WO2020202565A1 - User terminal and wireless communication method - Google Patents
User terminal and wireless communication method Download PDFInfo
- Publication number
- WO2020202565A1 WO2020202565A1 PCT/JP2019/015192 JP2019015192W WO2020202565A1 WO 2020202565 A1 WO2020202565 A1 WO 2020202565A1 JP 2019015192 W JP2019015192 W JP 2019015192W WO 2020202565 A1 WO2020202565 A1 WO 2020202565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pdsch
- harq
- ack
- processing
- transmission
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
- LTE Long Term Evolution
- 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
- a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
- 5G 5th generation mobile communication system
- 5G + plus
- NR New Radio
- 3GPP Rel.15 or later, etc. is also being considered.
- OOO out-of-order
- HARQ-ACK Hybrid Automatic Repeat reQuest ACK knowledge
- PDSCH Physical Downlink Shared Channel
- one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method capable of appropriately performing OOO processing.
- the user terminal has a second PDSCH slower than the first Physical Downlink Shared Channel (PDSCH), and has a second Hybrid Automatic Repeat reQuest ACK knowledgement (HARC-ACK) for the second PDSCH.
- the control unit and the reception process of the third PDSCH are performed, the third PDSCH It is characterized by having a receiving unit for decoding.
- OOO processing can be appropriately performed.
- FIG. 1 is a diagram showing an example of OOO processing.
- FIG. 2 is a diagram showing an example of OOO HARQ-ACK relating to three or more PDSCHs.
- FIG. 3 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- FIG. 4 is a diagram showing an example of the configuration of the base station according to the embodiment.
- FIG. 5 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
- FIG. 6 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
- processing time In the existing Rel-15 NR, the processing time of the downlink shared channel (Physical Downlink Shared Channel (PDSCH)), the processing time of the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), and the like are defined.
- the processing time may be read as a preparation time (preparation time), a preparation procedure time (preparation procedure time), a processing procedure time (processing procedure time), or the like.
- the processing time of the PDSCH may be the period from the end of the final symbol of the PDSCH that transmits the transport block to the Uplink (UL) symbol.
- the UE may provide delivery confirmation information (eg, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK)) that is valid for the same or subsequent symbols as the UL symbol.
- delivery confirmation information eg, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK)
- the processing time of the PUSCH is up to the UL symbol after the end of the final symbol of the downlink control channel (Physical Downlink Control Channel (PDCCH)) that transmits the downlink control information (Downlink Control Information (DCI)) that schedules the PUSCH. It may be a period.
- the UE may transmit the PUSCH with the same or subsequent symbols as the UL symbol.
- the PDSCH processing time may be determined based on parameter N 1 (which may be referred to as PDSCH decoding time), and the PUSCH processing time may be set to parameter N 2 (which may be referred to as PUSCH preparation time). It may be determined based on.
- N 1 may be determined based on the SCS of the downlink to which the PDSCH is transmitted and the SCS of the UL channel (for example, PUCCH, PUSCH) to which the HARQ-ACK is transmitted. For example, N 1 may be determined based on the smallest SCS of these SCSs, and may be determined to be 8-20 symbols, for example 8 symbols if the minimum SCS is 15 kHz. N 1 may be determined to be a 13-24 symbol if additional PDSCH DMRS is set.
- N 2 may be determined based on the downlink SCS to which the PDCCH transmitting the DCI that schedules the PUSCH is transmitted and the SCS of the UL channel to which the PUSCH is transmitted. For example, N 2 may be determined based on the smallest SCS of these SCSs, and may be determined to be 10-36 symbols, for example 10 symbols if the minimum SCS is 15 kHz.
- the processing time (and the parameters related to the processing time (N 1 , N 2, etc.)) are set according to the values defined by the numerology corresponding to the smallest SCS of the PDCCH / PDSCH and the PUCCH / PUSCH. May be good.
- the UE When transmitting the HARQ-ACK corresponding to the PDSCH using the PUSCH, the UE uses the UL symbol after the time (sum time) in which the processing time of the PDSCH and the processing time of the PUSCH are combined, or after that.
- PUSCH may be transmitted with the symbol of.
- the above-mentioned processing time is classified into two, a processing time for UE capacity 1 (UE capability 1) and a processing time for UE capacity 2 (UE capability 2).
- the processing time for UE capability 2 is shorter than the processing time for UE capability 1.
- the UE For each of PDSCH and PUSCH, the UE uses different UE capability information (for example, the former is the RRC parameter "pdsch-ProcessingType2" and the latter is the RRC parameter "pusch-ProcessingType2") to determine whether to support UE capability 2 (for example, , Base station).
- the UE capacity X for the PDSCH (or PUSCH) may be referred to as the PDSCH (or PUSCH) processing capacity X.
- the base station may decide whether or not the UE performs processing based on the UE capability 2 based on the UE capability information.
- Information indicating that the base station applies (enables) UE capability 2 for each of PDSCH and PUSCH (for example, the former is the parameter "processingType2Enabled” included in the RRC information element "PDSCH-ServingCellConfig", and the latter is the RRC information.
- the parameter "processingType2Enabled”) included in the element "PUSCH-ServingCellConfig” may be set in the UE using higher layer signaling.
- the former parameter may be called “Capability2-PDSCH-Processing”
- the latter parameter may be called “Capability2-PUSCH-Processing”.
- the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
- RRC Radio Resource Control
- MAC Medium Access Control
- Broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
- MIB Master Information Block
- SIB System Information Block
- RMSI Minimum System Information
- OSI Other System Information
- FIG. 1 is a diagram showing an example of OOO processing.
- the first process described above is a process of receiving the first PDSCH (PDSCH # 1) and transmitting the first HARQ-ACK (HARQ-ACK # 1) corresponding to the PDSCH # 1.
- the second process described above corresponds to a process of receiving the second PDSCH (PDSCH # 2) and transmitting the second HARQ-ACK (HARQ-ACK # 2) corresponding to the PDSCH # 2.
- K1 shown in FIG. 1 is a parameter indicating the transmission timing of the HARQ-ACK corresponding to the received PDSCH, and may be determined based on the DCI that schedules the PDSCH (for example, the timing instruction of the HARQ corresponding to the PDSCH).
- Field may be specified by PDSCH-to-HARQ-timing-indicator field).
- the processing is OOO.
- the HARQ-ACK # 2 related to the PDSCH # 2 received after the PDSCH # 1 is transmitted before the HARQ-ACK # 1 related to the PDSCH # 1.
- the OOO process as shown in FIG. 1 may be referred to as OOO PDSCH-HARQ-ACK flow, OOO HARQ-ACK, etc. because the order of PDSCH and the corresponding HARQ-ACK order are reversed.
- Use cases of NR include, for example, high speed and large capacity (for example, enhanced Mobile Broad Band (eMBB)), ultra-large number of terminals (for example, massive Machine Type Communication (mMTC)), ultra-high reliability and low latency (for example, Ultra). Reliable and Low Latency Communications (URLLC)) are being considered.
- eMBB enhanced Mobile Broad Band
- mMTC massive Machine Type Communication
- Ultra ultra-high reliability and low latency
- URLLC Reliable and Low Latency Communications
- PDSCH # 1 is eMBB data and PDSCH # 2 is URLLC data (a case where more important URLLC data interrupts eMBB data) is assumed.
- the UE may operate according to at least one of the following policies with respect to the case of FIG.
- the UE may determine which policy to follow based on higher layer signaling (eg, RRC), physical layer signaling (eg, DCI), or a combination thereof.
- higher layer signaling eg, RRC
- physical layer signaling eg, DCI
- the UE always processes the second PDSCH.
- the UE may or may not drop the process of the first PDSCH.
- the drop in the present disclosure may mean not to process, or may mean to terminate the process.
- the UE may or may not generate a NACK as the corresponding HARQ-ACK feedback and may not generate the corresponding HARQ-ACK feedback.
- the UE may process both the first PDSCH and the second PDSCH.
- the UE reports to the base station whether or not both the first PDSCH and the second PDSCH can be processed as the UE capability (UE capability).
- the base station may apply policy 2 when the UE capability is reported.
- the UE may process both the first PDSCH and the second PDSCH under certain conditions.
- the UE may report the particular condition as UE capability.
- the UE may apply the policy 3 when it has a specific UE ability (for example, the ability of carrier aggregation). This is because a UE capable of carrier aggregation can decode a plurality of PDSCHs at the same time.
- a UE capable of performing carrier aggregation consisting of two component carriers can process two PDSCHs at the same time by different carriers, so that the same carrier can process two PDSCHs at the same time. If certain conditions are not met, the behavior of the UE may be undefined and may be processed by the first PDSCH or the second PDSCH.
- the UE drops the processing of the first PDSCH.
- the UE may always drop the processing of the first PDSCH, or may drop it when a predetermined condition (for example, scheduling condition) is not satisfied.
- the scheduling conditions include, for example, the number of RBs, TBS, the number of layers, the interval (offset, gap) between the first PDSCH and the second PDSCH, and the interval (offset) of a plurality of PUCCHs that transmit HARQ-ACK corresponding to each PDSCH. , Gap) and the like.
- the UE operation After decoding the downlink control channel (Physical Downlink Control Channel (PDCCH)) related to the first PDSCH and the second PDSCH, the UE operation (for example, the determination of whether to drop the first PDSCH, regarding the second PDSCH Timing capability) may be determined or fixed.
- PDCH Physical Downlink Control Channel
- the UE when to drop the first PDSCH is minimal PDSCH procedure time for the second PDSCH (PDSCH Processing procedure time) (N 1 also known as) a predetermined time (e.g., d symbols (d is an integer) ) May be increased or decreased.
- the predetermined time may be set in the UE using higher layer signaling or may be determined based on the specific capabilities of the UE.
- the processing of the first PDSCH may be dropped by dropping the first PDSCH of the same serving cell, or by dropping one or more PDSCHs of the same cell or different serving cells. You may.
- the active BWP of a predetermined serving cell has a maximum number of out-of-order HARQ-ACK flows (for example, for example). You may expect it to be 1).
- Out-of-order HARQ-ACK operation may or may not be tolerated for the PDSCH-to-HARQ-ACK gap that fits the PDSCH processing time (eg, N 1 ) for a particular capability. May be good.
- data may be read as at least one of PDSCH and PUSCH.
- UE capabilities 1 and 2 of the present disclosure may be read as UE capabilities 1 and 2 regarding the processing time, respectively.
- FIG. 2 is a diagram showing an example of OOO HARQ-ACK relating to three or more PDSCHs.
- PDSCH is transmitted in the order of PDSCH # 1, # 2, and # 3. Further, regarding HARQ-ACK # 1 corresponding to PDSCH # 1, HARQ-ACK # 2 corresponding to PDSCH # 2, and HARQ-ACK # 3 corresponding to PDSCH # 3, HARQ-ACK # 3, # 2, and # It is scheduled to be transmitted in the order of 1.
- FIG. 2 shows a case where there are a first PDSCH, a second PDSCH, and a third PDSCH in the active BWP of a serving cell, and the HARQ received after the first PDSCH of the HARQ process ID y.
- the HARQ-ACK associated with the second PDSCH of the process ID x (where x ⁇ y) is transmitted prior to the HARQ-ACK of the first PDSCH and of the second PDSCH of the HARQ process ID x.
- the processing time for PDSCH # 1 is longer than the processing time for PDSCH # 2
- the processing time for PDSCH # 2 is secured longer than the processing time for PDSCH # 3.
- the processing time for a PDSCH is from a predetermined symbol of the PDSCH (for example, the last symbol, the first symbol) to a predetermined symbol of HARQ-ACK corresponding to the PDSCH (for example, the first symbol, the last symbol). May mean time to.
- the order of DCIs for scheduling each PDSCH is limited to DCI for PDSCH # 1, DCI for PDSCH # 2, and DCI for PDSCH # 3 in FIG. I can't.
- the length of the secured processing time is the longest for PDSCH # 1 and the shortest for PDSCH # 3. The same applies even if there are duplicates as long as the conditions are met.
- Condition 1 the condition that PDSCH # 2 is slower than PDSCH # 1 and HARQ-ACK # 1 for PDSCH # 1 is not faster than HARQ-ACK # 2 for PDSCH # 2 is Condition 1. May be called.
- Condition 2 the condition that PDSCH # 3 is slower than PDSCH # 2 and HARQ-ACK # 2 for PDSCH # 2 is not faster than HARQ-ACK # 3 for PDSCH # 3 is Condition 2. May be called.
- condition 1 may be read on the condition that the processing time of PDSCH # 2 is shorter than the processing time of PDSCH # 1.
- condition 2 may be read on the condition that the processing time of PDSCH # 3 is shorter than the processing time of PDSCH # 2. That is, satisfying both the condition 1 and the condition 2 is transmitted in the order of PDSCH # 1, # 2 and # 3 as shown in FIG. 2, and is transmitted in the order of HARQ-ACK # 3, # 2 and # 1. It does not mean that it is only transmitted, but includes, for example, being transmitted in the order of PDSCH # 1, # 2 and # 3, and being transmitted in the order of HARQ-ACK # 2, # 3 and # 1. It may be.
- the UE determines whether or not to process the PDSCH related to OOO is possible based on the HARQ-ACK timing.
- the UE may perform processing based on at least one of the following (1-1) to (1-4).
- the UE processes PDSCH # 2 and # 3 when the condition 1 is satisfied and the condition 2 is satisfied.
- condition 1 The UE does not expect that condition 1 is satisfied and condition 2 is satisfied (does not expect). In other words, the UE does not assume that if PDSCH # 1 and # 2 satisfying condition 1 are scheduled, the schedule will satisfy condition 2.
- the UE may generate each HARQ-ACK even when three OOO HARQ-ACKs (# 1, # 2, # 3) occur.
- the UE received the corresponding HARQ-ACK feedback.
- NACK may be generated as, or the corresponding HARQ-ACK feedback may not be generated.
- OOO HARQ-ACK related to three or more PDSCHs can be appropriately controlled.
- the UE determines whether or not to process the PDSCH related to OOO is based on the priority of the PDSCH.
- the UE may perform processing based on at least one of the following (2-1) to (2-4).
- condition 2 When PDSCH # 2 has a higher priority than PDSCH # 1 and condition 1 is satisfied, it is not expected that condition 2 will be satisfied. In other words, the UE is scheduled to satisfy condition 2 if PDSCH # 1 and # 2 satisfying condition 1 are scheduled and PDSCH # 2 has a higher priority than PDSCH # 1. , Condition 2 is satisfied, and PDSCH # 3 is scheduled to have a higher priority than PDSCH # 2).
- the UE may generate each HARQ-ACK even when three OOO HARQ-ACKs (# 1, # 2, # 3) occur.
- the UE received the corresponding HARQ-ACK feedback.
- NACK may be generated as, or the corresponding HARQ-ACK feedback may not be generated.
- the PDSCH priority described above may indicate at least one of the following: -Priority of data or information transmitted by the PDSCH, -Priority of the logical channel (Logical Channel (LCH)) corresponding to the data or information transmitted by the PDSCH, -Traffic type, service type of the PDSCH or use case applicable to the PDSCH.
- LCH Logical Channel
- the priority of PDSCH may be referred to as the priority regarding OOO processing of PDSCH.
- the priority of PDSCH may include a priority related only to the possibility of OOO processing, a priority related to processing other than OOO processing, or a priority common to processing other than OOO processing and OOO processing. ..
- the PDSCH priority may be determined by the UE based on at least one of the following: -Transport block size (TBS) of data related to the PDSCH, The DCI format for scheduling the PDSCH, the fields contained in the DCI and at least one of the DCI-related RNTIs. -Time length of the PDSCH (duration, for example, number of symbols), -Use of the PDSCH data (for example, for URLLC, for eMBB, etc.).
- TBS Transport block size
- the DCI format for scheduling the PDSCH the fields contained in the DCI and at least one of the DCI-related RNTIs.
- -Time length of the PDSCH (duration, for example, number of symbols)
- -Use of the PDSCH data for example, for URLLC, for eMBB, etc.).
- the priority of the PDSCH may be indicated by the DCI (eg, DCI format 0_0, 0_1) that schedules the PDSCH.
- the UE may explicitly specify the priority (priority level) of a given PDSCH by a given field (eg, priority field) of the DCI, or a given field (eg, MCS field, etc.). It may be implicitly specified by a time domain resource allocation field, a PUCCH resource indicator field, a PDSCH-to-HARQ feedback timing indicator field).
- the priority of PDSCH may be set by higher layer signaling.
- the UE may be set to include explicit parameters for a given PDSCH priority (priority level), or implicit parameters (eg, modulation and coding scheme (MCS). )), Scramble ID, DCI RNTI, frequency domain resource, time domain resource) may be set.
- MCS modulation and coding scheme
- OOO HARQ-ACK related to three or more PDSCHs can be appropriately controlled.
- the UE determines whether or not the PDSCH related to OOO can be processed based on the processing capability of the PDSCH.
- the UE may perform processing based on at least one of the following (3-1) to (3-4).
- the processing time for UE capability 3 (UE capability 3) below may be defined as shorter than the processing time for UE capability 2.
- the parameter N 1 for the PDSCH processing capacity 3 may be shorter than the parameter N 1 for the PDSCH processing capacity 2.
- PDSCH # 2 is related to UE capacity 2
- PDSCH # 1 is related to UE capacity 1
- condition 1 is satisfied
- PDSCH # 3 is related to UE capacity 2 or 3 and the condition If 2 is satisfied, PDSCH # 2 and # 3 are processed.
- PDSCH # 2 is related to UE capacity 2
- PDSCH # 1 is related to UE capacity 1
- condition 1 is satisfied
- PDSCH # 3 is related to UE capacity 2 or 3
- PDSCH # 2 is related to UE capacity 2
- PDSCH # 1 is related to UE capacity 1
- condition 1 is satisfied
- PDSCH # 3 is related to UE capacity 2 or 3.
- 2 is satisfied, PDSCH # 3 is not processed and PDSCH # 2 processing is continued.
- condition 2 When PDSCH # 2 is related to UE capability 2 and PDSCH # 1 is related to UE capability 1 and condition 1 is satisfied, it is not expected that condition 2 will be satisfied. In other words, if the UE is scheduled for PDSCH # 1 and # 2 satisfying condition 1, the PDSCH # 2 is associated with UE capability 2, and the PDSCH # 1 is associated with UE capability 1, condition 2 is met. It is not assumed that a schedule will be met (or condition 2 will be met and PDSCH # 3 will be scheduled for UE capability 2 or 3).
- the UE capacities 1, 2 and 3 of (3-1) to (3-4) above may be read as different UE capacities X, Y and Z, respectively. It is preferable that the PDSCH processing time corresponding to the UE capacity X ⁇ the PDSCH processing time corresponding to the UE capacity Y ⁇ the PDSCH processing time corresponding to the UE capacity Z, but the present invention is not limited to this.
- the UE may generate each HARQ-ACK even when three OOO HARQ-ACKs (# 1, # 2, # 3) occur.
- the UE received the corresponding HARQ-ACK feedback.
- NACK may be generated as, or the corresponding HARQ-ACK feedback may not be generated.
- the UE uses different UE capability information (for example, the former is the RRC parameter "pdsch-ProcessingType3" and the latter is the RRC parameter "pusch-ProcessingType3") to determine whether to support UE capability 3 (for example, , Base station).
- UE capability information for example, the former is the RRC parameter "pdsch-ProcessingType3" and the latter is the RRC parameter "pusch-ProcessingType3"
- the base station may decide whether or not the UE performs processing based on the UE capability 3 based on the UE capability information.
- Information indicating that the base station applies (enables) UE capability 3 for each of PDSCH and PUSCH (for example, the former is the parameter "processingType3Enabled” included in the RRC information element "PDSCH-ServingCellConfig", and the latter is the RRC information.
- the parameter "processingType3Enabled”) included in the element "PUSCH-ServingCellConfig” may be set in the UE using higher layer signaling.
- the former parameter may be called “Capability3-PDSCH-Processing”
- the latter parameter may be called “Capability3-PUSCH-Processing”.
- the UE when the UE supports UE capability 3, it may be assumed that UE capability 2 is also supported. Further, when the information indicating that the UE capability 3 is applied (enabled) is set for the PDSCH (or PUSCH), the UE applies (validates) the UE capability 2 for the PDSCH (or PUSCH). ) It may be assumed that the information indicating that is also set. According to this configuration, when the UE capability 3 is provided, the amount of information for reporting the UE capability can be reduced.
- OOO HARQ-ACK related to three or more PDSCHs can be appropriately controlled.
- ⁇ PDSCH # 2 PDSCH # 3 ⁇ is ⁇ PDSCH # 1
- PDSCH # 3 ⁇ may be read as at least one.
- the UE is based on any of the above (1-1) to (1-4), the above (2-1) to (2-4), the above (3-1) to (3-4), and the like. May be determined based on the capability of the UE, or may be determined based on the information notified from the base station.
- the UE performs at least one of the above processes (1-1) to (1-4), the above (2-1) to (2-4), and the above (3-1) to (3-4). If you have the ability to indicate support, you may report information about that ability to the network (base station).
- the base station tells the UE that has reported the information about the capability from (1-1) to (1-4), (2-1) to (2-4), and (3-1) above.
- Information indicating that at least one of the processes (3-4) is applied (enabled) may be set in the UE by using upper layer signaling or the like.
- the predetermined unit may be at least one such as a component carrier (Component Carrier (CC)), a UE, a frequency range (Frequency Range (FR)), and a cell group (Cell Group (CG)). ..
- Component Carrier Component Carrier
- FR Frequency Range
- CG Cell Group
- the ability may be defined as an explicit ability.
- the ability may be defined in relation to other abilities.
- the capability may be defined in combination with other capabilities related to URLLC operations, such as the ability of the UE to support a separate HARQ-ACK codebook.
- wireless communication system Wireless communication system
- communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
- FIG. 3 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
- the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
- MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E).
- -UTRA Dual Connectivity (NE-DC) may be included.
- the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
- the NR base station (gNB) is MN
- the LTE (E-UTRA) base station (eNB) is SN.
- the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
- a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
- NR-NR Dual Connectivity NR-DC
- gNB NR base stations
- the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
- the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
- the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
- the user terminal 20 may be connected to at least one of the plurality of base stations 10.
- the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
- CA Carrier Aggregation
- DC dual connectivity
- CC Component Carrier
- Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
- the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
- FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
- the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
- the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
- wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the host station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
- IAB Integrated Access Backhaul
- relay station relay station
- the base station 10 may be connected to the core network 30 via another base station 10 or directly.
- the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
- a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
- OFDM Orthogonal Frequency Division Multiplexing
- DL Downlink
- UL Uplink
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple. Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the wireless access method may be called a waveform.
- another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
- the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
- downlink shared channels Physical Downlink Shared Channel (PDSCH)
- broadcast channels Physical Broadcast Channel (PBCH)
- downlink control channels Physical Downlink Control
- Channel PDCCH
- the uplink shared channel Physical Uplink Shared Channel (PUSCH)
- the uplink control channel Physical Uplink Control Channel (PUCCH)
- the random access channel shared by each user terminal 20 are used.
- Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
- PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
- User data, upper layer control information, and the like may be transmitted by the PUSCH.
- MIB Master Information Block
- PBCH Master Information Block
- Lower layer control information may be transmitted by PDCCH.
- the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
- DCI Downlink Control Information
- the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
- the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
- the PDSCH may be read as DL data
- the PUSCH may be read as UL data.
- a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
- CORESET corresponds to a resource for searching DCI.
- the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
- One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
- One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set.
- the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
- channel state information (Channel State Information (CSI)
- delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
- scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
- the PRACH may transmit a random access preamble for establishing a connection with the cell.
- downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
- a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
- the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
- CRS Cell-specific Reference Signal
- CSI-RS Channel State Information Reference Signal
- DeModulation Demodulation reference signal
- Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
- PRS Positioning Reference Signal
- PTRS Phase Tracking Reference Signal
- the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
- SS, SSB and the like may also be called a reference signal.
- a measurement reference signal Sounding Reference Signal (SRS)
- a demodulation reference signal DMRS
- UL-RS Uplink Reference Signal
- UE-specific Reference Signal UE-specific Reference Signal
- FIG. 4 is a diagram showing an example of the configuration of the base station according to the embodiment.
- the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
- the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
- the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
- the control unit 110 controls the entire base station 10.
- the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
- the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
- the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
- the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
- the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
- the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
- the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
- the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
- the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
- the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
- the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
- the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
- the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
- digital beamforming for example, precoding
- analog beamforming for example, phase rotation
- the transmission / reception unit 120 processes, for example, the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer for data, control information, etc. acquired from the control unit 110 (for example,).
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control HARQ retransmission control
- the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
- the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
- IFFT inverse fast Fourier transform
- the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
- the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
- the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulating, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
- FFT fast Fourier transform
- IDFT inverse discrete Fourier transform
- the transmission / reception unit 120 may perform measurement on the received signal.
- the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
- the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
- RSRP Reference Signal Received Power
- RSSQ Reference Signal Received Quality
- SINR Signal to Noise Ratio
- Signal strength for example, Received Signal Strength Indicator (RSSI)
- propagation path information for example, CSI
- the measurement result may be output to the control unit 110.
- the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
- the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
- the transmission / reception unit 120 may receive capability information related to OOO processing from the user terminal 20.
- the transmission / reception unit 120 may transmit the setting information for enabling the OOO processing to the user terminal 20.
- FIG. 5 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
- the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
- the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
- this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
- the control unit 210 controls the entire user terminal 20.
- the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
- the control unit 210 may control signal generation, mapping, and the like.
- the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
- the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
- the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
- the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
- the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
- the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
- the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
- the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
- the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
- the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
- digital beamforming for example, precoding
- analog beamforming for example, phase rotation
- the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
- RLC layer processing for example, RLC retransmission control
- MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
- HARQ retransmission control HARQ retransmission control
- the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
- Whether or not to apply the DFT process may be based on the transform precoding setting.
- the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
- the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
- the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
- the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
- the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
- the transmission / reception unit 220 may perform measurement on the received signal.
- the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
- the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
- the measurement result may be output to the control unit 210.
- the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
- the second PDSCH is slower than the first Physical Downlink Shared Channel (PDSCH), and the second Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK) for the second PDSCH is the first.
- the process relating to the third PDSCH may be controlled when it is slower than the first HARQ-ACK for the PDSCH, where the third PDSCH is slower than the second PDSCH and the third PDSCH.
- the third HARQ-ACK for PDSCH is slower than the second HARQ-ACK.
- the process related to the third PDSCH may include a process of receiving the third PDSCH, or may include a process of generating or transmitting a third HARQ-ACK.
- control unit 210 applies out-of-order (OOO) processing with respect to the processing of the first, second, and third PDSCHs (or data) when there are first, second, and third PDSCHs. You may control whether or not.
- OOO out-of-order
- the transmission / reception unit 220 may decode the third PDSCH when it is determined to perform the reception process of the third PDSCH. When it is determined that the transmission / reception unit 220 does not perform the reception process of the third PDSCH (for example, drop or skip), the transmission / reception unit 220 does not have to decode the third PDSCH.
- the transmission / reception unit 220 may transmit at least one of the first HARQ-ACK, the second HARQ-ACK, and the third HARQ-ACK to the base station 10.
- the control unit 210 determines whether or not to perform the reception process of the third PDSCH based on the timings of the first HARQ-ACK, the second HARQ-ACK, and the third HARQ-ACK. You may.
- the control unit 210 may determine whether or not to perform the reception process of the third PDSCH based on the priorities of the first PDSCH, the second PDSCH, and the third PDSCH.
- control unit 210 determines whether or not to perform the reception processing of the third PDSCH, based on each processing capacity related to the first PDSCH, the second PDSCH, and the third PDSCH. Good.
- each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
- the functional block may be realized by combining the software with the one device or the plurality of devices.
- the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
- a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
- the method of realizing each of them is not particularly limited.
- the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
- FIG. 6 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
- the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
- processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
- the processor 1001 may be mounted by one or more chips.
- the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
- predetermined software program
- Processor 1001 operates, for example, an operating system to control the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
- CPU central processing unit
- control unit 110 210
- transmission / reception unit 120 220
- the like may be realized by the processor 1001.
- the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- a program program code
- the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
- the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
- the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
- the storage 1003 may be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
- the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
- the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
- the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
- the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the wireless frame may be composed of one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
- the subframe may be composed of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
- the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
- Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
- SCS subcarrier Spacing
- TTI Transmission Time Interval
- a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
- the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
- a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
- the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
- the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
- the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
- the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
- one subframe may be called TTI
- a plurality of consecutive subframes may be called TTI
- one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
- the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
- the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
- the definition of TTI is not limited to this.
- the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
- the time interval for example, the number of symbols
- the transport block, code block, code word, etc. may be shorter than the TTI.
- one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
- TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
- the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
- the number of subcarriers contained in the RB may be the same regardless of the neurology, and may be, for example, 12.
- the number of subcarriers contained in the RB may be determined based on numerology.
- the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
- Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
- One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
- Physical RB Physical RB (PRB)
- SCG sub-carrier Group
- REG resource element group
- the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
- RE Resource Element
- 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
- Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a numerology in a carrier. May be good.
- the common RB may be specified by an index of the RB with respect to the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
- BWP UL BWP
- BWP for DL DL BWP
- One or more BWPs may be set in one carrier for the UE.
- At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
- “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
- the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
- the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
- the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
- the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
- information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
- Information, signals, etc. may be input / output via a plurality of network nodes.
- Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to another device.
- Notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
- the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
- DCI downlink control information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB master information block
- SIB system information block
- MAC medium access control
- the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
- the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
- MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
- CE MAC Control Element
- the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
- the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
- Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
- Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
- wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
- wireless technology infrared, microwave, etc.
- Network may mean a device (eg, a base station) included in the network.
- precoding "precoding weight”
- QCL Quality of Co-Co-Location
- TCI state Transmission Configuration Indication state
- space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
- Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
- Base station BS
- radio base station fixed station
- NodeB NodeB
- eNB eNodeB
- gNB gNodeB
- Access point "Transmission point (Transmission Point (TP))
- RP Reception point
- TRP Transmission / Reception Point
- Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
- Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
- the base station can accommodate one or more (for example, three) cells.
- a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
- RRH Head
- the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
- MS mobile station
- UE user equipment
- terminal terminal
- Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
- At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
- the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
- at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
- at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be read by the user terminal.
- communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- D2D Device-to-Device
- V2X Vehicle-to-Everything
- Each aspect / embodiment of the present disclosure may be applied to the configuration.
- the user terminal 20 may have the function of the base station 10 described above.
- words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
- the uplink, downlink, and the like may be read as side channels.
- the user terminal in the present disclosure may be read as a base station.
- the base station 10 may have the functions of the user terminal 20 described above.
- the operation performed by the base station may be performed by its upper node (upper node) in some cases.
- various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
- Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
- each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- Future Radio Access FAA
- New-Radio Access Technology RAT
- NR New Radio
- NX New radio access
- Future generation radio access FX
- GSM Global System for Mobile communications
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- IEEE 802.11 Wi-Fi (registered trademark)
- LTE 802.16 WiMAX (registered trademark)
- a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
- references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
- determining used in this disclosure may include a wide variety of actions.
- judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
- judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
- judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
- the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
- connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
- the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
- the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
- the term "A and B are different” may mean “A and B are different from each other”.
- the term may mean that "A and B are different from C”.
- Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
This user terminal is characterized by having: a control unit which, if a second Physical Downlink Shared Channel (PDSCH) is slower than a first PDSCH and a second Hybrid Automatic Repeat reQuest ACKnowledgment (HARQ-ACK) for the second PDSCH is slower than a first HARQ-ACK for the first PDSCH, controls receiving processing of a third PDSCH, wherein the third PDSCH is slower than the second PDSCH and a third HARQ-ACK for the third PDSCH is slower than the second HARQ-ACK; and a receiving unit which decodes the third PDSCH if it is determined that receiving processing of the third PDSCH will be performed. This embodiment of the present disclosure makes it possible to appropriately perform OOO processing.
Description
本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
The present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
将来の無線通信システム(例えば、NR)では、アウトオブオーダー(Out-Of-Order(OOO))処理の導入が検討されている。OOO処理の1つに、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))に対するHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)についてのOOO HARQ-ACKがある。
In future wireless communication systems (for example, NR), the introduction of out-of-order (OOO) processing is being considered. One of the OOO processes is OOO HARQ-ACK for Hybrid Automatic Repeat reQuest ACK knowledge (HARQ-ACK) for the downlink shared channel (Physical Downlink Shared Channel (PDSCH)).
しかしながら、これまでのNRの議論では、2つのPDSCHに関するOOO HARQ-ACK処理しか検討されておらず、3つ以上のPDSCHに関するOOO HARQ-ACKの制御についてはまだ検討が進んでいない。当該制御について明確に規定しなければ、適切なOOO処理が実現できず、通信スループットが劣化などするおそれがある。
However, in the discussion of NR so far, only OOO HARQ-ACK processing for two PDSCHs has been examined, and control of OOO HARQ-ACK for three or more PDSCHs has not yet been examined. If the control is not clearly defined, appropriate OOO processing cannot be realized, and communication throughput may deteriorate.
そこで、本開示は、適切にOOO処理を行うことができるユーザ端末及び無線通信方法を提供することを目的の1つとする。
Therefore, one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method capable of appropriately performing OOO processing.
本開示の一態様に係るユーザ端末は、第1のPhysical Downlink Shared Channel(PDSCH)より第2のPDSCHが遅く、前記第2のPDSCHのための第2のHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)が前記第1のPDSCHのための第1のHARQ-ACKより遅い場合において、第3のPDSCHの受信処理を制御する、ここで、前記第2のPDSCHより前記第3のPDSCHが遅く、前記第3のPDSCHのための第3のHARQ-ACKが前記第2のHARQ-ACKより遅い、制御部と、前記第3のPDSCHの受信処理を行うと決定される場合には、前記第3のPDSCHを復号する受信部と、を有することを特徴とする。
The user terminal according to one aspect of the present disclosure has a second PDSCH slower than the first Physical Downlink Shared Channel (PDSCH), and has a second Hybrid Automatic Repeat reQuest ACK knowledgement (HARC-ACK) for the second PDSCH. Controls the reception process of the third PDSCH when is slower than the first HARQ-ACK for the first PDSCH, where the third PDSCH is slower than the second PDSCH and said When it is determined that the third HARQ-ACK for the PDSCH of 3 is slower than the second HARQ-ACK, the control unit and the reception process of the third PDSCH are performed, the third PDSCH It is characterized by having a receiving unit for decoding.
本開示の一態様によれば、適切にOOO処理を行うことができる。
According to one aspect of the present disclosure, OOO processing can be appropriately performed.
(処理時間)
既存のRel-15 NRにおいては、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))の処理時間、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))の処理時間などが定義されている。なお、処理時間(processing time)は、準備時間(preparation time)、準備手順時間(preparation procedure time)、処理手順時間(processing procedure time)などで読み替えられてもよい。 (processing time)
In the existing Rel-15 NR, the processing time of the downlink shared channel (Physical Downlink Shared Channel (PDSCH)), the processing time of the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), and the like are defined. The processing time may be read as a preparation time (preparation time), a preparation procedure time (preparation procedure time), a processing procedure time (processing procedure time), or the like.
既存のRel-15 NRにおいては、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))の処理時間、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))の処理時間などが定義されている。なお、処理時間(processing time)は、準備時間(preparation time)、準備手順時間(preparation procedure time)、処理手順時間(processing procedure time)などで読み替えられてもよい。 (processing time)
In the existing Rel-15 NR, the processing time of the downlink shared channel (Physical Downlink Shared Channel (PDSCH)), the processing time of the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), and the like are defined. The processing time may be read as a preparation time (preparation time), a preparation procedure time (preparation procedure time), a processing procedure time (processing procedure time), or the like.
PDSCHの処理時間は、トランスポートブロックを伝送する当該PDSCHの最終シンボルの終わり以降の上りリンク(Uplink(UL))シンボルまでの期間であってもよい。UEは、当該ULシンボルと同じ又はこれ以降のシンボルで有効な送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK))を提供してもよい。
The processing time of the PDSCH may be the period from the end of the final symbol of the PDSCH that transmits the transport block to the Uplink (UL) symbol. The UE may provide delivery confirmation information (eg, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK)) that is valid for the same or subsequent symbols as the UL symbol.
PUSCHの処理時間は、当該PUSCHをスケジューリングする下りリンク制御情報(Downlink Control Information(DCI))を伝送する下りリンク制御チャネル(Physical Downlink Control Channel(PDCCH))の最終シンボルの終わり以降のULシンボルまでの期間であってもよい。UEは、当該ULシンボルと同じ又はこれ以降のシンボルでPUSCHを送信してもよい。
The processing time of the PUSCH is up to the UL symbol after the end of the final symbol of the downlink control channel (Physical Downlink Control Channel (PDCCH)) that transmits the downlink control information (Downlink Control Information (DCI)) that schedules the PUSCH. It may be a period. The UE may transmit the PUSCH with the same or subsequent symbols as the UL symbol.
PDSCHの処理時間は、パラメータN1(PDSCH復号時間と呼ばれてもよい)に基づいて決定されてもよく、PUSCHの処理時間は、パラメータN2(PUSCH準備時間と呼ばれてもよい)に基づいて決定されてもよい。
The PDSCH processing time may be determined based on parameter N 1 (which may be referred to as PDSCH decoding time), and the PUSCH processing time may be set to parameter N 2 (which may be referred to as PUSCH preparation time). It may be determined based on.
N1は、当該PDSCHが送信された下りリンクのSCSと、上記HARQ-ACKが送信されるULチャネル(例えば、PUCCH、PUSCH)のSCSと、に基づいて決定されてもよい。例えば、N1は、これらのSCSのうち最小のSCSに基づいて決定されてもよく、例えば当該最小のSCSが15kHzの場合は8シンボルなど、8-20シンボルであると判断されてもよい。N1は、追加のPDSCH DMRSが設定される場合には、13-24シンボルであると判断されてもよい。
N 1 may be determined based on the SCS of the downlink to which the PDSCH is transmitted and the SCS of the UL channel (for example, PUCCH, PUSCH) to which the HARQ-ACK is transmitted. For example, N 1 may be determined based on the smallest SCS of these SCSs, and may be determined to be 8-20 symbols, for example 8 symbols if the minimum SCS is 15 kHz. N 1 may be determined to be a 13-24 symbol if additional PDSCH DMRS is set.
N2は、当該PUSCHをスケジューリングするDCIを伝送するPDCCHが送信された下りリンクのSCSと、当該PUSCHが送信されるULチャネルのSCSと、に基づいて決定されてもよい。例えば、N2は、これらのSCSのうち最小のSCSに基づいて決定されてもよく、例えば当該最小のSCSが15kHzの場合は10シンボルなど、10-36シンボルであると判断されてもよい。
N 2 may be determined based on the downlink SCS to which the PDCCH transmitting the DCI that schedules the PUSCH is transmitted and the SCS of the UL channel to which the PUSCH is transmitted. For example, N 2 may be determined based on the smallest SCS of these SCSs, and may be determined to be 10-36 symbols, for example 10 symbols if the minimum SCS is 15 kHz.
つまり、上記処理時間(及び処理時間に関するパラメータ(N1、N2など))は、PDCCH/PDSCHと、PUCCH/PUSCHと、のうち、最小のSCSに対応するニューメロロジーによって規定される値に従ってもよい。
That is, the processing time (and the parameters related to the processing time (N 1 , N 2, etc.)) are set according to the values defined by the numerology corresponding to the smallest SCS of the PDCCH / PDSCH and the PUCCH / PUSCH. May be good.
PDSCHに対応するHARQ-ACKを、PUSCHを用いて送信する場合には、UEは、上記PDSCHの処理時間及び上記PUSCHの処理時間を合わせた時間(和の時間)以降のULシンボル、又はこれ以降のシンボルでPUSCHを送信してもよい。
When transmitting the HARQ-ACK corresponding to the PDSCH using the PUSCH, the UE uses the UL symbol after the time (sum time) in which the processing time of the PDSCH and the processing time of the PUSCH are combined, or after that. PUSCH may be transmitted with the symbol of.
既存のRel-15 NRでは、上述の処理時間は、UE能力1(UE capability 1)用の処理時間と、UE能力2(UE capability 2)用の処理時間と、の2つに分類される。UE能力2用の処理時間は、UE能力1用の処理時間より短い。
In the existing Rel-15 NR, the above-mentioned processing time is classified into two, a processing time for UE capacity 1 (UE capability 1) and a processing time for UE capacity 2 (UE capability 2). The processing time for UE capability 2 is shorter than the processing time for UE capability 1.
UEは、PDSCH及びPUSCHそれぞれについて、UE能力2をサポートするかを異なるUE能力情報(例えば、前者はRRCパラメータ「pdsch-ProcessingType2」、後者はRRCパラメータ「pusch-ProcessingType2」)を用いてネットワーク(例えば、基地局)に報告できる。PDSCH(又はPUSCH)についてのUE能力Xは、PDSCH(又はPUSCH)処理能力Xと呼ばれてもよい。
For each of PDSCH and PUSCH, the UE uses different UE capability information (for example, the former is the RRC parameter "pdsch-ProcessingType2" and the latter is the RRC parameter "pusch-ProcessingType2") to determine whether to support UE capability 2 (for example, , Base station). The UE capacity X for the PDSCH (or PUSCH) may be referred to as the PDSCH (or PUSCH) processing capacity X.
基地局は、当該UE能力情報に基づいて、UEがUE能力2に基づいて処理を行うか否かを決定してもよい。基地局は、PDSCH及びPUSCHそれぞれについて、UE能力2を適用する(有効にする)ことを示す情報(例えば、前者はRRC情報要素「PDSCH-ServingCellConfig」に含まれるパラメータ「processingType2Enabled」、後者はRRC情報要素「PUSCH-ServingCellConfig」に含まれるパラメータ「processingType2Enabled」)を、上位レイヤシグナリングを用いてUEに設定してもよい。なお、前者のパラメータは「Capability2-PDSCH-Processing」と呼ばれてもよいし、後者のパラメータは「Capability2-PUSCH-Processing」と呼ばれてもよい。
The base station may decide whether or not the UE performs processing based on the UE capability 2 based on the UE capability information. Information indicating that the base station applies (enables) UE capability 2 for each of PDSCH and PUSCH (for example, the former is the parameter "processingType2Enabled" included in the RRC information element "PDSCH-ServingCellConfig", and the latter is the RRC information. The parameter "processingType2Enabled") included in the element "PUSCH-ServingCellConfig" may be set in the UE using higher layer signaling. The former parameter may be called "Capability2-PDSCH-Processing", and the latter parameter may be called "Capability2-PUSCH-Processing".
なお、本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
In the present disclosure, the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
For MAC signaling, for example, a MAC control element (MAC Control Element (MAC CE)), a MAC Protocol Data Unit (PDU), or the like may be used. Broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
なお、UEがUE能力2をサポートし、基地局からUE能力2の適用を設定される場合であっても、一定の条件下では、UEはUE能力1にフォールバックする。例えば、PDSCHについて、サブキャリア間隔が30kHz(ニューメロロジーに関するパラメータμ=1)の場合であって、スケジュールされるリソースブロック数が136を超える場合には、UEはUE能力1の処理時間に基づいて当該PDSCHの処理を行う。
Even if the UE supports UE capability 2 and the base station sets the application of UE capability 2, the UE will fall back to UE capability 1 under certain conditions. For example, for PDSCH, if the subcarrier interval is 30 kHz (numerology parameter μ = 1) and the number of scheduled resource blocks exceeds 136, the UE is based on the processing time of UE capability 1. The PDSCH is processed.
一方で、PUSCHについてのUE能力1へのフォールバックの条件は、既存のRel-15 NRの仕様には定義されていない。
On the other hand, the conditions for fallback to UE capability 1 for PUSCH are not defined in the existing Rel-15 NR specifications.
(アウトオブオーダー処理)
ある信号又はチャネル(信号/チャネルと表記されてもよい)を受信し、当該信号/チャネルに対応した別の信号/チャネルの送受信を行う処理について考える。第1の当該処理を開始してから完了するまでに、別の第2の当該処理を開始して完了する、というケースは、処理の開始と完了の順番が逆転しているため、アウトオブオーダー(Out-Of-Order(OOO))処理とも呼ばれる。NRでは、このようなOOO処理の導入が検討されている。 (Out of order processing)
Consider a process of receiving a signal or channel (which may be referred to as a signal / channel) and transmitting / receiving another signal / channel corresponding to the signal / channel. In the case where another second process is started and completed from the start of the first process to the completion, the order of the process start and completion is reversed, so that the order is out of order. It is also called (Out-Of-Order (OOO)) processing. In NR, the introduction of such OOO treatment is being considered.
ある信号又はチャネル(信号/チャネルと表記されてもよい)を受信し、当該信号/チャネルに対応した別の信号/チャネルの送受信を行う処理について考える。第1の当該処理を開始してから完了するまでに、別の第2の当該処理を開始して完了する、というケースは、処理の開始と完了の順番が逆転しているため、アウトオブオーダー(Out-Of-Order(OOO))処理とも呼ばれる。NRでは、このようなOOO処理の導入が検討されている。 (Out of order processing)
Consider a process of receiving a signal or channel (which may be referred to as a signal / channel) and transmitting / receiving another signal / channel corresponding to the signal / channel. In the case where another second process is started and completed from the start of the first process to the completion, the order of the process start and completion is reversed, so that the order is out of order. It is also called (Out-Of-Order (OOO)) processing. In NR, the introduction of such OOO treatment is being considered.
図1は、OOO処理の一例を示す図である。本例では、上述した第1の処理は、第1のPDSCH(PDSCH#1)を受信して、当該PDSCH#1に対応する第1のHARQ-ACK(HARQ-ACK#1)を送信する処理に該当する。上述した第2の処理は、第2のPDSCH(PDSCH#2)を受信して、当該PDSCH#2に対応する第2のHARQ-ACK(HARQ-ACK#2)を送信する処理に該当する。
FIG. 1 is a diagram showing an example of OOO processing. In this example, the first process described above is a process of receiving the first PDSCH (PDSCH # 1) and transmitting the first HARQ-ACK (HARQ-ACK # 1) corresponding to the PDSCH # 1. Corresponds to. The second process described above corresponds to a process of receiving the second PDSCH (PDSCH # 2) and transmitting the second HARQ-ACK (HARQ-ACK # 2) corresponding to the PDSCH # 2.
図1に示すK1は、受信したPDSCHに対応するHARQ-ACKの送信タイミングを示すパラメータであり、当該PDSCHをスケジュールするDCIに基づいて決定されてもよい(例えば、PDSCHに対応するHARQのタイミング指示フィールド(PDSCH-to-HARQ-timing-indicator field)によって指定されてもよい)。
K1 shown in FIG. 1 is a parameter indicating the transmission timing of the HARQ-ACK corresponding to the received PDSCH, and may be determined based on the DCI that schedules the PDSCH (for example, the timing instruction of the HARQ corresponding to the PDSCH). Field (may be specified by PDSCH-to-HARQ-timing-indicator field).
本例では、PDSCH#1及びHARQ-ACK#1間のK1(=15)が、PDSCH#2及びHARQ-ACK#2間のK1(=2)よりかなり大きく、第1の処理と第2の処理とがOOOになっている。具体的には、PDSCH#1の後に受信したPDSCH#2に関連するHARQ-ACK#2が、当該PDSCH#1に関連するHARQ-ACK#1より前に送信されている。
In this example, the K1 (= 15) between PDSCH # 1 and HARQ-ACK # 1 is considerably larger than the K1 (= 2) between PDSCH # 2 and HARQ-ACK # 2, and the first process and the second process The processing is OOO. Specifically, the HARQ-ACK # 2 related to the PDSCH # 2 received after the PDSCH # 1 is transmitted before the HARQ-ACK # 1 related to the PDSCH # 1.
図1のようなOOO処理は、PDSCHの順番と対応するHARQ-ACKの順番が逆になっているため、OOO PDSCH-HARQ-ACKフロー、OOO HARQ-ACKなどと呼ばれてもよい。
The OOO process as shown in FIG. 1 may be referred to as OOO PDSCH-HARQ-ACK flow, OOO HARQ-ACK, etc. because the order of PDSCH and the corresponding HARQ-ACK order are reversed.
一般的には、信号/チャネルを受信した順に、当該信号/チャネルに対応する信号/チャネルを送受信することが好ましい。一方で、OOO処理は、要求条件が異なる複数のサービス(ユースケース、通信タイプなどと呼ばれてもよい)が利用される場合には必要性が高まる。
In general, it is preferable to transmit and receive signals / channels corresponding to the signals / channels in the order in which the signals / channels are received. On the other hand, OOO processing becomes more necessary when a plurality of services (which may be called use cases, communication types, etc.) having different requirements are used.
NRのユースケースとしては、例えば、高速及び大容量(例えば、enhanced Mobile Broad Band(eMBB))、超多数端末(例えば、massive Machine Type Communication(mMTC))、超高信頼及び低遅延(例えば、Ultra Reliable and Low Latency Communications(URLLC))などが検討されている。
Use cases of NR include, for example, high speed and large capacity (for example, enhanced Mobile Broad Band (eMBB)), ultra-large number of terminals (for example, massive Machine Type Communication (mMTC)), ultra-high reliability and low latency (for example, Ultra). Reliable and Low Latency Communications (URLLC)) are being considered.
例えば、上述の図1において、PDSCH#1がeMBBデータ、PDSCH#2がURLLCデータであるようなケース(より重要度の高いURLLCデータが、eMBBデータに割り込むケース)が想定される。
For example, in FIG. 1 described above, a case where PDSCH # 1 is eMBB data and PDSCH # 2 is URLLC data (a case where more important URLLC data interrupts eMBB data) is assumed.
アウトオブオーダーHARQ-ACKの発生を制御するため、UEは図1のケースに関して、以下の方針の少なくとも1つに従って動作してもよい。なお、UEは、どの方針に従うかを、上位レイヤシグナリング(例えば、RRC)、物理レイヤシグナリング(例えば、DCI)又はこれらの組み合わせに基づいて決定してもよい。
In order to control the occurrence of out-of-order HARQ-ACK, the UE may operate according to at least one of the following policies with respect to the case of FIG. The UE may determine which policy to follow based on higher layer signaling (eg, RRC), physical layer signaling (eg, DCI), or a combination thereof.
方針1では、UEは常に第2のPDSCHを処理する。UEは、第1のPDSCHの処理をドロップしてもよいし、ドロップしなくてもよい。なお、本開示におけるドロップは、処理しないことを意味してもよいし、処理を打ち切る(terminate)ことを意味してもよい。ドロップしたPDSCHについては、UEは対応するHARQ-ACKフィードバックとしてNACKを生成してもよいし、対応するHARQ-ACKフィードバックを生成しなくてもよい。
In policy 1, the UE always processes the second PDSCH. The UE may or may not drop the process of the first PDSCH. In addition, the drop in the present disclosure may mean not to process, or may mean to terminate the process. For the dropped PDSCH, the UE may or may not generate a NACK as the corresponding HARQ-ACK feedback and may not generate the corresponding HARQ-ACK feedback.
方針2では、UEは第1のPDSCH及び第2のPDSCHの両方を処理してもよい。UEは、第1のPDSCH及び第2のPDSCHの両方を処理可能であるかどうかをUE能力(UE capability)として基地局に報告する。基地局は、前記UE能力を報告された場合に方針2を適用してもよい。
In policy 2, the UE may process both the first PDSCH and the second PDSCH. The UE reports to the base station whether or not both the first PDSCH and the second PDSCH can be processed as the UE capability (UE capability). The base station may apply policy 2 when the UE capability is reported.
方針3では、UEは、特定の条件下において、第1のPDSCH及び第2のPDSCHの両方を処理してもよい。UEは、当該特定の条件をUE能力として報告してもよい。UEは、特定のUE能力(例えば、キャリアアグリゲーションの能力)を有する場合に方針3を適用してもよい。キャリアアグリゲーションの能力があるUEは、複数のPDSCHを同時に復号できるためである。
In Policy 3, the UE may process both the first PDSCH and the second PDSCH under certain conditions. The UE may report the particular condition as UE capability. The UE may apply the policy 3 when it has a specific UE ability (for example, the ability of carrier aggregation). This is because a UE capable of carrier aggregation can decode a plurality of PDSCHs at the same time.
例えば、2つのコンポーネントキャリアからなるキャリアアグリゲーションを実施するUE能力があるUEは、異なるキャリアで2つのPDSCHを同時に処理できることから、同じキャリアでも2つのPDSCHを同時に処理することができる。特定の条件が満たされない場合は、UEの動作は定義されなくてもよいし、第1のPDSCH又は第2のPDSCHを処理してもよい。
For example, a UE capable of performing carrier aggregation consisting of two component carriers can process two PDSCHs at the same time by different carriers, so that the same carrier can process two PDSCHs at the same time. If certain conditions are not met, the behavior of the UE may be undefined and may be processed by the first PDSCH or the second PDSCH.
方針4では、UEは、第1のPDSCHの処理をドロップする。UEは、常に第1のPDSCHの処理をドロップしてもよいし、所定の条件(例えば、スケジューリング条件)を満たさない場合にドロップしてもよい。当該スケジューリング条件は、例えば、RB数、TBS、レイヤ数、第1のPDSCH及び第2のPDSCHの間隔(オフセット、ギャップ)、各PDSCHに対応するHARQ-ACKを伝送する複数のPUCCHの間隔(オフセット、ギャップ)などの少なくとも1つによって規定されてもよい。
In policy 4, the UE drops the processing of the first PDSCH. The UE may always drop the processing of the first PDSCH, or may drop it when a predetermined condition (for example, scheduling condition) is not satisfied. The scheduling conditions include, for example, the number of RBs, TBS, the number of layers, the interval (offset, gap) between the first PDSCH and the second PDSCH, and the interval (offset) of a plurality of PUCCHs that transmit HARQ-ACK corresponding to each PDSCH. , Gap) and the like.
第1のPDSCH及び第2のPDSCHに関連する下り制御チャネル(Physical Downlink Control Channel(PDCCH))を復号した後、UE動作(例えば、第1のPDSCHをドロップするかの決定、第2のPDSCHに関するタイミング能力)が決定され、又は固定されてもよい。
After decoding the downlink control channel (Physical Downlink Control Channel (PDCCH)) related to the first PDSCH and the second PDSCH, the UE operation (for example, the determination of whether to drop the first PDSCH, regarding the second PDSCH Timing capability) may be determined or fixed.
UEは、第1のPDSCHをドロップする場合には、第2のPDSCHの最小のPDSCH処理手順時間(PDSCH processing procedure time)(N1とも呼ばれる)を所定時間(例えば、dシンボル(dは整数))だけ増加又は減少させてもよい。当該所定時間は、上位レイヤシグナリングを用いてUEに設定されてもよいし、UEの特定の能力に基づいて判断されてもよい。
The UE, when to drop the first PDSCH is minimal PDSCH procedure time for the second PDSCH (PDSCH Processing procedure time) (N 1 also known as) a predetermined time (e.g., d symbols (d is an integer) ) May be increased or decreased. The predetermined time may be set in the UE using higher layer signaling or may be determined based on the specific capabilities of the UE.
なお、第1のPDSCHの処理のドロップは、同じサービングセルの第1のPDSCHをドロップすることで行われてもよいし、同じセル又は異なるサービングセルの1つ又は複数のPDSCHをドロップすることで行われてもよい。
The processing of the first PDSCH may be dropped by dropping the first PDSCH of the same serving cell, or by dropping one or more PDSCHs of the same cell or different serving cells. You may.
UEは、アウトオブオーダーHARQ-ACKに対応可能(アウトオブオーダーHARQ-ACKを適用可能)である場合、所定のサービングセルのアクティブBWPではアウトオブオーダーHARQ-ACKフローが最大でも所定の数(例えば、1)であると期待してもよい。
When the UE is capable of supporting out-of-order HARQ-ACK (out-of-order HARQ-ACK can be applied), the active BWP of a predetermined serving cell has a maximum number of out-of-order HARQ-ACK flows (for example, for example). You may expect it to be 1).
アウトオブオーダーHARQ-ACKの動作は、特定の能力のためのPDSCH処理時間(例えば、N1)に適合するPDSCHからHARQ-ACKへのギャップに対して許容されてもよいし、許容されなくてもよい。
Out-of-order HARQ-ACK operation may or may not be tolerated for the PDSCH-to-HARQ-ACK gap that fits the PDSCH processing time (eg, N 1 ) for a particular capability. May be good.
ところで、これまでのNRの議論では、図1のような2つのPDSCHに関するOOO HARQ-ACKしか検討されておらず、3つ以上のPDSCHに関するOOO HARQ-ACKの制御についてはまだ検討が進んでいない。当該制御について明確に規定しなければ、適切なOOO処理が実現できず、通信スループットが劣化などするおそれがある。
By the way, in the discussion of NR so far, only OOO HARQ-ACK for two PDSCHs as shown in FIG. 1 has been examined, and the control of OOO HARQ-ACK for three or more PDSCHs has not yet been examined. .. If the control is not clearly defined, appropriate OOO processing cannot be realized, and communication throughput may deteriorate.
そこで、本発明者らは、適切にOOO処理を行うための方法を着想した。
Therefore, the present inventors have conceived a method for appropriately performing OOO treatment.
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied individually or in combination.
なお、本開示において、「データ」はPDSCH及びPUSCHの少なくとも一方で読み替えられてもよい。また、本開示のUE能力1、2は、それぞれ処理時間に関するUE能力1、2と読み替えられてもよい。
In the present disclosure, "data" may be read as at least one of PDSCH and PUSCH. Further, the UE capabilities 1 and 2 of the present disclosure may be read as UE capabilities 1 and 2 regarding the processing time, respectively.
(無線通信方法)
以下、各実施形態の説明においては、図2に示すケースを例に説明する。図2は、3つ以上のPDSCHに関するOOO HARQ-ACKの一例を示す図である。 (Wireless communication method)
Hereinafter, in the description of each embodiment, the case shown in FIG. 2 will be described as an example. FIG. 2 is a diagram showing an example of OOO HARQ-ACK relating to three or more PDSCHs.
以下、各実施形態の説明においては、図2に示すケースを例に説明する。図2は、3つ以上のPDSCHに関するOOO HARQ-ACKの一例を示す図である。 (Wireless communication method)
Hereinafter, in the description of each embodiment, the case shown in FIG. 2 will be described as an example. FIG. 2 is a diagram showing an example of OOO HARQ-ACK relating to three or more PDSCHs.
本例において、PDSCHは、PDSCH#1、#2及び#3の順で送信されている。また、PDSCH#1に対応するHARQ-ACK#1、PDSCH#2に対応するHARQ-ACK#2及びPDSCH#3に対応するHARQ-ACK#3については、HARQ-ACK#3、#2及び#1の順で送信されるようにスケジュールされている。
In this example, PDSCH is transmitted in the order of PDSCH # 1, # 2, and # 3. Further, regarding HARQ-ACK # 1 corresponding to PDSCH # 1, HARQ-ACK # 2 corresponding to PDSCH # 2, and HARQ-ACK # 3 corresponding to PDSCH # 3, HARQ-ACK # 3, # 2, and # It is scheduled to be transmitted in the order of 1.
言い換えると、図2は、あるサービングセルのアクティブなBWPにおいて、第1のPDSCHと第2のPDSCHと第3のPDSCHがある場合であって、HARQプロセスID yの第1のPDSCHの後に受信したHARQプロセスID x(ここで、x≠y)の第2のPDSCHに関連するHARQ-ACKが、第1のPDSCHのHARQ-ACKより前に送信され、かつ、HARQプロセスID xの第2のPDSCHの後に受信したHARQプロセスID z(ここで、z≠y、z≠x)の第3のPDSCHに関連するHARQ-ACKが、第2のPDSCHのHARQ-ACKより前に送信されるケースに該当する。
In other words, FIG. 2 shows a case where there are a first PDSCH, a second PDSCH, and a third PDSCH in the active BWP of a serving cell, and the HARQ received after the first PDSCH of the HARQ process ID y. The HARQ-ACK associated with the second PDSCH of the process ID x (where x ≠ y) is transmitted prior to the HARQ-ACK of the first PDSCH and of the second PDSCH of the HARQ process ID x. This corresponds to the case where the HARQ-ACK related to the third PDSCH of the HARQ process ID z (here, z ≠ y, z ≠ x) received later is transmitted before the HARQ-ACK of the second PDSCH. ..
図2では、PDSCH#1のための処理時間はPDSCH#2のための処理時間より長く、PDSCH#2のための処理時間はPDSCH#3のための処理時間より長く確保される。
In FIG. 2, the processing time for PDSCH # 1 is longer than the processing time for PDSCH # 2, and the processing time for PDSCH # 2 is secured longer than the processing time for PDSCH # 3.
あるPDSCHのための処理時間は、当該PDSCHの所定のシンボル(例えば、最後のシンボル、最初のシンボル)から当該PDSCHに対応するHARQ-ACKの所定のシンボル(例えば、最初のシンボル、最後のシンボル)までの時間を意味してもよい。
The processing time for a PDSCH is from a predetermined symbol of the PDSCH (for example, the last symbol, the first symbol) to a predetermined symbol of HARQ-ACK corresponding to the PDSCH (for example, the first symbol, the last symbol). May mean time to.
なお、各PDSCHをスケジュールするDCIの順番は、図2ではPDSCH#1のためのDCI、PDSCH#2のためのDCI及びPDSCH#3のためのDCIの順で送信されているが、これに限られない。
The order of DCIs for scheduling each PDSCH is limited to DCI for PDSCH # 1, DCI for PDSCH # 2, and DCI for PDSCH # 3 in FIG. I can't.
また、本例では、複数のPDSCH、又は複数のHARQ-ACKが時間的に重複しない想定であるが、確保される処理時間の長さがPDSCH#1が最も長く、PDSCH#3が最も短いという条件を満たしさえすれば、重複がある場合でも同様である。
Further, in this example, it is assumed that a plurality of PDSCHs or a plurality of HARQ-ACKs do not overlap in time, but the length of the secured processing time is the longest for PDSCH # 1 and the shortest for PDSCH # 3. The same applies even if there are duplicates as long as the conditions are met.
以降の説明において、PDSCH#2がPDSCH#1より遅く、かつ、PDSCH#1のためのHARQ-ACK#1がPDSCH#2のためのHARQ-ACK#2より早くない、という条件は、条件1と呼ばれてもよい。
In the following description, the condition that PDSCH # 2 is slower than PDSCH # 1 and HARQ-ACK # 1 for PDSCH # 1 is not faster than HARQ-ACK # 2 for PDSCH # 2 is Condition 1. May be called.
以降の説明において、PDSCH#3がPDSCH#2より遅く、かつ、PDSCH#2のためのHARQ-ACK#2がPDSCH#3のためのHARQ-ACK#3より早くない、という条件は、条件2と呼ばれてもよい。
In the following description, the condition that PDSCH # 3 is slower than PDSCH # 2 and HARQ-ACK # 2 for PDSCH # 2 is not faster than HARQ-ACK # 3 for PDSCH # 3 is Condition 2. May be called.
なお、条件1は、PDSCH#2の処理時間がPDSCH#1の処理時間より短い、という条件で読み替えられてもよい。また、条件2は、PDSCH#3の処理時間がPDSCH#2の処理時間より短い、という条件で読み替えられてもよい。つまり、条件1及び条件2の両方を満たすことは、図2のようにPDSCH#1、#2及び#3の順で送信され、かつHARQ-ACK#3、#2及び#1の順で送信されることだけを意味するのではなく、例えば、PDSCH#1、#2及び#3の順で送信され、かつHARQ-ACK#2、#3及び#1の順で送信されることなどを含んでもよい。
Note that condition 1 may be read on the condition that the processing time of PDSCH # 2 is shorter than the processing time of PDSCH # 1. Further, the condition 2 may be read on the condition that the processing time of PDSCH # 3 is shorter than the processing time of PDSCH # 2. That is, satisfying both the condition 1 and the condition 2 is transmitted in the order of PDSCH # 1, # 2 and # 3 as shown in FIG. 2, and is transmitted in the order of HARQ-ACK # 3, # 2 and # 1. It does not mean that it is only transmitted, but includes, for example, being transmitted in the order of PDSCH # 1, # 2 and # 3, and being transmitted in the order of HARQ-ACK # 2, # 3 and # 1. It may be.
<第1の実施形態>
第1の実施形態においては、UEは、OOOに関連するPDSCHの処理の可否を、HARQ-ACKタイミングに基づいて決定する。 <First Embodiment>
In the first embodiment, the UE determines whether or not to process the PDSCH related to OOO is possible based on the HARQ-ACK timing.
第1の実施形態においては、UEは、OOOに関連するPDSCHの処理の可否を、HARQ-ACKタイミングに基づいて決定する。 <First Embodiment>
In the first embodiment, the UE determines whether or not to process the PDSCH related to OOO is possible based on the HARQ-ACK timing.
UEは、以下の(1-1)から(1-4)の少なくとも1つに基づいて処理を行ってもよい。
The UE may perform processing based on at least one of the following (1-1) to (1-4).
(1-1)UEは、条件1を満たし、かつ条件2を満たす場合、PDSCH#2及び#3を処理する。
(1-1) The UE processes PDSCH # 2 and # 3 when the condition 1 is satisfied and the condition 2 is satisfied.
(1-2)UEは、条件1を満たし、かつ条件2を満たす場合、PDSCH#2の処理をドロップし、PDSCH#3を処理する。
(1-2) When the UE satisfies the condition 1 and the condition 2, the processing of PDSCH # 2 is dropped and PDSCH # 3 is processed.
(1-3)UEは、条件1を満たし、かつ条件2を満たす場合、PDSCH#3を処理せず、PDSCH#2の処理を継続する。
(1-3) When the condition 1 is satisfied and the condition 2 is satisfied, the UE does not process PDSCH # 3 and continues the processing of PDSCH # 2.
(1-4)UEは、条件1を満たす場合には、かつ条件2が満たされることは予期しない(does not expect)。言い換えると、UEは、条件1を満たすPDSCH#1及び#2がスケジュールされた場合には、条件2が満たされるスケジュールがされるとは想定しない。
(1-4) The UE does not expect that condition 1 is satisfied and condition 2 is satisfied (does not expect). In other words, the UE does not assume that if PDSCH # 1 and # 2 satisfying condition 1 are scheduled, the schedule will satisfy condition 2.
UEは、3つのOOO HARQ-ACK(#1、#2、#3)が生じる場合であっても、各HARQ-ACKを生成してもよい。なお、処理をドロップしたPDSCH(例えば、上記(1-2)のPDSCH#2)及び処理しないPDSCH(例えば、上記(1-3)のPDSCH#3)については、UEは対応するHARQ-ACKフィードバックとしてNACKを生成してもよいし、対応するHARQ-ACKフィードバックを生成しなくてもよい。
The UE may generate each HARQ-ACK even when three OOO HARQ-ACKs (# 1, # 2, # 3) occur. For the PDSCH that dropped the process (for example, PDSCH # 2 in (1-2) above) and the PDSCH that did not process (for example, PDSCH # 3 in (1-3) above), the UE received the corresponding HARQ-ACK feedback. NACK may be generated as, or the corresponding HARQ-ACK feedback may not be generated.
以上説明した第1の実施形態によれば、3つ以上のPDSCHに関するOOO HARQ-ACKを適切に制御できる。
According to the first embodiment described above, OOO HARQ-ACK related to three or more PDSCHs can be appropriately controlled.
<第2の実施形態>
第2の実施形態においては、UEは、OOOに関連するPDSCHの処理の可否を、PDSCHの優先度(priority)に基づいて決定する。 <Second embodiment>
In the second embodiment, the UE determines whether or not to process the PDSCH related to OOO is based on the priority of the PDSCH.
第2の実施形態においては、UEは、OOOに関連するPDSCHの処理の可否を、PDSCHの優先度(priority)に基づいて決定する。 <Second embodiment>
In the second embodiment, the UE determines whether or not to process the PDSCH related to OOO is based on the priority of the PDSCH.
UEは、以下の(2-1)から(2-4)の少なくとも1つに基づいて処理を行ってもよい。
The UE may perform processing based on at least one of the following (2-1) to (2-4).
(2-1)UEは、PDSCH#2がPDSCH#1より高い優先度を有し、条件1を満たし、かつPDSCH#3がPDSCH#2より高い優先度を有し、条件2を満たす場合、PDSCH#2及び#3を処理する。
(2-1) When PDSCH # 2 has a higher priority than PDSCH # 1 and satisfies condition 1, and PDSCH # 3 has a higher priority than PDSCH # 2 and satisfies condition 2. Process PDSCH # 2 and # 3.
(2-2)UEは、PDSCH#2がPDSCH#1より高い優先度を有し、条件1を満たし、かつPDSCH#3がPDSCH#2より高い優先度を有し、条件2を満たす場合、PDSCH#2の処理をドロップし、PDSCH#3を処理する。
(2-2) When PDSCH # 2 has a higher priority than PDSCH # 1 and satisfies condition 1, and PDSCH # 3 has a higher priority than PDSCH # 2 and satisfies condition 2. Drop the process of PDSCH # 2 and process PDSCH # 3.
(2-3)UEは、PDSCH#2がPDSCH#1より高い優先度を有し、条件1を満たし、かつPDSCH#3がPDSCH#2より高い優先度を有し、条件2を満たす場合、PDSCH#3を処理せず、PDSCH#2の処理を継続する。
(2-3) When PDSCH # 2 has a higher priority than PDSCH # 1 and satisfies condition 1, and PDSCH # 3 has a higher priority than PDSCH # 2 and satisfies condition 2. PDSCH # 3 is not processed, and PDSCH # 2 processing is continued.
(2-4)UEは、PDSCH#2がPDSCH#1より高い優先度を有し、条件1を満たす場合には、条件2が満たされることは予期しない。言い換えると、UEは、条件1を満たすPDSCH#1及び#2がスケジュールされ、当該PDSCH#2が当該PDSCH#1より高い優先度を有する場合には、条件2が満たされるスケジュールがされる(又は、条件2が満たされ、かつPDSCH#3がPDSCH#2より高い優先度を有するスケジュールがされる)ことは想定しない。
(2-4) When PDSCH # 2 has a higher priority than PDSCH # 1 and condition 1 is satisfied, it is not expected that condition 2 will be satisfied. In other words, the UE is scheduled to satisfy condition 2 if PDSCH # 1 and # 2 satisfying condition 1 are scheduled and PDSCH # 2 has a higher priority than PDSCH # 1. , Condition 2 is satisfied, and PDSCH # 3 is scheduled to have a higher priority than PDSCH # 2).
UEは、3つのOOO HARQ-ACK(#1、#2、#3)が生じる場合であっても、各HARQ-ACKを生成してもよい。なお、処理をドロップしたPDSCH(例えば、上記(2-2)のPDSCH#2)及び処理しないPDSCH(例えば、上記(2-3)のPDSCH#3)については、UEは対応するHARQ-ACKフィードバックとしてNACKを生成してもよいし、対応するHARQ-ACKフィードバックを生成しなくてもよい。
The UE may generate each HARQ-ACK even when three OOO HARQ-ACKs (# 1, # 2, # 3) occur. For the PDSCH that dropped the process (for example, PDSCH # 2 in (2-2) above) and the PDSCH that did not process (for example, PDSCH # 3 in (2-3) above), the UE received the corresponding HARQ-ACK feedback. NACK may be generated as, or the corresponding HARQ-ACK feedback may not be generated.
[PDSCHの優先度]
上述したPDSCHの優先度は、以下の少なくとも1つを示してもよい:
・当該PDSCHで送信されるデータ又は情報の優先度、
・当該PDSCHで送信されるデータ又は情報に対応する論理チャネル(Logical Channel(LCH))の優先度、
・当該PDSCHのトラフィックタイプ、サービスタイプ又は当該PDSCHに適用されるユースケース。 [PDSCH priority]
The PDSCH priority described above may indicate at least one of the following:
-Priority of data or information transmitted by the PDSCH,
-Priority of the logical channel (Logical Channel (LCH)) corresponding to the data or information transmitted by the PDSCH,
-Traffic type, service type of the PDSCH or use case applicable to the PDSCH.
上述したPDSCHの優先度は、以下の少なくとも1つを示してもよい:
・当該PDSCHで送信されるデータ又は情報の優先度、
・当該PDSCHで送信されるデータ又は情報に対応する論理チャネル(Logical Channel(LCH))の優先度、
・当該PDSCHのトラフィックタイプ、サービスタイプ又は当該PDSCHに適用されるユースケース。 [PDSCH priority]
The PDSCH priority described above may indicate at least one of the following:
-Priority of data or information transmitted by the PDSCH,
-Priority of the logical channel (Logical Channel (LCH)) corresponding to the data or information transmitted by the PDSCH,
-Traffic type, service type of the PDSCH or use case applicable to the PDSCH.
PDSCHの優先度は、PDSCHのOOO処理に関する優先度と呼ばれてもよい。PDSCHの優先度は、OOO処理の可否のみに関する優先度を含んでもよいし、OOO処理以外の処理に関する優先度を含んでもよいし、OOO処理及びOOO処理以外の処理共通の優先度を含んでもよい。
The priority of PDSCH may be referred to as the priority regarding OOO processing of PDSCH. The priority of PDSCH may include a priority related only to the possibility of OOO processing, a priority related to processing other than OOO processing, or a priority common to processing other than OOO processing and OOO processing. ..
PDSCHの優先度は、以下の少なくとも1つに基づいてUEが判断してもよい:
・当該PDSCHに関連するデータのトランスポートブロックサイズ(Transport Block Size(TBS))、
・当該PDSCHをスケジュールするためのDCIフォーマット、DCIに含まれるフィールド及びDCIに関連するRNTIの少なくとも1つ、
・当該PDSCHの時間長(継続時間(duration)、例えばシンボル数)、
・当該PDSCHのデータの用途(例えば、URLLC向け、eMBB向けなど)。 The PDSCH priority may be determined by the UE based on at least one of the following:
-Transport block size (TBS) of data related to the PDSCH,
The DCI format for scheduling the PDSCH, the fields contained in the DCI and at least one of the DCI-related RNTIs.
-Time length of the PDSCH (duration, for example, number of symbols),
-Use of the PDSCH data (for example, for URLLC, for eMBB, etc.).
・当該PDSCHに関連するデータのトランスポートブロックサイズ(Transport Block Size(TBS))、
・当該PDSCHをスケジュールするためのDCIフォーマット、DCIに含まれるフィールド及びDCIに関連するRNTIの少なくとも1つ、
・当該PDSCHの時間長(継続時間(duration)、例えばシンボル数)、
・当該PDSCHのデータの用途(例えば、URLLC向け、eMBB向けなど)。 The PDSCH priority may be determined by the UE based on at least one of the following:
-Transport block size (TBS) of data related to the PDSCH,
The DCI format for scheduling the PDSCH, the fields contained in the DCI and at least one of the DCI-related RNTIs.
-Time length of the PDSCH (duration, for example, number of symbols),
-Use of the PDSCH data (for example, for URLLC, for eMBB, etc.).
PDSCHの優先度は、当該PDSCHをスケジュールするDCI(例えば、DCIフォーマット0_0、0_1)によって指示されてもよい。例えば、UEは、所定のPDSCHの優先度(優先レベル)について、当該DCIの所定のフィールド(例えば、優先度フィールド)によって明示的に指定されてもよいし、所定のフィールド(例えば、MCSフィールド、時間ドメインリソース割り当てフィールド、PUCCHリソースインディケーターフィールド、PDSCH-to-HARQフィードバックタイミングインディケーターフィールド)によって暗示的に指定されてもよい。
The priority of the PDSCH may be indicated by the DCI (eg, DCI format 0_0, 0_1) that schedules the PDSCH. For example, the UE may explicitly specify the priority (priority level) of a given PDSCH by a given field (eg, priority field) of the DCI, or a given field (eg, MCS field, etc.). It may be implicitly specified by a time domain resource allocation field, a PUCCH resource indicator field, a PDSCH-to-HARQ feedback timing indicator field).
PDSCHの優先度は、上位レイヤシグナリングによって設定されてもよい。例えば、UEは、所定のPDSCHの優先度(優先レベル)について、明示的なパラメータを含んで設定されてもよいし、暗示的なパラメータ(例えば、変調及び符号化方式(modulation and coding scheme(MCS))、スクランブルID、DCIのRNTI、周波数ドメインリソース、時間ドメインリソース)を設定されてもよい。
The priority of PDSCH may be set by higher layer signaling. For example, the UE may be set to include explicit parameters for a given PDSCH priority (priority level), or implicit parameters (eg, modulation and coding scheme (MCS). )), Scramble ID, DCI RNTI, frequency domain resource, time domain resource) may be set.
以上説明した第2の実施形態によれば、3つ以上のPDSCHに関するOOO HARQ-ACKを適切に制御できる。
According to the second embodiment described above, OOO HARQ-ACK related to three or more PDSCHs can be appropriately controlled.
<第3の実施形態>
第3の実施形態においては、UEは、OOOに関連するPDSCHの処理の可否を、PDSCHの処理能力(processing capability)に基づいて決定する。 <Third embodiment>
In the third embodiment, the UE determines whether or not the PDSCH related to OOO can be processed based on the processing capability of the PDSCH.
第3の実施形態においては、UEは、OOOに関連するPDSCHの処理の可否を、PDSCHの処理能力(processing capability)に基づいて決定する。 <Third embodiment>
In the third embodiment, the UE determines whether or not the PDSCH related to OOO can be processed based on the processing capability of the PDSCH.
UEは、以下の(3-1)から(3-4)の少なくとも1つに基づいて処理を行ってもよい。なお、以下のUE能力3(UE capability 3)用の処理時間は、UE能力2用の処理時間より短いと定義されてもよい。例えば、同じSCSで比較した場合に、PDSCH処理能力3のためのパラメータN1は、PDSCH処理能力2のためのパラメータN1よりも短くてもよい。
The UE may perform processing based on at least one of the following (3-1) to (3-4). The processing time for UE capability 3 (UE capability 3) below may be defined as shorter than the processing time for UE capability 2. For example, when compared with the same SCS, the parameter N 1 for the PDSCH processing capacity 3 may be shorter than the parameter N 1 for the PDSCH processing capacity 2.
(3-1)UEは、PDSCH#2がUE能力2に関連し、PDSCH#1がUE能力1に関連し、条件1を満たし、かつPDSCH#3がUE能力2又は3に関連し、条件2を満たす場合、PDSCH#2及び#3を処理する。
(3-1) In the UE, PDSCH # 2 is related to UE capacity 2, PDSCH # 1 is related to UE capacity 1, condition 1 is satisfied, and PDSCH # 3 is related to UE capacity 2 or 3, and the condition If 2 is satisfied, PDSCH # 2 and # 3 are processed.
(3-2)UEは、PDSCH#2がUE能力2に関連し、PDSCH#1がUE能力1に関連し、条件1を満たし、かつPDSCH#3がUE能力2又は3に関連し、条件2を満たす場合、PDSCH#2の処理をドロップし、PDSCH#3を処理する。
(3-2) In the UE, PDSCH # 2 is related to UE capacity 2, PDSCH # 1 is related to UE capacity 1, condition 1 is satisfied, and PDSCH # 3 is related to UE capacity 2 or 3, and the condition When 2 is satisfied, the process of PDSCH # 2 is dropped and PDSCH # 3 is processed.
(3-3)UEは、PDSCH#2がUE能力2に関連し、PDSCH#1がUE能力1に関連し、条件1を満たし、かつPDSCH#3がUE能力2又は3に関連し、条件2を満たす場合、PDSCH#3を処理せず、PDSCH#2の処理を継続する。
(3-3) In the UE, PDSCH # 2 is related to UE capacity 2, PDSCH # 1 is related to UE capacity 1, condition 1 is satisfied, and PDSCH # 3 is related to UE capacity 2 or 3. When 2 is satisfied, PDSCH # 3 is not processed and PDSCH # 2 processing is continued.
(3-4)UEは、PDSCH#2がUE能力2に関連し、PDSCH#1がUE能力1に関連し、条件1を満たす場合には、条件2が満たされることは予期しない。言い換えると、UEは、条件1を満たすPDSCH#1及び#2がスケジュールされ、当該PDSCH#2がUE能力2に関連し、当該PDSCH#1がUE能力1に関連する場合には、条件2が満たされるスケジュールがされる(又は、条件2が満たされ、かつPDSCH#3がUE能力2又は3に関連するスケジュールがされる)ことは想定しない。
(3-4) When PDSCH # 2 is related to UE capability 2 and PDSCH # 1 is related to UE capability 1 and condition 1 is satisfied, it is not expected that condition 2 will be satisfied. In other words, if the UE is scheduled for PDSCH # 1 and # 2 satisfying condition 1, the PDSCH # 2 is associated with UE capability 2, and the PDSCH # 1 is associated with UE capability 1, condition 2 is met. It is not assumed that a schedule will be met (or condition 2 will be met and PDSCH # 3 will be scheduled for UE capability 2 or 3).
なお、上記(3-1)から(3-4)のUE能力1、2及び3は、それぞれ別のUE能力X、Y及びZで読み替えられてもよい。なお、UE能力Xに対応するPDSCH処理時間≦UE能力Yに対応するPDSCH処理時間≦UE能力Zに対応するPDSCH処理時間であることが好ましいが、これに限られない。
Note that the UE capacities 1, 2 and 3 of (3-1) to (3-4) above may be read as different UE capacities X, Y and Z, respectively. It is preferable that the PDSCH processing time corresponding to the UE capacity X ≦ the PDSCH processing time corresponding to the UE capacity Y ≦ the PDSCH processing time corresponding to the UE capacity Z, but the present invention is not limited to this.
UEは、3つのOOO HARQ-ACK(#1、#2、#3)が生じる場合であっても、各HARQ-ACKを生成してもよい。なお、処理をドロップしたPDSCH(例えば、上記(3-2)のPDSCH#2)及び処理しないPDSCH(例えば、上記(3-3)のPDSCH#3)については、UEは対応するHARQ-ACKフィードバックとしてNACKを生成してもよいし、対応するHARQ-ACKフィードバックを生成しなくてもよい。
The UE may generate each HARQ-ACK even when three OOO HARQ-ACKs (# 1, # 2, # 3) occur. For the PDSCH that dropped the process (for example, PDSCH # 2 in (3-2) above) and the PDSCH that did not process (for example, PDSCH # 3 in (3-3) above), the UE received the corresponding HARQ-ACK feedback. NACK may be generated as, or the corresponding HARQ-ACK feedback may not be generated.
UEは、PDSCH及びPUSCHそれぞれについて、UE能力3をサポートするかを異なるUE能力情報(例えば、前者はRRCパラメータ「pdsch-ProcessingType3」、後者はRRCパラメータ「pusch-ProcessingType3」)を用いてネットワーク(例えば、基地局)に報告してもよい。
For each of PDSCH and PUSCH, the UE uses different UE capability information (for example, the former is the RRC parameter "pdsch-ProcessingType3" and the latter is the RRC parameter "pusch-ProcessingType3") to determine whether to support UE capability 3 (for example, , Base station).
基地局は、当該UE能力情報に基づいて、UEがUE能力3に基づいて処理を行うか否かを決定してもよい。基地局は、PDSCH及びPUSCHそれぞれについて、UE能力3を適用する(有効にする)ことを示す情報(例えば、前者はRRC情報要素「PDSCH-ServingCellConfig」に含まれるパラメータ「processingType3Enabled」、後者はRRC情報要素「PUSCH-ServingCellConfig」に含まれるパラメータ「processingType3Enabled」)を、上位レイヤシグナリングを用いてUEに設定してもよい。なお、前者のパラメータは「Capability3-PDSCH-Processing」と呼ばれてもよいし、後者のパラメータは「Capability3-PUSCH-Processing」と呼ばれてもよい。
The base station may decide whether or not the UE performs processing based on the UE capability 3 based on the UE capability information. Information indicating that the base station applies (enables) UE capability 3 for each of PDSCH and PUSCH (for example, the former is the parameter "processingType3Enabled" included in the RRC information element "PDSCH-ServingCellConfig", and the latter is the RRC information. The parameter "processingType3Enabled") included in the element "PUSCH-ServingCellConfig" may be set in the UE using higher layer signaling. The former parameter may be called "Capability3-PDSCH-Processing", and the latter parameter may be called "Capability3-PUSCH-Processing".
なお、UEは、UE能力3をサポートする場合には、UE能力2もサポートすると想定してもよい。また、UEは、PDSCH(又はPUSCH)について、UE能力3を適用する(有効にする)ことを示す情報を設定された場合、PDSCH(又はPUSCH)について、UE能力2を適用する(有効にする)ことを示す情報も設定されたと想定してもよい。この構成によれば、UE能力3を有する場合にUE能力の報告のための情報量を低減できる。
Note that when the UE supports UE capability 3, it may be assumed that UE capability 2 is also supported. Further, when the information indicating that the UE capability 3 is applied (enabled) is set for the PDSCH (or PUSCH), the UE applies (validates) the UE capability 2 for the PDSCH (or PUSCH). ) It may be assumed that the information indicating that is also set. According to this configuration, when the UE capability 3 is provided, the amount of information for reporting the UE capability can be reduced.
以上説明した第3の実施形態によれば、3つ以上のPDSCHに関するOOO HARQ-ACKを適切に制御できる。
According to the third embodiment described above, OOO HARQ-ACK related to three or more PDSCHs can be appropriately controlled.
<その他>
なお、上述の各実施形態における(例えば、(1-1)から(1-4)において)、{PDSCH#2、PDSCH#3}は、{PDSCH#1、PDSCH#2}、{PDSCH#1、PDSCH#3}などの少なくとも1つで読み替えられてもよい。 <Others>
In each of the above-described embodiments (for example, in (1-1) to (1-4)), {PDSCH # 2, PDSCH # 3} is {PDSCH # 1, PDSCH # 2}, {PDSCH # 1 , PDSCH # 3}, etc. may be read as at least one.
なお、上述の各実施形態における(例えば、(1-1)から(1-4)において)、{PDSCH#2、PDSCH#3}は、{PDSCH#1、PDSCH#2}、{PDSCH#1、PDSCH#3}などの少なくとも1つで読み替えられてもよい。 <Others>
In each of the above-described embodiments (for example, in (1-1) to (1-4)), {
また、UEは、上記(1-1)から(1-4)、上記(2-1)から(2-4)、上記(3-1)から(3-4)などのどれに基づいてPDSCHを処理するかを、当該UEの能力に基づいて判断してもよいし、基地局から通知される情報に基づいて判断してもよい。
In addition, the UE is based on any of the above (1-1) to (1-4), the above (2-1) to (2-4), the above (3-1) to (3-4), and the like. May be determined based on the capability of the UE, or may be determined based on the information notified from the base station.
例えば、UEは、上記(1-1)から(1-4)、上記(2-1)から(2-4)、上記(3-1)から(3-4)の処理の少なくとも1つをサポートすることを示す能力を有する場合、当該能力に関する情報をネットワーク(基地局)に報告してもよい。
For example, the UE performs at least one of the above processes (1-1) to (1-4), the above (2-1) to (2-4), and the above (3-1) to (3-4). If you have the ability to indicate support, you may report information about that ability to the network (base station).
基地局は、当該能力に関する情報を報告してきたUEに対して、上記(1-1)から(1-4)、上記(2-1)から(2-4)、上記(3-1)から(3-4)の処理の少なくとも1つを適用する(有効にする)ことを示す情報を、上位レイヤシグナリングなどを用いてUEに設定してもよい。
The base station tells the UE that has reported the information about the capability from (1-1) to (1-4), (2-1) to (2-4), and (3-1) above. Information indicating that at least one of the processes (3-4) is applied (enabled) may be set in the UE by using upper layer signaling or the like.
これらの能力又は処理を有効にすることを示す情報は、所定の単位ごとに定義されてもよい。ここで、当該所定の単位は、コンポーネントキャリア(Component Carrier(CC))、UE、周波数レンジ(Frequency Range(FR))、セルグループ(Cell Group(CG))などの少なくとも1つであってもよい。
Information indicating that these capabilities or processes are enabled may be defined for each predetermined unit. Here, the predetermined unit may be at least one such as a component carrier (Component Carrier (CC)), a UE, a frequency range (Frequency Range (FR)), and a cell group (Cell Group (CG)). ..
なお、当該能力は、明示的な能力として規定されてもよい。一方、当該能力は、他の能力に関連して定義されてもよい。例えば、当該能力は、URLLC動作に関する他の能力(例えば、UEが個別のHARQ-ACKコードブックをサポートするかの能力)と組み合わせて定義されてもよい。
The ability may be defined as an explicit ability. On the other hand, the ability may be defined in relation to other abilities. For example, the capability may be defined in combination with other capabilities related to URLLC operations, such as the ability of the UE to support a separate HARQ-ACK codebook.
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 (Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 (Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
図3は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
FIG. 3 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
Further, the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is MN, and the LTE (E-UTRA) base station (eNB) is SN.
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the host station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. In addition, Master Information Block (MIB) may be transmitted by PBCH.
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble for establishing a connection with the cell.
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
図4は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。 (base station)
FIG. 4 is a diagram showing an example of the configuration of the base station according to the embodiment. Thebase station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
図4は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。 (base station)
FIG. 4 is a diagram showing an example of the configuration of the base station according to the embodiment. The
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
Note that, in this example, the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer for data, control information, etc. acquired from the control unit 110 (for example,). RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulating, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
The transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
The transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
なお、送受信部120は、OOO処理に関する能力情報をユーザ端末20から受信してもよい。送受信部120は、OOO処理を有効化するための設定情報をユーザ端末20に送信してもよい。
Note that the transmission / reception unit 120 may receive capability information related to OOO processing from the user terminal 20. The transmission / reception unit 120 may transmit the setting information for enabling the OOO processing to the user terminal 20.
(ユーザ端末)
図5は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。 (User terminal)
FIG. 5 is a diagram showing an example of the configuration of the user terminal according to the embodiment. Theuser terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
図5は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。 (User terminal)
FIG. 5 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
The transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
Whether or not to apply the DFT process may be based on the transform precoding setting. The transmission / reception unit 220 (transmission processing unit 2211) described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
The transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
なお、制御部210は、第1のPhysical Downlink Shared Channel(PDSCH)より第2のPDSCHが遅く、前記第2のPDSCHのための第2のHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)が前記第1のPDSCHのための第1のHARQ-ACKより遅い場合において、第3のPDSCHに関する処理を制御してもよい、ここで、前記第2のPDSCHより前記第3のPDSCHが遅く、前記第3のPDSCHのための第3のHARQ-ACKが前記第2のHARQ-ACKより遅い。なお、第3のPDSCHに関する処理は、第3のPDSCHの受信処理を含んでもよいし、第3のHARQ-ACKの生成又は送信処理を含んでもよい。
In the control unit 210, the second PDSCH is slower than the first Physical Downlink Shared Channel (PDSCH), and the second Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK) for the second PDSCH is the first. The process relating to the third PDSCH may be controlled when it is slower than the first HARQ-ACK for the PDSCH, where the third PDSCH is slower than the second PDSCH and the third PDSCH. The third HARQ-ACK for PDSCH is slower than the second HARQ-ACK. The process related to the third PDSCH may include a process of receiving the third PDSCH, or may include a process of generating or transmitting a third HARQ-ACK.
言い換えると、制御部210は、第1、第2及び第3のPDSCHがある場合に、これらのPDSCH(又はデータ)の処理に関してアウトオブオーダー(Out-Of-Order(OOO))処理を適用するか否かを制御してもよい。
In other words, the control unit 210 applies out-of-order (OOO) processing with respect to the processing of the first, second, and third PDSCHs (or data) when there are first, second, and third PDSCHs. You may control whether or not.
送受信部220は、前記第3のPDSCHの受信処理を行うと決定される場合には、前記第3のPDSCHを復号してもよい。送受信部220は、前記第3のPDSCHの受信処理を行わない(例えば、ドロップする、スキップする)と決定される場合には、前記第3のPDSCHを復号しなくてもよい。送受信部220は、前記第1のHARQ-ACK、前記第2のHARQ-ACK及び前記第3のHARQ-ACKの少なくとも1つを基地局10に送信してもよい。
The transmission / reception unit 220 may decode the third PDSCH when it is determined to perform the reception process of the third PDSCH. When it is determined that the transmission / reception unit 220 does not perform the reception process of the third PDSCH (for example, drop or skip), the transmission / reception unit 220 does not have to decode the third PDSCH. The transmission / reception unit 220 may transmit at least one of the first HARQ-ACK, the second HARQ-ACK, and the third HARQ-ACK to the base station 10.
制御部210は、前記第3のPDSCHの受信処理を行うか否かを、前記第1のHARQ-ACK、前記第2のHARQ-ACK及び前記第3のHARQ-ACKの各タイミングに基づいて決定してもよい。
The control unit 210 determines whether or not to perform the reception process of the third PDSCH based on the timings of the first HARQ-ACK, the second HARQ-ACK, and the third HARQ-ACK. You may.
制御部210は、前記第3のPDSCHの受信処理を行うか否かを、前記第1のPDSCH、前記第2のPDSCH及び前記第3のPDSCHの各優先度に基づいて決定してもよい。
The control unit 210 may determine whether or not to perform the reception process of the third PDSCH based on the priorities of the first PDSCH, the second PDSCH, and the third PDSCH.
制御部210は、前記第3のPDSCHの受信処理を行うか否かを、前記第1のPDSCH、前記第2のPDSCH及び前記第3のPDSCHに関連する各処理能力に基づいて決定してもよい。
Even if the control unit 210 determines whether or not to perform the reception processing of the third PDSCH, based on each processing capacity related to the first PDSCH, the second PDSCH, and the third PDSCH. Good.
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 (Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 (Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each of them is not particularly limited.
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図6は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 6 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In this disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of. The storage 1003 may be referred to as an auxiliary storage device.
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal can also be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal can also be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the neurology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a numerology in a carrier. May be good. Here, the common RB may be specified by an index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
Further, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to another device.
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
Notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may mean a device (eg, a base station) included in the network.
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
Further, the base station in the present disclosure may be read by the user terminal. For example, communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), LTE 802.16 (WiMAX (registered trademark)), LTE 802. 20, Ultra-WideBand (UWB), Bluetooth®, other systems that utilize suitable wireless communication methods, next-generation systems extended based on these, and the like. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
In addition, "judgment (decision)" includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as "judgment (decision)" such as "accessing" (for example, accessing data in memory).
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like.
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
The "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
The terms "connected", "coupled", or any variation thereof, as used in this disclosure, are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as a modified or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.
Claims (5)
- 第1のPhysical Downlink Shared Channel(PDSCH)より第2のPDSCHが遅く、前記第2のPDSCHのための第2のHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)が前記第1のPDSCHのための第1のHARQ-ACKより遅い場合において、第3のPDSCHの受信処理を制御する、ここで、前記第2のPDSCHより前記第3のPDSCHが遅く、前記第3のPDSCHのための第3のHARQ-ACKが前記第2のHARQ-ACKより遅い、制御部と、
前記第3のPDSCHの受信処理を行うと決定される場合には、前記第3のPDSCHを復号する受信部と、を有することを特徴とするユーザ端末。 The second PDSCH is slower than the first Physical Downlink Shared Channel (PDSCH), and the second Hybrid Automatic Repeat reQuest ACKnowledgement (HARC-ACK) for the second PDSCH is the first for the first PDSCH. Controls the reception process of the third PDSCH when it is slower than the HARQ-ACK of the above, where the third PDSCH is slower than the second PDSCH and the third HARQ-for the third PDSCH. The control unit, whose ACK is slower than the second HARQ-ACK,
A user terminal characterized by having a receiving unit for decoding the third PDSCH when it is determined to perform the reception process of the third PDSCH. - 前記制御部は、前記第3のPDSCHの受信処理を行うか否かを、前記第1のHARQ-ACK、前記第2のHARQ-ACK及び前記第3のHARQ-ACKの各タイミングに基づいて決定することを特徴とする請求項1に記載のユーザ端末。 The control unit determines whether or not to perform the reception process of the third PDSCH based on the timings of the first HARQ-ACK, the second HARQ-ACK, and the third HARQ-ACK. The user terminal according to claim 1, wherein the user terminal is characterized by the above.
- 前記制御部は、前記第3のPDSCHの受信処理を行うか否かを、前記第1のPDSCH、前記第2のPDSCH及び前記第3のPDSCHの各優先度に基づいて決定することを特徴とする請求項1に記載のユーザ端末。 The control unit is characterized in that it determines whether or not to perform the reception process of the third PDSCH based on the priorities of the first PDSCH, the second PDSCH, and the third PDSCH. The user terminal according to claim 1.
- 前記制御部は、前記第3のPDSCHの受信処理を行うか否かを、前記第1のPDSCH、前記第2のPDSCH及び前記第3のPDSCHに関連する各処理能力に基づいて決定することを特徴とする請求項1に記載のユーザ端末。 The control unit determines whether or not to perform the reception process of the third PDSCH based on each processing capacity related to the first PDSCH, the second PDSCH, and the third PDSCH. The user terminal according to claim 1.
- 第1のPhysical Downlink Shared Channel(PDSCH)より第2のPDSCHが遅く、前記第2のPDSCHのための第2のHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)が前記第1のPDSCHのための第1のHARQ-ACKより遅い場合において、第3のPDSCHの受信処理を制御する、ここで、前記第2のPDSCHより前記第3のPDSCHが遅く、前記第3のPDSCHのための第3のHARQ-ACKが前記第2のHARQ-ACKより遅い、ステップと、
前記第3のPDSCHの受信処理を行うと決定される場合には、前記第3のPDSCHを復号するステップと、を有することを特徴とするユーザ端末の無線通信方法。 The second PDSCH is slower than the first Physical Downlink Shared Channel (PDSCH), and the second Hybrid Automatic Repeat reQuest ACKnowledgement (HARC-ACK) for the second PDSCH is the first for the first PDSCH. Controls the reception process of the third PDSCH when it is slower than the HARQ-ACK of the above, where the third PDSCH is slower than the second PDSCH and the third HARQ-for the third PDSCH. ACK is slower than the second HARQ-ACK, step and
A method for wireless communication of a user terminal, which comprises a step of decoding the third PDSCH when it is determined to perform the reception process of the third PDSCH.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980095102.7A CN113785614A (en) | 2019-04-05 | 2019-04-05 | User terminal and wireless communication method |
PCT/JP2019/015192 WO2020202565A1 (en) | 2019-04-05 | 2019-04-05 | User terminal and wireless communication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/015192 WO2020202565A1 (en) | 2019-04-05 | 2019-04-05 | User terminal and wireless communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020202565A1 true WO2020202565A1 (en) | 2020-10-08 |
Family
ID=72666432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015192 WO2020202565A1 (en) | 2019-04-05 | 2019-04-05 | User terminal and wireless communication method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113785614A (en) |
WO (1) | WO2020202565A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015088992A (en) * | 2013-10-31 | 2015-05-07 | 株式会社Nttドコモ | User terminal, base station, and radio communication method |
-
2019
- 2019-04-05 WO PCT/JP2019/015192 patent/WO2020202565A1/en active Application Filing
- 2019-04-05 CN CN201980095102.7A patent/CN113785614A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015088992A (en) * | 2013-10-31 | 2015-05-07 | 株式会社Nttドコモ | User terminal, base station, and radio communication method |
Non-Patent Citations (3)
Title |
---|
CATT: "Discussion on out-of-order scheduling/HARQ", 3GPP DRAFT; R1-1905362, 3 April 2019 (2019-04-03), Xi’an, China, pages 1 - 6, XP051707436 * |
NTT DOCOMO; INC: "Enhancements to scheduling/HARQ for URLLC", 3GPP DRAFT; R1-1904960, 12 April 2019 (2019-04-12), Xi’an, China, pages 1 - 9, XP051707354 * |
SONY: "Intra-UE multiplexing/prioritisation under Out-of-Order Scheduling", 3GPP DRAFT; R1-1904237, 2 April 2019 (2019-04-02), Xi’an, China, pages 1 - 6, XP051707164 * |
Also Published As
Publication number | Publication date |
---|---|
CN113785614A (en) | 2021-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7234262B2 (en) | Terminal, wireless communication method, base station and system | |
WO2020217408A1 (en) | User terminal and wireless communication method | |
JPWO2020170449A1 (en) | Terminals, wireless communication methods, base stations and systems | |
JPWO2020170444A1 (en) | User terminal and wireless communication method | |
WO2020188822A1 (en) | User terminal and wireless communication method | |
JPWO2020170398A1 (en) | Terminals, wireless communication methods, base stations and systems | |
JP7299300B2 (en) | Terminal, wireless communication method, base station and system | |
WO2020121413A1 (en) | User terminal and wireless communication method | |
JP7337848B2 (en) | Terminal, wireless communication method and system | |
WO2020255263A1 (en) | Terminal and wireless communication method | |
WO2020217514A1 (en) | User terminal and wireless communication method | |
WO2020261389A1 (en) | Terminal and wireless communication method | |
JPWO2020066025A1 (en) | Terminals, wireless communication methods, base stations and systems | |
JP7335349B2 (en) | Terminal, wireless communication method, base station and system | |
JPWO2020090122A1 (en) | User terminal and wireless communication method | |
WO2020222275A1 (en) | User terminal and wireless communication method | |
WO2020188666A1 (en) | User terminal and wireless communication method | |
WO2020213163A1 (en) | User terminal and wireless communication method | |
WO2020202448A1 (en) | User terminal and wireless communication method | |
WO2020188644A1 (en) | User terminal and wireless communication method | |
WO2020188821A1 (en) | User terminal and wireless communication method | |
WO2020194400A1 (en) | User terminal and wireless communication method | |
WO2020202478A1 (en) | User terminal and wireless communication method | |
WO2020144782A1 (en) | User equipment and wireless communication method | |
WO2021210108A1 (en) | Terminal, wireless communication method, and base station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19922539 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19922539 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |