、その最内周側の部分におけるひずみが大きくなり、また、第2のリング状領域RG2では、その最外周側の部分におけるひずみが大きくなるので、ひずみ受感材11は、そのひずみが大きくなる部分に対応して配設されている。 That is, as shown in FIG. 2C, contraction strain occurs in the first ring-shaped region RG1 on the front side of the center position Occ when viewed from the direction of the force applied to the force receiving unit 22. Further, elongation strain occurs in the second ring-shaped region RG2. Further, when viewed from the direction of the force applied to the force receiving unit 22, extension strain occurs in the first ring-shaped region RG1 behind the center position Occ, and the outer second ring-shaped region Shrinkage strain occurs in RG2. In the case of this example, as shown in FIG. 2C, in the first ring-shaped region RG1, the strain in the innermost peripheral portion thereof becomes large, and in the second ring-shaped region RG2, the strain becomes large. Since the strain on the outermost peripheral side becomes large, the strain-sensitive material 11 is arranged corresponding to the portion where the strain becomes large.
 したがって、第1のリング状領域RG1に配設されたひずみ受感材11のひずみに応じた抵抗値の変化と、第2のリング状領域RG2に配設されたひずみ受感材11のひずみに応じた抵抗値の変化とから、X軸方向又はY軸方向の力成分を検出することができる。そして、この場合に、中心位置Ocよりも手前側の第1のリング状領域RG1及び第2のリング状領域RG2と、後ろ側の第1のリング状領域RG1及び第2のリング状領域RG2とでは、発生するひずみの態様が逆向きであることから、中心位置Ocよりも手前側と後ろ側とのそれぞれにおいてひずみ受感材11で検出したひずみ検出出力の差分を取ることで、X軸方向又はY軸方向の力成分の検出出力として、相乗的な大きさの検出出力が得られる。 Therefore, the change in resistance value according to the strain of the strain-sensitive material 11 arranged in the first ring-shaped region RG1 and the strain of the strain-sensitive material 11 arranged in the second ring-shaped region RG2 The force component in the X-axis direction or the Y-axis direction can be detected from the corresponding change in the resistance value. Then, in this case, the first ring-shaped region RG1 and the second ring-shaped region RG2 on the front side of the center position Occ, and the first ring-shaped region RG1 and the second ring-shaped region RG2 on the rear side are Then, since the mode of the generated strain is opposite, the difference between the strain detection outputs detected by the strain sensitive material 11 on each of the front side and the back side of the center position Occ is taken in the X-axis direction. Alternatively, as the detection output of the force component in the Y-axis direction, a detection output having a synergistic magnitude can be obtained.
 この実施形態の力検出部材2の力センサ1の板状部材10では、以上のようなひずみ発生態様となることを踏まえて、実施形態の力検出部材2では、この力センサ1の板状部材10上に、以下に説明するように、ひずみ受感材11を配設することで、3軸力センサを構成するようにする。 Based on the fact that the plate-shaped member 10 of the force sensor 1 of the force detecting member 2 of this embodiment has the above-mentioned strain generation mode, the force detecting member 2 of the embodiment has the plate-shaped member of the force sensor 1. By disposing the strain-sensitive material 11 on the 10 as described below, a 3-axis force sensor is configured.
 この実施形態の力検出部材2においては、力センサ1の板状部材10の面部10aに直交する、力受付部22の軸心方向に印加される力をZ軸方向の力として受けて、その大きさを検出する。また、この実施形態の力検出部材2においては、力センサ1の板状部材10の面部10aに平行な、力受付部22の軸心方向に直交する方向に印加される力であって、互いに直交する方向の力を、X軸方向及びY軸方向の力として受けて、その大きさを検出する。 In the force detecting member 2 of this embodiment, a force applied in the axial direction of the force receiving unit 22 orthogonal to the surface portion 10a of the plate-shaped member 10 of the force sensor 1 is received as a force in the Z-axis direction. Detect the size. Further, in the force detecting member 2 of this embodiment, the forces applied in the direction orthogonal to the axial direction of the force receiving unit 22 parallel to the surface portion 10a of the plate-shaped member 10 of the force sensor 1 and are mutually exclusive. The force in the orthogonal direction is received as the force in the X-axis direction and the Y-axis direction, and the magnitude thereof is detected.
 そこで、この実施形態の力センサ1においては、3軸力センサとするために、図2(A)及び図3(A)において点線で分割して示すように、円板からなる板状部材10の一方の面部10aは、円周方向が4分割されて、それぞれ90度角範囲の4個の扇形領域SX1,SY1,SX2,SY2に領域分割される。この場合に、図2(A)に示すように、この例では、扇形領域SX1とSX2とは、中心位置Ocを中心としてX軸方向に対向し、扇形領域SY1とSY2は、中心位置Ocを中心としてY軸方向に対向するように構成される。 Therefore, in the force sensor 1 of this embodiment, in order to form a triaxial force sensor, a plate-shaped member 10 made of a disk is shown as shown by being divided by a dotted line in FIGS. 2 (A) and 3 (A). One surface portion 10a is divided into four in the circumferential direction, and each is divided into four fan-shaped regions SX1, SY1, SX2, and SY2 in a 90 degree angle range. In this case, as shown in FIG. 2A, in this example, the fan-shaped regions SX1 and SX2 face each other in the X-axis direction with the center position Occ as the center, and the fan-shaped regions SY1 and SY2 have the center position Occ. It is configured to face the Y-axis direction as a center.
 そして、この実施形態では、各扇形領域SX1,SY1,SX2,SY2のそれぞれにおいて、力受付部22を介して板状部材10に印加される力に応じて第1のリング状領域RG1及び第2のリング状領域RG2で互いに逆向きに生じるひずみ(伸長ひずみと収縮ひずみ)を検知するようにひずみ受感材11を配設する。 Then, in this embodiment, in each of the fan-shaped regions SX1, SY1, SX2, and SY2, the first ring-shaped region RG1 and the second ring-shaped region RG1 and the second ring-shaped region RG1 and the second ring-shaped region RG1 and the second ring-shaped region RG1 and the second The strain-sensitive material 11 is arranged so as to detect strains (extension strain and contraction strain) that occur in opposite directions in the ring-shaped region RG2.
 すなわち、この実施形態では、板状部材10の一方の面部10aの各扇形領域SX1,SY1,SX2,SY2のそれぞれにおけるリング状領域RGの第1のリング状領域RG1と第2のリング状領域RG2とのそれぞれにひずみ受感材11を設ける。 That is, in this embodiment, the first ring-shaped region RG1 and the second ring-shaped region RG2 of the ring-shaped region RG in each fan-shaped region SX1, SY1, SX2, SY2 of one surface portion 10a of the plate-shaped member 10 A strain-sensitive material 11 is provided for each of the above.
 そして、この実施形態では、各扇形領域SX1,SY1,SX2,SY2のそれぞれにおいて、ひずみ検出回路を構成するブリッジ回路を構成することができるように、第1のリング状領域RG1と第2のリング状領域RG2とのそれぞれの周方向に、2個ずつのひずみ受感材11を設ける。 Then, in this embodiment, in each of the fan-shaped regions SX1, SY1, SX2, and SY2, the first ring-shaped region RG1 and the second ring can be configured so that the bridge circuit constituting the strain detection circuit can be configured. Two strain-sensitive materials 11 are provided in each circumferential direction with the shape region RG2.
 図2(A)及び図3(A)では、板状部材10の一方の面部10aの各扇形領域SX1,SY1,SX2,SY2のそれぞれに設けるひずみ受感材11を区別することができるように、参照符号11に括弧を付随させ、その括弧内に別の参照符号を付している。以下の説明において、ひずみ受感材11を区別する必要がないときには、そのままの参照符号を用いてひずみ受感材11と記載し、区別する必要があるときには、括弧内の参照符号を用いて説明することとする。 In FIGS. 2A and 3A, the strain-sensitive material 11 provided in each of the fan-shaped regions SX1, SY1, SX2, and SY2 of one surface portion 10a of the plate-shaped member 10 can be distinguished. , A parenthesis is attached to the reference code 11, and another reference code is attached in the parentheses. In the following description, when it is not necessary to distinguish the strain-sensitive material 11, it is described as the strain-sensitive material 11 by using the reference code as it is, and when it is necessary to distinguish it, the reference code in parentheses is used. I decided to.
 すなわち、図2(A)及び図3(A)に示すように、扇形領域SX1においては、第1のリング状領域RG1には、その周方向に沿って2個のひずみ受感材X1,X2が、第2のリング状領域RG2には、その周方向に沿って2個のひずみ受感材X3,X4が、それぞれ設けられる。また、扇形領域SX2においては、第1のリング状領域RG1には、その周方向に沿って2個のひずみ受感材X5,X6が、第2のリング状領域RG2には、その周方向に沿って2個のひずみ受感材X7,X8が、それぞれ設けられる。 That is, as shown in FIGS. 2 (A) and 3 (A), in the fan-shaped region SX1, the first ring-shaped region RG1 has two strain-sensitive materials X1 and X2 along the circumferential direction thereof. However, the second ring-shaped region RG2 is provided with two strain-sensitive materials X3 and X4, respectively, along the circumferential direction thereof. Further, in the fan-shaped region SX2, the first ring-shaped region RG1 has two strain-sensitive materials X5 and X6 along the circumferential direction thereof, and the second ring-shaped region RG2 has two strain-sensitive materials X5 and X6 in the circumferential direction. Two strain-sensitive materials X7 and X8 are provided along the line, respectively.
 また、扇形領域SY1においては、第1のリング状領域RG1には、その周方向に沿って2個のひずみ受感材Y1,Y2が、第2のリング状領域RG2には、その周方向に沿って2個のひずみ受感材Y3,Y4が、それぞれ設けられる。また、扇形領域SY2においては、第1のリング状領域RG1には、その周方向に沿って2個のひずみ受感材Y5,Y6が、第2のリング状領域RG2には、その周方向に沿って2個のひずみ受感材Y7,Y8が、それぞれ設けられる。 Further, in the fan-shaped region SY1, the first ring-shaped region RG1 has two strain-sensitive materials Y1 and Y2 along its circumferential direction, and the second ring-shaped region RG2 has two strain-sensitive materials Y1 and Y2 in its circumferential direction. Two strain-sensitive materials Y3 and Y4 are provided along the line. Further, in the fan-shaped region SY2, the first ring-shaped region RG1 has two strain-sensitive materials Y5 and Y6 along the circumferential direction thereof, and the second ring-shaped region RG2 has two strain-sensitive materials Y5 and Y6 in the circumferential direction. Two strain-sensitive materials Y7 and Y8 are provided along the line.
 ここで、ひずみ受感材11としては、この実施形態では、ひずみ変形に応じて抵抗値が変化する導電性材であって、所定幅kの帯状導体(ストリップ状の導体)を用いるが、この例では、以下に説明するような優れた特徴を備えるひずみ受感材のストリップ状の導電性材を用いるようにする。 Here, as the strain-sensitive material 11, in this embodiment, a conductive material whose resistance value changes according to strain deformation, and a strip-shaped conductor (strip-shaped conductor) having a predetermined width k is used. In the example, a strip-shaped conductive material of a strain-sensitive material having excellent characteristics as described below is used.
 前述したように、従来、一般的に使用されているCu-Ni合金などのひずみ受感材を用いた帯状導体(ストリップ状の導体)は、ほぼその長手方向にしかひずみの受感感度を有していない。そのため、ストリップ状の導体からなるひずみ受感材は、図8(B)に示したように、ひずみの発生方向である半径方向(力の印加点から見た放射方向)に、その長手方向を合わせて配置すると共に、材料の抵抗値が低いために、円周方向に複数折り返すようなジグザグ状パターンを形成して抵抗値を大きくするようにしなければならない。 As described above, a strip-shaped conductor (strip-shaped conductor) using a strain-sensitive material such as a Cu—Ni alloy, which is generally used in the past, has a strain-sensitive sensitivity only in the longitudinal direction thereof. Not done. Therefore, as shown in FIG. 8B, the strain-sensitive material made of strip-shaped conductors has its longitudinal direction in the radial direction (radiation direction seen from the point where the force is applied), which is the direction in which the strain is generated. In addition to arranging them together, since the resistance value of the material is low, it is necessary to form a zigzag pattern in which a plurality of folds are made in the circumferential direction to increase the resistance value.
 このため、従来のひずみ受感材を用いる場合は、そのパターン面積が大きくなり、特に、ひずみ受感材のパターンの板状部材10の半径方向の長さを所定長さにする必要があるために、これを、第1のリング状領域RG1と、第2のリング状領域RG2とに配設するようにすると、板状部材10(ダイヤフラム)の大きさ(径)を小さくすることができず、力センサ1の小型化は困難である。 For this reason, when a conventional strain-sensitive material is used, the pattern area thereof becomes large, and in particular, it is necessary to set the length of the plate-shaped member 10 of the strain-sensitive material pattern in the radial direction to a predetermined length. If this is arranged in the first ring-shaped region RG1 and the second ring-shaped region RG2, the size (diameter) of the plate-shaped member 10 (diaphragm) cannot be reduced. , It is difficult to miniaturize the force sensor 1.
 この実施形態では、このような欠点を改善したひずみ受感材を用いる。すなわち、この例においては、ひずみ受感材として用いるストリップ状の導電性材は、Crおよび不可避不純物からなるCr薄膜、またはCr、N及び不可避不純物からなるCr-N薄膜で構成する(特許第6084393号公報(特許文献2として先行技術文献の欄に記載)参照)。以下に説明する実施形態では、ひずみ受感材11としては、Cr-N薄膜を用いる。 In this embodiment, a strain-sensitive material having improved such defects is used. That is, in this example, the strip-shaped conductive material used as the strain-sensitive material is composed of a Cr thin film composed of Cr and unavoidable impurities, or a Cr—N thin film composed of Cr, N and unavoidable impurities (Patent No. 6084393). See Publication No. 2 (described in the column of Prior Art Documents as Patent Document 2). In the embodiment described below, a Cr—N thin film is used as the strain sensitive material 11.
 このCr-N薄膜で構成されるストリップ状の導電性材は、ひずみの受感感度に方向性はなく(等方性)、長手方向だけでなく、幅方向(横方向)にも感度を備え、しかも、その感度の大きさを規定するゲージ率も高い。また、前記特許文献2にも記載されているように、Cr-N薄膜は、ゲージ率が高いだけでなく、抵抗温度係数(TCR)が約ゼロ(<±50ppm/℃)に制御可能であって温度変化に対して安定であり、さらには、高抵抗(数10kΩ)であってひずみ受感材11のパターン面積は小さくてよいという特徴もある。 The strip-shaped conductive material composed of this Cr—N thin film has no directional sensitivity to strain (isotropic), and has sensitivity not only in the longitudinal direction but also in the width direction (lateral direction). Moreover, the gauge rate that regulates the magnitude of the sensitivity is also high. Further, as described in Patent Document 2, the Cr—N thin film not only has a high gauge ratio, but also has a temperature coefficient of resistance (TCR) that can be controlled to about zero (<± 50 ppm / ° C.). It is stable against temperature changes, has a high resistance (several tens of kΩ), and has a feature that the pattern area of the strain sensitive material 11 may be small.
 この実施形態の力センサ1では、ひずみ受感材11の上記の特徴を利用して、以下に説明するように、板状部材10の一方の面部10a上にひずみ受感材11を配置する。高抵抗率のひずみ受感材11により、小さな面積で高抵抗値が得られ、これにより発生するひずみをピンポイントで検出できるために高感度化が可能であり、更に、高抵抗のために小面積のひずみ受感材11で良く、力センサ1を小型化することができる。 In the force sensor 1 of this embodiment, the strain-sensitive material 11 is arranged on one surface portion 10a of the plate-shaped member 10 as described below by utilizing the above-mentioned characteristics of the strain-sensitive material 11. The strain-sensitive material 11 having a high resistivity provides a high resistance value in a small area, and the strain generated by this can be detected pinpointly, so that high sensitivity can be achieved, and further, the high resistance makes it small. The strain-sensitive material 11 having an area may be sufficient, and the force sensor 1 can be miniaturized.
 すなわち、この実施形態では、ストリップ状の導電性材からなるひずみ受感材11は、図2(A)及び図3(A)においてハッチングを付して示すように、その長手方向を、板状部材10における力の印加点(板状部材10の中心位置)から見た放射方向を長手方向に揃えるのではなく、円周方向に沿うように配設する。すなわち、この実施形態では、複数個のひずみ受感材11のそれぞれは弧形状を有するものとして、円周方向に沿うようにして、板状部材10の面部10a上に配設する。この場合に、この実施形態では、ひずみ受感材11を構成するそれぞれストリップ状の導電性材は、板状部材10が印加された力に応じて第1のリング状領域RG1と第2のリング状領域RG2とのそれぞれに生じるひずみの発生部位に、その幅方向をピンポイントに合わせて配設するようにする。 That is, in this embodiment, the strain-sensitive material 11 made of a strip-shaped conductive material has a plate-like longitudinal direction as shown by hatching in FIGS. 2 (A) and 3 (A). The radial direction seen from the point where the force is applied to the member 10 (the center position of the plate-shaped member 10) is not aligned in the longitudinal direction, but is arranged along the circumferential direction. That is, in this embodiment, each of the plurality of strain-sensitive materials 11 has an arc shape, and is arranged on the surface portion 10a of the plate-shaped member 10 along the circumferential direction. In this case, in this embodiment, the strip-shaped conductive materials constituting the strain-sensitive material 11 are the first ring-shaped region RG1 and the second ring according to the force applied to the plate-shaped member 10. The width direction is aligned with the pinpoint at the site where the strain generated in each of the shape regions RG2 is generated.
 このようにひずみ受感材11を配設することで、力センサ1では、ひずみを十分な感度で、かつ、検出出力電圧の大きさを保持して検出することができる。すなわち、幅kのストリップ状の導電性材からなるひずみ受感材11の長手方向を、円周方向に沿って配設した場合、当該ひずみ受感材11の幅kの長さの幅方向部分においてひずみが検知され、その幅kの長さの幅方向部分におけるひずみ検知が、ひずみ受感材11の長手方向の長さ分に亘って行われることになる。 By disposing the strain-sensitive material 11 in this way, the force sensor 1 can detect the strain with sufficient sensitivity and while maintaining the magnitude of the detected output voltage. That is, when the longitudinal direction of the strain-sensitive material 11 made of a strip-shaped conductive material having a width k is arranged along the circumferential direction, the width direction portion of the width k of the strain-sensitive material 11 Strain is detected in, and strain detection in the width direction portion of the width k is performed over the length of the strain sensitizing material 11 in the longitudinal direction.
 また、印加された力に応じて板状部材10が弾性変形をするので、板状部材10の中心位置Ocを中心とした放射方向のみでなく、円周方向にもひずみが生じるが、ひずみ受感材11は、その円周方向のひずみに応じても変位して、その抵抗値を変えることで、当該円周方向のひずみをも検知する。さらに、この実施形態のひずみ受感材11を構成する導電性材の抵抗値は高く、低消費電力を維持しつつ、局所的なひずみに合わせて、小さな面積のひずみ受感材を設けることできる。したがって、この実施形態の力センサ1では、ひずみ受感材11のそれぞれにおいて、印加された力に対応したひずみを十分に検知することができる。 Further, since the plate-shaped member 10 is elastically deformed according to the applied force, strain is generated not only in the radial direction centered on the center position Occ of the plate-shaped member 10 but also in the circumferential direction, but the strain is received. The sensitive material 11 is also displaced according to the strain in the circumferential direction, and by changing its resistance value, the strain in the circumferential direction is also detected. Further, the resistance value of the conductive material constituting the strain-sensitive material 11 of this embodiment is high, and the strain-sensitive material having a small area can be provided according to the local strain while maintaining low power consumption. .. Therefore, in the force sensor 1 of this embodiment, the strain corresponding to the applied force can be sufficiently detected in each of the strain-sensitive materials 11.
 そして、この実施形態では、板状部材10の一方の面部10aにおいて、第1のリング状領域RG1に配設されるひずみ受感材X1、X2,X5、X6及びひずみ受感材Y1,Y2,Y5,Y6は、当該第1のリング状領域RG1において印加された力に応じて発生するひずみが大きく発生する位置、この例では、第1のリング状領域RG1の幅方向(半径方向)の、中心位置Ocから半径ri分だけ離れた最内周側位置又はその近傍に配設される。すなわち、ひずみ受感材X1、X2,X5、X6及びひずみ受感材Y1,Y2,Y5,Y6のそれぞれを構成するストリップ状の導電性材の幅方向を、第1のリング状領域RG1において、発生するひずみが大きい幅方向(半径方向)の、中心位置Ocから半径ri分だけ離れた最内周側位置又はその近傍にピンポイントに合わせると共に、ストリップ状の導電性材の長手方向を、当該ひずみが発生している周方向に合わせて配設される。 Then, in this embodiment, the strain-sensitive materials X1, X2, X5, X6 and the strain-sensitive materials Y1, Y2, which are arranged in the first ring-shaped region RG1 on one surface portion 10a of the plate-shaped member 10. Y5 and Y6 are positions where a large strain is generated in response to the force applied in the first ring-shaped region RG1, in this example, in the width direction (radial direction) of the first ring-shaped region RG1. It is arranged at or near the innermost peripheral position separated by a radius ri from the central position Occ. That is, the width direction of the strip-shaped conductive material constituting each of the strain-sensitive materials X1, X2, X5, X6 and the strain-sensitive materials Y1, Y2, Y5, Y6 is set in the first ring-shaped region RG1. In the width direction (radial direction) where the generated strain is large, pinpoint the position on the innermost peripheral side or its vicinity, which is separated from the center position Oct by a radius of ri, and the longitudinal direction of the strip-shaped conductive material. It is arranged according to the circumferential direction in which strain is generated.
 以上のようにして、ひずみ受感材X1、X2,X5、X6及びひずみ受感材Y1,Y2,Y5,Y6は、板状部材10の一方の面部10aにおいて、中心位置Ocから同一の半径位置において、周方向に沿って、ひずみ発生位置に合わせて配設される。 As described above, the strain-sensitive materials X1, X2, X5, X6 and the strain-sensitive materials Y1, Y2, Y5, Y6 are located at the same radial position from the center position Occ on one surface portion 10a of the plate-shaped member 10. Is arranged along the circumferential direction according to the strain generation position.
 同様に、第2のリング状領域RG2に配設されるひずみ受感材X3、X4,X7、X8及びひずみ受感材Y3,Y4,Y7,Y8は、当該第2のリング状領域RG2において印加された力に応じたひずみが大きく発生する位置、この例では、第2のリング状領域RG2の幅方向(半径方向)の、中心位置Ocから半径r0分だけ離れた最外周側位置又はその近傍に配設される。したがって、ひずみ受感材X3、X4,X7、X8及びひずみ受感材Y3,Y4,Y7,Y8は、板状部材10の一方の面部10aの第2のリング状領域RG2において、中心位置Ocから同一の半径位置において、周方向に沿って、ひずみ発生位置に合わせて配設される。 Similarly, the strain-sensitive materials X3, X4, X7, X8 and the strain-sensitive materials Y3, Y4, Y7, Y8 arranged in the second ring-shaped region RG2 are applied in the second ring-shaped region RG2. A position where a large amount of strain is generated according to the applied force, in this example, the outermost peripheral side position in the width direction (radial direction) of the second ring-shaped region RG2, which is separated by a radius r0 from the center position Occ, or its vicinity. Is arranged in. Therefore, the strain-sensitive materials X3, X4, X7, X8 and the strain-sensitive materials Y3, Y4, Y7, Y8 are located in the second ring-shaped region RG2 of one surface portion 10a of the plate-shaped member 10 from the center position Occ. At the same radial position, they are arranged along the circumferential direction according to the strain generation position.
 なお、図3では、説明の便宜上、ひずみ受感材11の配設位置は、第1のリング状領域RG1及び第2のリング状領域RG2の半径方向の中央となっているが、実際上は、図2に示したのと同様に、ひずみの大きさが最大となる位置に配置されているのは勿論である。 In FIG. 3, for convenience of explanation, the strain sensitive material 11 is arranged at the center of the first ring-shaped region RG1 and the second ring-shaped region RG2 in the radial direction, but in practice. Of course, as shown in FIG. 2, the strain is arranged at the position where the magnitude of the strain is maximized.
 そして、第1のリング状領域RG1に配設されるひずみ受感材X1、X2,X5、X6及びひずみ受感材Y1,Y2,Y5,Y6と、第2のリング状領域RG2に配設されるひずみ受感材X3、X4,X7、X8及びひずみ受感材Y3,Y4,Y7,Y8とは、図2(A)及び図3(A)に示すように、板状部材10の中心位置Ocを中心とした放射方向、すなわち、ひずみの発生方向に整列するように配設される。 Then, the strain-sensitive materials X1, X2, X5, X6 and the strain-sensitive materials Y1, Y2, Y5, Y6 arranged in the first ring-shaped region RG1 and the strain-sensitive materials Y1, Y2, Y5, Y6 are arranged in the second ring-shaped region RG2. The strain-sensitive materials X3, X4, X7, X8 and the strain-sensitive materials Y3, Y4, Y7, Y8 are the center positions of the plate-shaped member 10 as shown in FIGS. 2 (A) and 3 (A). It is arranged so as to be aligned in the radial direction centered on Occ, that is, in the strain generation direction.
 さらに、この実施形態においては、第1のリング状領域RG1に配設されるひずみ受感材X1、X2,X5、X6及びひずみ受感材Y1,Y2,Y5,Y6と、第2のリング状領域RG2に配設されるひずみ受感材X3、X4,X7、X8及びひずみ受感材Y3,Y4,Y7,Y8との内、少なくとも中心位置Ocから放射方向(半径方向)に並ぶ2個ずつのひずみ受感材11は、ひずみが発生していないときの抵抗値が等しくなるように構成されている。 Further, in this embodiment, the strain-sensitive materials X1, X2, X5, X6 and the strain-sensitive materials Y1, Y2, Y5, Y6 arranged in the first ring-shaped region RG1 and the second ring-shaped material. Of the strain-sensitive materials X3, X4, X7, X8 and the strain-sensitive materials Y3, Y4, Y7, Y8 arranged in the region RG2, at least two of them are arranged in the radial direction (radial direction) from the center position Occ. The strain-sensitive material 11 is configured so that the resistance values when no strain is generated are equal.
 この実施形態では、板状部材10の中心位置Ocとした放射方向の全てで、ひずみの受感感度が等しくなるようにするために、第1のリング状領域RG1に周方向に配設されるひずみ受感材X1、X2,X5、X6及びひずみ受感材Y1,Y2,Y5,Y6は、ひずみが発生していないときの抵抗値が、全て同一の値となるようにしている。したがって、この例では、ひずみ受感材X1~X8及びひずみ受感材Y1~Y8の全てを、ひずみが発生していないときの抵抗値が等しくなるように形成している。 In this embodiment, the plate-shaped member 10 is arranged in the circumferential direction in the first ring-shaped region RG1 so that the strain sensitivity is equal in all the radial directions set to the central position Occ. The strain-sensitive materials X1, X2, X5, X6 and the strain-sensitive materials Y1, Y2, Y5, and Y6 all have the same resistance value when no strain is generated. Therefore, in this example, all of the strain-sensitive materials X1 to X8 and the strain-sensitive materials Y1 to Y8 are formed so that the resistance values when no strain is generated are equal.
 この場合に、ひずみ受感材11の抵抗値は、ストリップ状の導電性材の幅と、長手方向の長さと、厚さ及び導電性材の材料により決まるが、導電性材の材料としては、この例では、ひずみ受感材X1~X8及びひずみ受感材Y1~Y8の全てのストリップ状の導電性材の材料としてはCr-Nが用いられているので、導電性材の幅と、長手方向の長さと、厚さとを等しくすることで、ひずみが発生していないときの抵抗値が等しくなるようにしている。しかし、ひずみ受感材X1~X8及びひずみ受感材Y~Y8のストリップ状の導電性材の幅と、長手方向の長さと、厚さとをそれぞれ調整することで、ひずみが発生していないときの抵抗値が等しくなるようにしてもよい。 In this case, the resistance value of the strain-sensitive material 11 is determined by the width of the strip-shaped conductive material, the length in the longitudinal direction, the thickness, and the material of the conductive material. In this example, since Cr—N is used as the material for all the strip-shaped conductive materials of the strain-sensitive materials X1 to X8 and the strain-sensitive materials Y1 to Y8, the width and length of the conductive material. By making the length in the direction equal to the thickness, the resistance value when no strain is generated is made equal. However, when strain is not generated by adjusting the width, length, and thickness of the strip-shaped conductive materials of the strain-sensitive materials X1 to X8 and the strain-sensitive materials Y to Y8, respectively. The resistance values of may be equal.
 この実施形態の力センサ1のひずみ受感材11で用いられるCr-Nからなるストリップ状の導電性材は、前記特許文献2に開示されているように、従来例のようにフレキシブル基板に形成するのではなく、薄膜として起歪体である板状部材10自身に直接的に形成することができる。 As disclosed in Patent Document 2, the strip-shaped conductive material made of Cr—N used in the strain-sensitive material 11 of the force sensor 1 of this embodiment is formed on a flexible substrate as in a conventional example. Instead, it can be formed directly on the plate-shaped member 10 itself, which is a strain-causing body, as a thin film.
 そこで、この実施形態の力センサ1は、板状部材10の一方の面部10aに、予め、ひずみ受感材11のそれぞれが、成膜処理されて薄膜として形成されると共に、導体パターン12が同様に成膜処理されることで形成される。したがって、この実施形態の力センサ1の製造には、ひずみ受感材がパターニングされて配設されたフレキシブル基板を接着材により接着する工程が不要であるので、量産が容易である。そして、この実施形態の力センサ1を、その板状部材10の周縁部10Eで台座部21に結合し、力受付部22を、板状部材10の中央部において例えばネジ止めして結合することで、力検出部材2を生成することができるので、力検出部材2の製造も簡単であるという特徴も備える。 Therefore, in the force sensor 1 of this embodiment, each of the strain-sensitive materials 11 is formed into a thin film in advance on one surface portion 10a of the plate-shaped member 10, and the conductor pattern 12 is the same. It is formed by forming a film. Therefore, the production of the force sensor 1 of this embodiment does not require a step of adhering the flexible substrate in which the strain-sensitive material is patterned and arranged by the adhesive, so that mass production is easy. Then, the force sensor 1 of this embodiment is connected to the pedestal portion 21 at the peripheral edge portion 10E of the plate-shaped member 10, and the force receiving portion 22 is connected by, for example, screwing at the central portion of the plate-shaped member 10. Since the force detecting member 2 can be generated, the force detecting member 2 is also characterized by being easy to manufacture.
 この実施形態の力センサ1においては、前述したように、板状部材10の一方の面部10aの各扇形領域SX1,SY1,SX2,SY2のそれぞれに配設される4個のひずみ受感材により、ひずみ検出回路を構成するブリッジ回路が構成される。導電パターン12は、図3(A)に示すように配設されることで、各扇形領域SX1,SY1,SX2,SY2のそれぞれにおいて、ブリッジ回路が形成される。なお、図3(A)においては、ハッチングを付して示したひずみ受感材11と区別するために、導電パターン12は、白抜きの線路パターンとして示している。 In the force sensor 1 of this embodiment, as described above, the four strain-sensitive materials arranged in each of the fan-shaped regions SX1, SY1, SX2, and SY2 of the one surface portion 10a of the plate-shaped member 10 are used. , The bridge circuit that constitutes the strain detection circuit is configured. By arranging the conductive pattern 12 as shown in FIG. 3A, a bridge circuit is formed in each of the fan-shaped regions SX1, SY1, SX2, and SY2. In FIG. 3A, the conductive pattern 12 is shown as a white line pattern in order to distinguish it from the strain-sensitive material 11 shown with hatching.
 各扇形領域SX1,SY1,SX2,SY2のそれぞれに配設される4個のひずみ受感材11で構成されるブリッジ回路は、同様の構成を有する。図4は、扇形領域SX1において、4個のひずみ受感材X1~X4が導電パターン12により電気的に接続されて形成されるブリッジ回路の構成を、その代表例として示す図である。 The bridge circuit composed of the four strain-sensitive materials 11 arranged in each of the fan-shaped regions SX1, SY1, SX2, and SY2 has the same configuration. FIG. 4 is a diagram showing a configuration of a bridge circuit formed by electrically connecting four strain-sensitive materials X1 to X4 by a conductive pattern 12 in a fan-shaped region SX1 as a typical example.
 すなわち、図4に示すように、電源電圧Vccが供給される端子tVと、接地される端子tGとの間に、ひずみ受感材X1とひずみ受感材X3との直列回路と、ひずみ受感材X2とひずみ受感材X4との直列回路とが並列に接続される。そして、ひずみ受感材X1とひずみ受感材X3との接続点から第1の出力端子tO(-)が、また、ひずみ受感材X2とひずみ受感材X4との接続点から第2の出力端子tO(+)が、それぞれ導出される。端子tV,tG,tO(-),tO(+)は、図3(A)に示すように、板状部材10の面部10aに形成されている。 That is, as shown in FIG. 4, between the terminal tV to which the power supply voltage Vcc is supplied and the grounded terminal tG, a series circuit of the strain sensitizer X1 and the strain sensitizer X3 and the strain sensation A series circuit of the material X2 and the strain-sensitive material X4 is connected in parallel. Then, the first output terminal tO (-) from the connection point between the strain-sensitive material X1 and the strain-sensitive material X3, and the second from the connection point between the strain-sensitive material X2 and the strain-sensitive material X4. The output terminals tO (+) are derived respectively. The terminals tV, tG, tO (−), and tO (+) are formed on the surface portion 10a of the plate-shaped member 10 as shown in FIG. 3A.
 この図4の回路において、ひずみが生じていない場合には、ひずみ受感材X1~X4の抵抗値は全て等しいので、出力端子tO(-)及び出力端子tO(+)の出力電圧は等しく、その差の出力電圧はゼロである。 In the circuit of FIG. 4, when no strain is generated, the resistance values of the strain-sensitive materials X1 to X4 are all equal, so that the output voltages of the output terminal tO (−) and the output terminal tO (+) are equal. The output voltage of the difference is zero.
 そして、力センサ1に力が印加されたときには、ひずみ受感材X1が存在する第1のリング状領域RG1と、ひずみ受感材X3が存在する第2のリング状領域RG2とでは、印加された力に応じて互いに逆向きのひずみを受けるので、ひずみ受感材X1とひずみ受感材X3とでは逆方向に抵抗値が変化する。そして、出力端子tO(-)には、ひずみ受感材X1の抵抗値とひずみ受感材X3の抵抗値との差分に応じた電圧が得られると共に、出力端子tO(+)には、ひずみ受感材X2の抵抗値とひずみ受感材X4の抵抗値との差分に応じた、出力端子tO(-)とは逆向きの電圧が得られる。したがって、出力端子tO(-)に得られる電圧と、出力端子tO(+)に得られる出力電圧との差分の電圧として、力センサ1に印加された力のX軸方向の力成分に応じた出力電圧EX1が得られる。 Then, when a force is applied to the force sensor 1, the force is applied to the first ring-shaped region RG1 in which the strain-sensitive material X1 exists and the second ring-shaped region RG2 in which the strain-sensitive material X3 exists. Since strains are received in opposite directions according to the force applied, the resistance values of the strain-sensitive material X1 and the strain-sensitive material X3 change in opposite directions. Then, a voltage corresponding to the difference between the resistance value of the strain-sensitive material X1 and the resistance value of the strain-sensitive material X3 is obtained at the output terminal tO (−), and the output terminal tO (+) is strained. A voltage in the direction opposite to that of the output terminal tO (−) is obtained according to the difference between the resistance value of the sensitive material X2 and the resistance value of the strain sensitive material X4. Therefore, the difference voltage between the voltage obtained at the output terminal tO (−) and the output voltage obtained at the output terminal tO (+) corresponds to the force component of the force applied to the force sensor 1 in the X-axis direction. The output voltage EX1 is obtained.
 前述もしたように、他の扇形領域SX2,SY1,SY2においても、同様によりブリッジ回路が形成されて、力センサ1に印加された力に応じた出力電圧が得られる。すなわち、扇形領域SX2の場合には、図4において、括弧内に示すように、扇形領域SX1のひずみ受感材X1に代えてひずみ受感材X5が、ひずみ受感材X2に代えてひずみ受感材X6が、ひずみ受感材X3に代えてひずみ受感材X7が、ひずみ受感材X4に代えてひずみ受感材X8が、接続されることで、出力端子tO(-)に得られる電圧と、出力端子tO(+)に得られる出力電圧との差分の電圧として、力センサ1に印加された力のX軸方向の力成分に応じた出力電圧EX2が得られる。 As described above, in the other fan-shaped regions SX2, SY1, and SY2, a bridge circuit is formed in the same manner, and an output voltage corresponding to the force applied to the force sensor 1 can be obtained. That is, in the case of the fan-shaped region SX2, as shown in parentheses in FIG. 4, the strain-sensitive material X5 replaces the strain-sensitive material X1 in the fan-shaped region SX1, and the strain-sensitive material X5 replaces the strain-sensitive material X2. The sensitive material X6 is obtained at the output terminal tO (-) by connecting the strain sensitive material X7 instead of the strain sensitive material X3 and the strain sensitive material X8 instead of the strain sensitive material X4. As the difference voltage between the voltage and the output voltage obtained at the output terminal tO (+), the output voltage EX2 corresponding to the force component of the force applied to the force sensor 1 in the X-axis direction is obtained.
 また、扇形領域SY1の場合には、図4における、ひずみ受感材X1に代えてひずみ受感材Y1が、ひずみ受感材X2に代えてひずみ受感材Y2が、ひずみ受感材X3に代えてひずみ受感材Y3が、ひずみ受感材X4に代えてひずみ受感材Y4が、接続されることで、出力端子tO(-)に得られる電圧と、出力端子tO(+)に得られる出力電圧との差分の電圧として、力センサ1に印加された力のY軸方向の力成分に応じた出力電圧EY1が得られる。 Further, in the case of the fan-shaped region SY1, the strain-sensitive material Y1 replaces the strain-sensitive material X1 and the strain-sensitive material Y2 replaces the strain-sensitive material X2 in FIG. By connecting the strain-sensitive material Y3 instead of the strain-sensitive material X4 and the strain-sensitive material Y4 instead of the strain-sensitive material X4, the voltage obtained at the output terminal tO (-) and the voltage obtained at the output terminal tO (+) are obtained. As a voltage difference from the output voltage to be obtained, an output voltage EY1 corresponding to the force component of the force applied to the force sensor 1 in the Y-axis direction is obtained.
 さらに、扇形領域SY2の場合には、図4における、ひずみ受感材X1に代えてひずみ受感材Y5が、ひずみ受感材X2に代えてひずみ受感材Y6が、ひずみ受感材X3に代えてひずみ受感材Y7が、ひずみ受感材X4に代えてひずみ受感材Y8が、接続されることで、出力端子tO(-)に得られる電圧と、出力端子tO(+)に得られる出力電圧との差分の電圧として、力センサ1に印加された力のY軸方向の力成分に応じた出力電圧EY2が得られる。 Further, in the case of the fan-shaped region SY2, the strain-sensitive material Y5 replaces the strain-sensitive material X1 and the strain-sensitive material Y6 replaces the strain-sensitive material X2 in FIG. By connecting the strain-sensitive material Y7 instead of the strain-sensitive material X4 and the strain-sensitive material Y8 instead of the strain-sensitive material X4, the voltage obtained at the output terminal tO (-) and the voltage obtained at the output terminal tO (+) are obtained. As a voltage difference from the output voltage to be obtained, an output voltage EY2 corresponding to the force component of the force applied to the force sensor 1 in the Y-axis direction is obtained.
 そして、以上のようにして、扇形領域SX1,SX2,SY1,SY2に形成されている4個のブリッジ回路のそれぞれの出力電圧EX1,EX2,EY1,EY2を用いることで、力検出部材2の力受付部22に印加された力のZ軸方向の力成分についての出力電圧EZ、X軸方向の力成分についての出力電圧EX及びY軸方向の力成分についての出力電圧EYが、次のような演算式より得られる。 Then, as described above, by using the output voltages EX1, EX2, EY1 and EY2 of the four bridge circuits formed in the fan-shaped regions SX1, SX2, SY1 and SY2, the force of the force detecting member 2 is used. The output voltage EZ for the Z-axis direction force component of the force applied to the receiving unit 22, the output voltage EX for the X-axis direction force component, and the output voltage EY for the Y-axis direction force component are as follows. Obtained from the arithmetic formula.
 すなわち、Z軸方向の力成分については、図2(B)に示したように、板状部材10の中心位置Ocを中心とする放射方向に同様のひずみ変形が生じるので、力検出部材2の検出出力電圧EZは、
 EZ=EX1+EX2+EY1+EY2
として算出される。
That is, as for the force component in the Z-axis direction, as shown in FIG. 2 (B), the same strain deformation occurs in the radial direction centered on the center position Occ of the plate-shaped member 10, so that the force detecting member 2 The detected output voltage EZ is
EZ = EX1 + EX2 + EY1 + EY2
Is calculated as.
 また、X軸方向の力成分については、図2(C)に示したように、板状部材10の中心位置Ocの手前側と、後ろ側とで、逆向きのひずみが生じるので、力検出部材2の検出出力電圧EXは、
 EX=EX1-EX2
として算出される。
As for the force component in the X-axis direction, as shown in FIG. 2C, reverse strain occurs on the front side and the rear side of the center position Occ of the plate-shaped member 10, so that the force is detected. The detected output voltage EX of member 2 is
EX = EX1-EX2
Is calculated as.
 また、Y軸方向の力成分についても、同様に、図2(C)に示したように、板状部材10の中心位置Ocの手前側と、後ろ側とで、逆向きのひずみが生じるので、力検出部材2の検出出力電圧EYは、
 EY=EY1-EY2
として算出される。
Similarly, with respect to the force component in the Y-axis direction, as shown in FIG. 2C, reverse strain occurs on the front side and the rear side of the center position Occ of the plate-shaped member 10. , The detection output voltage EY of the force detection member 2 is
EY = EY1-EY2
Is calculated as.
 [実施形態の効果]
 以上説明したように、上述の実施形態の力センサ1によれば、円板状の板状部材10の中心位置から放射方向(半径方向)に異なる位置の領域である第1のリング状領域RG1と、第2のリング状領域RG2とのそれぞれに、ひずみ受感材11を配置することで、力センサ1に印加される力を検出することができる。
[Effect of Embodiment]
As described above, according to the force sensor 1 of the above-described embodiment, the first ring-shaped region RG1 which is a region different from the center position of the disc-shaped plate-shaped member 10 in the radial direction (radial direction). By arranging the strain-sensitive material 11 in each of the second ring-shaped region RG2 and the second ring-shaped region RG2, the force applied to the force sensor 1 can be detected.
 この場合に、ひずみ受感材11は、ストリップ状の導電性材の幅方向位置を、リング状領域RG1,RG2のそれぞれの、ひずみ発生位置に合わせた半径方向位置とすると共に、ストリップ状の導電性材の長手方向を、ひずみ発生位置に合わせた円周方向に沿って配置するので、円板状の板状部材10の半径方向に占めるひずみ受感材11の領域面積を小さくでき、このため、板状部材10の半径を小さくできて、力センサ1の小型化が可能となる。 In this case, the strain-sensitive material 11 sets the width direction position of the strip-shaped conductive material to the radial position of each of the ring-shaped regions RG1 and RG2 in accordance with the strain generation position, and also sets the strip-shaped conductive material. Since the longitudinal direction of the material is arranged along the circumferential direction that matches the strain generation position, the area of the strain-sensitive material 11 that occupies the radial direction of the disc-shaped plate-shaped member 10 can be reduced. The radius of the plate-shaped member 10 can be reduced, and the force sensor 1 can be miniaturized.
 そして、この実施形態の力センサ1では、板状部材10に直接的にひずみ受感材11の薄膜を形成すると共に、ブリッジ回路を構成するためのひずみ受感材11間を電気的に接続するための導電パターンも、板状部材10上に形成するようにしたので、冒頭で説明した従来の力センサのように、フレキシブル基板にひずみ受感材を形成して当該フレキシブル基板を起歪体としての板状部材に接着材により接着する必要はない。このため、力センサ1の製造が容易になると共に、従来のような接着材の存在によるひずみの受感感度の低下やばらつき、及び、応力-ひずみ特性の変化、は生じないというメリットがある。また、フレキシブル基板(ポリイミドなど)は、温度特性がダイヤフラムや板状部材とは異なるので、力センサの温度特性に影響を与えていたが、これを考慮する必要がないというメリットもある。 Then, in the force sensor 1 of this embodiment, a thin film of the strain-sensitive material 11 is directly formed on the plate-shaped member 10, and the strain-sensitive materials 11 for forming a bridge circuit are electrically connected to each other. Since the conductive pattern for this purpose is also formed on the plate-shaped member 10, a strain-sensitive material is formed on the flexible substrate and the flexible substrate is used as a strain-causing body as in the conventional force sensor described at the beginning. It is not necessary to adhere to the plate-shaped member of the above with an adhesive. Therefore, the force sensor 1 can be easily manufactured, and there is an advantage that the strain sensitivity is not lowered or varied due to the presence of the adhesive as in the conventional case, and the stress-strain characteristic is not changed. Further, since the temperature characteristics of the flexible substrate (polyimide, etc.) are different from those of the diaphragm and the plate-shaped member, the temperature characteristics of the force sensor are affected, but there is an advantage that it is not necessary to consider this.
 また、この実施形態の力センサ1では、ひずみ受感材11は、Cr、N及び不可避不純物からなるCr-N薄膜で構成されているので、ひずみの受感感度に方向性依存がなく、高感度の力センサを実現できると言う効果もある。なお、上述したように、ひずみ受感材11としては、Crおよび不可避不純物からなるCr薄膜であってもよい。 Further, in the force sensor 1 of this embodiment, since the strain sensitive material 11 is composed of a Cr—N thin film composed of Cr, N and unavoidable impurities, the strain sensitive sensitivity does not depend on the directionality and is high. It also has the effect of realizing a sensitive force sensor. As described above, the strain sensitive material 11 may be a Cr thin film composed of Cr and unavoidable impurities.
 そして、この実施形態の力センサ1では、上述したように、円板状の板状部材10を円周方向に分割した扇形領域のそれぞれにおいて、印加される力に応じて当該扇形領域に生じるひずみを検知するブリッジ回路を構成することができ、その複数のブリッジ回路の出力を用いて、印加された力のX軸方向の成分、Y軸方向の成分、Z軸方向の成分を、高感度で検出することができる。 Then, in the force sensor 1 of this embodiment, as described above, in each of the fan-shaped regions obtained by dividing the disc-shaped plate-shaped member 10 in the circumferential direction, the strain generated in the fan-shaped region according to the applied force. A bridge circuit can be configured to detect, and the outputs of the plurality of bridge circuits can be used to detect the X-axis direction component, Y-axis direction component, and Z-axis direction component of the applied force with high sensitivity. Can be detected.
 出願人は、上述した実施形態の力センサ1の効果を確認するために、従来のひずみ受感材料を用いた力センサを比較例として作成し、両者のひずみ検出についてのシミュレーションを行った。この比較例及びシミュレーション結果について、図5を参照しながら説明する。 In order to confirm the effect of the force sensor 1 of the above-described embodiment, the applicant created a force sensor using a conventional strain-sensitive material as a comparative example, and simulated the strain detection of both. This comparative example and the simulation result will be described with reference to FIG.
 従来一般的に用いられているひずみ受感材料の一例としてのCu―Ni合金を用いて、この実施形態の力センサ1と同様の構成を有する力センサ1´を作成すると、図5(A)のような構成となる。比較を容易にするために、図5(B)に、この実施形態の力センサ1を示す。 Using a Cu—Ni alloy as an example of a strain-sensitive material that is generally used in the past, a force sensor 1 ′ having the same configuration as the force sensor 1 of this embodiment is created. FIG. The configuration is as follows. For ease of comparison, FIG. 5B shows the force sensor 1 of this embodiment.
 図5(A)と図5(B)とから分かるように、比較例の力センサ1´においては、各扇形領域SX1,SX2,SY1,SY2に配設するひずみ受感材の形状が、この実施形態の力センサ1のひずみ受感材11とは異なる。すなわち、比較例の力センサ1´のひずみ受感材は、図示のようなジグザグ状パターンとされている。なお、説明の簡単のため、図5(A)及び(B)では、扇形領域SX1を代表して符号を配しており、比較例の力センサ1´においては、この扇形領域SX1に、ジグザグ状パターンのひずみ受感材X1´~X4´が配されている。 As can be seen from FIGS. 5A and 5B, in the force sensor 1'of the comparative example, the shape of the strain-sensitive material arranged in each fan-shaped region SX1, SX2, SY1, SY2 is this. It is different from the strain-sensitive material 11 of the force sensor 1 of the embodiment. That is, the strain-sensitive material of the force sensor 1'in the comparative example has a zigzag pattern as shown in the figure. For the sake of simplicity, in FIGS. 5A and 5B, reference numerals are arranged on behalf of the fan-shaped region SX1, and in the force sensor 1'of the comparative example, the fan-shaped region SX1 is zigzag. The strain-sensitive materials X1'to X4' of the shape pattern are arranged.
 前述したように、従来一般的に用いられているひずみ受感材料は、Cu―Ni合金に限らず、ひずみ受感方向の異方性が大きく、ストリップ状のひずみ受感材の幅方向の感度がほとんどないために、板状部材10の径方向に長さが変わるようにパターンを配置する必要があった。そして、ひずみ受感材料の抵抗値が低いために、発熱・消費電流の観点から、図5(A)に示すように、ひずみ受感材X1´~X4´は複数回折り返したジグザグ状パターンとして抵抗値を大きくするようにしているのである。 As described above, the strain-sensitive materials generally used in the past are not limited to Cu—Ni alloys, but have a large anisotropy in the strain-sensitive direction, and the sensitivity of the strip-shaped strain-sensitive material in the width direction. Therefore, it was necessary to arrange the pattern so that the length of the plate-shaped member 10 changes in the radial direction. Since the resistance value of the strain-sensitive material is low, the strain-sensitive materials X1'to X4' are formed into a zigzag pattern in which a plurality of times are folded back, as shown in FIG. 5A, from the viewpoint of heat generation and current consumption. The resistance value is increased.
 以上のような構成とされた図5(A)の比較例の力センサ1´と、図5(B)のこの実施形態の力センサ1に対して、その板状部材10の中心位置に結合された棒状の力受付部22(図5では図示は省略)を介して、Z軸方向(板状部材10に対して直交する方向)の同じ力を印加したときのシミュレーション結果は、図5(C)の表に示すようなものとなる。図5(C)の右端に示す検出歪み量は、力センサ1´において、ひずみ受感材X1´~X4´により扇形領域SX1において検出されるトータルの歪み量である。 The force sensor 1'of the comparative example of FIG. 5 (A) and the force sensor 1 of this embodiment of FIG. 5 (B) having the above configuration are coupled to the center position of the plate-shaped member 10. The simulation result when the same force in the Z-axis direction (direction orthogonal to the plate-shaped member 10) is applied through the rod-shaped force receiving unit 22 (not shown in FIG. 5) is shown in FIG. 5 (FIG. 5). It will be as shown in the table of C). The detected strain amount shown at the right end of FIG. 5C is the total strain amount detected in the fan-shaped region SX1 by the strain-sensitive materials X1'to X4' in the force sensor 1'.
 なお、このシミュレーションにおいては、力センサ1及び力センサ1´の板状部材10の外径は6mm、板状部材10の厚さは0.5mm、力受付部22の径は2mm、板状部材10が固定される周縁部10Eの幅は0.7mmとされている。 In this simulation, the outer diameter of the plate-shaped member 10 of the force sensor 1 and the force sensor 1'is 6 mm, the thickness of the plate-shaped member 10 is 0.5 mm, the diameter of the force receiving portion 22 is 2 mm, and the plate-shaped member. The width of the peripheral edge portion 10E to which the 10 is fixed is set to 0.7 mm.
 この図5(C)の表に示されるように、図5(A)の比較例の従来パターンの力センサ1´においては、ひずみ受感材X1´~X4´は、板状部材10の径方向のひずみ変化のみを検出し、板状部材10の周方向のひずみ変化は検出できないことが分かる。 As shown in the table of FIG. 5 (C), in the force sensor 1'of the conventional pattern of the comparative example of FIG. 5 (A), the strain-sensitive materials X1'to X4' have the diameters of the plate-shaped members 10. It can be seen that only the strain change in the direction is detected, and the strain change in the circumferential direction of the plate-shaped member 10 cannot be detected.
 比較例の力センサ1´においては、ひずみ受感材X1´~X4´は、抵抗値を大きくするためジグザグ状パターンとしているために、検出面積が大きくなってしまい、ピンポイントに集中する最大ひずみを検出することは困難となっている。そして、比較例の力センサ1´では、ひずみ受感材X1´~X4´をフルブリッジ構成などを精度良くパターンとして形成することを考えると、実用的な抵抗値を得ることができず(板状部材10の径が6mmでは100Ω以下)、図4に示すようなブリッジ回路を構成したときに検出される検出出力は、例えば0.1mV/V以下の値しか得られない。 In the force sensor 1'of the comparative example, the strain-sensitive materials X1'to X4' have a zigzag pattern in order to increase the resistance value, so that the detection area becomes large and the maximum strain concentrated on the pinpoint. Is difficult to detect. Then, in the force sensor 1'of the comparative example, it is not possible to obtain a practical resistance value, considering that the strain-sensitive materials X1'to X4' are formed as a pattern with a full bridge configuration and the like with high accuracy (plate). When the diameter of the shape member 10 is 6 mm, it is 100 Ω or less), and the detection output detected when the bridge circuit as shown in FIG. 4 is configured can be obtained, for example, only a value of 0.1 mV / V or less.
 これに対して、この実施形態の力センサ1のひずみ受感材X1~X4においては、板状部材10の径方向のひずみ変化のみならず、板状部材10の周方向のひずみ変化も検出できることが分かる。そして、図5(C)の右端に示すように、この実施形態の力センサ1の扇形領域SX1において検出されるトータルの歪み量は、比較例の力センサ1´の扇形領域SX1において検出されるトータルの歪み量の2倍以上となっていることが分かる。 On the other hand, in the strain-sensitive materials X1 to X4 of the force sensor 1 of this embodiment, not only the strain change in the radial direction of the plate-shaped member 10 but also the strain change in the circumferential direction of the plate-shaped member 10 can be detected. I understand. Then, as shown at the right end of FIG. 5C, the total amount of strain detected in the fan-shaped region SX1 of the force sensor 1 of this embodiment is detected in the sector region SX1 of the force sensor 1 ′ of the comparative example. It can be seen that the amount of distortion is more than twice the total amount.
 この実施形態の力センサ1のひずみ受感材X1~X4は、薄膜を微細プロセスでパターン形成することができるCr-N薄膜で構成されるので、高抵抗(微細プロセスで50μm以下の細いパターンが形成可能であり、膜が薄いため面抵抗が高く、kΩオーダーが可能)である。また、この実施形態の力センサ1のひずみ受感材X1~X4によれば、微細パターンにより形成されることと、ストリップ状のパターンの幅方向の感度(横感度)による検出が可能であるので、省スペースで、且つ、ピンポイントのひずみ検出が可能となる。さらに、Cr-N薄膜自体がゲージ率が高いため、同じひずみ値でも、高い出力を得ることができる。図4に示すようなブリッジ回路を構成したときの出力として、数mV/Vの出力が得られ、高出力の小型の力センサを実現できる。 Since the strain-sensitive materials X1 to X4 of the force sensor 1 of this embodiment are composed of Cr—N thin films capable of forming a thin film into a pattern by a fine process, a high resistance (a thin pattern of 50 μm or less is formed by the fine process). It can be formed, the surface resistance is high because the film is thin, and the kΩ order is possible). Further, according to the strain-sensitive materials X1 to X4 of the force sensor 1 of this embodiment, it is possible to form the strip-shaped pattern by the width direction (lateral sensitivity) of the strip-shaped pattern. It saves space and enables pinpoint strain detection. Further, since the Cr—N thin film itself has a high gauge ratio, a high output can be obtained even with the same strain value. An output of several mV / V can be obtained as an output when the bridge circuit as shown in FIG. 4 is configured, and a high-output compact force sensor can be realized.
 [力センサの変形例]
 <ひずみ受感材のパターンの他の例>
 上述の実施形態では、ひずみ受感材11は、ストリップ状の導電性材の長手方向を板状部材10の円周方向に沿わせて配置するので、板状部材10を円周方向に分割した扇形領域のそれぞれに配設する場合には、その長手方向の長さは、その扇形領域の角度分よりも短くなって、ストリップ状の導電性材の長手方向の長さが制限され、抵抗値も制限されることになる。
[Modification example of force sensor]
<Other examples of strain-sensitive material patterns>
In the above-described embodiment, since the strain-sensitive material 11 is arranged along the longitudinal direction of the strip-shaped conductive material along the circumferential direction of the plate-shaped member 10, the plate-shaped member 10 is divided in the circumferential direction. When arranged in each of the fan-shaped regions, the length in the longitudinal direction is shorter than the angle of the fan-shaped region, the length in the longitudinal direction of the strip-shaped conductive material is limited, and the resistance value. Will also be restricted.
 この問題を改善した例の力センサ1Aを、図6に示す。なお、図6の例の力センサ1Aにおいて、上述した実施形態の力センサ1と同一部分には、同一参照符号を付して、その詳細な説明は省略する。 FIG. 6 shows an example force sensor 1A that improves this problem. In the force sensor 1A of the example of FIG. 6, the same reference numerals are given to the same parts as the force sensor 1 of the above-described embodiment, and detailed description thereof will be omitted.
 図6に示すように、この例の力センサ1Aにおいては、上述した力センサ1と同様に、4個の扇形領域SX1,SY1,SX2,SY2のそれぞれにおいて、第1のリング状領域RG1と、第2のリング状領域RG2とに、その周方向にそれぞれ2個ずつのひずみ受感材11Aが設けられるが、この例の力センサ1Aにおけるひずみ受感材11Aのパターン形状は、上述の実施形態の力センサ1のひずみ受感材11と異なる。その他の構成は、この例の力センサ1Aと、上述の実施形態の例の力センサ1とは、同様である。なお、図6においては、ひずみ受感材11Aの部分は、ハッチングを付して示し、ひずみ受感材11Aの間を電気的に接続する導電パターン12Aは、白抜きの線路パターンとして示す。 As shown in FIG. 6, in the force sensor 1A of this example, in the force sensor 1 described above, in each of the four fan-shaped regions SX1, SY1, SX2, and SY2, the first ring-shaped region RG1 and Two strain-sensitive materials 11A are provided in each of the second ring-shaped region RG2 in the circumferential direction, and the pattern shape of the strain-sensitive material 11A in the force sensor 1A of this example is the above-described embodiment. It is different from the strain sensitive material 11 of the force sensor 1. Other configurations are the same as the force sensor 1A of this example and the force sensor 1 of the example of the above-described embodiment. In FIG. 6, the portion of the strain-sensitive material 11A is shown with hatching, and the conductive pattern 12A that electrically connects the strain-sensitive material 11A is shown as a white line pattern.
 なお、図6では、説明の便宜上、ひずみ受感材11Aの配設位置は、第1のリング状領域RG1及び第2のリング状領域RG2の半径方向の中央となっているが、実際上は、図2に示したのと同様に、ひずみの大きさが最大となる位置に配置されているのは勿論である。 In FIG. 6, for convenience of explanation, the strain-sensitive material 11A is arranged at the center of the first ring-shaped region RG1 and the second ring-shaped region RG2 in the radial direction, but in practice. Of course, as shown in FIG. 2, the strain is arranged at the position where the magnitude of the strain is maximized.
 上述の実施形態の力センサ1と同様に、図6では、この例の力センサ1Aの板状部材10の一方の面部10aの各扇形領域SX1,SY1,SX2,SY2のそれぞれに設けるひずみ受感材11Aを区別することができるように、参照符号11Aに括弧を付随させ、その括弧内に別の参照符号を付している。以下の説明において、ひずみ受感材11Aを区別する必要がないときには、そのままひずみ受感材11Aと記載し、区別する必要があるときには、括弧内の参照符号を用いて説明することとする。 Similar to the force sensor 1 of the above-described embodiment, in FIG. 6, the strain sensation provided in each fan-shaped region SX1, SY1, SX2, SY2 of one surface portion 10a of the plate-shaped member 10 of the force sensor 1A of this example. A parenthesis is attached to the reference numeral 11A so that the material 11A can be distinguished, and another reference numeral is attached within the parenthesis. In the following description, when it is not necessary to distinguish the strain-sensitive material 11A, it will be described as it is as the strain-sensitive material 11A, and when it is necessary to distinguish it, it will be described using the reference reference numerals in parentheses.
 すなわち、図6に示すように、板状部材10の扇形領域SX1においては、第1のリング状領域RG1に2個のひずみ受感材X1A,X2Aが、第2のリング状領域RG2に2個のひずみ受感材X3A,X4Aが、その周方向にそれぞれ設けられる。また、扇形領域SX2においては、第1のリング状領域RG1に、2個のひずみ受感材X5A,X6Aが、第2のリング状領域RG2に、2個のひずみ受感材X7A,X8Aが、その周方向にそれぞれ設けられる。 That is, as shown in FIG. 6, in the fan-shaped region SX1 of the plate-shaped member 10, two strain-sensitive materials X1A and X2A are provided in the first ring-shaped region RG1 and two strain-sensitive materials X1A and X2A are provided in the second ring-shaped region RG2. The strain-sensitive materials X3A and X4A are provided in their circumferential directions, respectively. Further, in the fan-shaped region SX2, two strain-sensitive materials X5A and X6A are provided in the first ring-shaped region RG1, and two strain-sensitive materials X7A and X8A are provided in the second ring-shaped region RG2. It is provided in each of the circumferential directions.
 また、扇形領域SY1においては、第1のリング状領域RG1に2個のひずみ受感材Y1A,Y2Aが、第2のリング状領域RG2に2個のひずみ受感材Y3A,Y4Aが、その周方向にそれぞれ設けられる。また、扇形領域SY2においては、第1のリング状領域RG1に2個のひずみ受感材Y5A,Y6Aが、第2のリング状領域RG2に2個のひずみ受感材Y7A,Y8Aが、その周方向にそれぞれ設けられる。 Further, in the fan-shaped region SY1, two strain-sensitive materials Y1A and Y2A are provided in the first ring-shaped region RG1, and two strain-sensitive materials Y3A and Y4A are provided in the second ring-shaped region RG2. It is provided in each direction. Further, in the fan-shaped region SY2, two strain-sensitive materials Y5A and Y6A are provided in the first ring-shaped region RG1, and two strain-sensitive materials Y7A and Y8A are provided in the second ring-shaped region RG2. It is provided in each direction.
 ここで、ひずみ受感材11Aとしては、上述の実施形態のひずみ受感材11と同様に、Crおよび不可避不純物からなるCr薄膜、またはCr、N及び不可避不純物からなるCr-N薄膜で構成する所定幅のストリップ状の導電性材が用いられる。図6の例においても、ひずみ受感材11Aのストリップ状の導電性材は、Cr-N薄膜を用いている。 Here, the strain-sensitive material 11A is composed of a Cr thin film composed of Cr and unavoidable impurities, or a Cr—N thin film composed of Cr, N and unavoidable impurities, similarly to the strain-sensitive material 11 of the above-described embodiment. A strip-shaped conductive material having a predetermined width is used. Also in the example of FIG. 6, a Cr—N thin film is used as the strip-shaped conductive material of the strain-sensitive material 11A.
 そして、この例の力センサ1Aにおいては、ひずみ受感材11Aは、図6に示すように、ストリップ状の導電性材の長手方向を、板状部材10の円周方向に沿った方向とすると共に、半径方向においてジグザグ状に折り返すことで、ストリップ状の導電性材の長手方向の全長を、上述の実施形態の力センサ1のひずみ受感材11より長くするようにしている。 Then, in the force sensor 1A of this example, as shown in FIG. 6, the strain-sensitive material 11A has the longitudinal direction of the strip-shaped conductive material as the direction along the circumferential direction of the plate-shaped member 10. At the same time, by folding back in a zigzag shape in the radial direction, the total length of the strip-shaped conductive material in the longitudinal direction is made longer than the strain-sensitive material 11 of the force sensor 1 of the above-described embodiment.
 すなわち、この例のひずみ受感材11Aは、板状部材10の中心位置Ocを中心とした周方向の複数本のストリップ状の導電性材が、板状部材10の中心位置Ocを中心とした放射方向に配設されると共に、それらの複数本のストリップ状の導電性材の長手方向の端部が互いに順次連結されて1本のストリップ状の導電性材となるように形成されている。 That is, in the strain-sensitive material 11A of this example, a plurality of strip-shaped conductive materials in the circumferential direction centered on the center position Occ of the plate-shaped member 10 are centered on the center position Occ of the plate-shaped member 10. It is arranged in the radial direction, and the longitudinal ends of the plurality of strip-shaped conductive materials are sequentially connected to each other to form one strip-shaped conductive material.
 この例の場合においても、ひずみ受感材X1A~X8A及びひずみ受感材Y1A~Y8Aの全てを、ひずみが発生していないときの抵抗値が等しくなるように形成している。この例では、ひずみ受感材X1A~X8A及びひずみ受感材Y1A~Y8Aの全てのストリップ状の導電性材の幅と、厚さと、長手方向の全長とを等しくすることで、ひずみが発生していないときの抵抗値が等しくなるようにしている。 Also in the case of this example, all of the strain-sensitive materials X1A to X8A and the strain-sensitive materials Y1A to Y8A are formed so that the resistance values when no strain is generated are equal. In this example, strain is generated by making the width and thickness of all the strip-shaped conductive materials of the strain-sensitive materials X1A to X8A and the strain-sensitive materials Y1A to Y8A equal to the total length in the longitudinal direction. The resistance values when not set are equal.
 この場合において、上述した実施形態の力センサ1においては、ひずみ受感材11は、折り返しの無い1本のストリップ状の導電性材で構成されているので、第1のリング状領域RG1に配設するひずみ受感材X1,X2,X5,X6及びY1,Y2,Y5,Y6と、第2のリング状領域RG2に配設するひずみ受感材X3,X4,X7,X8及びY3,Y4,Y7,Y8とでは、図2(A)及び図3(A)に示したように、ストリップ状の導電性材の円周方向の長さ(長手方向の)を、等しくするようにした。 In this case, in the force sensor 1 of the above-described embodiment, since the strain-sensitive material 11 is composed of one strip-shaped conductive material without folding back, it is arranged in the first ring-shaped region RG1. Strain sensitive materials X1, X2, X5, X6 and Y1, Y2, Y5, Y6 to be installed, and strain sensitive materials X3, X4, X7, X8 and Y3, Y4 arranged in the second ring-shaped region RG2. As shown in FIGS. 2 (A) and 3 (A), the lengths (longitudinal direction) of the strip-shaped conductive material in the circumferential direction are made equal to those of Y7 and Y8.
 しかし、この図6の例では、ひずみ受感材11Aは、板状部材10の半径方向に折り返すように構成されるので、ひずみ受感材11Aのストリップ状の導電性材の長手方向の全長は、折り返し分を含めた長さとすることができる。このため、図6に示すように、第1のリング状領域RG1に配設するひずみ受感材X1,X2,X5,X6及びY1,Y2,Y5,Y6と、第2のリング状領域RG2に配設するひずみ受感材X3,X4,X7,X8及びY3,Y4,Y7,Y8とでは、円周方向の長さを異ならせることが可能である。この場合に、ひずみ受感材11Aのストリップ状の導電性材の長手方向の全長を等しくして無ひずみ時の抵抗値を等しくするために、図6に示すように、第1のリング状領域RG1に配設するひずみ受感材X1,X2,X5,X6及びY1,Y2,Y5,Y6と、第2のリング状領域RG2に配設するひずみ受感材X3,X4,X7,X8及びY3,Y4,Y7,Y8とでは、折り返しの回数などが異なる。 However, in the example of FIG. 6, since the strain-sensitive material 11A is configured to be folded back in the radial direction of the plate-shaped member 10, the total length of the strip-shaped conductive material of the strain-sensitive material 11A in the longitudinal direction is , Can be the length including the folded part. Therefore, as shown in FIG. 6, the strain-sensitive materials X1, X2, X5, X6 and Y1, Y2, Y5, Y6 arranged in the first ring-shaped region RG1 and the second ring-shaped region RG2 The strain-sensitive materials X3, X4, X7, X8 and Y3, Y4, Y7, Y8 to be arranged can have different lengths in the circumferential direction. In this case, in order to equalize the total length of the strip-shaped conductive material of the strain-sensitive material 11A in the longitudinal direction and make the resistance value at the time of no strain equal, as shown in FIG. 6, the first ring-shaped region Strain sensitive materials X1, X2, X5, X6 and Y1, Y2, Y5, Y6 arranged in RG1 and strain sensitive materials X3, X4, X7, X8 and Y3 arranged in the second ring-shaped region RG2. , Y4, Y7, Y8 differ in the number of wrappings and the like.
 この図6の例においても、力センサ1Aの板状部材10の各扇形領域SX1,SY1,SX2,SY2のそれぞれに配設される4個のひずみ受感材11Aが、導体パターン12Aにより、図6に示すように接続されてブリッジ回路が構成される。例えば扇形領域SX1では、図4において、ひずみ受感材X1がX1Aに、ひずみ受感材X2がX2Aに、ひずみ受感材X3がX3Aに、ひずみ受感材X4がX4Aに、それぞれ変更されたブリッジ回路が生成される。 Also in the example of FIG. 6, the four strain-sensitive materials 11A arranged in each of the fan-shaped regions SX1, SY1, SX2, and SY2 of the plate-shaped member 10 of the force sensor 1A are shown by the conductor pattern 12A. As shown in 6, the bridge circuit is formed by being connected. For example, in the fan-shaped region SX1, in FIG. 4, the strain-sensitive material X1 is changed to X1A, the strain-sensitive material X2 is changed to X2A, the strain-sensitive material X3 is changed to X3A, and the strain-sensitive material X4 is changed to X4A. A bridge circuit is generated.
 したがって、図6の例の力センサ1Aにおいても、出力端子tO(-)に得られる電圧と、出力端子tO(+)に得られる出力電圧との差分の電圧として、印加された力に応じた出力電圧EX1Aが得られる。そして、他の扇形領域SX2,SY1,SY2においても、同様によりブリッジ回路が形成されて、力センサ1に印加された力に応じた出力電圧EX2A、EY1A、EY2Aが得られる。 Therefore, also in the force sensor 1A of the example of FIG. 6, the voltage obtained as the difference between the voltage obtained at the output terminal tO (−) and the output voltage obtained at the output terminal tO (+) corresponds to the applied force. The output voltage EX1A is obtained. Then, in the other fan-shaped regions SX2, SY1, SY2, a bridge circuit is formed in the same manner, and output voltages EX2A, EY1A, and EY2A corresponding to the force applied to the force sensor 1 can be obtained.
 そして、力センサ1Aに印加される力のZ軸方向の力成分についての検出出力電圧EZA、X軸方向の力成分についての検出出力電圧EXA及びY軸方向の力成分についての検出出力電圧EYAは、
 EZA=EX1A+EX2A+EY1A+EY2A
 EXA=EX1A-EX2A
 EYA=EY1A-EY2A
として算出される。
Then, the detected output voltage EZA for the force component in the Z-axis direction of the force applied to the force sensor 1A, the detected output voltage EXA for the force component in the X-axis direction, and the detected output voltage EYA for the force component in the Y-axis direction are ,
EZA = EX1A + EX2A + EY1A + EY2A
EXA = EX1A-EX2A
EYA = EY1A-EY2A
Is calculated as.
 この図6の例の力センサ1Aによれば、ひずみ受感材11Aの長手方向の全長を、当該ひずみ受感材11Aが配される扇形領域の周方向の長さよりも長くすることができるので、ひずみ受感材11Aの抵抗値を大きくすることができ、感度の低下を極力抑えながら、抵抗値を大きくすることで消費電力を低下させることができるという効果を奏する。 According to the force sensor 1A of the example of FIG. 6, the total length of the strain-sensitive material 11A in the longitudinal direction can be made longer than the length of the fan-shaped region in which the strain-sensitive material 11A is arranged in the circumferential direction. The resistance value of the strain-sensitive material 11A can be increased, and the power consumption can be reduced by increasing the resistance value while suppressing the decrease in sensitivity as much as possible.
 <その他の変形例>
 上述の実施形態では板状部材の10の一方の面部10aにひずみ受感材11が配設されている例を説明してきたが、ひずみ受感材11は面部10aとは反対側の面部10bに配設して形成されていてもよい。その場合は生じるひずみは面部10aとは符号が反対になるだけで、同様の受感状態を示す。
<Other variants>
In the above-described embodiment, the example in which the strain-sensitive material 11 is arranged on one surface portion 10a of the plate-shaped member 10 has been described, but the strain-sensitive material 11 is provided on the surface portion 10b opposite to the surface portion 10a. It may be arranged and formed. In that case, the strain that occurs shows the same sensation state, only the sign is opposite to that of the surface portion 10a.
 また、上述の実施形態では、弾性歪が発生する領域として、リング状領域RG内、第1のリング状領域RG1、第2のリング状領域RG2のそれぞれを取り上げたが、弾性歪が発生する領域としてはこれらの領域に限定されるものではない。例えば、力センサ1の1Aの外周部が固定されいる場合にはこの外周部の領域にも弾性歪が発生しており、板状部材の10の一方の面部10bにおいてこの外周部10Eの領域に発生する弾性歪を検出することもできる。 Further, in the above-described embodiment, each of the ring-shaped region RG, the first ring-shaped region RG1 and the second ring-shaped region RG2 is taken up as a region where elastic strain occurs, but a region where elastic strain occurs. Is not limited to these areas. For example, when the outer peripheral portion of 1A of the force sensor 1 is fixed, elastic strain is also generated in the outer peripheral portion region, and the outer peripheral portion 10E is located on one surface portion 10b of the plate-shaped member 10. It is also possible to detect the elastic strain that occurs.
 上述の実施形態では、力センサ1,1Aに印加される力のZ軸方向の力成分、X軸方向の力成分及びY軸方向の力成分の3軸方向の力成分に応じたひずみ検出出力を得るようにしたので、板状部材10の一方の面部10aを、4個の扇形領域SX1,SX2,SY1,SY2に分けて、それぞれの領域にひずみ受感材11,11Aを設けるようにしたが、このような構成に限られる訳ではない。 In the above-described embodiment, the strain detection output corresponding to the force component in the Z-axis direction, the force component in the X-axis direction, and the force component in the Y-axis direction of the force applied to the force sensors 1 and 1A in the three-axis directions. Therefore, one surface portion 10a of the plate-shaped member 10 is divided into four fan-shaped regions SX1, SX2, SY1, SY2, and strain- sensitive materials 11 and 11A are provided in each region. However, it is not limited to such a configuration.
 例えば、力センサ1,1Aに印加される力のZ軸方向の力成分と、X軸方向の力成分及びY軸方向の力成分の一方との2軸方向の力成分に応じたひずみ検出出力を得るようにする場合には、板状部材10の一方の面部10aをX軸方向に2分割、あるいはY軸方向に2分割することで形成される2個の半円形領域のそれぞれにおいて、第1のリング状領域RG1に2個のひずみ受感材11又は11Aを、第2のリング状領域RG1に2個のひずみ受感材11又は11Aを、それぞれ配設すればよい。 For example, strain detection output corresponding to the force component in the Z-axis direction of the force applied to the force sensors 1 and 1A, and one of the force component in the X-axis direction and the force component in the Y-axis direction in the biaxial direction. In each of the two semicircular regions formed by dividing one surface portion 10a of the plate-shaped member 10 into two in the X-axis direction or two in the Y-axis direction. Two strain- sensitive materials 11 or 11A may be arranged in the ring-shaped region RG1 of 1, and two strain- sensitive materials 11 or 11A may be arranged in the second ring-shaped region RG1, respectively.
 ただし、力センサ1,1Aに印加される力のX軸方向の力成分とY軸方向の力成分との2軸方向の力成分に応じたひずみ検出出力を得るようにする場合には、上述した力センサ1と同様にする必要がある。 However, when the strain detection output corresponding to the biaxial force component of the force component in the X-axis direction and the force component in the Y-axis direction of the force applied to the force sensors 1 and 1A is to be obtained, the above-mentioned It is necessary to make the same as the force sensor 1.
 また、力センサ1,1Aに印加される力のZ軸方向の力成分のみを検出する場合において、板状部材10の一方の面部10a上にブリッジ回路を構成する場合には、上述の2軸方向を検出する場合と同様に、2個の半円形領域のそれぞれにおいて、第1のリング状領域RG1に2個のひずみ受感材11又は11Aを、第2のリング状領域RG2に2個のひずみ受感材11又は11Aを、それぞれ配設すればよい。 Further, in the case of detecting only the force component of the force applied to the force sensors 1 and 1A in the Z-axis direction, when the bridge circuit is formed on one surface portion 10a of the plate-shaped member 10, the above-mentioned two axes are used. As in the case of detecting the direction, in each of the two semicircular regions, the first ring-shaped region RG1 has two strain- sensitive materials 11 or 11A, and the second ring-shaped region RG2 has two strain- sensitive materials 11 or 11A. The strain sensitive material 11 or 11A may be arranged respectively.
 なお、力センサ1,1Aに印加される力のZ軸方向の力成分のみを検出する場合においては、第1のリング状領域RG1にリング状の1個のひずみ受感材11又は11Aを配設すると共に、第2のリング状領域RG2にリング状の1個のひずみ受感材11又は11Aを、それぞれ配設するようにしてもよい。その場合において、当該2個のリング状のひずみ受感材11又は11Aの抵抗値は、互いに等しくなるように形成すると共に、外部に同じ抵抗値のリファレンスの抵抗器を設けて、それらにより、ブリッジ回路を構成することで、力センサ1,1Aに印加される力のZ軸方向の力成分を検出することが可能である。 In the case of detecting only the force component of the force applied to the force sensors 1 and 1A in the Z-axis direction, one ring-shaped strain- sensitive material 11 or 11A is arranged in the first ring-shaped region RG1. In addition, one ring-shaped strain- sensitive material 11 or 11A may be arranged in the second ring-shaped region RG2, respectively. In that case, the resistance values of the two ring-shaped strain- sensitive materials 11 or 11A are formed to be equal to each other, and a reference resistor having the same resistance value is provided outside, thereby bridging. By configuring the circuit, it is possible to detect the force component of the force applied to the force sensors 1 and 1A in the Z-axis direction.
 なお、力センサ1,1Aに印加される力のX軸方向の力成分のみを検出する場合には、板状部材10の一方の面部10aを、X軸方向に2分割した2個の半円領域のそれぞれにおいて、第1のリング状領域RG1にひずみ受感材11又は11Aを配設すると共に、第2のリング状領域RG2にひずみ受感材11又は11Aを、それぞれ配設すればよい。 When detecting only the force component of the force applied to the force sensors 1 and 1A in the X-axis direction, one surface portion 10a of the plate-shaped member 10 is divided into two semicircles in the X-axis direction. In each of the regions, the strain- sensitive material 11 or 11A may be arranged in the first ring-shaped region RG1 and the strain- sensitive material 11 or 11A may be arranged in the second ring-shaped region RG2, respectively.
 同様に、力センサ1,1Aに印加される力のY軸方向の力成分のみを検出する場合には、板状部材10の一方の面部10aを、Y軸方向に2分割した2個の半円領域のそれぞれにおいて、第1のリング状領域RG1にひずみ受感材11又は11Aを配設すると共に、第2のリング状領域RG2にひずみ受感材11又は11Aを、それぞれ配設すればよい。 Similarly, when detecting only the force component of the force applied to the force sensors 1 and 1A in the Y-axis direction, one surface portion 10a of the plate-shaped member 10 is divided into two semicircles in the Y-axis direction. In each of the circular regions, the strain- sensitive material 11 or 11A may be arranged in the first ring-shaped region RG1 and the strain- sensitive material 11 or 11A may be arranged in the second ring-shaped region RG2, respectively. ..
 なお、上述の実施形態では、ひずみ受感材11,11Aは、板状部材10の円周方向に沿って、弧形状に形成するようにしたが、直線状に形成してもよい。 In the above-described embodiment, the strain- sensitive materials 11 and 11A are formed in an arc shape along the circumferential direction of the plate-shaped member 10, but may be formed in a straight line.
 また、ひずみ受感材11,11Aの長手方向は、板状部材10の第1及び第2のリング状領域RG1及びRG2において、円周方向に正確に沿わせて配設する必要はなく、円周方向に対して交差する方向に配設するようにしてもよい。 Further, the longitudinal direction of the strain sensitizing materials 11 and 11A does not need to be arranged exactly along the circumferential direction in the first and second ring-shaped regions RG1 and RG2 of the plate-shaped member 10, and is a circle. It may be arranged in a direction intersecting with the circumferential direction.
 換言すれば、ひずみ受感材11,11Aの長手方向は、力センサ1,1Aにおける力の印加部である中心位置Ocを中心とした放射方向に直交する方向に沿わせなくてもよく、力の印加部を中心として放射状の方向に生じる歪の方向に対して、例えば時計回り方向を+方向としたとき、+方向側または-方向側に90度の角度まで変位していてもよい。 In other words, the longitudinal direction of the strain- sensitive materials 11, 11A does not have to be along the direction orthogonal to the radiation direction centered on the center position Occ, which is the force application portion of the force sensors 1, 1A. With respect to the direction of strain generated in the radial direction about the application portion of, for example, when the clockwise direction is the + direction, the strain may be displaced to the + direction side or the-direction side to an angle of 90 degrees.
 なお、上述の実施形態では、力センサ1,1Aの板状部材10は、SUSで構成したが、板状部材10は、SUSに限らず、その他の弾性材料を用いることができることは言うまでもない。 In the above-described embodiment, the plate-shaped member 10 of the force sensors 1 and 1A is made of SUS, but it goes without saying that the plate-shaped member 10 is not limited to SUS and other elastic materials can be used.
 また、ひずみ受感材11,11Aを構成する導電性材は、Crおよび不可避不純物からなるCr薄膜、またはCr、N及び不可避不純物からなるCr-N薄膜に限られるものではなく、ストリップ状の導電性材として、その幅方向にも、ひずみ受感感度を有する材料であればよい。 Further, the conductive material constituting the strain- sensitive materials 11 and 11A is not limited to a Cr thin film composed of Cr and unavoidable impurities, or a Cr—N thin film composed of Cr, N and unavoidable impurities, and is strip-shaped conductive. As the material, any material may be used as long as it has strain sensitivity in the width direction.
 また、力センサの板状部材10の一方の面部10a上に、ひずみ受感材と共に形成する回路は、ブリッジ回路の全部ではなく、一部であってもよい。また、ひずみ受感材と共に形成する回路は、ブリッジ回路に限らず、ひずみ受感材を用いて印加された力に応じたひずみを感知するための回路であれば、どのような回路であってもよい。更には、ブリッジ回路を構成するひずみ受感材のそれぞれは異なる抵抗値であっても良く、ひずみ受感材のそれぞれの抵抗値はブリッジ回路の平衡条件を満たすように設定されれば良い。 Further, the circuit formed on one surface portion 10a of the plate-shaped member 10 of the force sensor together with the strain-sensitive material may be a part of the bridge circuit, not the whole. Further, the circuit formed together with the strain-sensitive material is not limited to a bridge circuit, and any circuit can be used as long as it is a circuit for sensing strain according to the applied force using the strain-sensitive material. May be good. Further, each of the strain-sensitive materials constituting the bridge circuit may have a different resistance value, and each resistance value of the strain-sensitive material may be set so as to satisfy the equilibrium condition of the bridge circuit.
 また、力センサの板状部材10は、円板ではなく、多角形状であってもよく、その場合のリング状領域も、多角形状であってもよい。 Further, the plate-shaped member 10 of the force sensor may have a polygonal shape instead of a disk, and the ring-shaped region in that case may also have a polygonal shape.
 また、力センサの板状部材10は、一定の厚さとしたが、力の印加部を中心とした放射方向において厚さが変化しているものであってもよい。例えば、上述の実施形態の力センサ1,1Aの場合において、第1のリング状領域RG1及び第2のリング状領域RG2において、ひずみ受感材を配設する部分近傍は、ひずみ変形がし易いように厚さを他の部分よりも薄く構成してもよい。 Further, although the plate-shaped member 10 of the force sensor has a constant thickness, the thickness may change in the radial direction centered on the force application portion. For example, in the case of the force sensors 1 and 1A of the above-described embodiment, in the first ring-shaped region RG1 and the second ring-shaped region RG2, strain deformation is likely to occur in the vicinity of the portion where the strain-sensitive material is arranged. The thickness may be made thinner than other parts as described above.
 1,1A…力センサ、2…力検出部材、10…板状部材、11,11A…ひずみ受感材、12,12A…導体パターン、21…台座部、22…力受付部、RG…リング状領域、RG1…第1のリング状領域、RG2…第2のリング状領域、SX1,SX2,SY1,SY2…扇形領域 1,1A ... force sensor, 2 ... force detection member, 10 ... plate-shaped member, 11,11A ... strain-sensitive material, 12,12A ... conductor pattern, 21 ... pedestal part, 22 ... force receiving part, RG ... ring-shaped Region, RG1 ... first ring-shaped region, RG2 ... second ring-shaped region, SX1, SX2, SY1, SY2 ... fan-shaped region

Claims (14)

  1.  板状部材の少なくとも一方の面部にひずみ受感材が配設されており、前記板状部材の前記面部に印加された力に応じて前記板状部材に生じるひずみを前記ひずみ受感材で感知することで、前記面部に印加された力を感知する力センサであって、
     前記ひずみ受感材は、ストリップ状の導電性材で構成されているとともに、前記板状部材の前記面部において、前記板状部材の前記面部に印加される力の印加部を中心とした第1のリング状領域と前記第1のリング状領域とは前記力の印加部からの距離が異なる第2のリング状領域のそれぞれに対応して配設されていることを特徴とする力センサ。
    A strain-sensitive material is arranged on at least one surface of the plate-shaped member, and the strain-sensitive material senses the strain generated in the plate-shaped member in response to the force applied to the surface of the plate-shaped member. By doing so, it is a force sensor that senses the force applied to the surface portion.
    The strain-sensitive material is made of a strip-shaped conductive material, and has a first surface portion of the plate-shaped member centered on a force applied portion applied to the surface portion of the plate-shaped member. The force sensor is characterized in that the ring-shaped region of the above and the first ring-shaped region are arranged corresponding to each of the second ring-shaped regions having different distances from the force applying portion.
  2.  前記ひずみ受感材は、前記ストリップ状の導電性材の長手方向が、前記板状部材の前記面部に印加される前記力の印加部を中心とした放射状の方向に対して交差する方向となるように前記板状部材に配設されていることを特徴とする請求項1に記載の力センサ。 The strain-sensitive material has a direction in which the longitudinal direction of the strip-shaped conductive material intersects the radial direction centered on the force applied portion applied to the surface portion of the plate-shaped member. The force sensor according to claim 1, wherein the force sensor is arranged on the plate-shaped member as described above.
  3.  前記ストリップ状の導電性材は、弧形状を有していることを特徴とする請求項1に記載の力センサ。 The force sensor according to claim 1, wherein the strip-shaped conductive material has an arc shape.
  4.  前記ストリップ状の導電性材は、直線形状を有していることを特徴とする請求項1に記載の力センサ。 The force sensor according to claim 1, wherein the strip-shaped conductive material has a linear shape.
  5.  前記ストリップ状の導電性材の長手方向は、前記板状部材の前記面部に印加される前記力の印加部を中心として放射状の方向に生じる歪の発生方向に対して所定角度変位していることを特徴とする請求項1に記載の力センサ。 The longitudinal direction of the strip-shaped conductive material is displaced by a predetermined angle with respect to the direction in which the strain generated in the radial direction is centered on the portion where the force applied to the surface portion of the plate-shaped member is applied. The force sensor according to claim 1.
  6.  前記第1のリング状領域と前記第2のリング状領域は、一方のリング状領域では伸長ひずみが発生し、他方のリング状領域では収縮ひずみが発生するように設定されている
     ことを特徴とする請求項1に記載の力センサ。
    The first ring-shaped region and the second ring-shaped region are characterized in that an elongation strain is generated in one ring-shaped region and a contraction strain is generated in the other ring-shaped region. The force sensor according to claim 1.
  7.  第1のリング状領域あるいは前記第2のリング状領域に対応して、前記力の印加部を中心とした放射状方向に対して交差する方向に複数本の前記ストリップ状の導電性材が配設されているとともに、前記複数本の前記ストリップ状の導電性材は互いが順次連結されていることを特徴とする請求項1に記載の力センサ。 A plurality of strip-shaped conductive materials are arranged in a direction intersecting the radial direction centered on the force application portion, corresponding to the first ring-shaped region or the second ring-shaped region. The force sensor according to claim 1, wherein the plurality of strip-shaped conductive materials are sequentially connected to each other.
  8.  前記ストリップ状の導電性材は、前記第1のリング状領域に対応して2本配設されるとともに、前記第2のリング状領域に対応して2本配設されおり、それぞれのストリップ状の導電性材によってブリッジ回路が構成されることを特徴とする請求項1に記載の力センサ。 Two strip-shaped conductive materials are arranged corresponding to the first ring-shaped region, and two strip-shaped conductive materials are arranged corresponding to the second ring-shaped region. The force sensor according to claim 1, wherein a bridge circuit is formed of the conductive material of the above.
  9.  前記ストリップ状の導電性材は、前記板状部材の前記面部に印加される前記力の印加部を中心とした円周方向をn(n≧2の整数)個に分割して形成された少なくとも1つの扇形領域に配置されていることを特徴とする請求項8に記載の力センサ。 The strip-shaped conductive material is formed by dividing the circumferential direction around the application portion of the force applied to the surface portion of the plate-shaped member into n (integer of n ≧ 2). The force sensor according to claim 8, wherein the force sensor is arranged in one sector.
  10.  前記ストリップ状の導電性材は、少なくとも前記板状部材の前記面部に印加される前記力の印加部を中心として放射状の方向に生じる歪を検知可能な導電性材で構成されていることを特徴とする請求項1に記載の力センサ。 The strip-shaped conductive material is characterized in that it is composed of a conductive material capable of detecting strain generated in a radial direction around at least the applied portion of the force applied to the surface portion of the plate-shaped member. The force sensor according to claim 1.
  11.  前記ストリップ状の導電性材は、Crおよび不可避不純物からなるCr薄膜、またはCr、N及び不可避不純物からなるCr-N薄膜で構成されていることを特徴とする請求項10に記載の力センサ。 The force sensor according to claim 10, wherein the strip-shaped conductive material is composed of a Cr thin film composed of Cr and unavoidable impurities, or a Cr—N thin film composed of Cr, N and unavoidable impurities.
  12.  前記板状部材は絶縁性基板で構成されていることを特徴とする請求項1に記載の力センサ。 The force sensor according to claim 1, wherein the plate-shaped member is made of an insulating substrate.
  13.  前記絶縁性基板は金属基板に絶縁材が配設されて構成されていることを特徴とする請求項12に記載の力センサ。 The force sensor according to claim 12, wherein the insulating substrate is formed by disposing an insulating material on a metal substrate.
  14.  前記絶縁材によって形成された絶縁層上に前記ひずみ受感材が成膜されていることを特徴とする請求項13に記載の力センサ。 The force sensor according to claim 13, wherein the strain-sensitive material is formed on an insulating layer formed of the insulating material.
PCT/JP2020/005491 2019-04-03 2020-02-13 Force sensor WO2020202821A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021511181A JP7408638B2 (en) 2019-04-03 2020-02-13 force sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-071572 2019-04-03
JP2019071572 2019-04-03

Publications (1)

Publication Number Publication Date
WO2020202821A1 true WO2020202821A1 (en) 2020-10-08

Family

ID=72668951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005491 WO2020202821A1 (en) 2019-04-03 2020-02-13 Force sensor

Country Status (2)

Country Link
JP (1) JP7408638B2 (en)
WO (1) WO2020202821A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115290232A (en) * 2022-06-20 2022-11-04 无锡盛赛传感科技有限公司 Annular microminiature force-sensitive ceramic tension sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716132U (en) * 1993-08-27 1995-03-17 株式会社アイチコーポレーション Load cell for vertical load detection
JPH08145767A (en) * 1994-11-25 1996-06-07 Bridgestone Corp Load measuring device
JPH10153499A (en) * 1996-08-19 1998-06-09 Kamenzer Boris Improve force transducer having coplanar strain gauge
DE10307978A1 (en) * 2003-02-24 2004-09-09 Siemens Ag Force measurement device for determining the force applied to brake shoes or blocks, has a disk-shaped force sensor with a resistive measurement bridge
JP2014035239A (en) * 2012-08-08 2014-02-24 Research Institute For Electromagnetic Materials Strain sensor
WO2018150994A1 (en) * 2017-02-16 2018-08-23 ミネベアミツミ株式会社 Shaft support structure with integrated sensor, and sensor structure
JP2018146309A (en) * 2017-03-02 2018-09-20 株式会社レプトリノ Force sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2584201B2 (en) * 1994-01-14 1997-02-26 インターナショナル・ビジネス・マシーンズ・コーポレイション Power transducer, computer system and keyboard
JPH0886702A (en) * 1994-09-19 1996-04-02 Bridgestone Corp Load measuring device
BE1011568A3 (en) * 1997-11-25 1999-11-09 Alliance Europ Naamloze Vennoo THICK FILM SENSOR AND METHOD FOR PRODUCING SUCH THICK FILM SENSOR.
JP3651450B2 (en) * 1998-09-30 2005-05-25 ブラザー工業株式会社 Pointing device and electronic equipment
FR2883372B1 (en) * 2005-03-17 2007-06-29 Commissariat Energie Atomique FORCE MEASURING DEVICE BY RESISTIVE DETECTION WITH DOUBLE BRIDGE OF WHEASTONE
JP2007127580A (en) * 2005-11-07 2007-05-24 Matsushita Electric Ind Co Ltd Strain detector
DE102005057473B4 (en) * 2005-11-30 2012-09-20 Schenk Process Gmbh Method and device for detecting forces acting on a rail
US8256306B1 (en) * 2009-09-02 2012-09-04 The Boeing Company High-capacity low-profile load cell for measuring compression force
EP2490036B1 (en) * 2011-02-18 2013-08-28 Melexis Technologies NV Stress sensor for measuring mechanical stresses in a semiconductor chip and stress compensated Hall sensor
JP6514945B2 (en) * 2015-04-09 2019-05-15 ローム株式会社 Pressure distribution sensor, input device, electronic device, sensor chip
JP6697954B2 (en) * 2016-05-26 2020-05-27 アイシン精機株式会社 Load detection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716132U (en) * 1993-08-27 1995-03-17 株式会社アイチコーポレーション Load cell for vertical load detection
JPH08145767A (en) * 1994-11-25 1996-06-07 Bridgestone Corp Load measuring device
JPH10153499A (en) * 1996-08-19 1998-06-09 Kamenzer Boris Improve force transducer having coplanar strain gauge
DE10307978A1 (en) * 2003-02-24 2004-09-09 Siemens Ag Force measurement device for determining the force applied to brake shoes or blocks, has a disk-shaped force sensor with a resistive measurement bridge
JP2014035239A (en) * 2012-08-08 2014-02-24 Research Institute For Electromagnetic Materials Strain sensor
WO2018150994A1 (en) * 2017-02-16 2018-08-23 ミネベアミツミ株式会社 Shaft support structure with integrated sensor, and sensor structure
JP2018146309A (en) * 2017-03-02 2018-09-20 株式会社レプトリノ Force sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115290232A (en) * 2022-06-20 2022-11-04 无锡盛赛传感科技有限公司 Annular microminiature force-sensitive ceramic tension sensor

Also Published As

Publication number Publication date
JPWO2020202821A1 (en) 2020-10-08
JP7408638B2 (en) 2024-01-05

Similar Documents

Publication Publication Date Title
CN108139288B (en) Force sensor
JP6616806B2 (en) Strain gauge and 3-axis force sensor
JP6776152B2 (en) A strain-causing body and a force sensor equipped with the strain-causing body
US11293818B2 (en) Strain gauge and multi-axis force sensor
WO2007135927A1 (en) Pressure-sensitive sensor
JP7396731B2 (en) Multi-axis tactile sensor
JP7128506B2 (en) pressure sensor
WO2020202821A1 (en) Force sensor
JP2019015591A (en) Strain gauge and multiaxial force sensor
JP2018185346A (en) Strain gauge
JP7337148B2 (en) Pressure sensing device and stylus
WO2018154898A1 (en) Elastic body and force sensor provided with said elastic body
JP2020170359A (en) stylus
EP2060894A1 (en) Strain gauge sensor
WO2018154935A1 (en) Strain element and force sensor including strain element
JP2018013339A (en) Strain sensor, sensor for crack detection and crack detector
JP7349801B2 (en) Pressure detection member, stylus, and method for manufacturing pressure detection member
JP6836641B2 (en) Strain gauge and 3-axis force sensor
JP2020024218A (en) Strain gauge and multiaxial force sensor
JP2008224406A (en) Physical quantity sensor
JP6837113B2 (en) Strain gauge and multi-axial force sensor
WO2023214565A1 (en) Pressure sensitive sensor
JP4242977B2 (en) Cylindrical capacitive torsional strain sensor
JP2001153735A (en) Load cell
JP2005164324A (en) Dynamic sensor and rotation detection sensor using magnetic thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511181

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784079

Country of ref document: EP

Kind code of ref document: A1