WO2020199896A1 - 一种业务流路由控制方法、装置及系统 - Google Patents

一种业务流路由控制方法、装置及系统 Download PDF

Info

Publication number
WO2020199896A1
WO2020199896A1 PCT/CN2020/079046 CN2020079046W WO2020199896A1 WO 2020199896 A1 WO2020199896 A1 WO 2020199896A1 CN 2020079046 W CN2020079046 W CN 2020079046W WO 2020199896 A1 WO2020199896 A1 WO 2020199896A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
address
service flow
core network
network element
Prior art date
Application number
PCT/CN2020/079046
Other languages
English (en)
French (fr)
Inventor
张迪
于游洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020199896A1 publication Critical patent/WO2020199896A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/302Route determination based on requested QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, device, and system for routing control of service flow.
  • the 3GPP standard group formulated the next generation mobile communication network architecture (Next Generation System), which can also be called the fifth generation (5-Generation, 5G) network architecture.
  • Next Generation System Next Generation System
  • 5G fifth generation
  • the 5G network architecture supports the terminal to access the 5G core network (Core Network, CN) through the wireless technology defined by the 3GPP standard group (such as 5G Radio Access Network (RAN)).
  • Core Network Core Network
  • RAN 5G Radio Access Network
  • 5GC can also support fixed network/wired network access in addition to RAN access (for example, 5GC supports residential Gateway (RG) access through wired network). Therefore, there may also be a scenario of convergence of fixed and mobile networks ("fixed and mobile convergence" for short) in 5GC.
  • a home gateway for example, 5G-RG/Fixed Network Residential Gateway (FN-RG)
  • FN-RG Wireless Network Residential Gateway
  • all service flows processed by a home gateway need to pass 5GC. That is, when the home gateway is registered to the 5GC, the service flow transmitted by the home gateway is connected to the data network (Data Network, DN) through the User Plane Function (UPF) network element in the 5GC.
  • the business offload processing method in the prior art cannot adapt to the fixed-mobile convergence scenario.
  • the embodiments of the present application provide a service flow routing control method, device, and system, which are used to effectively implement service flow distribution in a scenario where a fixed network and a mobile network merge.
  • an embodiment of the present application provides a service flow routing control method, including: the core network element obtains the terminal information according to any one or more of the terminal's identification information, the terminal's access type, and the terminal's location information. Routing strategy; wherein the routing strategy is a core network routing strategy and/or a local routing strategy; the core network network element sends the routing strategy to the access network gateway or terminal.
  • the embodiment of the present application provides a service flow routing control method.
  • the method obtains the routing of the terminal according to any one or more of the identification information of the terminal, the access type of the terminal, and the location information of the terminal through the core network element. And send the obtained routing policy to the access network gateway or terminal, so that the access network gateway or terminal processes the service flow of the terminal according to the routing policy.
  • the charging policy of all service flows transmitted by the home gateway is controlled by the policy and control function (PCF) network element in the 5GC. This will inevitably increase the processing cost on the 5G network side, resulting in complex signaling during the evolution of the fixed network to 5G convergence.
  • PCF policy and control function
  • the embodiment of this application provides for shunting service flows, so that certain services (such as low value, low QoS requirements) ((Such as web browsing, etc.)) It is directly distributed through the terminal or the access network gateway. For example, if the access network gateway or the terminal determines that the low-value, low-QoS service flow is transmitted by the local routing strategy, then the local routing strategy is transmitted. It not only meets the needs of users, but also retains the deployment of operators for BNG.
  • the method provided in the embodiment of the present application further includes: the core network element receives a request message, the request message includes any one or more of the following information: terminal identification information, terminal access type Or the location information of the terminal.
  • the core network routing strategy includes: core network routing instructions and/or flow description information, where the core network routing instructions are used to indicate the service flow determined by the core network routing transmission flow description information; local routing The strategy includes: local routing instructions and/or flow description information.
  • the local route indication is used to indicate the service flow determined by the local route transmission flow description information.
  • the flow description information includes any one or more of the following information: application identification, flow quintuple identification, VLAN tag, session type, access line identification, and access point identification.
  • the method provided in the embodiment of the present application further includes: the core network element obtains the capability information of the access network gateway, and the capability information is used to indicate whether the access network gateway has the The ability of the terminal to assign the first address or the local routing capability of the service; where the first address is the address assigned to the terminal by the access network gateway; the core network element is based on the identification information of the terminal and the access type of the terminal.
  • the core network element obtains the routing strategy according to any one or more of the identification information of the terminal, the access type of the terminal, the location information of the terminal, and the capability information.
  • the core network element obtains the routing strategy of the terminal according to any one or more of the identification information of the terminal, the access type of the terminal, the location information of the terminal, and the capability information, including: access The network gateway has the ability to allocate the first address to the terminal or the service local routing ability, and the core network element determines that the routing strategy is a local routing strategy; or/and the access network gateway does not have the ability to allocate the first address to the terminal or The service local routing capability, the core network network element determines the routing strategy as the core network routing strategy.
  • acquiring the capability information of the access network gateway by the core network element includes: the core network element receiving capability information from the access network gateway.
  • an embodiment of the present application provides a service flow routing control method, including: an access network gateway receives a routing strategy from a terminal of a core network element; wherein the routing strategy is a core network routing strategy and/or a local routing strategy ; The access network gateway processes the service flow of the terminal according to the routing strategy.
  • the service flow is transmitted through the core network routing strategy, and the access network gateway processes the service flow of the terminal according to the routing strategy, including: the access network gateway uses the second address of the terminal to process the service flow, and The latter service flow is sent to the fixed mobile network interaction function; the second address is the address allocated by the core network for the terminal.
  • the service flow is transmitted through the core network routing strategy, and the access network gateway processes the service flow of the terminal according to the routing strategy, including: the access network gateway uses the second address of the terminal to process the service flow, and The subsequent service flow is sent to the user plane function network element, or the access network gateway replaces the address of the service flow from the first address to the second address, and sends the processed service flow to the user plane function network element.
  • the access network gateway processes the service flow of the terminal according to the routing strategy, including: the service flow is transmitted through the local routing strategy, and the access network gateway uses the first address of the terminal to transmit the service flow to the data network.
  • the method provided in the embodiment of the present application further includes: the access network gateway receives service quality parameters from the core network element; the access network gateway processes the service flow of the terminal according to the routing strategy, including: The network access gateway processes the service flow of the terminal according to the service quality parameters and routing strategies.
  • the service quality parameters include the service quality parameters of the terminal granularity.
  • the service flow includes the service flow transmitted by the core network routing strategy and/or the service flow transmitted by the local routing strategy .
  • the method provided in the embodiment of the present application further includes: the access network gateway receives a second request message from the terminal or the first indication information from the core network element, and the second request message is used to request The first address is allocated to the terminal, and the first indication information is used to indicate that the access network gateway is allowed to allocate the first address to the terminal; the access network gateway allocates the first address to the terminal according to the second request message or the first indication information.
  • the method provided in the embodiment of the present application further includes: the access network gateway obtains the second address allocated by the core network element for the terminal.
  • the method provided in the embodiment of the present application further includes: the access network gateway sends the second address to the terminal according to the core network routing strategy; or/and the access network gateway according to the first instruction information or the first instruction information
  • the second request message sends the first address to the terminal.
  • an embodiment of the present application provides a service flow routing control method, including: a terminal receives a routing strategy from a terminal of a core network element; wherein the routing strategy is a core network routing strategy and/or a local routing strategy; The routing strategy deals with the service flow of the terminal.
  • the method provided in this embodiment of the application further includes: the terminal receives a second address of the terminal, where the second address is an address allocated by the core network for the terminal; or/and the terminal receives the first address of the terminal , The first address is the address allocated by the access network gateway for the terminal.
  • the method provided in the embodiment of the present application further includes: the terminal sends a second request message for requesting the first address of the terminal to the access network gateway according to the local routing policy, where the first address is The address assigned by the access network gateway to the terminal.
  • the terminal processes the service flow of the terminal according to the routing strategy, including: the routing strategy is the core network routing strategy, and the terminal uses the second address to encapsulate the service flow of the terminal; the encapsulated service flow passes through the user plane function network Meta transfer.
  • the terminal processes the service flow of the terminal according to the routing strategy, including: the routing strategy is a local routing strategy, and the terminal uses the first address to encapsulate the service flow of the terminal; the encapsulated service flow passes through the access network
  • the gateway transmits to the data network.
  • the method provided in the embodiment of the present application further includes: the terminal obtains service quality parameters, the service quality parameters include terminal-granular service quality parameters; the terminal processes the service flow of the terminal according to the routing strategy, including: The service quality parameters and routing strategy process the service flow of the terminal, where the service flow includes the service flow transmitted by the core network routing strategy and/or the service flow transmitted by the local routing strategy.
  • this application provides a communication device that can implement the first aspect or any possible implementation of the first aspect, and therefore can also implement the first aspect or any possible implementation of the first aspect
  • the beneficial effects in may be a core network element, or a device that can support the core network element to implement the method in the first aspect or any possible implementation of the first aspect, for example, a chip applied to the core network element.
  • the device can implement the above method by software, hardware, or by hardware executing corresponding software.
  • a communication device provided by an embodiment of the present application includes: a communication unit configured to receive a routing strategy from a terminal of a core network element; wherein the routing strategy is a core network routing strategy and/or a local routing strategy;
  • the processing unit is used to process the service flow of the terminal according to the routing strategy.
  • the service flow is transmitted through the core network routing strategy, and the processing unit is specifically configured to use the second address of the terminal to process the service flow and send the processed service flow For the fixed mobile network interactive function; the second address is an address allocated by the core network for the terminal.
  • the service flow is transmitted through the core network routing strategy, and the processing unit is specifically configured to use the second address of the terminal to process the service flow and send the processed service flow to the user plane function network element , Or: a processing unit, specifically configured to replace the address of the service flow from the first address to the second address, and send the processed service flow to the user plane function network element.
  • the service flow is transmitted through a local routing strategy, and the processing unit is specifically configured to use the first address of the terminal to transmit the service flow to the data network.
  • the communication unit is also used to receive service quality parameters from the core network elements; the processing unit is also used to process the service flow of the terminal according to the service quality parameters and routing strategies, and the service quality parameters include the terminal Granular service quality parameters, service flows include service flows transmitted using core network routing strategies and/or service flows transmitted using local routing strategies.
  • the communication unit is further configured to receive a second request message from the terminal or first indication information from a core network element, and the second request message is used to request the terminal to be assigned a first address.
  • An indication information is used to indicate that the access network gateway is allowed to allocate the first address to the terminal; the processing unit is specifically configured to allocate the first address to the terminal according to the second request message or the first indication information.
  • the communication unit is also used to obtain the second address allocated by the core network element for the terminal.
  • the communication unit is further configured to send the second address to the terminal according to the core network routing strategy; or/and, the communication unit is further configured to send the second address to the terminal according to the first indication information or the second request message The first address.
  • an embodiment of the present application provides a communication device.
  • the communication device may be a core network element or a chip in the core network element.
  • the communication device may include: a communication unit and a processing unit.
  • the communication unit may be an interface circuit.
  • the communication device may also include a storage unit.
  • the storage unit may be a memory.
  • the storage unit is used to store computer program code, and the computer program code includes instructions.
  • the processing unit may be a processor. The processing unit executes the instructions stored in the storage unit, so that the communication device implements the first aspect or the method described in any one of the possible implementation manners of the first aspect.
  • the processing unit may be a processor, and the communication unit may be collectively referred to as a communication interface.
  • the communication interface may be an input/output interface, pin or circuit, etc.
  • the processing unit executes the computer program code stored in the storage unit to enable the core network element to implement the method described in the first aspect or any one of the possible implementations of the first aspect.
  • the storage unit may be in the chip
  • the storage unit (for example, register, cache, etc.) may also be a storage unit (for example, read-only memory, random access memory, etc.) located outside the chip in the core network element.
  • the processor, the communication interface and the memory are coupled with each other.
  • this application provides a communication device that can implement the second aspect or any possible implementation manner of the second aspect, and therefore can also implement the second aspect or any possible implementation manner of the second aspect
  • the beneficial effects in may be an access network gateway, or a device that can support the access network gateway to implement the second aspect or any possible implementation method of the second aspect, for example, a chip applied to the access network gateway.
  • the device can implement the above method by software, hardware, or by hardware executing corresponding software.
  • an embodiment of the present application provides a communication device, including: a communication unit, configured to receive a routing strategy from a terminal of an access network gateway; wherein the routing strategy is a core network routing strategy and/or a local routing strategy; processing The unit is used to process the service flow of the terminal according to the routing strategy.
  • the communication unit is also used to receive the second address of the terminal, where the second address is an address allocated by the core network for the terminal; or/and, the communication unit is also used to receive the second address of the terminal One address, the first address is an address allocated by the access network gateway for the terminal.
  • the communication unit is further configured to send a second request message to the access network gateway according to the local routing policy, and the second request message is used to request the first address of the terminal
  • the first address is an address allocated by the access network gateway to the terminal.
  • the routing strategy is a core network routing strategy
  • the processing unit is specifically configured to use the second address to encapsulate the service flow of the terminal; the encapsulated service flow is transmitted through the user plane function network element.
  • the routing strategy is a local routing strategy
  • the processing unit is specifically configured to use the first address to encapsulate the service flow of the terminal; the encapsulated service flow is transmitted to the data network through the access network gateway.
  • the communication unit is also used to obtain service quality parameters, which include terminal-granular service quality parameters; the processing unit is specifically used to process the service flow of the terminal according to the service quality parameters and routing strategies, Wherein, the service flow includes the service flow transmitted using the core network routing strategy and/or the service flow transmitted using the local routing strategy.
  • an embodiment of the present application provides a communication device.
  • the communication device may be an access network gateway or a chip in the access network gateway.
  • the communication device may include: a communication unit and a processing unit.
  • the communication unit may be an interface circuit.
  • the communication device may also include a storage unit.
  • the storage unit may be a memory.
  • the storage unit is used to store computer program code, and the computer program code includes instructions.
  • the processing unit may be a processor. The processing unit executes the instructions stored in the storage unit, so that the communication device implements the second aspect or the method described in any one of the possible implementation manners of the second aspect.
  • the processing unit may be a processor, and the communication unit may be collectively referred to as a communication interface.
  • the communication interface may be an input/output interface, pin or circuit, etc.
  • the processing unit executes the computer program code stored in the storage unit, so that the access network gateway implements the method described in the second aspect or any one of the possible implementations of the second aspect.
  • the storage unit may be in the chip
  • the storage unit (for example, register, cache, etc.) may also be a storage unit (for example, read-only memory, random access memory, etc.) located outside the chip in the access network gateway.
  • the processor, the communication interface and the memory are coupled with each other.
  • this application provides a communication device that can implement the third aspect or any possible implementation manner of the third aspect, and therefore can also implement any possible implementation manner of the third aspect or the third aspect
  • the beneficial effects in may be a terminal, or a device that can support the terminal to implement the method in the third aspect or any possible implementation manner of the third aspect, for example, a chip applied to the terminal.
  • the device can implement the above method by software, hardware, or by hardware executing corresponding software.
  • a communication device provided in an embodiment of the present application includes: a communication unit configured to receive a routing strategy from a terminal of an access network gateway; wherein the routing strategy is a core network routing strategy and/or a local routing strategy;
  • the processing unit is used to process the service flow of the terminal according to the routing strategy.
  • the communication unit is configured to receive a second address of the terminal, where the second address is an address allocated by the core network for the terminal; or/and, the communication unit is configured to receive The first address of the terminal, where the first address is an address allocated to the terminal by the access network gateway.
  • the communication unit is further configured to send a second request message to the access network gateway according to the local routing policy, and the second request message is used to request the first address of the terminal
  • the first address is an address allocated by the access network gateway to the terminal.
  • the routing strategy is the core network routing strategy
  • the processing unit is specifically configured to use the second address to encapsulate the service flow of the terminal; the encapsulated service flow passes through the user plane function Network element transmission.
  • the routing strategy is the local routing strategy
  • the processing unit is specifically configured to use the first address to encapsulate the service flow of the terminal; the encapsulated service flow passes through the access network gateway Transmit to the data network.
  • the communication unit is further configured to obtain service quality parameters, where the service quality parameters include terminal-granular service quality parameters; and the processing unit is specifically configured to obtain service quality parameters based on the service quality parameters and the routing strategy.
  • the service flow of the terminal is processed, where the service flow includes a service flow transmitted using the core network routing strategy and/or a service flow transmitted using the local routing strategy.
  • an embodiment of the present application provides a communication device.
  • the communication device may be a terminal or a chip in the terminal.
  • the communication device may include: a communication unit and a processing unit.
  • the communication unit may be an interface circuit.
  • the communication device may also include a storage unit.
  • the storage unit may be a memory.
  • the storage unit is used to store computer program code, and the computer program code includes instructions.
  • the processing unit may be a processor. The processing unit executes the instructions stored in the storage unit, so that the communication device implements the third aspect or the method described in any one of the possible implementation manners of the third aspect.
  • the processing unit may be a processor, and the communication unit may be collectively referred to as a communication interface.
  • the communication interface may be an input/output interface, pin or circuit, etc.
  • the processing unit executes the computer program code stored in the storage unit to enable the terminal to implement the method described in the third aspect or any one of the possible implementations of the third aspect.
  • the storage unit may be a storage unit in the chip ( For example, a register, a cache, etc.) may also be a storage unit in the terminal located outside the chip (for example, a read-only memory, a random access memory, etc.).
  • the processor, the communication interface and the memory are coupled with each other.
  • the embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is run on a computer, the computer can execute operations as described in the first aspect to the first aspect.
  • the service flow routing control method described in any one of the possible implementations.
  • embodiments of the present application provide a computer-readable storage medium, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction When the computer program or instruction is run on a computer, the computer can execute operations as described in the second aspect to the first aspect.
  • the embodiments of the present application provide a computer-readable storage medium, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction runs on a computer, the computer executes operations such as the third aspect to the first aspect.
  • the embodiments of the present application provide a computer program product including instructions.
  • the instructions When the instructions are executed on a computer, the computer executes a service flow described in the first aspect or various possible implementations of the first aspect. Route control method.
  • the present application provides a computer program product including instructions that, when the instructions run on a computer, cause the computer to execute the second aspect or a kind of service flow routing described in the various possible implementations of the second aspect Control Method.
  • this application provides a computer program product that includes instructions, which when the instructions run on a computer, cause the computer to execute the third aspect or a service flow routing described in the various possible implementations of the third aspect Control Method.
  • an embodiment of the present application provides a communication system, which includes any one or more of the following: the fourth aspect and the communication devices described in various possible implementations, the fifth aspect and the fifth aspect The communication devices described in the various possible implementation manners, and the communication devices described in the sixth aspect and the various possible implementation manners of the sixth aspect.
  • an embodiment of the present application provides a communication device that includes a processor and a storage medium, the storage medium stores instructions, and when the instructions are executed by the processor, the first aspect or The service flow routing control method described in the various possible implementations of the first aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and a storage medium.
  • the storage medium stores instructions. When the instructions are executed by the processor, the second aspect or The service flow routing control method described in the various possible implementations of the second aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and a storage medium.
  • the storage medium stores instructions. When the instructions are executed by the processor, the third aspect or The service flow routing control method described in the various possible implementations of the third aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes one or more modules for implementing the methods of the first, second, and third aspects described above.
  • the one or more modules It may correspond to the steps in the methods of the first, second, and third aspects described above.
  • an embodiment of the present application provides a chip that includes a processor and a communication interface, the communication interface is coupled with the processor, and the processor is used to run a computer program or instruction to implement the first aspect or each of the first aspect.
  • the communication interface is used to communicate with modules other than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run a computer program or instruction to implement the second aspect or each of the second aspect.
  • the communication interface is used to communicate with other modules outside the chip.
  • an embodiment of the present application provides a chip that includes a processor and a communication interface, and the communication interface is coupled to the processor.
  • the processor is used to run a computer program or instruction to implement the third aspect or each of the third aspect.
  • the communication interface is used to communicate with other modules outside the chip.
  • the chip provided in the embodiment of the present application further includes a memory for storing computer programs or instructions.
  • an embodiment of the present application provides a communication device, the communication device includes a processor, the processor is coupled to a memory, a computer program or instruction is stored in the memory, and the processor is used to run the computer program or instruction stored in the memory , To implement the service flow routing control method as described in the first aspect or various possible implementation manners of the first aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor, the processor is coupled to a memory, the memory stores a computer program or instruction, and the processor is used to run the computer program or instruction stored in the memory.
  • an embodiment of the present application provides a communication device, the communication device includes a processor, the processor is coupled to a memory, the memory stores a computer program or instruction, and the processor is used to run the computer program stored in the memory Or instructions to implement the service flow routing control method described in the third aspect or various possible implementation manners of the third aspect.
  • any of the above-provided devices or computer storage media or computer program products or chips or communication systems are used to execute the corresponding methods provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding ones provided above The beneficial effects of the corresponding solutions in the method will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIGS. 2 to 4 are schematic diagrams of a specific structure of a communication system provided by embodiments of this application;
  • Fig. 5-Fig. 11 are schematic flowcharts of a service flow routing control method provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of still another communication device provided by an embodiment of this application.
  • FIG. 15 is a schematic structural diagram of a chip provided by an embodiment of the application.
  • words such as “first” and “second” are used to distinguish the same items or similar items that have substantially the same function and effect.
  • the first address and the second address are only for distinguishing different addresses, and the order of their order is not limited.
  • words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency-division multiple access
  • the term "system” can be replaced with "network”.
  • the CDMA system can implement wireless technologies such as universal terrestrial radio access (UTRA) and CDMA2000.
  • UTRA can include wideband CDMA (WCDMA) technology and other CDMA variants.
  • CDMA2000 can cover the interim standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement wireless technologies such as the global system for mobile communication (GSM).
  • GSM global system for mobile communication
  • OFDMA system can realize such as evolved universal wireless terrestrial access (UTRA, E-UTRA), ultra mobile broadband (ultra mobile broadband, UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • 3GPP is a new version of UMTS using E-UTRA in long term evolution (LTE) and various versions based on LTE evolution.
  • LTE long term evolution
  • NR new radio
  • the communication system may also be applicable to future-oriented communication technologies, all of which apply the technical solutions provided in the embodiments of the present application.
  • FIG. 1 shows an architecture diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes a terminal 10, and the terminal 10 accesses a core network (Core Network, through an access network gateway 20).
  • CN core network
  • CN core network
  • the access network gateway 20 is a gateway in the wired network 2 (also referred to as a fixed network or a fixed network).
  • the terminal 10 accesses the wired network 2 through the wired access network.
  • the terminal 10 accesses the core network 1 through a wireless (RAN) network.
  • RAN wireless
  • the communication system may further include: a user plane network element 40, and at least one data network (DN) connected to the user plane network element 40.
  • the at least one data network may be an operator network that provides data transmission services for the terminal 10.
  • the terminal 10 accesses the core network 1 through the access network gateway 20.
  • the core network 1 is used to provide services for the terminal 10.
  • the core network 1 includes network elements that provide services for the terminal 10.
  • the at least one data network includes: a data network 50 used for core network routing, and a data network 60 used for local routing.
  • the core network element 30 may provide a routing strategy for the terminal 10 so that the terminal 10 can determine whether the service flow of the terminal 10 is transmitted using the core network routing strategy or the local routing strategy.
  • the core network element 30 may include a control plane function (CP) network element in the core network 1.
  • CP control plane function
  • the core network network element 30 may include any one of a mobility management network element, a policy control network element, or a session management network element.
  • the above-mentioned core network 1 of the communication system may be a 5G core network (5G Core, 5GC), or may be a fourth generation (4G) core network (for example, Evolved Packet Core, EPC).
  • 5G Core 5G Core
  • 4G fourth generation
  • EPC Evolved Packet Core
  • the session management network element and the mobility management network element may be a mobility management entity (mobility management entity, MME).
  • the policy control network element may be a policy and charging rules function unit (Policy and Charging Rules Function, PCRF).
  • PCRF Policy and Charging Rules Function
  • the MME has both a session management function and a mobility management function.
  • the user plane network element may be a public data network gateway (public data network gateway, PDN GW, PGW), and a serving network element (serving gateway, SGW).
  • the network element or entity corresponding to the mobility management network element can be the access and mobility management function (AMF) network element in the 5GC, and the network element or entity corresponding to the session management network element can be
  • the network element or entity corresponding to the policy control network element may be the policy control function (Policy Control Function, PCF) network element in the 5GC.
  • the user plane network element may be a user plane function (UPF) network element.
  • fixed-mobile convergence In addition to supporting wireless (RAN) access, the subsequent core network will also support fixed network/wired network access.
  • the convergence of fixed and mobile networks (referred to as “fixed-mobile convergence") has the following three scenarios:
  • the terminal is the Fixed Network Residential Gateway (FN-RG)
  • the access network gateway 20 is the Broadband Network Gateway (BNG).
  • BNG Broadband Network Gateway
  • FN-RG is connected to 5GC through wired access network, BNG, and fixed mobile interworking function (Fixed Mobile Interworking Function, FMIF).
  • a customer terminal equipment Customer Premise Equipment, CPE
  • CPE Customer Premise Equipment
  • FMIF includes FMIF-CP and FMIF-UP. Since in the scenario shown in FIG.
  • the BNG has a distribution interface, which can realize the distribution of the service flow from the FN-RG
  • the scenario shown in FIG. 2 includes the core network routing path and the local routing path.
  • the core network routing path includes the following paths: UPF network elements connected to FMIF-UP through the N3 interface, UPF network elements connected to the SMF network element through the N4 interface, and UPF network elements connected to the DN1 network element.
  • the local routing path includes the following path: BNG is connected to DN2 through the A10 interface.
  • the BNG determines that the local routing strategy is used to transmit the service flow from the FN-RG, the service flow is transmitted to DN2. Because there is a connection between the FMIF-CP and the AMF network element, after the AMF network element obtains the routing policy, it can send the routing policy to the FMIF, and the FMIF then forwards the routing policy to the BNG.
  • the AMF network elements connected to the FMIF-CP through the N1 interface and the N2 interface constitute the control plane connection between the FMIF and the core network.
  • the CPE in the embodiment of this application may be a UE, a personal computer (PC), and a set-top box (STB).
  • PC personal computer
  • STB set-top box
  • the use of a local routing strategy for the transmission of the service flow can be understood as: the transmission of the service flow by the fixed network.
  • wired access network BNG, authentication, authorization and accounting (Authentication, Authorization and Accounting, AAA), broadband policy control function (BPCF), and FMIF may belong to the fixed network.
  • AAA authentication, authorization and accounting
  • BPCF broadband policy control function
  • FMIF FMIF
  • the integration of AAA and BPCF into the fixed network is taken as an example in Figure 2.
  • the AAA and BPCF can also be integrated into the 5G core network side.
  • the fixed network side does not have its own FN-RG Authentication capability
  • BNG still retains the ability to allocate IP addresses for FN-RG.
  • Scenario 2 As shown in Figure 3, the fixed-mobile convergence adopts a converged architecture: taking the terminal as FN-RG and the access network gateway as A-AGF as an example, FN-RG uses the wired access network and the adaptive access network gateway function (Adaptive-Access Gateway Function, A-AGF) access to 5GC.
  • A-AGF adaptive-Access Gateway Function
  • the difference between Fig. 3 and Fig. 2 is that FN-RG is connected to 5GC through wired access network and A-AGF.
  • the routing strategy is sent to the A-AGF by the PCF network element through the AMF network element, and the A-AGF is used as a distribution point.
  • BNG is fused into A-AGF, there is no FMIF, A-AGF has the sum of the functions of BNG+FMIF.
  • FN-RG is connected to A-AGF through a wired access network.
  • the wired access device and the A-AGF may also have an access resource control function (Access Resource Control Function, ARCF).
  • ARCF Access Resource Control Function
  • the A-AGF and AMF network elements establish a control plane connection through the N1 interface and the N2 interface.
  • a user plane connection is established between the A-AGF and the UPF network element through the N3 interface.
  • the UPF network element is connected to the SMF network element through the N4 interface, and the UPF network element is connected to the DN1 network element.
  • A-AGF is connected to DN2.
  • A-AGF determines that if the service flow from FN-RG is transmitted using the core network routing strategy, then A-AGF transmits the service flow to DN1 through the UPF network element. If A-AGF determines that the service flow from FN-RG is transmitted using the local routing strategy, A-AGF transmits the service flow directly to DN2.
  • A-AGF does not have a distribution interface, and a distribution interface needs to be added. For example, BNG is fused into A-AGF.
  • AAA and BPCF can remain on the fixed network side. In this case, all interactions between BNG and FMIF are supported within A-AGF, and all BNG or FMIF steps The implementation is replaced by A-AGF. Of course, the AAA and BPCF can also be kept on the 5GC side.
  • Scenario 3 as shown in Figure 4, as shown in Figure 4, fixed-mobile convergence adopts a converged architecture—in Figure 3, the terminal is 5G-RG, and 5G-RG is connected to 5GC through the wired access network and the access network gateway 5G AGF .
  • the difference between Fig. 4 and Fig. 2 and Fig. 3 is: in Fig. 4 5G-RG is used as the offload point, that is, 5G-RG can offload the received service flow to determine whether the service flow adopts core network routing strategy transmission or local Routing strategy transmission.
  • the 5G-RG is connected to the Direct-AGF (D-AGF) through a wired access device.
  • the 5G-RG is connected to the AMF network element through the N1 interface.
  • D-AGF Direct-AGF
  • the D-AGF includes AGF-CP and AGF-UP.
  • AGF-CP and AMF network elements establish a core network control plane connection through the N2 interface
  • the user plane connection between AGF-UP and the core network includes: the connection established between AGF-UP and UPF network elements through the N3 interface, UPF The connection between the network element and the SMF network element through the N4 interface, and the connection between the UPF network element and the DN1 network element.
  • AGF-UP also establishes a user plane connection with DN2 to transmit service flows from 5G-RG through local routing strategies.
  • the routing strategy of the 5GC control plane is sent by the PCF network element to the D-AGF via the AMF network element, and the D-AGF further sends this routing strategy to the 5G-RG, which serves as the distribution point.
  • D-AGF does not have a distribution interface, and a distribution interface needs to be added.
  • the 5G network architecture may include in addition to: Policy Control Function (PCF) network elements, authentication server function (AUSF) network elements, and unified database ( Unified Data Repository (UDR), Unified Data Management (UDM) network elements, or binding support function (BSF), network repository storage function (NRF) network elements, application functions ( Application function, AF), network slice selection function (Network Slice Selection Function, NSSF) network elements, etc., which are not specifically limited in the embodiment of the application.
  • PCF Policy Control Function
  • AUSF authentication server function
  • UDR Unified Data Repository
  • UDM Unified Data Management
  • BSF binding support function
  • NRF network repository storage function
  • application functions Application function, AF
  • NSSF Network Slice Selection Function
  • the terminal communicates with the AMF network element through the N1 interface (N1 for short).
  • the AMF entity communicates with the SMF network element through the N11 interface (N11 for short).
  • the SMF network element communicates with one or more UPF network elements through the N4 interface (N4 for short). Any two UPF network elements among one or more UPF network elements communicate through an N9 interface (N9 for short).
  • the UPF network element communicates with the data network (DN) managed and controlled by the AF network element through the N6 interface (N6 for short).
  • the terminal accesses the network through an access device (for example, a RAN device), and the access device communicates with the AMF network element through an N2 interface (N2 for short).
  • the SMF network element communicates with the PCF network element through the N7 interface (N7 for short), and the PCF network element communicates with the AF network element through the N5 interface.
  • the access device communicates with the UPF network element through the N3 interface (N3 for short). Any two AMF network elements communicate through the N14 interface (N14 for short).
  • the SMF network element communicates with the UDM through the N10 interface (N10 for short).
  • the AMF network element communicates with AUSF through the N12 interface (N12 for short).
  • the AUSF network element communicates with the UDM network element through the N13 interface (N13 for short).
  • the AMF network element communicates with the UDM network element through the N8 interface (N8 for short).
  • the control plane network elements may also interact with each other using a service interface.
  • AMF network elements, SMF network elements, UDM network elements, or PCF network elements use service-oriented interfaces to interact.
  • the service-oriented interface provided by the AMF network element to the outside may be Namf.
  • the service-oriented interface provided by the SMF network element to the outside may be Nsmf.
  • the service-oriented interface provided by the UDM network element to the outside may be Nudm.
  • the service-oriented interface provided by the PCF network element to the outside may be Npcf.
  • Figures 2 to 4 are only examples of a UPF network element and an SMF network element. Of course, this may include multiple UPF network elements and SMF network elements, such as SMF network element 1 and SMF network element 2, which is not specifically limited in the embodiment of the present application.
  • the access device, AMF network element, SMF network element, UDM network element, UPF network element, and PCF network element in Figures 2 to 4 are only a name, and the name does not constitute a limitation on the device itself.
  • the network elements corresponding to the access equipment, AMF network elements, SMF network elements, UDM network elements, UPF network elements, and PCF network elements may also have other names.
  • the UDM network element may also be replaced with a user home server (home subscriber server, HSS) or user subscription database (USD) or database entity, etc., which will be uniformly explained here and will not be repeated in the following .
  • the AMF network element is mainly responsible for the mobility management in the mobile network, such as user location update, user registration network, user handover, etc.
  • the SMF network element is mainly responsible for session management in the mobile network, such as session establishment, modification, and release. Specific functions include assigning IP addresses to users and selecting UPF network elements that provide message forwarding functions.
  • the PCF network element is responsible for providing policies to the AMF network elements and SMF network elements, such as quality of service QoS policies, slice selection policies, etc.
  • UDM network elements are used to store user data, such as subscription information, authentication/authorization information.
  • the UPF network element is mainly responsible for processing user messages, such as forwarding and charging.
  • DN refers to an operator network that provides users with data transmission services, such as IP Multi-media Service (IMS), Internet, etc.
  • IMS IP Multi-media Service
  • the terminal accesses the DN by establishing a session (PDU session) from the terminal to the RAN to the UPF network element to the data network (Data Network, DN).
  • PDU session a session from the terminal to the RAN to the UPF network element to the data network (Data Network, DN).
  • the terminal involved in the embodiments of the present application may include various devices with wireless communication functions that can be connected to a mobile network.
  • handheld devices, in-vehicle devices, wearable devices, computing devices or other processing devices connected to wireless modems can also include subscriber units, cellular phones, smart phones, and wireless data Card, personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld device (handheld), laptop computer, cordless phone, or wireless local loop (wireless local loop, WLL) station, machine type communication (MTC) terminal, user equipment (UE), mobile station (mobile station, MS), terminal device (terminal device), relay user equipment .
  • the first terminal is a 5GC capable user equipment.
  • the terminal is an example of relay user equipment.
  • the relay user equipment may be a 5G residential gateway (RG).
  • User plane network elements used for packet routing and forwarding, and quality of service (QoS) processing of user plane data, etc.
  • the user plane network element may be a UPF network element.
  • the UPF network element may also have other names, which are not limited by this application.
  • Data network network element used to provide a network for data transmission.
  • the data network element may be a DN.
  • the data network element may still be a DN, or may also have other names, which is not limited by this application.
  • Mobility management network elements mainly used for mobility management and access management, etc., can be used to implement other functions in the mobility management entity (mobility management entity, MME) function except session management, such as lawful interception and Access authorization/authentication and other functions.
  • MME mobility management entity
  • the mobility management network element may be an AMF network element.
  • the mobility management network element may still be an AMF network element, or may also have other names, which are not limited in this application.
  • Session management network element mainly used for session management, terminal Internet Protocol (IP) address allocation and management, selection of end points that can manage user plane functions, policy control and charging function interfaces, and downlink data notification Wait.
  • IP Internet Protocol
  • the session management network element may be an SMF network element.
  • the session management network element may also have other names, which are not limited by this application.
  • Policy control network element a unified policy framework used to guide network behavior, and provide policy rule information for control plane function network elements (such as AMF, SMF network elements, etc.).
  • the policy control network element can be replaced by a policy and charging rules function (PCRF) network element.
  • PCF policy and charging rules function
  • the policy control network element may still be a PCF network element, or may also have other names, which is not limited in this application.
  • Binding functional network element used to find the PCF associated with the session.
  • the binding support network element may be a binding support function (binding support function, BSF) network element.
  • BSF binding support function
  • the binding support network element may still be a BSF network element, or may have other names, which is not limited in this application.
  • the authentication server is used for authentication services, generating keys to realize two-way authentication for terminal devices, and supporting a unified authentication framework.
  • the authentication server may be an authentication server function (authentication server function, AUSF) network element.
  • the authentication server function network element may still be an AUSF network element, or may have other names, which is not limited by this application.
  • Data management network element used for processing terminal identification, access authentication, registration and mobility management, etc.
  • the data management network element may be a unified data management (UDM) network element.
  • UDM unified data management
  • future communication system unified data management may still be UDM network elements, or may also have other names, which are not limited by this application.
  • Application network elements are used to route data affected by applications, access network open function network elements, and interact with policy frameworks for policy control.
  • the application network element may be an application function (AF) network element.
  • AF application function
  • the application network element may still be an AF network element, or may also have other names, which is not limited in this application.
  • Network storage network element used to maintain real-time information of all network function services in the network.
  • the network storage network element may be a network repository function (NRF) network element.
  • NRF network repository function
  • the network storage network element may still be an NRF network element, or may also have other names, which are not limited by this application.
  • network elements or functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • AF network element is abbreviated as AF
  • BSF BSF
  • NRF NRF
  • PCF PCF
  • AF described later in this application can be replaced with application network elements
  • BSF can be replaced with binding support network elements
  • NRF can be replaced with network storage network elements
  • PCF can be replaced with policy control network elements.
  • the steps performed by the core network element in the service flow routing control method provided by the embodiment of the present application may also be performed by a chip applied to the core network element.
  • the steps executed by the access network gateway may also be executed by a chip applied in the access network gateway, and the steps executed by a terminal in a method for controlling a service flow route may also be executed by a chip applied in the terminal.
  • the following embodiment takes as an example a service flow routing control method executed by a core network element, an access network gateway, and a terminal.
  • the device is the chip in the core network element, the chip in the access network gateway, or the chip in the terminal, please refer to the specific description of the device for the core network element, access network gateway, and terminal, and will not repeat Introduction.
  • Figure 5 shows a service flow routing control method provided by an embodiment of the present application, and the method includes:
  • Step 101 The core network element obtains the routing strategy (also referred to as the offload strategy) of the terminal according to any one or more of the identification information of the terminal, the access type of the terminal, and the location information of the terminal.
  • the routing strategy is a core network routing strategy and/or a local routing strategy.
  • the terminal in step 101 in the embodiment of the present application may be the FN-RG as shown in FIG. 2 or FIG. 3.
  • the terminal in the embodiment of this application may be a 5G-RG as shown in FIG. 4.
  • the core network element may be any one of a PCF network element, an AMF network element, or an SMF network element.
  • the location information of the terminal includes at least one of line identification or geographic location information.
  • the core network element can determine whether the terminal supports local routing according to the location information of the terminal.
  • the core network element in the embodiment of this application indicates to the terminal or the access network gateway that the priority of the core network routing strategy is higher than the priority of the local routing strategy, and the terminal or the access gateway can determine the priority Use core network routing strategy to transmit service flow.
  • the terminal or the access gateway can determine to use the local routing strategy to transmit the service flow.
  • the core network element indicates to the terminal or the access network gateway that the priority of the local routing strategy is higher than the priority of the core network routing strategy, the terminal or the access gateway may determine to preferentially use the local routing strategy to transmit the service flow.
  • the terminal or the access gateway can determine to use the core network routing strategy for transmission.
  • the identification information of the terminal in the embodiment of the present application is used to identify the terminal.
  • the identification information of the terminal can be one or more of the following: Internet protocol address (IP), subscription permanent identifier (SUPI), permanent equipment identifier (PEI), general public subscription identifier ( generic public subscription identifier, GPSI), international mobile subscriber identifier (IMSI), international mobile equipment identity (IMEI), IP address and mobile station international integrated service digital network number (mobile station international) integrated service digital network number, MSISDN).
  • IP Internet protocol address
  • SUPI subscription permanent identifier
  • PEI permanent equipment identifier
  • general public subscription identifier generic public subscription identifier, GPSI
  • IMSI international mobile subscriber identifier
  • IMEI international mobile equipment identity
  • the core network routing strategy is used to instruct the terminal's service flow to be routed through the core network
  • the local routing strategy is used to instruct the terminal's service flow to be transmitted through the local route
  • the service flow of the terminal may be the service flow of the terminal itself, or the service flow from the CPE received by the terminal, which is not limited in the embodiment of the present application.
  • Step 102 The core network element sends the routing policy to the access network gateway or terminal.
  • the core network element sends the routing policy to the access network gateway.
  • the access network gateway may be a BNG.
  • the access network gateway may be A-AGF.
  • the core network element sends a routing policy to the terminal, and the terminal is 5G-RG at this time.
  • the core network element is a PCF network element
  • the routing policy can be sent to the access network gateway through the AMF network element.
  • the core network element can send the routing policy to the D-AGF through the AMF network element, and then the D-AGF to the 5G-RG.
  • the core network routing strategy includes: core network routing instructions and/or flow description information, where the core network routing instructions are used to instruct to transmit the service flow determined by the flow description information through the core network routing.
  • the local routing policy includes: a local routing indication and/or flow description information, where the local routing indication is used to indicate that the service flow determined by the flow description information is transmitted through the local route.
  • the flow description information includes any one or more of the following information: application identification, flow quintuple identification, virtual local area network (Virtual Local Area Network, VLAN) tag, session type, access line identification, access point Logo.
  • the stream quintuple includes at least one of the IP quintuple.
  • Session types include any one or more of PPPoE sessions, IPoE sessions, IP sessions, GRE sessions, or Ethernet sessions.
  • the access line identifier can be Line ID or circuit ID.
  • the access point identifier may be a wireless local area network (Wireless Local Area Networks, WLAN) service set identifier (Service Set Identifier, SSID), HESSID.
  • WLAN Wireless Local Area Networks
  • SSID Service Set Identifier
  • the core network element determines that service flow 1 needs to execute a local routing strategy. If service flow 2 corresponding to some VLAN tags in the core network element needs to execute the core network routing strategy, the core network element determines that the service flow 2 needs to execute the local routing strategy.
  • the core network element in the embodiment of the present application may also determine the routing strategy of the service flow according to the priority of the service flow. For example, the core network element determines that low-priority service flows (for example, low value, low QoS requirements, such as web browsing service flows) adopt local routing strategies, and high-priority service flows adopt core network routing strategies. Or the core network element may also determine the routing strategy of the service flow according to the reliability of the service flow. For example, high-reliability services use core network routing strategies. Low-reliability services use local routing strategies.
  • the core network element can determine the reliability or priority of the service flow according to the information of the service flow. For the specific method of determining the reliability or priority of the service flow, reference may be made to the description in the prior art, which will not be repeated here.
  • Step 103 The access network gateway receives the routing policy from the terminal of the core network element.
  • the routing strategy is a core network routing strategy and/or a local routing strategy.
  • Step 104 The access network gateway processes the service flow of the terminal according to the routing strategy.
  • Step 105 The terminal receives the routing policy from the terminal of the core network element.
  • Step 106 The terminal processes the service flow of the terminal according to the routing policy.
  • the embodiment of the present application provides a service flow routing control method.
  • the method obtains the routing of the terminal according to any one or more of the identification information of the terminal, the access type of the terminal, and the location information of the terminal through the core network element. And send the obtained routing policy to the access network gateway or terminal, so that the access network gateway or terminal processes the service flow of the terminal according to the routing policy.
  • the charging policy of all service flows transmitted by the home gateway is controlled by the policy and control function (PCF) network element in the 5GC. This will inevitably increase the processing cost on the 5G network side, resulting in complex signaling during the evolution of the fixed network to 5G convergence.
  • PCF policy and control function
  • the embodiment of this application provides for shunting service flows, so that certain services (such as low value, low QoS requirements) ((Such as web browsing, etc.)) It is directly distributed through the terminal or the access network gateway. For example, if the access network gateway or the terminal determines that the low-value, low-QoS service flow is transmitted by the local routing strategy, then the local routing strategy is transmitted. It not only meets the needs of users, but also retains the deployment of operators for BNG.
  • step 101 further includes:
  • Step 107 The core network element receives the request message.
  • the request message includes any one or more of the following information: the identification information of the terminal, the access type of the terminal, or the location information of the terminal.
  • the request message may be sent by the AMF network element.
  • the PCF network element can formulate routing strategies, when the core network element is an SMF network element or an AMF network element, the SMF network element or AMF network element interacts with the PCF network element to obtain the routing strategy of the terminal from the PCF network element.
  • the method provided in the embodiment of the present application further includes:
  • Step 108 The access network gateway sends the capability information of the access network gateway to the core network element.
  • the capability information is used to indicate whether the access network gateway has the capability of assigning the first address to the terminal or the service local routing capability.
  • the first address is an address allocated to the terminal by the access network gateway.
  • the access network gateway may actively send the capability information of the access network gateway to the core network element.
  • the access network gateway may also be sent by the core network element to the access network gateway to request the access network gateway's capability information, and then the access network gateway may send it to the core based on the request for the access network gateway's capability information.
  • Network elements this embodiment of the application does not limit this.
  • the core network network element in the embodiment of the present application may combine the access network gateway (for example, the access network gateway is A- AGF, in Figure 4, the access network gateway is D-AGF) capability information.
  • the access network gateway may send the capability information of the access network gateway to the PCF network element through the AMF network element or the SMF network element.
  • the access network gateway may directly send the capability information of the access network gateway to the AMF network element.
  • Step 109 The core network element obtains the capability information of the access network gateway.
  • step 109 in the embodiment of the present application may be implemented by the following steps: the core network element receives the capability information from the access network gateway.
  • step 101 in the embodiment of the present application can also be implemented in the following manner: the core network element obtains any one or more of the identification information of the terminal, the access type of the terminal, the location information of the terminal, and the capability information. Routing strategy.
  • the location information of the terminal may be at least one of Line ID or geographic location information.
  • the core network element can determine whether to support the local routing strategy according to the location information of the terminal.
  • the access network gateway has the ability to allocate the first address to the terminal or the service local routing ability, and the core network element determines that the routing strategy is the local routing strategy. Or/and, the access network gateway does not have the ability to allocate the first address to the terminal or the service local routing ability, and the core network element determines the routing strategy as the core network routing strategy.
  • the capability information of the access network gateway may be sent to the core network element along with the request message in step 107, or may be sent to the core network element in a separate message.
  • the core network element determines that the routing strategy is a local routing strategy.
  • the capability information of the access network gateway indicates that the access network gateway does not have the ability to allocate the first address to the terminal or the service local routing capability, but the terminal's access type is wired access
  • the fixed network access or the local routing strategy is determined according to the location information of the terminal, and the core network element still determines the routing strategy as the core network routing strategy.
  • the core network element determines that the access network gateway has the ability of the terminal to allocate the first address or the service local routing capability, and the terminal's access type is fixed network access, the core network element determines that the routing strategy is the local routing strategy.
  • the core network element determines the route of the terminal according to the identification information of the terminal Strategy. For example, after the core network element determines the access network gateway to which the terminal is connected according to the identification information of the terminal, if the core network element has the capability information of the access network gateway, the core network element can be based on the access network gateway The capability information determines the routing strategy of the terminal.
  • Step 104 in the embodiment of the present application can be implemented in the following manner: the access network gateway uses the second address of the terminal to process the service flow, and The latter service flow is sent to the fixed mobile network interaction function, and the second address is the address allocated by the core network to the terminal, that is, the second address is the address used when the service flow is transmitted in the core network.
  • the fixed-mobile network interaction function transmits the service flow to the UPF network element, so that the UPF network element transmits the service flow to the DN.
  • Example 1 can be applied to the scenario in which the architecture shown in FIG. 2 and the access network gateway has the second address of the terminal.
  • Example 1 if the access network gateway does not have the second address of the terminal, the access network gateway encapsulates the service flow using the first address of the terminal.
  • the access network gateway sends the service flow encapsulated with the first address to the FMIF.
  • the FMIF receives the service flow encapsulated with the first address, it initiates a new PDU session according to the existing process, and replaces the first address of the service flow with the obtained second address, and transfers the service flow to the new establishment using the second address UPF network element determined during PDU session.
  • the service flow is transmitted to the fixed mobile network interaction function using the 5G IP address. If the access network gateway does not have a 5G IP address, the service flow is transmitted to the FMIF using the source IP address. After the FMIF receives the service flow encapsulated with the source IP address, it replaces the source IP address of the service flow with the 5G IP address, and Send to UPF network element.
  • step 104 in the embodiment of the present application can be implemented in the following manner: the access network gateway uses the second address of the terminal to process the service flow, and The subsequent service flow is sent to the user plane function network element.
  • step 104 in the embodiment of the present application can be implemented in the following manner: the access network gateway uses the first address of the terminal to transmit the service flow to the data network. It should be understood that the data network at this time is the data network with the access network gateway on the fixed network side.
  • the routing strategy is the core network routing strategy.
  • Step 106 in the embodiment of the present application can be specifically implemented in the following manner: the terminal uses the second address to encapsulate the service flow of the terminal, and after the encapsulation The service flow is transmitted through the user plane function network element.
  • the specific process is as follows: the terminal uses the second address to encapsulate the service flow of the terminal, and transmits the service flow encapsulated in the second address to the D-AGF, and then the D-AGF can transmit the service flow encapsulated in the second address to the D-AGF.
  • AGF has UPF network elements with user plane tunnels.
  • the user plane tunnel includes: terminal ⁇ D-AGF ⁇ UPF network element.
  • the terminal uses the first address to encapsulate the service stream, and transmits the service stream encapsulated with the first address to the D-AGF, and then the D-AGF can encapsulate the service stream with the first address.
  • the address of the service flow is replaced with the second address, and the D-AGF transmits the service flow using the second address to the UPF network element that has a user plane tunnel with the D-AGF.
  • Step 106 in the embodiment of the present application can be specifically implemented in the following manner: the terminal uses the first address to encapsulate the service flow of the terminal; The service flow is transmitted to the data network through the access network gateway.
  • the access network gateway here may be the D-AGF in FIG. 4.
  • the terminal or the access network gateway transmits the service flow.
  • the terminal or the access network gateway also needs to obtain the first address and the second address of the terminal.
  • the following embodiments will introduce how the terminal or the access network gateway obtains the first address and the second address of the terminal:
  • the method provided in the embodiment of the present application further includes:
  • Step 110 The core network element allocates a second address to the terminal.
  • the core network element allocates the second address to the terminal.
  • the session management process may refer to the PDU session establishment process or the PDU session update process.
  • the PDU session management process can be initiated by the terminal.
  • the access network gateway initiates a connection request according to the local routing strategy or the core network routing strategy, and obtains the second address of the terminal through the PDU session.
  • Step 111 The access network gateway obtains the second address allocated by the core network element for the terminal.
  • the access network gateway may obtain the second address allocated for the terminal during the PDU session management process.
  • Step 112 The access network gateway sends the second address to the terminal according to the core network routing policy.
  • the access network gateway in step 112 may be D-AGF. This scenario is suitable for the scenario where the terminal performs offloading. If the access network gateway determines that the service flow is transmitted using the core network routing strategy, it will send all data to the terminal. The second address.
  • Step 113 The terminal obtains the second address allocated by the core network element for the terminal.
  • the terminal may obtain the second address allocated by the core network element for the terminal from the core network element during the session management process.
  • the terminal may also obtain the second address allocated by the core network element for the terminal from the access network gateway, which is not limited in the embodiment of the present application.
  • step 112 may be omitted.
  • the method provided in the embodiment of the present application further includes:
  • Step 114 The terminal sends a second request message to the access network gateway, where the second request message is used to request the terminal to be assigned a first address.
  • the terminal may perform step 104.
  • the terminal determines that the local routing strategy needs to be used to transmit the service flow, and the terminal does not have the first address, the terminal executes step 114 according to the local routing strategy.
  • the second request message may carry identification information of the terminal and the access type of the terminal.
  • Step 115 The access network gateway allocates the first address to the terminal according to the second request message.
  • Step 116 The access network gateway sends the first address to the terminal according to the second request message.
  • the access network gateway may send the first address to the terminal in a PPPoE process, an IPoE process, or a dynamic host configuration protocol (Dynamic Host Configuration Protocol, DHCP) process.
  • a PPPoE process an IPoE process
  • a dynamic host configuration protocol Dynamic Host Configuration Protocol, DHCP
  • the method provided in the embodiment of the present application further includes: the core network element generates first indication information, where the first indication information is used to indicate that the access network gateway is allowed to allocate the first address to the terminal.
  • the core network element sends the first indication information to the access network gateway. This situation can be applied to the architecture shown in FIG. 3 or FIG. 4.
  • the first indication information may be a local routing permission indication, or a local routing policy indication, or an authentication success indication. It should be understood that when the access network gateway has the ability to allocate the first address to the terminal, the core network element may use the first indication information to indicate whether the access network gateway is allowed to allocate the first address to the terminal. That is, even if the access network gateway has the first address assigned to the terminal, if the core network element indicates that the access network gateway is not allowed to assign the first address to the terminal, the access network gateway does not assign the first address to the terminal.
  • the method provided in the embodiment of the present application further includes:
  • Step 117 The core network element sends the quality of service parameter to the terminal or the access network gateway.
  • the core network element may directly send the quality of service parameters to the terminal, or may send the quality of service parameters to the terminal through the D-AGF.
  • the quality of service parameter may be the quality of service parameter of the terminal in the core network, or may be the quality of service parameter of the terminal when transmitting in the fixed network.
  • the service quality parameter may include any one or more of bandwidth, time delay, and maximum bit rate (Total Maximum Bit Rate, TMBR).
  • TMBR Total Maximum Bit Rate
  • Step 118 The access network gateway receives the quality of service parameter from the core network element.
  • step 104 can be implemented in the following manner: the access network gateway processes the service flow of the terminal according to the service quality parameters and the routing strategy, the service quality parameters include terminal-granular service quality parameters, and the service flow includes The service flow transmitted using the core network routing strategy and/or the service flow transmitted using the local routing strategy.
  • Step 119 The terminal obtains service quality parameters.
  • step 106 in the embodiment of the present application may be specifically implemented in the following manner: the terminal processes the service flow of the terminal according to the quality of service parameters and the routing strategy.
  • the access network gateway or the terminal that processes the service flow of the terminal according to the quality of service parameters and routing strategy it specifically includes: the service flow transmitted by the core network routing strategy and the service flow transmitted by the local routing strategy. Meet the service quality parameters of the terminal.
  • the service quality parameter as the total bandwidth value of the terminal, for example, the total bandwidth value occupied by the service flow transmitted by the core network routing strategy and the service flow transmitted by the local routing strategy is less than or equal to the aforementioned total bandwidth value.
  • the TMBR as the service quality parameter as an example, the TMBR occupied by the service flow transmitted by the core network routing strategy and the service flow transmitted by the local routing strategy is smaller than the TMBR of the terminal.
  • the embodiment of the present application provides a specific embodiment of a service flow routing control method.
  • the access network gateway is BNG
  • the terminal is FN-RG
  • the core network element is PCF.
  • the method includes:
  • Step 201 The fixed network gateway FN-RG establishes an L2 connection with the BNG.
  • an L2 connection can be established between FN-RG and BNG through the existing process.
  • FN-RG establishes L2 connection with BNG through wired access network/fixed network access network.
  • Step 202 The FN-RG sends an authentication (Authentication) request message to the BNG, so that the BNG receives the authentication request message.
  • authentication Authentication
  • Step 203 The BNG authenticates the FN-RG.
  • Step 204 The BNG allocates a source IP address for the FN-RG.
  • the FN-RG may carry a request message for requesting the BNG to allocate a source IP address to the authentication request message, or after the BNG completes the authentication of the FN-RG, it may send the request message to the BNG A request message requesting BNG to allocate a source IP address.
  • the source IP address here is the first address in the foregoing embodiment.
  • Step 205 BNG decides to register FN-RG to 5GC.
  • Step 206 The BNG sends a registration request (Registration request) to the FMIF.
  • the registration request includes the identity of the FN-RG.
  • the identity of FN-RG may be Line ID, and Line ID is used to identify FN-RG.
  • Step 207 The FMIF generates 5GC registration required and 5GC identifiable parameters according to the Line ID, and selects the AMF network element on behalf of the FN-RG.
  • Step 208 The FMIF sends a registration request including the Line ID to the AMF network element.
  • the AMF network element forwards the registration request containing the Line ID to the AUSF network element in the 5GC.
  • Step 209 The AUSF network element executes a registration procedure (Registration Procedure) to authenticate the FN-RG.
  • the process for the AUSF network element to authenticate the FN-RG can refer to the description in the prior art, which will not be repeated here.
  • Step 210 After the authentication is successful, the AMF network element sends the policy request information to the PCF network element, so that the PCF network element receives the policy request information.
  • Step 211 The PCF network element generates an NSFO policy or a 5GC routing policy for the FN-RG according to the Line ID or the access type.
  • NSFO policy here is the local routing policy in the foregoing embodiment.
  • the 5GC routing strategy is the core network routing strategy in the foregoing embodiment.
  • Step 212 The PCF network element sends the NSFO policy or 5GC routing policy of the FN-RG to the AMF network element.
  • Step 213 The AMF network element receives the NSFO policy or 5GC routing policy of the FN-RG from the PCF network element.
  • Step 214 The AMF network element sends the routing policy to the BNG.
  • the routing strategy includes: NSFO strategy of FN-RG or 5GC routing strategy.
  • Step 214 in the embodiment of the present application may be specifically implemented in the following manner: the AMF network element sends a registration acceptance (Registration Accept) message to the FMIF, and the registration acceptance message includes the routing policy. FMIF sends a registration acceptance message to BNG.
  • the routing policy may carry the mapping relationship between the FN-RG identity and the NSFO policy, or the mapping relationship between the FN-RG identity and the 5GC routing policy.
  • the identity of the FN-RG can be a Line ID or a temporary identifier allocated to the FN-RG on the 5G core network side.
  • the FMIF may send a Registration Complete (Registration Complete) message to the AMF network element.
  • the method provided in this embodiment of the present application further includes: step 215.
  • Step 215 The BNG initiates a connection request according to the NSFO policy or the 5GC Routing policy, and obtains the 5G IP address of the FN-RG through the PDU session.
  • step 215 may be specifically implemented in the following manner: the BNG initiates a connection establishment request (Connect Request) message to FIMF.
  • the connection establishment request message is used to request the 5G core network to allocate a 5G IP address to the FN-RG.
  • FIMF sends a PDU session establishment request message to the UPF network element to request the 5G IP address of the FN-RG.
  • FIMF obtains the 5G IP address of FN-RG from the UPF network element, and sends the 5G IP address of FN-RG to BNG.
  • a PDU session can be established between the FIMF and the UPF network element through the PDU session establishment request message.
  • the PDU session can be used to transmit service streams in the subsequent process.
  • the 5G IP address is the second address in the foregoing embodiment.
  • Step 216 The BNG makes a shunt decision according to the NSFO strategy or the 5GC Routing strategy selection.
  • the specific step 216 can be implemented in the following manner: the BNG determines that the service flow needs to pass through the 5G network, and then performs step 217 to step 222.
  • the BNG determines that the service flow does not need to pass through the 5G network, and then executes step 223.
  • Step 217 The BNG forwards the service flow to the FMIF, and the FMIF uses the PDU session with the UPF network element to establish a user plane connection from the FMIF to DN1.
  • Step 218 The BNG executes step 219 and step 220 respectively, or executes step 221 and step 222 according to whether it has a 5G IP address that matches the service flow.
  • the BNG may obtain the 5G IP address of the FN-RG through step 215, or obtain it from the FMIF after the PDU session is successfully established (that is, obtain it after step 218).
  • the BNG when the BNG has the 5G IP address of the FN-RG that matches the service flow, the BNG performs step 219 and step 220. When the BNG does not match the 5G IP address of the FN-RG of the service flow, the BNG performs step 221 and step 222.
  • Step 219 The BNG matches the service flow to the established PDU session, encapsulates the service flow through the assigned 5G IP address, and sends it to the FMIF.
  • Step 220 The FMIF directly matches the service flow to the selected UPF network element through the identification of the IP address.
  • Step 221 The BNG encapsulates the service flow using the source IP address of the FN-RG, and sends the service flow to the FMIF.
  • Step 222 After receiving the service flow encapsulated by the source address, the FMIF replaces the source IP address with the obtained 5G IP address of the FN-RG, and performs user plane data packet delivery.
  • the UPF network element selected by the FMIF in step 222 to transfer user plane data packets may be a different UPF network element from step 215.
  • the FMIF initiates a new PDU session to obtain the 5G IP address of the FN-RG.
  • the FMIF sends the 5G IP address of the FN-RG to the BNG as the address selection for the subsequent BNG to initiate the same PDU session.
  • Step 223 The BNG encapsulates the service flow by using the source IP address of the FN-RG, and sends the service flow encapsulated by the source IP address to DN2.
  • FIG. 9 is an example in which AAA and BPCF are still retained on the fixed network side.
  • AAA and BPCF are integrated into the 5G core network side, in this case, the fixed network side does not have its own authentication capability for FN-RG, and BNG still retains the ability to allocate source IP addresses for FN-RG.
  • BNG still retains the ability to allocate source IP addresses for FN-RG.
  • an embodiment of the present application provides a specific embodiment of another method for routing control of a service flow.
  • the FN-RG is connected to the core network through a wired access network and an Adaptive AGF.
  • the core network element is the PCF network element as an example
  • the routing strategy of the 5GC control plane is sent to the A-AGF by the PCF network element through the AMF network element, and the A-AGF is used as a distribution point.
  • the differences between the embodiments shown in FIG. 9 and FIG. 10 are: 1) The application architectures of the embodiments described in FIG. 9 and FIG. 10 are different.
  • the method described in Figure 10 is applicable to the communication system shown in Figure 10, where BNG is integrated into A-AGF, there is no FMIF, and A-AGF has the sum of the functions of BNG+FMIF.
  • the implementation shown in Figure 10 In the example, there is no interaction between the BNG and FMIF in the embodiment described in FIG. 9. 2) The diversion point is different. Add a shunt interface to A-AGF, and A-AGF will serve as a shunt point. Depending on whether the BNG deployment is retained, the way to add the offload interface can be different. 3) When the A-AGF recognizes the service flow in the embodiment shown in FIG. 10, it needs to perform QoS control, that is, TMBR that satisfies the granularity of FN-RG.
  • the PCF network element also needs to consider the fixed network IP address allocation capability of the A-AGF when sending routing policies. 5).
  • A-AGF can include whether it has the ability to allocate fixed network IP addresses when registering the request, or when the PCF network element receives the policy request information, if the fixed network IP address allocation ability of A-AGF is required, it can pass AMF
  • the network element requests the A-AGF for the fixed network IP address allocation capability of the A-AGF. 6).
  • the AMF network element receives the routing policy, it can optionally generate Fix IP allowed information in combination with related information, and send it to the A-AGF together with the routing policy.
  • A-AGF allocates a source IP address to FN-RG after receiving the registration success message, and sends the source IP address to FN-RG through PPPoE or IPoE procedures.
  • the method specifically includes:
  • Step 301 is the same as step 201.
  • Step 201 please refer to step 201, which will not be repeated here.
  • Step 302 The FN-RG requests the source IP address of the FN-RG from the A-AGF through the PPPoE process or the IPoE process.
  • Step 303 A-AGF decides to register FN-RG to 5GC.
  • Step 304 The A-AGF generates 5GC registration required and 5GC identifiable parameters according to the Line ID, and selects the AMF network element on behalf of the FN-RG.
  • Step 305 The A-AGF sends a registration request including the Line ID to the AMF network element.
  • the registration request may include the A-AGF fixed network IP allocation capability (A-AGF capability).
  • A-AGF capability the A-AGF fixed network IP allocation capability
  • the fixed network IP allocation capability of the A-AGF is the capability information of the access network gateway in the foregoing embodiment.
  • Step 306 The 5GC authenticates the FN-RG.
  • Step 307 After the authentication is successful, the AMF network element sends the policy request information to the PCF network element.
  • the policy request information also includes: A-AGF capability.
  • the PCF network element may request its fixed network IP allocation capability from the A-AGF.
  • Step 308 The PCF network element generates an NSFO policy or a 5GC routing policy for the FN-RG according to the Line ID or access type and A-AGF capability.
  • Step 309 The PCF network element sends the NSFO policy or 5GC routing policy of the FN-RG to the AMF network element.
  • Step 310 The AMF network element sends the identity of the FN-RG and the NSFO policy or the 5GC Routing policy to the A-AGF.
  • A-AGF serves as the shunt point.
  • the identity of the FN-RG can be a Line ID or a temporary identity allocated by the 5GC for the FN-RG.
  • the method in the embodiment of the present application further includes:
  • Step 311 The AMF network element generates Fixed IP allowed information and sends it to the A-AGF. This message can also be sent to the A-AGF during the authentication process in step 306.
  • the Fixed IP allowed information is the first indication information in the foregoing embodiment.
  • the method provided in the embodiment of the present application further includes:
  • Step 312 The A-AGF sends a Registration Complete (Registration Complete) message to the AMF network element.
  • Step 313 The A-AGF allocates a source IP address for the FN-RG based on the registration success message, or the security key received during the authentication process, or the Fixed IP allowed message.
  • Step 314 The A-AGF sends the source IP address to the FN-RG through the PPPoE or IPoE process.
  • step 313 may also be performed after step 314.
  • Step 315 The A-AGF makes a shunt decision based on the flow description information in the NSFO strategy or the 5GC Routing strategy, combined with its own fixed network IP capabilities:
  • step 314 can be implemented in the following manner: if the A-AGF determines that the service flow determined by the flow description information needs to pass through the 5G network, step 315 is executed. If the A-AGF determines that the service flow determined by the flow description information does not need to pass through the 5G network, step 316 is executed.
  • the specific step 315 can be executed by selecting an appropriate step from step 315a to step 315d according to different conditions.
  • Step 315a The A-AGF initiates a new PDU session establishment request to obtain the 5G IP address of the FN-RG.
  • Step 315b The A-AGF sends the obtained 5G IP address of the FN-RG to the FN-RG through the PPPoE or IPoE process.
  • Step 315c A-AGF performs IP address replacement, replaces the source IP address of FN-RG with the 5G IP address of the PDU session matching the service flow, and re-encapsulates the service flow with the replaced 5G IP address.
  • Step 315d The A-AGF sends the service flow encapsulated with 5G IP address to the corresponding UPF network element.
  • A-AGF performs step 315a, step 315c, and step 315d.
  • A-AGF decides that the source IP address of FN-RG is not required according to the NSFO/5G Routing policy, the 5G IP address obtained by FN-RG can temporarily be used as the source IP address of FN-RG, and A-AGF performs step 315a and step 315b And step 315d.
  • Step 316 A-AGF matches the service flow. If there is no source IP address of FN-RG, perform step 312 to obtain the source IP address of FN-RG, and use the source IP address of FN-RG to encapsulate the service flow. In case, the service flow is sent to DN2.
  • the TMBR in step 316 is the total TMBR of the FN-RG, that is, whether it is a service flow that uses local routing policy parameters or a service flow that uses core network routing policy transmission needs to meet the TMBR.
  • the maximum bit rate occupied by the service flow transmitted through the core network and the service flow transmitted through the local route is less than or equal to the aforementioned total maximum bit rate.
  • Figure 10 is an example of the integration of AAA and BPCF on the 5GC side.
  • AAA and BPCF remain on the fixed network side, the specific implementation process can refer to the description in Figure 9.
  • the interaction between BNG and FMIF is internally supported by A-AGF, and all the steps of BNG or FMIF are replaced by A-AGF.
  • 5G-RG is connected to the core network through a wired access network and 5G AGF.
  • the distribution strategy of the 5GC control plane is sent by the PCF network element to the 5G AGF through the AMF network element, and the 5G AGF further sends the routing strategy to the 5G-RG, and the 5G-RG serves as the distribution point.
  • the difference between the specific embodiment shown in FIG. 11 and the specific embodiments shown in FIG. 9 and FIG. 10 is that: in FIG. 11, there is no distribution interface for 5G AGF, and a distribution interface needs to be added.
  • 5G AGF When 5G AGF recognizes a service flow, it performs QoS control, that is, TMBR with RG granularity or TMBR with session granularity is met. 5G-RG acts as a diversion point to handle routing strategies. The process of obtaining the source IP address of the 5G-RG is different from the specific embodiments shown in FIG. 9 and FIG. 10.
  • the core network element is a PCF network element and the access network gateway is a D-AGF as an example, the method includes:
  • Step 401 to step 409 are the same as step 301 to step 309.
  • step 301 to step 309 refer to step 301 to step 309, which will not be repeated here.
  • 5G-RG is successfully registered with 5GC, and N2 connection is established between AMF network element and D-AGF.
  • the PCF network element may consider the capability information of the D-AGF when making the NSFO/5G Routing policy decision, where the capability information of the D-AGF is acquired in the same manner as the Adaptive AGF fixed network IP capability in the above embodiment.
  • Step 410 The AMF sends the Fixed IP allowed indication and the NSFP/5G Routing policy to the D-AGF through the N2 message (Message) according to the relevant information.
  • the Fixed IP allowed indication indicates that D-AGF can allocate a source IP address for 5G-RG.
  • Step 411 The D-AGF sends the NSFO/5G Routing policy to the 5G-RG.
  • D-AGF sends an FCP message to 5G-RG, where the FCP message includes the NSFO/5G Routing strategy.
  • the source IP address of 5G-RG may also be included in the FCP message.
  • Step 412 The 5G-RG sends a registration success message to the AMF network element.
  • Step 413 If D-AGF does not allocate a source IP address for 5G-RG in step 410 (not capable of Local IP), and 5G-RG determines that it needs the source IP address of 5G-RG according to the NSFO/5G Routing policy, then 5G -The RG obtains the source IP address from the SMF network element/UPF network element through the PDU session process.
  • the specific process of 5G-RG obtaining the source IP address from the SMF network element/UPF network element through the PDU session process can be implemented through steps 413 to 416.
  • Step 414 The 5G-RG initiates a PDU session, which includes the 5G-RG identifier and the 5G-RG source IP address request.
  • Step 415 The SMF network element obtains the 5G-RG NSFO/5G Routing policy from the PCF network element.
  • the SMF network element sends a policy request (Policy Request) message to the PCF network element, and the policy request message is used to request the 5G-RG NSFO/5G Routing policy.
  • Policy Request Policy request
  • the PCF network element sends a policy response (PolicyResonse) message to the SMF network element.
  • PolicyResonse Policy response
  • the policy response message carries the 5G-RG NSFO/5G Routing policy.
  • Step 416 The SMF network element allocates a source IP address (allowed) for the 5G-RG according to the relevant information, and sends the 5G-RG Local IP and NSFO/5G Routing policy (if updated) to the 5G-RG through the AMF network element in the N1 message. RG.
  • the related information may be location information of the terminal, including at least one of line identification or geographic location information.
  • the method provided in the embodiment of the present application further includes: step 417. If the SMF network element is not allocated with the 5G-RG Local IP, but is allowed, the 5G-RG can also obtain the source IP through the DHCP process. address.
  • Step 418 The 5G-RG makes a shunt decision according to the flow description information and the policy indication information in the NSFO policy or the 5GC Routing policy.
  • step 418 can be implemented in the following ways: 5G-RG determines that the service flow determined by the flow description information needs to pass through the 5G network, then step 419 is executed. The 5G-RG determines that the service flow determined by the flow description information does not need to pass through the 5G network, Step 420 is executed.
  • Step 419 The 5G-RG encapsulates the service flow with the 5G IP address of the 5G-RG, or establishes a user plane tunnel between the 5G-RG, D-AGF, and UPF network elements through a PDU session establishment process.
  • the D-AGF can implement IP address replacement according to requirements, and the replacement method is the same as the embodiment shown in FIG. 10.
  • Step 420 The 5G-RG encapsulates the service stream with the source IP address of the 5G-RG, and the encapsulated service stream uses the offload interface provided by the D-AGF to directly send the service stream to DN2.
  • each network element such as an access network gateway, a core network network element, and a terminal, includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the functional units of the access network gateways, core network elements, and terminals according to the foregoing method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated in One processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the method in the embodiment of the present application is described above in conjunction with FIG. 5 to FIG. 11, and the communication device provided in the embodiment of the present application for performing the foregoing method is described below. Those skilled in the art can understand that the method and the device can be combined and referenced.
  • the communication device provided in the embodiment of the present application can execute the steps performed by the access network gateway, the core network element, and the terminal in the above-mentioned service flow routing control method. .
  • FIG. 12 shows a communication device involved in the foregoing embodiment, and the communication device may include: a processing unit 101 and a communication unit 102.
  • the communication device is a core network element or a chip applied to the core network element.
  • the communication unit 102 is configured to support the communication device to execute step 102 executed by the core network element in the foregoing embodiment.
  • the processing unit 101 is configured to support the communication device to execute step 101 executed by the core network element in the foregoing embodiment.
  • the communication unit 102 is further configured to support the communication device to perform step 107, step 109, and step 117 performed by the core network element in the foregoing embodiment.
  • the processing unit 101 is further configured to support the communication device to execute step 110 executed by the core network element in the foregoing embodiment.
  • the communication device is an access network gateway, or a chip applied to the access network gateway.
  • the communication unit 102 is configured to support the communication device to perform step 103 performed by the access network gateway in the above-mentioned embodiment.
  • the processing unit 101 is configured to support the communication device to execute step 104 executed by the access network gateway in the foregoing embodiment.
  • the communication unit 102 is further configured to support the communication device to execute step 108, step 111, step 112, step 116, and step 118 performed by the access network gateway in the foregoing embodiment.
  • the processing unit 101 is further configured to support the communication device to execute step 115 executed by the access network gateway in the foregoing embodiment.
  • the communication device is a terminal or a chip applied in the terminal.
  • the processing unit 101 is configured to support the communication device to execute step 106 executed by the terminal in the foregoing embodiment.
  • the communication unit 102 is configured to support the communication device to execute step 105 executed by the terminal in the foregoing embodiment.
  • the communication unit 102 is also used to support the communication device to execute step 113, step 114, and step 119 performed by the terminal in the foregoing embodiment.
  • FIG. 13 shows a schematic diagram of a possible logical structure of the communication device involved in the foregoing embodiment.
  • the communication device includes: a processing module 112 and a communication module 113.
  • the processing module 112 is used to control and manage the actions of the communication device.
  • the processing module 112 is used to perform information/data processing steps in the communication device.
  • the communication module 113 is used to support the steps of sending or receiving information/data in the communication device.
  • the communication device may further include a storage module 111 for storing program codes and data that the communication device can use.
  • the communication device is a core network element or a chip applied to the core network element.
  • the communication module 113 is used to support the communication device to execute step 102 executed by the core network element in the foregoing embodiment.
  • the processing module 112 is configured to support the communication device to execute step 101 in the foregoing embodiment.
  • the communication module 113 is further configured to support the communication device to execute step 107, step 109, and step 117 performed by the core network element in the foregoing embodiment.
  • the processing module 112 is also configured to support the communication device to execute step 110 executed by the data analysis network element in the foregoing embodiment.
  • the communication device when the communication device is an access network gateway, or a chip applied to the access network gateway.
  • the communication module 113 is used to support the communication device to execute step 103 executed by the access network gateway in the above-mentioned embodiment.
  • the processing module 112 is configured to support the communication device to execute step 104 executed by the access network gateway in the foregoing embodiment.
  • the communication module 113 is also used to support the communication device to execute step 108, step 111, step 112, step 116, and step 118 performed by the access network gateway in the foregoing embodiment.
  • the processing module 112 is also used to support the communication device to execute step 115 executed by the access network gateway in the foregoing embodiment.
  • the communication device is a terminal or a chip applied in the terminal.
  • the processing module 112 is configured to support the communication device to execute step 106 executed by the terminal in the foregoing embodiment.
  • the communication module 113 is configured to support the communication device to execute step 105 executed by the terminal in the foregoing embodiment.
  • the communication module 113 is also used to support the communication device to execute step 113, step 114, and step 119 performed by the terminal in the foregoing embodiment.
  • the processing module 112 may be a processor or a controller, for example, a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of the present invention.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication module 113 may be a transceiver, a transceiver circuit, or a communication interface.
  • the storage module 111 may be a memory.
  • the processing module 112 is the processor 41 or the processor 45
  • the communication module 113 is the communication interface 43 or the transceiver
  • the storage module 111 is the memory 42
  • the communication device involved in this application may be the communication device shown in FIG.
  • the communication device includes a processor 41, a communication line 44, and at least one communication interface (FIG. 14 is only an example, and the communication interface 43 is included as an example for illustration).
  • the communication device may further include a memory 42.
  • the processor 41 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 44 may include a path to transmit information between the aforementioned components.
  • the communication interface 43 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 42 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 44. The memory can also be integrated with the processor.
  • the memory 42 is used to store computer-executable instructions for executing the solution of the present application, and the processor 41 controls the execution.
  • the processor 41 is configured to execute computer-executable instructions stored in the memory 42 to implement the service flow routing control method provided in the following embodiments of the application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program code, which is not specifically limited in the embodiments of the present application.
  • the processor 41 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 14.
  • the communication device may include multiple processors, such as the processor 41 and the processor 45 in FIG. 14.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication interface 43 may be replaced by a transceiver.
  • FIG. 15 is a schematic structural diagram of a chip 150 provided by an embodiment of the present application.
  • the chip 150 includes one or more (including two) processors 1510 and a communication interface 1530.
  • the chip 150 further includes a memory 1540.
  • the memory 1540 may include a read-only memory and a random access memory, and provides operation instructions and data to the processor 1510.
  • a part of the memory 1540 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540 stores the following elements, execution modules or data structures, or their subsets, or their extended sets.
  • the corresponding operation is executed by calling the operation instruction stored in the memory 1540 (the operation instruction may be stored in the operating system).
  • One possible implementation is that the structures of the chips used in the access network gateway, core network element, and terminal are similar, and different devices can use different chips to realize their respective functions.
  • the processor 1510 controls the processing operation of any one of the access network gateway, the core network element, and the terminal.
  • the processor 1510 may also be referred to as a central processing unit (central processing unit, CPU).
  • the memory 1540 may include a read-only memory and a random access memory, and provides instructions and data to the processor 1510.
  • a part of the memory 1540 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540, the communication interface 1530, and the memory 1540 are coupled together through a bus system 1520, where the bus system 1520 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • various buses are marked as the bus system 1520 in FIG. 15.
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the processor 1510 or implemented by the processor 1510.
  • the processor 1510 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by hardware integrated logic circuits in the processor 1510 or instructions in the form of software.
  • the aforementioned processor 1510 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1540, and the processor 1510 reads the information in the memory 1540, and completes the steps of the foregoing method in combination with its hardware.
  • the communication interface 1530 is used to perform the steps of receiving and sending any one of the access network gateway, the core network element, and the terminal in the embodiment shown in FIG. 5 to FIG. 11.
  • the processor 1510 is configured to perform processing steps of any one of the access network gateway, the core network element, and the terminal in the embodiment shown in FIG. 5 to FIG. 11.
  • the above communication unit may be an interface circuit or communication interface of the device for receiving signals from other devices.
  • the communication unit is an interface circuit or communication interface used by the chip to receive signals or send signals from other chips or devices.
  • the instructions stored in the memory for execution by the processor may be implemented in the form of a computer program product.
  • the computer program product may be written in the memory in advance, or it may be downloaded and installed in the memory in the form of software.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • a cable such as Coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk, SSD).
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium.
  • a core network element or a chip applied to the core network element executes step 101 in the embodiment. , Step 102, Step 107, Step 109, Step 110, Step 117.
  • a computer-readable storage medium stores instructions.
  • the access network gateway or a chip applied to the access network gateway executes the steps in the embodiments. 103, step 104, step 108, step 111, step 112, step 115, step 116, step 118.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium.
  • the terminal or a chip applied in the terminal executes steps 105, 106, and steps in the embodiment. 113, step 114, step 119.
  • the aforementioned readable storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • a computer program product including instructions.
  • the computer program product stores instructions.
  • a core network element or a chip applied to the core network element executes steps 101 and 101 in the embodiment. Step 102, step 107, step 109, step 110, step 117.
  • a computer program product including instructions is provided.
  • the computer program product stores instructions.
  • the access network gateway or the chip applied in the access network gateway executes step 103 in the embodiment. , Step 104, Step 108, Step 111, Step 112, Step 115, Step 116, Step 118.
  • a computer program product including instructions.
  • the computer program product stores instructions.
  • the terminal or a chip applied in the terminal executes step 105, step 106, and step 113 in the embodiment. , Step 114, Step 119.
  • a chip is provided.
  • the chip is applied to a core network element.
  • the chip includes at least one processor and a communication interface, the communication interface is coupled to the at least one processor, and the processor is used to run instructions to execute the steps in the embodiments. 103, step 104, step 108, step 111, step 112, step 115, step 116, step 118.
  • a chip is provided.
  • the chip is applied to an access network gateway.
  • the chip includes at least one processor and a communication interface.
  • the communication interface is coupled to the at least one processor.
  • the processor is used to run instructions to execute the steps in the embodiments. 103, step 104, step 108, step 111, step 112, step 115, step 116, step 118.
  • a chip is provided.
  • the chip is used in a terminal.
  • the chip includes at least one processor and a communication interface.
  • the communication interface is coupled to the at least one processor.
  • the processor is used to execute instructions to perform step 105 and steps in the embodiment. 106, step 113, step 114, step 119.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, referred to as DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or includes one or more data storage devices such as a server or a data center that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种业务流路由控制方法、装置及系统,涉及通信技术领域,用以有效实现固定网络与移动网络融合场景下的业务流分流。该方法包括:核心网网元根据终端的标识信息、所述终端的接入类型、所述终端的位置信息中的任一个或多个,获取所述终端的路由策略;其中,所述路由策略为核心网路由策略和/或本地路由策略;核心网网元向接入网网关或者终端发送所述路由策略。

Description

一种业务流路由控制方法、装置及系统
本申请要求于2019年4月2日提交国家知识产权局、申请号为201910263116.7、申请名称为“一种业务流路由控制方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种业务流路由控制方法、装置及系统。
背景技术
为了应对无线宽带技术的挑战,保持第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)网络的领先优势。3GPP标准组制定了下一代移动通信网络架构(Next Generation System),也可以称为第五代(5-Generation,5G)网络架构。该5G网络架构支持终端通过3GPP标准组定义的无线技术(如5G无线接入网(Radio Access Network,RAN))接入5G核心网络(Core Network,CN)。
此外,5GC除了支持RAN接入以外还可以支持固定网络/有线网络的接入(如5GC支持家庭网关(residential Gateway,RG)通过有线网络接入)。因此,在5GC中还可以存在固定网络与移动网络的融合(简称“固移融合”)的场景。现有技术,在固移融合场景下,家庭网关(例如,5G-RG/固网家庭网关(Fixed Network Residential Gateway,FN-RG))处理的业务流均需经过5GC。也即当家庭网关注册到5GC,家庭网关传输的业务流通过5GC中的用户面功能(User Plane Function,UPF)网元接入到数据网络(Data Network,DN)。现有技术中的业务分流处理方法不能适应固移融合场景。
发明内容
本申请实施例提供一种业务流路由控制方法、装置及系统,用以有效实现固定网络与移动网络融合场景下的业务流分流。
为了到达上述目的,本申请好实施例提供如下技术方案:
第一方面,本申请实施例提供一种业务流路由控制方法,包括:核心网网元根据终端的标识信息、终端的接入类型、终端的位置信息中的任一个或多个,获取终端的路由策略;其中,路由策略为核心网路由策略和/或本地路由策略;核心网网元向接入网网关或者终端发送路由策略。
本申请实施例提供一种业务流路由控制方法,该方法通过核心网网元根据终端的标识信息、终端的接入类型、终端的位置信息中的任一个或多个,获取所述终端的路由策略,并将获取到的路由策略发送给接入网网关或者终端,以由接入网网关或者终端根据路由策略处理终端的业务流。现有技术中由于所有家庭网关传输的业务流的计费策略由5GC中的策略和控制功能(Policy and Control Function,PCF)网元控制。这样势必会增加5G网络侧的处理成本,导致固网向5G融合演进过程中的信令复杂,本申请实施例提供对业务流实现分流,这样可以将某些业务(如低价值,低QoS要求((如网页浏览等))通过终端或接入网网关直接分流。例如,如果接入网网关或者终端确 定对低价值,低QoS要求的业务流采用本地路由策略传输则通过本地路由策略传输,既满足用户需求,又保留运营商针对BNG的部署。
在一种可能的实现方式中,本申请实施例提供的方法还包括:核心网网元接收请求消息,请求消息包括以下信息中的任一个或多个:终端的标识信息、终端的接入类型或终端的位置信息。
在一种可能的实现方式中,核心网路由策略包括:核心网路由指示和/或流描述信息,其中,核心网路由指示用于指示通过核心网路由传输流描述信息确定的业务流;本地路由策略包括:本地路由指示和/或流描述信息。其中,本地路由指示用于指示通过本地路由传输流描述信息确定的业务流。
在一种可能的实现方式中,流描述信息包括以下信息中的任一个或多个:应用标识、流五元组标识、VLAN标签、会话类型、接入线路标识、接入点标识。
在一种可能的实现方式中,本申请实施例提供的方法还包括:核心网网元获取接入网网关的能力信息,所述能力信息用于指示所述接入网网关是否具有为所述终端分配第一地址的能力或业务本地路由能力;其中,第一地址为接入网网关为终端分配的地址;核心网网元根据终端的标识信息、终端的接入类型终端的位置信息中的任一个或多个,获取终端的路由策略,具体包括:核心网网元根据终端的标识信息、终端的接入类型、终端的位置信息中的任一个或多个,以及能力信息获取路由策略。
在一种可能的实现方式中,核心网网元根据终端的标识信息、终端的接入类型、终端的位置信息中的任一个或多个,以及能力信息获取终端的路由策略,包括:接入网网关具有为终端分配第一地址的能力或业务本地路由能力,核心网网元确定所述路由策略为本地路由策略;或/和,接入网网关不具有为终端分配第一地址的能力或业务本地路由能力,核心网网元确定路由策略为所述核心网路由策略。
在一种可能的实现方式中,核心网网元获取接入网网关的能力信息,包括:核心网网元接收来自接入网网关的能力信息。
第二方面,本申请实施例提供一种业务流路由控制方法,包括:接入网网关接收来自核心网网元的终端的路由策略;其中,路由策略为核心网路由策略和/或本地路由策略;接入网网关根据路由策略处理终端的业务流。
在一种可能的实现方式中,业务流通过核心网路由策略传输,接入网网关根据路由策略处理终端的业务流,包括:接入网网关采用终端的第二地址处理业务流,以及将处理后的业务流发送给固移网络交互功能;第二地址为核心网为所述终端分配的地址。
在一种可能的实现方式中,业务流通过核心网路由策略传输,接入网网关根据路由策略处理终端的业务流,包括:接入网网关采用终端的第二地址处理业务流,以及将处理后的业务流发送给用户面功能网元,或者:接入网网关将业务流的地址从第一地址替换为第二地址,并将处理后的业务流发送给用户面功能网元。
在一种可能的实现方式中,接入网网关根据路由策略处理终端的业务流,包括:业务流通过本地路由策略传输,接入网网关采用终端的第一地址将业务流传输至数据网络。
在一种可能的实现方式中,本申请实施例提供的方法还包括:接入网网关接收来 自核心网网元的服务质量参数;接入网网关根据路由策略处理终端的业务流,包括:接入网网关根据服务质量参数和路由策略处理终端的业务流,服务质量参数包括终端粒度的服务质量参数,业务流包括采用核心网路由策略传输的业务流和/或采用本地路由策略传输的业务流。
在一种可能的实现方式中,本申请实施例提供的方法还包括:接入网网关接收来自终端的第二请求消息或来自核心网网元的第一指示信息,第二请求消息用于请求为终端分配第一地址,第一指示信息用于指示允许接入网网关为终端分配第一地址;接入网网关根据所述第二请求消息或第一指示信息,为终端分配第一地址。
在一种可能的实现方式中,本申请实施例提供的方法还包括:接入网网关获取核心网网元为终端分配的第二地址。
在一种可能的实现方式中,本申请实施例提供的方法还包括:接入网网关根据核心网路由策略向终端发送第二地址;或/和,接入网网关根据第一指示信息或第二请求消息向终端发送第一地址。
第三方面,本申请实施例提供一种业务流路由控制方法,包括:终端接收来自核心网网元的终端的路由策略;其中,路由策略为核心网路由策略和/或本地路由策略;终端根据路由策略处理终端的业务流。
在一种可能的实现方式中,本申请实施例提供的方法还包括:终端接收终端的第二地址,第二地址为核心网为终端分配的地址;或/和,终端接收终端的第一地址,第一地址为接入网网关为终端分配的地址。
在一种可能的实现方式中,本申请实施例提供的方法还包括:终端根据本地路由策略向接入网网关发送用于请求所述终端的第一地址的第二请求消息,第一地址为接入网网关为终端分配的地址。
在一种可能的实现方式中,终端根据路由策略处理终端的业务流,包括:路由策略为核心网路由策略,终端采用第二地址封装终端的业务流;封装后的业务流通过用户面功能网元传输。
在一种可能的实现方式中,终端根据路由策略处理所述终端的业务流,包括:路由策略为本地路由策略,终端采用第一地址封装终端的业务流;封装后的业务流通过接入网网关传输至数据网络。
在一种可能的实现方式中,本申请实施例提供的方法还包括:终端获取服务质量参数,服务质量参数包括终端粒度的服务质量参数;终端根据路由策略处理终端的业务流,包括:终端根据服务质量参数和路由策略处理终端的业务流,其中,业务流包括采用核心网路由策略传输的业务流和/或采用本地路由策略传输的业务流。
第四方面,本申请提供一种通信装置,该通信装置可以实现第一方面或第一方面的任意可能的实现方式中的方法,因此也能实现第一方面或第一方面任意可能的实现方式中的有益效果。该通信装置可以为核心网网元,也可以为可以支持核心网网元实现第一方面或第一方面的任意可能的实现方式中的方法的装置,例如应用于核心网网元中的芯片。该装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种示例,本申请实施例提供的一种通信装置,包括:通信单元,用于接收来自 核心网网元的终端的路由策略;其中,路由策略为核心网路由策略和/或本地路由策略;处理单元,用于根据路由策略处理终端的业务流。
在一种可能的实现方式中,业务流通过所述核心网路由策略传输,所述处理单元,具体用于采用所述终端的第二地址处理所述业务流,以及将处理后的业务流发送给固移网络交互功能;所述第二地址为所述核心网为所述终端分配的地址。
在一种可能的实现方式中,业务流通过核心网路由策略传输,所述处理单元,具体用于采用终端的第二地址处理业务流,以及将处理后的业务流发送给用户面功能网元,或者:处理单元,具体用于将业务流的地址从第一地址替换为第二地址,并将处理后的业务流发送给用户面功能网元。
在一种可能的实现方式中,业务流通过本地路由策略传输,处理单元,具体用于采用终端的第一地址将业务流传输至数据网络。
在一种可能的实现方式中,通信单元,还用于接收来自核心网网元的服务质量参数;处理单元,还用于根据服务质量参数和路由策略处理终端的业务流,服务质量参数包括终端粒度的服务质量参数,业务流包括采用核心网路由策略传输的业务流和/或采用本地路由策略传输的业务流。
在一种可能的实现方式中,通信单元,还用于接收来自终端的第二请求消息或来自核心网网元的第一指示信息,第二请求消息用于请求为终端分配第一地址,第一指示信息用于指示允许接入网网关为终端分配第一地址;处理单元,具体用于根据第二请求消息或第一指示信息,为终端分配第一地址。
在一种可能的实现方式中,通信单元,还用于获取核心网网元为终端分配的第二地址。
在一种可能的实现方式中,通信单元,还用于根据核心网路由策略向终端发送第二地址;或/和,通信单元,还用于根据第一指示信息或第二请求消息向终端发送第一地址。
另一种示例,本申请实施例提供一种通信装置,该通信装置可以是核心网网元,也可以是核心网网元内的芯片。该通信装置可以包括:通信单元和处理单元。当该通信装置是核心网网元时,该通信单元可以为接口电路。该通信装置还可以包括存储单元。该存储单元可以是存储器。该存储单元,用于存储计算机程序代码,计算机程序代码包括指令。该处理单元可以是处理器。该处理单元执行该存储单元所存储的指令,以使该通信装置实现第一方面或第一方面的任意一种可能的实现方式中描述的方法。当该通信装置是核心网网元内的芯片时,该处理单元可以是处理器,该通信单元可以统称为:通信接口。例如,通信接口可以为输入/输出接口、管脚或电路等。该处理单元执行存储单元所存储的计算机程序代码,以使该核心网网元实现第一方面或第一方面的任意一种可能的实现方式中描述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该核心网网元内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
可选的,处理器、通信接口和存储器相互耦合。
第五方面,本申请提供一种通信装置,该通信装置可以实现第二方面或第二方面的任意可能的实现方式中的方法,因此也能实现第二方面或第二方面任意可能的实现 方式中的有益效果。该通信装置可以为接入网网关,也可以为可以支持接入网网关实现第二方面或第二方面的任意可能的实现方式中的方法的装置,例如应用于接入网网关中的芯片。该装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种示例,本申请实施例提供一种通信装置,包括:通信单元,用于接收来自接入网网关的终端的路由策略;其中,路由策略为核心网路由策略和/或本地路由策略;处理单元,用于根据路由策略处理终端的业务流。
在一种可能的实现方式中,通信单元,还用于接收终端的第二地址,第二地址为核心网为所述终端分配的地址;或/和,通信单元,还用于接收终端的第一地址,第一地址为接入网网关为终端分配的地址。
在一种可能的实现方式中,通信单元,还用于根据所述本地路由策略向所述接入网网关发送第二请求消息,所述第二请求消息用于请求所述终端的第一地址,所述第一地址为所述接入网网关为所述终端分配的地址。
在一种可能的实现方式中,路由策略为核心网路由策略,处理单元,具体用于采用第二地址封装终端的业务流;封装后的业务流通过用户面功能网元传输。
在一种可能的实现方式中,路由策略为本地路由策略,处理单元,具体用于采用第一地址封装终端的业务流;封装后的业务流通过接入网网关传输至数据网络。
在一种可能的实现方式中,通信单元,还用于获取服务质量参数,服务质量参数包括终端粒度的服务质量参数;处理单元,具体用于根据服务质量参数和路由策略处理终端的业务流,其中,业务流包括采用核心网路由策略传输的业务流和/或采用本地路由策略传输的业务流。
另一种示例,本申请实施例提供一种通信装置,该通信装置可以是接入网网关,也可以是接入网网关内的芯片。该通信装置可以包括:通信单元和处理单元。当该通信装置是接入网网关时,该通信单元可以为接口电路。该通信装置还可以包括存储单元。该存储单元可以是存储器。该存储单元,用于存储计算机程序代码,计算机程序代码包括指令。该处理单元可以是处理器。该处理单元执行该存储单元所存储的指令,以使该通信装置实现第二方面或第二方面的任意一种可能的实现方式中描述的方法。当该通信装置是接入网网关内的芯片时,该处理单元可以是处理器,该通信单元可以统称为:通信接口。例如,通信接口可以为输入/输出接口、管脚或电路等。该处理单元执行存储单元所存储的计算机程序代码,以使该接入网网关实现第二方面或第二方面的任意一种可能的实现方式中描述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该接入网网关内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
可选的,处理器、通信接口和存储器相互耦合。
第六方面,本申请提供一种通信装置,该通信装置可以实现第三方面或第三方面的任意可能的实现方式中的方法,因此也能实现第三方面或第三方面任意可能的实现方式中的有益效果。该通信装置可以为终端,也可以为可以支持终端实现第三方面或第三方面的任意可能的实现方式中的方法的装置,例如应用于终端中的芯片。该装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种示例,本申请实施例提供的一种通信装置,包括:通信单元,用于接收来自接入网网关的终端的路由策略;其中,路由策略为核心网路由策略和/或本地路由策略;处理单元,用于根据路由策略处理终端的业务流。
在一种可能的实现方式中,通信单元,用于接收所述终端的第二地址,所述第二地址为核心网为所述终端分配的地址;或/和,通信单元,用于接收所述终端的第一地址,所述第一地址为所述接入网网关为所述终端分配的地址。
在一种可能的实现方式中,通信单元,还用于根据所述本地路由策略向所述接入网网关发送第二请求消息,所述第二请求消息用于请求所述终端的第一地址,所述第一地址为所述接入网网关为所述终端分配的地址。
在一种可能的实现方式中,路由策略为所述核心网路由策略,所述处理单元,具体用于采用第二地址封装所述终端的业务流;封装后的所述业务流通过用户面功能网元传输。
在一种可能的实现方式中,路由策略为所述本地路由策略,所述处理单元,具体用于采用第一地址封装所述终端的业务流;封装后的业务流通过所述接入网网关传输至数据网络。
在一种可能的实现方式中,通信单元,还用于获取服务质量参数,所述服务质量参数包括终端粒度的服务质量参数;处理单元,具体用于根据所述服务质量参数和所述路由策略处理所述终端的业务流,其中,所述业务流包括采用所述核心网路由策略传输的业务流和/或采用所述本地路由策略传输的业务流。
另一种示例,本申请实施例提供一种通信装置,该通信装置可以是终端,也可以是终端内的芯片。该通信装置可以包括:通信单元和处理单元。当该通信装置是终端时,该通信单元可以为接口电路。该通信装置还可以包括存储单元。该存储单元可以是存储器。该存储单元,用于存储计算机程序代码,计算机程序代码包括指令。该处理单元可以是处理器。该处理单元执行该存储单元所存储的指令,以使该通信装置实现第三方面或第三方面的任意一种可能的实现方式中描述的方法。当该通信装置是终端内的芯片时,该处理单元可以是处理器,该通信单元可以统称为:通信接口。例如,通信接口可以为输入/输出接口、管脚或电路等。该处理单元执行存储单元所存储的计算机程序代码,以使该终端实现第三方面或第三方面的任意一种可能的实现方式中描述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
可选的,处理器、通信接口和存储器相互耦合。
第七方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第一方面至第一方面的任意一种可能的实现方式中描述的业务流路由控制方法。
第八方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第二方面至第二方面的任意一种可能的实现方式中描述的业务流路由控制方法。
第九方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行 如第三方面至第三方面的任意一种可能的实现方式中描述的业务流路由控制方法。
第十方面,本申请实施例提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第一方面或第一方面的各种可能的实现方式中描述的一种业务流路由控制方法。
第十一方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第二方面或第二方面的各种可能的实现方式中描述的一种业务流路由控制方法。
第十二方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第三方面或第三方面的各种可能的实现方式中描述的一种业务流路由控制方法。
第十三方面,本申请实施例提供一种通信系统,该通信系统包括如下中任一个或多个:第四方面及各种可能的实现方式中描述的通信装置,第五方面及第五方面的各种可能的实现方式中描述的通信装置、以及第六方面及第六方面的各种可能的实现方式中描述的通信装置。
第十四方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,实现如第一方面或第一方面的各种可能的实现方式描述的业务流路由控制方法。
第十五方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,实现如第二方面或第二方面的各种可能的实现方式描述的业务流路由控制方法。
第十六方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,实现如第三方面或第三方面的各种可能的实现方式描述的业务流路由控制方法。
第十七方面,本申请实施例提供了一种通信装置,该通信装置包括一个或者多个模块,用于实现上述第一方面、第二方面、第三方面的方法,该一个或者多个模块可以与上述第一方面、第二方面、第三方面的方法中的各个步骤相对应。
第十八方面,本申请实施例提供一种芯片,该芯片包括处理器和通信接口,通信接口和处理器耦合,处理器用于运行计算机程序或指令,以实现第一方面或第一方面的各种可能的实现方式中所描述的一种业务流路由控制方法。通信接口用于与所述芯片之外的其它模块进行通信。
第十九方面,本申请实施例提供一种芯片,该芯片包括处理器和通信接口,通信接口和处理器耦合,处理器用于运行计算机程序或指令,以实现第二方面或第二方面的各种可能的实现方式中所描述的一种业务流路由控制方法。通信接口用于与芯片之外的其它模块进行通信。
第二十方面,本申请实施例提供一种芯片,该芯片包括处理器和通信接口,通信接口和处理器耦合,处理器用于运行计算机程序或指令,以实现第三方面或第三方面的各种可能的实现方式中所描述的一种业务流路由控制方法。通信接口用于与芯片之外的其它模块进行通信。
具体的,本申请实施例中提供的芯片还包括存储器,用于存储计算机程序或指令。
第二十一方面,本申请实施例提供一种通信装置,该通信装置包括处理器,处理器和存储器耦合,存储器中存储有计算机程序或指令,处理器用于运行存储器中存储的计算机程序或指令,实现如第一方面或第一方面的各种可能的实现方式描述的业务流路由控制方法。
第二十二方面,本申请实施例提供一种通信装置,该通信装置包括处理器,处理器和存储器耦合,存储器中存储有计算机程序或指令,处理器用于运行存储器中存储的计算机程序或指令,实现如第二方面或第二方面的各种可能的实现方式描述的业务流路由控制方法。
第二十三方面,本申请实施例提供一种通信装置,该通信装置包括处理器处理器,处理器和存储器耦合,存储器中存储有计算机程序或指令,处理器用于运行存储器中存储的计算机程序或指令,实现如第三方面或第三方面的各种可能的实现方式描述的业务流路由控制方法。
上述提供的任一种装置或计算机存储介质或计算机程序产品或芯片或通信系统均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文提供的对应的方法中对应方案的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2-图4为本申请实施例提供的一种通信系统具体结构示意图;
图5-图11为本申请实施例提供的一种业务流路由控制方法的流程示意图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13为本申请实施例提供的另一种通信装置的结构示意图;
图14为本申请实施例提供的再一种通信装置的结构示意图;
图15为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一地址和第二地址仅仅是为了区分不同的地址,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表 示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例的技术方案可以应用于各种通信系统,例如:码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA)、CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。5G通信系统、新空口(new radio,NR)是正在研究当中的下一代通信系统。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。本申请实施例中以提供的方法应用于NR系统或5G网络中为例进行说明。
如图1所示,图1示出了本申请实施例提供的一种通信系统的架构图,该通信系统包括:终端10、该终端10通过接入网网关20接入核心网(Core Network,CN)1中的核心网网元30。其中,接入网网关20为有线网络2(也可以称为:固定网络,或固网网络)中的网关。终端10通过有线接入网接入有线网络2。终端10通过无线(RAN)网络接入核心网1。
此外,在具体实现过程中,该通信系统还可以包括:用户面网元40,以及与用户面网元40连接的至少一个数据网络(data network,DN)。该至少一个数据网络可以为终端10提供数据传输服务的运营商网络。其中,该终端10通过接入网网关20接入核心网1。该核心网1用于为终端10提供服务。该核心网1包括为终端10提供服务的网元。该至少一个数据网络中包括:核心网路由时使用的数据网络50,以及本地路由时使用的数据网络60。
核心网网元30可以为终端10提供路由策略,以便终端10确定该终端10的业务流采用核心网路由策略传输,还是采用本地路由策略传输。该核心网网元30可以包括 核心网1中的控制面网元功能(Control Plane Function,CP)网元。例如,该核心网网元30可以包括移动管理网元、策略控制网元或会话管理网元中的任一个。
应理解,上述以该通信系统的核心网1可以为5G核心网(5G Core,5GC),也可以为第四代(4th generation,4G)核心网(例如,核心分组网演进(Evolved Packet Core,EPC)。
在4G核心网中会话管理网元和移动管理网元可以为移动性管理实体(mobility management entity,MME)。策略控制网元可以为策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)。也就是说,4G核心网中,MME既具有会话管理功能,又具有移动管理功能。在4G核心网中用户面网元可以为公用数据网网关(public data network gateway,PDN GW,PGW)、服务网元(serving gateway,SGW)。
在5G核心网中移动管理网元对应的网元或者实体可以为5GC中的接入和移动管理功能(core access and mobility management function,AMF)网元、会话管理网元对应的网元或者实体可以为5GC中的会话管理功能(session management function,SMF)网元、策略控制网元对应的网元或者实体可以为5GC中的策略控制功能(Policy Control Function,PCF)网元。用户面网元可以为用户面功能(user plane function,UPF)网元。
后续核心网除了支持无线(RAN)接入以外还会支持固定网络/有线网络的接入。固定网络与移动网络的融合(简称“固移融合”)有以下三种场景:
场景一,如图2所示固移融合采用集成架构:以终端为固网家庭网关(Fixed Network Residential Gateway,FN-RG),接入网网关20为宽带网网关(Broadband Network Gateway,BNG)为例,FN-RG通过有线接入网,BNG以及固移网络交互功能(Fixed Mobile Interworking Function,FMIF)接入到5GC。具体的,如图2所示,客户终端设备(Customer Premise Equipment,CPE)(例如,FN-RG)通过有线接入网/固网接入网(Wireline AN)接入到BNG。该BNG与AAA、BPCF以及FMIF连接。其中,FMIF包括FMIF-CP以及FMIF-UP。由于在图2所示的场景中,BNG具有分流接口,可以实现对来自FN-RG的业务流进行分流,因此在图2所示的场景中包括:核心网路由路径和本地路由路径。其中,核心网路由路径中包括如下路径:与FMIF-UP通过N3接口连接的UPF网元、UPF网元通过N4接口与SMF网元连接、UPF网元与DN1网元连接。这样如果BNG确定对来自FN-RG的业务流采用核心网路由策略传输,则将业务流传输给FMIF-UP,由FMIF-UP通过UPF网元传输至DN1。本地路由路径中包括如下路径:BNG通过A10接口与DN2连接。这样如果BNG确定对来自FN-RG的业务流采用本地路由策略传输,则将业务流传输至DN2。由于FMIF-CP与AMF网元之间具有连接,这样AMF网元在获取到路由策略之后,可以将路由策略发送给FMIF,FMIF再将路由策略转发给BNG。其中,与FMIF-CP通过N1接口和N2接口连接的AMF网元构成FMIF与核心网之间的控制面连接。
本申请实施例中的CPE可以为UE、个人计算机(personal computer,PC)、机顶盒(Set Top Box,STB)。
需要说明的是,本申请实施例中将业务流采用本地路由策略传输可以理解为:将业务流采用固网传输。其中,有线接入网、BNG、鉴权,授权及计费(Authentication, Authorization and Accounting,AAA)、宽带策略控制控能(Broadband Policy Control Function,BPCF)以及FMIF可以属于固网。应理解,在图2中以AAA和BPCF融合到固网中为例,当然,该AAA和BPCF也可以融合到5G核心网侧,在此情况下,固网侧不具备自身对FN-RG的鉴权能力,BNG仍旧保留为FN-RG分配IP地址的能力。具体关于FN-RG源IP地址的分配流程,可以参考下述实施例中的详细描述,此处不再赘述。
场景二,如图3所示固移融合采用融合架构:以终端为FN-RG、接入网网关为A-AGF为例,FN-RG通过有线接入网以及适应的-接入网网关功能(Adaptive-Access Gateway Function,A-AGF)接入到5GC。图3与图2的区别在于:FN-RG通过有线接入网,以及A-AGF接入到5GC。路由策略由PCF网元通过AMF网元发送给A-AGF,A-AGF作为分流点。BNG被融合到A-AGF中,不存在FMIF,A-AGF拥有BNG+FMIF的功能之和。具体的,FN-RG通过有线接入网与A-AGF连接。有线接入设备与A-AGF还可以存在接入资源控制功能(Access resource Control Function,ARCF)。其中,A-AGF与AMF网元之间通过N1接口以及N2接口建立控制面连接。A-AGF与UPF网元之间通过N3接口建立用户面连接,该UPF网元通过N4接口与SMF网元连接、UPF网元与DN1网元连接。A-AGF与DN2连接。可以理解的是,在图3所示的架构中,A-AGF确定来自FN-RG的业务流如果采用核心网路由策略传输,则A-AGF将业务流通过UPF网元传输至DN1。如果A-AGF确定来自FN-RG的业务流采用本地路由策略传输,则A-AGF将业务流直接传输给DN2。A-AGF不存在分流接口,需要添加分流接口。例如,BNG被融合到A-AGF中。
应理解,在图3所示的架构中,AAA和BPCF可以保留在固网侧,在这种情况下,其中所有BNG与FMIF之间的交互在A-AGF内部支持,所有BNG或FMIF的步骤执行由A-AGF代替。当然,该AAA和BPCF也可以保留在5GC侧。
场景三,如图4所示,如图4所示固移融合采用融合架构—在图3中终端为5G-RG,5G-RG通过有线接入网以及接入网网关5G AGF接入到5GC。图4与图2和图3的区别在于:在图4中5G-RG作为分流点,即5G-RG可以对接收到的业务流进行分流,以确定业务流采用核心网路由策略传输还是采用本地路由策略传输。在图4中5G-RG通过有线接入设备与直接(Direct)-AGF(D-AGF)连接。5G-RG通过N1接口与AMF网元连接。该D-AGF中包括AGF-CP以及AGF-UP。其中,AGF-CP与AMF网元通过N2接口建立核心网控制面连接,AGF-UP与核心网之间的用户面连接包括:AGF-UP与UPF网元之间通过N3接口建立的连接,UPF网元通过N4接口与SMF网元之间建立的连接,UPF网元与DN1网元之间的连接。此外,AGF-UP还与DN2建立用户面连接,以通过本地路由策略传输来自5G-RG的业务流。
在图4中5GC控制面的路由策略由PCF网元通过AMF网元发送给D-AGF,D-AGF进一步将此路由策略发送给5G-RG,5G-RG作为分流点。D-AGF不存在分流接口,需要添加分流接口。
此外,如图2-图4所示,该5G网络架构除了还可以包括:策略控制功能(Policy Control Function,PCF)网元、鉴权服务器功能(authentication server function,AUSF)网元、统一数据库(Unified Data Repository,UDR)、统一数据管理(Unified Data  Management,UDM)网元、或绑定支持功能(binding support function,BSF)、网络仓库贮存功能(network repository function,NRF)网元、应用功能(application function,AF)、网络切片选择功能(Network Slice Selection Function,NSSF)网元等,本申请实施例对此不作具体限定。
其中,终端通过N1接口(简称N1)与AMF网元通信。AMF实体通过N11接口(简称N11)与SMF网元通信。SMF网元通过N4接口(简称N4)与一个或者多个UPF网元通信。一个或多个UPF网元中任意两个UPF网元通过N9接口(简称N9)通信。UPF网元通过N6接口(简称N6)与AF网元管控的数据网络(data network,DN)通信。终端通过接入设备(例如,RAN设备)接入网络,接入设备与AMF网元之间通过N2接口(简称N2)通信。SMF网元通过N7接口(简称N7)与PCF网元通信,PCF网元通过N5接口与AF网元通信。接入设备通过N3接口(简称N3)与UPF网元通信。任意两个AMF网元之间通过N14接口(简称N14)通信。SMF网元通过N10接口(简称N10)与UDM通信。AMF网元通过N12接口(简称N12)与AUSF通信。AUSF网元通过N13接口(简称N13)与UDM网元通信。AMF网元通过N8接口(简称N8)与UDM网元通信。
应理解,如图2-图4的所示的网络架构中,控制面网元也可以采用服务化接口进行交互。例如,AMF网元、SMF网元、UDM网元、或者PCF网元采用服务化接口进行交互。比如,AMF网元对外提供的服务化接口可以为Namf。SMF网元对外提供的服务化接口可以为Nsmf。UDM网元对外提供的服务化接口可以为Nudm。PCF网元对外提供的服务化接口可以为Npcf。应理解,各种服务化接口的名称的相关描述可以参考23501标准中的5G系统架构(5G system architecture)图,在此不予赘述。
需要说明的是,图2-图4仅是示例性的给出一个UPF网元、SMF网元。当然,该中可能包括多个UPF网元、SMF网元,如包括SMF网元1和SMF网元2,本申请实施例对此不作具体限定。
需要说明的是,图2-图4的接入设备、AMF网元、SMF网元、UDM网元、UPF网元和PCF网元等仅是一个名字,名字对设备本身不构成限定。在5G网络以及未来其它的网络中,接入设备、AMF网元、SMF网元、UDM网元、UPF网元和PCF网元所对应的网元也可以是其他的名字,本申请实施例对此不作具体限定。例如,该UDM网元还有可能被替换为用户归属服务器(home subscriber server,HSS)或者用户签约数据库(user subscription database,USD)或者数据库实体,等等,在此进行统一说明,后续不再赘述。
AMF网元主要负责移动网络中的移动性管理,如用户位置更新、用户注册网络、用户切换等。
SMF网元主要负责移动网络中的会话管理,如会话建立、修改、释放。具体功能如为用户分配IP地址、选择提供报文转发功能的UPF网元等。
PCF网元负责向AMF网元、SMF网元提供策略,如服务质量QoS策略、切片选择策略等。
UDM网元用于存储用户数据,如签约信息、鉴权/授权信息。
UPF网元主要负责对用户报文进行处理,如转发、计费等。
DN指的是为用户提供数据传输服务的运营商网络,如IP多媒体业务(IP Multi-media Service,IMS)、Internet等。
终端通过建立终端到RAN到UPF网元到数据网络(Data Network,DN)之间的会话(PDU session),来访问DN。
本申请实施例涉及到的终端(terminal)可以包括各种具有无线通信功能的能连接到移动网络的设备。例如,手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备;还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端、用户设备(user equipment,UE),移动台(mobile station,MS),终端设备(terminal device),中继用户设备。在本申请的如下实施例中,以第一终端为5GC能力用户设备。例如,终端为中继用户设备举例说明。例如,中继用户设备可以是5G家庭网关(residential gateway,RG)。
下述对本申请实施例中涉及到的网元做简要说明:
1、用户面网元,用于分组路由和转发以及用户面数据的服务质量(quality of service,QoS)处理等。
在5G通信系统中,用户面网元可以是UPF网元,在未来通信系统中,UPF网元还可以有其它的名称,本申请不做限定。
2、数据网络网元,用于提供传输数据的网络。
在5G通信系统中,该数据网络网元可以是DN。在未来通信系统中,数据网络网元仍可以是DN,或者,还可以有其它的名称,本申请不做限定。
3、移动管理网元,主要用于移动性管理和接入管理等,可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如,合法监听以及接入授权/鉴权等功能。
在5G通信系统中,该移动管理网元可以是AMF网元。在未来通信系统中,移动管理网元仍可以是AMF网元,或者,还可以有其它的名称,本申请不做限定。
4、会话管理网元,主要用于会话管理、终端的网络互连协议(internet protocol,IP)地址分配和管理、选择可管理用户平面功能、策略控制和收费功能接口的终结点以及下行数据通知等。
在5G通信系统中,该会话管理网元可以是SMF网元,在未来通信系统中,会话管理网元还可以有其它的名称,本申请不做限定。
5、策略控制网元,用于指导网络行为的统一策略框架,为控制面功能网元(例如AMF,SMF网元等)提供策略规则信息等。
在4G通信系统中,该策略控制网元可以由策略和计费规则功能(policy and charging rules function,PCRF)网元替换。在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
6、绑定功能网元:用于查找会话所关联的PCF。
在5G通信系统中,该绑定支持网元可以是绑定支持功能(binding support function,BSF)网元。在未来通信系统中,绑定支持网元仍可以是BSF网元,或者,还可以有其它的名称,本申请不做限定。
7、认证服务器,用于鉴权服务、产生密钥实现对终端设备的双向鉴权,支持统一的鉴权框架。
在5G通信系统中,该认证服务器可以是认证服务器功能(authentication server function,AUSF)网元。在未来通信系统中,认证服务器功能网元仍可以是AUSF网元,或者,还可以有其它的名称,本申请不做限定。
8、数据管理网元,用于处理终端标识,接入鉴权,注册以及移动性管理等。
在5G通信系统中,该数据管理网元可以是统一数据管理(unified data management,UDM)网元。在未来通信系统中,统一数据管理仍可以是UDM网元,或者,还可以有其它的名称,本申请不做限定。
9、应用网元,用于进行应用影响的数据路由,接入网络开放功能网元,与策略框架交互进行策略控制等。
在5G通信系统中,该应用网元可以是应用功能(application function,AF)网元。在未来通信系统中,应用网元仍可以是AF网元,或者,还可以有其它的名称,本申请不做限定。
10、网络存储网元,用于维护网络中所有网络功能服务的实时信息。
在5G通信系统中,该网络存储网元可以是网络注册功能(network repository function,NRF)网元。在未来通信系统中,网络存储网元仍可以是NRF网元,或者,还可以有其它的名称,本申请不做限定。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
进一步地,将AF网元简称为AF,BSF网元简称为BSF,NRF网元简称为NRF,PCF网元简称为PCF。即本申请后续所描述的AF均可替换为应用网元,BSF均可替换为绑定支持网元,NRF均可替换为网络存储网元,PCF均可替换为策略控制网元。
本申请实施例提供的一种业务流路由控制方法中由核心网网元执行的步骤也可以由应用于核心网网元中的芯片来执行。由接入网网关执行的步骤也可以由应用于接入网网关中的芯片来执行、一种业务流路由控制方法中由终端执行的步骤也可以由应用于终端中的芯片来执行。下述实施例以一种业务流路由控制方法由核心网网元、接入网网关、终端来执行为例。对于装置为核心网网元内的芯片、接入网网关内的芯片或为终端内的芯片的实现方法,可参考装置分别核心网网元、接入网网关、终端的具体说明,不再重复介绍。
结合图2-图4所示的通信系统,如图5所示,图5示出了本申请实施例提供的一种业务流路由控制方法,该方法包括:
步骤101、核心网网元根据终端的标识信息、终端的接入类型、终端的位置信息中的任一个或多个,获取所述终端的路由策略(也可以称为:分流策略)。其中,路由策略为核心网路由策略和/或本地路由策略。
本申请实施例步骤101中的终端可以为如图2或图3所示的FN-RG。或者,本申 请实施例中的终端可以为如图4所示的5G-RG。核心网网元可以为PCF网元,AMF网元,或SMF网元中的任一个。终端的位置信息包括线路标识、或地理位置信息中的至少一个。核心网网元可以根据终端的位置信息判断终端是否支持本地路由。
需要说明的是,一方面,本申请实施例中核心网网元向终端或接入网网关指示核心网路由策略的优先级高于本地路由策略的优先级,则终端或接入网关可以确定优先采用核心网路由策略传输业务流。当采用核心网路由策略传输业务流时无法满足业务流的要求时,或者核心网侧的负担大于预设阈值时,终端或接入网关可以确定采用本地路由策略传输业务流。
或者另一方面,核心网网元向终端或接入网网关指示本地路由策略的优先级高于核心网路由策略的优先级,则终端或接入网关可以确定优先采用本地路由策略传输业务流。当采用本地路由策略传输业务流无法满足业务流的要求时,或者固网侧的负担大于预设阈值时,终端或接入网关可以确定采用核心网路由策略传输。
本申请实施例中的终端的标识信息用于识别该终端。该终端的标识信息可以为以下一个或者多个:网际协议地址(internet protocol,IP)、签约永久标识(subscription permanent identifier,SUPI)、永久设备标识(permanent equipment identifier,PEI)、通用公共签约标识(generic public subscription identifier,GPSI)、国际移动用户标识符(international mobile subscriber identifier,IMSI)、国际移动设备标识(international mobile equipment identity,IMEI)、IP地址和移动台国际综合业务数字网络号码(mobile station international integrated service digital network number,MSISDN)。下述实施例中但凡涉及到终端的标识均可以参考此处的描述,后续不再赘述。
示例性的,终端的接入类型可以为固网接入(access type=wireline access)、3GPP接入(access),非(Non)-3GPP access中的任一个或多个。
其中,核心网路由策略用于指示终端的业务流通过核心网路由传输,本地路由策略用于指示终端的业务流通过本地路由传输。
需要说明的是,该终端的业务流可以为终端自身的业务流,也可以为终端接收到的来自CPE的业务流,本申请实施例对此不作限定。
步骤102、核心网网元向接入网网关或者终端发送路由策略。
应理解,当该方法适用于图2或图3所示的架构时,核心网网元向接入网网关发送路由策略。其中,对于图2所示的架构,该接入网网关可以为BNG。对于图3所示的架构,该接入网网关可以为A-AGF。当该方法适用于图4所示的架构时,核心网网元向终端发送路由策略,此时终端为5G-RG。
可以理解的是,如果核心网网元为PCF网元,则其通过步骤101生成路由策略之后,可以将路由策略通过AMF网元发送给接入网网关。对于图4所示的架构,核心网网元可以将路由策略通过AMF网元发送给D-AGF,然后由D-AGF发送给5G-RG。
其中,核心网路由策略包括:核心网路由指示和/或流描述信息,其中,所述核心网路由指示用于指示通过所述核心网路由传输所述流描述信息确定的业务流。本地路由策略包括:本地路由指示和/或流描述信息,其中,所述本地路由指示用于指示通过所述本地路由传输所述流描述信息确定的业务流。
示例性的,流描述信息包括以下信息中的任一个或多个:应用标识、流五元组标 识、虚拟局域网(Virtual Local Area Network,VLAN)标签、会话类型、接入线路标识、接入点标识。例如,流五元组包括IP五元组中的至少一个。会话类型包括:PPPoE会话,IPoE会话,IP会话,GRE会话,或Ethernet会话中的任一个或多个。接入线路标识可以为Line ID或线路(circuit)ID。接入点标识可以为无线局域网(Wireless Local Area Networks,WLAN)服务集标识(Service Set Identifier,SSID),HESSID。例如,在核心网网元中存在某些VLAN标签对应的业务流1需要执行本地路由策略,则核心网网元确定业务流1需要执行本地路由策略。在核心网网元中存在某些VLAN标签对应的业务流2需要执行核心网路由策略,则核心网网元确定业务流2需要执行本地路由策略。
需要说明的是,本申请实施例中核心网网元还可以根据业务流的优先级确定业务流的路由策略。例如,核心网网元确定优先级低的业务流(例如,低价值,低QoS要求,例如,网页浏览的业务流)采用本地路由策略,优先级高的业务流采用核心网路由策略。或者核心网网元还可以根据业务流的可靠性确定业务流的路由策略。例如,高可靠性业务采用核心网路由策略。低可靠性业务采用本地路由策略。核心网网元可以根据业务流的信息确定业务流的可靠性或者优先级。具体确定业务流的可靠性或者优先级的方式可以参考现有技术中的描述,此处不再赘述。
步骤103、接入网网关接收来自核心网网元的终端的路由策略。其中,所述路由策略为核心网路由策略和/或本地路由策略。
步骤104、接入网网关根据路由策略处理终端的业务流。
步骤105、终端接收来自核心网网元的终端的路由策略。
步骤106、终端根据路由策略处理终端的业务流。
本申请实施例提供一种业务流路由控制方法,该方法通过核心网网元根据终端的标识信息、终端的接入类型、终端的位置信息中的任一个或多个,获取所述终端的路由策略,并将获取到的路由策略发送给接入网网关或者终端,以由接入网网关或者终端根据路由策略处理终端的业务流。现有技术中由于所有家庭网关传输的业务流的计费策略由5GC中的策略和控制功能(Policy and Control Function,PCF)网元控制。这样势必会增加5G网络侧的处理成本,导致固网向5G融合演进过程中的信令复杂,本申请实施例提供对业务流实现分流,这样可以将某些业务(如低价值,低QoS要求((如网页浏览等))通过终端或接入网网关直接分流。例如,如果接入网网关或者终端确定对低价值,低QoS要求的业务流采用本地路由策略传输则通过本地路由策略传输,既满足用户需求,又保留运营商针对BNG的部署。
在一种可选的实施例中,如图5所示,本申请实施例提供的方法在步骤101之前还包括:
步骤107、核心网网元接收请求消息,请求消息包括以下信息中的任一个或多个:终端的标识信息、所述终端的接入类型或终端的位置信息。
需要说明的是,如果核心网网元为PCF网元或SMF网元,则该请求消息可以由AMF网元发送。
由于PCF网元可以制定路由策略,则核心网网元为SMF网元或者AMF网元时,SMF网元或者AMF网元通过与PCF网元交互以从PCF网元处获取终端的路由策略。
在另一种可选的实施例中,结合图5,如图6所示,本申请实施例提供的方法还包括:
步骤108、接入网网关向核心网网元发送接入网网关的能力信息。
其中,能力信息用于指示接入网网关是否具有为终端分配第一地址的能力或业务本地路由能力。其中,第一地址为接入网网关为终端分配的地址。
应理解,该接入网网关可以主动向核心网网元发送接入网网关的能力信息。接入网网关也可以由核心网网元向接入网网关发送用于请求接入网网关的能力信息的请求之后,由接入网网关基于请求接入网网关的能力信息的请求发送给核心网网元,本申请实施例对此不作限定。
应理解,在图3或图4所示的实施例中,本申请实施例核心网网元在获取路由策略时,可以结合接入网网关(例如,在图3中接入网网关为A-AGF,在图4中接入网网关为D-AGF)的能力信息。如果核心网网元为PCF网元,则接入网网关可以通过AMF网元或SMF网元向PCF网元发送接入网网关的能力信息。如果核心网网元为AMF网元,则接入网网关可以直接向AMF网元发送接入网网关的能力信息。
步骤109、核心网网元获取接入网网关的能力信息。
具体的,本申请实施例中的步骤109可以通过以下步骤实现:核心网网元接收来自接入网网关的能力信息。
相应的,本申请实施例中的步骤101还可以通过以下方式实现:核心网网元根据终端的标识信息、终端的接入类型、终端的位置信息中的任一个或多个,以及能力信息获取路由策略。
示例性的,终端的位置信息可以为线路标识(Line ID)或地理位置信息中的至少一个。核心网网元可以根据终端的位置信息判断是否支持本地路由策略。
具体的,接入网网关具有为终端分配第一地址的能力或业务本地路由能力,核心网网元确定路由策略为本地路由策略。或/和,接入网网关不具有为终端分配第一地址的能力或业务本地路由能力,核心网网元确定路由策略为核心网路由策略。
需要说明的是,该接入网网关的能力信息可以随上述步骤107中的请求消息一起发送给核心网网元,也可以采用单独的消息发送给核心网网元。
此外,如果核心网网元确定终端的接入类型为固网接入,则核心网网元确定路由策略为本地路由策略。
需要说明的是,本申请实施例中如果接入网网关的能力信息指示接入网网关不具有为终端分配第一地址的能力或业务本地路由能力,但是终端的接入类型为有线接入,固网接入或者根据终端的位置信息确定支持本地路由策略,核心网网元也依然确定路由策略为核心网路由策略。
需要说明的是,上述接入网网关的能力信息、终端的位置信息、终端的接入类型可以同时存在,也可以只存在一种,可以和终端的标识信息结合使用,也可以不和终端的标识信息结合使用。本申请实施例对此不作限定。例如,核心网网元确定接入网网关具有终端分配第一地址的能力或业务本地路由能力,且终端的接入类型为固网接入,则核心网网元确定路由策略为本地路由策略。
需要说明的是,如果核心网网元可以根据终端的标识信息确定终端的接入类型或 者终端的位置信息或者终端连接的接入网网关,则核心网网元根据终端的标识信息确定终端的路由策略。例如,在核心网网元根据终端的标识信息确定终端连接的接入网网关之后,如果核心网网元中存在接入网网关的能力信息,则核心网网元便可以根据接入网网关的能力信息确定终端的路由策略。
在一种可能的示例1中,业务流通过核心网路由策略传输,则本申请实施例中的步骤104可以通过以下方式实现:接入网网关采用终端的第二地址处理业务流,以及将处理后的业务流发送给固移网络交互功能,第二地址为核心网为终端分配的地址,也即第二地址为业务流在核心网中传输时使用的地址。应理解,固移网络交互功能接收到采用第二地址处理的业务流之后,将该业务流传输至UPF网元,以由UPF网元将该业务流传输至DN。可以理解,示例1可以适用于如图2所示的架构,且接入网网关具有终端的第二地址的场景。此外,在示例1中如果接入网网关不具有终端的第二地址,则接入网网关将业务流利用终端的第一地址进行封装。接入网网关对采用第一地址封装的业务流发送给FMIF。FMIF接收到采用第一地址封装的业务流后,根据现有流程发起新的PDU会话,并利用获得的第二地址替换掉业务流的第一地址,将业务流采用第二地址传递至新建立PDU会话时确定的UPF网元。
例如,第一地址为源IP地址,第二地址为5G IP地址,则如果接入网网关具有5G IP地址,则将业务流采用5G IP地址传输至固移网络交互功能。如果接入网网关不具有5G IP地址,则将业务流采用源IP地址传输至FMIF,FMIF收到采用源IP地址封装的业务流之后,采用5G IP地址替换掉业务流的源IP地址,并发送至UPF网元。
在一种可能的示例2中,业务流通过核心网路由策略传输,则本申请实施例中的步骤104可以通过以下方式实现:接入网网关采用终端的第二地址处理业务流,以及将处理后的业务流发送给用户面功能网元。
在一种可能的示例3中,业务流通过本地路由策略传输,则本申请实施例中的步骤104可以通过以下方式实现:接入网网关采用终端的第一地址将业务流传输至数据网络。应理解,此时的数据网络即为接入网网关在固网侧的数据网络。
在一种可能的示例4中,对应于图4,路由策略为核心网路由策略,本申请实施例中的步骤106具体可以通过以下方式实现:终端采用第二地址封装终端的业务流,封装后的业务流通过用户面功能网元传输。具体的过程如下:终端采用第二地址封装终端的业务流,将采用第二地址封装的业务流传输至D-AGF,然后D-AGF可以将采用第二地址封装的业务流传输至与D-AGF具有用户面隧道的UPF网元。需要说明的是,终端和与D-AGF具有用户面连接的UPF网元之间具有用户面隧道,该用户面隧道包括:终端→D-AGF→UPF网元。需要说明的是,如果终端不具有第二地址,则终端采用第一地址封装业务流,将采用第一地址封装的业务流传输至D-AGF,然后D-AGF可以将采用第一地址封装的业务流的地址替换为第二地址,D-AGF将采用第二地址的业务流传输至与D-AGF具有用户面隧道的UPF网元。
在一种可能的示例5中,对应于图4,路由策略为本地路由策略,本申请实施例中的步骤106具体可以通过以下方式实现:终端采用第一地址封装终端的业务流;封装后的业务流通过接入网网关传输至数据网络。此处的接入网网关可以为图4中的D-AGF。
上述几个示例描述了终端或接入网网关传输业务流时的具体过程,在传输业务流时,终端或接入网网关还需要获取终端的第一地址和第二地址。下述实施例将介绍终端或接入网网关如何获取终端的第一地址和第二地址:
在一种可能的实施例中,如图7所示,本申请实施例提供的方法还包括:
步骤110、核心网网元为终端分配第二地址。
需要说明的是,会话管理过程中,核心网网元为终端分配第二地址。具体的,会话管理网元或者用户面网元在会话管理过程中为终端分配的第二地址。该会话管理过程可以指PDU会话建立过程或者PDU会话更新过程。例如,在图4所示的架构中,该PDU会话管理过程可以由终端发起。在图3或图2所示的架构中,接入网网关根据本地路由策略或者核心网路由策略发起连接请求,通过PDU会话获取终端的第二地址。
步骤111、接入网网关获取核心网网元为终端分配的第二地址。
应理解,接入网网关可以在PDU会话管理过程中获取为终端分配的第二地址。
步骤112、接入网网关根据核心网路由策略向终端发送第二地址。
应理解,步骤112中的接入网网关可以为D-AGF,这种场景适用于由终端进行分流的场景,则接入网网关如果确定业务流采用核心网路由策略传输,则向终端发送所述第二地址。
步骤113、终端获取核心网网元为终端分配的第二地址。
该终端可以在会话管理过程中从核心网网元处获取核心网网元为终端分配的第二地址。当然该终端也可以从接入网网关处获取核心网网元为终端分配的第二地址,本申请实施例对此不作限定。在终端可以在会话管理过程中从核心网网元处获取核心网网元为终端分配的第二地址的情况下,步骤112可以省略。
在一种可选的实施例中,如图7所示,本申请实施例提供的方法还包括:
步骤114、终端向接入网网关发送第二请求消息,该第二请求消息用于请求为所述终端分配第一地址。
示例性的,一方面,在终端与接入网网关完成鉴权之后,终端可以执行步骤104。另一方面,终端确定需要采用本地路由策略传输业务流,且终端不具有第一地址时,终端根据所述本地路由策略执行步骤114。可选的,该第二请求消息中可以携带该终端的标识信息,以及终端的接入类型。
步骤115、接入网网关根据第二请求消息为终端分配第一地址。
步骤116、接入网网关根据第二请求消息向终端发送第一地址。
示例性的,该接入网网关可以在PPPoE流程或IPoE流程或动态主机配置协议(Dynamic Host Configuration Protocol,DHCP)流程中向终端发送第一地址。
在一种可选的实施例中,本申请实施例提供的方法还包括:核心网网元生成第一指示信息,该第一指示信息用于指示允许接入网网关为终端分配第一地址。核心网网元将该第一指示信息发送给接入网网关。该情况可以适用于图3或图4所示的架构。
示例性的,该第一指示信息可以为本地路由允许指示,或本地路由策略指示,或鉴权成功指示。应理解,该接入网网关具有为终端分配第一地址的能力时,核心网网元可以利用第一指示信息指示是否允许接入网网关为终端分配第一地址。也即即使接入网网关具有为终端分配第一地址,但是如果核心网网元指示不允许接入网网关为终 端分配第一地址,则接入网网关为终端不分配第一地址。
需要说明的是,本申请实施例中无论是接入网网关还是终端,其在传输业务流时,还需要满足终端的服务质量参数。因此,在本申请的另一种可能的实施例中,如图8所示,本申请实施例提供的方法还包括:
步骤117、核心网网元向终端或接入网网关发送服务质量参数。
应理解,对于图4所示的架构,核心网网元可以直接向终端发送服务质量参数,也可以通过D-AGF向终端发送服务质量参数。该服务质量参数可以为终端在核心网中的服务质量参数,也可以为终端在固网中传输时的服务质量参数。
该服务质量参数可以包括:带宽、时延、最大比特率(Total Maximum Bit Rate,TMBR)中的任一个或多个。
步骤118、接入网网关接收来自核心网网元的服务质量参数。
相应的,步骤104可以通过以下方式实现:接入网网关根据服务质量参数和所述路由策略处理所述终端的业务流,所述服务质量参数包括终端粒度的服务质量参数,所述业务流包括采用所述核心网路由策略传输的业务流和/或采用所述本地路由策略传输的业务流。
步骤119、终端获取服务质量参数。
相应的,本申请实施例中的步骤106具体可以通过以下方式实现:终端根据服务质量参数和路由策略处理终端的业务流。
需要说明的是,无论是接入网网关还是终端根据服务质量参数和路由策略处理所述终端的业务流,具体包括:采用核心网路由策略传输的业务流和采用本地路由策略传输的业务流需要满足该终端的服务质量参数。以服务质量参数为终端的总带宽值为例,则采用核心网路由策略传输的业务流和采用本地路由策略传输的业务流占用的总带宽值小于或等于上述总带宽值。以服务质量参数为TMBR为例,则采用核心网路由策略传输的业务流和采用本地路由策略传输的业务流占用的TMBR小于该终端的TMBR。
如图9所示,本申请实施例提供一种业务流路由控制方法的具体实施例,该实施例中以接入网网关为BNG,终端为FN-RG,核心网网元为PCF网元为例,该方法包括:
步骤201、固网网关FN-RG与BNG建立L2连接。
其中,FN-RG与BNG之间可以通过现有流程建立L2连接。FN-RG通过有线接入网/固网接入网与BNG之间建立L2连接。
步骤202、FN-RG向BNG发送鉴权(Authentication)认证请求消息,以使得BNG接收鉴权认证请求消息。
步骤203、BNG对FN-RG进行鉴权。
步骤204、BNG为FN-RG分配源IP地址。
需要说明的是,FN-RG可以在鉴权认证请求消息中携带用于请求BNG为其分配源IP地址的请求消息,也可以在BNG完成对FN-RG进行鉴权之后,向BNG发送用于请求BNG为其分配源IP地址的请求消息。应理解,此处的源IP地址即为上述实施例中的第一地址。
步骤205、BNG决定将FN-RG注册到5GC。
步骤206、BNG向FMIF发送注册请求(Registration request),该注册请求中包括:FN-RG的身份标识。例如,FN-RG的身份标识可以为Line ID,Line ID用于识别FN-RG。
步骤207、FMIF根据Line ID生成5GC注册需要的且5GC可识别的参数,代表FN-RG选择AMF网元。
步骤208、FMIF向AMF网元发送包含Line ID的注册请求。
应理解,AMF网元将包含Line ID的注册请求转发给5GC中的AUSF网元。
步骤209、AUSF网元执行注册程序(Registration procedure),以对FN-RG进行鉴权。
其中,AUSF网元对FN-RG进行鉴权的过程可以参考现有技术中的描述,此处不再赘述。
步骤210、鉴权成功后,AMF网元向PCF网元发送策略请求信息,以使得PCF网元接收策略请求信息。其中,策略请求信息包括Line ID,接入类型设定为固网接入(access type=wireline access)。
步骤211、PCF网元根据Line ID或者access type生成针对FN-RG的NSFO策略或者5GC routing策略。
应理解,此处的NSFO策略即为上述实施例中的本地路由策略。5GC routing策略即为上述实施例中的核心网路由策略。
步骤212、PCF网元向AMF网元发送FN-RG的NSFO策略或者5GC routing策略。
步骤213、AMF网元接收来自PCF网元的FN-RG的NSFO策略或者5GC routing策略。
步骤214、AMF网元向BNG发送路由策略。其中,路由策略包括:FN-RG的NSFO策略或者5GC routing策略。
本申请实施例中的步骤214具体可以通过以下方式实现:AMF网元向FMIF发送注册接受(Registration Accept)消息,该注册接受消息中包括:路由策略。FMIF向BNG发送注册接受消息。
应理解,路由策略中可以携带FN-RG的身份标识和NSFO策略之间的映射关系,或者FN-RG的身份标识和5GC routing策略之间的映射关系。此处FN-RG的身份标识可以是Line ID,也可以是5G核心网侧为FN-RG分配的临时标识。
在一种可选的示例中,FMIF接收到路由策略之后,可以向AMF网元发送注册完成(Registration Complete)消息。
在一种可选的示例中,本申请实施例提供的方法还包括:步骤215。
步骤215、BNG根据NSFO策略或者5GC Routing策略发起连接请求,通过PDU会话获取FN-RG的5G IP地址。
在一种具体的示例中,步骤215具体可以以下方式实现:BNG向FIMF发起连接建立请求(Connect Request)消息。该连接建立请求消息用于请求5G核心网为FN-RG分配5G IP地址。FIMF向UPF网元发送PDU会话建立请求消息,以请求获取FN-RG的5G IP地址。FIMF从UPF网元处获取FN-RG的5G IP地址,并将FN-RG的5G IP 地址发送给BNG。应理解,通过PDU会话建立请求消息FIMF和UPF网元之间可以建立PDU会话。该PDU会话在后续过程中可用于传输业务流。
应理解,5G IP地址即为上述实施例中的第二地址。
步骤216、BNG根据NSFO策略或者5GC Routing策略选择做出分流决定。
具体的步骤216可以通过以下方式实现:BNG决定此业务流需要经由5G网络,则执行步骤217-步骤222。
BNG决定此业务流不需要经由5G网络,则执行步骤223。
步骤217、BNG将业务流转发给FMIF,FMIF利用与UPF网元之间的PDU会话,建立FMIF到DN1的用户面连接。
步骤218、BNG根据是否拥有匹配业务流的5G IP地址,分别执行步骤219和步骤220,或者执行步骤221和步骤222。
其中,BNG可以通过步骤215获得FN-RG的5G IP地址,也可以在PDU会话建立成功之后,从FMIF处获得(即在步骤218之后获得)。
需要说明的是,在BNG拥有匹配业务流的FN-RG的5G IP地址时,BNG执行步骤219和步骤220。在BNG没有匹配业务流的FN-RG的5G IP地址时,BNG执行步骤221和步骤222。
步骤219、BNG将业务流匹配到建立好的PDU会话,通过分配的5G IP地址将业务流进行封装,并发送给FMIF。
步骤220、FMIF通过IP地址的识别,直接将业务流匹配到已选择的UPF网元上。
步骤221、BNG将业务流利用FN-RG的源IP地址进行封装,将业务流发送给FMIF。
步骤222、FMIF接收到采用源地址封装的业务流后,利用获得的FN-RG的5G IP地址替换源IP地址,进行用户面的数据包传递。
需要说明的是,步骤222中FMIF进行用户面的数据包传递时所选择的UPF网元可以是与步骤215中不同的UPF网元。此外,步骤222中FMIF接收到采用源地址封装的业务流后发起新的PDU会话以获取FN-RG的5G IP地址。FMIF在获得FN-RG的5G IP地址之后FMIF将FN-RG的5G IP地址发送给BNG,作为后续BNG发起同一PDU会话的地址选择。
步骤223、BNG利用FN-RG的源IP地址封装业务流,以及将采用源IP地址封装的业务流发送到DN2。
需要说明的是,图9是以AAA和BPCF仍旧保留在固网侧为例进行说明。当AAA和BPCF融合到5G核心网侧,在此情况下,固网侧不具备自身对FN-RG的鉴权能力,BNG仍旧保留为FN-RG分配源IP地址的能力。具体关于FN-RG的源IP地址的分配流程,可以参考图10中相关步骤的描述(例如,步骤311-步骤313),此处不再赘述。
结合图3,如图10所示,本申请实施例提供另一种业务流路由控制方法的具体实施例,在图10中FN-RG通过有线接入网,以及Adaptive AGF接入到核心网。核心网网元为PCF网元为例,5GC控制面的路由策略由PCF网元通过AMF网元发送给A-AGF,A-AGF作为分流点。图9和图10所示的实施例的区别在于:1)、图9和图10所描述的实施例应用的架构不同。图10所描述的方法适用于图10所示的通信系统,其中,BNG被融合到A-AGF中,不存在FMIF,A-AGF拥有BNG+FMIF的功能之和,在图 10所示的实施例中不存在图9所描述的实施例中的BNG与FMIF之间的交互。2)、分流点不同。添加分流接口到A-AGF,A-AGF会作为分流点。根据是否保留了BNG的部署,分流接口的添加方式可以不同。3)、在图10所示的实施例中A-AGF识别业务流时,需要进行QoS控制,即满足FN-RG粒度的TMBR。4)、PCF网元发送路由策略时还需要考虑A-AGF的固网IP地址分配能力。5)、A-AGF在注册请求时可附带自身是否具备固网IP地址分配能力,或者当PCF网元收到策略请求信息之后,若需要A-AGF的固网IP地址分配能力,则通过AMF网元向A-AGF请求A-AGF的固网IP地址分配能力。6)、当AMF网元收到路由策略后,结合相关信息可以可选的生成Fix IP allowed信息,并连同路由策略发送给A-AGF。A-AGF在接收到注册成功消息后为FN-RG分配源IP地址,并通过PPPoE或IPoE流程将源IP地址发送给FN-RG。
具体的,如图10所示,图10中以终端为FN-RG,接入网网关为A-AGF为例,该方法具体包括:
步骤301、同步骤201,具体可以参考步骤201,此处不再赘述。
步骤302、FN-RG通过PPPoE流程或IPoE流程向A-AGF请求FN-RG的源IP地址。
步骤303、A-AGF决定将FN-RG注册到5GC。
步骤304、A-AGF根据Line ID生成5GC注册需要的且5GC可识别的参数,代表FN-RG选择AMF网元。
步骤305、A-AGF向AMF网元发送包含Line ID的注册请求。
可选的,该注册请求中可以包含A-AGF的固网IP分配能力(A-AGF capability)。
应理解,A-AGF的固网IP分配能力即为上述实施例中的接入网网关的能力信息。
步骤306、5GC对FN-RG进行鉴权。
应理解,A-AGF与5GC中的AUSF网元对FN-RG进行鉴权。
步骤307、鉴权成功后,AMF网元向PCF网元发送策略请求信息。其中,策略请求信息中包括:Line ID,接入类型设定为固网接入(access type=wireline access)。
应理解,如果AMF网元接收到A-AGF capability,则策略请求信息中还包括:A-AGF capability。
在一种可选的实现方式中,如果策略请求信息中未携带A-AGF capability,则PCF网元可以向A-AGF请求其固网IP分配能力。
步骤308、PCF网元根据Line ID或者access type以及A-AGF capability生成针对FN-RG的NSFO策略或者5GC routing策略。
步骤309、PCF网元向AMF网元发送FN-RG的NSFO策略或者5GC routing策略。
步骤310、AMF网元向A-AGF发送FN-RG的身份标识和NSFO策略或者5GC Routing策略。
其中,A-AGF作为分流点。FN-RG的身份标识可以是Line ID,也可以是5GC为FN-RG分配的临时标识。
在一种可选的实现方式中,本申请实施例中的方法还包括:
步骤311、AMF网元生成Fixed IP allowed信息,并发送给A-AGF。此消息也可以在步骤306的鉴权过程中发送给A-AGF。
应理解,该Fixed IP allowed信息即为上述实施例中的第一指示信息。
在一种可选的实施例中,本申请实施例提供的方法还包括:
步骤312、A-AGF向AMF网元发送注册成功(Registration Complete)消息。
步骤313、A-AGF基于注册成功消息,或鉴权过程中收到的安全密匙,或者Fixed IP allowed消息后,为FN-RG分配源IP地址。
步骤314、A-AGF通过PPPoE或IPoE流程将源IP地址发送给FN-RG。
需要说明的是,步骤313也可以在步骤314之后执行。
步骤315、A-AGF根据NSFO策略或者5GC Routing策略中的流描述信息,结合自己固网IP能力选择做出分流决定:
具体的,步骤314可以通过以下方式具体实现:若A-AGF决定流描述信息确定的业务流需要经由5G网络,则执行步骤315。若A-AGF决定流描述信息确定的业务流不需要经由5G网络,则执行步骤316。
具体的步骤315可以根据条件不同选择步骤315a-步骤315d中合适的步骤进行执行。
步骤315a、A-AGF发起新的PDU会话建立请求,获取FN-RG的5G IP地址。
步骤315b、A-AGF将获得的FN-RG的5G IP地址通过PPPoE或IPoE流程发送给FN-RG。
步骤315c、A-AGF执行IP地址更换,将FN-RG的源IP地址更换成匹配业务流的PDU会话的5G IP地址,利用更换好的5G IP地址将业务流重新封装。
步骤315d、A-AGF将采用5G IP地址封装的业务流发送到相应的UPF网元。
【条件1:若业务流有源IP地址,无匹配的5G IP地址】则A-AGF执行步骤315a,步骤315c,以及步骤315d。
【条件2:若业务流有源IP地址,有匹配的5G IP地址】则A-AGF执行步骤315c,以及步骤315d。
【条件3:若业务流无源IP地址,无匹配的5G IP地址】,如果A-AGF根据NSFO/5G Routing策略决定需要FN-RG的源IP地址,则A-AGF执行步骤312,步骤315a,步骤315c,步骤315d。
如果A-AGF根据NSFO/5G Routing策略决定不需要FN-RG的源IP地址,则FN-RG获取的5G IP地址可暂时作为FN-RG的源IP地址,A-AGF执行步骤315a,步骤315b以及步骤315d。
【条件4:若此业务流无源IP地址,有匹配的5G IP地址】如果A-AGF根据NSFO/5G Routing策略决定需要FN-RG的源IP地址,则A-AGF执行步骤312,步骤315c,步骤315d。若A-AGF根据NSFO/5G Routing策略决定不需要FN-RG的源IP地址,则FN-RG获取的5G IP地址可暂时作为FN-RG的源IP地址,A-AGF执行步骤315b,以及步骤315d。
步骤316、A-AGF匹配业务流,若无FN-RG的源IP地址,则执行步骤312获取FN-RG的源IP地址,利用FN-RG源IP地址封装业务流,在保障业务流满足TMBR情况下,将业务流发送到DN2。
需要说明的是,步骤316中的TMBR为该FN-RG的总TMBR,也即无论是采用 本地路由策略参数的业务流还是采用核心网路由策略传输的业务流需要满足TMBR。
例如,以最大比特率为12bit为例,则经过核心网传输的业务流与经过本地路由传输的业务流占用的最大比特率小于或等于上述总最大比特率。
需要说明的是,图10是以AAA和BPCF融合到5GC侧为例进行描述的,当AAA和BPCF仍旧保留在固网侧的情况下,具体实现过程可以参考图9中的描述,具体的所有BNG与FMIF之间的交互在A-AGF内部支持,所有BNG或FMIF的步骤执行由A-AGF代替。
结合图4,如图11所示,在图11中5G-RG通过有线接入网,以及5G AGF接入到核心网。5GC控制面的分流策略由PCF网元通过AMF网元发送给5G AGF,5G AGF进一步将路由策略发送给5G-RG,5G-RG作为分流点。图11所示的具体实施例与图9和图10所示的具体实施例的区别在于:在图11中5G AGF不存在分流接口,需要添加分流接口。5G AGF识别业务流时,进行QoS控制,即满足RG粒度的TMBR或者Session粒度的TMBR。5G-RG作为分流点,处理路由策略。5G-RG的源IP地址获取过程与图9和图10所示的具体实施例不同。
如图11所示,本申请实施例以核心网网元为PCF网元、接入网网关为D-AGF为例,该方法包括:
步骤401-步骤409、同步骤301-步骤309,具体实现可以参考步骤301-步骤309,此处不再赘述。
需要说明的是,5G-RG成功注册到5GC,AMF网元与D-AGF之间建立了N2连接。PCF网元在做NSFO/5G Routing策略决策时,可以考虑D-AGF的能力信息,其中D-AGF的能力信息获取方式同上述实施例中Adaptive AGF固网IP能力。
步骤410、AMF根据相关信息,通过N2消息(Message)将Fixed IP allowed指示,NSFP/5G Routing策略发送给D-AGF。其中Fixed IP allowed指示指明D-AGF可以为5G-RG分配源IP地址。
步骤411、D-AGF将NSFO/5G Routing策略发送给5G-RG。
需要说明的是,D-AGF向5G-RG发送FCP消息,其中,FCP消息中包括NSFO/5G Routing策略。此外,如果D-AGF为5G-RG分配了源IP地址,则在FCP消息中还可以包括5G-RG的源IP地址。
步骤412、5G-RG向AMF网元发送注册成功消息。
步骤413、若D-AGF在步骤410中没有为5G-RG分配源IP地址(不具备Local IP能力),且5G-RG根据NSFO/5G Routing策略决定需要5G-RG的源IP地址,则5G-RG通过PDU会话流程,从SMF网元/UPF网元处获得源IP地址。
具体的,5G-RG通过PDU会话流程,从SMF网元/UPF网元处获得源IP地址的具体过程可以通过步骤413-步骤416实现。
步骤414、5G-RG发起PDU会话,其中,包含5G-RG的标识和5G-RG的源IP地址请求。
步骤415、SMF网元从PCF网元处获取5G-RG的NSFO/5G Routing策略。
具体的,SMF网元向PCF网元发送策略请求(Policy Request)消息,该策略请求消息用于请求5G-RG的NSFO/5G Routing策略。PCF网元接收到策略请求消息之后向 SMF网元发送策略响应(Policy Resonse)消息。该策略响应消息中携带5G-RG的NSFO/5G Routing策略。
步骤416、SMF网元根据相关信息为5G-RG分配源IP地址(allowed),通过AMF网元以N1消息方式将5G-RG的Local IP,NSFO/5G Routing策略(若更新)发送给5G-RG。
例如,相关信息可以为终端的位置信息,包括线路标识、或地理位置信息中的至少一个。在一种可选的实现方式中,本申请实施例提供的方法还包括:步骤417、如果SMF网元未分配5G-RG的Local IP,但是allowed,5G-RG也可以通过DHCP流程获取源IP地址。
步骤418、5G-RG根据NSFO策略或者5GC Routing策略中的流描述信息,策略指示信息等做出分流决定。
具体的,步骤418可以通过以下方式具体实现:5G-RG确定流描述信息确定的业务流需要经由5G网络,则执行步骤419。5G-RG确定流描述信息确定的业务流不需要经由5G网络,则执行步骤420。
步骤419、5G-RG将业务流利用5G-RG的5G IP地址封装,或者通过PDU会话建立流程,建立5G-RG、D-AGF以及UPF网元之间的用户面隧道。其中D-AGF处根据需求可以实施IP地址更换,更换方法同图10所示的实施例。
步骤420、5G-RG将业务流利用5G-RG的源IP地址封装,将封装好的业务流利用D-AGF提供的分流接口将业务流直接发送到DN2。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如接入网网关、核心网网元、终端等为了实现上述功能,其包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例接入网网关、核心网网元、终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
上面结合图5至图11,对本申请实施例的方法进行了说明,下面对本申请实施例提供的执行上述方法的通信装置进行描述。本领域技术人员可以理解,方法和装置可以相互结合和引用,本申请实施例提供的一种通信装置可以执行上述业务流路由控制方法中由接入网网关、核心网网元、终端执行的步骤。
下面以采用对应各个功能划分各个功能模块为例进行说明:
在采用集成的单元的情况下,图12示出了上述实施例中所涉及的一种通信装置,该通信装置可以包括:处理单元101,以及通信单元102。
一种示例,该通信装置为核心网网元,或者为应用于核心网网元中的芯片。在这种情况下,通信单元102,用于支持该通信装置执行上述实施例中由核心网网元执行的步骤102。处理单元101,用于支持通信装置执行上述实施例中由核心网网元执行的步骤101。
在一种可能的实施例中,通信单元102,还用于支持通信装置执行上述实施例中由核心网网元执行的步骤107、步骤109、步骤117。处理单元101,还用于支持通信装置执行上述实施例中由核心网网元执行的步骤110。
另一种示例,该通信装置为接入网网关,或者为应用于接入网网关中的芯片。在这种情况下,通信单元102,用于支持该通信装置执行上述实施例中由接入网网关执行的步骤103。处理单元101,用于支持通信装置执行上述实施例中由接入网网关执行的步骤104。
在一种可能的实施例中,通信单元102,还用于支持通信装置执行上述实施例中由接入网网关执行的步骤108、步骤111、步骤112、步骤116、步骤118。处理单元101,还用于支持通信装置执行上述实施例中由接入网网关执行的步骤115。
再一种示例,该通信装置为终端,或者为应用于终端中的芯片。在这种情况下,处理单元101,用于支持该通信装置执行上述实施例中由终端执行的步骤106。通信单元102,用于支持该通信装置执行上述实施例中由终端执行的步骤105。
通信单元102,还用于支持该通信装置执行上述实施例中由终端执行的步骤113、步骤114、步骤119。
在采用集成的单元的情况下,图13示出了上述实施例中所涉及的通信装置的一种可能的逻辑结构示意图。该通信装置包括:处理模块112和通信模块113。处理模块112用于对通信装置的动作进行控制管理,例如,处理模块112用于执行在通信装置中进行信息/数据处理的步骤。通信模块113用于支持通信装置中进行信息/数据发送或者接收的步骤。
在一种可能的实施例中,通信装置还可以包括存储模块111,用于存储通信装置可的程序代码和数据。
示例性的,通信装置为核心网网元,或者为应用于核心网网元中的芯片。在这种情况下,通信模块113,用于支持通信装置执行上述实施例中由核心网网元执行的步骤102。处理模块112,用于支持通信装置执行上述实施例中的步骤101。
在一种可能的实施例中,通信模块113,还用于支持通信装置执行上述实施例中由核心网网元执行的步骤107、步骤109、步骤117。处理模块112,还用于支持通信装置执行上述实施例中由数据分析网元执行的步骤110。
示例性的,当通信装置为接入网网关,或者为应用于接入网网关中的芯片。在这种情况下,通信模块113,用于支持该通信装置执行上述实施例中由接入网网关执行的步骤103。处理模块112,用于支持通信装置执行上述实施例中由接入网网关执行的步骤104。
在一种可能的实施例中,通信模块113,还用于支持通信装置执行上述实施例中由接入网网关执行的步骤108、步骤111、步骤112、步骤116、步骤118。处理模块112,还用于支持通信装置执行上述实施例中由接入网网关执行的步骤115。
再一种示例,该通信装置为终端,或者为应用于终端中的芯片。在这种情况下,处理模块112,用于支持该通信装置执行上述实施例中由终端执行的步骤106。通信模块113,用于支持该通信装置执行上述实施例中由终端执行的步骤105。
通信模块113,还用于支持该通信装置执行上述实施例中由终端执行的步骤113、步骤114、步骤119。
其中,处理模块112可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块113可以是收发器、收发电路或通信接口等。存储模块111可以是存储器。
当处理模块112为处理器41或处理器45,通信模块113为通信接口43或收发器时,存储模块111为存储器42时,本申请所涉及的通信装置可以为图14所示的通信设备。该通信设备包括处理器41,通信线路44以及至少一个通信接口(图14中仅是示例性的以包括通信接口43为例进行说明)。
可选的,该通信设备还可以包括存储器42。
处理器41可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路44可包括一通路,在上述组件之间传送信息。
通信接口43,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器42可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路44与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器42用于存储执行本申请方案的计算机执行指令,并由处理器41来控制执行。处理器41用于执行存储器42中存储的计算机执行指令,从而实现本申请下述实施例提供的业务流路由控制方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器41可以包括一个或多个CPU,例如图14中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备可以包括多个处理器,例如图14中的处理器41和处理器45。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
应理解,如果通信装置为接入网网元,则通信接口43可以由收发器替换。
图15是本申请实施例提供的芯片150的结构示意图。芯片150包括一个或两个以上(包括两个)处理器1510和通信接口1530。
可选的,该芯片150还包括存储器1540,存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供操作指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。
在一些实施方式中,存储器1540存储了如下的元素,执行模块或者数据结构,或者他们的子集,或者他们的扩展集。
在本申请实施例中,通过调用存储器1540存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
一种可能的实现方式中为:接入网网关、核心网网元、终端所用的芯片的结构类似,不同的装置可以使用不同的芯片以实现各自的功能。
处理器1510控制接入网网关、核心网网元、终端中任一个的处理操作,处理器1510还可以称为中央处理单元(central processing unit,CPU)。
存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。例如应用中存储器1540、通信接口1530以及存储器1540通过总线系统1520耦合在一起,其中总线系统1520除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图15中将各种总线都标为总线系统1520。
上述本申请实施例揭示的方法可以应用于处理器1510中,或者由处理器1510实现。处理器1510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1510可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1540,处理器1510读取存储器1540中的信息,结合其硬件完成上述方法的步骤。
一种可能的实现方式中,通信接口1530用于执行图5-图11所示的实施例中的接入网网关、核心网网元、终端中任一个网元的接收和发送的步骤。处理器1510用于执 行图5-图11所示的实施例中的接入网网关、核心网网元、终端中任一个网元的处理的步骤。
以上通信单元可以是一种该装置的接口电路或通信接口,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信单元是该芯片用于从其它芯片或装置接收信号或发送信号的接口电路或通信接口。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实现。计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在存储器中。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk,SSD)等。
一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得核心网网元或者应用于核心网网元中的芯片执行实施例中的步骤101、步骤102、步骤107、步骤109、步骤110、步骤117。
另一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得接入网网关或者应用于接入网网关中的芯片执行实施例中的步骤103、步骤104、步骤108、步骤111、步骤112、步骤115、步骤116、步骤118。
又一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得终端或者应用于终端中的芯片执行实施例中的步骤105、步骤106、步骤113、步骤114、步骤119。
前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得核心网网元或者应用于核心网网元中的芯片执行实施例中的步骤101、步骤102、步骤107、步骤109、步骤110、步骤117。
另一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得接入网网关或者应用于接入网网关中的芯片执行实施例中的步骤103、步骤104、步骤108、步骤111、步骤112、步骤115、步骤116、步骤118。
又一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得终端或者应用于终端中的芯片执行实施例中的步骤105、步骤106、步骤113、步骤114、步骤119。
一方面,提供一种芯片,该芯片应用于核心网网元中,芯片包括至少一个处理器 和通信接口,通信接口和至少一个处理器耦合,处理器用于运行指令,以执行实施例中的步骤103、步骤104、步骤108、步骤111、步骤112、步骤115、步骤116、步骤118。
又一方面,提供一种芯片,该芯片应用于接入网网关中,芯片包括至少一个处理器和通信接口,通信接口和至少一个处理器耦合,处理器用于运行指令,以执行实施例中步骤103、步骤104、步骤108、步骤111、步骤112、步骤115、步骤116、步骤118。
一方面,提供一种芯片,该芯片应用于终端中,芯片包括至少一个处理器和通信接口,通信接口和至少一个处理器耦合,处理器用于运行指令,以执行实施例中的步骤105、步骤106、步骤113、步骤114、步骤119。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,简称SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (35)

  1. 一种业务流路由控制方法,其特征在于,包括:
    核心网网元根据终端的标识信息、所述终端的接入类型、所述终端的位置信息中的任一个或多个,获取所述终端的路由策略;其中,所述路由策略为核心网路由策略和/或本地路由策略;
    所述核心网网元向接入网网关或者所述终端发送所述路由策略。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述核心网网元接收请求消息,所述请求消息包括以下信息中的任一个或多个:所述终端的标识信息、所述终端的接入类型或所述终端的位置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述核心网路由策略包括:核心网路由指示和/或流描述信息,其中,所述核心网路由指示用于指示通过所述核心网路由传输所述流描述信息确定的业务流;
    所述本地路由策略包括:本地路由指示和/或流描述信息,其中,所述本地路由指示用于指示通过所述本地路由传输所述流描述信息确定的业务流。
  4. 根据权利要求3所述的方法,其特征在于,所述流描述信息包括以下信息中的任一个或多个:应用标识、流五元组标识、虚拟局域网VLAN标签、会话类型、接入线路标识、接入点标识。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述核心网网元获取所述接入网网关的能力信息,所述能力信息用于指示所述接入网网关是否具有为所述终端分配第一地址的能力或业务本地路由能力;其中,所述第一地址为所述接入网网关或所述核心网网元或用户面功能网元为所述终端分配的地址;
    所述核心网网元根据终端的标识信息、所述终端的接入类型、所述终端的位置信息中的任一个或多个,获取所述终端的路由策略,具体包括:
    所述核心网网元根据所述终端的标识信息、所述终端的接入类型、所述终端的位置信息中的任一个或多个,以及所述能力信息获取所述路由策略。
  6. 根据权利要求5所述的方法,其特征在于,所述核心网网元根据所述终端的标识信息、所述终端的接入类型、所述终端的位置信息中的任一个或多个,以及所述能力信息获取所述终端的路由策略,包括:
    所述接入网网关具有为所述终端分配第一地址的能力或业务本地路由能力,所述核心网网元确定所述路由策略为所述本地路由策略;或/和,
    所述接入网网关不具有为所述终端分配第一地址的能力或业务本地路由能力,所述核心网网元确定所述路由策略为所述核心网路由策略。
  7. 根据权利要求5或6所述的方法,其特征在于,所述核心网网元获取所述接入网网关的能力信息,包括:
    所述核心网网元接收来自所述接入网网关的所述能力信息。
  8. 一种业务流路由控制方法,其特征在于,包括:
    接入网网关接收来自核心网网元的终端的路由策略;其中,所述路由策略为核心网路由策略和/或本地路由策略;
    所述接入网网关根据所述路由策略处理所述终端的业务流。
  9. 根据权利要求8所述的方法,其特征在于,所述业务流通过所述核心网路由策略传输,所述接入网网关根据所述路由策略处理所述终端的业务流,包括:
    所述接入网网关采用所述终端的第二地址处理所述业务流,以及将处理后的业务流发送给固移网络交互功能;所述第二地址为所述核心网为所述终端分配的地址。
  10. 根据权利要求8所述的方法,其特征在于,所述业务流通过所述核心网路由策略传输,所述接入网网关根据所述路由策略处理所述终端的业务流,包括:
    所述接入网网关采用所述终端的第二地址处理所述业务流,以及将处理后的业务流发送给用户面功能网元,或者:
    所述接入网网关将所述业务流的地址从第一地址替换为第二地址,并将处理后的业务流发送给所述用户面功能网元,其中,所述第一地址为所述接入网网关或所述核心网网元或用户面功能网元为所述终端分配的地址。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述接入网网关根据所述路由策略处理所述终端的业务流,包括:
    所述业务流通过本地路由策略传输,所述接入网网关采用所述终端的第一地址将所述业务流传输至数据网络。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网网关接收来自所述核心网网元的服务质量参数;
    所述接入网网关根据所述路由策略处理所述终端的业务流,包括:
    所述接入网网关根据服务质量参数和所述路由策略处理所述终端的业务流,所述服务质量参数包括终端粒度的服务质量参数,所述业务流包括采用所述核心网路由策略传输的业务流和/或采用所述本地路由策略传输的业务流。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网网关接收来自所述终端的第二请求消息或来自所述核心网网元的第一指示信息,所述第二请求消息用于请求为所述终端分配第一地址,所述第一指示信息用于指示允许所述接入网网关为所述终端分配第一地址;
    所述接入网网关根据所述第二请求消息或所述第一指示信息,为所述终端分配所述第一地址。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网网关获取所述核心网网元为所述终端分配的第二地址。
  15. 根据权利要求8-14任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网网关根据核心网路由策略向所述终端发送第二地址;或/和,
    所述接入网网关根据第一指示信息或第二请求消息向所述终端发送第一地址。
  16. 一种通信装置,其特征在于,包括:
    处理单元,用于根据终端的标识信息、所述终端的接入类型、所述终端的位置信息中的任一个或多个,获取所述终端的路由策略;其中,所述路由策略为核心网路由策略和/或本地路由策略;
    通信单元,用于向接入网网关或者所述终端发送所述路由策略。
  17. 根据权利要求16所述的装置,其特征在于,所述通信单元,还用于核心网网 元接收请求消息,所述请求消息包括以下信息中的任一个或多个:所述终端的标识信息、所述终端的接入类型或所述终端的位置信息。
  18. 根据权利要求16或17所述的装置,其特征在于,所述核心网路由策略包括:核心网路由指示和/或流描述信息,其中,所述核心网路由指示用于指示通过所述核心网路由传输所述流描述信息确定的业务流;
    所述本地路由策略包括:本地路由指示和/或流描述信息,其中,所述本地路由指示用于指示通过所述本地路由传输所述流描述信息确定的业务流。
  19. 根据权利要求18所述的装置,其特征在于,所述流描述信息包括以下信息中的任一个或多个:应用标识、流五元组标识、虚拟局域网VLAN标签、会话类型、接入线路标识、接入点标识。
  20. 根据权利要求16-19任一项所述的装置,其特征在于,所述通信单元,还用于获取所述接入网网关的能力信息,所述能力信息用于指示所述接入网网关是否具有为所述终端分配第一地址的能力或业务本地路由能力;其中,所述第一地址为所述接入网网关或所述核心网网元或用户面功能网元为所述终端分配的地址;
    所述处理单元,具体用于根据所述终端的标识信息、所述终端的接入类型、所述终端的位置信息中的任一个或多个,以及所述能力信息获取所述路由策略。
  21. 根据权利要求20所述的装置,其特征在于,所述接入网网关具有为所述终端分配第一地址的能力或业务本地路由能力,所述处理单元,具体用于确定所述路由策略为所述本地路由策略;或/和,
    所述接入网网关不具有为所述终端分配第一地址的能力或业务本地路由能力,所述处理单元,具体用于确定所述路由策略为所述核心网路由策略。
  22. 根据权利要求20或21所述的装置,其特征在于,所述处理单元,具体用于通过所述通信单元接收来自所述接入网网关的所述能力信息。
  23. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自核心网网元的终端的路由策略;其中,所述路由策略为核心网路由策略和/或本地路由策略;
    处理单元,用于根据所述路由策略处理所述终端的业务流。
  24. 根据权利要求23所述的装置,其特征在于,所述业务流通过所述核心网路由策略传输,所述处理单元,具体用于采用所述终端的第二地址处理所述业务流,以及将处理后的业务流发送给固移网络交互功能;所述第二地址为所述核心网为所述终端分配的地址。
  25. 根据权利要求24所述的装置,其特征在于,所述业务流通过所述核心网路由策略传输,所述处理单元,具体用于采用所述终端的第二地址处理所述业务流,以及将处理后的业务流发送给用户面功能网元,或者:
    所述处理单元,具体用于将所述业务流的地址从第一地址替换为第二地址,并将处理后的业务流发送给所述用户面功能网元。
  26. 根据权利要求23-25任一项所述的装置,其特征在于,所述业务流通过本地路由策略传输,所述处理单元,具体用于采用所述终端的第一地址将所述业务流传输至数据网络。
  27. 根据权利要求23-26任一项所述的装置,其特征在于,所述通信单元,还用于接收来自所述核心网网元的服务质量参数;
    所述处理单元,还用于根据所述服务质量参数和所述路由策略处理所述终端的业务流,所述服务质量参数包括终端粒度的服务质量参数,所述业务流包括采用所述核心网路由策略传输的业务流和/或采用所述本地路由策略传输的业务流。
  28. 根据权利要求23-27任一项所述的装置,其特征在于,所述通信单元,还用于接收来自所述终端的第二请求消息或来自所述核心网网元的第一指示信息,所述第二请求消息用于请求为所述终端分配第一地址,所述第一指示信息用于指示允许所述通信装置为所述终端分配第一地址;
    所述处理单元,具体用于根据所述第二请求消息或所述第一指示信息,为所述终端分配所述第一地址。
  29. 根据权利要求23-28任一项所述的装置,其特征在于,所述通信单元,还用于获取所述核心网网元为所述终端分配的第二地址。
  30. 根据权利要求23-29任一项所述的装置,其特征在于,所述通信单元,还用于根据所述核心网路由策略向所述终端发送第二地址;或/和,
    所述通信单元,还用于根据第一指示信息或第二请求消息向所述终端发送第一地址。
  31. 一种芯片,其特征在于,所述芯片包括至少一个处理器和通信接口,所述通信接口和所述至少一个处理器耦合,所述至少一个处理器用于运行计算机程序或指令,以实现如权利要求1-7中任一项所述的业务流路由控制方法,或以实现权利要求8-15中任一项所述的业务流路由控制方法,所述通信接口用于与所述芯片之外的其它模块进行通信。
  32. 一种通信装置,其特征在于,包括:处理器和通信接口;
    其中,所述通信接口用于执行如权利要求1-7中任一项所述的业务流路由控制方法中在核心网网元中进行消息收发的操作;所述处理器运行指令以执行如权利要求1-7中任一项所述的业务流路由控制方法中在所述核心网网元中进行处理或控制的操作;或者,
    所述通信接口用于执行如权利要求8-15中任一项所述的业务流路由控制方法中在接入网网关中进行消息收发的操作;所述处理器运行指令以执行如权利要求8-15中任一项所述的业务流路由控制方法中在所述接入网网关中进行处理或控制的操作。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令被运行时,实现上述权利要求1-7任一项所述的业务流路由控制方法;或者,实现上述权利要求8-15任一项所述的业务流路由控制方法。
  34. 一种通信系统,其特征在于,包括:如权利要求16-22任一项所述的通信装置,如权利要求23-30任一项所述的通信装置,以及与如权利要求23-30任一项所述的通信装置通信的终端。
  35. 一种通信装置,其特征在于,包括:处理器,所述处理器和存储器耦合,所述存储器中存储有计算机程序或指令,所述处理器用于运行所述存储器中存储的所述计算机程序或指令,以实现权利要求1-7任一项所述的业务流路由控制方法;或者, 实现上述权利要求8-15任一项所述的业务流路由控制方法。
PCT/CN2020/079046 2019-04-02 2020-03-12 一种业务流路由控制方法、装置及系统 WO2020199896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910263116.7A CN111770545B (zh) 2019-04-02 2019-04-02 一种业务流路由控制方法、装置及系统
CN201910263116.7 2019-04-02

Publications (1)

Publication Number Publication Date
WO2020199896A1 true WO2020199896A1 (zh) 2020-10-08

Family

ID=72664701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079046 WO2020199896A1 (zh) 2019-04-02 2020-03-12 一种业务流路由控制方法、装置及系统

Country Status (2)

Country Link
CN (1) CN111770545B (zh)
WO (1) WO2020199896A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113347738A (zh) * 2021-05-21 2021-09-03 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备
CN113890834A (zh) * 2021-08-24 2022-01-04 网络通信与安全紫金山实验室 MEC系统与DPoH系统的通信方法及装置
CN114301831A (zh) * 2021-12-10 2022-04-08 中国联合网络通信集团有限公司 一种业务传输方法、装置及存储介质
WO2023001015A1 (zh) * 2021-07-19 2023-01-26 华为技术有限公司 一种传输数据的方法和装置
CN116056022A (zh) * 2023-04-03 2023-05-02 北京九栖科技有限责任公司 基于信令关联实时识别手机号码移动终端上网流量的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573378A (zh) * 2021-07-19 2021-10-29 腾讯科技(深圳)有限公司 一种电竞数据处理方法、装置、设备及存储介质
CN115967992A (zh) * 2021-10-08 2023-04-14 华为技术有限公司 一种通信方法、装置及系统
CN116867019A (zh) * 2022-03-28 2023-10-10 华为技术有限公司 一种通信方法及装置
CN115002933A (zh) * 2022-06-28 2022-09-02 中国电信股份有限公司 一种会话建立系统、方法、电子设备及存储介质
CN117641320A (zh) * 2022-08-16 2024-03-01 华为技术有限公司 一种业务流路由方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378267A (zh) * 2010-08-09 2012-03-14 中兴通讯股份有限公司 在固网移动网络融合场景下实现资源控制的方法和系统
US20120147839A1 (en) * 2009-08-21 2012-06-14 Huawei Technologies Co., Ltd. Method, System, and Access Gateway for Traffic Flows to Share Resources
US20130115914A1 (en) * 2010-07-09 2013-05-09 Zte Corporation Control Method for Home Base Station Access and Home Base Station Gateway
CN103428731A (zh) * 2012-05-25 2013-12-04 中兴通讯股份有限公司 路由优化方法及系统、服务网关
US20150063310A1 (en) * 2012-05-15 2015-03-05 Huawei Technologies Co., Ltd. Method and Apparatus for Removing Policy and Charging Control Rule from Default Bearer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006580B (zh) * 2009-09-03 2013-11-06 中兴通讯股份有限公司 一种路由策略的获取方法及系统
CN102469433B (zh) * 2010-11-09 2015-10-21 中兴通讯股份有限公司 一种实现数据流服务质量和计费策略控制的方法及系统
CN103889002B (zh) * 2012-12-20 2019-05-21 中兴通讯股份有限公司 流控方法及装置、移动节点、接入网关
EP3016329B1 (en) * 2013-07-25 2018-03-21 Huawei Technologies Co., Ltd. Service path allocation method, router and service execution entity
CN107005909A (zh) * 2014-12-31 2017-08-01 华为技术有限公司 业务流分流方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120147839A1 (en) * 2009-08-21 2012-06-14 Huawei Technologies Co., Ltd. Method, System, and Access Gateway for Traffic Flows to Share Resources
US20130115914A1 (en) * 2010-07-09 2013-05-09 Zte Corporation Control Method for Home Base Station Access and Home Base Station Gateway
CN102378267A (zh) * 2010-08-09 2012-03-14 中兴通讯股份有限公司 在固网移动网络融合场景下实现资源控制的方法和系统
US20150063310A1 (en) * 2012-05-15 2015-03-05 Huawei Technologies Co., Ltd. Method and Apparatus for Removing Policy and Charging Control Rule from Default Bearer
CN103428731A (zh) * 2012-05-25 2013-12-04 中兴通讯股份有限公司 路由优化方法及系统、服务网关

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113347738A (zh) * 2021-05-21 2021-09-03 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备
WO2022242507A1 (zh) * 2021-05-21 2022-11-24 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质、电子设备及程序产品
WO2023001015A1 (zh) * 2021-07-19 2023-01-26 华为技术有限公司 一种传输数据的方法和装置
CN113890834A (zh) * 2021-08-24 2022-01-04 网络通信与安全紫金山实验室 MEC系统与DPoH系统的通信方法及装置
CN113890834B (zh) * 2021-08-24 2024-01-23 网络通信与安全紫金山实验室 MEC系统与DPoH系统的通信方法及装置
CN114301831A (zh) * 2021-12-10 2022-04-08 中国联合网络通信集团有限公司 一种业务传输方法、装置及存储介质
CN114301831B (zh) * 2021-12-10 2023-07-07 中国联合网络通信集团有限公司 一种业务传输方法、装置及存储介质
CN116056022A (zh) * 2023-04-03 2023-05-02 北京九栖科技有限责任公司 基于信令关联实时识别手机号码移动终端上网流量的方法
CN116056022B (zh) * 2023-04-03 2023-06-06 北京九栖科技有限责任公司 基于信令关联实时识别手机号码移动终端上网流量的方法

Also Published As

Publication number Publication date
CN111770545B (zh) 2022-08-26
CN111770545A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2020199896A1 (zh) 一种业务流路由控制方法、装置及系统
KR102172117B1 (ko) 네트워크 슬라이스 첨부를 위한 시스템 및 방법 그리고 구성
CN111586860B (zh) 一种通信方法及装置
US9787537B2 (en) Customizable mobile broadband network system and method for customizing mobile broadband network
US11832352B2 (en) Service flow transmission method and apparatus and communications method and apparatus
WO2020248828A1 (zh) 通信方法、装置及系统
CN111586642B (zh) 一种通信方法及装置
WO2019033920A1 (zh) 网络侧对远端用户设备的识别和控制方法以及设备
WO2020147756A1 (zh) 一种会话管理方法及装置
US20200329514A1 (en) Session establishment method and system, and device
WO2020238327A1 (zh) 一种用户面连接的建立方法、装置及系统
US11689958B2 (en) Communication method, device, and system
WO2019196788A1 (zh) 通信方法和通信装置
US20210227608A1 (en) Method And Apparatus For Sending Multicast Data
WO2019154160A1 (zh) 一种通信方法及装置
WO2020073899A1 (zh) 数据传输方法及装置
WO2020034869A1 (zh) 一种业务流的传输方法、通信方法及装置
US20220225463A1 (en) Communications method, apparatus, and system
WO2022161251A1 (zh) 通信方法、系统、装置、设备及计算机可读存储介质
JP6403824B2 (ja) カスタマイズ可能なモバイルブロードバンドネットワークシステムおよびモバイルブロードバンドネットワークをカスタマイズするための方法
WO2021128225A1 (zh) 一种业务流的处理方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782332

Country of ref document: EP

Kind code of ref document: A1