WO2020202443A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2020202443A1
WO2020202443A1 PCT/JP2019/014523 JP2019014523W WO2020202443A1 WO 2020202443 A1 WO2020202443 A1 WO 2020202443A1 JP 2019014523 W JP2019014523 W JP 2019014523W WO 2020202443 A1 WO2020202443 A1 WO 2020202443A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
transmission
dci
field
dci format
Prior art date
Application number
PCT/JP2019/014523
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 武田
優元 ▲高▼橋
聡 永田
リフェ ワン
シャオホン ジャン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/014523 priority Critical patent/WO2020202443A1/en
Publication of WO2020202443A1 publication Critical patent/WO2020202443A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • eMBB enhanced Mobile Broadband
  • mMTC massive Machine Type Communications
  • URLLC Ultra-Reliable and Low-Latency Communications
  • URLLC is also under consideration for scheduling and triggering reference signals based on downlink control information (DCI).
  • DCI downlink control information
  • one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method capable of preferably performing URLLC communication.
  • the user terminal corresponds to a receiver that receives information about a set of Modulation and Coding Scheme (MCS) indexes and the set of MCS indexes from a predetermined MCS table. It is characterized by having a control unit that controls transmission based on the value of the MCS field included in the downlink control information according to the correspondence shown by the table from which the entries are extracted.
  • MCS Modulation and Coding Scheme
  • URLLC communication can be preferably performed.
  • FIG. 1 is a diagram showing an example of the configuration of DCI formats 0_0 and 0_2.
  • FIG. 2 is a diagram showing an example of the configuration of DCI formats 1_0 and 1_2.
  • FIG. 3 is a diagram showing an example of a 5-bit MCS table for PDSCH.
  • FIG. 4 is a diagram showing an example of a 4-bit MCS table for PDSCH.
  • FIG. 5 is a diagram showing an example of a table in which M indexes are picked up.
  • FIG. 6 is a diagram showing another example of a table in which M indexes are picked up.
  • FIG. 7 is a diagram showing still another example of a table in which M indexes are picked up.
  • FIG. 8 is a diagram showing another example of a 4-bit MCS table for PDSCH.
  • FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 10 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 11 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • eMBB enhanced Mobile Broadband
  • mMTC massive Machine Type Communications
  • URLLC Ultra-Reliable and Low-Latency Communications
  • URLLC requires greater delay reduction and higher reliability than eMBB.
  • the difference between the URLLC requirement and the eMBB requirement may be that the URLLC latency is smaller than the eMBB delay, and the URLLC requirement includes a reliability requirement. It may be.
  • the eMBB U-plane delay requirement may include that the downlink U-plane delay is 4 ms and the uplink U-plane delay is 4 ms.
  • the URLLC U-plane delay requirement may include that the downlink U-plane delay is 0.5 ms and the uplink U-plane delay is 0.5 ms.
  • the reliability requirement of URLLC may also include a 32-byte error rate of 10-5 at a U-plane delay of 1 ms.
  • a plurality of UEs for example, meMBB UE and URLLC UE
  • UEs for example, meMBB UE and URLLC UE
  • the UE needs to be treated as both eMBB UE and URLLC UE at the same time.
  • URLLC is also under consideration for scheduling and triggering reference signals based on downlink control information (DCI).
  • DCI downlink control information
  • the present inventors have conceived the structure of the DCI content or format for URLLC.
  • the URLLC of the present disclosure may be read by the first communication service, and the eMBB may be read by the second communication service.
  • the first embodiment relates to a specific DCI for PDSCH (Physical Downlink Shared Channel) reception or PUSCH (Physical Uplink Shared Channel) transmission for URLLC.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the DCI that schedules PUSCH for URLLC is referred to as DCI format 0_2, UL DCI for URLLC, etc.
  • the DCI that schedules PDSCH for URLLC is referred to as DCI format 1-2, DL DCI for URLLC, etc. Call.
  • the name is not limited to this.
  • DCI for URLLC may be read as one or both of DCI formats 0_2 and 1_2, DCI format for URLLC, and the like. Further, “one or both of DCI formats X and Y” may be expressed as DCI formats X / Y.
  • the monitor of DCI format 0_2 / 1-2 may be set in the UE by the RRC information element (for example, "SearchSpace IE").
  • the UE may monitor DCI format 0_1 / 1-2 as well as other DCI formats (eg DCI format 0_1 / 1-1) if configured.
  • the UE may monitor DCI format 0_0 / 1_0 for at least one such as system information, paging, random access, and the like.
  • the size of DCI format 0_2 / 1-2 may be adjusted to be the same as the size of DCI format 0_0 / 1_0.
  • the DCI format 0_2 / 1-2 may have a different field from the DCI format 0_0 / 1_0, or may have the same field.
  • the size of the field of the DCI format 0_2 / 1-2 may be different from the size of the same field included in the DCI format 0_0 / 1_0.
  • DCI format 0_2 / 1-2 When the size of DCI format 0_2 / 1-2 is smaller than the size of DCI format 0_0 / 1_0, a predetermined bit (for example, '0') is padded in DCI format 0_2 / 1-2 and adjusted to the same size as DCI format 0_0 / 1_0. May be done.
  • a predetermined bit for example, '0'
  • DCI format 0_2 / 1-2 may have one or more fields added for more flexible control than DCI format 0_0 / 1_0, and one or more fields may be deleted or reduced to match the payload size. May be done.
  • the DCI format 0_2 / 1-2 may have a different field configuration from the DCI format 0_0 / 1_0, or the total payload size may be adjusted to be the same by using padding bits.
  • the size of DCI format 0_1 / 1-2 may be adjusted to be the same as the size of DCI format 0_1 / 1-1_1.
  • the DCI format 0_0 / 1_0 may be replaced with the DCI format 0_1 / 1-1.
  • the DCI format 0_2 / 1-2 may be monitored in a specific search space set.
  • the DCI format 0_2 / 1-2 may be monitored in at least one of the UE-specific search space set and the common search space set.
  • FIG. 1 is a diagram showing an example of the configuration of DCI formats 0_0 and 0_2.
  • the number of bits of the field included in the payload of DCI format 0_0 and 0_2 and the remarks about the payload of DCI format 0_2 are shown.
  • the name of each field is not limited to the name shown in the figure.
  • the identifier field is a field indicating whether DCI is for DL or UL.
  • the identifier field may be included in both DCI formats 0_0 and 0_2.
  • the identifier field may be indicated by 1 bit.
  • the Identifier2 field is a field indicating whether DCI is for eMBB or URLLC (or DCI format 0_0 or 0_2).
  • the identifier 2 field may not be included in any of DCI formats 0_0 and 0_2, or may be included in at least one of DCI formats 0_0 or 0_2.
  • the identifier 2 field may be indicated by 1 bit.
  • the size of the identifier and the identifier 2 field is not limited to 1 bit. Further, for example, a 2-bit identifier field that summarizes these fields may be specified. In this case, the identifier field can be used to identify more than two DCI formats.
  • the frequency domain allocation field (which may also be called the frequency domain resource allocation field) has the number of bits of the following formula 1 in DCI format 0_0 and the number of bits of formula 2 below in DCI format 0_2. May be shown.
  • N BWP may indicate the size (bandwidth, number of resource blocks) of the active UL BWP or DL BWP
  • x may indicate one unit of type 1 resource allocation (number of consecutive resource blocks). Since URLLC is expected to use a wide bandwidth, type 1 resource allocation is preferable. In addition, another resource allocation method may be used for URLLC.
  • x may be associated with at least one of the BWP and the transmission period (for example, transmission time interval (TTI: Transmission Time Interval), slot, etc.) and set by higher layer signaling, or is specified by the specification. May be good. That is, x in Equation 2 may take a different value for at least one of the BWP and the transmission period.
  • TTI Transmission Time Interval
  • Fields included in DCI format 0_0 for example, 4-bit Time-domain assignment field, 1-bit frequency hopping flag field, 5-bit MCS (Modulation and Coding Scheme) field, 1-bit NDI (New Data Indicator) field, 2-bit RV (Redundancy Version) field, 4-bit HPN (HARQ Process Number) field, 2-bit TPC (Transmit Power Control) command field, 0 or 1-bit UL
  • the field may be configurable or fixed by specification.
  • the size of the field in DCI format 0_2 is preferably less than or equal to the size of the field in DCI format 0_0.
  • the time domain allocation field of DCI format 0_2 is set or specified to 4 bits or less
  • the frequency hopping flag field is set to 1 bit or less
  • the MCS field is set to 5 bits or less
  • the RV field is set to 2 bits or less
  • the HPN field is set to 4 bits or less. May be done.
  • Fields not included in DCI format 0_0 for example, repetition factor field, CSI (Channel State Information) request field, SRS (Sounding Reference Signal) request field, SRS resource indicator field, beta offset field, DMRS related field If (for example, parameters related to DMRS pattern, cyclic shift (CS: Cyclic Shift), application of IFDMA (Interleaved Frequency Division Multiple Access), etc.) are included in DCI format 0_2, the field may be configurable. However, it may be fixed according to the specifications (Fig. 1 shows a case that can be set).
  • the DCI formats 0_0 and 0_2 may include padding bits, if necessary.
  • the padding bits included in the DCI format 0_0 may be the number of bits for matching the sizes of the DCI format 1_0 and the DCI format 0_0.
  • the padding bit included in the DCI format 0_2 may be the number of bits for matching the sizes of the DCI format 1_0 (or 0_0) and the DCI format 0_2.
  • the UE may assume that the payload size of DCI format 0_2 is less than or equal to the payload size of DCI format 1_0, excluding the putting bits.
  • FIG. 2 is a diagram showing an example of the configuration of DCI formats 1_0 and 1_2. In this example, the number of bits of the field contained in the payload of DCI format 1_0 and 1_2 and the remarks about the payload of DCI format 1_2 are shown. The name of each field is not limited to the name shown in the figure.
  • DCI format 1_0 for example, 1-bit VRB-to-PRB mapping field, 2-bit DAI (Downlink Assignment Index) field, 3-bit PUCCH resource indicator field, 3-bit HARQ
  • a timing indicator HARQ timing indicator field
  • the field may be configurable or fixed according to the specifications.
  • the size of the field is preferably smaller than or equal to the size of the field in DCI format 1_2.
  • Rate-matching indicator field for example, parameters related to RMR (Rate-Matching Resource), zero power (ZP: Zero Power) CSI-RS, etc.
  • ZP Zero Power
  • TCI Transmission Configuration Indication state
  • a state Transmission Configuration Indication state
  • the field may be configurable or fixed by specification (FIG. 2 shows a case where it can be configured).
  • the DCI format 1-2 may include padding bits as needed.
  • the padding bits included in the DCI format 1_2 may be the number of bits for matching the sizes of the DCI format 1_0 (or 0_0) and the DCI format 1_2.
  • the UE may assume that the payload size of DCI format 1_2 is less than or equal to the payload size of DCI format 1_0, excluding the putting bits.
  • the padding bits in the DCI format 0_2 / 1-2 may be all '0', all '1', a specific pattern, or the like.
  • the padding bits in the DCI format 0_2 / 1-2 may be scrambled by a predetermined parameter (for example, UE identifier (UE-ID), RNTI (Radio Network Temporary Identifier)).
  • UE-ID UE identifier
  • RNTI Radio Network Temporary Identifier
  • the padding bit in the DCI format 0_2 / 1-2 may be used as a virtual cyclic redundancy check (V-CRC: Virtual Cyclic Redundancy Check) bit for reducing the false alarm probability.
  • V-CRC Virtual Cyclic Redundancy Check
  • the V-CRC bit corresponds to a known bit value included in the transmitted payload, and may be called a bit for pruning or the like. In general, the effect of error correction can be improved as the known bit value increases.
  • the size of a field with DCI format 0_2 / 1-2 (eg, RV, HPN, MCS, etc.) is reduced compared to the size of the field with DCI format 0_0 / 1_0, it is based on any of the following or a combination thereof:
  • the value of the field in DCI format 0_2 / 1-2 may be determined (or interpreted).
  • the correspondence (table) between the value of the field and the corresponding parameter is defined for each size of the field, and the table to be referenced is changed according to the size of the received field.
  • MSB Most Significant Bit
  • LSB least significant Bit
  • a specific bit value may be used as a V-CRC bit.
  • the MCS field when the MCS field is reduced, it may mean that the MCS table is defined for each MCS field size in the above (1). For example, a first MCS table containing 32 entries corresponding to an MCS field size of 5 bits, a second MCS table containing 16 entries corresponding to an MCS field size of 4 bits, and an MCS field size of 3 bits. A third MCS table, etc., containing eight entries corresponding to may be defined.
  • the UE interprets that the most significant bit is '0'.
  • the MCS index 0-15 corresponding to the value of the MCS field may be referred to in the 5-bit MCS table.
  • FIG. 3 is a diagram showing an example of a 5-bit MCS table for PDSCH.
  • the table is a table that associates MCS index I MCS, modulation order Q m, coding rate (target code rate) and the spectral efficiency.
  • the values shown in the MCS table in the present disclosure are merely examples, and are not limited thereto. Also, some items associated with the MCS index (eg, spectral efficiency) may be omitted or other items may be added.
  • the MCS table in FIG. 3 may be an MCS table for URLLC that is distinguished from the MCS table for eMBB, and may be called an MCS table 3 or the like.
  • the non-adaptive retransmission may be a retransmission using the same transmission parameters as the transmission parameters for the initial transmission.
  • the transmission parameter may include, for example, at least one of modulation scheme, modulation order, code rate, spectral efficiency, subcarrier spacing, radio resources, and the like.
  • entries that fall under non-adaptive retransmissions may have at least one element (code rate and spectral efficiency in FIG. 3) represented as "reserved”.
  • an entry corresponding to non-adaptive retransmission may have an element other than the modulation order corresponding to "reserved".
  • An entry containing a "reserved" element may be referred to as a "reserved" entry.
  • the MCS index corresponding to non-adaptive retransmission is not limited to 29-31, and may be, for example, 28-31.
  • the UE makes an entry corresponding to non-adaptive retransmission of the 5-bit MCS table. You may shift to the entry corresponding to the MCS index from the highest available 4-bit value.
  • FIG. 4 is a diagram showing an example of a 4-bit MCS table for PDSCH.
  • Making a decision regarding a specific field of DCI format 0_2 / 1-2 based on any of the above (1)-(3) or a combination thereof may be set in the UE by upper layer signaling.
  • the UE can appropriately monitor the DCI for URLLC and can suitably control the transmission / reception processing based on the DCI.
  • the size of the MCS field may be represented by ceil (log 2 M).
  • ceil (x) is a ceiling function of x.
  • the UE may be notified of a set of M MCS indexes (which may be referred to as an MCS index set) using higher layer signaling (eg, RRC signaling, MAC signaling).
  • the UE may refer to a table obtained by extracting (picking up) entries corresponding to the M indexes from a predetermined MCS table as a modification table corresponding to the reduced MCS field.
  • a UE with an MCS index set may assume that each code point in the MCS field of a given DCI corresponds to one of the entries in the MCS index set.
  • FIG. 5 is a diagram showing an example of a table in which M indexes are picked up.
  • the table on the left side of FIG. 5 corresponds to the MCS table 3 corresponding to the same 5-bit MCS index as in FIG.
  • the modification table will correspond to a 2-bit MCS index.
  • the present invention is not limited to this.
  • the correspondence between the original index and the index in the modification table may be specified.
  • the table consisting of the entries corresponding to the indexes ⁇ 0, 2, 5, 6 ⁇ of the MCS table 3 and the respective indexes replaced with ⁇ 1, 3, 0, 2 ⁇ is referred to as the above-mentioned modification table. You may decide.
  • the modification table may be rearranged in ascending order of index.
  • MCS table entry (or MCS index) may be associated with the presence or absence of a transform precoder (which may be referred to as valid or invalid).
  • M1 entries may be set as entries with a transform precoder
  • M2 entries may be set as entries without a transform precoder.
  • M1 + M2 M.
  • the presence or absence of the transform precoder applied to UL transmission may be specified by the MCS index.
  • the presence or absence of a transform precoder could only be set quasi-statically by RRC signaling, but by using such an association with the MCS index, the presence or absence of a transform precoder can be set. Can be dynamically instructed.
  • the UE may apply DFT-s-OFDM (Discrete Fourier Transform Spread OFDM) for transmission with a transform precoder, and CP-OFDM (Cyclic) for transmission without a transform precoder. Prefix OFDM) may be applied.
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • CP-OFDM Cyclic
  • Prefix OFDM Prefix OFDM
  • the entry of the MCS index 0-6 in the table of FIG. 6 is a pick-up of the entry of the MCS index 0-6 in the MCS table of FIG. 3, and corresponds to the transform precoder (enabled). ..
  • the entry of the MCS index 7-8 in the table of FIG. 6 is the entry of the MCS index 0-1 of the MCS table of FIG. 3 picked up, and without the transform precoder (disabled). Applicable. As shown in this example, the entries corresponding to the same MCS index in the original MCS table may be specified for the entries with and without the transform precoder, respectively.
  • FIGS. 5 and 6 show an example in which the Q m of the entries to be picked up is all 2, but the present invention is not limited to this, and for example, entries corresponding to a plurality of Q m values are set to be picked up. You may.
  • the reduced MCS table may consist only of entries that are not for "reservation” as shown in FIGS. 5 and 6, or may include entries for "reservation". That is, the above-mentioned M may correspond to the sum of M'and the number of entries for "reservation". Here, M'may correspond to the number of entries not for "reservation".
  • the UE When the UE sets a set of M'indexes as the MCS index set by higher layer signaling, the UE indicates one or more entries of the set M'indexes after the corresponding entries. It may be assumed that the reference is made to a table to which an entry for "reservation" corresponding to Q m of is added. In other words, the UE may refer to the reduced MCS table containing the entry for "reservation” without setting the index corresponding to the entry for "reservation” as the MCS index set.
  • the entry of the MCS index 0-5 in the table of FIG. 7 is the entry of the MCS index 0-5 of the MCS table of FIG. 3 picked up.
  • the entry of the MCS index 6 in the table of FIG. 7 is the entry of the MCS index 15 of the MCS table of FIG.
  • the "reserved" entries contained in the reduced table may be limited to those equal to the Q m value of the non-reserved entries contained in the table. ..
  • FIG. 8 is a diagram showing another example of a 4-bit MCS table for PDSCH.
  • a table or the like from which the MCS index 0-7 is extracted may be used instead of the entry of. That is, in the reduced MCS table, only the maximum value of the MCS index is an entry for "reservation", and the Q m value of each entry may be equal.
  • the reduced MCS table can be flexibly configured.
  • the second embodiment relates to the distinction between the contents or formats of the DCI for eMBB and the DCI for URLLC.
  • the second embodiment may be applied at the same time as the DCI format configuration (size adjustment, etc.) described in the first embodiment.
  • DCI for eMBB and DCI for URLLC (or DCI format) may be distinguished based on any of the following (A)-(D) or a combination thereof: (A) Search space setting, CORESET (COntrol REsource SET) setting or PDCCH (Physical Downlink Control Channel) monitoring period (PDCCH monitoring occasion), (B) Aggregation level corresponding to DCI, (C) RNTI, which scrambles the CRC contained in DCI, (D) A specific field of DCI.
  • A Search space setting, CORESET (COntrol REsource SET) setting or PDCCH (Physical Downlink Control Channel) monitoring period (PDCCH monitoring occasion)
  • B Aggregation level corresponding to DCI
  • C RNTI, which scrambles the CRC contained in DCI
  • D A specific field of DCI.
  • the UE is, for example, a DCI for eMBB if the aggregation level corresponds to a set of first values (for example, 1, 2 or 4) in a certain CORESET / search space set, and the aggregation. If the level is a DCI corresponding to a second set of values (eg, 8 or 16), it may be determined to be a DCI for URLLC.
  • a DCI for eMBB corresponds to a set of first values (for example, 1, 2 or 4) in a certain CORESET / search space set, and the aggregation.
  • a second set of values eg, 8 or 16
  • the UE may determine that if the CRC of the DCI is scrambled by the RNTI for URLLC, the DCI is the DCI for URLLC, otherwise it is the DCI for eMBB.
  • the identifier 2 field described above in FIGS. 1 and 2 may be used.
  • the UE may determine that the DCI received during that period is the URLLC DCI. Further, when the PDCCH monitoring period is located at the beginning of the slot, the UE may use the above (B) or (C) to determine whether or not the DCI is for URLLC.
  • the UE determines the DCI based on the above (C) for the first search space set (for example, the UE-specific search space set), and determines the DCI for the second search space set (for example, the common search space set).
  • the DCI may be determined based on the above (B).
  • the UE can appropriately distinguish between the DCI for eMBB and the DCI for URLLC.
  • DCI format 0_2 and the size of DCI format 1-22 are adjusted to be the same, but the size is not limited to this.
  • the size of DCI format 0_2 and the size of DCI format 1-2 may be different.
  • the size of DCI format 0_2 may be adjusted to the same size as DCI formats 0_0 and 1_1, and the size of DCI format 1_2 may be adjusted to the same size as DCI formats 0_1 and 1_1.
  • the size of DCI format 1_2 may be adjusted to the same size as DCI formats 0_0 and 1_0, and the size of DCI format 0_2 may be adjusted to the same size as DCI formats 0_1 and 1_1.
  • the size of the DCI for eMBB and the size of the DCI for URLLC may be the same or different.
  • control using the table in the present disclosure may be performed by using a function or the like that satisfies the correspondence shown in the table.
  • the UE uses a function that satisfies the correspondence shown by the table that extracts the entries corresponding to the set of MCS indexes from the predetermined MCS table, for example, and the transmission parameters related to the MCS. (Modulation order, coding rate, etc.) may be derived.
  • the table of the present disclosure (for example, the MCS table and the table from which the entries corresponding to the MCS index set are extracted) may be read as an information group, an information set, or the like.
  • the method of reducing the DCI format field (such as setting the MCS index set) in the present disclosure is not limited to the application to DCI for URLLC.
  • the method of reducing fields in a DCI format in the present disclosure may be applied even if the DCI format is not adjusted to the same size as other DCI formats.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the host station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 10 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer for data, control information, etc. acquired from the control unit 110 (for example,).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulating, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 includes a first DCI (for example, DCI format 0_2 / 1-2) for the first communication service (for example, URLLC) and a second DCI (for example, eMBB) for the second communication service (for example, eMBB).
  • a first DCI for example, DCI format 0_2 / 1-2
  • a second DCI for example, eMBB
  • eMBB for the second communication service
  • at least one of DCI format 0_0 / 1_0 or DCI format 0_1 / 1-1) may be transmitted to the user terminal 20.
  • the control unit 110 may adjust the size of the first DCI to be the same as that of the second DCI.
  • the transmission / reception unit 120 may transmit information regarding a set of modulation and coding Scheme (MCS) indexes to the user terminal 20.
  • MCS modulation and coding Scheme
  • FIG. 11 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • the transmission / reception unit 220 includes a first DCI (for example, DCI format 0_2 / 1-2) for the first communication service (for example, URLLC) and a second DCI (for example, eMBB) for the second communication service (for example, eMBB).
  • a first DCI for example, DCI format 0_2 / 1-2
  • a second DCI for example, eMBB
  • eMBB for the second communication service
  • the control unit 210 assumes that the first DCI is adjusted to have the same size as the second DCI (for example, is padded), and performs processing based on the first DCI (for example, padding). For example, PDSCH reception, PUSCH transmission, etc.) may be controlled.
  • control unit 210 When the field included in the second DCI is included in the first DCI, the control unit 210 has a size of the field of the first DCI equal to or smaller than the size of the field of the second DCI. You may assume that.
  • the control unit 210 determines the size of the field for each size of the field.
  • a table showing the values of the fields and the corresponding parameters (for example, the MCS table) is specified, and the table to be referred to may be changed according to the size of the predetermined field included in the first DCI received.
  • control unit 210 When the size of the predetermined field of the first DCI is reduced compared to the size of the field of the second DCI, the control unit 210 has the most significant bit or the least significant bit of the value of the predetermined field. May be assumed to be a particular bit value (eg, '0').
  • the control unit 210 sets the value of the field used for the second DCI.
  • a table in which a particular (eg, non-adaptive retransmission) entry contained in a table showing the corresponding parameters is shifted to an entry corresponding to a value available for the size of the given field of the first DCI. You may refer to it.
  • the transmission / reception unit 220 may receive information regarding a set of modulation and coding Scheme (MCS) indexes.
  • MCS modulation and coding Scheme
  • the control unit 210 follows (or or) the correspondence shown by the table in which the entries corresponding to the set of MCS indexes are extracted from the predetermined MCS table (for example, the MCS table corresponding to the MCS field having a fixed number of bits (5 bits)). (Refer to the correspondence), transmission based on the value of the MCS field included in the downlink control information (DCI) (for example, PUSCH transmission) may be controlled.
  • DCI downlink control information
  • the control unit 210 may determine whether or not there is a transform precoder to be applied to transmission based on the value of the MCS field.
  • the control unit 210 determines that the extracted table is a table in which an entry corresponding to the set of MCS indexes is followed by a reservation entry corresponding to one or more modulation orders indicated by the entry. You may assume.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the neurology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a numerology in a carrier. May be good.
  • the common RB may be specified by an index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to another device.
  • Notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • LTE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user terminal according to an aspect of the present disclosure is characterized by comprising: a reception unit that receives information related to a set of Modulation and Coding Scheme (MCS) indexes; and a control unit that controls transmission based on a value of an MCS field included in downlink control information in accordance with correspondence indicated by a table obtained by extracting entries corresponding to the set of MCS indexes out of a predetermined MCS table. According to an aspect of the present disclosure, URLLC communication can be implemented in a suitable manner.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
 将来の無線通信システム(例えば、NR)では、モバイルブロードバンドのさらなる高度化(eMBB:enhanced Mobile Broadband)、多数同時接続を実現するマシンタイプ通信(mMTC:massive Machine Type Communications)、高信頼かつ低遅延通信(URLLC:Ultra-Reliable and Low-Latency Communications)などのユースケースが想定される。 In future wireless communication systems (for example, NR), further advancement of mobile broadband (eMBB: enhanced Mobile Broadband), machine type communication (mMTC: massive Machine Type Communications) that realizes multiple simultaneous connections, highly reliable and low latency communication Use cases such as (URLLC: Ultra-Reliable and Low-Latency Communications) are envisioned.
 URLLCについても、eMBBと同様に、下り制御情報(DCI:Downlink Control Information)に基づいてスケジューリング、参照信号のトリガなどを行うことが検討されている。 Similar to eMBB, URLLC is also under consideration for scheduling and triggering reference signals based on downlink control information (DCI).
 しかしながら、URLLC向けのDCIの内容又はフォーマットをどのように構成するかについては、まだ検討が進んでいない。URLLC向けのDCIを明確に決定しなければ、適切なURLLC通信を行うことができず、通信スループットが低下するおそれがある。 However, how to configure the contents or format of DCI for URLLC has not been studied yet. If the DCI for URLLC is not clearly determined, appropriate URLLC communication cannot be performed, and the communication throughput may decrease.
 そこで、本開示は、URLLC通信を好適に実施できるユーザ端末及び無線通信方法を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method capable of preferably performing URLLC communication.
 本開示の一態様に係るユーザ端末は、変調及び符号化方式(Modulation and Coding Scheme(MCS))インデックスのセットに関する情報を受信する受信部と、所定のMCSテーブルから前記MCSインデックスのセットに該当するエントリを抽出したテーブルが示す対応関係に従って、下り制御情報に含まれるMCSフィールドの値に基づく送信を制御する制御部と、を有することを特徴とする。 The user terminal according to one aspect of the present disclosure corresponds to a receiver that receives information about a set of Modulation and Coding Scheme (MCS) indexes and the set of MCS indexes from a predetermined MCS table. It is characterized by having a control unit that controls transmission based on the value of the MCS field included in the downlink control information according to the correspondence shown by the table from which the entries are extracted.
 本開示の一態様によれば、URLLC通信を好適に実施できる。 According to one aspect of the present disclosure, URLLC communication can be preferably performed.
図1は、DCIフォーマット0_0及び0_2の構成の一例を示す図である。FIG. 1 is a diagram showing an example of the configuration of DCI formats 0_0 and 0_2. 図2は、DCIフォーマット1_0及び1_2の構成の一例を示す図である。FIG. 2 is a diagram showing an example of the configuration of DCI formats 1_0 and 1_2. 図3は、PDSCHのための5ビットのMCSテーブルの一例を示す図である。FIG. 3 is a diagram showing an example of a 5-bit MCS table for PDSCH. 図4は、PDSCHのための4ビットのMCSテーブルの一例を示す図である。FIG. 4 is a diagram showing an example of a 4-bit MCS table for PDSCH. 図5は、M個のインデックスをピックアップしたテーブルの一例を示す図である。FIG. 5 is a diagram showing an example of a table in which M indexes are picked up. 図6は、M個のインデックスをピックアップしたテーブルの別の一例を示す図である。FIG. 6 is a diagram showing another example of a table in which M indexes are picked up. 図7は、M個のインデックスをピックアップしたテーブルのさらに別の一例を示す図である。FIG. 7 is a diagram showing still another example of a table in which M indexes are picked up. 図8は、PDSCHのための4ビットのMCSテーブルの別の一例を示す図である。FIG. 8 is a diagram showing another example of a 4-bit MCS table for PDSCH. 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図10は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 10 is a diagram showing an example of the configuration of the base station according to the embodiment. 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 11 is a diagram showing an example of the configuration of the user terminal according to the embodiment. 図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 12 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
 将来の無線通信システム(例えば、NR)では、モバイルブロードバンドのさらなる高度化(eMBB:enhanced Mobile Broadband)、多数同時接続を実現するマシンタイプ通信(mMTC:massive Machine Type Communications)、高信頼かつ低遅延通信(URLLC:Ultra-Reliable and Low-Latency Communications)などのユースケースが想定される。例えば、URLLCでは、eMBBより大きい遅延削減及びより高い信頼性が要求される。 In future wireless communication systems (for example, NR), further advancement of mobile broadband (eMBB: enhanced Mobile Broadband), machine type communication (mMTC: massive Machine Type Communications) that realizes multiple simultaneous connections, highly reliable and low latency communication Use cases such as (URLLC: Ultra-Reliable and Low-Latency Communications) are envisioned. For example, URLLC requires greater delay reduction and higher reliability than eMBB.
 URLLCの要求条件(requirement)とeMBBの要求条件の違いは、URLLCの遅延(latency)がeMBBの遅延よりも小さいことであってもよいし、URLLCの要求条件が信頼性の要求条件を含むことであってもよい。 The difference between the URLLC requirement and the eMBB requirement may be that the URLLC latency is smaller than the eMBB delay, and the URLLC requirement includes a reliability requirement. It may be.
 例えば、eMBBのUプレーン遅延の要件は、下りリンクのUプレーン遅延が4msであり、上りリンクのUプレーン遅延が4msであること、を含んでもよい。一方、URLLCのUプレーン遅延の要件は、下りリンクのUプレーン遅延が0.5msであり、上りリンクのUプレーン遅延が0.5msであること、を含んでもよい。また、URLLCの信頼性の要件は、1msのUプレーン遅延において、32バイトの誤り率が10-5であることを含んでもよい。 For example, the eMBB U-plane delay requirement may include that the downlink U-plane delay is 4 ms and the uplink U-plane delay is 4 ms. On the other hand, the URLLC U-plane delay requirement may include that the downlink U-plane delay is 0.5 ms and the uplink U-plane delay is 0.5 ms. The reliability requirement of URLLC may also include a 32-byte error rate of 10-5 at a U-plane delay of 1 ms.
 あるキャリア(又はセル)に、異なる要求をターゲットとする複数のUE(例えば、meMBB UEとURLLC UE)が多重されることが求められている。1つのUEがeMBB及びURLLCの両方をサポートする場合、当該UEはeMBB UE及びURLLC UEの両方として同時に取り扱われる必要がある。 It is required that a plurality of UEs (for example, meMBB UE and URLLC UE) targeting different requests are multiplexed in a certain carrier (or cell). When one UE supports both eMBB and URLLC, the UE needs to be treated as both eMBB UE and URLLC UE at the same time.
 URLLCについても、eMBBと同様に、下り制御情報(DCI:Downlink Control Information)に基づいてスケジューリング、参照信号のトリガなどを行うことが検討されている。 Similar to eMBB, URLLC is also under consideration for scheduling and triggering reference signals based on downlink control information (DCI).
 しかしながら、URLLC向けのDCIの内容又はフォーマットをどのように構成するかについては、まだ検討が進んでいない。URLLC向けのDCIを明確に決定しなければ、適切なURLLC通信を行うことができず、通信スループットが低下するおそれがある。 However, how to configure the contents or format of DCI for URLLC has not been studied yet. If the DCI for URLLC is not clearly determined, appropriate URLLC communication cannot be performed, and the communication throughput may decrease.
 そこで、本発明者らは、URLLC向けのDCIの内容又はフォーマットの構成を着想した。 Therefore, the present inventors have conceived the structure of the DCI content or format for URLLC.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied individually or in combination.
 なお、本開示のURLLCは第1の通信サービスで読み替えられてもよいし、eMBBは第2の通信サービスで読み替えられてもよい。 Note that the URLLC of the present disclosure may be read by the first communication service, and the eMBB may be read by the second communication service.
(無線通信方法)
<第1の実施形態>
 第1の実施形態は、URLLC向けのPDSCH(Physical Downlink Shared Channel)受信又はPUSCH(Physical Uplink Shared Channel)送信のための特定のDCIに関する。
(Wireless communication method)
<First Embodiment>
The first embodiment relates to a specific DCI for PDSCH (Physical Downlink Shared Channel) reception or PUSCH (Physical Uplink Shared Channel) transmission for URLLC.
 本開示では、簡単のため、URLLC向けのPUSCHをスケジュールするDCIを、DCIフォーマット0_2、URLLC向けUL DCIなどと呼び、URLLC向けのPDSCHをスケジュールするDCIを、DCIフォーマット1_2、URLLC向けDL DCIなどと呼ぶ。なお、呼称はこれに限られない。 In the present disclosure, for the sake of simplicity, the DCI that schedules PUSCH for URLLC is referred to as DCI format 0_2, UL DCI for URLLC, etc., and the DCI that schedules PDSCH for URLLC is referred to as DCI format 1-2, DL DCI for URLLC, etc. Call. The name is not limited to this.
 本開示において、「URLLC向けDCI」は、DCIフォーマット0_2及び1_2の一方又は両方、URLLC向けDCIフォーマットなどで読み替えられてもよい。また、「DCIフォーマットX及びYの一方又は両方」は、DCIフォーマットX/Yと表記されてもよい。 In the present disclosure, "DCI for URLLC" may be read as one or both of DCI formats 0_2 and 1_2, DCI format for URLLC, and the like. Further, "one or both of DCI formats X and Y" may be expressed as DCI formats X / Y.
 DCIフォーマット0_2/1_2のモニタは、RRC情報要素(例えば、「SearchSpace IE」)によってUEに設定されてもよい。UEは、設定される場合には、DCIフォーマット0_2/1_2に加えて他のDCIフォーマット(例えば、DCIフォーマット0_1/1_1など)をモニタしてもよい。 The monitor of DCI format 0_2 / 1-2 may be set in the UE by the RRC information element (for example, "SearchSpace IE"). The UE may monitor DCI format 0_1 / 1-2 as well as other DCI formats (eg DCI format 0_1 / 1-1) if configured.
 UEは、DCIフォーマット0_2/1_2をモニタする場合において、システム情報、ページング、ランダムアクセスなどの少なくとも1つのために、DCIフォーマット0_0/1_0をモニタしてもよい。 When monitoring DCI format 0_2 / 1-2, the UE may monitor DCI format 0_0 / 1_0 for at least one such as system information, paging, random access, and the like.
 DCIフォーマット0_2/1_2のサイズは、DCIフォーマット0_0/1_0のサイズと同じに調整されてもよい。 The size of DCI format 0_2 / 1-2 may be adjusted to be the same as the size of DCI format 0_0 / 1_0.
 DCIフォーマット0_2/1_2は、DCIフォーマット0_0/1_0と異なるフィールドを有してもよいし、同じフィールドを有してもよい。当該DCIフォーマット0_2/1_2のフィールドのサイズは、DCIフォーマット0_0/1_0に含まれる同じフィールドのサイズと異なってもよい。 The DCI format 0_2 / 1-2 may have a different field from the DCI format 0_0 / 1_0, or may have the same field. The size of the field of the DCI format 0_2 / 1-2 may be different from the size of the same field included in the DCI format 0_0 / 1_0.
 DCIフォーマット0_2/1_2のサイズがDCIフォーマット0_0/1_0のサイズより小さい場合、DCIフォーマット0_2/1_2に所定のビット(例えば、‘0’)がパディングされ、DCIフォーマット0_0/1_0のサイズと同じに調整されてもよい。 When the size of DCI format 0_2 / 1-2 is smaller than the size of DCI format 0_0 / 1_0, a predetermined bit (for example, '0') is padded in DCI format 0_2 / 1-2 and adjusted to the same size as DCI format 0_0 / 1_0. May be done.
 DCIフォーマット0_2/1_2は、DCIフォーマット0_0/1_0に比べて柔軟な制御を行うために1つ以上のフィールドが追加されてもよいし、ペイロードサイズを合わせるために1つ以上のフィールドが削除又は低減されてもよい。 DCI format 0_2 / 1-2 may have one or more fields added for more flexible control than DCI format 0_0 / 1_0, and one or more fields may be deleted or reduced to match the payload size. May be done.
 DCIフォーマット0_2/1_2は、DCIフォーマット0_0/1_0とフィールドの構成が異なっても、パディングビットを用いて総ペイロードサイズが同じに調整されてもよい。 The DCI format 0_2 / 1-2 may have a different field configuration from the DCI format 0_0 / 1_0, or the total payload size may be adjusted to be the same by using padding bits.
 また、DCIフォーマット0_2/1_2のサイズは、DCIフォーマット0_1/1_1のサイズと同じに調整されてもよい。上述したDCIフォーマット0_2/1_2とDCIフォーマット0_0/1_0とのサイズ、フィールドなどの説明において、DCIフォーマット0_0/1_0をDCIフォーマット0_1/1_1に置き換えてもよい。 Further, the size of DCI format 0_1 / 1-2 may be adjusted to be the same as the size of DCI format 0_1 / 1-1_1. In the description of the sizes, fields, etc. of the DCI format 0_2 / 1_2 and the DCI format 0_0 / 1_0 described above, the DCI format 0_0 / 1_0 may be replaced with the DCI format 0_1 / 1-1.
 DCIフォーマット0_2/1_2は、特定のサーチスペースセット(search space set)においてモニタされてもよい。例えば、DCIフォーマット0_2/1_2は、UE固有サーチスペースセット(UE-specific search space set)及び共通サーチスペースセット(common search space set)の少なくとも一方においてモニタされてもよい。 The DCI format 0_2 / 1-2 may be monitored in a specific search space set. For example, the DCI format 0_2 / 1-2 may be monitored in at least one of the UE-specific search space set and the common search space set.
 UE固有サーチスペースセットにおいてモニタされるDCIフォーマット0_2/1_2が、DCIフォーマット0_0及び1_0のサイズと同じに調整されるケースについて、図1及び図2を参照して説明する。 A case where the DCI format 0_2 / 1-2 monitored in the UE-specific search space set is adjusted to the same size as the DCI formats 0_0 and 1_0 will be described with reference to FIGS. 1 and 2.
 図1は、DCIフォーマット0_0及び0_2の構成の一例を示す図である。本例では、DCIフォーマット0_0及び0_2のペイロードに含まれるフィールドのビット数と、DCIフォーマット0_2のペイロードについての備考と、が示されている。なお、各フィールド名は、図に示す名称に限られない。 FIG. 1 is a diagram showing an example of the configuration of DCI formats 0_0 and 0_2. In this example, the number of bits of the field included in the payload of DCI format 0_0 and 0_2 and the remarks about the payload of DCI format 0_2 are shown. The name of each field is not limited to the name shown in the figure.
 識別子(Identifier)フィールドは、DCIがDL向けかUL向けかを示すフィールドである。識別子フィールドは、DCIフォーマット0_0及び0_2の両方に含まれてもよい。識別子フィールドは、1ビットで示されてもよい。 The identifier field is a field indicating whether DCI is for DL or UL. The identifier field may be included in both DCI formats 0_0 and 0_2. The identifier field may be indicated by 1 bit.
 識別子2(Identifier2)フィールドは、DCIがeMBB向けかURLLCか(又は、DCIフォーマット0_0か0_2か)を示すフィールドである。識別子2フィールドは、DCIフォーマット0_0及び0_2のいずれにも含まれなくてもよいし、DCIフォーマット0_0又は0_2の少なくとも一方に含まれてもよい。識別子2フィールドは、1ビットで示されてもよい。 The Identifier2 field is a field indicating whether DCI is for eMBB or URLLC (or DCI format 0_0 or 0_2). The identifier 2 field may not be included in any of DCI formats 0_0 and 0_2, or may be included in at least one of DCI formats 0_0 or 0_2. The identifier 2 field may be indicated by 1 bit.
 なお、識別子及び識別子2フィールドのサイズは、1ビットに限られない。また、これらのフィールドをまとめた、例えば2ビットの識別子フィールドが規定されてもよい。この場合、当該識別子フィールドを用いて、2種類を超えるDCIフォーマットの識別を行うことができる。 The size of the identifier and the identifier 2 field is not limited to 1 bit. Further, for example, a 2-bit identifier field that summarizes these fields may be specified. In this case, the identifier field can be used to identify more than two DCI formats.
 周波数ドメイン割り当て(Time-domain assignment)フィールド(周波数ドメインリソース割り当てフィールドと呼ばれてもよい)は、DCIフォーマット0_0では以下の式1のビット数で、DCIフォーマット0_2では以下の式2のビット数で示されてもよい。 The frequency domain allocation field (which may also be called the frequency domain resource allocation field) has the number of bits of the following formula 1 in DCI format 0_0 and the number of bits of formula 2 below in DCI format 0_2. May be shown.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、NBWPは、アクティブなUL BWP又はDL BWPのサイズ(帯域幅、リソースブロック数)を示し、xはタイプ1リソース割り当ての1単位(連続するリソースブロック数)を示してもよい。URLLCは広い帯域を利用することが期待されるため、タイプ1リソース割り当てが好適である。なお、URLLC向けに他のリソース割り当て方式が利用されてもよい。 Here, N BWP may indicate the size (bandwidth, number of resource blocks) of the active UL BWP or DL BWP, and x may indicate one unit of type 1 resource allocation (number of consecutive resource blocks). Since URLLC is expected to use a wide bandwidth, type 1 resource allocation is preferable. In addition, another resource allocation method may be used for URLLC.
 なお、xは、BWP及び送信期間(例えば、送信時間間隔(TTI:Transmission Time Interval)、スロットなど)の少なくとも1つに関連付けられて上位レイヤシグナリングによって設定されてもよいし、仕様によって規定されてもよい。つまり、式2のxは、BWP及び送信期間の少なくとも1つごとに、異なる値をとってもよい。 Note that x may be associated with at least one of the BWP and the transmission period (for example, transmission time interval (TTI: Transmission Time Interval), slot, etc.) and set by higher layer signaling, or is specified by the specification. May be good. That is, x in Equation 2 may take a different value for at least one of the BWP and the transmission period.
 DCIフォーマット0_0に含まれるフィールド(例えば、4ビットの時間ドメイン割り当て(Time-domain assignment)フィールド、1ビットの周波数ホッピングフラグ(Freq-hopping flag)フィールド、5ビットのMCS(Modulation and Coding Scheme)フィールド、1ビットのNDI(New Data Indicator)フィールド、2ビットのRV(Redundancy Version)フィールド、4ビットのHPN(HARQ Process Number)フィールド、2ビットのTPC(Transmit Power Control)コマンドフィールド、0又は1ビットのUL/SUL指示子(Uplink/Supplementary Uplink indicator)フィールド)がDCIフォーマット0_2に含まれる場合、当該フィールドは設定可能(configurable)であってもよいし、仕様によって固定(fixed)されてもよい。 Fields included in DCI format 0_0 (for example, 4-bit Time-domain assignment field, 1-bit frequency hopping flag field, 5-bit MCS (Modulation and Coding Scheme) field, 1-bit NDI (New Data Indicator) field, 2-bit RV (Redundancy Version) field, 4-bit HPN (HARQ Process Number) field, 2-bit TPC (Transmit Power Control) command field, 0 or 1-bit UL When the / SUL indicator (Uplink / Supplementary Uplink indicator field) is included in DCI format 0_2, the field may be configurable or fixed by specification.
 DCIフォーマット0_0に含まれるフィールドがDCIフォーマット0_2に含まれる場合、DCIフォーマット0_2の当該フィールドのサイズは、DCIフォーマット0_0の当該フィールドのサイズ以下であることが好ましい。 When the field included in DCI format 0_0 is included in DCI format 0_2, the size of the field in DCI format 0_2 is preferably less than or equal to the size of the field in DCI format 0_0.
 図1では、DCIフォーマット0_2の時間ドメイン割り当てフィールドは4ビット以下、周波数ホッピングフラグフィールドは1ビット以下、MCSフィールドは5ビット以下、RVフィールドは2ビット以下、HPNフィールドは4ビット以下に設定又は規定されてもよい。 In FIG. 1, the time domain allocation field of DCI format 0_2 is set or specified to 4 bits or less, the frequency hopping flag field is set to 1 bit or less, the MCS field is set to 5 bits or less, the RV field is set to 2 bits or less, and the HPN field is set to 4 bits or less. May be done.
 DCIフォーマット0_0に含まれないフィールド(例えば、繰り返し因数(repetition factor)フィールド、CSI(Channel State Information)リクエストフィールド、SRS(Sounding Reference Signal)リクエストフィールド、SRSリソース指示子フィールド、ベータオフセットフィールド、DMRS関係フィールド(例えば、DMRSパターン、サイクリックシフト(CS:Cyclic Shift)、IFDMA(Interleaved Frequency Division Multiple Access)の適用などに関するパラメータ))がDCIフォーマット0_2に含まれる場合、当該フィールドは設定可能であってもよいし、仕様によって固定されてもよい(図1では設定可能なケースが示されている)。 Fields not included in DCI format 0_0 (for example, repetition factor field, CSI (Channel State Information) request field, SRS (Sounding Reference Signal) request field, SRS resource indicator field, beta offset field, DMRS related field If (for example, parameters related to DMRS pattern, cyclic shift (CS: Cyclic Shift), application of IFDMA (Interleaved Frequency Division Multiple Access), etc.) are included in DCI format 0_2, the field may be configurable. However, it may be fixed according to the specifications (Fig. 1 shows a case that can be set).
 DCIフォーマット0_0及び0_2には必要に応じてパディングビットが含まれてもよい。DCIフォーマット0_0に含まれるパディングビットは、DCIフォーマット1_0とDCIフォーマット0_0とのサイズを合わせるためのビット数であってもよい。 The DCI formats 0_0 and 0_2 may include padding bits, if necessary. The padding bits included in the DCI format 0_0 may be the number of bits for matching the sizes of the DCI format 1_0 and the DCI format 0_0.
 DCIフォーマット0_2に含まれるパディングビットは、DCIフォーマット1_0(又は0_0)とDCIフォーマット0_2とのサイズを合わせるためのビット数であってもよい。UEは、パティングビットを除くと、DCIフォーマット0_2のペイロードサイズがDCIフォーマット1_0のペイロードサイズ以下であると想定してもよい。 The padding bit included in the DCI format 0_2 may be the number of bits for matching the sizes of the DCI format 1_0 (or 0_0) and the DCI format 0_2. The UE may assume that the payload size of DCI format 0_2 is less than or equal to the payload size of DCI format 1_0, excluding the putting bits.
 図2は、DCIフォーマット1_0及び1_2の構成の一例を示す図である。本例では、DCIフォーマット1_0及び1_2のペイロードに含まれるフィールドのビット数と、DCIフォーマット1_2のペイロードについての備考と、が示されている。なお、各フィールド名は、図に示す名称に限られない。 FIG. 2 is a diagram showing an example of the configuration of DCI formats 1_0 and 1_2. In this example, the number of bits of the field contained in the payload of DCI format 1_0 and 1_2 and the remarks about the payload of DCI format 1_2 are shown. The name of each field is not limited to the name shown in the figure.
 なお、識別子フィールド、識別子2フィールド、MCSフィールドなど、図1にも登場したフィールドについては、図1の説明におけるDCIフォーマット0_0及び0_2をDCIフォーマット1_0及び1_2に置き換えた内容に該当するため、説明を繰り返さない。 The fields appearing in FIG. 1, such as the identifier field, the identifier 2 field, and the MCS field, correspond to the contents in which DCI formats 0_0 and 0_2 are replaced with DCI formats 1_0 and 1_2 in the explanation of FIG. Do not repeat.
 DCIフォーマット1_0に含まれるフィールド(例えば、1ビットのVRB-to-PRBマッピングフィールド、2ビットのDAI(Downlink Assignment Index)フィールド、3ビットのPUCCHリソース指示子(PUCCH resource indicator)フィールド、3ビットのHARQタイミング指示子(HARQ timing indicator)フィールド)がDCIフォーマット1_2に含まれる場合、当該フィールドは設定可能(configurable)であってもよいし、仕様によって固定(fixed)されてもよい。 Fields included in DCI format 1_0 (for example, 1-bit VRB-to-PRB mapping field, 2-bit DAI (Downlink Assignment Index) field, 3-bit PUCCH resource indicator field, 3-bit HARQ When a timing indicator (HARQ timing indicator field) is included in the DCI format 1-2, the field may be configurable or fixed according to the specifications.
 DCIフォーマット1_0に含まれるフィールドがDCIフォーマット1_2に含まれる場合、当該フィールドのサイズはDCIフォーマット1_2のフィールドのサイズ以下であることが好ましい。 When the field included in DCI format 1_0 is included in DCI format 1-2, the size of the field is preferably smaller than or equal to the size of the field in DCI format 1_2.
 DCIフォーマット1_0に含まれないフィールド(例えば、レートマッチング指示子(Rate-matching indicator)フィールド(例えば、RMR(Rate-Matching Resource)、ゼロパワー(ZP:Zero Power)CSI-RSなどに関するパラメータ)、TCI状態(Transmission Configuration Indication state)フィールド)がDCIフォーマット1_2に含まれる場合、当該フィールドは設定可能であってもよいし、仕様によって固定されてもよい(図2では設定可能なケースが示されている)。 Fields not included in DCI format 1_0 (for example, rate-matching indicator field (for example, parameters related to RMR (Rate-Matching Resource), zero power (ZP: Zero Power) CSI-RS, etc.), TCI When a state (Transmission Configuration Indication state) field is included in DCI format 1-2, the field may be configurable or fixed by specification (FIG. 2 shows a case where it can be configured). ).
 DCIフォーマット1_2には必要に応じてパディングビットが含まれてもよい。DCIフォーマット1_2に含まれるパディングビットは、DCIフォーマット1_0(又は0_0)とDCIフォーマット1_2とのサイズを合わせるためのビット数であってもよい。UEは、パティングビットを除くと、DCIフォーマット1_2のペイロードサイズがDCIフォーマット1_0のペイロードサイズ以下であると想定してもよい。 The DCI format 1-2 may include padding bits as needed. The padding bits included in the DCI format 1_2 may be the number of bits for matching the sizes of the DCI format 1_0 (or 0_0) and the DCI format 1_2. The UE may assume that the payload size of DCI format 1_2 is less than or equal to the payload size of DCI format 1_0, excluding the putting bits.
 DCIフォーマット0_2/1_2におけるパディングビットは、全て‘0’、全て‘1’、特定のパターンなどであってもよい。DCIフォーマット0_2/1_2におけるパディングビットは、所定のパラメータ(例えば、UE識別子(UE-ID)、RNTI(Radio Network Temporary Identifier))によってスクランブルされてもよい。 The padding bits in the DCI format 0_2 / 1-2 may be all '0', all '1', a specific pattern, or the like. The padding bits in the DCI format 0_2 / 1-2 may be scrambled by a predetermined parameter (for example, UE identifier (UE-ID), RNTI (Radio Network Temporary Identifier)).
 DCIフォーマット0_2/1_2におけるパディングビットは、誤検出率(false alarm probability)を低減するための仮想巡回冗長検査(V-CRC:Virtual Cyclic Redundancy Check)ビットとして利用されてもよい。V-CRCビットは、送信されるペイロード内に含まれる既知のビット値に該当し、プルーニング(pruning)用のビットなどと呼ばれてもよい。一般に、既知のビット値が増加するほど誤り訂正の効果を向上できる。 The padding bit in the DCI format 0_2 / 1-2 may be used as a virtual cyclic redundancy check (V-CRC: Virtual Cyclic Redundancy Check) bit for reducing the false alarm probability. The V-CRC bit corresponds to a known bit value included in the transmitted payload, and may be called a bit for pruning or the like. In general, the effect of error correction can be improved as the known bit value increases.
 DCIフォーマット0_2/1_2のあるフィールド(例えば、RV、HPN、MCSなど)のサイズが、DCIフォーマット0_0/1_0の当該フィールドのサイズに比べて低減される場合、以下のいずれか又はこれらの組み合わせに基づいて、DCIフォーマット0_2/1_2の当該フィールドの値が決定(又は解釈)されてもよい:
 (1)当該フィールドのサイズごとに、当該フィールドの値と対応するパラメータとの対応関係(テーブル)が規定されており、受信したフィールドのサイズに応じて参照するテーブルを変更する、
 (2)低減される前の最上位ビット(MSB:Most Significant Bit)又は最下位ビット(LSB:Least Significant Bit)が特定のビット値(例えば、‘0’又は‘1’)であると想定する、
 (3)当該フィールドの値と対応するパラメータとの対応関係(テーブル)が修正されたテーブルを用いる。
If the size of a field with DCI format 0_2 / 1-2 (eg, RV, HPN, MCS, etc.) is reduced compared to the size of the field with DCI format 0_0 / 1_0, it is based on any of the following or a combination thereof: The value of the field in DCI format 0_2 / 1-2 may be determined (or interpreted).
(1) The correspondence (table) between the value of the field and the corresponding parameter is defined for each size of the field, and the table to be referenced is changed according to the size of the received field.
(2) It is assumed that the most significant bit (MSB: Most Significant Bit) or the least significant bit (LSB: Least Significant Bit) before reduction is a specific bit value (for example, '0' or '1'). ,
(3) Use a table in which the correspondence (table) between the value of the field and the corresponding parameter is modified.
 なお、上記(2)について、特定のビット値はV-CRCビットとして用いられてもよい。 Regarding (2) above, a specific bit value may be used as a V-CRC bit.
 例えば、MCSフィールドが低減される場合、上記(1)については、MCSフィールドサイズごとにMCSテーブルが定義されることを意味してもよい。例えば、MCSフィールドサイズが5ビットに対応する32個のエントリを含む第1のMCSテーブル、MCSフィールドサイズが4ビットに対応する16個のエントリを含む第2のMCSテーブル、MCSフィールドサイズが3ビットに対応する8個のエントリを含む第3のMCSテーブル、などが定義されてもよい。 For example, when the MCS field is reduced, it may mean that the MCS table is defined for each MCS field size in the above (1). For example, a first MCS table containing 32 entries corresponding to an MCS field size of 5 bits, a second MCS table containing 16 entries corresponding to an MCS field size of 4 bits, and an MCS field size of 3 bits. A third MCS table, etc., containing eight entries corresponding to may be defined.
 また、MCSフィールドが低減される場合、上記(2)については、DCIフォーマット0_2/1_2のMCSフィールドのサイズが4ビットであれば、UEは、最上位の1ビットが‘0’であると解釈し、5ビットのMCSテーブルのうち、MCSフィールドの値に対応するMCSインデックス0-15を参照してもよい。 Further, when the MCS field is reduced, regarding the above (2), if the size of the MCS field of DCI format 0_2 / 1-2 is 4 bits, the UE interprets that the most significant bit is '0'. However, the MCS index 0-15 corresponding to the value of the MCS field may be referred to in the 5-bit MCS table.
 図3は、PDSCHのための5ビットのMCSテーブルの一例を示す図である。当該テーブルは、MCSインデックスIMCS、変調次数Q、符号化率(ターゲット符号化率)及びスペクトル効率を関連付けるテーブルである。なお、本開示におけるMCSテーブルに示される各値は例示に過ぎず、これに限られない。また、MCSインデックスに関連付けられる一部の項目(例えば、スペクトル効率)は省略されてもよいし、他の項目が追加されてもよい。 FIG. 3 is a diagram showing an example of a 5-bit MCS table for PDSCH. The table is a table that associates MCS index I MCS, modulation order Q m, coding rate (target code rate) and the spectral efficiency. The values shown in the MCS table in the present disclosure are merely examples, and are not limited thereto. Also, some items associated with the MCS index (eg, spectral efficiency) may be omitted or other items may be added.
 なお、図3のMCSテーブルは、eMBB用のMCSテーブルと区別されるURLLC用のMCSテーブルであってもよく、MCSテーブル3などと呼ばれてもよい。 The MCS table in FIG. 3 may be an MCS table for URLLC that is distinguished from the MCS table for eMBB, and may be called an MCS table 3 or the like.
 図3のMCSテーブルにおいて、MCSインデックス=29-31は、非適応的再送(non-adaptive retransmission)に該当してもよい。非適応的再送は、初回送信のための送信パラメータと同じ送信パラメータを用いる再送であってもよい。当該送信パラメータは、例えば、変調方式、変調次数、符号化率、スペクトル効率、サブキャリア間隔、無線リソースなどの少なくとも1つを含んでもよい。このため、非適応的再送に該当するエントリは、少なくとも1つの要素(図3では、符号化率及びスペクトル効率)が「予約」(‘reserved’)と表されてもよい。例えば、非適応的再送に該当するエントリは、変調次数以外の要素が「予約」に該当してもよい。「予約」の要素を含むエントリは、「予約」用のエントリと呼ばれてもよい。 In the MCS table of FIG. 3, MCS index = 29-31 may correspond to non-adaptive retransmission. The non-adaptive retransmission may be a retransmission using the same transmission parameters as the transmission parameters for the initial transmission. The transmission parameter may include, for example, at least one of modulation scheme, modulation order, code rate, spectral efficiency, subcarrier spacing, radio resources, and the like. For this reason, entries that fall under non-adaptive retransmissions may have at least one element (code rate and spectral efficiency in FIG. 3) represented as "reserved". For example, an entry corresponding to non-adaptive retransmission may have an element other than the modulation order corresponding to "reserved". An entry containing a "reserved" element may be referred to as a "reserved" entry.
 なお、非適応的再送に該当するMCSインデックスは、29-31に限られず、例えば28-31などであってもよい。 The MCS index corresponding to non-adaptive retransmission is not limited to 29-31, and may be, for example, 28-31.
 MCSフィールドが低減される場合、上記(3)については、DCIフォーマット0_2/1_2のMCSフィールドのサイズが4ビットであれば、UEは、5ビットのMCSテーブルの非適応的再送に該当するエントリを、4ビットの利用可能な最高値からのMCSインデックスに対応するエントリにシフトしてもよい。 When the MCS field is reduced, for (3) above, if the size of the MCS field of DCI format 0_2 / 1-2 is 4 bits, the UE makes an entry corresponding to non-adaptive retransmission of the 5-bit MCS table. You may shift to the entry corresponding to the MCS index from the highest available 4-bit value.
 図4は、PDSCHのための4ビットのMCSテーブルの一例を示す図である。図4のMCSテーブルは、図3のMCSテーブルのMCSインデックス=29-31に対応するエントリをMCSインデックス=13-15のエントリと置き換え、MCSインデックス0-15を抜き出したテーブルに相当する。 FIG. 4 is a diagram showing an example of a 4-bit MCS table for PDSCH. The MCS table of FIG. 4 corresponds to a table in which the entry corresponding to the MCS index = 29-31 of the MCS table of FIG. 3 is replaced with the entry of the MCS index = 13-15, and the MCS index 0-15 is extracted.
 上記(1)-(3)のいずれか又はこれらの組み合わせに基づいてDCIフォーマット0_2/1_2の特定のフィールドに関する決定を行うことは、上位レイヤシグナリングによってUEに設定されてもよい。 Making a decision regarding a specific field of DCI format 0_2 / 1-2 based on any of the above (1)-(3) or a combination thereof may be set in the UE by upper layer signaling.
 以上説明した第1の実施形態によれば、UEが、URLLC向けDCIを適切にモニタし、当該DCIに基づいて送受信処理を好適に制御できる。 According to the first embodiment described above, the UE can appropriately monitor the DCI for URLLC and can suitably control the transmission / reception processing based on the DCI.
[第1の実施形態の変形例]
 上記(3)によってMCSフィールドを低減する構成について、さらに変形例を説明する。
[Modified example of the first embodiment]
A modified example of the configuration for reducing the MCS field according to the above (3) will be further described.
 MCSフィールドのサイズは、ceil(logM)で表されてもよい。ここで、ceil(x)はxの天井関数である。この場合、UEは、上位レイヤシグナリング(例えば、RRCシグナリング、MACシグナリング)を用いて、M個のMCSインデックスのセット(MCSインデックスセットと呼ばれてもよい)を通知されてもよい。UEは、所定のMCSテーブルから、当該M個のインデックスに該当するエントリを抽出(ピックアップ)したテーブルを、低減されたMCSフィールドに対応する修正テーブルとして参照してもよい。 The size of the MCS field may be represented by ceil (log 2 M). Here, ceil (x) is a ceiling function of x. In this case, the UE may be notified of a set of M MCS indexes (which may be referred to as an MCS index set) using higher layer signaling (eg, RRC signaling, MAC signaling). The UE may refer to a table obtained by extracting (picking up) entries corresponding to the M indexes from a predetermined MCS table as a modification table corresponding to the reduced MCS field.
 MCSインデックスセットを設定されたUEは、所定のDCIのMCSフィールドの各コードポイントが、当該MCSインデックスセットのエントリのいずれかに対応すると想定してもよい。 A UE with an MCS index set may assume that each code point in the MCS field of a given DCI corresponds to one of the entries in the MCS index set.
 図5は、M個のインデックスをピックアップしたテーブルの一例を示す図である。図5の左側のテーブルは、図3と同じ5ビットのMCSインデックスに対応するMCSテーブル3に該当する。 FIG. 5 is a diagram showing an example of a table in which M indexes are picked up. The table on the left side of FIG. 5 corresponds to the MCS table 3 corresponding to the same 5-bit MCS index as in FIG.
 例えば、UEは、MCSインデックスセットとして、M=4個のインデックスのセットである{0、2、5、6}を上位レイヤシグナリングによって設定された場合、MCSテーブル3のこれらのインデックスに対応するエントリを抽出し、それぞれのインデックスを{0、1、2、3}に置き換えたエントリからなるテーブルを、上記修正テーブルであると決定してもよい。当該修正テーブルは、2ビットのMCSインデックスに対応することになる。 For example, when the UE sets {0, 2, 5, 6}, which is a set of M = 4 indexes, as the MCS index set by upper layer signaling, the entries corresponding to these indexes in the MCS table 3 , And a table consisting of entries in which each index is replaced with {0, 1, 2, 3} may be determined to be the above-mentioned modification table. The modification table will correspond to a 2-bit MCS index.
 ここでは、上位レイヤシグナリングによって、もともとのインデックス(言い換えると、1つのテーブルのインデックスの値)のみが指定される例を示したが、これに限られない。例えば、もともとのインデックスと、修正テーブルにおけるインデックスと、の対応関係が指定されてもよい。 Here, an example is shown in which only the original index (in other words, the index value of one table) is specified by the upper layer signaling, but the present invention is not limited to this. For example, the correspondence between the original index and the index in the modification table may be specified.
 例えば、UEは、M=4個の当該対応関係のセットとして、{(0、1)、(2、3)、(5、0)、(6、2)}を上位レイヤシグナリングによって設定された場合、MCSテーブル3のインデックス{0、2、5、6}に対応するエントリを抽出し、それぞれのインデックスを{1、3、0、2}に置き換えたエントリからなるテーブルを、上記修正テーブルと決定してもよい。なお、修正テーブルはインデックスの昇順に並べ直されてもよい。 For example, the UE has {(0, 1,), (2, 3), (5, 0), (6, 2)} set by higher layer signaling as a set of M = 4 corresponding relationships. In this case, the table consisting of the entries corresponding to the indexes {0, 2, 5, 6} of the MCS table 3 and the respective indexes replaced with {1, 3, 0, 2} is referred to as the above-mentioned modification table. You may decide. The modification table may be rearranged in ascending order of index.
 なお、MCSテーブルのエントリ(又はMCSインデックス)は、トランスフォームプリコーダの有無(有効又は無効と呼ばれてもよい)と関連付けられてもよい。例えば、上述のM個のピックアップテーブルに関して、M1個のエントリはトランスフォームプリコーダありのエントリ、M2個のエントリはトランスフォームプリコーダなしのエントリとして設定されてもよい。ただし、M1+M2=Mである。 Note that the MCS table entry (or MCS index) may be associated with the presence or absence of a transform precoder (which may be referred to as valid or invalid). For example, with respect to the above-mentioned M pickup tables, M1 entries may be set as entries with a transform precoder, and M2 entries may be set as entries without a transform precoder. However, M1 + M2 = M.
 つまり、MCSインデックスによって、UL送信(PUSCH)に適用するトランスフォームプリコーダの有無が指定できてもよい。既存のRel-15 NRではトランスフォームプリコーダの有無は、RRCシグナリングによって準静的に設定することしかできなかったが、このようなMCSインデックスとの関連付けを用いることによって、トランスフォームプリコーダの有無を動的に指示できる。 That is, the presence or absence of the transform precoder applied to UL transmission (PUSCH) may be specified by the MCS index. With the existing Rel-15 NR, the presence or absence of a transform precoder could only be set quasi-statically by RRC signaling, but by using such an association with the MCS index, the presence or absence of a transform precoder can be set. Can be dynamically instructed.
 なお、UEは、トランスフォームプリコーダありの送信には、DFT-s-OFDM(Discrete Fourier Transform Spread OFDM)を適用してもよいし、トランスフォームプリコーダなしの送信には、CP-OFDM(Cyclic Prefix OFDM)を適用してもよい。 The UE may apply DFT-s-OFDM (Discrete Fourier Transform Spread OFDM) for transmission with a transform precoder, and CP-OFDM (Cyclic) for transmission without a transform precoder. Prefix OFDM) may be applied.
 図6は、M個のインデックスをピックアップしたテーブルの別の一例を示す図である。本例は、上述のM1=6、M2=2、M=8に対応する。図6のテーブルのMCSインデックス0-6のエントリは、図3のMCSテーブルのMCSインデックス0-6のエントリがピックアップされたものであり、トランスフォームプリコーダあり(有効化(enabled))に該当する。 FIG. 6 is a diagram showing another example of a table in which M indexes are picked up. This example corresponds to the above-mentioned M1 = 6, M2 = 2, and M = 8. The entry of the MCS index 0-6 in the table of FIG. 6 is a pick-up of the entry of the MCS index 0-6 in the MCS table of FIG. 3, and corresponds to the transform precoder (enabled). ..
 また、図6のテーブルのMCSインデックス7-8のエントリは、図3のMCSテーブルのMCSインデックス0-1のエントリがピックアップされたものであり、トランスフォームプリコーダなし(無効化(disabled))に該当する。本例で示すように、もともとのMCSテーブルの同じMCSインデックスに対応するエントリが、トランスフォームプリコーダあり及びなしのエントリにそれぞれ指定されてもよい。 Further, the entry of the MCS index 7-8 in the table of FIG. 6 is the entry of the MCS index 0-1 of the MCS table of FIG. 3 picked up, and without the transform precoder (disabled). Applicable. As shown in this example, the entries corresponding to the same MCS index in the original MCS table may be specified for the entries with and without the transform precoder, respectively.
 なお、図5及び6では、ピックアップされるエントリのQが全て2である例を示したが、これに限られず、例えば複数のQの値に対応するエントリがピックアップされる設定が行われてもよい。  Note that FIGS. 5 and 6 show an example in which the Q m of the entries to be picked up is all 2, but the present invention is not limited to this, and for example, entries corresponding to a plurality of Q m values are set to be picked up. You may.
 低減されたMCSテーブルは、図5及び6に示すように「予約」用でないエントリのみから構成されてもよいし、「予約」用のエントリを含んでもよい。つまり、上述のMは、M’と、「予約」用のエントリ数と、の和に該当してもよい。ここで、M’は、「予約」用でないエントリ数に該当してもよい。 The reduced MCS table may consist only of entries that are not for "reservation" as shown in FIGS. 5 and 6, or may include entries for "reservation". That is, the above-mentioned M may correspond to the sum of M'and the number of entries for "reservation". Here, M'may correspond to the number of entries not for "reservation".
 なお、M’個のエントリの中に、あるQに該当するエントリが少なくとも1つ含まれる場合には、当該M’個のエントリのあとに当該Qに該当する「予約」用のエントリが付け加えられてもよい。つまり、M’個のエントリの中に、第1のQ(例えば、Q=2)に該当するエントリ及び第2のQ(例えば、Q=4)に該当するエントリが含まれる場合には、当該M’個のエントリのあとに当該第1のQに該当する「予約」用のエントリ及び当該第2のQに該当する「予約」用のエントリが付け加えられてもよい。 If at least one entry corresponding to a certain Q m is included in the M'entries, the entry for "reservation" corresponding to the Q m is added after the M'entries. May be added. That is, when the M'entries include an entry corresponding to the first Q m (for example, Q m = 2) and an entry corresponding to the second Q m (for example, Q m = 4). May be followed by an entry for "reservation" corresponding to the first Q m and an entry for "reservation" corresponding to the second Q m .
 UEは、MCSインデックスセットとして、M’個のインデックスのセットを上位レイヤシグナリングによって設定された場合、これらに対応するエントリのあとに、設定されたM’個のインデックスのエントリが示す1つ又は複数のQに該当する「予約」用のエントリが付け加えられたテーブルを参照すると想定してもよい。言い換えると、UEは、MCSインデックスセットとして、「予約」用のエントリに対応するインデックスを設定されなくても、「予約」用のエントリを含む低減されたMCSテーブルを参照してもよい。 When the UE sets a set of M'indexes as the MCS index set by higher layer signaling, the UE indicates one or more entries of the set M'indexes after the corresponding entries. It may be assumed that the reference is made to a table to which an entry for "reservation" corresponding to Q m of is added. In other words, the UE may refer to the reduced MCS table containing the entry for "reservation" without setting the index corresponding to the entry for "reservation" as the MCS index set.
 図7は、M個のインデックスをピックアップしたテーブルのさらに別の一例を示す図である。本例は、上述のM’=6に対応する。図7のテーブルのMCSインデックス0-5のエントリは、図3のMCSテーブルのMCSインデックス0-5のエントリがピックアップされたものである。図7のテーブルのMCSインデックス6のエントリは、図3のMCSテーブルのMCSインデックス15のエントリがピックアップされたものである。 FIG. 7 is a diagram showing still another example of a table in which M indexes are picked up. This example corresponds to the above-mentioned M'= 6. The entry of the MCS index 0-5 in the table of FIG. 7 is the entry of the MCS index 0-5 of the MCS table of FIG. 3 picked up. The entry of the MCS index 6 in the table of FIG. 7 is the entry of the MCS index 15 of the MCS table of FIG.
 M’個のエントリの中に、Q=2に該当するエントリ及びQ=4に該当するエントリが含まれるため、UEは、当該M’個のエントリのあとにQ=2に該当する「予約」用のエントリ及びQ=4に該当する「予約」用のエントリが付け加えられた、図7に示すMCSテーブルを用いると想定してもよい。なお、Mとして所定の数(図7の場合は8)がUEに設定されてもよいし、設定されなくてもよい(この場合、結果的にM=8になっただけである)。 Since the M'entries include an entry corresponding to Q m = 2 and an entry corresponding to Q m = 4, the UE corresponds to Q m = 2 after the M'entries. It may be assumed that the MCS table shown in FIG. 7 is added with an entry for "reservation" and an entry for "reservation" corresponding to Q m = 4. A predetermined number of M (8 in the case of FIG. 7) may or may not be set in the UE (in this case, only M = 8 is obtained as a result).
 なお、図4では、図3のMCSテーブルの「予約」用の3つのエントリ(MCSインデックス=29-31に対応するエントリ)が全て維持される例を示したが、これに限られない。 Note that FIG. 4 shows an example in which all three entries (entries corresponding to MCS index = 29-31) for "reservation" in the MCS table of FIG. 3 are maintained, but the present invention is not limited to this.
 例えば、MCSフィールドが低減される場合、低減されるテーブルに含まれる「予約」用のエントリは、当該テーブルに含まれる「予約」用でないエントリのQの値と等しいものに限定されてもよい。 For example, if the MCS field is reduced, the "reserved" entries contained in the reduced table may be limited to those equal to the Q m value of the non-reserved entries contained in the table. ..
 図8は、PDSCHのための4ビットのMCSテーブルの別の一例を示す図である。図6のMCSテーブルは、図3のMCSテーブルのMCSインデックス=29に対応するエントリをMCSインデックス=15のエントリと置き換え、MCSインデックス0-15を抜き出したテーブルに相当する。図6のMCSテーブルは、図4のMCSテーブルと異なり、Q=2のエントリのみを含む構成となっている。 FIG. 8 is a diagram showing another example of a 4-bit MCS table for PDSCH. The MCS table of FIG. 6 corresponds to a table in which the entry corresponding to the MCS index = 29 of the MCS table of FIG. 3 is replaced with the entry of the MCS index = 15 and the MCS index 0-15 is extracted. Unlike the MCS table of FIG. 4, the MCS table of FIG. 6 has a configuration including only entries of Q m = 2.
 また、3ビットのMCSフィールドに対応するQ=2のエントリのみを含む低減されたMCSテーブルを構成する場合には、図3のMCSテーブルのMCSインデックス=29に対応するエントリをMCSインデックス=7のエントリと置き換え、MCSインデックス0-7を抜き出したテーブルなどを用いてもよい。つまり、低減されたMCSテーブルは、MCSインデックスの最大値のみが「予約」用のエントリであり、各全てのエントリのQの値が等しいように構成されてもよい。このようにテーブルを構成することによって、MCSフィールドのサイズを低減しつつ、不用なMCSエントリを削減できる。 Further, when constructing a reduced MCS table including only the entries of Q m = 2 corresponding to the 3-bit MCS field, the entry corresponding to the MCS index = 29 of the MCS table of FIG. 3 is the MCS index = 7 A table or the like from which the MCS index 0-7 is extracted may be used instead of the entry of. That is, in the reduced MCS table, only the maximum value of the MCS index is an entry for "reservation", and the Q m value of each entry may be equal. By constructing the table in this way, it is possible to reduce unnecessary MCS entries while reducing the size of the MCS field.
 以上説明した第1の実施形態の変形例によれば、低減されたMCSテーブルを柔軟に構成できる。 According to the modification of the first embodiment described above, the reduced MCS table can be flexibly configured.
<第2の実施形態>
 第2の実施形態は、eMBB用DCI及びURLLC用DCIの内容又はフォーマットの区別に関する。第2の実施形態は、第1の実施形態で説明したDCIフォーマットの構成(サイズ調整など)と同時に適用されてもよい。
<Second embodiment>
The second embodiment relates to the distinction between the contents or formats of the DCI for eMBB and the DCI for URLLC. The second embodiment may be applied at the same time as the DCI format configuration (size adjustment, etc.) described in the first embodiment.
 eMBB用DCI(又はDCIフォーマット)及びURLLC用DCI(又はDCIフォーマット)は、以下の(A)-(D)のいずれか又はこれらの組み合わせに基づいて区別されてもよい:
 (A)サーチスペース設定、CORESET(COntrol REsource SET)設定又はPDCCH(Physical Downlink Control Channel)モニタリング期間(PDCCH monitoring occasion)、
 (B)DCIに対応するアグリゲーションレベル、
 (C)DCIに含まれるCRCをスクランブルするRNTI、
 (D)DCIの特定のフィールド。
DCI for eMBB (or DCI format) and DCI for URLLC (or DCI format) may be distinguished based on any of the following (A)-(D) or a combination thereof:
(A) Search space setting, CORESET (COntrol REsource SET) setting or PDCCH (Physical Downlink Control Channel) monitoring period (PDCCH monitoring occasion),
(B) Aggregation level corresponding to DCI,
(C) RNTI, which scrambles the CRC contained in DCI,
(D) A specific field of DCI.
 上記(B)について、UEは、例えば、あるCORESET/サーチスペースセットにおいてアグリゲーションレベルが第1の値のセット(例えば、1、2又は4)に対応するDCIであればeMBB用DCIであり、アグリゲーションレベルが第2の値のセット(例えば、8又は、16)に対応するDCIであればURLLC用のDCIであると決定してもよい。 Regarding (B) above, the UE is, for example, a DCI for eMBB if the aggregation level corresponds to a set of first values (for example, 1, 2 or 4) in a certain CORESET / search space set, and the aggregation. If the level is a DCI corresponding to a second set of values (eg, 8 or 16), it may be determined to be a DCI for URLLC.
 上記(C)について、UEは、DCIのCRCがURLLC用RNTIによってスクランブルされる場合には当該DCIはURLLC用のDCIであり、そうでなければeMBB用DCIであると決定してもよい。 Regarding (C) above, the UE may determine that if the CRC of the DCI is scrambled by the RNTI for URLLC, the DCI is the DCI for URLLC, otherwise it is the DCI for eMBB.
 上記(D)について、例えば図1及び2で上述した識別子2フィールドが利用されてもよい。 Regarding (D) above, for example, the identifier 2 field described above in FIGS. 1 and 2 may be used.
 上記(A)-(C)に基づいて、UEは、例えば、PDCCHモニタリング期間がスロット内の特定の位置にあれば、当該期間において受信するDCIはURLLC用DCIであると判断してもよい。また、UEは、PDCCHモニタリング期間がスロットの先頭に位置する場合には、上記(B)又は(C)をURLLC用DCIか否かの判断に利用してもよい。 Based on the above (A)-(C), for example, if the PDCCH monitoring period is at a specific position in the slot, the UE may determine that the DCI received during that period is the URLLC DCI. Further, when the PDCCH monitoring period is located at the beginning of the slot, the UE may use the above (B) or (C) to determine whether or not the DCI is for URLLC.
 また、UEは、第1のサーチスペースセット(例えば、UE固有サーチスペースセット)については上記(C)に基づいてDCIを判断し、第2のサーチスペースセット(例えば、共通サーチスペースセット)については上記(B)に基づいてDCIを判断してもよい。 Further, the UE determines the DCI based on the above (C) for the first search space set (for example, the UE-specific search space set), and determines the DCI for the second search space set (for example, the common search space set). The DCI may be determined based on the above (B).
 以上説明した第2の実施形態によれば、UEがeMBB用DCI及びURLLC用DCIを適切に区別できる。 According to the second embodiment described above, the UE can appropriately distinguish between the DCI for eMBB and the DCI for URLLC.
<その他>
 上述の第1の実施形態では、DCIフォーマット0_2のサイズ及びDCIフォーマット1_2のサイズが同じに調整されることを想定したが、これに限られない。DCIフォーマット0_2のサイズ及びDCIフォーマット1_2のサイズは異なってもよい。
<Others>
In the first embodiment described above, it is assumed that the size of DCI format 0_2 and the size of DCI format 1-22 are adjusted to be the same, but the size is not limited to this. The size of DCI format 0_2 and the size of DCI format 1-2 may be different.
 例えば、DCIフォーマット0_2のサイズがDCIフォーマット0_0及び1_0と同じサイズに調整され、DCIフォーマット1_2のサイズがDCIフォーマット0_1及び1_1と同じサイズに調整されてもよい。逆に、DCIフォーマット1_2のサイズがDCIフォーマット0_0及び1_0と同じサイズに調整され、DCIフォーマット0_2のサイズがDCIフォーマット0_1及び1_1と同じサイズに調整されてもよい。 For example, the size of DCI format 0_2 may be adjusted to the same size as DCI formats 0_0 and 1_1, and the size of DCI format 1_2 may be adjusted to the same size as DCI formats 0_1 and 1_1. Conversely, the size of DCI format 1_2 may be adjusted to the same size as DCI formats 0_0 and 1_0, and the size of DCI format 0_2 may be adjusted to the same size as DCI formats 0_1 and 1_1.
 また、第2の実施形態において、eMBB用DCIのサイズ及びURLLC用DCIのサイズは、同じであってもよいし、異なってもよい。 Further, in the second embodiment, the size of the DCI for eMBB and the size of the DCI for URLLC may be the same or different.
 なお、本開示におけるテーブルを用いた制御は、当該テーブルに示す対応関係を満たすような関数などを用いて行われてもよい。UEは、所定のMCSテーブルからMCSインデックスのセットに該当するエントリを抽出したテーブルが示す対応関係に従って、例えば当該抽出したテーブルが示す対応関係を満たすような関数を用いて、MCSに関連する送信パラメータ(変調次数、符号化率など)を導出してもよい。なお、本開示のテーブル(例えば、MCSテーブル、及びMCSインデックスセットに該当するエントリを抽出したテーブル)は、情報群、情報セットなどで読み替えられてもよい。 Note that the control using the table in the present disclosure may be performed by using a function or the like that satisfies the correspondence shown in the table. The UE uses a function that satisfies the correspondence shown by the table that extracts the entries corresponding to the set of MCS indexes from the predetermined MCS table, for example, and the transmission parameters related to the MCS. (Modulation order, coding rate, etc.) may be derived. The table of the present disclosure (for example, the MCS table and the table from which the entries corresponding to the MCS index set are extracted) may be read as an information group, an information set, or the like.
 また、本開示におけるDCIフォーマットのフィールドの低減方法(MCSインデックスセットの設定など)は、URLLC向けDCIへの適用に限られない。例えば、本開示におけるDCIフォーマットのフィールドの低減方法は、当該DCIフォーマットが他のDCIフォーマットと同じサイズに調整されない場合であっても、適用されてもよい。 Further, the method of reducing the DCI format field (such as setting the MCS index set) in the present disclosure is not limited to the application to DCI for URLLC. For example, the method of reducing fields in a DCI format in the present disclosure may be applied even if the DCI format is not adjusted to the same size as other DCI formats.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Further, the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is MN, and the LTE (E-UTRA) base station (eNB) is SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the host station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. In addition, Master Information Block (MIB) may be transmitted by PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble for establishing a connection with the cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図10は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 10 is a diagram showing an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that, in this example, the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer for data, control information, etc. acquired from the control unit 110 (for example,). RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulating, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
 なお、送受信部120は、第1の通信サービス(例えば、URLLC)向けの第1のDCI(例えば、DCIフォーマット0_2/1_2)及び第2の通信サービス(例えば、eMBB)向けの第2のDCI(例えば、DCIフォーマット0_0/1_0、又はDCIフォーマット0_1/1_1)の少なくとも1つを、ユーザ端末20に対して送信してもよい。 The transmission / reception unit 120 includes a first DCI (for example, DCI format 0_2 / 1-2) for the first communication service (for example, URLLC) and a second DCI (for example, eMBB) for the second communication service (for example, eMBB). For example, at least one of DCI format 0_0 / 1_0 or DCI format 0_1 / 1-1) may be transmitted to the user terminal 20.
 制御部110は、前記第1のDCIが前記第2のDCIとサイズが同じになるように調整してもよい。 The control unit 110 may adjust the size of the first DCI to be the same as that of the second DCI.
 また、送受信部120は、変調及び符号化方式(Modulation and Coding Scheme(MCS))インデックスのセットに関する情報を、ユーザ端末20に対して送信してもよい。 Further, the transmission / reception unit 120 may transmit information regarding a set of modulation and coding Scheme (MCS) indexes to the user terminal 20.
(ユーザ端末)
 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 11 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply the DFT process may be based on the transform precoding setting. The transmission / reception unit 220 (transmission processing unit 2211) described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 The transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
 なお、送受信部220は、第1の通信サービス(例えば、URLLC)向けの第1のDCI(例えば、DCIフォーマット0_2/1_2)及び第2の通信サービス(例えば、eMBB)向けの第2のDCI(例えば、DCIフォーマット0_0/1_0、又はDCIフォーマット0_1/1_1)の少なくとも1つを受信してもよい。 The transmission / reception unit 220 includes a first DCI (for example, DCI format 0_2 / 1-2) for the first communication service (for example, URLLC) and a second DCI (for example, eMBB) for the second communication service (for example, eMBB). For example, at least one of DCI format 0_0 / 1_0 or DCI format 0_1 / 1-1) may be received.
 制御部210は、前記第1のDCIが前記第2のDCIとサイズが同じになるように調整されている(例えば、パディングされている)と想定して、前記第1のDCIに基づく処理(例えば。PDSCH受信、PUSCH送信など)を制御してもよい。 The control unit 210 assumes that the first DCI is adjusted to have the same size as the second DCI (for example, is padded), and performs processing based on the first DCI (for example, padding). For example, PDSCH reception, PUSCH transmission, etc.) may be controlled.
 制御部210は、前記第2のDCIに含まれるフィールドが前記第1のDCIに含まれる場合、前記第1のDCIの当該フィールドのサイズは、前記第2のDCIの当該フィールドのサイズ以下であると想定してもよい。 When the field included in the second DCI is included in the first DCI, the control unit 210 has a size of the field of the first DCI equal to or smaller than the size of the field of the second DCI. You may assume that.
 制御部210は、前記第1のDCIの所定のフィールド(例えば、MCSフィールド)のサイズが、前記第2のDCIの当該フィールドのサイズに比べて低減される場合、当該フィールドのサイズごとに、当該フィールドの値と対応するパラメータを示すテーブル(例えば、MCSテーブル)が規定されており、受信した前記第1のDCIに含まれる所定のフィールドのサイズに応じて参照するテーブルを変更してもよい。 When the size of a predetermined field (for example, MCS field) of the first DCI is reduced compared to the size of the field of the second DCI, the control unit 210 determines the size of the field for each size of the field. A table showing the values of the fields and the corresponding parameters (for example, the MCS table) is specified, and the table to be referred to may be changed according to the size of the predetermined field included in the first DCI received.
 制御部210は、前記第1のDCIの所定のフィールドのサイズが、前記第2のDCIの当該フィールドのサイズに比べて低減される場合、前記所定のフィールドの値の最上位ビット又は最下位ビットが特定のビット値(例えば、‘0’)であると想定してもよい。 When the size of the predetermined field of the first DCI is reduced compared to the size of the field of the second DCI, the control unit 210 has the most significant bit or the least significant bit of the value of the predetermined field. May be assumed to be a particular bit value (eg, '0').
 制御部210は、前記第1のDCIの所定のフィールドのサイズが、前記第2のDCIの当該フィールドのサイズに比べて低減される場合、前記第2のDCIについて利用される当該フィールドの値と対応するパラメータを示すテーブルに含まれる特定の(例えば、非適応的再送に該当する)エントリを、前記第1のDCIの所定のフィールドのサイズについて利用可能な値に対応するエントリにシフトしたテーブルを参照してもよい。 When the size of the predetermined field of the first DCI is reduced compared to the size of the field of the second DCI, the control unit 210 sets the value of the field used for the second DCI. A table in which a particular (eg, non-adaptive retransmission) entry contained in a table showing the corresponding parameters is shifted to an entry corresponding to a value available for the size of the given field of the first DCI. You may refer to it.
 また、送受信部220は、変調及び符号化方式(Modulation and Coding Scheme(MCS))インデックスのセットに関する情報を受信してもよい。 Further, the transmission / reception unit 220 may receive information regarding a set of modulation and coding Scheme (MCS) indexes.
 制御部210は、所定のMCSテーブル(例えば、固定ビット数(5ビット)のMCSフィールドに対応するMCSテーブル)から前記MCSインデックスのセットに該当するエントリを抽出したテーブルが示す対応関係に従って(又は、当該対応関係を参照して)、下り制御情報(DCI)に含まれるMCSフィールドの値に基づく送信(例えば、PUSCH送信)を制御してもよい。 The control unit 210 follows (or or) the correspondence shown by the table in which the entries corresponding to the set of MCS indexes are extracted from the predetermined MCS table (for example, the MCS table corresponding to the MCS field having a fixed number of bits (5 bits)). (Refer to the correspondence), transmission based on the value of the MCS field included in the downlink control information (DCI) (for example, PUSCH transmission) may be controlled.
 制御部210は、前記MCSフィールドの値に基づいて、送信に適用するトランスフォームプリコーダの有無を決定してもよい。 The control unit 210 may determine whether or not there is a transform precoder to be applied to transmission based on the value of the MCS field.
 制御部210は、前記抽出したテーブルは、前記MCSインデックスのセットに対応するエントリのあとに、当該エントリが示す1つ又は複数の変調次数に該当する予約用のエントリが付け加えられたテーブルであると想定してもよい。 The control unit 210 determines that the extracted table is a table in which an entry corresponding to the set of MCS indexes is followed by a reservation entry corresponding to one or more modulation orders indicated by the entry. You may assume.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 12 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In this disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal can also be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the neurology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a numerology in a carrier. May be good. Here, the common RB may be specified by an index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), LTE 802.16 (WiMAX (registered trademark)), LTE 802. 20, Ultra-WideBand (UWB), Bluetooth®, other systems that utilize suitable wireless communication methods, next-generation systems extended based on these, and the like. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as "judgment (decision)" such as "accessing" (for example, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms "connected", "coupled", or any variation thereof, as used in this disclosure, are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as a modified or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (4)

  1.  変調及び符号化方式(Modulation and Coding Scheme(MCS))インデックスのセットに関する情報を受信する受信部と、
     所定のMCSテーブルから前記MCSインデックスのセットに該当するエントリを抽出したテーブルが示す対応関係に従って、下り制御情報に含まれるMCSフィールドの値に基づく送信を制御する制御部と、を有することを特徴とするユーザ端末。
    A receiver that receives information about a set of Modulation and Coding Scheme (MCS) indexes, and
    It is characterized by having a control unit that controls transmission based on the value of the MCS field included in the downlink control information according to the correspondence shown by the table that extracts the entries corresponding to the set of MCS indexes from the predetermined MCS table. User terminal to do.
  2.  前記制御部は、前記MCSフィールドの値に基づいて、送信に適用するトランスフォームプリコーダの有無を決定することを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the control unit determines the presence or absence of a transform precoder applied to transmission based on the value of the MCS field.
  3.  前記制御部は、前記抽出したテーブルは、前記MCSインデックスのセットに対応するエントリのあとに、当該エントリが示す1つ又は複数の変調次数に該当する予約用のエントリが付け加えられたテーブルであると想定することを特徴とする請求項1又は請求項2に記載のユーザ端末。 The control unit determines that the extracted table is a table in which an entry corresponding to the set of MCS indexes is followed by a reservation entry corresponding to one or more modulation orders indicated by the entry. The user terminal according to claim 1 or 2, characterized in that it is assumed.
  4.  変調及び符号化方式(Modulation and Coding Scheme(MCS))インデックスのセットに関する情報を受信するステップと、
     所定のMCSテーブルから前記MCSインデックスのセットに該当するエントリを抽出したテーブルが示す対応関係に従って、下り制御情報に含まれるMCSフィールドの値に基づく送信を制御するステップと、を有することを特徴とするユーザ端末の無線通信方法。
    Steps to receive information about a set of Modulation and Coding Scheme (MCS) indexes, and
    It is characterized by having a step of controlling transmission based on the value of the MCS field included in the downlink control information according to the correspondence shown by the table in which the entry corresponding to the set of MCS indexes is extracted from the predetermined MCS table. Wireless communication method of the user terminal.
PCT/JP2019/014523 2019-04-01 2019-04-01 User terminal and wireless communication method WO2020202443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014523 WO2020202443A1 (en) 2019-04-01 2019-04-01 User terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014523 WO2020202443A1 (en) 2019-04-01 2019-04-01 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2020202443A1 true WO2020202443A1 (en) 2020-10-08

Family

ID=72666194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014523 WO2020202443A1 (en) 2019-04-01 2019-04-01 User terminal and wireless communication method

Country Status (1)

Country Link
WO (1) WO2020202443A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168224A (en) * 2013-01-29 2014-09-11 Ntt Docomo Inc User terminal, wireless base station and adaptive modulation coding method
JP2016506202A (en) * 2013-01-09 2016-02-25 クゥアルコム・インコーポレイテッドQualcomm Incorporated Identifying modulation and coding schemes and channel quality indicators
JP2016514921A (en) * 2013-04-05 2016-05-23 サン パテント トラスト Adaptation of MCS table for 256QAM

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506202A (en) * 2013-01-09 2016-02-25 クゥアルコム・インコーポレイテッドQualcomm Incorporated Identifying modulation and coding schemes and channel quality indicators
JP2014168224A (en) * 2013-01-29 2014-09-11 Ntt Docomo Inc User terminal, wireless base station and adaptive modulation coding method
JP2016514921A (en) * 2013-04-05 2016-05-23 サン パテント トラスト Adaptation of MCS table for 256QAM

Similar Documents

Publication Publication Date Title
CN114041316B (en) User terminal and wireless communication method
WO2020245973A1 (en) Terminal and wireless communication method
JP7148623B2 (en) Terminal, wireless communication method and system
WO2020166045A1 (en) User terminal and wireless communication method
WO2020217408A1 (en) User terminal and wireless communication method
CN114041307B (en) User terminal and wireless communication method
WO2020255263A1 (en) Terminal and wireless communication method
WO2020261389A1 (en) Terminal and wireless communication method
WO2020250399A1 (en) Terminal and wireless communication method
EP3944699A1 (en) User terminal and wireless communication method
CN113455081B (en) User terminal and wireless communication method
WO2021064961A1 (en) Terminal and wireless communication method
WO2020194459A1 (en) User terminal and wireless communication method
WO2020202478A1 (en) User terminal and wireless communication method
WO2020194464A1 (en) User terminal and wireless communication method
WO2020202517A1 (en) User terminal and wireless communication method
WO2020194400A1 (en) User terminal and wireless communication method
WO2020188644A1 (en) User terminal and wireless communication method
WO2020230860A1 (en) Terminal and wireless communication method
WO2021090409A1 (en) Terminal and wireless communication method
WO2020202448A1 (en) User terminal and wireless communication method
WO2020255270A1 (en) Terminal and wireless communication method
WO2020250400A1 (en) Terminal and radio communication method
WO2020188666A1 (en) User terminal and wireless communication method
WO2020209283A1 (en) User terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP