WO2020202692A1 - Light source device and optical device - Google Patents

Light source device and optical device Download PDF

Info

Publication number
WO2020202692A1
WO2020202692A1 PCT/JP2020/000887 JP2020000887W WO2020202692A1 WO 2020202692 A1 WO2020202692 A1 WO 2020202692A1 JP 2020000887 W JP2020000887 W JP 2020000887W WO 2020202692 A1 WO2020202692 A1 WO 2020202692A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light beam
optical axis
source device
light
Prior art date
Application number
PCT/JP2020/000887
Other languages
French (fr)
Japanese (ja)
Inventor
力 山崎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020202692A1 publication Critical patent/WO2020202692A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • the present invention relates to a light source device capable of emitting one or more light beams, and an optical device using such a light source device.
  • An object of the present invention is to provide a light source device capable of emitting one or more light beams so as to be inclined. Another object of the present invention is to provide an optical device using such a light source device.
  • the light source device includes a light source that generates a light beam and a light source.
  • An optical element that transmits a light beam incident on an incident surface from the light source and emits it from an emitting surface is provided.
  • the optical element has a longitudinal direction and a transverse direction orthogonal to the longitudinal direction, extends along the longitudinal direction, and extends in the transverse direction from an optical axis intersecting the entrance surface and the emission surface. It has a refractive index distribution in which the refractive index decreases as the distance increases.
  • the light source is arranged at a position where the light beam is incident on the incident surface at a position shifted from the optical axis in the transverse direction.
  • the light source device includes a light source that generates a plurality of light beams parallel to each other and a light source.
  • a plurality of optical elements provided corresponding to a plurality of light beams, and each optical element transmits a light beam incident on an incident surface from the light source and emits the light beam from the exit surface.
  • Each optical element has a longitudinal direction and a transverse direction orthogonal to the longitudinal direction, extends along the longitudinal direction, and extends in the transverse direction from an optical axis intersecting the entrance surface and the emission surface. It has a refractive index distribution in which the refractive index decreases as the distance increases.
  • the light source is arranged at a position where each light beam is incident on the incident surface at a position shifted in the transverse direction from the optical axis.
  • the optical device includes the above-mentioned light source device and a holder for holding a sample irradiated with a light beam emitted from the light source device.
  • the light source device it is possible to emit one or a plurality of light beams so as to be inclined.
  • FIG. 1A is a perspective view showing an example of a light source device according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view taken along the line XX in FIG. 1A and shows one aspect of the light beam path.
  • FIG. 1C is a cross-sectional view taken along line XX in FIG. 1A, showing another aspect of the light beam path.
  • FIG. 2A is an explanatory diagram showing the path of light rays in a core having a GI type refractive index distribution.
  • FIG. 2B is a graph showing the refractive index distribution. It is explanatory drawing which shows the appearance that a plurality of light emitting parts are arranged in a 2 ⁇ 2 matrix in a light source, FIG.
  • FIG. 3A shows an XY coordinate table of a light emitting part
  • FIG. 3B shows a schematic perspective view
  • 4A is a side view showing an example of the dimensions of the core and the clad
  • FIG. 4B is a perspective view seen from the entrance surface side
  • FIG. 4C is a perspective view seen from the exit surface side
  • FIG. 5A is a perspective view showing an example of the emission direction of the light beam emitted from the emission surface of each core.
  • FIG. 5B is an explanatory diagram showing a light beam spot at the target.
  • FIG. 5C is a graph showing the refractive indexes of the core and the clad. It is explanatory drawing which shows an example of the manufacturing method of an optical unit.
  • FIG. 9A is a perspective view showing an example of the emission direction of the light beam when the refraction element is integrally provided on the emission surface.
  • FIG. 9B is an explanatory diagram showing a light beam spot at the target.
  • FIG. 10A is a perspective view showing an example of the emission direction of the light beam when the refracting element is provided apart from the emission surface.
  • FIG. 10B is an explanatory diagram showing a light beam spot at the target.
  • FIG. 11A is a configuration diagram showing an optical device according to a third embodiment of the present invention, and FIG. 11B is a perspective view thereof.
  • the optical element includes a light source that generates a light beam and An optical element that transmits the light beam incident on the incident surface from the light source along the optical axis and emits the light beam from the exit surface is provided.
  • the optical element has a longitudinal direction along the optical axis and a transverse direction orthogonal to the longitudinal direction, and the light extends along the longitudinal direction and intersects the incident surface and the emitting surface. It has a refractive index distribution in which the refractive index decreases as the distance from the axis increases in the transverse direction.
  • the light source is arranged at a position where the light beam is incident on the incident surface at a position shifted from the optical axis in the transverse direction.
  • the trajectory of the light beam passing through the optical element is a curve in which the distance from the optical axis changes. Is shown.
  • the light beam is incident on the incident surface at a position shifted in the transverse direction from the optical axis. This allows the optical element to emit a light beam so as to be inclined with respect to the optical axis.
  • the optical element includes a light source that generates a plurality of light beams parallel to each other and a light source.
  • a plurality of optical elements provided corresponding to a plurality of light beams, and each optical element transmits a light beam incident on an incident surface from the light source and emits the light beam from the exit surface.
  • Each optical element has a longitudinal direction and a transverse direction orthogonal to the longitudinal direction, extends along the longitudinal direction, and extends in the transverse direction from an optical axis intersecting the entrance surface and the emission surface. It has a refractive index distribution in which the refractive index decreases as the distance increases.
  • the light source is arranged at a position where each light beam is incident on the incident surface at a position shifted in the transverse direction from the optical axis.
  • each optical element has a refractive index distribution in which the refractive index decreases as the distance from the optical axis increases in the transverse direction
  • the trajectory of the light beam passing through the optical element changes in distance from the optical axis. Shows a curve.
  • Each light beam is incident on the incident surface at a position shifted in the transverse direction from the optical axis.
  • the light source device can emit a plurality of light beams so as to be inclined with respect to the optical axis.
  • Each light beam may be incident on the incident surface at a position shifted from the optical axis so as to approach each other along the transverse direction.
  • each light beam diverges away from the optical axis when it is emitted from the exit surface.
  • Each light beam may be incident on the incident surface at a position shifted so as to move away from the optical axis along the transverse direction.
  • each light beam when each light beam is emitted from the exit surface, it is focused once so as to approach the optical axis, then intersects the optical axis, and then diverges so as to move away from the optical axis.
  • the light source device may further include a holding unit that holds the plurality of optical elements.
  • the holding unit can stably position a plurality of optical elements.
  • the holding portion may be a clad provided on the outer periphery of the plurality of optical elements and having a refractive index lower than that of the optical elements.
  • the outer circumference of the optical element is protected, so that the light beam can travel stably in the core.
  • the light source may be embedded in the clad.
  • the positioning accuracy between the light source and the optical element can be improved.
  • the locus of the light beam passing through the optical element shows a curve in which the distance from the optical axis changes, and the curve has an antinode whose tangent line is parallel to the optical axis and its tangent line to the optical axis.
  • Including the inclined area that is inclined with respect to The exit surface may be provided in the inclined region.
  • the exit surface can emit a light beam in a direction inclined with respect to the optical axis.
  • the light source device may be further provided with a refracting element which is provided on or away from the emitting surface and changes the traveling direction of the light beam.
  • the refracting element can change the traveling direction of the light beam to emit the light beam so as to diverge more from the optical axis.
  • the light source device may be further provided with a refracting element that is integrally provided on the exit surface and changes the traveling direction of the light beam.
  • the refracting element can change the traveling direction of the light beam to emit the light beam so as to diverge more from the optical axis.
  • the light source may be provided in contact with the incident surface of the optical element.
  • the optical device can be miniaturized and the light utilization efficiency can be improved.
  • the light source may be a multi-emitter surface emitting laser.
  • the optical device can be miniaturized.
  • the refractive index distribution may be a graded type in which the refractive index changes in a quadratic curve with respect to the distance from the optical axis.
  • the trajectory of the light beam passing through the optical element changes in a sinusoidal shape.
  • the optical device includes the above-mentioned light source device and a holder for holding a sample irradiated with a light beam emitted from the light source device.
  • FIG. 1A is a perspective view showing an example of the light source device 30 according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view taken along the line XX in FIG. 1A and shows one aspect of the light beam path.
  • FIG. 1C is a cross-sectional view taken along line XX in FIG. 1A, showing another aspect of the light beam path.
  • the light source device 30 includes an optical unit 10 including a plurality of cores 11 and a clad 12, and a light source 20.
  • the core 11 functions as an optical element that transmits an optical beam.
  • the case where the four cores 11 are arranged in a 2 ⁇ 2 matrix will be illustrated.
  • the clad 12 is provided so as to be solidly filled on the outer circumference of each core 11, and functions as a holding portion for holding each core 11.
  • the core 11 and the clad 12 can be made of a material transparent to light, for example, an inorganic material such as glass or quartz, or an organic material such as a synthetic resin, like a general optical fiber.
  • the refractive index of the core 11 is generally designed to be greater than the refractive index of the clad 12.
  • the clad 12 protects the outer circumference of the core 11 and contributes to the stable progress of light in the core 11, but it can be omitted if necessary.
  • Each core 11 has a longitudinal DL and a transverse DT orthogonal to the longitudinal DL.
  • Each core 11 has an incident surface 11a on which light is incident and an exit surface 11b on which light is emitted.
  • the entrance surface 11a and the exit surface 11b are arranged so as to face each other in the longitudinal direction DL.
  • the entrance surface 11a and the exit surface 11b are parallel to the transverse direction DT.
  • Each core 11 has an optical axis OA so as to extend along the longitudinal direction DL and intersect (for example, orthogonally) the entrance surface 11a and the exit surface 11b.
  • the optical axis OA is an axis passing through the center of the entrance surface 11a and the center of the exit surface 11.
  • a light source 20 that generates a plurality of light beams parallel to each other is arranged in front of the incident surface 11a.
  • a multi-emitter surface emitting laser in which a plurality of light emitting units are arranged two-dimensionally for example, a VCSEL (Vertical Cavity Surface Emitting Laser) or the like can be used.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • a case where the light emitting portions of the light source 20 are arranged in a 2 ⁇ 2 matrix corresponding to the four cores 11 arranged in a 2 ⁇ 2 matrix to generate four light beams is illustrated.
  • the light source 20 may be provided apart from the incident surface 11a of the core 11, but may be provided in contact with the incident surface 11a. As a result, the positioning accuracy between the light source 20 and the core 11 can be improved, and the light source device 30 can be downsized.
  • the light source 20 is fixed on a substrate SB such as a printed wiring board and is electrically connected to a drive circuit (not shown). Below the clad 12, a skirt portion 12a that fits with the outer shape of the light source 20 is provided so as to extend to the substrate SB, and the light source 20 is embedded inside the skirt portion 12a. As a result, the positioning accuracy between the light source 20 and the core 11 is further improved. In addition, the airtightness and watertightness of the light source device 30 can be improved.
  • FIG. 2A is an explanatory diagram showing the path of light rays in the core 11 having a GI (Graded Index) type refractive index distribution.
  • FIG. 2B is a graph showing the refractive index distribution.
  • An optical element having a GI type refractive index distribution is also referred to as a GRIN lens.
  • the core 11 has a refractive index distribution that decreases as it moves away from the optical axis OA in the transverse direction DT. That is, the refractive index in the core 11 is distributed in a quadratic curve with respect to the radius r from the optical axis OA, for example, in a parabolic shape, becomes the highest on the optical axis OA, and decreases as the radius r increases.
  • the refractive index n (r) in the core 11 is represented by the following equation (1).
  • n1 is the refractive index on the optical axis OA
  • ⁇ A is the gradient coefficient
  • r is the radial position from the optical axis OA.
  • the light rays in the core 11 show a sinusoidal curve that changes periodically at the pitch P, and the node that approaches the optical axis OA and minimizes the distance from the optical axis OA for each length P / 2.
  • the belly that moves away from the optical axis OA and maximizes the distance from the optical axis OA appears repeatedly.
  • Such a refractive index distribution may be extended to a higher-order function of second order or higher with respect to the radius r from the optical axis OA.
  • the refractive index distribution in this case is represented by the following equation (2).
  • the individual light emitting parts of the light source 20 are arranged to face each other so as to have a one-to-one correspondence with the individual cores 11.
  • the light beams emitted from the individual light emitting portions of the light source 20 are maintained parallel to the optical axis OA of the corresponding core 11 and are incident on the incident surface 11a as they are.
  • the main ray of the light beam shows a path in which the distance from the optical axis OA changes periodically at the pitch P.
  • the path of the light beam can be divided into two regions, that is, 1) a divergent region RD from the internode Q1 to the antinode Q2 and 2) a focusing region RC from the antinode Q2 to the internode Q1.
  • the path of such a light beam is uniquely determined according to the position where the light beam is incident on the incident surface 11a.
  • the light beam OB1 is incident on the incident surface 11a at a position shifted from the optical axis OA by a distance ⁇ D along the transverse direction DT. ..
  • the light beam OB1 is inclined so as to approach the optical axis OA in the focusing region RC, and intersects the optical axis OA in the node Q1.
  • the optical beam OB1 passes through the optical axis OA and inclines so as to move away from the optical axis OA, and then gradually becomes parallel to the optical axis OA when approaching the ventral Q2. It becomes parallel when passing through the belly Q2.
  • the light beam OB1 travels periodically along a sinusoidal curve. The amplitude and tilt angle of these curves change with distance ⁇ D, but the positions of nodes Q1 and antinode Q2 do not.
  • the exit surface 11b of the core 11 is set in the range of the focusing region RC.
  • the light beam OB1 when the light beam OB1 emits the exit surface 11b, the light beam OB1 inclines downward with respect to the optical axis OA, travels straight in the air, approaches the optical axis OA and intersects, and then the optical axis OA. It diverges away from.
  • the exit surface 11b of the core 11 is set within the range of the divergence region RD (for example, the position ZA in FIG. 2A)
  • the light beam OB1 emits the exit surface 11b
  • it is inclined upward with respect to the optical axis OA, travels straight in the air, and diverges so as to move away from the optical axis OA.
  • the exit surface 11b of the core 11 is set in the vicinity of the section Q1 . Also in this case, when the light beam OB1 emits the exit surface 11b, it is inclined upward or downward with respect to the optical axis OA, travels straight in the air, and diverges away from the optical axis OA.
  • the exit surface 11b of the core 11 is set to the belly Q2 or its vicinity.
  • the light beam OB1 emits the exit surface 11b, it emits in parallel or substantially parallel to the optical axis OA, and travels straight in the air in parallel or substantially parallel to the optical axis OA.
  • the exit surface 11b of the core 11 is set in the inclined region inclined with respect to the optical axis OA.
  • the light beam OB1 emits the exit surface 11b, it emits at an angle with respect to the optical axis OA and diverges so as to move away from the optical axis OA.
  • the emission position and emission angle of the light beam OB1 are periodically repeated at the pitch P. Therefore, the core 11 can be miniaturized by setting the exit surface 11b in the range from the antinode Q2 corresponding to the incident surface 11a to the next antinode Q2.
  • each light beam emitted from the light source 20 is incident on each incident surface 11a at a position shifted from the optical axis OA so as to approach each other along the transverse direction DT. ing. Further, the exit surface 11b is set in the range from the first focusing region RC to the first divergence region RD counting from the incident surface 11a. Therefore, as shown in FIG. 2A, the light beam that has passed through the incident surface 11a is inclined so as to approach the optical axis OA in the first focusing region RC after passing through the antinode Q2 corresponding to the incident surface 11a.
  • the exit surface 11b When the exit surface 11b is emitted, it is inclined with respect to the optical axis OA and travels straight so as to move away from the optical axis OA. Therefore, as shown in FIG. 1B, the light beams emitted from the exit surface 11b diverge as they are away from each other.
  • each light beam emitted from the light source 20 is incident on each incident surface 11a at a position shifted away from the optical axis OA along the transverse direction DT.
  • the exit surface 11b is set in the range from the first focusing region RC to the first divergence region RD counting from the incident surface 11a. Therefore, as shown in FIG. 2A, the light beam that has passed through the incident surface 11a is inclined so as to approach the optical axis OA in the first focusing region RC after passing through the antinode Q2 corresponding to the incident surface 11a.
  • the exit surface 11b When the exit surface 11b is emitted, it is inclined with respect to the optical axis OA and travels straight so as to move away from the optical axis OA. Therefore, as shown in FIG. 1C, the light beams emitted from the exit surface 11b once approach each other and intersect with each other, but then diverge so as to move away from each other.
  • each light beam is incident on the incident surface 11a at a position shifted from the optical axis OA along the transverse direction DT. This makes it possible to emit a plurality of light beams so as to diverge from the optical axis OA.
  • FIG. 3 is an explanatory view showing how a plurality of light emitting parts are arranged in a 2 ⁇ 2 matrix in the light source 20,
  • FIG. 3A shows an XY coordinate table of the light emitting parts, and
  • FIG. 3B shows a schematic perspective view.
  • a total of 4 XY coordinates are defined by combining two X coordinates (-0.40 mm, -0.10 mm) and two Y coordinates (0.15 mm, 0.35 mm), for a total of 4
  • the light emitting parts are arranged.
  • the pitch in the X direction between the light emitting portions is 0.3 mm
  • the pitch in the Y direction is 0.2 mm.
  • the present invention can also be applied when two, three or five or more cores 11 are arranged two-dimensionally.
  • the light emitting portion of the light source 20 is also provided so as to correspond to the number and arrangement of the cores 11. Further, the arrangement spacing of the light emitting portions may be other than 0.20 mm and 0.30 mm.
  • the core 11 is columnar
  • the present invention can also be applied when the core 11 is prismatic, for example, square columnar, hexagonal columnar, octagonal columnar or the like.
  • FIG. 4A is a side view showing an example of the dimensions of the core 11 and the clad 12
  • FIG. 4B is a perspective view seen from the entrance surface 11a side
  • FIG. 4C is a perspective view seen from the exit surface 11b side. is there.
  • the columnar core 11 and clad 12 have a length of 1.325 mm.
  • the core 11 has an outer diameter of 0.4 mm.
  • the clad 12 has an outer diameter of 1.6 mm.
  • the cores 11 are arranged so that the optical axes have a pitch of 0.5 mm.
  • the distance from the exit surface 11b to the target TG is 1.675 mm.
  • FIG. 5A is a perspective view showing an example of the emission direction of the light beam emitted from the emission surface 11b of each core 11.
  • FIG. 5B is an explanatory diagram showing a light beam spot at the target TG.
  • FIG. 5C is a graph showing the refractive indexes of the core 11 and the clad 12.
  • the four light beams pass through the four cores 11 and are emitted from the exit surface 11b and diverged so as to move away from each other.
  • the inclination angles ( ⁇ x, ⁇ y) of each light beam with respect to the optical axis OA are, for example, ( ⁇ 5.8 °, 8.6 °), (5.8 °, 8.6 °), (5. 8 °, -8.6 °), (5.8 °, -8.6 °).
  • the four light beams form four spots in the target TG.
  • the pitch in the X direction between the spots is about 0.70 mm, and the pitch in the Y direction is about 0.85 mm.
  • the inter-spot pitch at the target TG is magnified about 2.3 times in the X direction and about 4.3 times in the Y direction as compared with the pitch between the light emitting portions.
  • the central refractive index of the core 11 is, for example, 1.45250, which decreases in a quadratic curve.
  • the refractive index of the clad 12 is, for example, 1.42813.
  • the numerical values shown in FIGS. 4 and 5 are merely examples, and other numerical values can be adopted.
  • FIG. 6 is an explanatory diagram showing an example of a manufacturing method of the optical unit 10.
  • the container 50 is filled with the raw material 51 of the clad 12.
  • a plurality of nozzles NZ for supplying the raw material 52 of the core 11 are inserted into the raw material 51, and the opening of the nozzle NZ is positioned near the bottom of the container 50.
  • the nozzle NZ is also arranged in a 2 ⁇ 2 matrix.
  • the raw material 52 is sent out while pulling up each nozzle NZ. At this time, the pulling speed of the nozzle NZ and the delivery amount of the raw material 52 are adjusted so that the raw material 52 remaining in the raw material 51 becomes cylindrical.
  • the raw material 51 and the raw material 52 are gradually cured while being mixed with each other.
  • the raw material 51 becomes a clad material 51a
  • the raw material 52 becomes a core material 52a.
  • the mixing ratio of the raw materials 51 and 52 changes from the outside to the inside of the core material 52a, and a desired refractive index distribution can be obtained by appropriately setting the production conditions.
  • an uncured fluid for example, a synthetic resin before curing
  • a silicone resin for example, an acrylic resin, an epoxy resin, a polyimide resin, a polyolefin resin, a polynorbornene resin, etc.
  • a silicone resin for example, an acrylic resin, an epoxy resin, a polyimide resin, a polyolefin resin, a polynorbornene resin, etc.
  • a silicone resin for example, an acrylic resin, an epoxy resin, a polyimide resin, a polyolefin resin, a polynorbornene resin, etc.
  • the clad material 51a and the core material 52a are taken out from the container 50 and processed by machining such as cutting or chemical treatment such as etching to form the optical unit 10 shown in FIG. Is obtained.
  • the present invention also describes the SI (Step Index) type core 11 whose refractive index distribution changes stepwise. Can be applied as well.
  • FIG. 7 is a perspective view showing an example of the light source device 30 according to the second embodiment of the present invention.
  • the refraction element 15 is provided on the exit surface of the core 11.
  • the light source device 30 includes an optical unit 10 including a plurality of cores 11 and a clad 12 and a light source 20 as in the first embodiment. Since the details of the light source device 30 are the same as those in the first embodiment, duplicate description will be omitted.
  • the refracting element 15 has a function of changing the traveling direction of the light beam emitted from the exit surface of the core 11. For example, when the light beam is emitted from the exit surface of the core 11 at an angle inclined by about 40 degrees with respect to the optical axis, when passing through the refracting element 15, the light beam is inclined at an angle of about 70 degrees with respect to the optical axis. Is configured to be emitted from the exit surface of the refracting element 15.
  • the refracting element 15 is made of, for example, a hemispherical transparent material.
  • Such an inclination angle can be set to a desired value by adjusting the height of the refracting element 15, the radius of curvature, the refractive index, the distance between the core 11 and the refracting element 15, and the like, thereby increasing the degree of freedom in optical design. Become.
  • FIG. 8 is a perspective view showing another example of the light source device 30 according to the second embodiment of the present invention.
  • the refracting element 15 is made of, for example, a conical transparent material, and has a function of changing the traveling direction of the light beam emitted from the exit surface of the core 11. Such a refracting element 15 can also increase the emission angle on the exit surface, which increases the degree of freedom in optical design.
  • the above-mentioned refracting element 15 may be joined as a separate component on the exit surface of the core 11, may be integrally formed at the time of manufacturing the core 11, or may be formed as a separate component apart from the exit surface of the core 11. It may be installed.
  • the above-mentioned refracting element 15 has other shapes such as a semi-elliptical shape, a hyperboloid shape, a parabolic shape, a parabolic shape, or a triangular pyramid shape or a quadrangular pyramid shape. , Hexagonal pyramid or other polygonal pyramid.
  • FIG. 9A is a perspective view showing an example of the emission direction of the light beam when the refraction element 15 is integrally provided on the emission surface.
  • FIG. 9B is an explanatory diagram showing a light beam spot at the target TG.
  • the dimensions of the core 11 and clad 12 are the same as those described in FIGS. 4 and 5.
  • the distance between the core 11 and the refracting element 15 is zero.
  • the four light beams pass through the four cores 11 and are emitted from the exit surface, and are diverged by the refracting element 15 so as to be further away from each other.
  • the four light beams form four spots in the target TG.
  • the pitch in the X direction between the spots is about 1.16 mm, and the pitch in the Y direction is about 1.50 mm.
  • the pitch between spots in the target TG is magnified about 3.9 times in the X direction and about 7.5 times in the Y direction as compared with the pitch between the light emitting parts.
  • FIG. 10A is a perspective view showing an example of the emission direction of the light beam when the refraction element 15 is provided apart from the emission surface.
  • FIG. 10B is an explanatory diagram showing a light beam spot at the target TG.
  • the dimensions of the core 11 and clad 12 are the same as those described in FIGS. 4 and 5.
  • the distance between the core 11 and the refracting element 15 is 0.2 mm.
  • the four light beams pass through the four cores 11 and are emitted from the exit surface, and are diverged by the refracting element 15 so as to be further away from each other.
  • the four light beams form four spots in the target TG.
  • the pitch in the X direction between the spots is about 1.2 mm, and the pitch in the Y direction is about 1.4 mm.
  • the pitch between spots in the target TG is magnified about 4.0 times in the X direction and about 7.0 times in the Y direction as compared with the pitch between the light emitting parts.
  • the refracting elements 15 When the refracting elements 15 are provided apart from the exit surface, if the inclination angles ( ⁇ x, ⁇ y) of each light beam shown in FIG. 9A are the same, the refracting elements 15 are moved in the X direction so as to be away from each other. Shift by 0.03 mm in the Y direction and 0.03 mm in the Y direction.
  • FIG. 11A is a configuration diagram showing an optical device 100 according to a third embodiment of the present invention
  • FIG. 11B is a perspective view thereof.
  • the optical device 100 according to the present embodiment operates as an observation device for observing the sample SA.
  • the optical device 100 includes a light source device 30 including the above-mentioned optical unit 10 and a light source 20, a holder 110 that holds the sample SA, a detection element 120 that optically detects the sample SA, and the like.
  • the holder 101 is formed of a transparent material through which light can pass, and is configured as a substrate on which a large number of well WLs capable of holding a liquid are formed.
  • the detection element 120 is composed of an image sensor such as a CMOS image sensor (CIS), for example.
  • a condenser lens 121 is provided in close contact with the front of the detection element 120.
  • an Au-deposited thin film is provided on the surface of the holder 110, and when a light beam is irradiated, photothermal conversion occurs in which the temperature rises locally due to the plasmon effect.
  • Sample SA is a liquid in which a large number of plastic beads are dispersed. Irradiation of the light beam causes the liquid to vaporize locally to generate microbubbles, which allows the beads to accumulate. The state of accumulation is detected by the detection element 120.
  • each light beam is incident on the incident surface of the core 11 at a position shifted in the transverse direction from the optical axis.
  • the light source device 30 can emit a plurality of light beams so as to diverge from the optical axis and irradiate the sample SA.
  • one light source 20 is used and four light beams are arranged in a 2 ⁇ 2 matrix. It becomes possible to simultaneously irradiate and detect a plurality of sample SAs in the four wells WL.
  • the present invention can also be applied when two, three or five or more cores 11 are arranged two-dimensionally. Is.
  • the light emitting portion of the light source 20 and the well WL of the holder 101 are also provided so as to correspond to the number and arrangement of the cores 11.
  • the optical device 100 can be downsized and the number of parts can be reduced.
  • the present invention is extremely useful in industry because it is possible to realize a light source device capable of emitting one or a plurality of light beams so as to be inclined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Microscoopes, Condenser (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A light source device 30 is provided with: a light source 20 that creates a plurality of mutually parallel light beams; and a plurality of cores 11 that corresponds to the plurality of light beams. Each core 11 transmits a light beam that is incident on an incident surface 11a from the light source 20 and emits the light beam from an emission surface 11b. Each core 11 has a longitudinal direction DL and a transverse direction DT perpendicular to the longitudinal direction DL; each core 11 has a refractive index distribution in which the refractive index decreases as the distance increases in the transverse direction DT from an optical axis OA that extends along the longitudinal direction DL and intersects with the incident surface 11a and the emission surface 11b. Each light beam is incident on the incident surface 11a at a location shifted from the optical axis OA in the transverse direction DT. This configuration allows one or more light beams to be obliquely emitted.

Description

光源装置および光学装置Light source device and optical device
 本発明は、1つまたは複数の光ビームを出射できる光源装置、およびこうした光源装置を用いた光学装置に関する。 The present invention relates to a light source device capable of emitting one or more light beams, and an optical device using such a light source device.
 従来、クラッド内に2つのコアを有する光通信用マルチコア光ファイバが開示されている(例えば、特許文献1)。光は、光ファイバの長手方向に沿って各コアに入射し、各コアの中心を進行し、光ファイバの長手方向に沿って出射される。 Conventionally, a multi-core optical fiber for optical communication having two cores in a clad has been disclosed (for example, Patent Document 1). Light enters each core along the longitudinal direction of the optical fiber, travels through the center of each core, and is emitted along the longitudinal direction of the optical fiber.
特許第6258618号公報Japanese Patent No. 6258618 特表2015-531861号公報Special Table 2015-531861 国際公開第2018/159706号公報International Publication No. 2018/159706 特開2012-137688号公報Japanese Unexamined Patent Publication No. 2012-137688
 特許文献1の手法では、光は光ファイバの長手方向に沿って出射されるに過ぎず、光の出射方向については何ら言及していない。
 本発明の目的は、1つまたは複数の光ビームを傾斜するように出射できる光源装置を提供することである。また本発明の目的は、こうした光源装置を用いた光学装置を提供することである。
In the method of Patent Document 1, light is only emitted along the longitudinal direction of the optical fiber, and no reference is made to the emission direction of light.
An object of the present invention is to provide a light source device capable of emitting one or more light beams so as to be inclined. Another object of the present invention is to provide an optical device using such a light source device.
 本発明の一態様に係る光源装置は、光ビームを発生する光源と、
 前記光源から入射面に入射した光ビームを伝送し出射面から出射する光学素子とを備え、
 前記光学素子は、長手方向、および該長手方向に対して直交する横断方向を有し、前記長手方向に沿って延在するとともに前記入射面及び前記出射面と交差する光軸から前記横断方向に離れるに従って屈折率が低下する屈折率分布を有し、
 前記光源は、前記光ビームが、前記入射面において前記光軸から前記横断方向にシフトした位置に入射する位置に配置される。
The light source device according to one aspect of the present invention includes a light source that generates a light beam and a light source.
An optical element that transmits a light beam incident on an incident surface from the light source and emits it from an emitting surface is provided.
The optical element has a longitudinal direction and a transverse direction orthogonal to the longitudinal direction, extends along the longitudinal direction, and extends in the transverse direction from an optical axis intersecting the entrance surface and the emission surface. It has a refractive index distribution in which the refractive index decreases as the distance increases.
The light source is arranged at a position where the light beam is incident on the incident surface at a position shifted from the optical axis in the transverse direction.
 本発明の他の態様に係る光源装置は、互いに平行な複数の光ビームを発生する光源と、
 複数の光ビームに対応して設けられた複数の光学素子であって、各光学素子は、前記光源から入射面に入射した光ビームを伝送し出射面から出射する、複数の光学素子と、
 を備え、
 各光学素子は、長手方向、および該長手方向に対して直交する横断方向を有し、前記長手方向に沿って延在するとともに前記入射面及び前記出射面と交差する光軸から前記横断方向に離れるに従って屈折率が低下する屈折率分布を有し、
 前記光源は、各光ビームが、前記入射面において前記光軸から前記横断方向にシフトした位置に入射する位置に配置される。
The light source device according to another aspect of the present invention includes a light source that generates a plurality of light beams parallel to each other and a light source.
A plurality of optical elements provided corresponding to a plurality of light beams, and each optical element transmits a light beam incident on an incident surface from the light source and emits the light beam from the exit surface.
With
Each optical element has a longitudinal direction and a transverse direction orthogonal to the longitudinal direction, extends along the longitudinal direction, and extends in the transverse direction from an optical axis intersecting the entrance surface and the emission surface. It has a refractive index distribution in which the refractive index decreases as the distance increases.
The light source is arranged at a position where each light beam is incident on the incident surface at a position shifted in the transverse direction from the optical axis.
 本発明の他の態様に係る光学装置は、上記の光源装置と、前記光源装置から出射される光ビームが照射されるサンプルを保持するホルダとを備える。 The optical device according to another aspect of the present invention includes the above-mentioned light source device and a holder for holding a sample irradiated with a light beam emitted from the light source device.
 本発明に係る光源装置によれば、1つまたは複数の光ビームを傾斜するように出射させることが可能になる。 According to the light source device according to the present invention, it is possible to emit one or a plurality of light beams so as to be inclined.
図1Aは、本発明の実施形態1に係る光源装置の一例を示す斜視図である。図1Bは、図1A中のX-X線に沿った断面図であり、光ビーム経路の一態様を示す。図1Cは、図1A中のX-X線に沿った断面図であり、光ビーム経路の他の態様を示す。FIG. 1A is a perspective view showing an example of a light source device according to the first embodiment of the present invention. FIG. 1B is a cross-sectional view taken along the line XX in FIG. 1A and shows one aspect of the light beam path. FIG. 1C is a cross-sectional view taken along line XX in FIG. 1A, showing another aspect of the light beam path. 図2Aは、GI型の屈折率分布を有するコア内での光線の経路を示す説明図である。図2Bは、屈折率分布を示すグラフである。FIG. 2A is an explanatory diagram showing the path of light rays in a core having a GI type refractive index distribution. FIG. 2B is a graph showing the refractive index distribution. 光源において複数の発光部が2×2のマトリクス状に配列した様子を示す説明図であり、図3Aは発光部のXY座標テーブルを示し、図3Bは概略斜視図を示す。It is explanatory drawing which shows the appearance that a plurality of light emitting parts are arranged in a 2 × 2 matrix in a light source, FIG. 3A shows an XY coordinate table of a light emitting part, and FIG. 3B shows a schematic perspective view. 図4Aは、コアおよびクラッドの寸法の一例を示す側面図であり、図4Bは、入射面側から見た斜視図であり、図4Cは、出射面側から見た斜視図である。4A is a side view showing an example of the dimensions of the core and the clad, FIG. 4B is a perspective view seen from the entrance surface side, and FIG. 4C is a perspective view seen from the exit surface side. 図5Aは、各コアの出射面から出射される光ビームの出射方向の一例を示す斜視図である。図5Bは、ターゲットでの光ビームスポットを示す説明図である。図5Cは、コアおよびクラッドの屈折率を示すグラフである。FIG. 5A is a perspective view showing an example of the emission direction of the light beam emitted from the emission surface of each core. FIG. 5B is an explanatory diagram showing a light beam spot at the target. FIG. 5C is a graph showing the refractive indexes of the core and the clad. 光学ユニットの製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of an optical unit. 本発明の実施形態2に係る光源装置の一例を示す斜視図である。It is a perspective view which shows an example of the light source apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る光源装置の他の例を示す斜視図である。It is a perspective view which shows another example of the light source apparatus which concerns on Embodiment 2 of this invention. 図9Aは、屈折素子を出射面の上に一体的に設けたときの光ビームの出射方向の一例を示す斜視図である。図9Bは、ターゲットでの光ビームスポットを示す説明図である。FIG. 9A is a perspective view showing an example of the emission direction of the light beam when the refraction element is integrally provided on the emission surface. FIG. 9B is an explanatory diagram showing a light beam spot at the target. 図10Aは、屈折素子を出射面から離間して設けたときの光ビームの出射方向の一例を示す斜視図である。図10Bは、ターゲットでの光ビームスポットを示す説明図である。FIG. 10A is a perspective view showing an example of the emission direction of the light beam when the refracting element is provided apart from the emission surface. FIG. 10B is an explanatory diagram showing a light beam spot at the target. 図11Aは、本発明の実施形態3に係る光学装置を示す構成図であり、図11Bは、その斜視図である。FIG. 11A is a configuration diagram showing an optical device according to a third embodiment of the present invention, and FIG. 11B is a perspective view thereof.
 本発明の一態様に係る光学素子は、光ビームを発生する光源と、
 前記光源から入射面に入射した前記光ビームを光軸に沿って伝送し出射面から出射する光学素子とを備え、
 前記光学素子は、前記光軸に沿った長手方向、および該長手方向に対して直交する横断方向を有し、前記長手方向に沿って延在するとともに前記入射面及び前記出射面と交差する光軸から前記横断方向に離れるに従って屈折率が低下する屈折率分布を有し、
 前記光源は、前記光ビームが、前記入射面において前記光軸から前記横断方向にシフトした位置に入射する位置に配置される。
The optical element according to one aspect of the present invention includes a light source that generates a light beam and
An optical element that transmits the light beam incident on the incident surface from the light source along the optical axis and emits the light beam from the exit surface is provided.
The optical element has a longitudinal direction along the optical axis and a transverse direction orthogonal to the longitudinal direction, and the light extends along the longitudinal direction and intersects the incident surface and the emitting surface. It has a refractive index distribution in which the refractive index decreases as the distance from the axis increases in the transverse direction.
The light source is arranged at a position where the light beam is incident on the incident surface at a position shifted from the optical axis in the transverse direction.
 この構成によれば、光学素子は、光軸から横断方向に離れるに従って屈折率が低下する屈折率分布を有するため、光学素子を通過する光ビームの軌跡は、光軸からの距離が変化する曲線を示す。光ビームは、入射面において光軸から横断方向にシフトした位置に入射する。これにより光学素子は、光ビームを光軸に対して傾斜するように出射することが可能になる。 According to this configuration, since the optical element has a refractive index distribution in which the refractive index decreases as the distance from the optical axis increases in the transverse direction, the trajectory of the light beam passing through the optical element is a curve in which the distance from the optical axis changes. Is shown. The light beam is incident on the incident surface at a position shifted in the transverse direction from the optical axis. This allows the optical element to emit a light beam so as to be inclined with respect to the optical axis.
 本発明の他の態様に係る光学素子は、互いに平行な複数の光ビームを発生する光源と、
 複数の光ビームに対応して設けられた複数の光学素子であって、各光学素子は、前記光源から入射面に入射した光ビームを伝送し出射面から出射する、複数の光学素子と、
 を備え、
 各光学素子は、長手方向、および該長手方向に対して直交する横断方向を有し、前記長手方向に沿って延在するとともに前記入射面及び前記出射面と交差する光軸から前記横断方向に離れるに従って屈折率が低下する屈折率分布を有し、
 前記光源は、各光ビームが、前記入射面において前記光軸から前記横断方向にシフトした位置に入射する位置に配置される。
The optical element according to another aspect of the present invention includes a light source that generates a plurality of light beams parallel to each other and a light source.
A plurality of optical elements provided corresponding to a plurality of light beams, and each optical element transmits a light beam incident on an incident surface from the light source and emits the light beam from the exit surface.
With
Each optical element has a longitudinal direction and a transverse direction orthogonal to the longitudinal direction, extends along the longitudinal direction, and extends in the transverse direction from an optical axis intersecting the entrance surface and the emission surface. It has a refractive index distribution in which the refractive index decreases as the distance increases.
The light source is arranged at a position where each light beam is incident on the incident surface at a position shifted in the transverse direction from the optical axis.
 この構成によれば、各光学素子は、光軸から横断方向に離れるに従って屈折率が低下する屈折率分布を有するため、光学素子を通過する光ビームの軌跡は、光軸からの距離が変化する曲線を示す。各光ビームは、入射面において光軸から横断方向にシフトした位置に入射する。これにより光源装置は、複数の光ビームを光軸に対して傾斜するように出射させることが可能になる。 According to this configuration, since each optical element has a refractive index distribution in which the refractive index decreases as the distance from the optical axis increases in the transverse direction, the trajectory of the light beam passing through the optical element changes in distance from the optical axis. Shows a curve. Each light beam is incident on the incident surface at a position shifted in the transverse direction from the optical axis. As a result, the light source device can emit a plurality of light beams so as to be inclined with respect to the optical axis.
 各光ビームは、前記入射面において前記光軸から前記横断方向に沿って互いに接近するようにシフトした位置に入射してもよい。 Each light beam may be incident on the incident surface at a position shifted from the optical axis so as to approach each other along the transverse direction.
 この構成によれば、各光ビームは、出射面から出射する際、光軸から遠ざかるように発散するようになる。 According to this configuration, each light beam diverges away from the optical axis when it is emitted from the exit surface.
 各光ビームは、前記入射面において前記光軸から前記横断方向に沿って互いに遠ざかるようにシフトした位置に入射してもよい。 Each light beam may be incident on the incident surface at a position shifted so as to move away from the optical axis along the transverse direction.
 この構成によれば、各光ビームは、出射面から出射する際、いったん光軸に接近するように集束し、続いて光軸と交差した後、光軸から遠ざかるように発散するようになる。 According to this configuration, when each light beam is emitted from the exit surface, it is focused once so as to approach the optical axis, then intersects the optical axis, and then diverges so as to move away from the optical axis.
 光源装置は、前記複数の光学素子を保持する保持部をさらに備えてもよい。 The light source device may further include a holding unit that holds the plurality of optical elements.
 この構成によれば、保持部は、複数の光学素子を安定に位置決めできる。 According to this configuration, the holding unit can stably position a plurality of optical elements.
 前記保持部は、前記複数の光学素子の外周に設けられ、前記光学素子の屈折率より低い屈折率を有するクラッドでもよい。 The holding portion may be a clad provided on the outer periphery of the plurality of optical elements and having a refractive index lower than that of the optical elements.
 この構成によれば、光学素子の外周が保護されるため、光ビームはコア内を安定に進行できるようになる。 According to this configuration, the outer circumference of the optical element is protected, so that the light beam can travel stably in the core.
 前記光源は、前記クラッドに埋設されてもよい。 The light source may be embedded in the clad.
 この構成によれば、光源と光学素子との位置決め精度を向上させることができる。 According to this configuration, the positioning accuracy between the light source and the optical element can be improved.
 前記光学素子を通過する光ビームの軌跡は、前記光軸からの距離が変化する曲線を示し、該曲線は、その接線が前記光軸に対して平行な腹と、その接線が前記光軸に対して傾斜する傾斜領域とを含み、
 前記出射面は、前記傾斜領域内に設けてもよい。
The locus of the light beam passing through the optical element shows a curve in which the distance from the optical axis changes, and the curve has an antinode whose tangent line is parallel to the optical axis and its tangent line to the optical axis. Including the inclined area that is inclined with respect to
The exit surface may be provided in the inclined region.
 この構成によれば、出射面は、光軸に対して傾斜した方向に光ビームを出射することが可能になる。 According to this configuration, the exit surface can emit a light beam in a direction inclined with respect to the optical axis.
 光源装置は、前記出射面の上または前記出射面から離間して設けられ、光ビームの進行方向を変更する屈折素子をさらに備えてもよい。 The light source device may be further provided with a refracting element which is provided on or away from the emitting surface and changes the traveling direction of the light beam.
 この構成によれば、屈折素子は、光ビームの進行方向を変更して、光ビームを光軸からより発散するように出射させることが可能になる。 According to this configuration, the refracting element can change the traveling direction of the light beam to emit the light beam so as to diverge more from the optical axis.
 光源装置は、前記出射面に一体的に設けられ、光ビームの進行方向を変更する屈折素子をさらに備えてもよい。 The light source device may be further provided with a refracting element that is integrally provided on the exit surface and changes the traveling direction of the light beam.
 この構成によれば、屈折素子は、光ビームの進行方向を変更して、光ビームを光軸からより発散するように出射させることが可能になる。 According to this configuration, the refracting element can change the traveling direction of the light beam to emit the light beam so as to diverge more from the optical axis.
 前記光源は、前記光学素子の前記入射面に接して設けてもよい。 The light source may be provided in contact with the incident surface of the optical element.
 この構成によれば、光学装置の小型化、光利用効率の向上が図られる。 According to this configuration, the optical device can be miniaturized and the light utilization efficiency can be improved.
 前記光源は、マルチエミッタ面発光レーザでもよい。 The light source may be a multi-emitter surface emitting laser.
 この構成によれば、光学装置の小型化が図られる。 According to this configuration, the optical device can be miniaturized.
 前記屈折率分布は、前記光軸からの距離に関して屈折率が2次曲線的に変化するグレーデッド型でもよい。 The refractive index distribution may be a graded type in which the refractive index changes in a quadratic curve with respect to the distance from the optical axis.
 この構成によれば、光学素子を通過する光ビームの軌跡は、正弦波状に変化するようになる。 According to this configuration, the trajectory of the light beam passing through the optical element changes in a sinusoidal shape.
 本発明の他の態様に係る光学装置は、上記の光源装置と、前記光源装置から出射される光ビームが照射されるサンプルを保持するホルダとを備える。 The optical device according to another aspect of the present invention includes the above-mentioned light source device and a holder for holding a sample irradiated with a light beam emitted from the light source device.
 この構成によれば、複数の光ビームを光軸から発散するように出射させて、サンプルに照射することが可能になる。 According to this configuration, it is possible to emit a plurality of light beams so as to diverge from the optical axis and irradiate the sample.
(実施形態1)
 図1Aは、本発明の実施形態1に係る光源装置30の一例を示す斜視図である。図1Bは、図1A中のX-X線に沿った断面図であり、光ビーム経路の一態様を示す。図1Cは、図1A中のX-X線に沿った断面図であり、光ビーム経路の他の態様を示す。
(Embodiment 1)
FIG. 1A is a perspective view showing an example of the light source device 30 according to the first embodiment of the present invention. FIG. 1B is a cross-sectional view taken along the line XX in FIG. 1A and shows one aspect of the light beam path. FIG. 1C is a cross-sectional view taken along line XX in FIG. 1A, showing another aspect of the light beam path.
 光源装置30は、複数のコア11およびクラッド12を含む光学ユニット10と、光源20とを備える。コア11は、光ビームを伝送する光学素子として機能する。ここでは、4つのコア11が2×2のマトリクス状に配置された場合を例示する。 The light source device 30 includes an optical unit 10 including a plurality of cores 11 and a clad 12, and a light source 20. The core 11 functions as an optical element that transmits an optical beam. Here, the case where the four cores 11 are arranged in a 2 × 2 matrix will be illustrated.
 クラッド12は、各コア11の外周に中実に充填されるように設けられ、各コア11を保持する保持部として機能する。コア11およびクラッド12は、一般の光ファイバと同様に、光に対して透明な材料、例えば、ガラス、石英などの無機材料、または合成樹脂などの有機材料などで製作できる。コア11の屈折率は、一般にクラッド12の屈折率より大きくなるように設計される。クラッド12は、コア11の外周を保護して、光がコア11内を安定に進行するのに寄与するが、必要に応じて省略することも可能である。 The clad 12 is provided so as to be solidly filled on the outer circumference of each core 11, and functions as a holding portion for holding each core 11. The core 11 and the clad 12 can be made of a material transparent to light, for example, an inorganic material such as glass or quartz, or an organic material such as a synthetic resin, like a general optical fiber. The refractive index of the core 11 is generally designed to be greater than the refractive index of the clad 12. The clad 12 protects the outer circumference of the core 11 and contributes to the stable progress of light in the core 11, but it can be omitted if necessary.
 各コア11は、長手方向DL、および長手方向DLに対して直交する横断方向DTを有する。各コア11は、光が入射する入射面11aと、光が出射する出射面11bを有する。入射面11aおよび出射面11bは、長手方向DLに互いに対向するように配置されている。実施形態1において、入射面11aおよび出射面11bは、横断方向DTに対して平行である。各コア11は、長手方向DLに沿って延在するとともに入射面11a及び出射面11bと交差(例えば、直交)するように、光軸OAを有している。実施形態1において、光軸OAは、入射面11aの中心および出射面11の中心を通る軸である。 Each core 11 has a longitudinal DL and a transverse DT orthogonal to the longitudinal DL. Each core 11 has an incident surface 11a on which light is incident and an exit surface 11b on which light is emitted. The entrance surface 11a and the exit surface 11b are arranged so as to face each other in the longitudinal direction DL. In the first embodiment, the entrance surface 11a and the exit surface 11b are parallel to the transverse direction DT. Each core 11 has an optical axis OA so as to extend along the longitudinal direction DL and intersect (for example, orthogonally) the entrance surface 11a and the exit surface 11b. In the first embodiment, the optical axis OA is an axis passing through the center of the entrance surface 11a and the center of the exit surface 11.
 入射面11aの前方には、互いに平行な複数の光ビームを発生する光源20が配置される。光源20は、複数の発光部が2次元状に配列したマルチエミッタ面発光レーザ、例えば、VCSEL(垂直共振器面発光型レーザ: Vertical Cavity Surface Emitting Laser)などが使用できる。ここでは、2×2のマトリクス状に配置された4つのコア11に対応して、光源20の発光部が2×2のマトリクス状に配置され、4つの光ビームを発生する場合を例示する。 A light source 20 that generates a plurality of light beams parallel to each other is arranged in front of the incident surface 11a. As the light source 20, a multi-emitter surface emitting laser in which a plurality of light emitting units are arranged two-dimensionally, for example, a VCSEL (Vertical Cavity Surface Emitting Laser) or the like can be used. Here, a case where the light emitting portions of the light source 20 are arranged in a 2 × 2 matrix corresponding to the four cores 11 arranged in a 2 × 2 matrix to generate four light beams is illustrated.
 光源20は、コア11の入射面11aから離間して設けてもよいが、入射面11aに接して設けてもよい。これにより光源20とコア11との間の位置決め精度の向上、光源装置30の小型化が図られる。 The light source 20 may be provided apart from the incident surface 11a of the core 11, but may be provided in contact with the incident surface 11a. As a result, the positioning accuracy between the light source 20 and the core 11 can be improved, and the light source device 30 can be downsized.
 光源20は、プリント配線基板などの基板SBの上に固定され、駆動回路(不図示)と電気的に接続される。クラッド12の下方には、光源20の外形と嵌合するスカート部12aが基板SBまで延出するように設けられ、光源20はスカート部12aの内部に埋設される。これにより光源20とコア11との間の位置決め精度がさらに向上する。また、光源装置30の気密性、水密性も改善できる。 The light source 20 is fixed on a substrate SB such as a printed wiring board and is electrically connected to a drive circuit (not shown). Below the clad 12, a skirt portion 12a that fits with the outer shape of the light source 20 is provided so as to extend to the substrate SB, and the light source 20 is embedded inside the skirt portion 12a. As a result, the positioning accuracy between the light source 20 and the core 11 is further improved. In addition, the airtightness and watertightness of the light source device 30 can be improved.
 図2Aは、GI(グレーデッドインデックス: Graded Index)型の屈折率分布を有するコア11内での光線の経路を示す説明図である。図2Bは、屈折率分布を示すグラフである。GI型の屈折率分布を有する光学素子は、GRINレンズとも称される。コア11は、光軸OAから横断方向DTに離れるに従って低下する屈折率分布を有する。即ち、コア11内の屈折率は、光軸OAからの半径rに関して2次曲線的、例えば、放物線状に分布しており、光軸OA上で最も高くなり、半径rの増加とともに低下する。具体的には、コア11内の屈折率n(r)は、下記の式(1)で表される。ここで、n1は光軸OAでの屈折率、√Aは勾配係数、rは光軸OAからの半径位置である。 FIG. 2A is an explanatory diagram showing the path of light rays in the core 11 having a GI (Graded Index) type refractive index distribution. FIG. 2B is a graph showing the refractive index distribution. An optical element having a GI type refractive index distribution is also referred to as a GRIN lens. The core 11 has a refractive index distribution that decreases as it moves away from the optical axis OA in the transverse direction DT. That is, the refractive index in the core 11 is distributed in a quadratic curve with respect to the radius r from the optical axis OA, for example, in a parabolic shape, becomes the highest on the optical axis OA, and decreases as the radius r increases. Specifically, the refractive index n (r) in the core 11 is represented by the following equation (1). Here, n1 is the refractive index on the optical axis OA, √A is the gradient coefficient, and r is the radial position from the optical axis OA.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 このときコア11内の光線は、ピッチPで周期的に変化する正弦波状曲線を示し、長さP/2ごとに、光軸OAに接近して光軸OAからの距離が最小になる節と、光軸OAから遠ざかって光軸OAからの距離が最大になる腹とが繰り返し現れる。なお、コア11の長さLCを用いて、2πP=LC×√Aの関係が成立する。 At this time, the light rays in the core 11 show a sinusoidal curve that changes periodically at the pitch P, and the node that approaches the optical axis OA and minimizes the distance from the optical axis OA for each length P / 2. , The belly that moves away from the optical axis OA and maximizes the distance from the optical axis OA appears repeatedly. The relationship of 2πP = LC × √A is established by using the length LC of the core 11.
 こうした屈折率分布は、光軸OAからの半径rに関して2次以上の高次の関数に拡張してもよい。この場合の屈折率分布は、下記の式(2)で表される。ここで、nrn(n=0,2,4,…,12)は係数である。 Such a refractive index distribution may be extended to a higher-order function of second order or higher with respect to the radius r from the optical axis OA. The refractive index distribution in this case is represented by the following equation (2). Here, n rn (n = 0, 2, 4, ..., 12) is a coefficient.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 光源20の個々の発光部は、個々のコア11に一対一で対応するように対向配置されている。これにより、光源20の個々の発光部から放出された光ビームは、対応するコア11の光軸OAに対して平行に維持され、そのまま入射面11aに入射する。コア11の内部において光ビームが入射面11aから出射面11bに向けて進行すると、光ビームの主光線は、光軸OAからの距離がピッチPで周期的に変化する経路を示す。ここで光ビームの経路は、2つの領域、即ち、1)節Q1から腹Q2に至る発散領域RDと、2)腹Q2から節Q1に至る集束領域RCとに区分できる。 The individual light emitting parts of the light source 20 are arranged to face each other so as to have a one-to-one correspondence with the individual cores 11. As a result, the light beams emitted from the individual light emitting portions of the light source 20 are maintained parallel to the optical axis OA of the corresponding core 11 and are incident on the incident surface 11a as they are. When the light beam travels from the entrance surface 11a to the exit surface 11b inside the core 11, the main ray of the light beam shows a path in which the distance from the optical axis OA changes periodically at the pitch P. Here, the path of the light beam can be divided into two regions, that is, 1) a divergent region RD from the internode Q1 to the antinode Q2 and 2) a focusing region RC from the antinode Q2 to the internode Q1.
 こうした光ビームの経路は、光ビームが入射面11aに入射する位置に応じて一義的に決定される。一例として、図2Aに示すように、単一の光ビームOB1に着目すると、光ビームOB1は、入射面11aにおいて光軸OAから横断方向DTに沿って距離ΔDだけシフトした位置に入射している。光ビームOB1は、入射面11aに相当する腹Q2を通過した後、集束領域RCにおいて光軸OAに接近するように傾斜し、節Q1において光軸OAと交差する。続いて発散領域RDに入ると、光ビームOB1は、光軸OAを通過し光軸OAから遠ざかるように傾斜し、続いて腹Q2に接近すると、光軸OAに対して徐々に平行になり、腹Q2を通過する際は平行になる。以下同様に、光ビームOB1は、正弦波状曲線に沿って周期的に進行する。こうした曲線の振幅および傾斜角は、距離ΔDに応じて変化するが、節Q1および腹Q2の位置は変化しない。 The path of such a light beam is uniquely determined according to the position where the light beam is incident on the incident surface 11a. As an example, as shown in FIG. 2A, focusing on a single light beam OB1, the light beam OB1 is incident on the incident surface 11a at a position shifted from the optical axis OA by a distance ΔD along the transverse direction DT. .. After passing through the antinode Q2 corresponding to the incident surface 11a, the light beam OB1 is inclined so as to approach the optical axis OA in the focusing region RC, and intersects the optical axis OA in the node Q1. Subsequently, when entering the divergence region RD, the optical beam OB1 passes through the optical axis OA and inclines so as to move away from the optical axis OA, and then gradually becomes parallel to the optical axis OA when approaching the ventral Q2. It becomes parallel when passing through the belly Q2. Similarly, the light beam OB1 travels periodically along a sinusoidal curve. The amplitude and tilt angle of these curves change with distance ΔD, but the positions of nodes Q1 and antinode Q2 do not.
 図2Aに示す例では、コア11の出射面11bは、集束領域RCの範囲に設定されている。この場合、光ビームOB1が出射面11bを出射する際、光軸OAに対して下向きに傾斜して出射し、空気中ではそのまま直進し、光軸OAに接近して交差した後、光軸OAから遠ざかるように発散する。 In the example shown in FIG. 2A, the exit surface 11b of the core 11 is set in the range of the focusing region RC. In this case, when the light beam OB1 emits the exit surface 11b, the light beam OB1 inclines downward with respect to the optical axis OA, travels straight in the air, approaches the optical axis OA and intersects, and then the optical axis OA. It diverges away from.
 次に、コア11の出射面11bを発散領域RDの範囲(例えば、図2A中の位置ZA)に設定した場合を説明する。この場合、光ビームOB1が出射面11bを出射する際、光軸OAに対して上向きに傾斜して出射し、空気中ではそのまま直進し、光軸OAから遠ざかるように発散する。 Next, a case where the exit surface 11b of the core 11 is set within the range of the divergence region RD (for example, the position ZA in FIG. 2A) will be described. In this case, when the light beam OB1 emits the exit surface 11b, it is inclined upward with respect to the optical axis OA, travels straight in the air, and diverges so as to move away from the optical axis OA.
 次に、コア11の出射面11bを節Q1の近傍に設定した場合を説明する。この場合も、光ビームOB1が出射面11bを出射する際、光軸OAに対して上向きまたは下向きに傾斜して出射し、空気中ではそのまま直進し、光軸OAから遠ざかるように発散する。 Next, a case where the exit surface 11b of the core 11 is set in the vicinity of the section Q1 will be described. Also in this case, when the light beam OB1 emits the exit surface 11b, it is inclined upward or downward with respect to the optical axis OA, travels straight in the air, and diverges away from the optical axis OA.
 一方、コア11の出射面11bを腹Q2またはその近傍に設定した場合を説明する。この場合、光ビームOB1が出射面11bを出射する際、光軸OAに対して平行または略平行に出射し、空気中では光軸OAに対して平行または略平行に直進する。 On the other hand, a case where the exit surface 11b of the core 11 is set to the belly Q2 or its vicinity will be described. In this case, when the light beam OB1 emits the exit surface 11b, it emits in parallel or substantially parallel to the optical axis OA, and travels straight in the air in parallel or substantially parallel to the optical axis OA.
 従って、コア11の出射面11bを、集束領域RC、発散領域RDおよび節Q1の近傍のいずれか、即ち、光ビームの経路が光軸OAに対して傾斜した傾斜領域内に設定することによって、光ビームOB1が出射面11bを出射する際、光軸OAに対して傾斜して出射し、光軸OAから遠ざかるように発散するようになる。 Therefore, by setting the exit surface 11b of the core 11 to either the focusing region RC, the divergence region RD, or the vicinity of the node Q1, that is, the light beam path is set in the inclined region inclined with respect to the optical axis OA. When the light beam OB1 emits the exit surface 11b, it emits at an angle with respect to the optical axis OA and diverges so as to move away from the optical axis OA.
 こうした光ビームOB1の出射位置および出射角度は、ピッチPで周期的に繰り返すことになる。そのため入射面11aに相当する腹Q2から次の腹Q2までの範囲に出射面11bを設定することによって、コア11の小型化が図られる。 The emission position and emission angle of the light beam OB1 are periodically repeated at the pitch P. Therefore, the core 11 can be miniaturized by setting the exit surface 11b in the range from the antinode Q2 corresponding to the incident surface 11a to the next antinode Q2.
 図1に戻って、図1Bに示す例では、光源20から放出された各光ビームは、各入射面11aにおいて光軸OAから横断方向DTに沿って互いに接近するようにシフトした位置に入射している。また出射面11bは、入射面11aから数えて第1の集束領域RCから第1の発散領域RDの範囲に設定される。従って、入射面11aを通過した光ビームは、図2Aに示すように、入射面11aに相当する腹Q2を通過した後、第1の集束領域RCにおいて光軸OAに接近するように傾斜し、出射面11bを出射する際、光軸OAに対して傾斜して光軸OAから遠ざかるように直進する。従って、図1Bに示すように、出射面11bを出射した各光ビームは、そのまま互いに遠ざかるように発散する。 Returning to FIG. 1, in the example shown in FIG. 1B, each light beam emitted from the light source 20 is incident on each incident surface 11a at a position shifted from the optical axis OA so as to approach each other along the transverse direction DT. ing. Further, the exit surface 11b is set in the range from the first focusing region RC to the first divergence region RD counting from the incident surface 11a. Therefore, as shown in FIG. 2A, the light beam that has passed through the incident surface 11a is inclined so as to approach the optical axis OA in the first focusing region RC after passing through the antinode Q2 corresponding to the incident surface 11a. When the exit surface 11b is emitted, it is inclined with respect to the optical axis OA and travels straight so as to move away from the optical axis OA. Therefore, as shown in FIG. 1B, the light beams emitted from the exit surface 11b diverge as they are away from each other.
 図1Cに示す例では、光源20から放出された各光ビームは、各入射面11aにおいて光軸OAから横断方向DTに沿って互いに遠ざかるようにシフトした位置に入射している。また出射面11bは、入射面11aから数えて第1の集束領域RCから第1の発散領域RDの範囲に設定される。従って、入射面11aを通過した光ビームは、図2Aに示すように、入射面11aに相当する腹Q2を通過した後、第1の集束領域RCにおいて光軸OAに接近するように傾斜し、出射面11bを出射する際、光軸OAに対して傾斜して光軸OAから遠ざかるように直進する。従って、図1Cに示すように、出射面11bを出射した各光ビームは、いったん接近して交差するが、その後は互いに遠ざかるように発散する。 In the example shown in FIG. 1C, each light beam emitted from the light source 20 is incident on each incident surface 11a at a position shifted away from the optical axis OA along the transverse direction DT. Further, the exit surface 11b is set in the range from the first focusing region RC to the first divergence region RD counting from the incident surface 11a. Therefore, as shown in FIG. 2A, the light beam that has passed through the incident surface 11a is inclined so as to approach the optical axis OA in the first focusing region RC after passing through the antinode Q2 corresponding to the incident surface 11a. When the exit surface 11b is emitted, it is inclined with respect to the optical axis OA and travels straight so as to move away from the optical axis OA. Therefore, as shown in FIG. 1C, the light beams emitted from the exit surface 11b once approach each other and intersect with each other, but then diverge so as to move away from each other.
 このように本発明では、各光ビームは、入射面11aにおいて光軸OAから横断方向DTに沿ってシフトした位置に入射している。これにより複数の光ビームを光軸OAから発散するように出射させることが可能になる。 As described above, in the present invention, each light beam is incident on the incident surface 11a at a position shifted from the optical axis OA along the transverse direction DT. This makes it possible to emit a plurality of light beams so as to diverge from the optical axis OA.
 図3は、光源20において複数の発光部が2×2のマトリクス状に配列した様子を示す説明図であり、図3Aは発光部のXY座標テーブルを示し、図3Bは概略斜視図を示す。 FIG. 3 is an explanatory view showing how a plurality of light emitting parts are arranged in a 2 × 2 matrix in the light source 20, FIG. 3A shows an XY coordinate table of the light emitting parts, and FIG. 3B shows a schematic perspective view.
 一例として、2つのX座標(-0.40mm、-0.10mm)と、2つのY座標(0.15mm、0.35mm)との組合せにより、計4個のXY座標が定義され、計4個の発光部が配列される。このとき発光部間のX方向ピッチは0.3mm、Y方向ピッチは0.2mmである。 As an example, a total of 4 XY coordinates are defined by combining two X coordinates (-0.40 mm, -0.10 mm) and two Y coordinates (0.15 mm, 0.35 mm), for a total of 4 The light emitting parts are arranged. At this time, the pitch in the X direction between the light emitting portions is 0.3 mm, and the pitch in the Y direction is 0.2 mm.
 本実施形態では、4つのコア11が2次元状に配置された場合を例示したが、2つ、3つまたは5つ以上のコア11が2次元状に配置された場合も本発明は適用可能である。この場合、光源20の発光部もコア11の数および配置に対応するように設けられる。また、発光部の配列間隔についても0.20mm、0.30mm以外の間隔でも構わない。 In the present embodiment, the case where the four cores 11 are arranged two-dimensionally is illustrated, but the present invention can also be applied when two, three or five or more cores 11 are arranged two-dimensionally. Is. In this case, the light emitting portion of the light source 20 is also provided so as to correspond to the number and arrangement of the cores 11. Further, the arrangement spacing of the light emitting portions may be other than 0.20 mm and 0.30 mm.
 また本実施形態では、コア11が円柱状である場合を例示したが、コア11が角柱状、例えば、四角柱状、六角柱状、八角柱状などである場合も本発明は適用可能である。 Further, in the present embodiment, the case where the core 11 is columnar is illustrated, but the present invention can also be applied when the core 11 is prismatic, for example, square columnar, hexagonal columnar, octagonal columnar or the like.
 図4Aは、コア11およびクラッド12の寸法の一例を示す側面図であり、図4Bは、入射面11a側から見た斜視図であり、図4Cは、出射面11b側から見た斜視図である。円柱状のコア11およびクラッド12は、1.325mmの長さを有する。コア11は、0.4mmの外径を有する。クラッド12は、1.6mmの外径を有する。コア11は、光軸間が0.5mmのピッチとなるように配置される。出射面11bからターゲットTGまでの距離は、1.675mmである。 4A is a side view showing an example of the dimensions of the core 11 and the clad 12, FIG. 4B is a perspective view seen from the entrance surface 11a side, and FIG. 4C is a perspective view seen from the exit surface 11b side. is there. The columnar core 11 and clad 12 have a length of 1.325 mm. The core 11 has an outer diameter of 0.4 mm. The clad 12 has an outer diameter of 1.6 mm. The cores 11 are arranged so that the optical axes have a pitch of 0.5 mm. The distance from the exit surface 11b to the target TG is 1.675 mm.
 図5Aは、各コア11の出射面11bから出射される光ビームの出射方向の一例を示す斜視図である。図5Bは、ターゲットTGでの光ビームスポットを示す説明図である。図5Cは、コア11およびクラッド12の屈折率を示すグラフである。 FIG. 5A is a perspective view showing an example of the emission direction of the light beam emitted from the emission surface 11b of each core 11. FIG. 5B is an explanatory diagram showing a light beam spot at the target TG. FIG. 5C is a graph showing the refractive indexes of the core 11 and the clad 12.
 図1Bと同様に、4本の光ビームは、4つのコア11を通過して出射面11bから出射し、互いに遠ざかるように発散している。このとき光軸OAに対する各光ビームの傾斜角(θx,θy)は、一例として、(-5.8°,8.6°),(5.8°,8.6°),(5.8°,-8.6°),(5.8°,-8.6°)である。 Similar to FIG. 1B, the four light beams pass through the four cores 11 and are emitted from the exit surface 11b and diverged so as to move away from each other. At this time, the inclination angles (θx, θy) of each light beam with respect to the optical axis OA are, for example, (−5.8 °, 8.6 °), (5.8 °, 8.6 °), (5. 8 °, -8.6 °), (5.8 °, -8.6 °).
 図5Bに示すように、4本の光ビームは、ターゲットTGにおいて4つのスポットを形成する。スポット間のX方向ピッチは、約0.70mm、Y方向ピッチは約0.85mmである。ターゲットTGでのスポット間ピッチは、発光部間ピッチと比較すると、X方向は約2.3倍、Y方向は約4.3倍に拡大される。 As shown in FIG. 5B, the four light beams form four spots in the target TG. The pitch in the X direction between the spots is about 0.70 mm, and the pitch in the Y direction is about 0.85 mm. The inter-spot pitch at the target TG is magnified about 2.3 times in the X direction and about 4.3 times in the Y direction as compared with the pitch between the light emitting portions.
 図5Cに示すように、コア11の中心屈折率は、例えば、1.45250であり、そこから2次曲線的に低下している。クラッド12の屈折率は、例えば、1.42813である。なお、図4と図5に示した数値は一例に過ぎず、他の数値も採用できる。 As shown in FIG. 5C, the central refractive index of the core 11 is, for example, 1.45250, which decreases in a quadratic curve. The refractive index of the clad 12 is, for example, 1.42813. The numerical values shown in FIGS. 4 and 5 are merely examples, and other numerical values can be adopted.
 図6は、光学ユニット10の製造方法の一例を示す説明図である。図6Aに示すように、容器50の中にクラッド12の原料51を充填する。次に図6Bに示すように、コア11の原料52を供給するための複数のノズルNZが原料51の中に挿入され、ノズルNZの開口部を容器50の底部付近に位置決めする。一例として、2×2のマトリクス状に配置されたコア11を製造する場合、ノズルNZも2×2のマトリクス状に配置する。次に図6Cに示すように、各ノズルNZを上方に引き上げながら、原料52を送出する。このとき原料51の中に残留する原料52が円柱状になるように、ノズルNZの引き上げ速度および原料52の送出量を調整する。 FIG. 6 is an explanatory diagram showing an example of a manufacturing method of the optical unit 10. As shown in FIG. 6A, the container 50 is filled with the raw material 51 of the clad 12. Next, as shown in FIG. 6B, a plurality of nozzles NZ for supplying the raw material 52 of the core 11 are inserted into the raw material 51, and the opening of the nozzle NZ is positioned near the bottom of the container 50. As an example, when manufacturing the core 11 arranged in a 2 × 2 matrix, the nozzle NZ is also arranged in a 2 × 2 matrix. Next, as shown in FIG. 6C, the raw material 52 is sent out while pulling up each nozzle NZ. At this time, the pulling speed of the nozzle NZ and the delivery amount of the raw material 52 are adjusted so that the raw material 52 remaining in the raw material 51 becomes cylindrical.
 次に図6Dに示すように、ノズルNZの引き上げが完了した後、所定時間だけ放置する。これにより原料51と原料52が互いに混合しながら、徐々に硬化する。完全に硬化すると、原料51はクラッド材51aとなり、原料52はコア材52aとなる。このとき原料51,52の混合比は、コア材52aの外側から内側に向かって変化しており、製造条件を適切に設定することによって、所望の屈折率分布が得られる。 Next, as shown in FIG. 6D, after the nozzle NZ has been pulled up, leave it for a predetermined time. As a result, the raw material 51 and the raw material 52 are gradually cured while being mixed with each other. When completely cured, the raw material 51 becomes a clad material 51a, and the raw material 52 becomes a core material 52a. At this time, the mixing ratio of the raw materials 51 and 52 changes from the outside to the inside of the core material 52a, and a desired refractive index distribution can be obtained by appropriately setting the production conditions.
 原料51,52は、硬化していない流体、例えば、硬化前の合成樹脂が使用でき、例えば、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリノルボルネン樹脂などが使用でき、硬化後の屈折率が互いに異なるように選択される。 As the raw materials 51 and 52, an uncured fluid, for example, a synthetic resin before curing can be used, and for example, a silicone resin, an acrylic resin, an epoxy resin, a polyimide resin, a polyolefin resin, a polynorbornene resin, etc. can be used, and after curing, Are selected so that their epoxies are different from each other.
 次に図6Eに示すように、容器50からクラッド材51aおよびコア材52aを取り出して、切削などの機械加工、またはエッチングなどの化学的処理などで加工することにより、図1に示す光学ユニット10が得られる。 Next, as shown in FIG. 6E, the clad material 51a and the core material 52a are taken out from the container 50 and processed by machining such as cutting or chemical treatment such as etching to form the optical unit 10 shown in FIG. Is obtained.
 なお以上の説明では、屈折率分布が連続的に変化するGI型のコア11について例示したが、屈折率分布が階段状に変化するSI(ステップインデックス: Step Index)型のコア11についても本発明は同様に適用できる。 In the above description, the GI type core 11 whose refractive index distribution changes continuously has been illustrated, but the present invention also describes the SI (Step Index) type core 11 whose refractive index distribution changes stepwise. Can be applied as well.
(実施形態2)
 図7は、本発明の実施形態2に係る光源装置30の一例を示す斜視図である。本実施形態では、コア11の出射面の上に屈折素子15が設けられる。
(Embodiment 2)
FIG. 7 is a perspective view showing an example of the light source device 30 according to the second embodiment of the present invention. In the present embodiment, the refraction element 15 is provided on the exit surface of the core 11.
 光源装置30は、実施形態1と同様に、複数のコア11およびクラッド12を含む光学ユニット10と、光源20とを備える。光源装置30の詳細は、実施形態1と同様であるため、重複説明を省略する。 The light source device 30 includes an optical unit 10 including a plurality of cores 11 and a clad 12 and a light source 20 as in the first embodiment. Since the details of the light source device 30 are the same as those in the first embodiment, duplicate description will be omitted.
 屈折素子15は、コア11の出射面から出射した光ビームの進行方向を変更する機能を有する。例えば、光ビームがコア11の出射面から光軸に対して約40度に傾斜した角度で出射する場合、屈折素子15を通過すると、光軸に対して約70度に傾斜した角度で光ビームが屈折素子15の出射面から出射されるように構成されている。屈折素子15は、例えば、半球状の透明材料で構成されている。こうした傾斜角は、屈折素子15の高さ、曲率半径、屈折率、コア11と屈折素子15の間の距離などを調整することによって所望の値に設定でき、これにより光学設計の自由度が高くなる。 The refracting element 15 has a function of changing the traveling direction of the light beam emitted from the exit surface of the core 11. For example, when the light beam is emitted from the exit surface of the core 11 at an angle inclined by about 40 degrees with respect to the optical axis, when passing through the refracting element 15, the light beam is inclined at an angle of about 70 degrees with respect to the optical axis. Is configured to be emitted from the exit surface of the refracting element 15. The refracting element 15 is made of, for example, a hemispherical transparent material. Such an inclination angle can be set to a desired value by adjusting the height of the refracting element 15, the radius of curvature, the refractive index, the distance between the core 11 and the refracting element 15, and the like, thereby increasing the degree of freedom in optical design. Become.
 図8は、本発明の実施形態2に係る光源装置30の他の例を示す斜視図である。屈折素子15は、例えば、円錐状の透明材料で構成され、コア11の出射面から出射した光ビームの進行方向を変更する機能を有する。こうした屈折素子15も、出射面での出射角度を増加させることが可能であり、これにより光学設計の自由度が高くなる。 FIG. 8 is a perspective view showing another example of the light source device 30 according to the second embodiment of the present invention. The refracting element 15 is made of, for example, a conical transparent material, and has a function of changing the traveling direction of the light beam emitted from the exit surface of the core 11. Such a refracting element 15 can also increase the emission angle on the exit surface, which increases the degree of freedom in optical design.
 上述した屈折素子15は、コア11の出射面の上に別部品として接合してもよく、コア11の製造時に一体的に形成してもよく、コア11の出射面から離間して別部品として設置してもよい。 The above-mentioned refracting element 15 may be joined as a separate component on the exit surface of the core 11, may be integrally formed at the time of manufacturing the core 11, or may be formed as a separate component apart from the exit surface of the core 11. It may be installed.
 また上述した屈折素子15は、半球状、円錐状以外にも、他の形状、例えば、半楕円体状、双曲面状、放物面状、放物面状、あるいは三角錐状、四角錐状、六角錐状などの多角錐状でもよい。 In addition to the hemispherical shape and the conical shape, the above-mentioned refracting element 15 has other shapes such as a semi-elliptical shape, a hyperboloid shape, a parabolic shape, a parabolic shape, or a triangular pyramid shape or a quadrangular pyramid shape. , Hexagonal pyramid or other polygonal pyramid.
 図9Aは、屈折素子15を出射面の上に一体的に設けたときの光ビームの出射方向の一例を示す斜視図である。図9Bは、ターゲットTGでの光ビームスポットを示す説明図である。コア11およびクラッド12の寸法は、図4と図5で説明したものと同じである。コア11と屈折素子15の間の距離はゼロである。 FIG. 9A is a perspective view showing an example of the emission direction of the light beam when the refraction element 15 is integrally provided on the emission surface. FIG. 9B is an explanatory diagram showing a light beam spot at the target TG. The dimensions of the core 11 and clad 12 are the same as those described in FIGS. 4 and 5. The distance between the core 11 and the refracting element 15 is zero.
 4本の光ビームは、4つのコア11を通過して出射面から出射し、屈折素子15によってさらに互いに遠ざかるように発散している。このとき光軸OAに対する各光ビームの傾斜角(θx,θy)は、一例として、(-13.0°,19.5°)、(13.0°,19.5°)、(-13.0°,-19.5)、(13.0°,-19.5°)である。従って、屈折素子15による角倍率は、約2.25(=13.0°/5.8°)になる。 The four light beams pass through the four cores 11 and are emitted from the exit surface, and are diverged by the refracting element 15 so as to be further away from each other. At this time, the inclination angles (θx, θy) of each light beam with respect to the optical axis OA are, for example, (-13.0 °, 19.5 °), (13.0 °, 19.5 °), (-13). 0.0 °, -19.5), (13.0 °, -19.5 °). Therefore, the angular magnification of the refracting element 15 is about 2.25 (= 13.0 ° / 5.8 °).
 図9Bに示すように、4本の光ビームは、ターゲットTGにおいて4つのスポットを形成する。スポット間のX方向ピッチは、約1.16mm、Y方向ピッチは約1.50mmである。ターゲットTGでのスポット間ピッチは、発光部間ピッチと比較すると、X方向ピッチは約3.9倍、Y方向ピッチは約7.5倍に拡大される。 As shown in FIG. 9B, the four light beams form four spots in the target TG. The pitch in the X direction between the spots is about 1.16 mm, and the pitch in the Y direction is about 1.50 mm. The pitch between spots in the target TG is magnified about 3.9 times in the X direction and about 7.5 times in the Y direction as compared with the pitch between the light emitting parts.
 図10Aは、屈折素子15を出射面から離間して設けたときの光ビームの出射方向の一例を示す斜視図である。図10Bは、ターゲットTGでの光ビームスポットを示す説明図である。コア11およびクラッド12の寸法は、図4と図5で説明したものと同じである。コア11と屈折素子15の間の距離は0.2mmである。 FIG. 10A is a perspective view showing an example of the emission direction of the light beam when the refraction element 15 is provided apart from the emission surface. FIG. 10B is an explanatory diagram showing a light beam spot at the target TG. The dimensions of the core 11 and clad 12 are the same as those described in FIGS. 4 and 5. The distance between the core 11 and the refracting element 15 is 0.2 mm.
 4本の光ビームは、4つのコア11を通過して出射面から出射し、屈折素子15によってさらに互いに遠ざかるように発散している。このとき光軸OAに対する各光ビームの傾斜角(θx,θy)は、一例として、(-14.0°,19.5°)、(14.0°,19.5°)、(-14.0°,-19.5°)、(14.0°,-19.5°)である。従って、屈折素子15による角倍率は、約2.4(=14.0°/5.8°)になる。 The four light beams pass through the four cores 11 and are emitted from the exit surface, and are diverged by the refracting element 15 so as to be further away from each other. At this time, the inclination angles (θx, θy) of each light beam with respect to the optical axis OA are, for example, (-14.0 °, 19.5 °), (14.0 °, 19.5 °), (-14). (0.0 °, -19.5 °), (14.0 °, -19.5 °). Therefore, the angular magnification of the refracting element 15 is about 2.4 (= 14.0 ° / 5.8 °).
 図10Bに示すように、4本の光ビームは、ターゲットTGにおいて4つのスポットを形成する。スポット間のX方向ピッチは、約1.2mm、Y方向ピッチは約1.4mmである。ターゲットTGでのスポット間ピッチは、発光部間ピッチと比較すると、X方向ピッチは約4.0倍、Y方向ピッチは約7.0倍に拡大される。 As shown in FIG. 10B, the four light beams form four spots in the target TG. The pitch in the X direction between the spots is about 1.2 mm, and the pitch in the Y direction is about 1.4 mm. The pitch between spots in the target TG is magnified about 4.0 times in the X direction and about 7.0 times in the Y direction as compared with the pitch between the light emitting parts.
 なお、屈折素子15を出射面から離間して設けたとき、図9Aに示した各光ビームの傾斜角(θx,θy)と同じにする場合、各屈折素子15を、互い遠ざかるようにX方向に0.03mm、Y方向に0.03mmだけシフトさせる。 When the refracting elements 15 are provided apart from the exit surface, if the inclination angles (θx, θy) of each light beam shown in FIG. 9A are the same, the refracting elements 15 are moved in the X direction so as to be away from each other. Shift by 0.03 mm in the Y direction and 0.03 mm in the Y direction.
(実施形態3)
 図11Aは、本発明の実施形態3に係る光学装置100を示す構成図であり、図11Bは、その斜視図である。本実施形態に係る光学装置100は、サンプルSAを観察する観察装置として動作する。
(Embodiment 3)
FIG. 11A is a configuration diagram showing an optical device 100 according to a third embodiment of the present invention, and FIG. 11B is a perspective view thereof. The optical device 100 according to the present embodiment operates as an observation device for observing the sample SA.
 光学装置100は、上述した光学ユニット10および光源20を含む光源装置30と、サンプルSAを保持するホルダ110と、サンプルSAを光学的に検出する検出素子120などを備える。ホルダ101は、光が通過できる透明材料で形成され、液体を保持できるウェルWLが多数形成された基板として構成される。検出素子120は、例えば、CMOSイメージセンサ(CIS)などの撮像センサで構成される。検出素子120の前方には、集光レンズ121が密着して設けられる。 The optical device 100 includes a light source device 30 including the above-mentioned optical unit 10 and a light source 20, a holder 110 that holds the sample SA, a detection element 120 that optically detects the sample SA, and the like. The holder 101 is formed of a transparent material through which light can pass, and is configured as a substrate on which a large number of well WLs capable of holding a liquid are formed. The detection element 120 is composed of an image sensor such as a CMOS image sensor (CIS), for example. A condenser lens 121 is provided in close contact with the front of the detection element 120.
 ホルダ110の表面には、例えば、Au蒸着薄膜が設けられ、光ビームが照射されるとプラズモン効果によって局所的に温度が上昇する光熱変換が起こる。サンプルSAは、プラスチック製のビーズが多数分散している液体である。光ビームの照射により、液体が局所的に気化してマイクロバブルが発生し、これによりビーズの集積が可能になる。集積した様子は検出素子120によって検出される。 For example, an Au-deposited thin film is provided on the surface of the holder 110, and when a light beam is irradiated, photothermal conversion occurs in which the temperature rises locally due to the plasmon effect. Sample SA is a liquid in which a large number of plastic beads are dispersed. Irradiation of the light beam causes the liquid to vaporize locally to generate microbubbles, which allows the beads to accumulate. The state of accumulation is detected by the detection element 120.
 本実施形態では、各光ビームは、コア11の入射面において光軸から横断方向にシフトした位置に入射する。これにより光源装置30は、複数の光ビームを光軸から発散するように出射させて、サンプルSAに照射することが可能になる。 In the present embodiment, each light beam is incident on the incident surface of the core 11 at a position shifted in the transverse direction from the optical axis. As a result, the light source device 30 can emit a plurality of light beams so as to diverge from the optical axis and irradiate the sample SA.
 一例として、4つのコア11が2×2のマトリクス状に配置された光学ユニット10を使用する場合、1つの光源20を使用して、4本の光ビームを、2×2のマトリクス状に配置された4つのウェルWL内にある複数のサンプルSAに同時に照射して検出することが可能になる。 As an example, when using an optical unit 10 in which four cores 11 are arranged in a 2 × 2 matrix, one light source 20 is used and four light beams are arranged in a 2 × 2 matrix. It becomes possible to simultaneously irradiate and detect a plurality of sample SAs in the four wells WL.
 本実施形態では、4つのコア11が2次元状に配置された場合を例示したが、2つ、3つまたは5つ以上のコア11が2次元状に配置された場合も本発明は適用可能である。この場合、光源20の発光部およびホルダ101のウェルWLもコア11の数および配置に対応するように設けられる。 In the present embodiment, the case where the four cores 11 are arranged two-dimensionally is illustrated, but the present invention can also be applied when two, three or five or more cores 11 are arranged two-dimensionally. Is. In this case, the light emitting portion of the light source 20 and the well WL of the holder 101 are also provided so as to correspond to the number and arrangement of the cores 11.
 こうして本発明に係る光源装置30を使用することによって、複数のサンプルSAを同時に照射することが可能になる。その結果、光学装置100の小型化、部品点数の削減が図られる。 By using the light source device 30 according to the present invention in this way, it becomes possible to irradiate a plurality of sample SAs at the same time. As a result, the optical device 100 can be downsized and the number of parts can be reduced.
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されている
が、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形
や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に
含まれると理解されるべきである。
Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various modifications and modifications are obvious to those skilled in the art. It should be understood that such modifications and modifications are included therein, as long as they do not deviate from the scope of the invention according to the appended claims.
 本発明は、1つまたは複数の光ビームを傾斜するように出射させることが可能な光源装置が実現できるため、産業上極めて有用である。 The present invention is extremely useful in industry because it is possible to realize a light source device capable of emitting one or a plurality of light beams so as to be inclined.
 10  光学ユニット
 11  コア
 11a 入射面
 11b 出射面
 12  クラッド
 12a スカート部
 15  屈折素子
 20  光源
 DL  長手方向
 DT  横断方向
 OA  光軸
 Q1  節
 Q2  腹
 RC  集束領域
 RD  発散領域
 30  光源装置
 100  光学装置
 110  ホルダ
 120  検出素子
10 Optical unit 11 Core 11a Incident surface 11b Exit surface 12 Clad 12a Skirt part 15 Refractive element 20 Light source DL Longitudinal DT Transverse direction OA Optical axis Q1 Section Q2 Abdominal RC Focusing area RD Divergence area 30 Light source device 100 Optical device 110 Holder 120 element

Claims (15)

  1.  光ビームを発生する光源と、
     前記光源から入射面に入射した光ビームを伝送し出射面から出射する光学素子とを備え、
     前記光学素子は、長手方向、および該長手方向に対して直交する横断方向を有し、前記長手方向に沿って延在するとともに前記入射面及び前記出射面と交差する光軸から前記横断方向に離れるに従って屈折率が低下する屈折率分布を有し、
     前記光源は、前記光ビームが、前記入射面において前記光軸から前記横断方向にシフトした位置に入射する位置に配置される、光源装置。
    A light source that generates a light beam and
    An optical element that transmits a light beam incident on an incident surface from the light source and emits it from an emitting surface is provided.
    The optical element has a longitudinal direction and a transverse direction orthogonal to the longitudinal direction, extends along the longitudinal direction, and extends in the transverse direction from an optical axis intersecting the entrance surface and the emission surface. It has a refractive index distribution in which the refractive index decreases as the distance increases.
    The light source is a light source device in which the light beam is arranged at a position where the light beam is incident on the incident surface at a position shifted from the optical axis in the transverse direction.
  2.  互いに平行な複数の光ビームを発生する光源と、
     前記複数の光ビームに対応して設けられた複数の光学素子であって、各光学素子は、前記光源から入射面に入射した前記光ビームを伝送し出射面から出射する、複数の光学素子と、を備え、
     各光学素子は、長手方向、および該長手方向に対して直交する横断方向を有し、前記長手方向に沿って延在するとともに前記入射面及び前記出射面と交差する光軸から前記横断方向に離れるに従って屈折率が低下する屈折率分布を有し、
     前記光源は、各光ビームが、前記入射面において前記光軸から前記横断方向にシフトした位置に入射する位置に配置される、光源装置。
    A light source that generates multiple light beams parallel to each other,
    A plurality of optical elements provided corresponding to the plurality of light beams, and each optical element transmits the light beam incident on the incident surface from the light source and emits the light beam from the exit surface. With,
    Each optical element has a longitudinal direction and a transverse direction orthogonal to the longitudinal direction, extends along the longitudinal direction, and extends in the transverse direction from an optical axis intersecting the entrance surface and the emission surface. It has a refractive index distribution in which the refractive index decreases as the distance increases.
    The light source is a light source device in which each light beam is arranged at a position where each light beam is incident on the incident surface at a position shifted in the transverse direction from the optical axis.
  3.  各光ビームは、前記入射面において前記光軸から前記横断方向に沿って互いに接近するようにシフトした位置に入射する、請求項2に記載の光源装置。 The light source device according to claim 2, wherein each light beam is incident on the incident surface at a position shifted from the optical axis so as to approach each other along the transverse direction.
  4.  各光ビームは、前記入射面において前記光軸から前記横断方向に沿って互いに遠ざかるようにシフトした位置に入射する、請求項2に記載の光源装置。 The light source device according to claim 2, wherein each light beam is incident on the incident surface at a position shifted from the optical axis so as to move away from each other along the transverse direction.
  5.  前記複数の光学素子を保持する保持部をさらに備える、請求項2に記載の光源装置。 The light source device according to claim 2, further comprising a holding unit for holding the plurality of optical elements.
  6.  前記保持部は、前記複数の光学素子の外周に設けられ、前記光学素子の屈折率より低い屈折率を有するクラッドである、請求項5に記載の光源装置。 The light source device according to claim 5, wherein the holding portion is provided on the outer periphery of the plurality of optical elements and is a clad having a refractive index lower than that of the optical elements.
  7.  前記光源は、前記クラッドに埋設されている請求項6に記載の光源装置。 The light source device according to claim 6, wherein the light source is embedded in the clad.
  8.  前記光学素子を通過する光ビームの軌跡は、前記光軸からの距離が変化する曲線を示し、該曲線は、その接線が前記光軸に対して平行な腹と、その接線が前記光軸に対して傾斜する傾斜領域とを含み、
     前記出射面は、前記傾斜領域内に設けられる、請求項1または2に記載の光源装置。
    The locus of the light beam passing through the optical element shows a curve in which the distance from the optical axis changes, and the curve has an antinode whose tangent line is parallel to the optical axis and its tangent line to the optical axis. Including the inclined area that is inclined with respect to
    The light source device according to claim 1 or 2, wherein the exit surface is provided in the inclined region.
  9.  前記出射面の上または前記出射面から離間して設けられ、光ビームの進行方向を変更する屈折素子をさらに備える、請求項1または2に記載の光源装置。 The light source device according to claim 1 or 2, further comprising a refracting element which is provided on or away from the exit surface and changes the traveling direction of the light beam.
  10.  前記出射面に一体的に設けられ、光ビームの進行方向を変更する屈折素子をさらに備える、請求項1または2に記載の光源装置。 The light source device according to claim 1 or 2, further comprising a refracting element integrally provided on the exit surface and changing the traveling direction of the light beam.
  11.  前記光源は、前記光学素子の前記入射面に接して設けられる、請求項1または2に記載の光源装置。 The light source device according to claim 1 or 2, wherein the light source is provided in contact with the incident surface of the optical element.
  12.  前記光源は、マルチエミッタ面発光レーザである、請求項1または2に記載の光源装置。 The light source device according to claim 1 or 2, wherein the light source is a multi-emitter surface emitting laser.
  13.  前記屈折率分布は、前記光軸からの距離に関して屈折率が2次曲線的に変化するグレーデッド型である、請求項1または2に記載の光源装置。 The light source device according to claim 1 or 2, wherein the refractive index distribution is a graded type in which the refractive index changes in a quadratic curve with respect to the distance from the optical axis.
  14.  請求項1から13のいずれかに記載の光源装置と、
     前記光源装置から出射される光ビームが照射されるサンプルを保持するホルダとを備える、光学装置。
    The light source device according to any one of claims 1 to 13.
    An optical device comprising a holder for holding a sample to be irradiated with a light beam emitted from the light source device.
  15.  前記サンプルを光学的に検出する検出素子をさらに備える、請求項14に記載の光学装置。 The optical device according to claim 14, further comprising a detection element that optically detects the sample.
PCT/JP2020/000887 2019-04-03 2020-01-14 Light source device and optical device WO2020202692A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-071619 2019-04-03
JP2019071619A JP2022112520A (en) 2019-04-03 2019-04-03 Light source device and optical device

Publications (1)

Publication Number Publication Date
WO2020202692A1 true WO2020202692A1 (en) 2020-10-08

Family

ID=72668833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000887 WO2020202692A1 (en) 2019-04-03 2020-01-14 Light source device and optical device

Country Status (2)

Country Link
JP (1) JP2022112520A (en)
WO (1) WO2020202692A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345514U (en) * 1986-09-11 1988-03-28
JPH01501827A (en) * 1986-11-10 1989-06-22 ブリテツシユ・テレコミユニケイシヨンズ・パブリツク・リミテツド・カンパニー optical resonance device
JPH11271575A (en) * 1998-03-23 1999-10-08 Toyo Commun Equip Co Ltd Optical semiconductor module
JP2013167857A (en) * 2012-01-19 2013-08-29 Lasertec Corp Microscope and inspection device
WO2014054420A1 (en) * 2012-10-05 2014-04-10 株式会社村田製作所 Light sensor
JP2015232717A (en) * 2010-12-21 2015-12-24 オーエフエス ファイテル,エルエルシー Multiple core collimator
JP2016031438A (en) * 2014-07-28 2016-03-07 シチズンホールディングス株式会社 Optical fiber connector, optical module and manufacturing method
US20170261650A1 (en) * 2016-03-08 2017-09-14 Microsoft Technology Licensing, Llc Array-Based Imaging Relay
WO2019163197A1 (en) * 2018-02-20 2019-08-29 株式会社村田製作所 Light-emitting module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345514U (en) * 1986-09-11 1988-03-28
JPH01501827A (en) * 1986-11-10 1989-06-22 ブリテツシユ・テレコミユニケイシヨンズ・パブリツク・リミテツド・カンパニー optical resonance device
JPH11271575A (en) * 1998-03-23 1999-10-08 Toyo Commun Equip Co Ltd Optical semiconductor module
JP2015232717A (en) * 2010-12-21 2015-12-24 オーエフエス ファイテル,エルエルシー Multiple core collimator
JP2013167857A (en) * 2012-01-19 2013-08-29 Lasertec Corp Microscope and inspection device
WO2014054420A1 (en) * 2012-10-05 2014-04-10 株式会社村田製作所 Light sensor
JP2016031438A (en) * 2014-07-28 2016-03-07 シチズンホールディングス株式会社 Optical fiber connector, optical module and manufacturing method
US20170261650A1 (en) * 2016-03-08 2017-09-14 Microsoft Technology Licensing, Llc Array-Based Imaging Relay
WO2019163197A1 (en) * 2018-02-20 2019-08-29 株式会社村田製作所 Light-emitting module

Also Published As

Publication number Publication date
JP2022112520A (en) 2022-08-03

Similar Documents

Publication Publication Date Title
US7558455B2 (en) Receiver aperture broadening for scanned beam imaging
US6814901B2 (en) Method of manufacturing microlens array and microlens array
KR20180039704A (en) An optical component having a beam-orienting element, a method for its manufacture, and beam-
JP6089354B2 (en) Lens array and manufacturing method thereof
KR20130120527A (en) Optical element and radiation-emitting device comprising such an optical element
US7236666B2 (en) On-substrate microlens to couple an off-substrate light emitter and/or receiver with an on-substrate optical device
US7263249B2 (en) Optical element assembly and method of making the same
JP5803316B2 (en) Manufacturing method of structure
US7460578B2 (en) On-chip lenses for diverting vertical cavity surface emitting laser beams
US20230204824A1 (en) Optical System Device
US20060251357A1 (en) Optical coupler
WO2020202692A1 (en) Light source device and optical device
KR101985091B1 (en) Laser processing device
WO2019044055A1 (en) Capillary-type lens array and capillary-type lens array composite component
KR101527002B1 (en) Laser beam generator
US20090116784A1 (en) Large tolerance fiber optic transmitter and receiver
CN110036320B (en) Optical fiber coupling device
WO2020202693A1 (en) Optical element, light source device, and optical device
US20130301271A1 (en) Optimization of a Conical Lens/Cap System for Producing a Standard Light Plane
JP2021531509A (en) A device for collimating a ray field
US10690323B2 (en) Target-oriented light emitting device, and optical module
US9128258B2 (en) Optical assembly and method for producing the same
WO2020166386A1 (en) Lens structure and optical connection structure
US10310146B2 (en) Nanocomposite gradient refractive-index Fresnel optical-element
KR20220020453A (en) An Array of Microlens with random patterns and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP