WO2020201132A1 - Fabrication d'un réservoir à gaz sous haute pression - Google Patents

Fabrication d'un réservoir à gaz sous haute pression Download PDF

Info

Publication number
WO2020201132A1
WO2020201132A1 PCT/EP2020/058802 EP2020058802W WO2020201132A1 WO 2020201132 A1 WO2020201132 A1 WO 2020201132A1 EP 2020058802 W EP2020058802 W EP 2020058802W WO 2020201132 A1 WO2020201132 A1 WO 2020201132A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
longitudinal axis
resistant structure
cavity
injection
Prior art date
Application number
PCT/EP2020/058802
Other languages
English (en)
Inventor
Arnaud CARADEC
Patrice KERFORN
Nicolas HEITZ
Gilles Nedelec
Yannick Amosse
Original Assignee
Faurecia Systemes D'echappement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faurecia Systemes D'echappement filed Critical Faurecia Systemes D'echappement
Publication of WO2020201132A1 publication Critical patent/WO2020201132A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/548Measures for feeding or distributing the matrix material in the reinforcing structure using distribution constructions, e.g. channels incorporated in or associated with the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/0061Moulds or cores; Details thereof or accessories therefor characterised by the configuration of the material feeding channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/0061Moulds or cores; Details thereof or accessories therefor characterised by the configuration of the material feeding channel
    • B29C33/0066Moulds or cores; Details thereof or accessories therefor characterised by the configuration of the material feeding channel with a subdivided channel for feeding the material to a plurality of locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7172Fuel tanks, jerry cans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • TITLE Manufacture of a high pressure gas tank
  • the present invention relates to a molding device and a method of manufacturing a high pressure gas tank.
  • a high pressure gas tank is generally made of a composite material. More particularly, the composite material is formed by a resistant structure of fibers, impregnated with a resin.
  • the resistant structure is for example a fibrous structure, produced by winding fibers such as glass or carbon fibers, or by winding threads of material, for example metal.
  • the tank generally ends with a base at each of its ends.
  • the composite structure is usually provided with an internal gas-impermeable coating.
  • an interior coating is also called a “liner”.
  • the resistant structure is made by winding a fiber impregnated with resin around the interior coating, this winding being followed by complete polymerization of the resin in an oven.
  • Such a method is particularly long to implement. In particular, it requires a long time to wind up, and a long time for polymerization (several hours, generally around 8 hours).
  • the traditional impregnation process generates porosity because only the tension will allow the impregnated yarn to be stretched on the reservoir (at atmospheric pressure), which is not sufficient to prevent porosity in the resistant structure.
  • the invention aims in particular to improve the situation, by providing a molding device allowing a faster manufacturing process (less than two hours) than in the state of the art.
  • the invention relates in particular to a device for injection molding a high pressure gas tank, for the manufacture of the tank in composite material, the molding device comprising a first part of mold comprising a first cavity and a second mold part comprising a second cavity, characterized in that at least one of the first and second cavities comprises at least one groove forming an injection channel.
  • the invention enables a manufacturing process, in which the fibrous resistant structure is disposed in the molding device, and then the resin is injected into the molding device, into the resistant structure.
  • the resin cures in the molding device in a few minutes, preferably in less than 15 minutes, more preferably in less than 10 minutes and still more preferably in less than 5 minutes, so that the method of the invention is well. faster than that of the state of the art, which exhibits a resin polymerization time of a few hours, generally more than 5 hours.
  • the strong structure is achieved by winding a dry fiber, which is easier and faster than winding a fiber impregnated with resin.
  • the winding speed of a dry fiber is about twice that of an impregnated fiber.
  • the resin can impregnate the resistant structure quickly and over a large area, from the outside to the inside, with a lower pressure than that which would be necessary if there were no groove. .
  • a molding device according to the invention may further include one or the other of the following characteristics, taken alone or in any technically conceivable combination.
  • the first or second cavity comprising at least one groove has a demoulding geometric shape defined around a first longitudinal axis, this first or second cavity comprising at least a first groove extending parallel to the longitudinal axis, preferably a plurality first grooves parallel to the first longitudinal axis.
  • the first or second cavity comprising at least one groove has a demolding geometric shape defined around a first longitudinal axis, this first or second cavity comprising at least one second groove extending circumferentially or helically around the first longitudinal axis, preferably a plurality of second grooves parallel to each other.
  • the invention also relates to a method of injection molding a high pressure gas tank made of composite material, characterized in that it is produced by means of a molding device as defined above, and in that it consists of the following steps:
  • a manufacturing process according to the invention may further include one or the other of the following characteristics, taken alone or in any technically conceivable combination.
  • An interior coating having an exterior face in contact with the interior surface of the resistant structure, the exterior face of the coating comprising at least a third groove forming an injection channel.
  • the resistant structure having a shape of revolution defined around a second longitudinal axis, the outer face of the coating comprises at least a third groove extending parallel to the second longitudinal axis, preferably a plurality of third grooves parallel to the second longitudinal axis .
  • the strong structure having a shape of revolution defined around a second longitudinal axis, the outer face of the coating has at least a third groove extending in a helical defined around the second longitudinal axis.
  • the method comprises a preliminary step of assembling the resistant structure with at least one base (22), the base (22) comprising at least one channel (32) opening at least in part on the resistant structure (18).
  • At least one of the at least one channel of the base communicates with at least a third groove of the at least a third groove.
  • the molding process includes a step, prior to injection, of suction of air through the channel of the base.
  • the invention finally relates to a reservoir for high pressure gas, characterized in that it is produced by means of a method as defined above.
  • Figure 1 is a perspective view of a first mold part of a molding device according to an exemplary embodiment of the invention
  • Figure 2 is a detail, in section in the plane II-II, of the first mold part of Figure 1, in which is arranged a reservoir before molding,
  • Figure 3 is a cross-sectional view of the molding device of Figure 1, closed with a second mold part,
  • Figure 4 is a detail of Figure 3,
  • Figure 5 is a side view of an interior lining of the tank, according to a first variant embodiment
  • Figure 6 is a view similar to Figure 5 of an interior lining according to a second variant embodiment
  • Figure 7 is a partial cross-sectional view of a tank comprising the inner lining of Figure 5,
  • Figure 8 is a perspective view of a base of the tank
  • Figure 9 is a partial view in longitudinal section of the tank provided with the base of Figure 8.
  • FIG. 1 There is shown in Figures 1 to 4, a molding device 10 (shown in cross section in Figure 3) for the manufacture of a pressurized gas tank of composite material.
  • the molding device 10 comprises a first mold part 12, shown in FIG. 1, and a second mold part 14 movable relative to the first mold part 12.
  • the general operation of such a molding device is conventional and will therefore not be described in detail.
  • the first mold part 12 comprises a first cavity 16 intended to receive elements intended to form the reservoir, namely a resistant structure 18, an interior lining 20 and two bases 22, assembled together. These different elements will be described later.
  • the first cavity 16 has a demolding geometric shape, that is to say that it automatically induces the absence of undercut.
  • the first cavity 16 has the general shape of a semi-revolution, in particular a semi-cylindrical shape, defined around a first longitudinal axis X1.
  • the second mold part 14, visible in FIG. 3, comprises a second cavity 24, intended to form, with the first cavity 16, an interior molding space, when the first 12 and second 14 mold parts are added together. against each other.
  • the two imprints 16, 24 are for example identical.
  • At least one of the first 16 and second 24 cavities has at least one groove 26, 28 forming an injection channel.
  • the two recesses 16, 24 each have at least one groove.
  • the first 16 and / or second 24 cavity comprises at least a first groove 26 extending parallel to the first longitudinal axis X1.
  • the first 16 and / or second 24 cavity comprises a plurality of first grooves 26 mutually parallel and parallel to the first longitudinal axis X1. These first grooves 26 are advantageously distributed evenly around the longitudinal axis X1.
  • the first 16 and / or second 24 cavity comprises at least one second groove 28 extending circumferentially around the first longitudinal axis X1.
  • the first 16 and / or second 24 cavity comprises a plurality of second grooves 28 parallel to each other. These second grooves are advantageously distributed evenly along the longitudinal axis X1.
  • the first 16 and / or second 24 cavity comprises at least one groove extending helically around the first longitudinal axis X1.
  • the molding device 10 enables a manufacturing process by injection molding of a high pressure gas tank made of composite material.
  • This method comprises providing the resistant structure 18.
  • the resistant structure preferably has a general shape of revolution, in particular cylindrical, defined around a second longitudinal axis X2.
  • This resistant structure 18 is radially delimited by an interior surface 18a and an exterior surface 18b.
  • the resistant structure 18 may have a rounded shape, in particular ellipsoidal, oval or ovoid, or any other shape of revolution.
  • the resistant structure 18 is for example produced, in a conventional manner, by winding a fiber, such as a glass fiber or a carbon fiber. This resistant structure 18 confers its rigidity on the tank and defines its volume.
  • the resistant structure 18 is not tight against pressurized gas, so that the tank comprises a tight inner lining 20 intended to provide this sealing function.
  • This inner coating 20 is generally flexible and made of an elastomer and / or thermoplastic material.
  • the interior coating 20 is intended to cover the entire interior surface 18a of the resistant structure 18.
  • the manufacturing process comprises providing the interior liner 20, inserted into the resistant structure 18 in contact with the interior surface 18a.
  • the resistant structure 18 is also provided, at each of its ends in the direction of the second longitudinal axis X2, with a respective base 22, fixed in a conventional manner to the resistant structure 18 and to the interior lining 20.
  • Each base 22 has a general shape of revolution around the second longitudinal axis X2.
  • the base 22 has a spout 22a extending along the second longitudinal axis X2, and a crown 22b.
  • the resistant structure 18, provided with the interior lining 20 and the bases 22, is attached in the first cavity 16.
  • the molding device 10 is then closed so that the resistant structure 18 is found enclosed between the first 16 and second 24 cavities.
  • the first longitudinal axis X1 is substantially coincident with the second longitudinal axis X2.
  • the manufacturing process then comprises the injection of a resin into the molding device 10, passing through at least one groove 26, 28.
  • the resin thus impregnates the fibers of the resistant structure 18, from the outside towards inside, uniformly along the entire length of the resistant structure 18.
  • the enclosure delimited by the inner coating is placed under internal pressure during the injection of the resin, in order to keep this coating under stress and so that it does not deform under the influence of the injection pressure of the resin (8-9 bars).
  • the inner coating 20, having an outer face 20b in contact with the inner surface 18a of the resistant structure 18, comprises at least a third groove 30 forming a channel of injection.
  • the inner lining 20 comprises a plurality of third grooves 30, extending parallel to the second longitudinal axis X2. These third grooves 30 are advantageously distributed evenly around the second longitudinal axis X2.
  • the inner lining 20 has a third groove 30 extending extending in a helical shape defined around the second longitudinal axis X2.
  • each third groove 30 opens out radially on the resistant structure 18. Resin circulating in the third groove 30 can thus impregnate the resistant structure 18, from the inside towards the end. outside.
  • the third groove 30, in combination with the first 26 and / or second 28 groove, makes it possible to reduce the impregnation time of the resistant structure 18, and to improve this impregnation.
  • the base 22 comprises at least one injection channel 32, opening at least in part on the resistant structure 18.
  • the base 22 comprises a plurality of injection channels. injection 32 distributed around the second longitudinal axis X2. The injection step is carried out by injecting resin through each injection channel 32.
  • each injection channel 32 communicates with an injection pipe of this molding device 10. .
  • Each injection channel 32 extends into the spout 22a, then to the surface of the crown 22b, so as to extend to the interface between the resistant structure 18 and the interior lining 20.
  • each injection channel 32 is shaped to communicate with at least one of these third grooves 30.
  • the injection of resin into the molding device 10 is carried out by passing through at least one third groove 30.
  • the resin thus impregnates the fibers of the resistant structure 18, from the inside to the outside, uniformly along the entire length of the resistant structure 18.
  • At least one of the injection channels 32 extends in the spout 22a up to the interface between the resistant structure 18 and the cavity 16, 24 adjacent. More particularly, this injection channel 32 communicates with at least one of the first 26 and / or second 28 grooves of the imprint.
  • the resin is injected both passing through the third groove or grooves 30 on the one hand, and through the first 26 and / or second 28 grooves or grooves. The resin is thus injected both from the inside to the outside and from the outside to the inside, which makes it possible to increase the speed and the homogeneity of the injection.
  • the molding process comprises, preferably before resin injection, a step of sucking air through the injection channel or channels 32 of the base 22.
  • the channels 32 are only intended for air suction and are not used for resin injection.
  • the base 22 comprises certain channels exclusively intended for the suction of air, and other channels exclusively intended for the injection of resin, so that the suction of air and the injection of resin are carried out simultaneously.
  • the air suction step makes it possible to remove the air present in the resistant structure 18, and thus reduce the porosity of the resistant structure (and thus increase the mechanical resistance of the reservoir), and also promote the impregnation of the fibers. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Moulding By Coating Moulds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Dispositif de moulage par injection d'un réservoir de gaz haute pression, pour la fabrication du réservoir en matériau composite, le dispositif de moulage comportant une première partie de moule (12) comprenant une première empreinte (16) et une seconde partie de moule comprenant une seconde empreinte. Au moins l'une des première (16) et seconde empreintes comporte au moins une rainure (26, 28) formant un canal d'injection.

Description

TITRE : Fabrication d’un réservoir à gaz sous haute pression
La présente invention concerne un dispositif de moulage et un procédé de fabrication d’un réservoir à gaz sous haute pression.
Un réservoir à gaz sous haute pression est généralement réalisé en un matériau composite. Plus particulièrement, le matériau composite est formé par une structure résistante de fibres, imprégnée d’une résine. La structure résistante est par exemple une structure fibreuse, réalisée par enroulement de fibres telles que des fibres de verre ou de carbone, ou par enroulement de fils de matière, par exemple de métal.
Le réservoir se termine généralement par une embase à chacune de ses extrémités.
La structure composite est généralement munie d’un revêtement intérieur imperméable au gaz. Un tel revêtement intérieur est également appelé « liner ».
Lors du procédé de fabrication, la structure résistante est réalisée en enroulant une fibre imprégnée de résine autour du revêtement intérieur, cet enroulement étant suivi d’une polymérisation complète de la résine dans une étuve.
Un tel procédé est particulièrement long à mettre en oeuvre. Il nécessite notamment un temps long pour réaliser l’enroulement, et un temps long pour la polymérisation (plusieurs heures, généralement environ 8 heures).
En particulier, il n’est pas possible d’effectuer un enroulement d’une fibre imprégnée trop vite, car cela entraînerait une émulsion de la résine, ce qui générerait des bulles, qui entraîneraient une dégradation des performances mécaniques.
En outre, le procédé d’imprégnation traditionnel génère de la porosité car seule la tension va permettre de tendre le fil imprégné sur le réservoir (à pression atmosphérique), ce qui n’est pas suffisant pour empêcher la porosité dans la structure résistante.
L’invention a notamment pour but d’améliorer la situation, en proposant un dispositif de moulage permettant un procédé de fabrication plus rapide (moins de deux heures) que dans l’état de la technique.
A cet effet, l’invention a notamment pour objet un dispositif de moulage par injection d’un réservoir de gaz haute pression, pour la fabrication du réservoir en matériau composite, le dispositif de moulage comportant une première partie de moule comprenant une première empreinte et une seconde partie de moule comprenant une seconde empreinte, caractérisé en ce qu’au moins l’une des première et seconde empreintes comporte au moins une rainure formant un canal d’injection.
L’invention permet de réaliser un procédé de fabrication, dans lequel la structure résistante fibreuse est disposée dans le dispositif de moulage, puis la résine est injectée dans le dispositif de moulage, dans la structure résistante. La résine polymérise dans le dispositif de moulage en quelques minutes, de préférence en moins de 15 minutes, encore de préférence en moins de 10 minutes et encore plus de préférence en moins de 5 minutes, si bien que le procédé de l’invention est bien plus rapide que celui de l’état de la technique, qui présente un temps de polymérisation de la résine de quelques heures, généralement de plus de 5 heures. En outre, la structure résistante est réalisée par enroulage d’une fibre sèche, ce qui est plus simple et plus rapide que l’enroulage d’une fibre imprégnée de résine. Plus particulièrement, la vitesse d’enroulement d’une fibre sèche est environ deux fois supérieure à celle d’une fibre imprégnée.
Grâce à la ou les rainures, la résine peut imprégner la structure résistante rapidement et sur une grande surface, depuis l’extérieur vers l’intérieur, avec une plus faible pression que celle qui serait nécessaire s’il n’y avait pas de rainure.
En outre, on notera qu’en injectant la résine (8-9 bars), il est possible de chasser toutes les porosités de la structure résistante. Celle-ci présente donc moins de porosité que dans l’état de la technique.
Un dispositif de moulage selon l’invention peut en outre comporter l’une ou l’autre des caractéristiques suivantes, prises seules ou selon toutes combinaisons techniquement envisageables.
- La première ou seconde empreinte comportant au moins une rainure présente une forme géométrique démoulante définie autour d’un premier axe longitudinal, cette première ou seconde empreinte comportant au moins une première rainure s’étendant parallèlement à l’axe longitudinal, de préférence une pluralité de premières rainures parallèles au premier axe longitudinal.
- La première ou seconde empreinte comportant au moins une rainure présente une forme géométrique démoulante définie autour d’un premier axe longitudinal, cette première ou seconde empreinte comportant au moins une seconde rainure s’étendant circonférentiellement ou hélicoïdalement autour du premier axe longitudinal, de préférence une pluralité de secondes rainures parallèles entre elles. L’invention concerne également un procédé de moulage par injection d’un réservoir de gaz haute pression en matériau composite, caractérisé en ce qu’il est réalisé au moyen d’un dispositif de moulage tel que défini précédemment, et en ce qu’il comporte les étapes suivantes :
- fourniture d’une structure résistante de filaments, délimitée radialement par une surface intérieure et une surface extérieure, et munie d’un revêtement intérieur inséré dans la structure résistante en contact avec la surface intérieure,
- disposition de la structure résistante dans la première ou seconde empreinte, puis fermeture du dispositif de moulage de manière à enfermer la structure résistante entre les première et seconde empreintes,
- injection d’une résine dans le dispositif de moulage, en passant par l’au moins une rainure.
Un procédé de fabrication selon l’invention peut en outre comporter l’une ou l’autre des caractéristiques suivantes, prises seules ou selon toute combinaisons techniquement envisageable.
- On fournit un revêtement intérieur présentant une face extérieure en contact avec la surface intérieure de la structure résistante, la face extérieure du revêtement comportant au moins une troisième rainure formant un canal d’injection.
- La structure résistante présentant une forme de révolution définie autour d’un second axe longitudinal, la face extérieure du revêtement comporte au moins une troisième rainure s’étendant parallèlement au second axe longitudinal, de préférence une pluralité de troisièmes rainures parallèles au second axe longitudinal.
- La structure résistante présentant une forme de révolution définie autour d’un second axe longitudinal, la face extérieure du revêtement comporte au moins une troisième rainure s’étendant selon une hélicoïdale définie autour du second axe longitudinal.
- Le procédé comporte une étape préalable d’assemblage de la structure résistante avec au moins une embase (22), l’embase (22) comprenant au moins un canal (32) débouchant au moins en partie sur la structure résistante (18).
- Au moins l’un parmi l’au moins un canal de l’embase communique avec au moins une troisième rainure parmi l’au moins une troisième rainure.
- Le procédé de moulage comporte une étape, préalable à l’injection, d’aspiration d’air à travers le canal de l’embase.
L’invention concerne enfin un réservoir pour gaz à haute pression, caractérisé en ce qu’il est réalisé au moyen d’un procédé tel que défini précédemment. L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple non limitatif et faite en se référant aux figures annexées, parmi lesquelles :
- [Fig 1] la figure 1 est une vue en perspective d’une première partie de moule d’un dispositif de moulage selon un exemple de mode de réalisation de l’invention,
- [Fig 2] la figure 2 est un détail, en coupe dans le plan ll-ll, de la première partie de moule de la figure 1 , dans laquelle est agencé un réservoir avant moulage,
- [Fig 3] la figure 3 est une vue en coupe transversale du dispositif de moulage de la figure 1 , refermé avec une seconde partie de moule,
- [Fig 4] la figure 4 est un détail de la figure 3,
- [Fig 5] la figure 5 est une vue de profil d’un revêtement intérieur du réservoir, selon une première variante de réalisation,
- [Fig 6] la figure 6 est une vue similaire à la figure 5 d’un revêtement intérieur selon une seconde variante de réalisation,
- [Fig 7] la figure 7 est une vue partielle en coupe transversale d’un réservoir comprenant le revêtement intérieur de la figure 5,
- [Fig 8] la figure 8 est une vue en perspective d’une embase du réservoir,
- [Fig 9] la figure 9 est une vue partielle en coupe longitudinale du réservoir muni de l’embase de la figure 8.
On a représenté, sur les figures 1 à 4, un dispositif de moulage 10 (représenté en coupe transversale sur la figure 3), pour la fabrication d’un réservoir à gaz sous pression en matériau composite.
Le dispositif de moulage 10 comporte une première partie de moule 12, représentée sur la figure 1 , et une seconde partie de moule 14 mobile par rapport à la première partie de moule 12. Le fonctionnement général d’un tel dispositif de moulage est classique et ne sera donc pas décrit en détail.
La première partie de moule 12 comporte une première empreinte 16 destinée à recevoir des éléments destinés à former le réservoir, à savoir une structure résistante 18, un revêtement intérieur 20 et deux embases 22, assemblés entre eux. Ces différents éléments seront décrits ultérieurement.
La première empreinte 16 présente une forme géométrique démoulante, c’est- à-dire qu’elle induit automatiquement l’absence de contre dépouille.
Plus précisément, la première empreinte 16 présente une forme générale de semi-révolution, notamment une forme semi-cylindrique, définie autour d’un premier axe longitudinal X1. La seconde partie de moule 14, visible sur la figure 3, comporte une seconde empreinte 24, destinée à former, avec la première empreinte 16, un espace intérieur de moulage, lorsque les première 12 et seconde 14 parties de moule sont rapportées l’une contre l’autre. Les deux empreintes 16, 24 sont par exemple identiques.
Conformément à l’invention, au moins l’une des première 16 et seconde 24 empreintes comporte au moins une rainure 26, 28 formant un canal d’injection.
Dans l’exemple décrit, les deux empreintes 16, 24 comportent chacune au moins une rainure.
Conformément au mode de réalisation décrit, la première 16 et/ou seconde 24 empreinte comporte au moins une première rainure 26 s’étendant parallèlement au premier axe longitudinal X1.
De préférence, la première 16 et/ou seconde 24 empreinte comporte une pluralité de premières rainures 26 parallèles entre elles et parallèles au premier axe longitudinal X1 . Ces premières rainures 26 sont avantageusement réparties équitablement autour de l’axe longitudinal X1.
En variante, ou de manière complémentaire, la première 16 et/ou seconde 24 empreinte comporte au moins une seconde rainure 28 s’étendant circonférentiellement autour du premier axe longitudinal X1.
De préférence, la première 16 et/ou seconde 24 empreinte comporte une pluralité de secondes rainures 28 parallèles entre elles. Ces secondes rainures sont avantageusement réparties équitablement le long de l’axe longitudinal X1.
Conformément à une autre variante non représentée, la première 16 et/ou seconde 24 empreinte comporte au moins une rainure s’étendant hélicoïdalement autour du premier axe longitudinal X1 .
Le dispositif de moulage 10 permet de réaliser un procédé de fabrication par moulage par injection d’un réservoir de gaz haute pression en matériau composite.
Ce procédé comporte la fourniture de la structure résistante 18. La structure résistante présente de préférence une forme générale de révolution, notamment cylindrique, définie autour d’un second axe longitudinal X2. Cette structure résistante 18 est délimitée radialement par une surface intérieure 18a et une surface extérieure 18b. En variante, la structure résistante 18 peut présenter une forme arrondie, notamment ellipsoïdale, ovale ou ovoïde, ou toute autre forme de révolution. La structure résistante 18 est par exemple réalisée, de manière classique, en enroulant une fibre, telle une fibre de verre ou une fibre de carbone. Cette structure résistante 18 confère sa rigidité au réservoir et en délimite le volume.
Toutefois, la structure résistante 18 n’est pas étanche au gaz sous pression, si bien que le réservoir comprend un revêtement intérieur 20 étanche destiné à assurer cette fonction d’étanchéité. Ce revêtement intérieur 20 est généralement souple et réalisé en matériau élastomère et/ou thermoplastique. Le revêtement intérieur 20 est destiné à recouvrir toute la surface intérieure 18a de la structure résistante 18.
Ainsi, le procédé de fabrication comporte la fourniture du revêtement intérieur 20, inséré dans la structure résistante 18 en contact avec la surface intérieure 18a.
La structure résistante 18 est également munie, à chacune de ses extrémités dans la direction du second axe longitudinal X2, d’une embase 22 respective, fixée de manière classique à la structure résistante 18 et au revêtement intérieur 20.
Chaque embase 22 présente une forme générale de révolution autour du second axe longitudinal X2. L’embase 22 comporte un bec 22a s’étendant le long du second axe longitudinal X2, et une couronne 22b.
La structure résistante 18, munie du revêtement intérieur 20 et des embases 22, est rapportée dans la première empreinte 16. Le dispositif de moulage 10 est alors refermé de sorte que la structure résistante 18 se retrouve enfermée entre les première 16 et seconde 24 empreintes. Dans cette position, le premier axe longitudinal X1 est sensiblement confondu avec le second axe longitudinal X2.
Le procédé de fabrication comporte ensuite l’injection d’une résine dans le dispositif de moulage 10, en passant par l’au moins une rainure 26, 28. La résine imprègne ainsi les fibres de la structure résistante 18, depuis l’extérieur vers l’intérieur, de manière uniforme sur toute la longueur de la structure résistante 18.
Avantageusement, on met l’enceinte délimitée par le revêtement intérieur sous pression interne lors de l’injection de la résine, afin de garder ce revêtement sous contrainte et qu’il ne se déforme pas sous l’influence de la pression d’injection de la résine (8-9 bars).
On décrira ci-après des variantes de réalisation permettant d’optimiser l’efficacité du dispositif de moulage selon l’invention.
Conformément à des variantes de réalisation, représentées sur les figures 5 à 7, le revêtement intérieur 20, présentant une face extérieure 20b en contact avec la surface intérieure 18a de la structure résistante 18, comporte au moins une troisième rainure 30 formant un canal d’injection. Dans la variante représentée sur la figure 5, le revêtement intérieur 20 comporte une pluralité de troisièmes rainures 30, s’étendant parallèlement au second axe longitudinal X2. Ces troisièmes rainures 30 sont avantageusement réparties équitablement autour du second axe longitudinal X2.
Dans la variante représentée sur la figure 6, le revêtement intérieur 20 comporte une troisième rainure 30 s’étendant s’étendant selon une hélicoïdale définie autour du second axe longitudinal X2.
Dans les deux cas, comme cela est représenté sur la figure 7, chaque troisième rainure 30 débouche radialement sur la structure résistante 18. De la résine circulant dans la troisième rainure 30 peut ainsi imprégner la structure résistante 18, depuis l’intérieur vers l’extérieur.
La troisième rainure 30, en combinaison avec la première 26 et/ou seconde 28 rainure, permet de réduire le temps d’imprégnation de la structure résistante 18, et d’améliorer cette imprégnation.
Avantageusement, comme cela est représenté sur la figure 8, l’embase 22 comprend au moins un canal d’injection 32, débouchant au moins en partie sur la structure résistante 18. De préférence, l’embase 22 comporte une pluralité de canaux d’injection 32 répartis autour du second axe longitudinal X2. L’étape d’injection est réalisée en injectant de la résine à travers chaque canal d’injection 32. Ainsi, dans le dispositif de moulage 10, chaque canal d’injection 32 communique avec une conduite d’injection de ce dispositif de moulage 10.
Chaque canal d’injection 32 s’étend dans le bec 22a, puis en surface de la couronne 22b, de manière à s’étendre jusqu’à l’interface entre la structure résistante 18 et le revêtement intérieur 20.
Plus particulièrement, dans le cas où le revêtement intérieur 20 comporte au moins une troisième rainure 30, chaque canal d’injection 32 est conformé pour communiquer avec au moins l’une de ces troisièmes rainures 30.
Dans ce cas, l’injection de résine dans le dispositif de moulage 10 est réalisée en passant par l’au moins une troisième rainure 30. La résine imprègne ainsi les fibres de la structure résistante 18, depuis l’intérieur vers l’extérieur, de manière uniforme sur toute la longueur de la structure résistante 18.
En variante, ou de manière complémentaire, comme cela est représenté sur la figure 2, au moins l’un des canaux d’injection 32 s’étend dans le bec 22a jusqu’à l’interface entre la structure résistante 18 et l’empreinte 16, 24 adjacente. Plus particulièrement, ce canal d’injection 32 communique avec au moins l’une des première 26 et/ou seconde 28 rainures de l’empreinte. Dans un mode de réalisation avantageux, la résine est injectée à la fois en passant par la ou les troisièmes rainures 30 d’une part, et par la ou les première 26 et/ou seconde 28 rainures de l’empreinte. La résine est ainsi à la fois injectée de l’intérieur vers l’extérieur et de l’extérieur vers l’intérieur, ce qui permet d’augmenter la vitesse et l’homogénéité de l’injection.
Conformément à un mode de réalisation préféré, le procédé de moulage comporte, de préférence avant l’injection de résine, une étape d’aspiration d’air à travers le ou les canaux d’injection 32 de l’embase 22.
En variante, les canaux 32 sont uniquement destinés à l’aspiration d’air et ne servent pas à l’injection de résine.
Conformément à une autre variante, l’embase 22 comporte certains canaux exclusivement destinés à l’aspiration d’air, et d’autres canaux exclusivement destinés à l’injection de résine, de sorte que l’aspiration d’air et l’injection de résine soient réalisées simultanément.
L’étape d’aspiration d’air permet de retirer l’air présent dans la structure résistante 18, et ainsi réduire la porosité de la structure résistante (et ainsi augmenter la résistance mécanique du réservoir), et également favoriser l’imprégnation des fibres.
On notera que l’invention n’est pas limitée au mode de réalisation précédemment décrit, mais pourrait présenter diverses variantes sans sortir du cadre des revendications.

Claims

REVENDICATIONS
1. Dispositif (10) de moulage par injection d’un réservoir de gaz haute pression, pour la fabrication du réservoir en matériau composite, le dispositif de moulage (10) comportant une première partie de moule (12) comprenant une première empreinte (16) et une seconde partie de moule (14) comprenant une seconde empreinte (24), caractérisé en ce qu’au moins l’une des première (16) et seconde (24) empreintes comporte au moins une rainure (26, 28) formant un canal d’injection.
2. Dispositif de moulage (10) selon la revendication 1 , dans lequel la première (16) ou seconde (24) empreinte comportant au moins une rainure présente une forme géométrique démoulante définie autour d’un premier axe longitudinal (X1 ), cette première (16) ou seconde (24) empreinte comportant au moins une première rainure (26) s’étendant parallèlement à l’axe longitudinal (X1 ), de préférence une pluralité de premières rainures (26) parallèles au premier axe longitudinal (X1 ).
3. Dispositif de moulage (10) selon la revendication 1 ou 2, dans lequel la première (16) ou seconde (24) empreinte comportant au moins une rainure présente une forme géométrique démoulante définie autour d’un premier axe longitudinal (X1 ), cette première (16) ou seconde (24) empreinte comportant au moins une seconde rainure (28) s’étendant circonférentiellement ou hélicoïdalement autour du premier axe longitudinal (X1 ), de préférence une pluralité de secondes rainures (28) parallèles entre elles.
4. Procédé de moulage par injection d’un réservoir de gaz haute pression en matériau composite, caractérisé en ce qu’il est réalisé au moyen d’un dispositif de moulage (10) selon l’une quelconque des revendications 1 à 3, et en ce qu’il comporte les étapes suivantes :
- fourniture d’une structure résistante (18) de filaments, délimitée radialement par une surface intérieure (18a) et une surface extérieure (18b), et munie d’un revêtement intérieur (20) inséré dans la structure résistante (18) en contact avec la surface intérieure (18a), - disposition de la structure résistante (18) dans la première (16) ou seconde (24) empreinte, puis fermeture du dispositif de moulage (10) de manière à enfermer la structure résistante (18) entre les première (16) et seconde (24) empreintes,
- injection d’une résine dans le dispositif de moulage (10), en passant par l’au moins une rainure (26, 28).
5. Procédé de moulage selon la revendication 4, dans lequel on fournit un revêtement intérieur (20) présentant une face extérieure (20b) en contact avec la surface intérieure (18a) de la structure résistante (18), la face extérieure (20b) du revêtement (20) comportant au moins une troisième rainure (30) formant un canal d’injection.
6. Procédé de moulage selon la revendication 5, dans lequel, la structure résistante (18) présentant une forme de révolution définie autour d’un second axe longitudinal (X2), la face extérieure (20b) du revêtement (20) comporte au moins une troisième rainure (30) s’étendant parallèlement au second axe longitudinal (X2), de préférence une pluralité de troisièmes rainures (30) parallèles au second axe longitudinal (X2).
7. Procédé de moulage selon la revendication 5, dans lequel, la structure résistante (18) présentant une forme de révolution définie autour d’un second axe longitudinal (X2), la face extérieure (20b) du revêtement (20) comporte au moins une troisième rainure (30) s’étendant selon une hélicoïdale définie autour du second axe longitudinal (X2).
8. Procédé de moulage selon l’une quelconque des revendications 4 à 7, comportant une étape préalable d’assemblage de la structure résistante (18) avec au moins une embase (22), l’embase (22) comprenant au moins un canal (32) débouchant au moins en partie sur la structure résistante (18).
9. Procédé de moulage selon la revendication 8, prise en combinaison avec l’une quelconque des revendications 5 à 7, dans lequel au moins l’un parmi l’au moins un canal (32) de l’embase communique avec au moins une troisième rainure (30) parmi l’au moins une troisième rainure.
10. Procédé de moulage selon la revendication 8 ou 9, comportant une étape, préalable à l’injection, d’aspiration d’air à travers le canal (32) de l’embase (22).
11. Réservoir pour gaz à haute pression, caractérisé en ce qu’il est réalisé au moyen d’un procédé selon l’une quelconque des revendications 4 à 10.
PCT/EP2020/058802 2019-03-29 2020-03-27 Fabrication d'un réservoir à gaz sous haute pression WO2020201132A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1903388 2019-03-29
FR1903388A FR3094260B1 (fr) 2019-03-29 2019-03-29 Fabrication d’un réservoir à gaz sous haute pression

Publications (1)

Publication Number Publication Date
WO2020201132A1 true WO2020201132A1 (fr) 2020-10-08

Family

ID=67262693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/058802 WO2020201132A1 (fr) 2019-03-29 2020-03-27 Fabrication d'un réservoir à gaz sous haute pression

Country Status (2)

Country Link
FR (1) FR3094260B1 (fr)
WO (1) WO2020201132A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115071169A (zh) * 2021-03-16 2022-09-20 丰田自动车株式会社 制造高压罐的方法、高压罐制造设备及非暂时性存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140014667A1 (en) * 2012-07-16 2014-01-16 Elkamet Kunststofftechnik Gmbh Pressure vessel and method for the production of such a vessel
FR3002481A1 (fr) * 2013-02-27 2014-08-29 Dcns Dispositif de moulage par infusion d'une piece creuse

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140014667A1 (en) * 2012-07-16 2014-01-16 Elkamet Kunststofftechnik Gmbh Pressure vessel and method for the production of such a vessel
FR3002481A1 (fr) * 2013-02-27 2014-08-29 Dcns Dispositif de moulage par infusion d'une piece creuse

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115071169A (zh) * 2021-03-16 2022-09-20 丰田自动车株式会社 制造高压罐的方法、高压罐制造设备及非暂时性存储介质
CN115071169B (zh) * 2021-03-16 2024-05-31 丰田自动车株式会社 制造高压罐的方法、高压罐制造设备及非暂时性存储介质

Also Published As

Publication number Publication date
FR3094260B1 (fr) 2021-04-16
FR3094260A1 (fr) 2020-10-02

Similar Documents

Publication Publication Date Title
EP2152531B1 (fr) Butée de suspension a élément filtrant et jambe de suspension comportant une telle butée
EP2560808B1 (fr) Dispositif de fabrication d&#39;un carter en materiau composite et procede de fabrication mettant en oeuvre un tel dispositif
EP3927529B1 (fr) Reparation ou reprise de fabrication d&#39;une piece en materiau composite a renfort fibreux tisse tridimensionnel
FR3026980A1 (fr) Procede d&#39;immobilisation d&#39;une preforme dans un moule
EP3676431B1 (fr) Texture fibreuse tissee pour la formation d&#39;une preforme de carter
CA2902849A1 (fr) Moule d&#39;injection pour la fabrication d&#39;une piece de revolution en materiau composite ayant des brides externes, et notamment d&#39;un carter de turbine a gaz
FR3084088A1 (fr) Texture fibreuse pour carter en materiau composite a resistance a l&#39;impact amelioree
WO2020201132A1 (fr) Fabrication d&#39;un réservoir à gaz sous haute pression
EP2075415A1 (fr) Structure annulaire de stator allégée pour turbomoteur d&#39;aéronef
EP3152027B1 (fr) Procédé de fabrication de roue dentée avec cerclage de renfort
EP1569788B1 (fr) Procédé de fabrication d&#39;une enveloppe à soufflets de protection de dispositif de transmission et enveloppe obtenue par la mise en oeuvre du procédé
EP3827118B1 (fr) Texture fibreuse pour carter en matériau composite à résistance au cisaillement ameliorée
EP2714517B1 (fr) Ensemble pour une nacelle d&#39;aéronef
EP2299089A1 (fr) Dispositif d&#39;étanchéité d&#39;un orifice sensiblement cylindrique
FR3105074A1 (fr) Outillage et procede pour la fabrication d’une piece aeronautique en materiau composite
WO2007118994A1 (fr) Articulation hydro-elastique structurellement optimisee et son procede de fabrication
WO2021245340A1 (fr) Moule et procédé d&#39;injection rtm utilisant des secteurs symétriques anti-pincement
EP3661774B1 (fr) Procédé de fabrication d&#39;un ensemble stabilisateur pour véhicule
FR2824136A1 (fr) Procede de fabrication d&#39;un compteur de liquide volumetrique du type a piston oscillant
EP2950990B1 (fr) Moule comprenant des coquilles et au moins un tiroir
FR3052820B1 (fr) Piston pour une machine hydraulique a pistons radiaux a frottements limites
EP4214044B1 (fr) Moule pour la fabrication d&#39;un carter de soufflante de turbomachine en materiau composite a dilatation differentielle
FR2877259A1 (fr) Dispositif de fabrication par moulage d&#39;une enveloppe a soufflets comprenant un noyau devissable et des moyens de retenue de l&#39;enveloppe, et procede correspondant
WO2022229547A1 (fr) Dispositif de moulage d&#39;une piece aubagee de turbomachine
FR2832990A1 (fr) Dispositif de fabrication de tubes composites evides , procede et tube associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20713048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20713048

Country of ref document: EP

Kind code of ref document: A1